
DSMoE: Matrix-Partitioned Experts with Dynamic Routing for
Computation-Efficient Dense LLMs

Anonymous ACL submission

Abstract

As large language models continue to scale,001
computational costs and resource consumption002
have emerged as significant challenges. While003
existing sparsification methods like pruning re-004
duce computational overhead, they risk los-005
ing model knowledge through parameter re-006
moval. This paper proposes DSMoE (Dynamic007
Sparse Mixture-of-Experts), a novel approach008
that achieves sparsification by partitioning pre-009
trained FFN layers into computational blocks.010
We implement adaptive expert routing using011
sigmoid activation and straight-through estima-012
tors, enabling tokens to flexibly access differ-013
ent aspects of model knowledge based on input014
complexity. Additionally, we introduce a spar-015
sity loss term to balance performance and com-016
putational efficiency. Extensive experiments017
on LLaMA models demonstrate that under018
equivalent computational constraints, DSMoE019
achieves superior performance compared to ex-020
isting pruning and MoE approaches across lan-021
guage modeling and downstream tasks, partic-022
ularly excelling in generation tasks. Analysis023
reveals that DSMoE learns distinctive layer-024
wise activation patterns, providing new insights025
for future MoE architecture design.026

1 Introduction027

Large Language Models(LLM) have demonstrated028

remarkable performance across various down-029

stream tasks(Touvron et al., 2023; Dai et al., 2022;030

Anil et al., 2023; Biderman et al., 2023). How-031

ever, as model sizes continue to expand, computa-032

tional costs and resource consumption grow expo-033

nentially. How to improve computational efficiency034

while maintaining model performance has become035

a pressing challenge(Cheng et al., 2024).036

At the algorithmic level, approaches to model037

efficiency optimization generally follow two038

paradigms: post-training compression and accel-039

eration of dense models, or training of Mixture of040

Experts (MoE) architectures. While compression 041

methods like pruning achieve efficiency through 042

permanent parameter removal(Ashkboos et al., 043

2024; Ma et al., 2023; Frantar and Alistarh, 2023), 044

they may discard valuable knowledge and lack flex- 045

ibility in handling inputs of varying complexity. 046

Conversely, though MoE approaches effectively ex- 047

pand model capacity(Fedus et al., 2022; Dai et al., 048

2024; Liu et al., 2024), traditional MoE typically 049

employs fixed activation patterns where each to- 050

ken can only access a predetermined number of 051

experts, lacking the ability to dynamically adjust 052

computation based on input complexity. Given 053

that the most widely used and effective founda- 054

tion models still maintain dense architectures (such 055

as LLaMA(Touvron et al., 2023), Qwen(Bai et al., 056

2023)), we face a critical challenge: how to achieve 057

truly input-adaptive computation while preserv- 058

ing pre-trained knowledge, allowing models to dy- 059

namically adjust activated parameters according 060

to varying input complexity, thereby reaching an 061

optimal balance between computational efficiency 062

and model performance. 063

To address this challenge, we propose DSMoE, 064

a novel approach that partitions pre-trained FFN 065

layers into computational blocks and introduces 066

dynamic routing mechanisms. DSMoE fundamen- 067

tally differs from existing methods by preserv- 068

ing the original model parameters and reorganiz- 069

ing them into expert networks, while incorporat- 070

ing adaptive routing mechanisms that enable dy- 071

namic expert activation based on input complexity, 072

rather than fixed activation strategies. Through 073

straight-through estimators and sparsity loss de- 074

signs, DSMoE enables the model to autonomously 075

learn sparse expert activation patterns, achieving 076

computational resource allocation for inputs of 077

varying complexity. 078

Extensive experiments conducted on LLaMA- 079

1B and LLaMA-7B models demonstrate encour- 080

aging results. Under equivalent computational 081

1



self-attention

Input Hidden

FFN

Output Hidden

upper 
matrix

lower
matrix

Chunk

self-attention

Input Hidden

FFN

Output Hidden

Gate
τ

sigmoid

+

self-attention

Input Hidden

FFN

Router softmax

+
Output Hidden

DSMoE Architecture Common MoE Architecture

Figure 1: The Overview of DSMoE versus Traditional MoE Framework Architectures. The structure shown in the
figure is a simplified representation of the transformer backbone. We have simplified the FFN layer structure here;
the FFN layer also includes a gating matrix with dimensions matching the upper matrix, which performs Hadamard
multiplication with the upper matrix without affecting our partitioning scheme. In the FFN layer, we partition
matrices along the intermediate dimension, where portions corresponding to the original matrix multiplication form
new expert FFN layers.

