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ABSTRACT

The recent success of neural networks has enabled a better interpretation of 3D
point clouds, but processing a large-scale 3D scene remains a challenging problem.
Most approaches divide a large-scale 3D scene into multiple regions and combine
the local predictions, but this inevitably increases inference time and involves
preprocessing stages, such as k-nearest neighbor search. An alternative is to
quantize the point cloud to voxels and process them with sparse convolution.
Although sparse convolution is efficient and scalable for large 3D scenes, the
quantization artifacts impair geometric details and degrade prediction accuracy.
This paper proposes an Efficient Point Transformer (EPT) that effectively relieves
the quantization artifacts and avoids expensive resource requirements. Each layer
of EPT implements the local self-attention mechanism for analyzing continuous 3D
coordinates and offers fast inference time using a voxel hashing-based architecture.
The proposed method can be adopted for various 3D vision applications, such as
3D semantic segmentation and 3D detection. In experiments, the proposed EPT
model outperforms the state-of-the-art on large-scale 3D semantic segmentation
benchmarks and also shows better performance on 3D detection benchmarks than
point-based or voxel-based baseline methods.

1 INTRODUCTION

3D scene understanding is fundamental due to its importance to various fields, such as robotics,
intelligent agents, and AR/VR. Recent approaches (Choy et al., 2019; Graham et al., 2018; Mao et
al., 2019; Qi et al., 2017a;b; Tatarchenko et al., 2018; Thomas et al., 2019) utilize the deep learning
frameworks for 3D scene understanding, but handling a large 3D scene as a whole remains a chal-
lenging problem because it involves extensive computation and memory budgets. As an alternative,
some methods crop 3D scenes and stitch predictions, or others approximate point coordinates for
efficiency. However, such techniques either require a considerable inference time or show the lowered
accuracies. As a result, ensuring fast inference time and accuracy is one of the primary considerations
in the 3D scene understanding tasks.

The pioneering 3D understanding approaches, PointNet (Qi et al., 2017a) and PointNet++ (Qi et
al., 2017b) process point clouds with multi-layer perceptrons (MLPs) that preserve permutation-
invariance of the point clouds. Such point-based methods introduce impressive results (Mao et
al., 2019; Thomas et al., 2019) recently. However, it involves grouping of point clouds using k-
nearest neighbor search. In addition, applying scene-level inference with the point-based methods
require cropping and stitching scenes. Voxel-based methods (Choy et al., 2019; Graham et al., 2018)
are alternatives for a large-scale 3D scene understanding due to their efficiency of the network
design. However, they may lose fine geometric patterns due to quantization artifacts. Hybrid
methods (Tatarchenko et al., 2018; Liu et al., 2019; Tang et al., 2020) reduce the quantization artifacts
by utilizing both point-level and voxel-level features. However, the hybrid models require additional
memory space to cache both features.

This work proposes an efficient point transformer (EPT) that efficiently encodes continuous positional
information of large-scale point clouds. Our approach leverages local self-attention (Vaswani et al.,
2021; Ramachandran et al., 2019b) of point clouds with voxel hashing architecture. To achieve higher
accuracy, we present centroid-aware voxelization and devoxelization techniques that effectively
preserve the embedding of continuous coordinates. The proposed approach reduces quantization
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artifacts, and it allows coherency of dense predictions regardless of rigid transformations. We also
introduce a reformulation of the standard local self-attention equation to reduce space complexity
further. The proposed local self-attention module can replace the convolutional layers for 3D scene
understanding. In this manner, we introduce a U-shaped EPT network, which naturally builds a
hierarchical network structure without using manual grouping of point clouds. As a result, EPT
collects rich geometric representations and exhibits a fast inference time even for large-scale scenes.

We conduct experiments using two datasets of large-scale scenes: SCANNET (Dai et al., 2017)
and S3DIS (Armeni et al., 2016). Our method shows a consistent improvement in the semantic
segmentation task on various voxel hashing configurations. We also apply the EPT network as a
backbone of VoteNet (Qi et al., 2019) to show the applicability of EPT in the 3D object detection task.
We use SCANNET (Dai et al., 2017) dataset for the 3D detection task, and our model shows better
accuracy (mAP) than other baselines that use point- or voxel-based network backbones. Besides, we
introduce a novel consistency score metric and demonstrate that our model outputs more coherent
predictions under rigid transformations, i.e., rotation and translation.

In summary, our contributions are as follows:

1. We propose a novel local self-attention-based network, called Efficient Point Transformer
(EPT), for large-scale 3D scene understanding. Our proposed method effectively learns fine
geometric details by preserving positional information of points in 3D point clouds.

