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ABSTRACT

In domains such as finance, healthcare, and robotics, managing worst-case scenarios
is critical, as failure to do so can lead to catastrophic outcomes. Distributional
Reinforcement Learning (DRL) provides a natural framework to incorporate risk
sensitivity into decision-making processes. However, existing approaches face two
key limitations: (1) the use of fixed risk measures at each decision step often results
in overly conservative policies, and (2) the interpretation and theoretical properties
of the learned policies remain unclear. While optimizing a static risk measure
addresses these issues, its use in the DRL framework has been limited to the simple
static CVaR risk measure. In this paper, we present a novel DRL algorithm with
convergence guarantees that optimizes for a broader class of static Spectral Risk
Measures (SRM). Additionally, we provide a clear interpretation of the learned
policy by leveraging the distribution of returns in DRL and the decomposition
of static coherent risk measures. Extensive experiments demonstrate that our
model learns policies aligned with the SRM objective, and outperforms existing
risk-neutral and risk-sensitive DRL models in various settings.

1 INTRODUCTION

In traditional Reinforcement Learning (RL), the goal is to find a policy that maximizes the expected
return (Sutton and Barto, 2018). However, considering the variations in rewards and addressing the
worst-case scenarios are critical in some fields such as healthcare or finance. A risk-averse policy
can help address the reward uncertainty arising from the stochasticity of the environment. This risk
aversion can stem from changing the objective from expectation to other risk measures such as the
expected utility function (Howard and Matheson, 1972), Conditional Value-at-Risk (Bäuerle and Ott,
2011), coherent risk measures (Tamar et al., 2017), or convex risk measures (Coache and Jaimungal,
2023). Another approach is limiting the worst-case scenarios by using constraints such as variance
(Tamar et al., 2012) or dynamic risk measures (Chow and Pavone, 2013) in the optimization problem.

Another area of research that has gained attention for risk-sensitive RL (RSRL) is Distributional RL
(DRL) (Morimura et al., 2010; Bellemare et al., 2017). This paradigm diverges from the traditional
RL by estimating the return distribution instead of its expected value. DRL algorithms not only
demonstrate notable improvements compared to conventional RL methods but also enable a variety
of new approaches to risk mitigation. In this context, a few risk measures such as CVaR (Stanko
and Macek, 2019; Keramati et al., 2020), distortion risk measure (Dabney et al., 2018a), Entropic
risk measure (Liang and Luo, 2024), or static Lipschitz risk measure (Chen et al., 2024) have been
explored.

In the DRL framework, applying a fixed risk measure at each step leads to policies that are optimized
for neither static nor dynamic risk measures (Lim and Malik, 2022). In this case, action selection
at different states are not necessarily aligned with each other, which can lead to policies that are
sub-optimal with respect to the agent’s risk preference. This issue, known as time inconsistency,
is a common challenge in risk-sensitive decision-making (Shapiro et al., 2014). Intuitively, this
misalignment can be understood as the fact that finding optimal policies starting from different states
can yield different and inconsistent policies. To mitigate this, dynamic risk measures were introduced
(Ruszczyński, 2010), which evaluate risk at each time step, unlike static risk measures that assess
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risk over entire episodes. However, dynamic risk measures are difficult to interpret, limiting their
practical applicability (Majumdar and Pavone, 2020; Gagne and Dayan, 2022).

Optimizing static risk measures is more interpretable since it can be described as finding the policy that
gives the best possible outcome in the worst-case scenario. However, unlike dynamic risk measures,
the risk preference that the policy optimizes for at later stages is unclear. Traditionally, calculating
these risk preferences has been limited to CVaR due to computational complexity (Bäuerle and
Ott, 2011; Bellemare et al., 2023). However, we demonstrate that by leveraging the decomposition
of coherent risk measures (Pflug and Pichler, 2016) and the return distribution within the DRL
framework, these evolving risk preferences can also be computed for more general spectral risk
measures. The intuition behind this approach is that a decision maker selects an initial risk preference,
but it may change as new information becomes available over time. It is important to emphasize that,
unlike previous works (Chow et al., 2015; Stanko and Macek, 2019) that use the decomposition of
CVaR to derive optimal policies, we utilize this decomposition only to explain the behavior of the
optimal policy, not for policy optimization. In fact, Hau et al. (2023) have demonstrated that the
decomposition of coherent risk measures cannot be reliably applied for policy optimization, and the
optimality claims in those works are inaccurate.

The contributions of our work are as follows:

• We propose a novel DRL algorithm with convergence guarantees that optimizes static
Spectral Risk Measures (SRM). SRM, expressed as a convex combination of CVaRs at
varying risk levels, provides practitioners with the flexibility to define a wide range of risk
profiles, including the well-known Mean-CVaR measure.

• We demonstrate that the return distributions in the DRL framework allow for the temporal
decomposition of SRM, offering insights into the agent’s evolving risk preferences over
time.

• Through extensive evaluations, we show that our model accurately learns policies aligned
with the SRM objective and outperforms both risk-neutral and risk-sensitive DRL models in
various settings.

2 RELATED WORKS

In this study, we focus on discovering policies with the highest risk-adjusted value:

max
π∈πH

ρ(Zπ). (1)

Here, ρ(Zπ) denotes the risk-adjusted value of the return of policy π and πH denotes the set of
history-dependent policies. In general, optimal policies may depend on all available information up
to the current time step. In cases such as risk-neutral RL, optimal policies are typically stationary
and Markovian. However, in risk-sensitive RL, the situation is more complex. For instance, in the
static CVaR case, Bäuerle and Ott (2011) demonstrates that the optimal policy depends on the history
through a single statistic. By using the representation of CVaR introduced by Rockafellar and Uryasev
(2000), they reduce the problem to an ordinary Markov Decision Process (MDP) with an extended
state space:

max
π∈πH

CVaRα(Z
π) = max

π∈πH

max
b∈R

(
b+

1

α
E
[
[Zπ − b]−

])
= max

b∈R

(
b+

1

α
max
π∈πH

E
[
[Zπ − b]−

])
(2)

where u(z) : z 7→ [z − b]− denote a utility function that is 0 if z > b, and z − b otherwise. For
a fixed policy, the supremum is attained at b = F−1

Zπ (α). With this representation, the problem is
divided into inner and outer optimization problems, with the inner optimization addressing policy
search for a fixed parameter b, while the outer optimization seeks the optimal parameter b.

Bäuerle and Rieder (2014) and Bäuerle and Glauner (2021) extend the idea of state augmentation to
the case with a continuous and strictly increasing utility function and SRM as the risk measures. Their
work demonstrates that sufficient statistics for solving these problems are cumulative discounted
reward and the discount factor up to the decision time. In each of these studies, state augmentation
plays a crucial role in formulating a Bellman equation to solve the inner optimization. Regarding
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the outer optimization in the CVaR case, only the existence of the optimal parameter b is shown.
However, for SRM, which needs estimation of an increasing function for the outer optimization, a
piece-wise linear approximation is used to allow transforming the problem into a finite-dimensional
optimization problem. This is then solved using conventional global optimization methods.

In the distributional framework, Dabney et al. (2018a) explore the idea of using risk measures other
than expectation for action selection. However, they do not discuss the theoretical properties of
these risk-sensitive policies. For the static CVaR case, Bellemare et al. (2023) use the formulation
in Equation 2 to solve the problem with state augmentation. Furthermore, Lim and Malik (2022)
focus on the special case where an optimal Markov CVaR policy exists in the original MDP without
extending the state space.

3 PRELIMINARY STUDIES

3.1 SPECTRAL RISK MEASURES

Let (Ω,F ,P) represent a probability space and Z represent the space of F-measurable random
variables. The historical information available at different time steps is denoted by a filtration
F := (Ft)t≥0 where Fs ⊂ Ft ⊂ F for 0 ≤ s < t. We also use ρ : Z → R to denote a risk measure.
In the context of this study, Z and ρ(Z) are interpreted as the reward and its risk-adjusted value,
respectively. Let FZ(z) = P(Z ≤ z), z ∈ R denote the cumulative distribution function (CDF), and
F−1
Z (u) = inf{z ∈ R : FZ(z) ≥ u}, u ∈ [0, 1] denote the quantile function of a random variable Z.

The SRM, introduced by Acerbi (2002), is defined as

SRMϕ(Z) =

∫ 1

0

F−1
Z (u)ϕ(u)du, (3)

where the risk spectrum ϕ : [0, 1] → R+ is a left continuous and non-increasing function with∫ 1

0
ϕ(u)du = 1, and denotes the risk preference of the agent. The CVaRα(Z), α ∈ (0, 1] is a

special case of SRM with the risk spectrum ϕ(u) = 1
α1[0,α](u). The SRM can also be defined as a

convex combination of CVaRs with different risk levels (Kusuoka, 2001). With probability measure
µ : [0, 1]→ [0, 1]1, the SRM can be written as

SRMµ(Z) =

∫ 1

0

CVaRα(Z)µ(dα). (4)

It is shown that an SRM with a bounded spectrum also has a supremum representation

SRMϕ(Z) = sup
h∈H

{
E [h(Z)] +

∫ 1

0

ĥ(ϕ(u))du

}
= sup

h∈H′

{
E [h(Z)] :

∫ 1

0

ĥ(ϕ(u))du ≥ 0

}
(5)

whereH denotes the set of concave functions h : R→ R, ĥ is the concave conjugate of h, andH′

denotes the set of measurable functions with E [h(Z)] <∞ (Pichler, 2015). In this formulation, the
supremum is attained in hϕ,Z : R→ R which satisfies

∫ 1

0
ĥϕ,Z(ϕ(u))du = 0:2

hϕ,Z(z) =

∫ 1

0

F−1
Z (α) +

1

α

(
z − F−1

Z (α)
)−
µ(dα). (6)

3.2 MARKOV DECISION PROCESS

In this work, we aim to solve an infinite horizon discounted MDP problem presented by
(X ,A,R,P, γ, x0). In this tuple, X and A denote the state and action spaces,R : X ×A →P(R)
the reward kernel, and P : X ×A →P(X ) the transition kernel, and γ ∈ [0, 1) the discount factor.
Without loss of generality, we assume a single initial state represented by x0. Additionally, we assume
that the rewards are bounded on the interval [RMIN, RMAX] and RMIN ≥ 0.