constraints, our method achieves significant im-082

provements in language modeling perplexity and083

downstream task performance compared to exist-084

ing pruning and MoE approaches. Notably superior085

performance is observed in reasoning and question-086

answering tasks, particularly in generation tasks.087

The main contributions of this work include:088

• proposing a novel approach that enables tran-089

sition from dense to dynamically sparse mod-090

els by preserving and partitioning pre-trained091

knowledge, enabling different tokens to adap-092

tively access varying portions of model knowl-093

edge.094

• validating the method’s effectiveness across095

multiple benchmarks through extensive exper-096

imentation, providing new insights for MoE097

large model optimization.098

2 Related Work099

Model pruning is an effective approach to achiev-100

ing sparse LLMs while maintaining model func-101

tionality. Pruning methods can be categorized into102

two main types: unstructured and structured prun-103

ing. Unstructured pruning operates at the weight104

level, allowing for arbitrary weight removal (Lee105

et al., 2018). In large language models, pruned106

weights are set to zero (Frantar and Alistarh, 2023;107

Sun et al., 2023). However, this method requires108

specialized hardware and software support for ac-109

celeration(Han et al., 2015; Wen et al., 2016; Fil-110

ters’Importance, 2016; Tang et al., 2021). Struc- 111

tured pruning takes a coarser-grained approach by 112

removing complete structural units such as convo- 113

lution kernels, channels, attention heads, or entire 114

layers (You et al., 2019; Ashkboos et al., 2024; Liu 115

et al., 2021; Ma et al., 2023; Men et al.). Its main 116

advantage is the ability to directly produce regu- 117

lar, narrow model architectures that can achieve 118

acceleration without specialized sparse computa- 119

tion libraries (Luo et al., 2017; Liu et al., 2021; Fil- 120

ters’Importance, 2016; Nonnenmacher et al., 2021). 121

However, both approaches face a fundamental lim- 122

itation: achieving efficiency through permanent pa- 123

rameter removal may discard valuable knowledge 124

and lose the ability to adapt computation based on 125

input complexity. 126

The Mixture of Experts architecture is recog- 127

nized as a promising approach for model sparsi- 128

fication. Recently, it has garnered significant re- 129

search attention, with several studies investigating 130

methodologies for converting pre-trained models 131

into MoE architectures. MoEfication(Zhang et al., 132

2022) trains routers to predict the activation pat- 133

terns of experts that are partitioned from FFNs 134

while keeping model parameters frozen, thereby 135

activating a fixed number of experts. However, this 136

method was primarily designed for ReLU activa- 137

tion functions and requires additional transforma- 138

tion steps for SiLU/GeLU activation functions that 139

are widely utilized in contemporary Transformer 140

architectures. FactorLLM(Zhao et al., 2024) em- 141

2



ploys a multi-stage training strategy, initially uti-142

lizing the original dense model to guide router143

training, followed by fixing the router and subse-144

quently training the experts. This sequential train-145

ing methodology constrains collaborative optimiza-146

tion between routers and experts, and its depen-147

dence on a teacher-student framework introduces148

additional training complexity. LLaMA-MoE(Zhu149

et al., 2024) explores the decomposition of FFNs150

and organizes training according to the Switch151

Transformer(Fedus et al., 2022) paradigm; how-152

ever, it merely provides improved expert initializa-153

tion while lacking flexible input-adaptive compu-154

tation mechanisms. Given that MoEfication and155

FactorLLM differ significantly from mainstream156

MoE methods in architecture design and training157

paradigms, we choose to use LLaMA-MoE as a158

comparative approach.159

3 Background160

For simplicity, we focus on the prevalent archi-161

tecture of generative large language models while162

maintaining a concise mathematical formulation.163

In autoregressive generation tasks, given a se-164

quence X = (x1, x2, ..., xT ) of length T , the165

model iteratively produces a probability distribu-166

tion over the vocabulary for each position condi-167

tioned on preceding tokens. This process can be168

formulated as:169

P·,t = softmax(EHL
·,t)

HL = Transformer(x1, x2, ..., xT−1)
(1)170

Here, L denotes the number of layers in the171

Transformer architecture. For any position t, P·,t172

represents the probability distribution over the vo-173

cabulary, derived from the t-th column of the174

hidden state matrix hL. Specifically, HL =175

[hL1 , h
L
2 , ..., h

L
T−1] contains the hidden representa-176

tions from the final layer, where hLt is the contex-177

tual embedding at position t. The probability of the178

ground-truth token xt+1 is denoted as Pxt+1,t in179

the distribution P ·, t. The transformation from hid-180

den states to probability distributions is achieved181

through a linear projection matrix E, followed by182

a softmax operation.183

In typical scenarios, we employ cross-entropy184

loss for autoregressive learning, which can be ex-185

pressed as:186

LLM = −
T−1∑
t=1

logP (xt+1|x≤t) (2)187

The Transformer architecture consists of multi- 188

ple layer-wise submodules, where each layer com- 189

prises a self-attention module and a Feed-Forward 190

Network (FFN) module. The simplified mathemat- 191

ical formulation can be expressed as: 192

ĥlt = Attn([hl−1
1 , hl−1

2 , ..., hl−1
t ]) (3) 193

194

hlt = FFN(ĥlt) (4) 195

FFN modules typically consist of two matrix 196

transformations with a non-linear activation func- 197

tion. In modern language models, the most preva- 198

lent FFN implementation uses SwiGLU activation, 199

which involves three essential matrices: the up- 200

projection matrix Uup, the down-projection ma- 201

trix Vdown, and the gate matrix Wgate. The up- 202

projection matrix transforms the input to a higher 203

dimensional space for richer feature representation, 204

the down-projection matrix compresses the infor- 205

mation back to the original dimension, and the gate 206

matrix controls information flow through adaptive 207

feature weighting. The FFN output is computed 208

through the following operation: 209

hlt = (act(ĥltWgate)⊙ (ĥltUup))Vdown (5) 210

In this formulation, act(·) represents the activa- 211

tion function and ⊙ denotes Hadamard product. 212

4 Method 213

Although our method is termed DSMoE, its train- 214

ing approach differs from traditional MoE methods 215

such as Switch Transformer and DeepSeeKMoE 216

(Dai et al., 2024). Our objective is to achieve spar- 217

sity through partitioning pre-trained models, where 218

each expert inherits a distinct portion of the origi- 219

nal model’s knowledge. Our approach is based on 220

the principle that the model should learn to selec- 221

tively utilize different aspects of pre-trained knowl- 222

edge based on input complexity, rather than routing 223

tokens among independently trained experts. To 224

implement this insight, we present our method in 225

three modules. 226

4.1 FFN Partitioning 227

The widespread adoption of MoE architectures in- 228

spires our exploration of sparsity in FFN layers, 229

suggesting that different parts of computation can 230

be dynamically activated based on input patterns. 231

Previous work has further revealed that FFN layers 232

essentially operate as key-value memories, where 233

3



different portions of the layer specialize in detect-234

ing and processing distinct input patterns(Geva235

et al., 2020). Building on these insights, we pro-236

pose to directly partition pre-trained FFN layers.237

As shown in Equation 5, we partition the matrices238

U, V, and W into n groups along the intermediate239

dimension, where each group can be viewed as an240

“expert" that inherits a portion of the original trans-241

formation capabilities. When summing all expert242

outputs, this partitioned form is mathematically243

equivalent to the original FFN computation:244

hlt = (act(ĥlt
[
W1 · · · Wn

]
)⊙

(ĥlt
[
U1 · · · Un

]
))

