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Abstract

Machine unlearning aims to solve the problem of removing the influence of se-
lected training examples from a learned model. Despite the increasing attention
to this problem, it remains an open research question how to evaluate unlearning
in large language models (LLMs), and what are the critical properties of the data
to be unlearned that affect the quality and efficiency of unlearning. This work for-
malizes a metric to evaluate unlearning quality in generative models, and uses it
to assess the trade-offs between unlearning quality and performance. We demon-
strate that unlearning out-of-distribution examples requires more unlearning steps
but overall presents a better trade-off overall. For in-distribution examples, how-
ever, we observe a rapid decay in performance as unlearning progresses. We fur-
ther evaluate how example’s memorization and difficulty affect unlearning under
a classical gradient ascent-based approach.

1 Introduction

Training large language models (LLMs) often involves complex data pipelines. These pipelines
handle large quantities of data, some of which might be sensitive. Recently, it has been shown
that LLMs are susceptible to sentence-level membership inference attacks (Gu et al., 2023) and
reconstruction attacks (Carlini et al., 2019), meaning that one may be able to infer which data was
part of the training set, or in some cases, even reconstruct partial inputs by interrogating the model.
As a result, this raises a prevalent problem of data removal from a trained LLM.

To this end, there has been growing interest in formalizing technical definitions of machine unlearn-
ing and designing machine unlearning techniques and evaluation metrics (Triantafillou et al., 2023,
2024). The goal of machine unlearning is to remove the influence of a subset of the original training
data, the forget set, from a corresponding model. A naı̈ve way to achieve it is to retrain the model
from scratch on an updated training set (the retain set), that does not include the forget set. This
approach is resource-intensive, and does not scale to the large models now in development.

Efficient alternatives in LLMs often rely on gradient ascent-based procedures, where one maximizes
some loss on the data to be forgotten to reduce the influence of this data on the model predictions
(Jang et al., 2022). However, there are a few issues that arise with this approach: (1) inherently,
gradient ascent-based unlearning does not come with guarantees, and one needs a way to empiri-
cally evaluate the unlearning quality; (2) such unlearning methods do not only affect the forget set
examples, but also come at a performance cost on the rest of the data.

Our work touches upon both of these issues. For the first issue, we propose two metrics for eval-
uating unlearning quality. The first metric, named generalized exposure, lower bounds unlearning
quality under a particular unlearning definition (Triantafillou et al., 2023), but requires access to a
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reference model, that had never seen the forget set, to compute likelihoods. Another metric, relative
exposure, is an approximation to the first, further estimating the likelihoods that would be computed
by a reference model, only using the current model pre- and post-unlearning.

For the second issue, we present an extensive empirical evaluation, on LLMs, of how unlearning
via gradient ascent differs for in- versus out-of-distribution examples. We visualize the trade-offs
between unlearning quality as measured per our definitions, and performance on the rest of the data.
We capture different patterns of these trade-offs depending on the difficulty of the examples in the
forget set, and depending on the degree of memorization of these examples. Our contributions can
be summarized as following:

• We propose a new metric for evaluating unlearning in generative models using a reference
model that had never seen the unlearning data. Further, we propose an approximation to
this metric that does not require having access to the reference model.

• Using our proposed metrics, we evaluate gradient ascent-based unlearning in large lan-
guage models, and observe that unlearning out-of-distribution samples can be done nearly
without affecting the BLEU score Papineni et al. (2002) just like in the reference model. In
contrast, unlearning in-distribution samples affects the performance, unlike in the reference
model. This indicates a weakness in gradient ascent-based unlearning, and suggests that
simultaneous gradient descent on the retain data might be necessary.

• Finally, we evaluate whether measuring unlearning on a data point could be done using
similar samples. We observe that similar examples in the training data are unlearned to-
gether with the ones on which unlearning is performed. Similar examples outside of the
training dataset are almost not affected by this unlearning procedure. This explains why we
observe performance degradation for in-distribution examples.

2 Preliminaries

Let Θ be a parameterized space of models (e.g., Θ = Rd in the case of neural networks with d
parameters). For our purposes, we care only about the output distribution of learning algorithms.
That is, if Z∗ denotes the set of finite sequences of input examples, and ∆(Θ) denotes the space of
distributions on Θ, a learning algorithm will be viewed as a map A : Z∗ → ∆(Θ), and so running
the algorithm on a size-n dataset S ∈ Zn produces the model θ ∼ A(S).

In the context of autoregressive sequence models, such as LLMs, the set of training data S ∈ Z∗

consists of samples x ∈ Z, each a sequence of tokens, x = (x1, . . . , xk). A model θ defines con-
ditional distributions on the next token xi given all previous tokens x1:i−1, denoted f(xi|x1:i−1; θ).
For a fixed model θ, we consider its output on a given sequence of tokens x = (x1, . . . , xk) ∈ Z to
be f(x; θ) =

∏k
i=1 f(xi|x1:i−1; θ), the probability it assigns to that sequence (in other words, the

likelihood of x under the model θ).