Let Gπ denote the sum of discounted rewards when starting at X0 and following policy π, i.e.,
Gπ =

∑∞
t=0 γ

tRt. With GMIN = RMIN/(1− γ) and GMAX = RMAX/(1− γ), it’s easy to see that

1For a bounded and differentiable risk spectrum ϕ, we have dϕ(u) = − 1
u
dµ(u) and ϕ(α) =

∫ 1

α
1
u
dµ(u)

2Proof is available in Appendix J.
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Gπ takes on values in [GMIN, GMAX]. In this work, we aim to optimize the risk-adjusted value of the
cumulative discounted reward based on the SRM. Since the formulation of SRM given in Equation 5
is more suitable in the context of policy-dependent returns, we write our objective as

max
π∈πH

SRMϕ(G
π) = max

π∈πH

max
h∈H

(
E [h (Gπ)] +

∫ 1

0

ĥ(ϕ(u))du

)
= max

h∈H

(
max
π∈πH

(E [h (Gπ)]) +

∫ 1

0

ĥ(ϕ(u))du

)
. (7)

In the remainder of this paper, maxπ∈πH
E [h (Gπ)] is referred to as the inner optimization and

finding the maxh∈H(·) is referred to as the outer optimization. To solve the inner optimization
problem, motivated by Bäuerle and Glauner (2021), we adopt an extended state space denoted by
X := X ×S × C where S = [GMIN, GMAX] represent the space of accumulated discounted rewards
and C = (0, 1] represent the space of discount factors up to the decision time. The Markov policies in
this MDP take the form πh : X × S × C →P(A), where the subscript h denotes the dependence
of the policy on function h in the inner optimization problem and the space of Markov policies in
this MDP is denoted by πM. With X0 = x0, S0 = 0, C0 = 1, the transition structure of this MDP is
defined by At ∼ πh(· | Xt, St, Ct), Rt ∼ R(Xt, At), Xt+1 ∼ P(Xt, At), St+1 = St + CtRt, and
Ct+1 = γCt.

3.3 DISTRIBUTIONAL RL

Distributional Reinforcement Learning is a sub-field of RL that aims to estimate the full distribution
of the return, as opposed to solely its expected value. To estimate the distribution of the return, DRL
uses a distributional value function, which maps states and actions to probability distributions over
returns. With ηπ(x, a) denoting the distribution of Gπ(x, a), the distributional Bellman operator is
defined as

(T πη) (x, a) = Eπ [(bR,γ)#η(X
′, A′) | X = x,A = a] , (8)

where A′ ∼ π(·) and br,γ : z 7→ r + γz. The push-forward distribution (bR,γ)#η(X
′, A′) is also

defined as the distribution of bR,γ(G
π(X ′, A′)). There are multiple ways to parameterize the return

distribution, such as the Categorical (C51 algorithm, Bellemare et al., 2017) or the Quantile (QR-
DQN algorithm, Dabney et al., 2018b) representation. Here, we use the quantile representation as
it simplifies the calculation of risk-adjusted values. With τi = i/N, i = 0, · · · , N representing the
cumulative probabilities, the quantile representation is given by ηθ(x, a) = 1

N

∑N
i=1 δθi(x,a), where

the distribution is supported by θi(x, a) = F−1
G(x,a) (τ̂i) , τ̂i = (τi−1 + τi)/2, 1 ≤ i ≤ N .

3.4 DECOMPOSITION OF COHERENT RISK MEASURES

The decomposition theorem presented in Pflug and Pichler (2016) provides a valuable tool for
identifying conditional risk preferences. This theorem states that a law-invariant and coherent risk
measure ρ can be decomposed as ρ(Z) = supξ̃ E[ξ̃ · ρξ̃ (Z | Ft)], where the supremum is among all
feasible random variables satisfying E[ξ̃] = 1. In this theorem, if ξα is the optimal dual variable to
compute the CVaR at level α, i.e. E [ξαZ] = CVaRα(Z) and 0 ≤ ξα ≤ 1/α, ξαt = E [ξα | Ft], and
ξ =

∫ 1

0
ξαt µ(dα), the conditional risk preference is given by

ρξ (Z | Ft) =

∫ 1

0

CVaRαξαt
(Z | Ft)

ξαt µ(dα)

ξ
. (9)

In section 5, we show how the return-distribution of each state can be used to calculate ξαt . This value
can be used to calculate the new risk levels (αξαt ) and their weights (ξαt µ(dα)/ξ) in the intermediate
risk preferences. Moreover, a thorough discussion on the decomposability of risk measures and the
time-consistency concept can be found in Appendix D.

4 THE MODEL

In this section, we propose an RL algorithm called Quantile Regression with SRM (QR-SRM) to solve
the optimization problem outlined in Equation 7. In our approach, the function h is fixed to update
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the return-distribution in the inner optimization, and then the return-distribution is fixed to update
the function h. The intuition behind our approach is as follows: The risk spectrum ϕ determines
the agent’s risk preference by assigning different significance to quantiles of the return-distribution
of the initial state. Fixing the function h, as displayed in Equation 6, can be interpreted as fixing
the estimation of the return-distribution of the initial state. With this estimation, we can solve the
inner optimization and find the optimal policy and its associated distributional value function. Since
Gπ is approximated for each state-action pair, we can extract the quantiles of the initial state return-
distribution and leverage the closed-form solution presented in Equation 6 to update our estimation
of the function h in the outer optimization. Algorithm 1 presents an overview of our method.

Algorithm 1: The QR-SRM Algorithm
Input: A random initialization of h0
for l = 0, 1, · · · do

Step 1:
π∗
l = argmaxπ E [hl(G

π)] // The Inner Optimization (Algorithm 2)
Step 2:
hl+1 = argmaxh E

[
h(Gπ∗

l )
]

// The Closed-form Solution in Equation 6

end

For the inner optimization, let η ∈P(R)X×S×C×A represent the return-distribution function over
the augmented state-action space. We denote the corresponding return variable instantiated from η
as G. The greedy selection rule, denoted by Gh, highlights its dependence on the function h. The
greedy action at the augmented state (x, s, c) is then given by:

aG,h(x, s, c) = argmax
a∈A

E [h (s+ cG(x, s, c, a))] . (10)

Since function h is fixed until the optimal policy associated with it is found, we can analyze the
convergence of the inner optimization with the Bellman operator T Gh separately and then discuss the
convergence of the overall algorithm.

We use the index k and l to show iterations on η and h, respectively. Therefore, ηk,l denotes the kth
iteration of return-distribution approximation when hl is used for greedy action selection and T Gl

denotes the distributional Bellman operator associated with hl. This way, the algorithm begins by
setting η0,0(x, s, c, a) = δ0 for all x ∈ X , s ∈ S, c ∈ C, and a ∈ A, initializing h0 based on Equation
6, and iterating ηk+1,l = T Glηk,l. This iteration can also be expressed in terms of random-variable
functions

Gk+1,l(x, s, c, a)
D
= R (x, a) + γGk,l (X

′, S′, C ′, ak,l (X
′, S′, C ′)) , (11)

where D shows equality in distribution and ak,l denotes the action-selection with Gk,l and hl.

For the outer optimization, if the optimal policy derived with fixed function hl is denoted by π∗
l and

the return-variable of this policy is denoted by Gπ∗
l , the iteration on function h is given by

hl+1 = argmax
h∈H′

(
E
[
h(Gπ∗

l

(
X0, 0, 1, aGπ∗

l ,h
(X0, 0, 1)

)])
. (12)

Since the supremum in this optimization takes the form of Equation 6, this iteration can be viewed as
updating function h with the return distribution of the initial state-action with the highest SRM(Gπ∗

l ).
The following theorem discusses the convergence of our approach and its proof is provided in
Appendix A and B.

Theorem 1. If πk,l denotes the greedy policy extracted from Gk,l and hl, then for all x ∈ X , s ∈
S, c ∈ C, and a ∈ A,

E [hl (s+ cGπk,l(x, s, c, a))] ≥ max
πl∈πM

E [hl (s+ cGπl(x, s, c, a))]− ϕ(0)cγk+1GMAX (13)

Additionally, E
[
hl

(
Gπ∗

l

(
X0, 0, 1, aGπ∗

l ,hl
(X0, 0, 1)

))]
is bounded and monotonically increases

as l increases and provides a lower bound for our objective.

5
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Algorithm 2 outlines the sample loss for the inner optimization problem. It is evident that, in
comparison to the risk-neutral QR-DQN algorithm, the only difference lies in the extended state
space and action selection, while the remaining steps remain unchanged. In this algorithm, function
h is defined by the return distribution of the initial state θ̃i := F−1

G̃
(τ̂i), G̃ := Gπ∗

l−1 and µ̃i :=∫ τi
τi−1

1
αµ(dα) = ϕ(τi−1) − ϕ(τi) denotes the significance of each quantile. The derivation of the

action-selection in this algorithm and other details of this algorithm are presented in Appendix C. A
detailed discussion on the convergence of Algorithm 2 is also available in Appendix K

Algorithm 2: The Sample Loss For The Inner Optimization of QR-SRM

Input:γ, θ̃, µ̃, θ, (x, s, c, a, r, x′);
s′ ← s+ cr;
c′ ← γc;

Q(x′, s′, c′, a′) := 1
N

∑
i,j µ̃i

(
s′ + c′θj(x

′, s′, c′, a′)− θ̃i
)−

;

a∗ ← argmaxa′ Q(x′, s′, c′, a′);
T Glθj (x, s, c, a)← r + γθj (x

′, s′, c′, a∗) , j = 1 . . . N ;
Output:

∑N
i=1 Ej

[
ρκτ̂i
(
T Glθj (x, s, c, a)− θi (x, s, c, a)

)]
;

5 INTERMEDIATE RISK PREFERENCES

In this section, we discuss the behavior of the optimal policy by identifying the intermediate risk
measures for which the policy is optimized. We note that the calculations discussed here do not
introduce any computational overhead in the optimization process and are provided solely to enhance
the interpretability of our model. Suppose that G and Gt represent Gπ∗

(x0, 0, 1) and Gπ∗
(xt, st, ct),

respectively, with π∗ denoting the optimal policy. In the context of static SRM, the agent’s risk
preference is defined by assigning weights to the quantiles of G. To compute the weights for the
quantiles of Gt, we establish the relationship between these two return variables, which is where state
augmentation becomes crucial.