2. Our model benefits from the fast inference time of voxel hashing-based architecture, resulting
in faster inference than point-based work while achieving better performance than prior
voxel-based work.

3. We apply EPT on two 3D vision tasks: large-scale 3D semantic segmentation and detection.
Our model achieves improved performance than the point- and voxel-based approaches.

4. We demonstrate our model produces much more consistent predictions than the previous
voxel-based approach via controlled experiments. The results contend that our model makes
coherent predictions when rigid transformations are applied to 3D scenes.

2 RELATED WORK

In this section, we review point-based, voxel-based, and hybrid methods for 3D scene understanding
and then revisit the attention-based models.

Point-based methods. Qi et al. (2017a) introduce a multi-layer perceptrons (MLP) based approach
for understanding 3D scenes. Qi et al. (2017b) advance PointNet (Qi et al., 2017a) by adding
hierarchical sampling strategies on top of the PointNet architecture. Recent studies attempt to apply
convolution on point clouds since the heuristic local sampling and grouping mechanisms used in Qi
et al. (2017b) can be represented by the convolution. However, applying convolution on point clouds
is challenging since 3D points are sparse and unordered. Thomas et al. (2019) mimic convolution
using kernel points defined in the continuous space. They construct a k-d tree to perform point-
wise convolution on the query points within a certain radius at the inference stage in exchange
for inefficiency at the data preprocessing stage. Mao et al. (2019) adopt discretized convolution
kernels instead of continuous kernels for efficiency and perform convolution on every point in a point
cloud, which poses a bottleneck when processing large-scale 3D scene point clouds. In order to
address inefficiency of point-based methods, Zhao et al. (2021) and Guo et al. (2020) utilize attention
operations. Their attention operations enable them to learn richer feature representations than the fixed
kernel-based methods (Mao et al., 2019; Thomas et al., 2019) by preserving permutation-invariance
of point clouds. In fact, most point-based methods (Mao et al., 2019; Qi et al., 2017a;b; Thomas
et al., 2019; Zhao et al., 2021; Guo et al., 2020) adopt expensive operations, such as k nearest
neighbor search or k-d tree construction, resulting in heavy computational overhead when processing
large-scale 3D scenes.

Voxel-based methods. Sparse convolution (Choy et al., 2019; Graham et al., 2018) constructs fully
convolutional neural networks using discrete sparse tensors, enabling fast processing of voxel data.
The sparse convolution performs convolution to all valid neighbor voxels that are efficiently found
using a hash table with constant time complexity, i.e., O(1). Mao et al. (2021) propose a voxel-based
transformer architecture that adopts both local and dilated attention to enlarge receptive fields of the
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model. In spite of effectiveness of voxel-based work on large-scale point clouds, they often fail to
capture fine patterns of point clouds due to the quantization artifacts produced during voxelization.
In other words, the features extracted by voxel-based methods are inconsistent regarding the voxel
size (Zhang and Richard, 2019).

Hybrid methods. One another approach to handle point clouds is to extract both point- and voxel-
level features. Recent work (Liu et al., 2019; Tang et al., 2020; Zhang et al., 2020; Zhang et al.,
2021) attaches point-based layers, e.g. mini-PointNet, on top of the voxel-based methods to relieve
the quantization artifacts produced during voxelization. They take advantages from fast neighbor
search of voxel-based methods and high capability of capturing fine-geometries of point-based
methods. However, the hybrid methods suffer from larger computation and memory budgets since
the approaches in this category store both point- and voxel-level features.

Attention-based Networks. Discussions regarding attention operation have dominated research in
recent years in Natural Language Processing (Vaswani et al., 2017; Devlin et al., 2018; Radford et al.,
2018). Moreover, recent vision work (Irwan Bello, 2021; Dosovitskiy et al., 2020; Han et al., 2021;
Yuan et al., 2021) has attempted to exploit advantages of attention-based models. Prior research
generally confirms that global self-attention is infeasible to be adopted in 3D vision tasks due to its
costly operations. Thus, recent work (Guo et al., 2020; Zhao et al., 2021; Mao et al., 2021) widely
utilizes local self-attention (Ramachandran et al., 2019b; Vaswani et al., 2021; Irwan Bello, 2021) to
process 3D point clouds. Guo et al. (2020) and Zhao et al. (2021) handle irregularity of point clouds
with k nearest neighbor search, resulting in remarkable performance gain.

3 EFFICIENT POINT TRANSFORMER

3.1 OVERVIEW
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Figure 1: Overview of the proposed Efficient Point Transformer (EPT).