Let L(θ, x) = − log(f(x; θ)) denote the negative log likelihood (NLL) of x. The training objective
of language models we consider is based on that loss, averaged over x ∈ S. It is minimized using
gradient-based iterative algorithms. Although it is immaterial to this work, training can often be
viewed as stochastic gradient descent (or some variant) applied to the objective θ 7→ EL(θ,X),
where the expectation is taken over X sampled from S.

2.1 Unlearning

Given that a learning algorithm has produced a model θ ∼ A(S), the goal of unlearning is to remove
the influence of a subset F ⊆ S of the training data. We call F the forget set, S \ F the retain set.

There are many ways one might formalize unlearning. We consider the following definition of
unlearning (Sekhari et al., 2021; Gupta et al., 2021; Neel et al., 2021)3:
Definition 2.1. An algorithm U is a worst-case ε-unlearner (for A) if, for every training set S,
forget set F ⊂ S of fixed size, and measurable subset B ⊆ Θ, letting θU ∼ U(A(S), F ) and

3Note that the cited papers usually have another parameter δ that accounts for a shift in Equation (1). In
our case δ = 0. Further, it is common to consider a type of a “publish” function that allows to compare a
distribution over other quantities, potentially obtained by post-processing (“publishing”) the output A(S).
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θ−F ∼ A(S \ F ),

e−ε Pr(θ−F ∈ B|S, F ) ≤ Pr(θU ∈ B|S, F ) ≤ eε Pr(θ−F ∈ B|S, F ). (1)

For any distribution over training data S and forget sets F , we say U is an on-average ε-unlearner
if Equation (1) holds when the probabilities are unconditional.

We refer to a sample θ−F ∼ A(S \ F ) as a reference model. Definitions of unlearning vary in a
number of ways, including in terms of what information is available to the unlearning algorithm.
The role of access to (statistics of) the training data is studied by Sekhari et al. (2021) .

In this work, we will study unlearning algorithms that operate by performing gradient ascent on the
NLL loss, averaged over the forget set F .

3 Evaluation of Unlearning in Large Language Models

Fix a pair of algorithms A, U . Let G be the set of measurable functions from Θ taking values in
[0, 1]. For training data S and forget set F ⊆ S, the smallest ε satisfying Equation (1) is

εS,F = sup
g∈G

(| logE[g(θU )]− logE[g(θ−F )]|) , (2)

where θU ∼ U(A(S), F ) and θ−F ∼ A(S\F ). The supremum supS,F εS,F is the tightest parameter
for the worst-case notion.

It follows that evaluating the argument in the r.h.s. of Equation (2) with any g ∈ G yields a lower
bound on the unlearning parameter ε. Below we construct a function g that we use to evaluate
unlearning.

Let F ⊆ S be a set of strings we want to forget. In addition, consider n reference strings
R = {ri}ni=1, sampled from some given distribution, and that are not part of S (or F ). Recall
that L(θ, x) = − log f(x; θ) is the negative log-likelihood of a sequence x under model θ. Let

g(x; θ,R) =
1

n

n∑
j=1

L(θ, x)
L(θ, x) + L(θ, rj)

. (3)

Each term L(θ, x)/ (L(θ, x) + L(θ, rj)) can be seen as a relaxation of the hard comparison
(L(θ, x) ≤ L(θ, rj)) (or equivalently (f(rj ; θ) ≤ f(x; θ)), as the NLL is monotonically decreas-
ing). In aggregate, it represents the fraction of reference strings in R that have an NLL higher than
x. g can be seen as a soft version (scaled to [0, 1]) of the rank of f(x; θ) among the probabilities of
reference strings {f(rj)}nj=1. A smaller value of g indicates x is more likely under θ (has a smaller
loss) than elements of R, a larger value indicates it is less likely (has a larger loss). If g(x; θ,R) < γ,
then there are at most 2nγ elements ri of R such that f(ri; θ) > f(x; θ) (and L(θ, ri) < L(θ, x)).
Similarly, if g(x; θ,R) > 1 − γ, then at most 2nγ elements ri ∈ R satisfy f(ri; θ) < f(x; θ) (and
L(θ, ri) > f(x; θ)).

We define Generalized Exposure of x ∈ F relative to a set of reference strings R to be

GenEx(x;A,U , F, S) = logE[g(x; θ−F , R)]− logE[g(x; θU , R)]. (4)

Taking the absolute value of GenEx yields a lower bound on the worst-case epsilon in Equation (2)
for a fixed g. One cannot compute the expectations in Equation (4) exactly, since the distributions of
θU and θ−F are not tractable in a standard deep learning setup. In our experiments, we use a Monte
Carlo estimate of the expectations in the generalized exposure metric to get an approximate lower
bound on the unlearning quality. Such estimates are subject to variance. Alternatively, one could
threshold the observed g(x; θU , R), which would effectively correspond to choosing a different g ∈
G in Equation (2), and then use Clopper–Pearson confidence intervals for binomials to compute the
confidence intervals of the estimates (Clopper & Pearson, 1934) (also see (Jagielski et al., 2020)).