Suppose the partial random return is denoted by Gk:k′ =
∑k′

t=k γ
t−kRt for k ≤ k′ and k, k′ ∈ N. In

traditional RL, the random return is decomposed into the one-step reward and the rewards obtained
later: G0:∞ = R0 + γG1:∞. With Gπ(x)

D
= G0:∞, the Markov property of the MDP allows writing

this decomposition as Gπ(x)
D
= R0 + γGπ(X1), X0 = x. In the extended MDP, π ∈ πM also has

the Markov property, therefore we have the flexibility to break down the overall return into the t-step
reward and the rewards acquired after time t, G0:∞ = G0:t−1 + γtGt:∞, and write

Gπ(x0, 0, 1)
D
= St + CtG

π(Xt, St, Ct). (14)

Since G represents the average of st+ ctGt across all states, for any state (xt, st, ct) and any quantile
level α, we can determine the quantile level β for Gt such that F−1

G (α) = st + ctF
−1
Gt

(β). The
following theorem shows that ξαt is, in fact, the ratio of these quantile levels (β/α), allowing us to
define the agent’s risk preference at future time steps with respect to Gt. The proof of this theorem
can be found in Appendix E.

Theorem 2. For any SRM defined with probability measure µ, if ξα is the optimal dual variable to
compute the CVaR at level α, i.e. E [ξαG] = CVaRα(G), λα = F−1

G (α) and FGt
is the CDF of Gt,

we can calculate ξαt = E [ξα | Ft] with:

ξαt = FGt(
λα − st
ct

)/α (15)

and derive the risk level and the weight of CVaRs, at a later time step with αξαt and ξαt µ(dα)/ξ.

The intuition behind Theorem 2 is to find ξt for the return distribution of future states (Gt) and use
the Decomposition Theorem in Section 3.4 to convert this value into the risk levels and weights of
CVaRs and its associated risk measure at future states. To further elaborate on this derivation, we
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discuss three examples in detail in Appendix F. First, we discuss an example involving an MDP
with a known model to demonstrate the application of the Decomposition Theorem. Next, we use
Theorem 2 to demonstrate the change in the preference mappings without relying on the MDP model.
Finally, we analyze a single trajectory in a more practical context within one of our experiments. This
example gives a clear intuition behind the temporal adaptation of the risk measure.

6 EXPERIMENTAL RESULTS

In this section, we study our model’s performance with four examples. First, we start with a stochastic
version of the Cliff Walking environment (Sutton and Barto, 2018). Then, we examine the American
Option Trading environment, commonly used in the RSRL literature (Tamar et al., 2017; Chow and
Ghavamzadeh, 2014; Lim and Malik, 2022), followed by the Mean-reversion trading environment
as outlined in the work by Coache and Jaimungal (2023). Finally, we tackle the more challenging
Windy Lunar Lander environment. Ultimately, in Appendix G, we also examine the effect of the
number of quantiles on performance. The details of these environments are available in Appendix H.

In our experiments, we employ a diverse range of risk spectrums to derive policies in our algorithm.
We denote this approach as QR-SRM(ϕ), where ϕ represents the risk spectrum, with subscripts
indicating the functional form. The specific cases are as follows:

• QR-SRM(ϕα): CVaR with ϕα(u) = 1
α1[0,α](u),

• QR-SRM(ϕα⃗,w⃗): Weighted Sum of CVaRs (WSCVaR) with ϕα⃗,w⃗(u) =
∑

i wi
1
αi
1[0,αi](u),

• QR-SRM(ϕλ): Exponential risk measure (ERM) with ϕλ(u) = λe−λu

1−e−λ ,
• QR-SRM(ϕν): Dual Power risk measure (DPRM) with ϕν(u) = ν(1− u)ν−1.

6.1 STOCHASTIC CLIFF WALKING

The stochastic cliff walking is a simple grid-world in which the agent has to reach the goal state
and avoid the cliff states. The stochasticity comes from the random movement of the agent to
its nearby positions. For this experiment, we use QR-SRM(ϕα) with α ∈ {0.1, 0.3, 0.5, 0.7} and
QR-SRM(ϕα⃗1,w⃗1

) with α⃗1=[0.1, 1.0] and w1=[0.8, 0.2]. We also use the QR-DQN model as the
baseline method. We train each model with five different random seeds and subsequently utilize these
agents to run 10000 simulations.

Table 1: The performance of QR-SRM with different risk measures against the risk-neutral QR-DQN.
Bold numbers represent the highest average score with respect to a risk measure. The ± symbol
indicates the standard deviation across seeds.

Model E CVaR0.1 CVaR0.3 CVaR0.5 CVaR0.7 WSCVaRw⃗1

α⃗1

QR-DQN 3.10±0.00 -0.35±0.00 1.09±0.00 1.81±0.00 2.35±0.00 0.35±0.00
QR-SRM(ϕα=0.1) -0.04±0.15 -1.39±0.80 -0.88±0.41 -0.88±0.41 -0.88±0.41 -1.05±0.55
QR-SRM(ϕα=0.3) 0.90±0.75 -0.62±0.29 -0.00±0.72 0.22±0.91 0.56±0.83 -0.24±0.33
QR-SRM(ϕα=0.5) 1.30±0.93 -0.62±0.49 0.28±0.69 0.65±0.90 0.85±1.02 -0.15±0.47
QR-SRM(ϕα=0.7) 1.84±0.97 -0.62±0.70 0.59±0.67 1.10±0.76 1.39±0.84 0.02±0.52
QR-SRM(ϕα⃗1,w⃗1

) 2.92±0.08 -0.07±0.05 1.19±0.05 1.81±0.06 2.23±0.08 0.53±0.06

As expected, the QR-DQN algorithm achieves the highest expected return. Additionally, the results
of our experiments show that simply optimizing CVaR fails to reduce the worst-case scenarios and
improve CVaRα(G) for any α ∈ {0.1, 0.3, 0.5, 0.7}, where G denotes the distribution of simulated
discounted returns. Further investigation shows that using CVaR encourages the agent to avoid the
cliff, even if it comes at the cost of never reaching the goal. Several factors can contribute to these
discrepancies between the objective and the evaluated performance. These include the use of function
approximation for value functions and the inherent stochasticity of the environment. However, a
particularly significant factor for CVaR is the fact that these objectives focus exclusively on the left tail
of the distribution, overlooking valuable information in the right tail. As a result, these algorithms are
more likely to converge to sub-optimal policies. This limitation, commonly referred to as “Blindness
to Success” Greenberg et al. (2022), is a well-known issue with CVaR-based approaches.
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A remedy to this situation, enabled by our model, is assigning a small weight to the expected value.
In our case, an objective that assigns 80% weight on CVaR0.1 and 20% weight on the expected
value helps avoid the cliff while trying to reach the goal. The results show that this agent can not
only achieve the highest WSCVaRw⃗1

α⃗1
but also improve the CVaR0.1 without a great impact on the

expected return. The results of this experiment show the impact of having a model with a flexible
objective that can adapt to the environment.

6.2 AMERICAN PUT OPTION TRADING

In this environment, we assume that the price of the underlying asset follows a Geometric Brownian
Motion and at each time step, the the option-holder can either exercise or hold the option. For
this example, we selected QR-SRM(ϕα) with α ∈ {0.4, 0.6, 0.8, 1.0}. The distribution of option
payoff is displayed in Figure 1a. In this figure, the solid, dashed, and dotted vertical lines depict
the CVaR1.0(G), CVaR0.8(G), and CVaR0.6(G) for each of these distributions, respectively. The
value of CVaR0.4(G) for all of the policies is zero, however, we can see that QR-SRM(ϕα=1.0)
successfully finds the policy with the highest CVaR1.0(G) among the four. Similarly for α=0.6 and
α=0.8, the algorithm finds a policy with one of the highest CVaR0.6(G) and CVaR0.8(G). The
exercise boundary of each policy, as depicted in Figure 1b, also shows that as α decreases from 1.0
to 0.4, the policy becomes more conservative and the agent exercises the option sooner, leading to
higher CVaR0.4(G) but lower CVaR1.0(G).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Option Payoff

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
ty

QR-SRM(ϕα=0.4)
QR-SRM(ϕα=0.6)
QR-SRM(ϕα=0.8)
QR-SRM(ϕα=1.0)
CVaR(α=0.6)
CVaR(α=0.8)
CVaR(α=1.0)

(a)

0 1 2 3 4 5 6 7 8 9 10
Time

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

U
nd

er
ly

in
g 

As
se

t P
ric

e

QR-SRM(ϕα=0.4)
QR-SRM(ϕα=0.6)
QR-SRM(ϕα=0.8)
QR-SRM(ϕα=1.0)

(b)

Figure 1: Figure 1a illustrates the distribution of discounted returns for different policies. Figure 1b
demonstrates the exercise boundary of each policy.

6.3 MEAN-REVERSION TRADING STRATEGY

In the algorithmic trading framework, the asset price follows a mean-reverting process and the agent
can buy or sell the asset to earn reward. To showcase our model’s performance and its versatility to
employ a diverse range of risk spectrums for policy derivation, we employ QR-SRM(ϕλ=12.0), QR-
SRM(ϕν=4.0), and QR-SRM(ϕα⃗2,w⃗2

) with α⃗2=[0.1, 0.6, 1.0] and w⃗2=[0.2, 0.3, 0.5]. In Figure 2a, the
solid, dashed, and dotted vertical lines depict the WSCVaRw⃗2

α⃗2
(G), ERM12.0(G), and DPRM4.0(G)

for each of these distributions, respectively. This figure demonstrates that our model effectively
handles more complex risk measures and identifies the policy with the highest SRM(G).

For this example, we also conduct a comparative evaluation of our model against the risk-neutral
QR-DQN model, its risk-sensitive variant introduced in Bellemare et al. (2023) for static CVaR, and a
model with risk-sensitive action selection similar to the approach proposed by Dabney et al. (2018a).
We refer to these two models as QR-CVaR and QR-iCVaR. As the QR-iCVaR with α=1 is identical
to the QR-DQN model, only the results of one of them are displayed.

The first three columns of Table 2 represent the risk-adjusted values w.r.t CVaRα metric with
α ∈ {1.0, 0.5, 0.2}. As expected, QR-SRM with CVaR as the risk measure and QR-CVaR exhibit
similar performances. On the contrary, QR-iCVaR shows sub-optimal results for α=0.5. Even
for α values of 0.2 and 1.0, where the average risk-adjusted values of all three models are close,
QR-iCVaR achieves lower risk-adjusted value w.r.t other risk measures. Also, a comparison between
QR-SRM(ϕα=1.0) and QR-DQN shows that our model discovers superior policies w.r.t various risk
measures.
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Figure 2: Figure 2a illustrates the distribution of discounted returns for different policies. Figure 2b
displays the risk spectrums used to derive these policies.