Efficient Point Transformer (EPT) processes the input point cloud through three steps: (Step 1)
centroid-aware voxelization, (Step 2) Efficient self-attention (ESA), and (Step 3) centroid-aware
devoxelization.

(Step 1) Let P in = {(pn, in)}Nn=1 be an input point cloud, where pn is the n-th point coordinate
and in is any raw input feature of pn, e.g., color of point clouds. For the efficiency, our approach
voxelizes P in into V = {(vi, fi, ci)}Ii=1, a set of tuples. Each tuple contains i-th voxel coordinate vi,
voxel feature fi, and voxel centroid coordinate ci. We introduce centroid-aware voxelization process
that utilizes learnable positional embedding en between n-th point and its voxel centroid to minimize
the loss from the quantization procedure.

(Step 2) The Efficient Self-Attention (ESA) block takes V = {(vi, fi, ci)} and updates the feature fi
to the output feature f ′i using local self-attention. In this procedure, querying neighbor voxels can be
efficiently done with voxel hashing having O(N) complexity.

(Step 3) The output voxels V ′ = {(vi, f ′i , ci)} from the ESA block are devoxelized into the output
point cloud Pout = {(pn, on)}Nn=1, where on is the output point feature. We propose to use
learnable positional embedding en to properly assign voxel-wise features to the continuous 3D points.

3.2 CENTROID-AWARE VOXELIZATION AND DEVOXELIZATION

Centroid-aware Voxelization. Let us consider an input point cloudP in = {(pn, in)}. We voxelize
input points for efficient and scalable querying. The output voxels are denoted by V = {(vi, fi, ci)}.
We introduce a novel centroid-to-point positional encoding en ∈ RDenc to mitigate the geometric
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information loss during voxelization. With an encoding layer δenc : R3 7→ RDenc , the centroid-to-
point positional encoding en is defined as follows:

en = δenc(pn − ci=µ(n)), (1)

where centroid ci is ci = 1
|M(i)|

∑
n∈M(i) pn,M(i) is a set of point indices within the i-th voxel,

and µ : N 7→ N is an index mapping from a point index n to its corresponding voxel index i. We
define the output voxel feature fi ∈ RDin+Denc with the input point feature in ∈ RDin and the
encoding en as follows:

fi = Ωn∈M(i)(in ⊕ en), (2)

where ⊕ denotes vector concatenation and Ω is a permutation-invariant operator, e.g., average(·).

We state that some voxel-based methods (Su et al., 2018; Rosu et al., 2019; Zhang et al., 2020)
introduce barycentric interpolation to embded fi into regular grids vi for voxelization. The proposed
centroid-aware voxelization is different from those methods in that it encodes the centroid-to-point
position into fi at continuous centroid coordinate ci. The proposed centroid-aware voxeliztion is also
different from other class of voxel-based methods (Choy et al., 2019; Mao et al., 2021; Graham et al.,
2018) that apply average- or max-pool voxel features without using intra-voxel coordinates of points.

Centroid-aware Devoxelization. Since the centroid-to-point positional encoding en has an use-
ful information about the relative position between pn and ci, we can propose a centroid-aware
devoxelization process. Given an output voxels V ′ = {(vi, f ′i , ci)} with the output voxel feature
f ′i ∈ RDout , the proposed centroid-aware devoxelization process is formulated as follows:

on = MLP(f ′i=µ(n) ⊕ en), (3)

where on ∈ RDout is the n-th output point feature of the output point cloud Pout = {(pn,on)} and
MLP(·) : RDout+Denc 7→ RDout denotes a multilayer perceptron. We experimentally show that the
proposed centroid-aware voxelization and devoxelization process relieves quantization artifacts of
voxelization more effectively than the results of barycentric interpolation based methods (Su et al.,
2018; Liu et al., 2019; Zhang et al., 2020).

3.3 EFFICIENT SELF-ATTENTION

Local self-attention on centroids. Once an input point cloud P in = {(pn, in)} is transformed into
a set of voxels V = {(vi, fi, ci)}, we can apply local self-attention mechanism (Ramachandran et al.,
2019a; Zhao et al., 2020; Xizhou et al., 2021) with V . In this procedure, we can query neighboring
voxels quickly via voxel-hashing, that requires O(N) complexity. Note that point-based methods (Xu
et al., 2021; Zhao et al., 2021) need to build neighbors using k-nearest neighbor search having
complexity of O(N log(N)), which become burdensome for processing large-scale point clouds.
Given local neighbor indices of ci denoted by N (i), local self-attention on ci can be formulated as
follows:

f ′i =
∑

j∈N (i)

a(fi, δ(ci, cj))ψ(fj), (4)

where f ′i is output feature, a(fi, δ(ci, cj)) is a function of attention weights using positional encoding
δ(ci, cj) and ψ is the value projection layer.