V1
...
Vn


= (act(ĥltW1)⊙ ĥltU1)V1 + · · ·

+(act(ĥltWn)⊙ ĥltUn)Vn

(6)245

To enable dynamic expert activation based on246

input, we employ a gating network that determines247

which experts should be activated. The expert’s248

output is propagated to the subsequent layer only249

when the corresponding gating activation value ex-250

ceeds a certain threshold τ . This can be formulated251

as:252

oi = (act(ĥltWi)⊙ ĥltUi)Vi

hlt =
n∑

i=1

oi ∗G(σ(ĥltYi))

G(x) =

{
x if x > τ

0 others

(7)253

where Y = [Y1, . . . ,Yn] ∈ Rd×n represents the254

parameters of the gating network, and σ(·) denotes255

the sigmoid activation function.256

To maintain consistent output norm regardless of257

the number of active experts, similar to dropout, we258

scale hlt by the ratio of total expert count n to the259

number of activated experts. This normalization260

can be expressed as:261

hlt =
n · hlt∑n

i=1 I[σ(ĥltYk) > τ ]
(8)262

4.2 Straight-Through Estimator263

A key challenge in converting dense models to264

sparse ones is maintaining the learning capability265

of all experts. During the forward pass, experts266

with activation values below the threshold τ do not 267

participate in computation, as defined by the gating 268

function G(x) in Equation 7. However, this thresh- 269

olding operation creates a critical problem during 270

backpropagation - experts that are not activated 271

receive zero gradients: 272

∂hlt
∂Vi

=
∂hlt
∂Wi

=
∂hlt
∂Ui

=

∂hlt
∂Yi

= 0, if σ(ĥltYi) ≤ τ

(9) 273

This gradient blocking prevents non-activated 274

experts from receiving training signals, leading 275

to a “dead expert" problem where these experts 276

become permanently inactive. Unlike traditional 277

MoE models that train experts from scratch, our 278

experts inherit pre-trained knowledge that we wish 279

to preserve and adapt. To address this issue, we 280

employ the straight-through estimator technique, 281

which allows gradient flow through non-activated 282

experts while maintaining thresholded activation 283

during the forward pass: 284

S(x) = sg(G(x)) + x− sg(x) (10) 285

286

hlt =
n∑

i=1

oi · S(σ(ĥltYk)) (11) 287

where the operator “sg(·)" is the “stop gradient" 288

operator to prevent gradient back propagation. The 289

partial derivatives for experts and their gates below 290

the threshold are as follows. Let: 291

ai = act(ĥltWi), a′i = act′(ĥltWi)

gi = σ(ĥltYi), ui = ĥltUi

(12) 292

The gradients for expert parameters and their 293

gates can be derived as: 294

∂hl
t

∂Vi
=

{
(ai ⊙ ui)

⊤ · gi if gi > τ

0 if gi ≤ τ
(13) 295

296
∂hl

t
∂Wi

=

{
(ĥlt)

⊤ ⊙ a′i · ((ui ⊙Vi) · gi) if gi > τ

0 if gi ≤ τ
(14) 297

298

∂hl
t

∂Ui
=

{
(ĥlt)

⊤ · (ai ⊙Vi · gi) if gi > τ

0 if gi ≤ τ
(15) 299

300
∂hl

t
∂Yi

= (ĥlt)
⊤ · (oi · σ′(ĥltYi)) (16) 301

The gradient dynamics show a key property: 302

with the straight-through estimator, experts receive 303

gradients for their gating parameters regardless of 304

4



Model Configuration Params Activated Params PPL (↓)

LLaMA-1B d=2048, D=8192 1.24B 1.24B 5.67
LLaMA-7B d=4096, D=11008 6.74B 6.74B 3.40

LLaMA-1B

LLM-Pruner-channel d=1215, D=8192 889M 889M 7.51
LLM-Pruner-block d=2048, D=3896.4 735M 735M 7.46
SparseGPT d=2048, D=8192 1.24B 735M 9.82
LLaMA-MoE d=2048, D=1024 ×8, topK=3 1.24B 736M 7.45
DSMoE(ours) d=2048, D=1024 ×8 1.24B 735M 7.41

LLaMA-7B

LLM-Pruner-channel d=2401, D=11008 3.95B 3.95B 4.01
LLM-Pruner-block d=11008, D=6256.5 3.94B 3.94B 4.01
SparseGPT d=4096, D=11008 6.74B 3.93B 3.96
LLaMA-MoE d=2048, D=1376 ×8, topK=3 6.74B 3.98B 4.12
DSMoE(ours) d=2048, D=1376 ×8 6.74B 3.93B 3.91

Table 1: Results of perplexity (PPL) across different language models. The bold values indicate the best-performing
method among various acceleration approaches. The Configuration column describes the specific model architecture,
where d represents the hidden dimension, D denotes the expansion dimension in FFN layers (for LLM-Pruner-block
method, this represents the average value), × n indicates the use of n parallel FFN layers, and topK specifies the
number of activated experts per layer in the MoE architecture. The Params column shows the total number of model
parameters, while Activated Params indicates the average number of parameters activated during inference.