Table 2: The performance of our model against the QR-DQN, QR-CVaR, and QR-iCVaR models.
Bold numbers represent the highest average score with respect to a risk measure. The ± symbol
indicates the standard deviation across seeds.

Model CVaR1.0 CVaR0.5 CVaR0.2 ERM4.0 DPRM2.0 WSCVaRw⃗2

α⃗2
WSCVaRw⃗3

α⃗3

QR-SRM(ϕα=1.0) 1.43±0.03 0.03±0.04 -1.36±0.09 -0.37±0.05 0.43±0.02 0.35±0.02 0.04±0.04
QR-CVaR(α=1.0) 1.48±0.07 -0.02±0.10 -1.42±0.21 -0.41±0.13 0.40±0.07 0.35±0.08 0.03±0.10
QR-DQN 1.40±0.09 -0.24±0.17 -1.76±0.27 -0.67±0.19 0.21±0.14 0.16±0.14 -0.18±0.16
QR-SRM(ϕα=0.5) 0.78±0.02 0.27±0.03 -0.44±0.05 0.00±0.04 0.38±0.02 0.29±0.03 0.17±0.03
QR-CVaR(α=0.5) 0.79±0.08 0.28±0.02 -0.41±0.11 0.02±0.05 0.40±0.03 0.31±0.02 0.19±0.03
QR-iCVaR(α=0.5) 0.82±0.17 0.14±0.04 -0.36±0.09 -0.00±0.02 0.32±0.07 0.33±0.07 0.23±0.05
QR-SRM(ϕα=0.2) 0.56±0.08 0.21±0.03 -0.21±0.04 0.05±0.01 0.29±0.05 0.24±0.04 0.17±0.02
QR-CVaR(α=0.2) 0.64±0.06 0.24±0.03 -0.27±0.03 0.05±0.01 0.33±0.03 0.26±0.03 0.19±0.02
QR-iCVaR(α=0.2) 0.40±0.04 0.04±0.01 -0.17±0.03 -0.00±0.01 0.13±0.02 0.16±0.02 0.11±0.02
QR-SRM(ϕλ=4.0) 0.84±0.05 0.28±0.02 -0.37±0.07 0.05±0.03 0.42±0.02 0.35±0.02 0.23±0.03
QR-SRM(ϕν=2.0) 1.01±0.09 0.27±0.02 -0.62±0.14 -0.03±0.06 0.46±0.02 0.36±0.01 0.19±0.03
QR-SRM(ϕα⃗2,w⃗2

) 1.06±0.11 0.26±0.03 -0.57±0.14 -0.01±0.05 0.47±0.03 0.40±0.02 0.24±0.02
QR-SRM(ϕα⃗3,w⃗3

) 1.11±0.08 0.26±0.04 -0.68±0.19 -0.05±0.08 0.48±0.02 0.40±0.03 0.22±0.06

For ERM4.0, DPRM2.0, and WSCVaRw⃗2

α⃗2
, our model can identify top-performing policies. Further-

more, we train a QR-SRM(ϕα⃗3,w⃗3
) algorithm with α⃗3=[0.2, 1.0] and w⃗3=[0.5, 0.5]. Compared to

QR-SRM(ϕα=1.0) and QR-SRM(ϕα=0.2) models, the results of this policy demonstrate the possibility
of increasing the performance w.r.t to one risk measure at the expense of decreasing the performance
w.r.t to another in our model.

6.4 WINDY LUNAR LANDER

To evaluate our algorithm in a more complex environment, we utilize the windy Lunar Lander
environment. The combination of the larger state and action spaces, along with the stochasticity in
the transitions, makes this environment particularly challenging for training. As shown in Table 3,
QR-SRM(ϕα=1.0) performs slightly worse than QR-DQN, but the difference is within a standard
deviation. This is likely due to the state augmentation used in our model. We also observed unusually
low scores for the QR-CVaR algorithm, which were traced back to poor performance in 3 out of
5 seeds. Additionally, QR-iCVaR under-performed compared to QR-SRM at the same risk levels,
suggesting that using a fixed risk measure, as in Dabney et al. (2018b), can lead to sub-optimal
performance. Finally, the results for the QR-SRM(ϕα⃗3,w⃗3

) model further highlight the advantages of
SRM over CVaR in achieving effective risk-sensitive policies.

7 CONCLUSION

In this paper, we introduced a novel DRL algorithm with convergence guarantees designed to optimize
the static SRM. Our empirical evaluations demonstrate the algorithm’s ability to learn policies aligned
with SRM objectives, achieving superior performance compared to existing methods in a variety of
risk-sensitive scenarios. The advantage of using static SRM extends beyond performance; it also
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Table 3: The performance of our model against the QR-DQN, QR-CVaR, and QR-iCVaR models.
Bold numbers represent the highest average score with respect to a risk measure. The ± symbol
indicates the standard deviation across seeds.

Model E CVaR0.5 CVaR0.2 WSCVaRw⃗3

α⃗3

QR-SRM(ϕα=1.0) 27.36±12.85 10.17±14.07 -8.07±17.36 9.82±14.75
QR-CVaR(α=1.0) -7.29±27.30 -26.99±32.62 -47.30±38.74 -27.14±32.74
QR-DQN 32.73±8.98 3.79±13.72 -24.79±23.39 4.23±15.99
QR-SRM(ϕα=0.5) 23.25±12.58 4.12±12.64 -12.26±11.67 5.67±12.05
QR-CVaR(α=0.5) 17.74±6.00 0.59±5.47 -14.60±8.19 1.73±5.17
QR-iCVaR(α=0.5) 21.72±24.09 -1.33±29.33 -22.37±38.35 -0.02±30.97
QR-SRM(ϕα=0.2) 22.28±12.66 3.37±13.09 -13.51±14.54 4.57±13.53
QR-CVaR(α=0.2) 13.58±9.24 -1.73±10.06 -15.99±12.92 -1.08±10.31
QR-iCVaR(α=0.2) 18.53±22.07 -2.69±27.34 -18.82±31.68 0.04±26.80
QR-SRM(ϕα⃗3,w⃗3

) 31.70±11.21 14.17±13.46 -2.85±20.63 14.57±15.22

enhances interpretability. We showed that by applying the Decomposition Theorem of coherent risk
measures and leveraging the return distribution available in the DRL framework, we can identify the
specific objective that the optimal policy is optimizing for. This allows for monitoring the policy’s
behavior and risk sensitivity, and adjusting it if necessary.

A few limitations of our work that can pave the way for future research are as follows: i) Our value-
based method is suitable for environments with discrete action spaces. The extension of our algorithm
to actor-critic methods can make our approach available in environments with continuous action
spaces. ii) In this work, we parameterized the return distribution with the quantile representation.
Using other parametric approximations of the distribution (Dabney et al., 2018a; Yang et al., 2019) or
improvements that have been introduced for the quantile representation (Zhou et al., 2020; 2021) can
potentially improve the performance of our risk-sensitive algorithm. iii) The algorithm to update the
function h, or equivalently the estimation of the initial state’s return distribution, provides a lower
bound for the objective. In section 6.3, we empirically observed that our algorithm converges to
policies similar to QR-CVaR, which has stronger convergence guarantees. However, an algorithm
with stronger guarantees for convergence to the optimal function h can enhance our understanding of
static SRM.

8 REPRODUCIBILITY STATEMENT

The code for reproducing the results and figures presented in this paper is provided in the supple-
mentary material. Additionally, a detailed guide to our implementations can be found in Appendix
I.
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A PROOF OF CONVERGENCE FOR INNER OPTIMIZATION

In this section, we aim to demonstrate the convergence of the inner optimization algorithm to the
optimal policy associated with a fixed function hl. Before discussing the main theorem, we must
introduce several intermediate results about partial returns. Let the mapping Vk,l : X×S×C×A → R
be defined as follows:

Vk,l(x, s, c, a) = E [hl (s+ cGk,l(x, s, c, a))] . (16)

Similarly for a policy πl ∈ πM, we define

V πl(x, s, c, a) = E [hl (s+ cGπl(x, s, c, a))] . (17)

The goal is to find an optimal deterministic policy π∗
l ∈ πM in the sense that

V π∗
l (x, s, c, a) = max

πl∈πM

V πl(x, s, c, a). (18)

With ak,l(x, s, c) = aGk,hl
(x, s, c), we have the following recursive property for Vk,l and V πl :

Lemma 3. For each (x, s, c, a) ∈ X × S × C ×A, we have

Vk+1,l(x, s, c, a) = Exsca [Vk,l (X
′, S′, C ′, ak,l (X

′, S′, C ′))] . (19)

Additionally, for a policy πl ∈ πM, we have

V πl(x, s, c, a) = Eπl,xsca [V
πl (X ′, S′, C ′, A′)] (20)

Proof. The proof for both equations follows similar steps, so we present the proof only for Vk+1,l.
Consider a partial trajectory that starts with the sample transition (X,S,C,A,R,X ′, S′, C ′, A′)

and continues with (Xt, St, Ct, At, Rt)
k
t=0 in which A0 = A′ = ak,l (X

′, S′, C ′) and At ∼
πk−t,l (· | Xt, St, Ct) , t ≥ 1. Since S′ = S + CR and C ′ = γC, we can write3

Exsca[Vk,l (X
′, S′, C ′, A′)]

= Exsca [E [hl (S
′ + C ′Gk,l (X

′, S′, C ′, A′))]]

= Exsca

[
E

[
hl

(
S′ + C ′

k∑
t=0

γtRt

)
| X0 = X ′, S0 = S′, C0 = C ′, A0 = A′

]]

= Exsca

[
E

[
hl

(
s+ cR+ γc

k∑
t=0

γtRt

)
| X0 = X ′, S0 = S′, C0 = C ′, A0 = A′

]]

= Exsca

[
E

[
hl

(
s+ cR+ c

k+1∑
t=1

γtRt

)
| X1 = X ′, S1 = S′, C1 = C ′, A1 = A′

]]

= E

[
hl

(
s+ c

k+1∑
t=0

γtRt

)
| X0 = x, S0 = s, C0 = c, A0 = a

]
= Vk+1,l(x, s, c, a)

Lemma 4. For each (x, s, c, a) ∈ X × S × C ×A and return-distribution ηk,l defined by Equation
11, the associated Vk,l(x, s, c, a) indicates the value of the optimal policy for partial return, i.e.:

Vk,l(x, s, c, a) = max
πl∈πM

Eπl,xsca

[
hl

(
s+ c

k∑
t=0

γtRt

)]
. (21)

Proof. We establish the validity of this lemma through induction on k. The statement holds true for
k = 0 with G0,l(x, s, c, a) = 0. Assuming the statement is true for Vk,l, we leverage the results of
Lemma 3 and the fact that the policy Gl (ηk,l) selects the action maximizing Vk,l to conclude the
validity of the statement for Vk+1,l.