Although the voxel hashing enables an efficient neighbor search with time complexity of O(1)
for a single query, designing an efficient form of continuous positional encoding δ(ci, cj) still
remains challenging problem. Specifically, Zhao et al. (2021) use MLP(ci − cj) for implementing
δ(ci, cj) ∈ RD, but it requires O(NKD) space complexity, where N is the number of voxels and
K is the cardinality of neighboring voxels. This is because there can be total NK different relative
positions of (ci − cj) for possible (i, j) pairs due to the continuity of c.

Reducing space complexity. We introduce a coordinate decomposition technique to reduce space
complexity. Given a query voxel (vi, fi, ci) and a key voxel (vj , fj , cj), the relative position of
centroids ci − cj can be decomposed as follows:

ci − cj = (ci − vi)− (cj − vj) + (vi − vj). (5)

With Eq. (5), we can decompose the memory-consuming δ(ci, cj) into two kinds of positional
encodings: (1) a continuous positional encoding δabs(ci − vi) whose space complexity is O(ND)
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due to continuity of c, and (2) a discretized positional encoding δrel(vi−vj) whose space complexity
is O(KD). δrel(vi − vj) is memory-efficient because there can be only K different discretized
relative positions of (vi − vj) ∈ R3 for all possible (i, j) pairs. In addition, it is due to the fact
that the K is a way smaller than number of points N . δabs(cj − vj) in Eq. (5) does not add any
additional space complexity because we already have δabs(ci − vi) for every voxel. As a result,
space complexity of δ(ci, cj) become O(NKD) to O(ND +KD).

Given, Eq. (4) and (5), we see that local self-attention use continuous positional encoding δabs(ci−vi)
and input voxel feature fi. Therefore, the local self-attention pipeline has centroid-aware property
that can reduce quantization artifacts. Based on these insights, we propose to use an aggregated
feature gi = fi + δabs(ci − vi) and name it as centroid-aware voxel feature. We compute attention
weights with δrel(vi − vj) as follows:

f ′i =
∑

j∈N (i)

a(gi, δrel(vi − vj))ψ(gj). (6)

CenterNeighbor

Figure 2: Computational graph of ESA.

Efficient Self-Attention (ESA) layer. Now, we pro-
pose the ESA layer by defining attention function a(·)
in Eq. (6) as follows:

f ′i =
∑

j∈N (i)

ψ(gi) · δrel(vi − vj)

‖ψ(gi)‖‖δrel(vi − vj)‖
φ(gj). (7)

It is worth noting that ESA layer use the cosine sim-
ilarity between ψ(gi) and δrel(vi − vj). Instead of
using softmax(ψ(gi)

>δrel(vi − vj)), cosine simi-
larity can effectively handle the sparsity issue of input
voxels V properly. For an example, an issue arises
if we use softmax(·) and |N (i)| is 1. In this case,
softmax(·) normalizes the attention weights into 1.0,
and it can make the ESA layer to be a simple linear
layer φ. In addition, as ESA layer queries local neigh-
bor indices, |N (i)| varies from 1 to the number of
neighboring voxels. Therefore, cosine similarity is
more natural choice for handling varying number of
voxels than softmax(·).

The dynamics of ESA layer shown in Eq. (7) generates weights using the centroid-aware features
ψ(gi) and relative voxel features δrel(vi − vj)). This design enables ESA layer to learn more
coherent representation under the rigid transformations than sparse convolution based approach (Choy
et al., 2019), as shown in Table. 1 and to outperform sparse convolution on various tasks (e.g., 3D
semantic segmentaion, 3D object detection) as shown in Table. 2, and Table. 5. We also experimentally
show that the reformulation from Eq. (4) to Eq. (6) works reasonably. (as shown in Table. 3) and
introduces extra efficiency (as shown in Table. 4).