activation status. The gradient direction for Yi305

depends on whether the expert’s output oi would306

reduce the overall loss. This allows experts to adap-307

tively learn when to activate based on their useful-308

ness for specific input patterns.309

4.3 Sparse Loss310

Since our experts inherit from a dense model, the311

model naturally tends to activate all experts to ac-312

cess complete knowledge. However, this conflicts313

with our goal of sparse computation. We introduce314

a sparsity loss term that creates an adversarial ef-315

fect with expert gate gradients, encouraging the316

model to learn which knowledge is truly necessary317

for different inputs.318

L = LLM + Lsparse (17)319

where Lsparse denotes the sparsity loss term, which320

we abbreviate as Ls in subsequent equations.321

L = LLM +
1

LN

L∑
l=1

N∑
n=1

Ls(G(σ(ĥltYn))) (18)322

We employ L1 norm as the sparsity function Ls.323

Given that our activation function σ(x) > 0, our324

final loss function becomes:325

L = LLM +
1

LN

L∑
l=1

N∑
n=1

G(σ(ĥltYn)) (19)326

The gradients introduced by this sparse loss term327

create an adversarial effect with the gate gradients,328

encouraging the model to actively suppress the out- 329

put of less important experts across different layers. 330

It is worth noting that our approach differs fun- 331

damentally from the MoE framework and therefore 332

does not require auxiliary load balancing losses. 333

While load balancing losses in MoE aim to en- 334

sure uniform training across experts, our objective 335

is solely focused on learning sparse activation pat- 336

terns. Furthermore, unlike MoE which typically en- 337

forces a fixed number of active experts, our method 338

allows for flexible activation patterns determined 339

by the learned gating mechanism. 340

5 Experiments 341

5.1 Dataset 342

We gathered datasets from various domains to con- 343

tinually pre-train the base model. For the general 344

domain, we used the Fineweb-edu dataset, which 345

consists of high-quality educational web pages 346

filtered from the Fineweb dataset (Penedo et al., 347

2024). In the math and coding domains, we se- 348

lected the OpenWebMath (Paster et al., 2024) and 349

StarCoder (Li et al., 2023) datasets respectively. 350

The OpenWebMath dataset contains high-quality 351

mathematical text data extracted from web pages, 352

while the StarCoder dataset offers a diverse range 353

of code data and has been demonstrated to effec- 354

tively pre-train well-behaved code models. Fur- 355

thermore, it has been demonstrated that incorpo- 356

rating synthetic data enhances model pre-training 357

5



Model Hellaswag LAMBADA PIQA SIQA StoryCloze Wino GSM8K NaturalQs TriviaQA WebQs

LLaMA-1B 64.09 61.05 75.51 42.47 72.58 60.85 4.85 12.52 36.08 22.49
LLaMA-7B 76.39 72.34 79.05 44.67 79.15 70.87 14.70 26.28 61.89 32.82

LLaMA-1B

LLM-Pruner-channel 53.44 45.04 71.43 40.94 68.67 58.45 1.44 6.98 17.46 14.56
LLM-Pruner-block 51.05 46.28 71.71 41.04 68.62 56.27 1.36 7.28 18.46 14.56
SparseGPT 54.01 56.49 71.10 40.68 68.05 57.30 1.51 5.29 14.44 11.61
LLaMA-MoE 49.06 44.84 70.02 41.05 65.47 55.64 1.62 5.76 13.49 11.27
DSMoE(ours) 50.92 48.12 72.36 41.14 68.78 56.35 1.67 8.17 25.52 18.21

LLaMA-7B

LLM-Pruner-channel 66.41 61.63 74.97 43.19 75.30 66.85 4.85 12.63 36.02 20.57
LLM-Pruner-block 67.93 62.02 76.22 44.26 75.46 63.53 1.81 12.96 38.77 21.65
SparseGPT 73.60 67.43 77.36 44.21 76.37 70.48 8.33 17.61 47.83 24.90
LLaMA-MoE 63.89 60.49 74.10 43.29 72.90 61.17 3.26 11.58 31.25 19.09
DSMoE(ours) 70.22 67.61 78.12 44.31 76.37 66.77 6.41 22.04 57.94 29.92

Table 2: Performances of language models on downstream tasks. The best score is marked in bold.

performance (Abdin et al., 2024). Therefore, we358

introduced the Cosmopedia dataset to leverage this359

advantage(Ben Allal et al., 2024).360

Furthermore, we mixed datasets from different361

domains. Due to computational resource limita-362

tions, we set the total amount of training data to 10363

billion tokens. Finally, we used the tokenizers from364

LLaMA to segment the data, limiting the maximum365

sample length to 1024 tokens for each. We ran-366

domly sampled 5,000 non-overlapping instances367

from each dataset as the validation set, ensuring no368

intersection with the training set.369

5.2 Experimental Setup370

We evaluate DSMoE on two pre-trained models of371

different scales: Llama-7B1 and Llama-1B2. For372

our method’s hyperparameters, we simply set the373

activation threshold τ = 0.5.374

We compare our approach with several base-375

lines: the channel-wise and block-wise methods376

from LLM-Pruner (a structured pruning approach),377

and SparseGPT (an unstructured pruning method).378

To ensure fair comparison, we first measure the379

activation parameters of our trained model, then380

estimate the pruning ratio for baseline methods to381

maintain a slightly more activation parameters than382

our method.383

Additionally, we compare against LLaMA-MoE,384

which applies a similar FFN partitioning scheme385

but follows the traditional MoE paradigm with386

fixed top-k expert selection and standard MoE387

training objectives, to investigate whether conven-388

tional MoE frameworks can effectively leverage389

1https://huggingface.co/meta-llama/Llama-2-7b
2https://huggingface.co/meta-llama/Llama-3.