3Note that Ct is a degenerate random variable that only takes the value γt, therefore multiplying a random
variable Z by Ct scales each realization by γt.
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Lemma 5. For each (x, s, c, a) ∈ X × S × C ×A, it holds that

V π∗
l (x, s, c, a)− εk(x, s, c, a) ≤ Vk,l(x, s, c, a) ≤ V π∗

l (x, s, c, a) (22)

where limk→∞ εk(x, s, c, a) = 0. It also holds that Vk,l(x, s, c, a) ↑ V π∗
l (x, s, c, a).

Proof. Let (Rt)t≥0 be a sequence of rewards in [RMIN, RMAX] for any policy πl. Since hl is a
non-decreasing function, we have

hl

(
s+ c

k∑
t=0

γtRt

)
≤ hl

(
s+ c

∞∑
t=0

γtRt

)
. (23)

Also, we can use the ϕ(0)-Lipschitz property of hl, i.e. hl(u1 + u2)− hl(u1) ≤ ϕ(0)u2, to write

hl

(
s+ c

∞∑
t=0

γtRt

)
− hl

(
s+ c

k∑
t=0

γtRt

)
≤ ϕ(0)c

∞∑
t=k+1

γtRt ≤ ϕ(0)cγk+1GMAX (24)

Combining these results yields the following inequality

V πl
∞ (x, s, c, a)− εk(x, s, c, a) ≤ V πl

k (x, s, c, a) ≤ V πl
∞ (x, s, c, a) (25)

where εk(x, s, c, a) = ϕ(0)cγk+1GMAX. This shows that limk→∞ εk(x, s, c, a) = 0. Taking
the supremum over all policies and applying Lemma 4 results in Inequality 22. By setting
G0,l(x, s, c, a) = 0 and considering the non-negativity of rewards, we ensure that Vk,l(x, s, c, a) is
increasing with respect to k and therefore we have Vk,l(x, s, c, a) ↑ V π∗

l (x, s, c, a).

Theorem 6. With πk,l = Gl (ηk,l), it holds that limk→∞ V πk,l = V π∗
l .

Proof. Given that the function hl is non-decreasing and considering the definitions of Vk,l(x, s, c, a)
and V πk,l(x, s, c, a), we can write:

0 ≤ ϕ (1) ≤ E [hl (s+ cGk,l(x, s, c, a))− hl (s+ cGk−1,l(x, s, c, a))]

cE [Gk,l(x, s, c, a)−Gk−1,l(x, s, c, a)]
, (26)

and

0 ≤ ϕ (1) ≤ E [hl (s+ cGπk,l(x, s, c, a))− hl (s+ cGk,l(x, s, c, a))]

cE [Gπk,l(x, s, c, a)−Gk,l(x, s, c, a)]
. (27)

Since Vk,l(x, s, c, a) is increasing w.r.t k, the numerator in Equation 26 is positive and we can
conclude that E [Gk,l(x, s, c, a)] ≥ E [Gk−1,l(x, s, c, a)]. Utilizing Equation 11, we can also infer
that

Exsca [E [Gk,l (X
′, S′, C ′, ak,l (X

′, S′, C ′))]] ≥ Exsca [E [Gk−1,l (X
′, S′, C ′, ak−1,l (X

′, S′, C ′))]] .
(28)

Now in Equation 27, in order to show that V πk,l(x, s, c, a)−Vk,l(x, s, c, a) ≥ 0 in every state-action,
we need to show that the denominator in this equation is also always positive. With ϵk(x, s, c, a) :=
E [Gπk,l(x, s, c, a)−Gk,l(x, s, c, a)], we have

ϵk(x, s, c, a) = E [Gπk,l(x, s, c, a)−Gk,l(x, s, c, a)]

= Exsca [E [R+ γGπk,l (X ′, S′, C ′, ak,l (X
′, S′, C ′))−R− γGk−1,l (X

′, S′, C ′, ak−1,l (X
′, S′, C ′))]]

= γExsca [E [Gπk,l (X ′, S′, C ′, ak,l (X
′, S′, C ′))−Gk−1,l (X

′, S′, C ′, ak−1,l (X
′, S′, C ′))]]

(a)

≥ γExsca [E [Gπk,l (X ′, S′, C ′, ak,l (X
′, S′, C ′))−Gk,l (X

′, S′, C ′, ak,l (X
′, S′, C ′))]]

= γExsca [ϵk (X
′, S′, C ′, ak,l (X

′, S′, C ′))] , (29)

where we use Equation 28 for (a). Given that ϵk(x, s, c, a) is bounded from below, its infimum
ϵk := inf(x,s,c,a) ϵk(x, s, c, a) exists, so we can take infimum from both sides of Equation 29 and
replace ϵk(x, s, c, a) with ϵk. This leads to

ϵk ≥ γϵk =⇒ ϵk ≥ 0, (30)

demonstrating that both denominator and numerator in Equation 27 are positive. Therefore, we can
prove the theorem using the Squeeze Theorem and Lemma 5.
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B LOWER BOUND FOR THE OBJECTIVE

In Appendix A, we showed that the fixed point of each distributional Bellman operator T Gl denoted
by η∗l and instantiated as Gπ∗

l can be found and we were able to provide the error bound for each πk,l.
Using the fact that

∫ 1

0
hl(ϕ(u))du = 0 for l ∈ N, the update rule for function h in Equation 12 shows

E
[
hl+1

(
Gπ∗

l (X0, 0, 1, aGπ∗
l ,hl+1

(X0, 0, 1))
)]
≥ E

[
hl

(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
.

where a∗l (x, s, c) = a
Gπ∗

l ,hl
(x, s, c) denotes the optimal action when the same function hl is used to

estimate Gπ∗
l and calculate E [hl(·)]. Remember that the return-variable of the optimal policy derived

with the fixed function hl and hl+1 is denoted by Gπ∗
l and Gπ∗

l+1 . Therefore, we have

E
[
hl+1

(
Gπ∗

l+1(X0, 0, 1, a
∗
l+1 (X0, 0, 1))

)]
≥ E

[
hl+1

(
Gπ∗

l (X0, 0, 1, aGπ∗
l ,hl+1

(X0, 0, 1))
)]

=⇒ E
[
hl+1

(
Gπ∗

l+1(X0, 0, 1, a
∗
l+1 (X0, 0, 1))

)]
≥ E

[
hl

(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
,

and relative to our objective, we can write:

SRMϕ

(
Gπ∗

l

)
= sup

h∈H′
E
[
h
(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
≥ E

[
hl

(
Gπ∗

l (X0, 0, 1, a
∗
l (X0, 0, 1))

)]
Since the rewards are bounded, both Gπ∗

l and function hl are bounded. Therefore, the monotonic
increase of V π∗

l (X0, 0, 1, a
∗
l (X0, 0, 1)) as l→∞ provides a lower bound for the objective.

C DETAILS OF ALGORITHM 2

The quantile regression loss function used in this algorithm helps estimate the quantiles by penalizing
both overestimation and underestimation with weights τ and 1− τ , respectively. The quantile Huber
loss function (Huber, 1992) uses the squared regression loss in an interval [−κ, κ] to prevent the
gradient from becoming constant when u→ 0+:

ρκτ (u) =
∣∣τ − δ{u<0}

∣∣Lκ(u) (31)

where the Huber loss Lκ(u) is given by

Lκ(u) =

{
1
2u

2, if |u| ≤ κ
κ
(
|u| − 1

2κ
)
, otherwise . (32)

Furthermore, since function hl is approximated with the quantile representation of G̃ := Gπ∗
l−1

and Equation 6, we need to show how E [hl(s
′
k + c′kθj(x

′
k, s

′
k, c

′
k, a

′))] is calculated. With zj :=

s′k + c′kθj(x
′
k, s

′
k, c

′
k, a

′) and θ̃i := F−1

G̃
(τ̂i), we can write

hl(zj) =

∫ 1

0

F−1

G̃
(α) +

1

α

(
zj − F−1

G̃
(α)
)−

µ(dα)

=
∑
i

(∫ τi

τi−1

F−1

G̃
(α) +

1

α

(
zj − F−1

G̃
(α)
)−

µ(dα)

)

=
∑
i

(∫ τi

τi−1

F−1

G̃
(α)µ(dα) +

∫ τi

τi−1

1

α

(
zj − F−1

G̃
(α)
)−

µ(dα)

)
(a)
=
∑
i

(
θ̃i

∫ τi

τi−1

µ(dα) +
(
zj − θ̃i

)− ∫ τi

τi−1

1

α
µ(dα)

)
. (33)

In this calculation, the integration interval [0, 1] is divided into N intervals
[τ0, τ1), [τ1, τ2), · · · , [τN−2, τN−1), [τN−1, τN ]. Therefore, the integrals

∫ τi
τi−1

µ(dα) is cal-
culated on [τi−1, τi), including the lower limit τi−1 and excluding the upper limit τi. In (a), we used
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the fact that θ̃i is constant in [τi−1, τi). Also, the first term in the summation can be omitted since it
is constant for all actions.

In this algorithm, it’s also important to highlight the direct relationship between the number of
quantiles and the expressiveness of SRM. For example, when the return distribution is approximated
with N quantiles, the expectation can be estimated with µ̃N =

∫ 1

1−1/N
1
αµ(dα) = 1 and µ̃j = 0

for 1 ≤ j < N . Similarly, CVaRα for α < 1 can be approximated by setting µ̃j = 1/α for
j = ⌊αN⌋+ 1 and µ̃j = 0 otherwise.

D ADDITIONAL DISCUSSION ON TIME AND DYNAMIC CONSISTENCY

In this section, we need to introduce new notations to discuss the flow of information. Suppose we have
a sequence of real-valued random variable spaces denoted as Z0 ⊂ · · · ⊂ ZT ,Zt := Lp (Ω,Ft,P).
Here, Zt : Ω→ R represents an element of the space Zt.