3.4 NETWORK ARCHITECTURE

Based on the modules introduced above, we develop an efficient transformer for dense prediction
on point cloud, dubbed Efficient Point Transformer (EPT). Using coordinate hashing (Sec. 3.2) and
decomposed positional encodings (Sec. 3.3), EPT is less prone to quantization errors than previous
voxel-based methods (Choy et al., 2019; Graham et al., 2018; Mao et al., 2021), while also being
significantly more efficient than point-based methods (Xu et al., 2021; Zhao et al., 2021) in terms
of both space and time. Furthermore, the proposed ESA layer can be easily be integrated to voxel-
based downsampling and upsampling layer without introducing heuristic sampling and grouping
mechanism like most of the point-based methods (Qi et al., 2017b; Thomas et al., 2019; Xu et
al., 2021; Zhao et al., 2021). Note that we can build local self-attention networks by substituting
convolution layers with ESA layers. Therefore, any successful sparse CNN architectures can be
modified to faciliate local self-attention, e.g., U-Net (Ronneberger et al., 2015) and ResNet (He et
al., 2016). We implement our model for semantic segmentation using the U-Net (Ronneberger et al.,
2015) architecture. Further details are described in Appendix A.1.

5



Under review as a conference paper at ICLR 2022

4 EXPERIMENT

In this section, we evaluate our model on popular large-scale 3D scene datasets: SCANNET (Dai et al.,
2017) and S3DIS (Armeni et al., 2016) because they provide rich diversity and dense 3D annotations.
We first validate robustness of our approach to voxel hashing configurations described in Sec. 4.3.
Then, we compare the proposed method with the state-of-the-art and discuss the results in Sec. 4.4
and Sec. 4.6. We have conducted all experiments with a fixed random seed for reproducibility. We
have described details (e.g., hyperparameters, learning rate) of all the experiments in Appendix A.1.

4.1 DATASET

SCANNET. We use the second official release of SCANNET (Dai et al., 2017), which consists of 1.5k
room scenes with some rooms captured repeatedly with different sensors. Following the experimental
settings of prior work(Qi et al., 2019; Chaton et al., 2020), our model uses point-wise RGB colors
and coordinates as input point features {in} for 3D semantic segmentation task and 3D objection
detection, respectively.

S3DIS is a large-scale indoor dataset which consists of six large-scale areas with 271 room scenes.
We test on Area 5 and utilize the other splits during training. Following Choy et al. (2019), we do not
use any preprocessing methods e.g., cropping into small blocks that are widely used in point-based
methods (Qi et al., 2017a; Tchapmi et al., 2017; Tatarchenko et al., 2018; Li et al., 2018; Landrieu et
al., 2018; Xu et al., 2021; Zhao et al., 2021).

4.2 BASELINES

We have selected PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), SegCloud (Tchapmi et
al., 2017), TangentConv (Tatarchenko et al., 2018), PointCNN (Li et al., 2018), SPGraph (Landrieu
et al., 2018), FPConv (Lin et al., 2020), PointConv (Wu et al., 2019), PointASNL (Yan et al.,
2020), and SparseConvNet (Graham et al., 2018) as the baseline approaches. MinkowskiNet32
and MinkowskiNet42 (Choy et al., 2019) are compared as representative voxel-based methods that
comprise 32 and 42 U-Net layers, respectively.

We reproduce MinkowskiNet42 with official source code and denote it as MinkowskiNet42† with
different voxel sizes. KPConv (Thomas et al., 2019) and PAConv (Xu et al., 2021) are selected
since they are representative point-based methods. The main difference between the two methods is
that KPConv (Thomas et al., 2019) uses a k-d tree to boost its inference time while PAConv (Xu et
al., 2021) does not. We follow the official guideline of the two methods and reproduce the results.
A most recent method, Point Transformer (Zhao et al., 2021) has also been selected due to its
superiority on several datasets. However, since there is no official release of the Point Transformer,
we use the reported performance in the paper. Unlike our method and selected baselines, other
approaches (Kundu et al., 2020; Chiang et al., 2019; Hu et al., 2021) use additional inputs e.g., 2D
images or meshes. Accordingly, we have excluded these methods from the comparison.

4.3 CONSISTENCY TEST

We introduce a new evaluation metric to measure the coherency of predictions under various rigid
transformations, such as translation and rotation. Let us consider a set of point clouds S = {P in}
and a 3D semantic segmentation model f : P in 7→ C which predicts a semantic class of each point
in P in = {(pn, in)}. Given S and a set of rigid transformations T = {Tm}, we introduce the
consistency score (CScore) of f on S as follows:

CScore(f ;S, T ) =
1

|S|
∑

Pin∈S

1

|P in||T |

|Pin|∑
n

|T |∑
m

I[f(pn, in) = f(Tmpn, in)], (8)

where I[·] is the indicator function, and it checks whether class predictions of the original point and
the transformed point are the same. CScore is an averaged accuracy over S , P , and T . Similarly, we
use the point-wise CScore of f on P to show which points in P is vulnerable to T . We apply 14
different rigid transformations that consist of seven translations and seven rotations around the gravity
axis. For the voxel size L, seven translations are set to [0, 0.5L]3 except zero translation [0, 0, 0].
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Figure 3: Heatmap visualization of consistency score (CScore) of MinkowskiNet (Choy et al., 2019)
and the proposed efficient point transformer. Points with high CScore (consistently predicts the same
class) are colored blue and points with low CScore (the predicted class is not consistent with arbitrary
rigid transformations) are colored red. Table 1 shows quantitative evaluation.