Exposure and memorization4. Generalized exposure can be seen as an extension of the exposure
metric that appeared in the memorization literature, introduced by Carlini et al. (2019). There, the

4We intend here a very restricted definition of “memorization”: whether a generative model can be induced
to generate near-facsimiles of some training examples when prompted with appropriate instructions. Models
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authors inject secret canaries (i.e., strings generated randomly, from a different distribution than the
regular data distribution) C = {ci}mi in the training set S. In our notation, C = F . In addition,
n reference strings {ri}ni=1 are sampled from the same distribution. For each canary ci, letting
rank(li|{lj}j) denote the rank of li in the set {lj}j , Carlini et al. (2019) define exposure as5:

Ex(ci; θ) = log2(n)− log2(rank(L(θ, ci)|{L(θ, rj)}nj=1)), or, equivalently (5)

Ex(ci; θ) = − log2 Pr
j=1:n

[L(θ, rj) ≤ L(θ, ci)] . (6)

This metric is meant to capture how much the model memorized the canaries relative to the reference
strings that were not seen during training.

Generalized Exposure uses a function g (Equation (3)) that can be seen as a soft version of the
comparison function used in the second formulation of exposure (Equation (6)). The reference
strings it uses do not have to come from outside of the distribution of regular data in general, but we
can consider R = {ri}ni=1, as defined above, as a special case.

For a randomly generated string r coming from the same distribution as R, and never seen during
learning or unlearning (θ would be independent of them), g(r; θ,R) should be around ½, and each
term in 4 of the form − logE g(r; θ,R) = log(2). Similarly, the probability in Equation (6) will
tend to ½, and exposure to log2(2) = 1.

When no memorization happens, Generalized Exposure for these randomly generated canary strings
C is zero. To see this, note that E g(ci; θ) =

1
2 under no memorization, and both sides of Generalized

Exposure cancel out. For the exposure computation, the outcome of the comparison is 1
2 , giving

Ex(ci; θ) = − log2
1
2 = 1. Under maximal memorization of ci, the loss would be smaller than

for all the reference strings, and thus Ex(ci; θ) → ∞. Similarly, the first term in the Generalized
Exposure, − logE[g(x; θU , R)] would tend to ∞ when g(x; θU , R) gets arbitrarily close to 0 as
f(ci; θU ) increases with more memorization relative to the reference strings.

Membership inference attacks and differential privacy. Jagielski (2023) connects the exposure
metric from (Carlini et al., 2019) to differential privacy and so-called membership inference attacks.
Recall that a training algorithm A is ε-differentially private (DP) if, for all S and S′ that differ by
one data point, and all measurable sets B ⊆ Θ, Pr(θ ∈ B) ≤ eε Pr(θ′ ∈ B), where θ ∼ A(S) and
θ′ ∼ A(S′). One can interpret DP as a hypothesis test to assess whether the output of the algorithm
was obtained by running A on S versus S′. Kairouz et al. (2015) show that a particular computation
based on false positive and false negative rates associated with this hypothesis test yields an estimate
of ε in the differential privacy definition.

Through this hypothesis test view, ε-DP can be connected to a version of so-called membership
inference attacks (MIAs; see, e.g., Shokri et al. 2017), which attempt to identify whether a data
point was or was not in the training set. Probably the most related MIA is a likelihood-ratio test
(LiRA) introduced by Carlini et al. (2022a). LiRA is motivated by the connections to hypothesis
testing, trying to determine whether the observed prediction is more likely to have been sampled
from a model that was trained on the sample of interest or without. The authors choose to do a
likelihood ratio test (motivated by the Neyman–Pearson lemma), assuming that the predictions for a
given sample have a Gaussian distribution.

Inspired by the work by Kairouz et al. (2015) connecting differential privacy and MIAs, Triantafillou
et al. (2023, 2024) propose to estimate ε in the unlearning definition Equation (1) using false positive
and false negative rates from a MIA perspective. In particular, letting {π} denote all membership
inference attacks, ε in the unlearning definition above can be estimated as a supremum over {π} of
a function of upper and lower bounds of false positive/negative rates for π.

do not “contain” bit-wise or code-wise copies of their training data. Rather, if a model can be induced to
generate very close copies of certain training examples by supplying appropriate instructions to guide the
model’s statistical generation processes then that model is said to have “memorized” those examples. This is
an area of active ongoing research.

5They define it in terms of log-perplexity instead of NLL, but the only difference is a multiplicative log(2)
factor, which is irrelevant in ranking and comparison.
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3.1 Relative exposure

Generalized exposure requires computing the expected probability of x under A(S \F ). Practically,
having such a reference model may not be possible for computational and memory reasons. Here
we introduce an alternative test that only requires access to the original model pre-unlearning.

As above, consider a set of reference strings R, and let θS ∼ A(S), θ−F ∼ A(S \ F ) and θU ∼
U(A(S), F ). For each given x, we now randomly generate a second set of reference strings Rx,
such that logE[g(x; θ−F , R)] ≈ logE

[
Êr∈Rx [g(r; θS , R)]

]
, where Êr∈Rx denotes an empirical

mean over the elements in Rx. In theory this is a complex task, and once again requires access
to the reference model. In practice, however, we will simply choose Rx so its elements are close
to x under some similarity metric (working in the embedding space), but not part of F ; Rx can
contain examples from some auxiliary set (public data, held out data, etc.), that do not belong to the
training set S. It is also possible to define a common Rx for all x ∈ F . By choosing such a set, we
ensure that θS does not depend on Rx, just like θ−F does not depend on x ∈ F . Further, when the
forget set is small and does not affect the predictions on Rx through θS too much, we can expect our
approximation to be more accurate.