Moreover, let us define the preference system {ρt,T }T−1
t=0 as the family of preference mappings

ρt,T : ZT → Zt, t = 0, . . . , T − 1. The conditional expectation denoted by E [· | Ft] is an example
of such mappings. With these notations, our optimization problem defined in Equation 1 can be
written with ρ = ρ0,T and Zπ = Zπ

0,T , where Zπ
t,T ∈ ZT denotes the cumulative reward starting

from time t. The following definitions help us discuss the connection between the risk measure ρ and
the policy π:
Definition 1 (Time-consistency). An optimal policy π∗ = (a∗0, . . . , a

∗
T ) is time-consistent if for any

t = 1, . . . , T , the shifted policy −→π ∗ = (a∗t , . . . , a
∗
T ) is optimal for

max
π∈πH

ρt,T
(
Zπ
t,T

)
. (34)

Definition 2 (Dynamic-consistency). The preference system {ρt,T }T−1
t=0 is said to exhibit dynamic

consistency if the following implication holds for all 0 ≤ t1 < t2 ≤ T − 1:

ρt2,T (Z) ⪰ ρt2,T (Z ′) =⇒ ρt1,T (Z) ⪰ ρt1,T (Z ′) Z,Z ′ ∈ ZT , 0 ≤ t1 < t2 ≤ T − 1. (35)

Additionally, this preference system is said to exhibit strict dynamic consistency if the following
implication holds:

ρt2,T (Z) ≻ ρt2,T (Z ′) =⇒ ρt1,T (Z) ≻ ρt1,T (Z ′) Z,Z ′ ∈ ZT , 0 ≤ t1 < t2 ≤ T − 1. (36)

Note that dynamic-consistency is a property of a preference system and time-consistency is a property
of a policy w.r.t a preference system. Although some authors (e.g. Ruszczyński (2010)) have used
the term ”time-consistency” for preference systems, in this context, we maintain the distinction
between these two terms. The primary rationale behind this distinction is that using a dynamically
consistent preference system implies a time-consistent policy only when the optimal policy is unique.
In scenarios with multiple optimal policies, additional conditions must be satisfied (Shapiro et al.,
2014). Nonetheless, employing these preference systems has been a widely adopted approach in the
RSRL literature to ensure the time-consistency of the optimal policy4. To understand the necessary
properties of a dynamically consistent preference system, we require additional definitions:

Definition 3 (Recursivity). The preference system {ρt,T }T−1
t=0 is said to be recursive if

ρt1,T (ρt2,T (Z)) = ρt1,T (Z) Z ∈ ZT , 0 ≤ t1 < t2 ≤ T − 1. (37)

For instance, Kupper and Schachermayer (2009) show that the only law invariant convex risk measure
that has the recursion property ρ (ρ(· | G)) = ρ(·) for G ⊂ F ,G ≠ F is the Entropic risk measure:

ρ(Z) =
1

γ
logE[exp(γZ)], γ ∈ [0,∞]. (38)

Therefore, using the above-mentioned ρ yields a recursive preference system. The Entropic risk
measure is monotone, translation-invariant, and convex. However, it does not have the positive

4In these works, a set of dynamic programming equations are defined and the optimal policies serve as a
solution to these equations, which ensure the time-consistency. Additional details on this topic can be explored
in the work of Shapiro and Pichler (2016).
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homogeneity property, so it is not suitable for applications in which this property is essential.
Nevertheless, the risk measures ρ(·) = E(·) and ρ(·) = ess sup(·), which are the boundary cases
of the Entropic risk measure with γ = 0 and γ = ∞, have the positive homogeneity property and
therefore are coherent risk measures.

Definition 4 (Decomposability). The preference mappings ρt,T are considered to be decomposable
via a family of one-step mappings ρt : Zt+1 → Zt if they can be expressed as compositions

ρt,T (Z) = ρt (ρt+1 (· · · ρT−1(Z))) , Z ∈ ZT . (39)

It is easily seen that the preference mappings of a recursive preference system, such as the one with
the Entropic risk measure, are also decomposable. The inverse, however, is not always true and
a set of decomposable preference mappings constitute a recursive preference system only if their
corresponding one-step mappings are translation-invariant and ρt(0) = 0 for t = 0, . . . , T . For
instance, a convex conditional risk measure such as ρt = CVaRα(· | Ft) can be used as the one-step
mapping and establish a decomposable and recursive preference system5. At last, in both of these
cases, whether the preference mappings of a recursive preference system or the one-step mappings of
a decomposable preference mapping are monotone, the preference system is dynamically consistent.

As mentioned before, the dynamic consistency of the preference system only implies the time-
consistency of a unique optimal policy. To guarantee the time-consistency of all optimal policies,
Shapiro and Ugurlu (2016) shows that the preference system has to be strictly dynamically consistent.
This requires the preference mappings of a recursive preference system or the one-step mappings of a
decomposable preference mapping to be strictly monotone, i.e, the following implication must hold:

Z ≻ Z ′ =⇒ ρt,T (Z) ≻ ρt,T (Z ′) , Z, Z ′ ∈ ZT .

The Spectral risk measure is an example of strictly monotone preference mappings only if the risk
spectrum ϕ(u) is positive on the interval (0, 1). Consequently, CVaRα is not strictly monotone for
α ∈ (0, 1) and we cannot deduce that, for the preference system characterized by nested Conditional
Value-at-Risk, every optimal solution of the corresponding reference problem is time-consistent. An
easy way to ensure that ϕ(u) =

∫ 1

u
µ(dα) > 0 for u ∈ (0, 1) is to check whether µ(dα)|α=1 is

non-zero or not. In other words, if the risk measure assigns a non-zero weight on the expectation
(CVaR1), the resulting SRM is strictly monotone.

The decomposition theorem shows that the preference mappings ρt,T can also be provided for SRM.
It also shows that these preference mappings are strictly monotone if the initial risk measure is a
strictly monotone SRM. This property is evident since for α = 1, ξα and consequently αξαt is also 1.
Therefore, the weight of CVaR1 in the preference mappings would also be non-zero. Intuitively, if
the risk measure takes into account the entire distribution to calculate the risk-adjusted value, i.e. has
a non-zero weight for the expected value, the resulting preference mappings also have this property.

Additionally, the goal of analyzing the evolution of risk preferences over time can be achieved with
the preference mappings, without the need for deriving the one-step mappings. The intermediate
random variable ξt,t−1 in the one-step mappings shows how the risk preference at time t changes
compared to the previous risk preference at time t− 1, however, ξαt in the decomposition theorem
shows how the risk preference at time t changes compared to the initial risk preference. For example,
the CVaR risk level at time t, αt, can be written as both αt−1ξt,t−1 or αξt. Similarly, in the CVaR
case, the risk parameter Bt+1 can be written as both (Bt −Rt)/γ or (B0 − St)/Ct.

E PROOF OF THEOREM 2

For general distributions, we have ξα(z) = 1/α for z < λα and ξα(z) = 0 for z > λα. To discuss
the value of ξα(z) when z = λα, let us consider two cases based on the continuity of FG(z) at
z = λα, i.e, whether pG(λα) = 0 or pG(λα) > 0. For the first case, we simply have

ξα(z) =

{
1/α if z ≤ λα
0 if z > λα

(40)

5These risk measures are also called Nested Risk Measures in the literature
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SinceG is a convex combination of st+ctGt, we know that pG(λα) = 0 implies pGt
((λα−st)/ct) =

0. Therefore, we have:

ξαt = E [ξα | Ft]

=
1

α
E
[
1{st+ctGt≤λα}

]
=

1

α
FGt(

λα − st
ct

)

=⇒ αξαt = FGt
(
λα − st
ct

) (41)

For the second case where pG(λα) > 0, we use the fact that E [ξα] = 1 to write ξα(λα) as a function
of FG (λα) and pG(λα):

ξα(z) =


1/α if z < λα
(1− 1

α (FG (λα)− pG(λα)))/pG(λα) if z = λα
0 if z > λα

(42)

Note that the set {z < λα} can be empty, especially for small α. In this case, ξα(λα) = 1/pG(λα)
would be the only non-zero ξα(z). Using this information, we can calculate ξαt :

ξαt = E [ξα | Ft]

=
1

α
· E
[
1{st+ctGt<λα}

]
+

1− 1
α (FG (λα)− pG(λα))

pG(λα)
· E
[
1{st+ctGt=λα}

]
=

1

α
(FGt

(
λα − st
ct

)− pGt
(
λα − st
ct

)) +
1− 1

α (FG (λα)− pG(λα))
pG(λα)

· pGt
(
λα − st
ct

)

=
1

α
FGt

(
λα − st
ct

)− 1

α
pGt

(
λα − st
ct

) ·
(
1− α− (FG(λα)− pG(λα))

pG(λα)

)
=

1

α
FGt

(
λα − st
ct

)− 1

α
pGt

(
λα − st
ct

) · FG(λα)− α
pG(λα)

=⇒ αξαt = FGt
(
λα − st
ct

)− pGt
(
λα − st
ct

) · FG(λα)− α
pG(λα)

(43)

Notice that this can also be simplified to

αξαt = FGt(
λα − st
ct

) (44)

if FGt(z) does not have a discontinuity at z =
λα − st
ct

.

In the DRL framework, only estimates of the return-distributions are available. When estimating
the distribution with the Quantile representation, it’s easy to see that λα = θi for τi−1 ≤ α < τi, so
pG(λα) = 1/N . If (λα − st)/ct is equal to any of the estimated θt,i, we have pGt

((λα − st)/ct) =
1/N and αξα can be estimated with

αξαt = FGt(
λα − st
ct

)− (FG(λα)− α).

Otherwise, we have pGt
((λα − st)/ct) = 0 and αξα can be estimated with Equation 44. Also, with

the Quantile representation, we have FG(λα)−α ≤ 1/N , so the error of ignoring this term altogether
becomes negligible as the number of quantiles increases.

F EXAMPLES FOR CALCULATING THE INTERMEDIATE RISK PREFERENCES

F.1 EXAMPLE 1

To illustrate the calculations of the conditional risk measures, consider the following Markov process,
where the number of edges and nodes represent the transition probabilities and rewards. In this
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Figure 3: A Markov process with the transition probabilities and rewards denoted on the edges and
nodes. This process can also be considered as an MDP with a deterministic policy π. In this way, the
number in each node denotes the r(x, π(x)).

example, we use γ = 0.5. As an example, the trajectory (x0, x
1
1, x

3
2) has the reward of 9 =

2 + 0.5 · 4 + 0.52 · 20 and the probability of 0.6 · 0.2 = 0.12.