Seven rotation angles along gravity axis is set to [0.25π, 0.5π, · · · , 1.75π]. We evaluate CScore of
MinkowskiNet42 and EPT on SCANNET validation split. The evaluation results (Table. 1) and the
qualitative results (Figure. 3) show that EPT outputs more coherent feature representations than the
MinkowskiNet42.

4.4 3D SEMANTIC SEGMENTATION Table 1: Consistency scores of the pro-
posed efficient point transformer (EPT) and
MinkowskiNet42† on different transforma-
tion sets, namely, rotation only (R), trans-
lation only (t), and both (R and t). The size
of voxel is set to 10cm, 5cm, and 2cm in a
SCANNET dataset. EPT relieves the predic-
tion inconsistency occurred by voxelization
artifact.

Voxel Methods R (%) t (%) R and t (%)

10cm MinkowskiNet42† 73.88 76.28 75.08
EPT (ours) 75.63 78.63 77.13

5cm MinkowskiNet42† 74.37 84.43 79.40
EPT (ours) 90.61 84.90 87.75

2cm MinkowskiNet42† 96.23 97.99 97.11
EPT (ours) 99.67 99.60 99.63

We compare our approach with the state of the arts
on SCANNET and S3DIS. We use the mean of class-
wise IoU scores as the primary evaluation metric for
both datasets.

SCANNET. We evaluate the models on the ScanNet
validation split due to strict submission policies of
SCANNET online test benchmark, where one method
can be tested at most once. Our proposed method
outperforms the MinkowskiNet42† at voxel sizes of
2cm, 5cm, and 10cm by 0.3, 4.1, and 4.9 absolute
percentage point gain in Mean IoU (%) respectively1.
The experimental results in Table. 1 and Table. 2 in-
dicate that the proposed method can represent a large-
scale point cloud as features that are more robust to
quantization error. We also visualize the semantic
segmentation results of EPT (10cm) and MinkowskiNet42 (Choy et al., 2019) (10cm) in Figure. 4.

S3DIS. We compare the mean accuracy and mean IoU of EPT with the state of the arts on the S3DIS
Area 5 test split. Since Choy et al. (2019) reported results with a lightweight network (Minkowsk-
iNet32), we utilize the official code of MinkowskiNet42 and reproduce the results with voxel sizes
of 5cm and 10cm. We denote the results of reproduction as MinkowskiNet42†. EPT outperforms
the MinkowskiNet42† at a 10cm and 5cm voxel size by 4.0 and 1.5 absolute percentage score in
mean IoU (%), respectively. Given the reported performance by Zhao et al. (2021), PointTransformer
shows the best performance. However, PointTransformer involves k-nearest neighbor search and
requires multiple inferences of parts of the scene (as denoted in Handling Subregions column of
Table 2), whereas our approach can handle the whole scene with a single feed-forward operation. As
shown in Table 4, PAConv having similar computational complexity of PointTransformer shows 108
times slower inference speed than our approach.

Ablation study. We conduct ablation studies w.r.t. positional encodings, i.e., δenc and δabs, to check
effects of each positional encoding in ESA layer on the SCANNET dataset. We have followed the
same setup with the main experiments with a voxel size of 10cm. Table. 3 shows the results of

1We state that the test accuracy of MinkowskiNet42 on ScanNet leaderboard 73.6, which is better than ours.
However, the reported result uses test-time augmentation that aggregates multiple inferences of rotationally
augmented 3D scenes, and the number of augmentation is not reported. Our results and MinkowskiNet42† show
the results without using the test-time augmentation.
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Table 2: Results of semantic segmentation on the SCANNET (Dai et al., 2017) dataset (left) and
S3DIS (Armeni et al., 2016) dataset (right). Note that the score denoted by † is the reproduced
performance of MinkowskiNet42 (Choy et al., 2019) with the official source code.