2-1B

pre-trained weights through warm-starting. 390

5.3 Main Results 391

We first present the model’s perplexity on the vali- 392

dation set. Following previous work(Touvron et al., 393

2023; Brown et al., 2020; Su et al., 2024; Xiong 394

et al., 2024; Dai et al., 2024), we then evaluate the 395

model’s performance on downstream benchmarks, 396

which includes zero-shot accuracy testing on Hel- 397

laSwag(Zellers et al., 2019), LAMBADA(Paperno 398

et al., 2016), SIQA(Sap et al., 2019), PIQA(Bisk 399

et al., 2020), StoryCloze(Mostafazadeh et al., 400

2016), and Winogrande(Sakaguchi et al., 2021). 401

Additionally, we conduct 5-shot evaluation measur- 402

ing exact match performance on TriviaQA(Joshi 403

et al., 2017), WebQuestions (WebQs)(Berant et al., 404

2013), GSM8K(Cobbe et al., 2021), and Natural 405

Questions (NaturalQs)(Kwiatkowski et al., 2019). 406

5.3.1 Perplexity Results 407

Table 1 presents the perplexity results of the base- 408

line dense model and its pruned, sparsified variants. 409

The results demonstrate that DSMoE consistently 410

outperforms baseline models under equivalent ac- 411

tivation constraints. Our experimental results in- 412

dicate that DSMoE achieves superior efficiency 413

compared to static parameter pruning. Further- 414

more, DSMoE exhibits better performance than 415

fixed-activation methods like MoE, which can be 416

attributed to the fact that knowledge from all ex- 417

perts contributes to the model’s learning process, 418

enabling it to develop the ability to flexibly select 419

activations based on input. Additionally, DSMoE 420

exhibits distinctive feature processing capabilities, 421

learning layer-specific activation patterns that nat- 422

urally emerge from the input complexity. We will 423

6

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B


examine these emergent patterns in detail in the424

analysis section.425

In conclusion, DSMoE demonstrates consistent426

superiority across models of two different scales,427

highlighting its robust advantages.428

5.3.2 Benchmark Results429

Table 2 presents the benchmark performance of var-430

ious pruning methods, traditional MoE approaches,431

and DSMoE. DSMoE achieved the best perfor-432

mance in 7 out of 10 benchmarks for both LLaMA-433

1B and LLaMA-7B model architectures, demon-434

strating superior effectiveness over existing sparsi-435

fication methods across most evaluation metrics.436

Specifically, DSMoE exhibited excellent perfor-437

mance on inference tasks (i.e., the first 6 bench-438

marks), achieving the best results on PIQA, SIQA,439

and StoryCloze test sets. While not achieving top440

performance on Hellaswag, LAMBADA, and Wino441

test sets, DSMoE still ranked among the leading442

models. For generation tasks (i.e., the last 4 bench-443

marks), DSMoE demonstrated remarkable effec-444

tiveness. Apart from slightly lower performance on445

GSM8K with LLaMA-7B compared to SparseGPT,446

it significantly outperformed other sparse methods447

on all other test sets, with performance only a few448

points below the dense model. These results high-449

light DSMoE’s potential, particularly in generation450

tasks.451

Furthermore, we observed that the performance452

gap between DSMoE and other sparse approaches453

was more pronounced in LLaMA-7B compared454

to LLaMA-1B. This may be attributed to greater455

model redundancy at larger parameter scales, en-456

abling DSMoE to more effectively prune unneces-457

sary information. This observation suggests the po-458

tential scalability of DSMoE to models with larger459

parameter counts.460

6 Analyses461

6.1 Ablation Study: Removing462

Straight-Through Estimator463

To validate the necessity of the straight-through464

estimator mechanism in DSMoE, we conduct an465

ablation study by removing this component. Specif-466

ically, instead of using Equation (11) for training,467

we employ Equation (7). We perform this compar-468

ative analysis on the LLaMA-1B model.469

As shown in Table 3, the model without straight-470

through estimator significantly underperforms the471

complete model in terms of both perplexity and472

Model DSMoE w/o S(x)

Hellaswag 50.92 32.29
LAMBADA 48.12 27.79
PIQA 72.36 62.73
SIQA 41.14 39.30
StoryCloze 68.67 57.14
Wino 56.35 50.83
GSM8K 1.67 0.38
NaturalQs 8.17 2.47
TriviaQA 25.52 2.95
WebQs 18.21 1.00

PPL 7.41 12.75

Table 3: Ablation study of DMoE against the model
without direct estimation function S(x), where G(x) is
employed in place of S(x).

benchmark performance. This substantial degrada- 473

tion occurs because routing parameters for non- 474

activated experts receive zero gradients during 475

backpropagation, preventing these routes from be- 476

ing adjusted to utilize more of the pre-trained 477

knowledge inherited from the dense model. With- 478

out the ability to adaptively modify routing deci- 479

sions, potentially valuable knowledge encoded in 480

these experts becomes permanently inaccessible, 481

leading to significant performance loss. 482

6.2 Ablation Study: Training without 483

Piecewise Function G(x) 484

To validate the necessity of incorporating piecewise 485

function learning during training, we conduct an 486

ablation study by removing the piecewise function 487

G(x) and using the following formula for training: 488

hlt =
n∑

i=1

oi ∗ σ(ĥltYi) (20) 489

Prior to inference, we determine the appropriate 490

activation level by adjusting the threshold value on 491

the validation set, with a step size of 0.05. Figure 492

2 illustrates the relationship between perplexity 493

and the average number of activated experts on the 494

validation set. 495

The results clearly demonstrate that as the thresh- 496

old increases, perplexity rises rapidly while the av- 497

erage number of activated experts decreases corre- 498

spondingly. This observation indicates that without 499

the piecewise function G(x), all experts participate 500

in computation and gradient updates. Under the 501

constraint of sparsity loss, the model tends to dis- 502

tribute activation values uniformly across all ex- 503

perts rather than learning to distinctively identify 504

more important experts. This leads to two conse- 505

quences: first, the activation values for each expert 506

7



0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

lo
g 

P
P

L log PPL (w/o G(x))
Activated Number (w/o G(x))
log PPL (DSMoE)
Activated Number (DSMoE)