Suppose the risk measure has the following form:

ρ(G) = 0.7 · CVaR0.4(G) + 0.3 · CVaR0.8(G)

With ξ0.4 and ξ0.8, we have CVaR0.4(G) = 5.25 and CVaR0.8(G) = 6.375, therefore a direct
calculation of the risk measure shows that

ρ(G) = 0.7 · 5.25 + 0.3 · 6.375 = 5.5875.

However, we can also reach this value with the conditional risk measures. The first step is to see
how the risk levels α and weights of each CVaRα evolve at t = 1. Table 4 shows these calculations,
where ξαt = E [ξα | Ft], ξ =

∫ 1

0
ξαt µ(dα) = 0.7 · ξ0.4t + 0.3 · ξ0.8t , and new risk levels and weights

are calculated with αξαt and ξαt µ(dα)/ξ.

Table 4: The information to calculate the conditional risk measures.

pG(z) G ξ0.4 ξ0.8 X1 pGt(z) Gt ξ0.4t ξ0.8t ξ ρξ(Gt)

30% 5 2.5 1.25
x1
1

50% 6
1.25 1.0833 1.2 0.73 · CVaR0.5 +0.27 · CVaR0.8618% 8 0 1.25 30% 12

12% 9 0 0.41667 20% 14
16% 6 1.5625 1.25

x2
1

40% 8
0.625 0.875 0.7 0.625 · CVaR0.25 +0.375 · CVaR0.712% 7 0 1.25 30% 10

12% 10 0 0 30% 16

By repeating the calculations for the conditional risk measures, we have:

ρξ(Gt | X0 = x11) = 0.73 · 6 + 0.27 · 8.69 = 6.73, and

ρξ(Gt | X0 = x21) = 0.625 · 8 + 0.375 · 8.86 = 8.32.

With st = 2 and ct = 0.5, we reach the same value for ρ(G):

ρ(G) = 2 + 0.5 · (0.6 · 1.2 · 6.73 + 0.4 · 0.7 · 8.32) = 5.5875

Note that in this example, instead of calculating the ξαt directly with E [ξα | Ft], we can use Equations
43 and 44 to do the calculations for X1 = x11:

0.4ξ0.4t = FGt(
6− 2

0.5
) = FGt

(8) = 0.5 =⇒ ξ0.4t = 1.25,

0.8ξ0.8t = FGt(
9− 2

0.5
)− pGt(

9− 2

0.5
) · FG(9)− 0.8

0.12
= 1− 0.2 · 0.88− 0.8

0.12
= 0.866 =⇒ ξ0.8t = 1.0833,
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and X1 = x21:

0.4ξ0.4t = FGt
(
6− 2

0.5
)− pGt

(
6− 2

0.5
) · FG(6)− 0.4

0.16
= 0.4− 0.4 · 0.46− 0.4

0.16
= 0.25 =⇒ ξ0.4t = 0.625,

0.8ξ0.8t = FGt
(
9− 2

0.5
) = FGt

(14) = 0.7 =⇒ ξ0.8t = 0.875.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

(a) The Quantile Function

0 5 10 15
0

0.2

0.4

0.6

0.8

1

(b) The CDF

Figure 4: In Figure 4a and 4b, the Quantile function and CDF of the return-distributions in states x0
(black), x11 (green), and x21 (blue) in Example F.1 are illustrated.

F.2 EXAMPLE 2

Suppose that the quantiles of G and Gt, denoted by θ and θt, are given as in the table below. Also
suppose that st = 5, ct = 0.8, and we are interested in the following risk measure at the initial state:

ρ(G) = 0.6 · CVaR0.25(G) + 0.4 · CVaR0.8(G).

Table 5: The quantiles of G and Gt, and the dual variables ξ0.25 and ξ0.8 to calculate ρ(G)

τ̂ θ ξ0.25 ξ0.8 θt

5% 7 4 1.25 5
15% 9 4 1.25 6
25% 12 2 1.25 8
35% 20 0 1.25 14
45% 21 0 1.25 15
55% 27 0 1.25 17
65% 30 0 1.25 21
75% 32 0 1.25 25
85% 39 0 0 28
95% 46 0 0 35

For α = 0.25, CVaRα and λα are 8.8 and 12. For α = 0.8, these values are 19.75 and 39. Now we
can use Equation 44 to calculate the αξαt values.

0.25ξ0.25t = FGt
(
12− 5

0.8
) = FGt

(8.75) = 0.3,

0.8ξ0.8t = FGt
(
39− 5

0.8
) = FGt

(42.5) = 1.0.

With ξ0.25t = 0.3/0.25 = 1.2 and ξ0.8t = 1.0/0.8 = 1.25, we can see that at time t, the risk measure
changes to

ρξ(Gt) = 0.59 · CVaR0.3 (Gt) + 0.41 · CVaR1.0 (Gt) .

where ξ = 0.6 · 1.2 + 0.4 · 1.25 = 1.22.
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Figure 5: In Figure 5a and 5b, the Quantile function and CDF of the return-distributions G (black)
and Gt (blue) in Example F.2 are illustrated.

F.3 EXAMPLE 3

In this example, we provide an intuition behind the computation of intermediate risk preferences
in the Mean-reversion Trading environment. To start, let’s examine a sample trajectory within our
environment, where we employ our model optimized for CVaR0.5. The details of this trajectory can
be found in Table 6. In Figure 6a, we also present the return distribution G(xt, st, ct, at) at each time
step t. These distributions characterize the agent’s future reward when it begins in the state-action
pair (xt, st, ct, at) at time t and follows the optimal policy.

Table 6: The states and actions of a single trajectory in our algorithmic trading environment

t 0 1 2 3 4 5 6 7 8 9 10

Pt 1.000 0.606 0.768 1.053 0.796 0.934 0.569 0.636 0.238 0.698 0.870
qt 0.000 -0.400 1.600 1.800 -0.200 0.200 0.600 1.000 0.400 0.800 0.200
st 0.000 0.399 -0.820 -0.971 1.053 0.746 0.390 0.175 0.529 0.440 0.962
ct 1.000 0.990 0.980 0.970 0.961 0.951 0.941 0.932 0.923 0.914 0.904
at -0.400 2.000 0.200 -2.000 0.400 0.400 0.400 -0.600 0.400 -0.600 0.000
rt 0.399 -1.232 -0.154 2.086 -0.319 -0.374 -0.228 0.380 -0.096 0.571 0.000
αt 0.500 0.168 0.355 0.083 0.089 0.147 0.544 0.702 0.819 0.084 0.000

In our model, the risk preference of the agent chosen at time 0, which is associated with function h,
remains constant throughout the trajectory. For instance, in our specific scenario with λ0.5 = 0.874,
the agent’s action selection is based on the average return below this value, corresponding to the
0.5-quantile of the return distribution at the initial state. In order to apply this risk preference in all
subsequent states, we need to align the return distribution in those states with the agent’s perspective
at the initial time. This alignment is achieved by scaling the return distribution by ct and adding st,
as illustrated in Figure 6b.

Now we can see that the value λ0.5 = 0.874 corresponds to a different quantile of the return
distribution in subsequent states. For instance, action selection w.r.t the 0.5-quantile of the return
distribution at time 0 shifts to 0.168-quantile of the return distribution at time 1. This mechanism
enables us to observe how the agent’s risk preference evolves over time. Here, we demonstrated the
process for a single α, but more complicated SRMs follow similar steps. The only additional step
would be the calculation of the weight of each component of the risk measure, similar to the example
in Appendix F.2.

G EXPERIMENTS WITH NUMBER OF QUANTILES

Due to the approximation of the probability measure µ, an important question arises: Can our model
find a policy that maximizes the expected return, the primary objective of the risk-neutral QR-DQN
algorithm? To address this question, we conducted a comparison of the expected return produced
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Figure 6: Figure 6a and 6b illustrate the CDF of G(xt, st, ct, at) and st + ctG(xt, st, ct, at) for each
state-action pair in a trajectory.

by our model under varying quantile numbers (N ), with µ̃N set to 1, in the mean-reversion trading
example. The results of this experiment, presented in Figure 7a, demonstrate that as the number
of quantiles increases, our model not only matches the performance of the risk-neutral algorithm
but surpasses it, yielding superior expected returns. Furthermore, in Figure 7b, we observe that the
improvement extends beyond expected returns. The policy derived from our algorithm consistently
attains higher CVaRα values for all α ∈ (0, 1].
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Figure 7: Figure 7a displays the distribution of Cumulative Discounted Rewards for policies with
different number of quantiles. The solid lines in this figure represent E [G]. Figure 7b compares the
performance of QR-SRM(α=1) against QR-DQN, both with 200 quantiles, w.r.t to CVaRα for all
α ∈ (0, 1].

However, this enhanced performance comes at a cost. When normalizing all models’ scores with the
QR-DQN(N=50) score, as depicted in Figure 8a, all models reach an equivalent performance level
within the same number of steps6. Yet, this figure can be misleading since the time of action selection
at each step increases quadratically with the number of quantiles. Specifically, for an action space size
denoted as A, the QR-DQN model’s action selection requires O(AN) operations, in contrast to our
model, which requires O(AN2) operations. Figure 8b presents the score plotted against the training
time normalized to the training time of the QR-DQN(N=50), revealing that transitioning from 50
quantiles to 200 has a less pronounced impact on the QR-DQN model compared to our model.

In our algorithm, the estimation of function h is updated periodically. This estimation is directly
linked to the estimation of G(x0, 0, 1, a∗0), making the convergence of this return distribution a useful
indicator for the convergence of the function h. Figure 8c visualizes this convergence, presenting the
mean absolute error between consecutive estimations of the return distribution.

6Each step corresponds to a single interaction of the agent with the environment.
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Figure 8: Figure 8a and 8b displays the moving expected reward of our model and the QR-DQN model
with different numbers of quantiles, plotted against the number of steps and time. Figure 8c shows
the mean absolute error between consecutive estimations of the return distribution G(x0, 0, 1, a∗0).