Substituting this approximation to Equation (4), we get an alternative to Generalized Exposure that
does not use θ−F . We define Relative Exposure of x relative to R,Rx, as

RelEx(x;A,U , F, S,R,Rx) = log2 E
[
Êr∈Rx [g(r; θS , R)]

]
− log2 E[g(x; θU , R)]. (7)

3.2 Memorization and example difficulty

When evaluating unlearning, we group examples in the forget set based on measures of the extent to
which an example has been memorized and of the example’s difficulty.

More carefully, let θS ∼ A(S) and θ−F ∼ A(S \ F ). For any fixed example x ∈ F , we define its
memorization as

logE[f(x; θS)]− logE[f(x; θ−F )].

This is similar to the definition of memorization given by Feldman (2020) for classification tasks,
which measures the difference between the probabilities of predicting the right class depending
under θ−F and θS .

We define the difficulty of any fixed example x ∈ F as E[− log f(x; θ−F )], i.e., expected perplexity
under the reference model.

Note that all the expectations here are taken over the randomness of the training process (e.g., SGD
noise, minibatch noise).

3.3 Unlearning by gradient ascent

Based on Equation (1), one could achieve exact (ε = 0) unlearning by retraining from scratch
without the forget set F . This is not practical for large language models, due to resource constraints.
Another common approach is to perform gradient ascent on the loss over F , or/and gradient descent
on the loss over S \ F . Other alternatives have been proposed in the literature (Patil et al., 2023;
Meng et al., 2022a,b), but a gradient ascent/descent-type procedure is still a common component in
all of them.

While this approach is fairly efficient, and usually implemented with only a small number of gradient
updates, it is not guaranteed that the obtained model after unlearning via gradient ascent/descent has
truly forgotten the samples. Further, there is no set heuristic for the number of gradient updates to
run during unlearning. This technique, thus, hinges on being able to assess how unlearned a set of
examples is for a given language model.

3.4 Unlearning in- versus out-of-distribution samples

For a reference model, unlearning, which is equivalent to not training on, out-of-distribution samples
should not affect the overall performance, meaning that the models θS and θ−F should perform
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similarly. When the forget set contains in-distribution samples, then the effect depends on the size
of the forget set relative to the training set. We focus on the typical case where the size of the forget
set is small enough, and both models, θS and θ−F , perform similarly under the BLEU score. Thus
a good unlearning algorithm should be able to unlearn without any observable trade-offs between
unlearning quality and overall performance, as measured by the BLEU score.

4 Experiments

We evaluate the trade-offs between unlearning quality and performance on LLMs. We demonstrate
that unlearning more memorized or more difficult examples is more damaging for the overall model
performance. We also examine how neighbouring examples are affected by unlearning. Finally,
we show that our relative exposure metric captures unlearning quality as well as the generalized
exposure metric, thus showing a way to assess unlearning without having a reference model.

4.1 Experimental setup

Models and datasets. We train a transformer model (T5-base with 220 million parame-
ters (Roberts et al., 2022)) on “WMT14 En-De”, a well-known language translation dataset that
contains sentence pairs in German and English (Bojar et al., 2014). We train for 45, 000 training
steps with batch size of 128 on examples from the training split. We evaluate the task performance
of the translation task using the BiLingual Evaluation Understudy (BLEU)) score (Papineni et al.,
2002). Our models have a BLEU score of around 26, having a clear gist but with grammatical errors.

To avoid training numerous models, we only perform full training of two models:

• A reference model, of weights θ−F is trained on the full standard training split T of the
dataset mentioned above, without any additional example from a forget set.

• A subject model, of weights θS , is trained on a dataset S made of T and the concatenation
of all the potential forget sets F... defined below.

We consider an unlearning method based on gradient ascent (Section 3.3). Following Jang et al.
(2022), we use a batch size of 32 when unlearning a set of 512 examples, giving us 16 unlearning
steps to go through for the entire forget set considered. During each unlearning experiment, we
consider one single forget set F , and perform unlearning only on its examples. We always compare
the resulting unlearned model with the same, shared reference model. Even though the reference
model is only trained T , which is a subset of the retain set of any given experiment (the full retain
set would include the forget sets for the other experiments), we consider it a suitable approximation,
as the ignored examples form only a small fraction of the training set.

Out-of-distribution forget sets generation. We generate out-of-distribution (OOD) canaries by
sampling alpha-numeric characters uniformly at random, forming a sequence of fixed length (10
characters). We create three disjoint sets FOOD

... of 512 OOD canaries each, as well as a set ROOD of
10,000 reference strings from the same distribution. To study the effect of the number of repetition
on unlearning, these sets are incorporated in the training set S with different frequencies: canaries
in FOOD

×1 are seen only once during training, the ones in FOOD
×10 ten times, and FOOD

×100 a hundred times.