0

1

2

3

4

5

6

7

8

A
ct

iv
at

ed
 N

um
be

r

log PPL and Activated Number vs 

Figure 2: During the training phase, G(x) is not utilized.
In the inference phase, G(x) is employed for activation.
The model’s perplexity and the number of activated ex-
perts vary with the threshold τ . The pentagram markers
indicate the perplexity and number of activated experts
achieved by DSMoE.

are suppressed to a relatively low level, and second,507

the learned importance of each expert becomes508

relatively uniform. Under the same activation con-509

straints as DSMoE, the approach without the piece-510

wise function G(x) exhibits higher perplexity, high-511

lighting how this training-inference inconsistency512

significantly degrades model performance.513

6.3 Layer-wise Activation Patterns Analysis514

(a) Heatmap for 1B model (b) Heatmap for 7B model

Figure 3: Heatmap visualization of expert activation
counts across different layers and average expert activa-
tions for LLaMA-7B and LLaMA-1B models on various
validation sets.

We evaluated DSMoE across different validation515

sets and generated heatmaps to visualize the distri-516

bution of activated experts across network layers. 517

Both model sizes exhibit a distinctive activation 518

pattern: higher activation counts at both input and 519

output layers, elevated activation in middle layers, 520

and lower activation in remaining layers - forming 521

a “W-shaped" pattern. 522

The bottom layers, which typically encode fun- 523

damental features, demonstrate high expert activa- 524

tion. This suggests the model’s tendency to acti- 525

vate multiple experts in parallel to process multi- 526

dimensional input features, potentially serving as 527

an “information preservation mechanism" to re- 528

tain critical base-level information. The top layers, 529

responsible for final decision-making and output 530

generation, show increased expert activation to en- 531

hance output robustness by reducing individual ex- 532

pert bias through collective decision-making. The 533

elevated activation in middle layers suggests these 534

layers serve as critical zones for feature transfor- 535

mation, integration, and processing of long-range 536

dependencies. This bottom-middle-top activation 537

pattern forms a complete information processing 538

pipeline: bottom layers for extensive collection 539

and processing of basic features, middle layers for 540

feature transformation and information integration, 541

and top layers for comprehensive decision-making 542

and output generation. 543

Furthermore, we observed significant variations 544

in both the average number of activated experts 545

and activation patterns across different test sets. 546

This indicates that DSMoE implements dynamic 547

regulation mechanisms specific to different inputs 548

rather than converging to a homogeneous learning 549

pattern. 550

These observations provide novel insights for 551

future MoE architectures, suggesting that expert 552

activation counts can be strategically varied across 553

different layers of the network. 554

7 Conclusion 555

This paper presents DSMoE, a novel approach that 556

achieves model sparsification by partitioning pre- 557

trained FFN layers into computational blocks. Ex- 558

periments on LLaMA models demonstrate supe- 559

rior performance over existing pruning and MoE 560

approaches under equivalent computational con- 561

straints, while revealing distinctive layerwise acti- 562

vation patterns for future MoE designs. 563

8



8 Limitations564

Due to computational resource constraints, we565

were only able to evaluate DSMoE on language566

models up to 7B parameters. Future work with567

access to larger computational resources could ex-568

plore the scalability and effectiveness of our ap-569

proach on larger model architectures, which may570

reveal additional insights about the relationship571

between model scale and dynamic sparsification572

patterns.573

References574

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien575
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael576
Harrison, Russell J Hewett, Mojan Javaheripi, Piero577
Kauffmann, et al. 2024. Phi-4 technical report. arXiv578
preprint arXiv:2412.08905.579

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-580
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan581
Schalkwyk, Andrew M Dai, Anja Hauth, Katie582
Millican, et al. 2023. Gemini: A family of583
highly capable multimodal models. arXiv preprint584
arXiv:2312.11805, 1.585

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-586
nari do Nascimento, Torsten Hoefler, and James587
Hensman. 2024. Slicegpt: Compress large language588
models by deleting rows and columns. arXiv preprint589
arXiv:2401.15024.590

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,591
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei592
Huang, et al. 2023. Qwen technical report. arXiv593
preprint arXiv:2309.16609.594

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo,595
Thomas Wolf, and Leandro von Werra. 2024. Cos-596
mopedia.597

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy598
Liang. 2013. Semantic parsing on freebase from599
question-answer pairs. In Proceedings of the 2013600
conference on empirical methods in natural language601
processing, pages 1533–1544.602

Stella Biderman, Hailey Schoelkopf, Quentin Gregory603
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-604
lahan, Mohammad Aflah Khan, Shivanshu Purohit,605
USVSN Sai Prashanth, Edward Raff, et al. 2023.606
Pythia: A suite for analyzing large language mod-607
els across training and scaling. In International608
Conference on Machine Learning, pages 2397–2430.609
PMLR.610

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,611
et al. 2020. Piqa: Reasoning about physical com-612
monsense in natural language. In Proceedings of the613
AAAI conference on artificial intelligence, volume 34,614
pages 7432–7439.615

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 616
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 617
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 618
Askell, et al. 2020. Language models are few-shot 619
learners. Advances in neural information processing 620
systems, 33:1877–1901. 621