H DETAILS OF THE ENVIRONMENTS

H.1 CLIFF WALKING

This environment is a simple 4×8 grid-world in which the agent has to reach the goal state and
avoid the cliff states. Inspired by the work of Delétang et al. (2021), we add stochasticity to this
environment by adding a wind that blows with 50% chance at each time step and moves the agent
randomly to any of the four nearby positions, regardless of the agent’s action. In our environment,
going into the cliff positions and reaching the goal has a reward of −1 and 10, respectively. The
maximum number of steps allowed is 50 and the discount factor is set to γ = 0.95.

H.2 AMERICAN PUT OPTION TRADING

In this environment, we assume that the price of the underlying asset follows a Geometric Brownian
Motion, characterized by the differential equation dPt = ζPtdt + σPtdWt, where ζ = 1 is the
drift, σ = 1 is the volatility, the initial price is P0 = 1, and Wt is a standard Brownian motion.
The strike price of the put option is assumed to be K = 1. At each time step, the agent can either
exercise the option and receive rt = max{0,K − Pt} or hold the option to receive a reward at
future steps. At maturity, if the option hasn’t been exercised yet, the agent automatically receives
rT = max{0,K − PT }.

H.3 MEAN-REVERSION TRADING STRATEGY

In this algorithmic trading framework, the asset price follows an Ornstein-Uhlenbeck process,
characterized by the differential equation dPt = κ(ζ − Pt)dt+ σdWt, where ζ = 1 is the long-term
mean level, κ = 2 determines the speed of reversion to mean. At each time step t = 0, · · · , T − 1,
the agent takes an action at ∈ (−amax, amax), corresponding to trading quantities of the asset and
changes its inventory qt ∈ (−qmax, qmax). The reward is defined as rt = −atPt − φ(at)

2 for
0 ≤ t ≤ T − 2 and rT−1 = −aT−1PT−1 − φ(aT−1)

2 + qTPt − ψq2T for the final time step. Here,
φ = 0.005 represents the transaction cost and ψ = 0.5 signifies the terminal penalty. In our setup,
the agent faces penalties for holding any assets at the final time step T . Consequently, the reward at
time step T − 1 has an additional term for the agent’s inventory at time step T . In our example, we
consider T = 10, qmax = 5, amax = 2, γ = 0.99, and discretize the action space into 21 actions.

H.4 WINDY LUNAR LANDER

The Lunar Lander environment is a classic rocket trajectory optimization problem, involving an
8-dimensional state space and four actions: firing the left or right orientation engines, firing the main
engine, or doing nothing. To introduce stochasticity, we enable the wind option. The objective is
to guide the lander from the top of the screen to the landing pad. Successful landings yield around
100–140 points. If the lander moves away from the pad, it loses points, while a crash results in an
additional penalty of -100 points. Landing safely adds a bonus of +100 points, and each leg that
makes contact with the ground earns +10 points. Firing the main engine incurs a penalty of -0.3
points per frame, while firing the side engines costs -0.03 points per frame.
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I IMPLEMENTATION DETAILS

This section provides an overview of the implementation details of our model. We adopt the single-file
implementation of RL algorithms from CleanRL (Huang et al., 2022) for clarity. In this approach, the
model and its training are encapsulated within a single file. The code for the project is available in
the supplementary materials.

Table 7: Default hyperparameters in different models

Hyperparameter Value

Learning Rate 2.5e-4
Discount Factor (γ) 0.99

Batch Size 256
Number of Quantiles 50

The repository contains four Python files for each algorithm discussed in section 6 and Appendix G.
The qrsrm.py file defines the state-action value function with a feed-forward network that takes
(X,S,C) as input and outputs a N × A dimensional vector representing the quantile function of
all actions. This neural network comprises three hidden layers, each with 128 neurons. The value
function is similar across other files, with the only difference being their input value, which can be
(X) in qrdqn.py and qricvar.py or (X,B) in qrcvar.py.

In qrcvar.py and qricvar.py, the variable alpha determines the risk preference of the agent.
In qrsrm.py, the user can choose between different risk measures with the risk-measure
variable. The value of CVaR, WSCVaR, Dual, and Exp for this variable is associated with the CVaR,
Weighted sum of CVaRs, Dual Power and Exponential risk measures.

The number of timesteps to train each algorithm is determined by total-timesteps variable. A
fraction of these timesteps is allocated to ϵ-greedy exploration and the rest is allocated to learning the
value function accurately. Also, in qrsrm.py and qrcvar.py, the estimation of function h and
target value b needs frequent updating. The value of variables h frequency and b frequency
in these files determine the update frequency for these estimations. Lastly, techniques such as Replay
Buffers and Target Networks are employed to stabilize the training process for all of the algorithms.

The custom environments used in our experiments are available in the custom envs.py file. We
implemented the American Option Trading and Mean-reversion Trading environments using the
Gymnasium (formerly OpenAI Gym) package (Towers et al., 2023). This package allows for the
definition of the state space, action space, and environment dynamics with simple functions. The
primary function is the step function, which takes an action as input and outputs the reward and the
next state based on the current state.

The state-space augmentation for QR-SRM and QR-CVaR models is also defined using two environ-
ment wrappers. These wrappers automatically store the target value B or the accumulated discounted
reward S and the discount factor C for a trajectory. The key advantage of these wrappers is their
compatibility with any environment available in the Gymnasium package.

Finally, our repository contains six Jupyter Notebooks for each experiment discussed in section 6 and
Appendix G. Each notebook can be run independently to train the agents and generate the figures
demonstrated in our work. Our training was done on a Windows 11 PC with 16GB of RAM and
Nvidia RTX 3060 GPU and the time of execution for training each model was between 1-2 hours,
depending on the experiment.

• experiment cliff walking.ipynb: The results of the Cliff Walking experiment
• experiment table results.ipynb: The results of Table 2
• experiment spectrums.ipynb: Various spectral risk measures that can be utilized

with our model
• experiment put option.ipynb: The experiment with the American Put Option
• experiment quantile number.ipynb: The effect of the quantile number on the

results
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• experiment time consistency.ipynb: The time-consistency interpretation in our
approach

J PROPERTY OF THE CLOSED-FORM SOLUTION

Using the SRM definition from Equation 4, we have

SRMµ(Z) =

∫ 1

0

CVaRα(Z)µ(dα)

(a)
=

∫ 1

0

F−1
Z (α) +

1

α
E
[(
Z − F−1

Z (α)
)−]

µ(dα)

(b)
= E

[∫ 1

0

F−1
Z (α) +

1

α

(
Z − F−1

Z (α)
)−
µ(dα)

]
= E [hϕ,Z(Z)]

where step (a) utilizes the CVaR representation provided in Rockafellar and Uryasev (2000), and
step (b) applies Fubini’s Theorem. Next, we note that hϕ,Z , as defined in Equation 6, is differentiable
almost everywhere, with its derivative given by

h′ϕ,Z(z) =

∫
{α:z≤F−1

Z (α)}
1

α
µϕ(dα)

=

∫ 1

FZ(z)

1

α
µϕ(dα) = ϕ (FZ(z)) .

Additionally, the infimum in the concave conjugate ĥϕ,Z(ϕ(u)) = infz (ϕ(u) · z − hϕ,Z(z)) is
achieved at any z where ϕ(u) = h′ϕ,Z(z) = ϕ (FZ(z)), which corresponds to z = F−1

Z (u). There-
fore, we obtain∫ 1

0

ĥϕ,Z(ϕ(u))du =

∫ 1

0

ϕ(u) · F−1
Z (u)− hϕ,Z

(
F−1
Z (u)

)
du

=

∫ 1

0

ϕ(u) · F−1
Z (u)du−

∫ 1

0

hϕ,Z
(
F−1
Z (u)

)
du

= SRMϕ(Z)− E [hϕ,Z(Z)]

= 0

K CONVERGENCE OF ALGORITHM 2

As described in Section 3.3, we parameterize the return distribution using a quantile representation.
Specifically, we employ a quantile projection operator, ΠQ, to map any return distribution η onto
its quantile representation with respect to the 1-Wasserstein distance (w1). Therefore, ΠQη = η̂ =
1
N

∑N
i=1 δθi with θi = F−1

η (τ̂i) , τ̂i = (τi−1 + τi)/2, 1 ≤ i ≤ N corresponds to the solution of the
following minimization problem:

minimize w1(η, η
′) subject to η′ ∈ FQ,N

where FQ,N is the space of quantile representations with N quantiles. Using this definition, Algo-
rithm 2 can be expressed as iteratively updating

η̂k+1,l = ΠQT Gl η̂k,l.

As previously noted, this process is analogous to the iteration in the QR-DQN algorithm, with two
key differences: the incorporation of risk-sensitive greedy action selection and the use of an extended
state-space. Consequently, we can leverage the steps outlined in Bellemare et al. (2023, Section 7.3)
to establish the convergence of ΠQT Gl .

To begin, we will demonstrate that T Gl is a contraction mapping. That is, the sequence of iterates de-
fined by ηk+1,l = T Glηk,l converges to ηπ

∗
l with respect to the supremum p-Wasserstein distance, w̄p,
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for p ∈ [1,∞]. Here, we assume the existence of a unique optimal policy π∗
l .7 With this assumption,

we leverage the fact that the action gap, GAP(Q)—defined as the smallest difference between the
highest-valued and second-highest-valued actions across all states for a given Q-function—is strictly
positive. By setting ε̄ = GAP(V π∗

l )/2 and using Lemma 5, we can see that after Kε̄ ∈ N iterations
where Kε̄ := ⌊ln( ε̄

ϕ(0)GMAX
)/ln(γ)⌋, the greedy action in state (x, s, c) becomes the optimal action

a∗, and for any a ̸= a∗, we have:

Vk,l(x, s, c, a
∗) ≥ V π∗

l (x, s, c, a∗)− ε̄
≥ V π∗

l (x, s, c, a) + GAP(V π∗
l )− ε̄

> Vk,l(x, s, c, a) + GAP(V π∗
l )− 2ε̄

= Vk,l(x, s, c, a).

Thus, after Kε̄ iterations, the policy induced by the return distribution becomes the optimal policy.
Beyond this point, the distributional optimality operator transitions to the distributional Bellman
operator for the optimal policy, which is a known γ-contraction with respect to w̄p. Using this result,
we conclude that the combined operator ΠQT Gl is a contraction with respect to w̄∞, as established
in Dabney et al. (2018b, Proposition 2).

7For cases with multiple optimal policies in the risk-neutral setting, refer to Bellemare et al. (2023, Section
7.5). Extending this result to the risk-sensitive case is straightforward.
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