In-distribution forget sets generation. We generate sets of in-distribution (InD) examples by ran-
domly selecting examples from the validation split of the dataset, so that we can train the reference
model on the full training split T , and these examples do not appear even once in its training set. We
create three disjoint sets F InD

... of 512 in-distribution examples each, as well as a set RInD of 3, 003
reference strings formed from the test split. All of these sets of examples are disjoint. Similarly to
the OOD canaries, these sets are incorporated in the training set with different frequencies. For the
main subject model considered (θS), F InD

×1 is seen only once, F InD
×10 ten times, and F InD

×100 a hundred
times. Appendix A.2 also considers a model trained on a different training set S′, where different
validation examples are used in forget sets, see that section for details.
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Figure 1: In- vs. out-of-distribution (canary) trade-off. Trade-off between the generalized expo-
sure (Exposure) and the task performance (BLEU score) when unlearning the subject model (θS) at
45,000 steps, with in-distribution sets and canary sets repeated 100 times (left), 10 times (middle),
and 1 time (right) during training.
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Figure 2: Distributions of perplexities. Perplexities of different sets of in-distribution examples
under the subject model (before unlearning, post-unlearning and when exposure is low) and the
reference model. Columns left to right: in-distribution example perplexities when the subject model
was trained by repeating these examples 100 times (left), 10 times (middle), 1 time (right).

4.2 Memorization vs. performance trade-offs

Our evaluated method of unlearning modifies the model by performing gradient ascent, as a result
it might degrade the model’s accuracy on the test set. We first evaluate the trade-off between the
effectiveness of unlearning under generalized exposure and the task performance on the unlearned
model (Figure 1). At every unlearning step, we measure the average exposure of the canary, and,
respectively, forget set. On these checkpoints, we compute the BLEU score on the test set.

Our first observation is that unlearning of canary data in one pass does not degrade the performance
as much as unlearning in-distribution samples even when these are repeated as often. The average
exposure value of the canaries also does not fall below 1 in one pass, meaning the canaries are still
twice as less surprising to the model than other random samples unseen in training. The average
exposure of the InD samples, however, falls to the minimum value. The reason is that unlearning
InD examples affects the perplexities of other similar examples (Section 4.4), whereas for out-of-
distribution, unlearning does not affect as much the other canaries’ perplexities. This explains why
the in-distribution examples have a much faster drop in exposure, as well as task performance.

Different Frequencies. In Figure 1, we observe that the more repeats of the in-distribution sample
sets, the higher the (average) generalized exposure is before unlearning (top right point of each
orange curve). A similar effect is visible for the exposure of OOD between the OOD × 1 and the
OOD × 10 curves, although it is not visible in the OOD × 100 because the estimate of exposure
is limited by log2

∣∣ROOD
∣∣. In Appendix A.2, we also evaluate how a different number of repetition

of the same examples of the in-distribution sets affect the trade-off. Despite the three randomly-
selected InD sets having a different distribution of perplexities under the reference model (as shown
in Figure 2), the qualitative results are not affected by which set is repeated a given number of times.

Distribution of perplexities. We check how the perplexities of the in-distribution samples are
affected before and after unlearning with respect to the reference model. We observe that the per-
plexities of the in-distribution set is reduced, but now the perplexities are skewed, not resembling
at all the distribution on the reference model (Figure 2). We also plot the distribution of perplexi-
ties when the exposure is below a certain threshold which results in distributions that are closer to
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Figure 3: Per-sample memorization vs. dif-
ficulty. The memorization vs. difficulty for
each sample in the forgets sets that repeat
×1, and ×100. Difficulty and memorization
become correlated with number of repeats.
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Figure 4: Difficulty vs. trade-offs. Measure the
trade-offs of unlearning examples of low, medium
and high difficulty. Harder examples have slightly
better trade-offs.

the reference. This suggests an early-stopping strategy for unlearning could benefit in-distribution
examples with more evidence of this effect at lower thresholds in Appendix A.4.

4.3 Per-sample difficulty vs. memorization

We empirically evaluate the relationship between the difficulty of in-distribution examples and mem-
orization. In Figure 3, we plot the memorization and difficulty of each example in the forget sets.
The per-sample difficulty has a weak correlation with the per-sample memorization when the InD
set is repeated once, but the correlation becomes strong with the number of repeats. We also cluster
the in-distribution examples into 3 sets of low, medium and high perplexity based on their difficulty
(Figure 4), and find that harder examples have slightly better trade-offs (see details in Appendix A.3).

4.4 Unlearning effects on other points
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F InD
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Similar set ∈ F InD
×10

Figure 5: Unlearning affects the
average exposure of similar exam-
ples.

We highlight that unlearning InD examples has an impact on
other similar examples. We find similar examples by comput-
ing the L2-distance in the embedding space of each point in
the forget set on the reference model (see Appendix A.6). In
Figure 5, we plot the memorization vs. performance trade-offs
(as we unlearn F InD

×100) for both the set F InD
×100 and a set of sim-

ilar examples from F InD
×1 . The average exposure of the similar

set decreases, without having to do unlearning. This explains
why unlearning damages the performance of the model, since
the model may forget other examples. Despite this, the effect
of unlearning on similar examples outside of the training set is
not significant. Thus, unlearning may affect examples that are
more memorized as opposed to just similar examples.

5 Related Work

Recent work on unlearning in LLMs has focused on developing effective unlearning algorithms and
robust evaluation metrics to assess the degree of unlearning achieved. We give a brief overview of
the most relevant work here, and point interested readers to Appendix A.7 for more related work.