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. 622
2024. A survey on deep neural network pruning: Tax- 623
onomy, comparison, analysis, and recommendations. 624
IEEE Transactions on Pattern Analysis and Machine 625
Intelligence. 626

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 627
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 628
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 629
Nakano, et al. 2021. Training verifiers to solve math 630
word problems. arXiv preprint arXiv:2110.14168. 631

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, 632
Huazuo Gao, Deli Chen, Jiashi Li, Wangding 633
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek- 634
moe: Towards ultimate expert specialization in 635
mixture-of-experts language models. arXiv preprint 636
arXiv:2401.06066. 637

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang 638
Sui, Baobao Chang, and Furu Wei. 2022. Stablemoe: 639
Stable routing strategy for mixture of experts. arXiv 640
preprint arXiv:2204.08396. 641

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 642
Switch transformers: Scaling to trillion parameter 643
models with simple and efficient sparsity. Journal of 644
Machine Learning Research, 23(120):1–39. 645

Determine Filters’Importance. 2016. Pruning filters for 646
efficient convnets. 647

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 648
sive language models can be accurately pruned in one- 649
shot.(2023). URL https://arxiv. org/abs/2301.00774. 650

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 651
Levy. 2020. Transformer feed-forward layers are key- 652
value memories. arXiv preprint arXiv:2012.14913. 653

Song Han, Huizi Mao, and William J Dally. 2015. Deep 654
compression: Compressing deep neural networks 655
with pruning, trained quantization and huffman cod- 656
ing. arXiv preprint arXiv:1510.00149. 657

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke 658
Zettlemoyer. 2017. Triviaqa: A large scale distantly 659
supervised challenge dataset for reading comprehen- 660
sion. arXiv preprint arXiv:1705.03551. 661

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 662
field, Michael Collins, Ankur Parikh, Chris Alberti, 663
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 664
ton Lee, et al. 2019. Natural questions: a benchmark 665
for question answering research. Transactions of the 666
Association for Computational Linguistics, 7:453– 667
466. 668

9

https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia


Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS669
Torr. 2018. Snip: Single-shot network pruning670
based on connection sensitivity. arXiv preprint671
arXiv:1810.02340.672

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas673
Muennighoff, Denis Kocetkov, Chenghao Mou,674
Marc Marone, Christopher Akiki, Jia Li, Jenny675
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue676
Zhuo, Thomas Wang, Olivier Dehaene, Mishig677
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh678
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel679
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,680
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,681
Zhiruo Wang, Rudra Murthy V, Jason T. Stiller-682
man, Siva Sankalp Patel, Dmitry Abulkhanov, Marco683
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Ur-684
vashi Bhattacharyya, Wenhao Yu, Swayam Singh,685
Sasha Luccioni, Paulo Villegas, Maxim Kunakov,686
Fedor Zhdanov, Manuel Romero, Tony Lee, Na-687
dav Timor, Jennifer Ding, Claire Schlesinger, Hai-688
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,689
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-690
son, Brendan Dolan-Gavitt, Danish Contractor, Siva691
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-692
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas693
Wolf, Arjun Guha, Leandro von Werra, and Harm694
de Vries. 2023. Starcoder: may the source be with695
you! Trans. Mach. Learn. Res., 2023.696

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,697
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi698
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.699
Deepseek-v3 technical report. arXiv preprint700
arXiv:2412.19437.701

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun702
Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin Chen,703
Wenming Yang, Qingmin Liao, and Wayne Zhang.704
2021. Group fisher pruning for practical network705
compression. In International Conference on Ma-706
chine Learning, pages 7021–7032. PMLR.707

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017.708
Thinet: A filter level pruning method for deep neural709
network compression. In Proceedings of the IEEE710
international conference on computer vision, pages711
5058–5066.712

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.713
Llm-pruner: On the structural pruning of large lan-714
guage models. Advances in neural information pro-715
cessing systems, 36:21702–21720.716

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,717
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng718
Chen. Shortgpt: Layers in large language models719
are more redundant than you expect, 2024. URL720
https://arxiv. org/abs/2403.03853.721

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong722
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,723
Pushmeet Kohli, and James Allen. 2016. A cor-724
pus and evaluation framework for deeper under-725
standing of commonsense stories. arXiv preprint726
arXiv:1604.01696.727

Manuel Nonnenmacher, Thomas Pfeil, Ingo Steinwart, 728
and David Reeb. 2021. Sosp: Efficiently capturing 729
global correlations by second-order structured prun- 730
ing. arXiv preprint arXiv:2110.11395. 731

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 732
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro 733
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel 734
Fernández. 2016. The lambada dataset: Word pre- 735
diction requiring a broad discourse context. arXiv 736
preprint arXiv:1606.06031. 737

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, 738
and Jimmy Ba. 2024. Openwebmath: An open 739
dataset of high-quality mathematical web text. In 740
The Twelfth International Conference on Learning 741
Representations, ICLR 2024, Vienna, Austria, May 742
7-11, 2024. OpenReview.net. 743

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, 744
Margaret Mitchell, Colin Raffel, Leandro Von Werra, 745
Thomas Wolf, et al. 2024. The fineweb datasets: 746
Decanting the web for the finest text data at scale. 747
arXiv preprint arXiv:2406.17557. 748

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 749
ula, and Yejin Choi. 2021. Winogrande: An adver- 750
sarial winograd schema challenge at scale. Commu- 751
nications of the ACM, 64(9):99–106. 752

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan 753
LeBras, and Yejin Choi. 2019. Socialiqa: Com- 754
monsense reasoning about social interactions. arXiv 755
preprint arXiv:1904.09728. 756