Methods mIoU (%) (val) mIoU (%) (test)

PointNet++ - 33.9
FPConv - 63.0
PointConv 61.0 66.6
PointASNL 63.5 66.6
KPConv deform 69.2 68.4
SparseConvNet (2cm) - 72.5

MinkowskiNet42† (10cm) 60.4 -
EPT (ours - 10cm) 65.3 -

MinkowskiNet42 (5cm) - 67.9
MinkowskiNet42† (5cm) 66.6 -
EPT (ours - 5cm) 70.1 -

MinkowskiNet42† (2cm) 71.7 -
EPT (ours - 2cm) 72.0

Methods Handling Subregions mAcc (%) mIoU (%)

PointNet Block 49.0 41.1
SegCloud Block 57.4 48.9
TangentConv Block 62.2 52.6
PointCNN Block 63.9 57.3
SPGraph Block 66.5 58.0
PAConv Block - 66.6
KPConv Grid 72.8 67.1
PointTransformer Block 76.5 70.4

MinkowskiNet42† (10cm) Not Needed 69.2 61.3
EPT (ours - 10cm) Not Needed 72.6 64.0

MinkowskiNet32 (5cm) Not Needed 71.7 65.4
MinkowskiNet42† (5cm) Not Needed 73.3 66.0
EPT (ours - 5cm) Not Needed 74.7 67.5

Input MinkowskiNet Ours Ground Truth

Figure 4: Visualization of semantic segmentation results on SCANNET (Dai et al., 2017).

the ablation studies. Models with full positional encodings achieved the best mIoU score. When
removing δabs from our model, we have observed a large performance drop since the model does
not adopt continuous position information. Removing either positional encodings of centroid-aware
voxelization or devoxelization from EPT also degrades the performance. These results indicate that
both proposed voxelization and devoxelization effectively maintain continuous geometric information
of the input point cloud.

Table 3: Ablation studies on the proposed positional encoding layers.
Method δenc - Voxelization δenc - Devoxelization δabs mIoU (%)

EPT (ours - 10cm) 7 7 3 62.1
EPT (ours - 10cm) 3 3 7 62.7
EPT (ours - 10cm) 3 7 3 63.4
EPT (ours - 10cm) 7 Barycentric interp. 3 63.4
EPT (ours - 10cm) 3 3 3 65.3

4.5 COMPUTATIONAL COMPLEXITY

Table. 4 theoretically analyzes the time complexity and reports the average wall-time latency of
each method when processing S3DIS scenes Area 5. We measure the inference time of Minkowsk-
iNet42 (Choy et al., 2019), KPConv (Thomas et al., 2019) and PAConv (Xu et al., 2021) using the
official codes. Further details are explained in Appendix. A.3.

Due to the preprocessing stages and stitching the predictions of multiple subregions, the point-based
methods (Landrieu et al., 2018; Li et al., 2018; Qi et al., 2017a; Tchapmi et al., 2017; Thomas et al.,
2019; Xu et al., 2021) take much more time to inference a single scene than our approach. Note that
KPConv (Thomas et al., 2019) constructs k-d tree, but we do not include this process into inference
time. Detailed information about the time complexity analysis is presented in Appendix A.2.

4.6 3D OBJECT DETECTION

We have conducted experiments on SCANNET 3D object detection dataset, where fine-grained point
cloud representation is essential to detect and localize 3D objects.
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Table 4: The theoretical time complexity of neighbor search and per-scene wall-time latency of each
network on S3DIS Area 5. N is the number of dataset points, M is the number of query points,
and K is the number of neighbors to search. Note that both M and N are much larger than K in a
large-scale point cloud. The mIoU score denoted by * is the performance of PAConv that uses an
efficient implementation of k-NN search algorithm, and PointTransformer also uses the same.

Methods
Neighbor Search Latency Latency

mIoU (%)
Preparation Inference (sec) (norm)

KPConv deform† (100 votes) O(N logN) O(KM logN) 105.15 404.42 67.4
KPConv deform† O(N logN) O(KM logN) 1.18 4.54 65.5
PAConv O(1) O(MN logK) 28.13 108.19 66.0*
PointTransformer O(1) O(MN logK) - - 70.4
MinkowskiNet42† (5cm) O(N) O(M) 0.23 0.88 66.0
EPT (ours - 5cm) O(N) O(M) 0.26 1.00 67.5

Table 5: 3D object detection results of VoteNet (Qi
et al., 2019) with various backbones on SCANNET
dataset (Dai et al., 2017). Numbers except that of
MinkowskiNet† and EPT are taken from Chaton
et al. (2020).