Unlearning benchmarks and evaluation metrics. Several works propose leveraging evaluation
metrics of memorization with the aim to provide better unlearning methods in LLMs (Jang et al.,
2022; Barbulescu & Triantafillou, 2024). Our work aims to work with a worst-case ε-unlearner
(Definition 2.1) and can be seen as complementary to these approaches. Our experiments also point
to stark differences between in- and out-of-distribution memorized data. An orthogonal unlearning
approach is by removing of training data from the weights (Meng et al., 2022a; Patil et al., 2023).

Memorization in LLMs. Whereas our work targets memorized data unlearning, a range of other
memorization notions and concerns have been studied in LLMs (Lehman et al., 2021; Ippolito et al.,
2022; Carlini et al., 2021; Choquette-Choo et al., 2021; Lukas et al., 2023).
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6 Conclusion

In this work, we propose a generalized exposure metric for evaluating unlearning. We find in-
stances where gradient ascent-based techniques are insufficient for unlearning without destroying
the model’s performance. We explain this through the effect of unlearning on similar data.
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Remark on out-of-distribution sets generation. Note that our approach to generating canaries
differs from that in (Carlini et al., 2019). There, the canaries are generated with a fixed string prefix
(or template) such as “My secret is:” and a randomly-generated string suffix c, sampled from a
randomness space c ∼ C, e.g., the alpha-numeric strings of length 10. These canaries aim to mimic
accidental personal identifiable information (PII) in the training data, where the sensitive information
was a unique string of characters, such as a social security number. However, having many canaries
sharing the same template in the training set means that the model could learn to detect this pattern,
and share some representation between canaries. This can be especially troublesome in the context
of evaluating unlearning: decreasing the likelihood of a given canary could decrease the likelihood
of the template, and that of the other canaries, leading to over-estimation of the effectiveness of an
unlearning method.

A.2 Variations among different in-distributions sets

To evaluate more directly how the number of repetitions of the same examples of the in-distribution
sets affect the trade-offs, we train a second subject model, of weights θS′ , on a training set S′

containing:

• the training split T of the dataset of interest;

• the same OOD forget sets as in S: FOOD
×1 , FOOD

×10 , and FOOD
×100;

• different in-distribution forget sets, made out of the same examples but with different fre-
quencies: F ′InD

×1 contains the same examples as F InD
×100 but repeated only once, F ′InD

×10 con-
tains the same examples as F InD

×1 , and F ′InD
×100 as F InD

×10.

Regardless of the identity of the repeated set, we observe that the more repeats of the in-distribution
sample sets, the higher the (average) generalized exposure before unlearning, as shown in Figure 12).
We also do not observe a significant difference in their average generalized exposures.

We did not investigate that effect on out-of-distribution canaries. Since they were sampled from a
uniform distribution and should be interchangeable, we do not expect the identity of canary examples
repeated the same number of times to influence the exposure.

Despite the average exposure being the same, the distribution of the InD set perplexities are differ-
ent. We illustrate the perplexities of the three sets of in-distribution examples on a model that was
trained without them in Figure 13. The three InD sets have similar mean log-perplexities on the
reference model, with differences in the spread of the distribution of their log-perplexities. Specifi-
cally, the mean and variance for F InD

×1 , F InD
×10, and F InD

×100 is (41.95, 1068.65), (42.30, 1061.54), and
(42.94, 1266.64), respectively.

We also plot the distribution of perplexities under the training set S′ in Figure 14 which shows the
variation between the different InD sets.

A.3 Difficulty and memorization results

Figure 22 shows the difficulty and exposure trade-offs for the different model trained on S′ where
we vary the number of repetitions of the same examples. Each sub-figure shows the unlearning
of one set: F InD

×1 , F InD
×10, and, respectively F InD

×100. The conclusion is that harder examples with
more repetitions have slightly better trade-offs as it does not lead to “over-unlearning” (skewing the
exposure to negative values). Similarly, we show that variations among different in-distributions sets
yields similar observations regardless of the identity of the in-distribution set (Figure 22).

We compute the memorization of each sample in the InD sets based on their likelihood on the subject
model (trained on all forget sets F InD

... , before any unlearning) and their likelihood on the reference
model. We average the likelihood of each sample over 3 reference models θ−F ∼ A(S \F ), trained
under three different seeds.

Figure 15 plots the per-example difficulty and memorization for the θS after unlearning on one of
the forget sets. We use the definitions in Section 3.1 for difficulty and memorization. We find that
there is a weak correlation between these two for InD examples that repeat once, but the correlation
gets stronger as the number of times the samples repeats increases.
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Subject Models (trained on the same OOD sets, but different InD sets)
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Figure 7: F ′InD
X×1, same examples as F InD

×10.
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×1 , same examples as F InD

×10.
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×1 , same examples as F InD

×100.

Figure 12: In- vs. Out-of-distribution sets. Trade-off between the generalized exposure (Ex-
posure) and the task performance (BLEU score) when unlearning the subject models (θS , θ′S) at
45,000 steps, with OOD (canary) forget sets

(
FOOD
×1 , FOOD

×10 , F
OOD
×100

)
, and in-distribution forget sets(

F InD
×1 , F

InD
×10, F

InD
×100

)
for θS (resp.