Zhenpeng Su, Xing Wu, Zijia Lin, Yizhe Xiong, Minx- 757
uan Lv, Guangyuan Ma, Hui Chen, Songlin Hu, 758
and Guiguang Ding. 2024. Cartesianmoe: Boost- 759
ing knowledge sharing among experts via cartesian 760
product routing in mixture-of-experts. arXiv preprint 761
arXiv:2410.16077. 762

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 763
Kolter. 2023. A simple and effective pruning ap- 764
proach for large language models. arXiv preprint 765
arXiv:2306.11695. 766

Yehui Tang, Yunhe Wang, Yixing Xu, Yiping Deng, 767
Chao Xu, Dacheng Tao, and Chang Xu. 2021. Mani- 768
fold regularized dynamic network pruning. In Pro- 769
ceedings of the IEEE/CVF conference on computer 770
vision and pattern recognition, pages 5018–5028. 771

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 772
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 773
Baptiste Rozière, Naman Goyal, Eric Hambro, 774
Faisal Azhar, et al. 2023. Llama: Open and effi- 775
cient foundation language models. arXiv preprint 776
arXiv:2302.13971. 777

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, 778
and Hai Li. 2016. Learning structured sparsity in 779
deep neural networks. Advances in neural informa- 780
tion processing systems, 29. 781

10

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu


Yizhe Xiong, Xiansheng Chen, Xin Ye, Hui Chen, Zijia782
Lin, Haoran Lian, Zhenpeng Su, Jianwei Niu, and783
Guiguang Ding. 2024. Temporal scaling law for large784
language models. arXiv preprint arXiv:2404.17785.785

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and786
Ping Wang. 2019. Gate decorator: Global filter prun-787
ing method for accelerating deep convolutional neu-788
ral networks. Advances in neural information pro-789
cessing systems, 32.790

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali791
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a792
machine really finish your sentence? arXiv preprint793
arXiv:1905.07830.794

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,795
Maosong Sun, and Jie Zhou. 2022. Moefication:796
Transformer feed-forward layers are mixtures of ex-797
perts. In Findings of the Association for Computa-798
tional Linguistics: ACL 2022, pages 877–890.799

Zhongyu Zhao, Menghang Dong, Rongyu Zhang, Wen-800
zhao Zheng, Yunpeng Zhang, Huanrui Yang, Da-801
long Du, Kurt Keutzer, and Shanghang Zhang. 2024.802
Factorllm: Factorizing knowledge via mixture of803
experts for large language models. arXiv preprint804
arXiv:2408.11855.805

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,806
Jingqi Tong, Conghui He, and Yu Cheng. 2024.807
Llama-moe: Building mixture-of-experts from llama808
with continual pre-training. In Proceedings of the809
2024 Conference on Empirical Methods in Natural810
Language Processing, pages 15913–15923.811

A Sparseness Adjustment812

Although our method does not explicitly specify813

the activation quantity (sparsity degree) of the MoE814

model, the sparsity of DSMoE can be adjusted by815

modulating the hyperparameter τ . The specific816

regulatory effects are shown in the table 4.817

Table 4: DSMoE LLaMA Models: Threshold (τ ) vs.
Performance and Parameter Activation

τ
LLaMA-7B LLaMA-1B

PPL activated params PPL activated params
0.2 3.82 65.45% 7.22 64.19%
0.3 3.83 62.70% 7.24 62.32%
0.4 3.85 60.43% 7.29 60.79%
0.5 3.91 58.46% 7.41 59.35%
0.6 4.02 56.54% 7.61 57.87%
0.7 4.28 54.77% 8.01 56.34%
0.8 5.09 52.54% 8.85 54.37%

The results demonstrate that as τ increases from818

0.2 to 0.8, perplexity gradually increases while819

the percentage of activated parameters decreases,820

which aligns with intuitive expectations. Perfor-821

mance degradation is relatively modest in the range822

of τ=0.2 to τ=0.5, but becomes more pronounced 823

beyond τ=0.5. 824

We selected τ=0.5 as the default value for our 825

main experiments because it offers an optimal bal- 826

ance between model performance and computa- 827

tional efficiency. In practical applications, τ can 828

function as an adjustable parameter that users can 829

tune according to their specific computational re- 830

source constraints and performance requirements. 831

B Impact of Continued Pretraining Token 832

Count on DSMoE Performance 833

To evaluate how the number of tokens used in con- 834

tinued pretraining affects DSMoE performance, 835

we conducted a series of controlled experiments 836

on both LLaMA-7B and LLaMA-1B models. Ta- 837

bles 5 and 6 show the perplexity changes for both 838

models across different token counts. Our ap- 839

proach achieves relatively favorable performance 840

even with fewer tokens, illustrating the relationship 841

between training tokens and complexity (PPL). Per- 842

formance tends to stabilize after approximately 8 843

billion training tokens. 844

Tokens (B) 2.2 3.8 5.4 7.0 7.8 8.6

PPL 7.384 7.323 7.481 7.488 7.445 7.422

Table 5: Effect of token count on LLaMA-1B DSMoE
model performance

Tokens (B) 2.4 3.2 4.8 6.4 8.0 9.6

PPL 4.091 4.029 3.994 3.975 3.929 3.916

Table 6: Effect of token count on LLaMA-7B DSMoE
model performance

11


	Introduction
	Related Work
	Background
	Method
	FFN Partitioning
	Straight-Through Estimator
	Sparse Loss

	Experiments
	Dataset
	Experimental Setup
	Main Results
	Perplexity Results
	Benchmark Results


	Analyses
	Ablation Study: Removing Straight-Through Estimator
	Ablation Study: Training without Piecewise Function G(x)
	Layer-wise Activation Patterns Analysis

	Conclusion
	Limitations
	Sparseness Adjustment
	Impact of Continued Pretraining Token Count on DSMoE Performance