(
F ′InD
×1 , F ′InD

×10 , F
′InD
×100

)
for θS′ ).
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Figure 13: We show the distribution of the log-perplexities of the different sets of in-distribution
examples used in our experiments. The perplexities were computed on the reference model that
was trained on the language translation dataset (wmt-t2t, de-en), without OOD canaries or InD
samples. We see clear differences, despite which the example frequency vs unlearning results were
not different among these different groups.
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Figure 14: Distributions of perplexities. Perplexities of different sets of in-distribution examples
under the subject model (before unlearning, post-unlearning, and when the exposure is before a
threshold of 2), and the reference model when the training set is S′ (different frequencies for the
same set of examples). Columns left to right: in-distribution example perplexities when the subject
model was trained by repeating these examples 1 time (left), 10 times (middle), 100 times (right).

A.4 Distribution of perplexities at low exposure

We note that the unlearning a number of steps may result in negative exposure, a sign of “over-
unlearning” which skews the distribution of perplexities of the forget sets on the unlearned subject
model compared to the distribution of perplexities of the forget sets on the reference model. We
show what happens when we set the exposure threshold to 0.5 in Figure 23. The extent of this effect
depends on the number of repeats of the forget set.

A.5 Relationship between relative exposure and generalized exposure

The relative exposure metric is a more computationally efficient one, since it does not require access
to a reference model. We want to study whether it is a good proxy for the generalized exposure
metric. For this, we take the subject model trained on S and plot it together with the generalized
exposure before unlearning (at the 45, 000 training step) and after unlearning. We observe that the
relative exposure is a good proxy for the generalized exposure (Figure 24).
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Figure 15: Per-sample memorization vs. difficulty The more times a forget set repeats, the more
its difficulty is correlated with its memorization.
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Subject Models (trained on the same OOD sets, but different InD sets)

θS trained on (F InD
×1 , F InD

×10, F InD
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Figure 16: F InD
×100.

θS′ trained on (F ′InD
×1 , F ′InD

×10 , F ′InD
×100)
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Figure 17: F ′InD
X×1, same examples as F InD

×100.
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Figure 18: F InD
×1 .
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Figure 19: F ′InD
×10 , same examples as F InD

×1 .
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Figure 20: F InD
×10.
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Figure 21: F InD
×100, same examples as F InD

×10.

Figure 22: Difficulty vs. trade-offs. For each set of in-distribution examples, we cluster them
by difficulty using the perplexities on the reference model. Examples with a higher perplexity are
considered harder. The trade-off is computed for each unlearning step on the main model. Harder
examples have a better trade-off between the unlearning effectiveness and the performance of the
unlearned model.
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Figure 23: Distributions of perplexities at low exposure. Perplexities of different sets under the
subject model at the first unlearning step which results in an average exposure lower than a threshold
of 0.5 (orange), and the perplexities under on the reference model (purple). In the top rightmost
figure, we observe a phenomenon of “over-unlearning” (when the exposure becomes negative) which
brings the two distributions of perplexities further apart.
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Figure 24: Relative vs. generalized exposure We find that relative exposure is a good proxy for the
generalized exposure for in-distribution data.

A.6 Effect of unlearning on similar points

To investigate this, we find similar examples (the top-10) from the set of examples that repeat ten
times (F InD

×10) to the forget sets F InD
×100 and F InD

×1 . For simplicity, we compute the L2-distance between
the embeddings of each point in the forget sets on the reference model. Our similar sets consist of
the union of the top-10 closest examples from F InD

×1 for all examples F InD
×100 and, respectively, F InD

×1 .
Concretely, this resulted in 424 examples for the set of examples that repeat once, and 421 for the
set of examples that repeat 100 times.

We then measure the average generalized exposure on the similar set as we unlearn the forget set
F InD
×100 and, respectively, F InD

×1 , for 16 training steps. We plot the tradeoffs between exposure and
performance on the forget set and on the similar sets in Figure 25. We can see that similar examples
are unlearned as well by performing unlearning on the forget set, even before unlearning impacts
the model’s utility.

We want to see how unlearning the forget set also influences examples outside of the training set,
i.e., the reference set RInD. We use the same methodology as above, and pick the top-10 closest
examples from RInD to our two forget sets. This results in 571 for F InD

×100 and 591 for F InD
×1 . To

start with, the exposure of examples outside the training set is small. The effect of unlearning of the
forget set on these examples’ exposure is unnoticeable, though we do observe a small decrease of
exposure (up to 0.1 for the case shown in Figure 5). Similarly, we show that the effect of F InD

×1 on
the closest reference examples is very small. For the reference set and the forget set that is repeated
only once, we observe the same phenomenon: the exposure of the reference set is not affected by the
unlearning of the samples in the forget set (Figure 25). We also validate our main observation of the
effect of unlearning on similar points in the training dataset on a different subject model, trained on
a training dataset S′. The training has the same forget sets but with different number of repetitions.

A.7 Related Work

Unlearning benchmarks and evaluation metrics. (Lynch et al., 2024) propose eight distinct
evaluation metrics that go beyond standard loss measures on the forget/retain set, and try to capture
internal model changes, as well as the impact on downstream tasks. The authors measure robustness
to jailbreaks and finetuning, other extraction techniques, undesirable side effects, etc. Shi et al.
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Figure 25: In-distribution vs. similar in-distribution examples. Trade-off between the gener-
alized exposure (Exposure) and the task performance (BLEU score) when unlearning the subject
model on set F InD

×1 and F InD
×100 (left to right). Unlearning in-distribution examples affects the expo-

sure of other similar examples from the training dataset (left-most two plots), while not affecting the
exposure of unseen examples from the reference set (right-most plot). We can see that the examples
in the reference set are not affected by unlearning.

(2024) propose a new machine unlearning evaluation benchmark, MUSE, focusing on assessing 6
desired properties of unlearned models, such as verbatim memorization, scalability with forget sets
size, etc. The TOFU benchmark paper (Maini et al., 2024) introduces a new task and dataset for
evaluating specific training data unlearning in large language models. Jang et al. (2022) introduce
an “extraction likelihood” metric for measuring unlearning quality in LLMs: they look at the average
completion accuracy of a sequence of tokens when a varying length prefix was provided as a prompt.
The authors also studied gradient ascent-based unlearning, and found that to be more effective when
unlearning sequentially in batches rather than all at once. They also report differences in how easy
it is to unlearn depending on the source of the forget set. While Jang et al. (2022) also points to
differences in the effectiveness of unlearning between different forget datasets, they do not further
explore how similar examples are affected by gradient ascent (as our work does). TOFU focuses on
a “Task of Fictitious Unlearning” where models are trained on fictional author profiles and then must
unlearn a subset of those profiles. The paper provides a dataset of these profiles, metrics to assess
unlearning efficacy, and baseline results from existing unlearning algorithms. All of the work above
aims to identify and assess desirable properties of unlearned models for general or specific tasks,
but do not directly work with ε−unlearning definition as in Definition 2.1. The way to measure
ε−unlearning as proposed in our work can be viewed as complementary to these other approaches.

Barbulescu & Triantafillou (2024)6 leverage memorization information for unlearning by proposing
an unlearning method that differentiates textual sequences based on their memorization level, as in
(Jang et al., 2022). The memorization in this work is captured by tracking reconstruction of the
exact tokens in a sequence, which is different from the definition used in our work. An unlearning
algorithms is “successful” if memorization of a particular sequence of interest is reduced. Their
work also introduces an MIA-like evaluation inspired by the neighborhood MIA concept.

Memorization. Several studies have explored different facets of memorization in LLMs, including
verbatim memorization (Lehman et al., 2021; Ippolito et al., 2022), membership inference attacks
(Shokri et al., 2017; Nasr et al., 2018; Salem et al., 2018; Choquette-Choo et al., 2021), exposure
(Carlini et al., 2019), and extraction attacks (Carlini et al., 2021, 2022b). These works provide
valuable insights into the extent and nature of information leakage in LLMs.

Hayes et al. (2024) highlighted the limitations of inexact unlearning evaluation methods like mem-
bership inference attacks. The authors show that current evaluation metrics for approximate unlearn-
ing can be misleading, creating a false sense of security. They call for more rigorous testing and a
deeper understanding of how unlearning affects different data points..

Removing information in Large Language Models. Patil et al. (2023) consider information
removal from the weights of a language model, which should protect against white box attacks. The
authors focus on model editing techniques (Meng et al., 2022b,a), and show that even after editing
the model to remove some sensitive information, they were still capable of extracting this infor-
mation in a large fraction of cases. This paper also investigates how editing sensitive information
affects the accuracy on neighbouring points using this information. They use the change of accuracy

6This work was carried out independently and concurrently with our work.
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in the neighbourhood, a metric borrowed from (Meng et al., 2022b), to demonstrate that in many
cases sensitive information was not properly removed.

Memorization and membership inference attacks. Membership inference attacks (MIAs), first
introduced for classification tasks, aim to evaluate to what extent a given datapoint can be traced
back to be from a training set or not (Shokri et al., 2017). MIAs are now widely adopted in un-
learning literature, as well as for studying memorization. Recently, membership inference attacks
have been proposed for language models such as text classification tasks (Gu et al., 2023), (Mattern
et al., 2023), and masked language models (Mireshghallah et al., 2022). The membership inference
information can serve as a step towards extracting the training data. Carlini et al. (2019) showed that
personal information can be extracted by generating numerous sentences from pre-trained language
models and performing membership inference. Nakamura et al. (2020) considered an adversary
with some prior knowledge of the patient that could employ a pre-trained masked BERT model to
predict the masked personal information in the input clinical data. Lukas et al. (2023) showed that
PII can be extracted from these models. Besides attacks, several mitigation strategies have been
proposed for large language models such as ad-hoc practical defenses (Lee et al., 2021), as well as
based on the rigorous framework of differential privacy (Ponomareva et al., 2022). Deferentially
private training makes the model indistinguishable to an adversary (or user querying the model) up
to one data record, or a fixed size group (group privacy). However, in unlearning, requests to delete
samples may come for a batch of samples of varying size, perhaps even hundreds of these. As a
result, differential privacy is not enough to support unlearning requests across all applications.
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