Backbones mAP@0.25 mAP@0.50

PointNet++ 54.2 30.1
RS-CNN 51.6 29.5
KPConv 48.9 29.2
MinkowskiNet 53.8 30.2

MinkowskiNet† 55.3 32.8
EPT (ours) 59.1 35.3

Setups. For a fair comparison of EPT with pre-
viously proposed point-based methods (Qi et al.,
2017b; Liu et al., 2019; Thomas et al., 2019),
we use Torch-Points3D, an open-source library
implemented by Chaton et al. (2020) for repro-
ducible deep learning on 3D point clouds. Torch-
Points3D sub-sample a fixed number of points
from an input point cloud which is widely used
for point-based methods (Qi et al., 2017b; Liu
et al., 2019; Thomas et al., 2019) to process a
scene-level point cloud-like SCANNET. We no-
tice that the library also sub-sample points for
the voxel-based methods, such as Minkowsk-
iNet (Choy et al., 2019), which is not a suitable
experimental configuration. Therefore, we re-
produce VoteNet with the MinkowskiNet backbone, which is denoted by MinkowskiNet† in Table. 5
without input point sub-sampling, and we do not change any experimental configurations, e.g., the
number of voting points. We train a new VoteNet (Qi et al., 2019) with EPT backbone with the
same training configuration of the reproduced VoteNet using MinkowskiNet†. We implement the
EPT backbone for VoteNet (Qi et al., 2017a) by replacing sparse convolution layers in Minkowsk-
iNet (Choy et al., 2019) with ESA layers without any change of detection network architecture (e.g.,
voting module).

Results. As shown in Table. 5, the VoteNet (Qi et al., 2019) model with EPT as a backbone
outperforms other baselines with a large margin. The results show that the proposed continuous
positional encodings that EPT uses can effectively encode point cloud representation and helps the
3D detection task.

5 CONCLUSION

We have introduced the Efficient Point Transformer (EPT) and demonstrated its performance on 3D
semantic segmentation and 3D detection tasks. The experimental results on large-scale 3D datasets
show that EPT outperforms sparse convolutional neural networks (Choy et al., 2019) and point-based
approaches (Qi et al., 2017b; Thomas et al., 2019; Xu et al., 2021) while having fast inference
time and small resource consumption. Our approach is based on a voxel hashing structure, and the
proposed centroid-aware voxelization and devoxlization relieve quantization artifacts. In the future,
we will explore effective architectures for EPT rather than U-shaped architectures (Ronneberger et
al., 2015) as the U-shaped network is initially designed for convolutional layers. Our code and data
are going to be publicly available upon acceptance.
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CONCERNING REPRODUCIBILITY AND ETHICAL ISSUES

Reproducibility. We use publicly available popular datasets: SCANNET and S3DIS. In addition,
to provide clear details for inference time evaluation, details for hardware and software are explained
in Appendix A.1. Our code strongly relies on external libraries, i.e., MinkowskiEngine. Thus, we
have also reported version details of libraries used for implementation.

Ethical Issues. Recognizing scenes without strong supervision could cause serious privacy invasion
issues. Such invasions are detrimental for locations where securities are crucial, e.g., military and
bank. Besides, the real applications where each decision is critical for users, e.g., autonomous driving,
would have responsibility issues if decisions of the 3D understanding network caused accidents.
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A APPENDIX

A.1 DETAILED EXPERIMENTAL SETTINGS

Figure 5 illustrates detailed model designs of MinkowskiNet Choy et al. (2019) and our EPT model.
To set the total parameter numbers to be similar, we adjust the channel dimensions, resulting in
similar parameter numbers; 37.9M for both networks.
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Figure 5: An illustration of network architecture that has been used in our experiments. The network
figure above illustrates MinkowskiNet and the figure below illustrates our EPT model.

A.2 TIME COMPLEXITY ANALYSIS: NEAREST NEIGHBOR SEARCH

In this section, we explain step-wise analysis of the time complexity of each method.

KPConv constructs k-d tree before inference. Based on the official implementation of KPConv, we
analyze time complexity of preparation time and inference time in Algorithm 1 and Algorithm 2.

Algorithm 1 KPConv Preparation Time - k-d Tree Construction. Total: O(N logN)

Number of training points: N
An empty tree T
for point=1, 2, · · · , N do O(N logN)

insert(T , point) O(logN)
end for

PAConv and PointTransformer do not require preparation steps for neighbor searching. Thus we
set the preparation time to constant time. For analyzing inference time, we have followed the official
implementation. Details are explained in Algorithm 3

MinkowskiNet and ours require the same process for neighbor searching since both methods benefit
from voxel hashing tables. We analyze preparation and inference time complexity on Algorithm 4
and Algorithm 5, respectively.

A.3 INFERENCE TIME EVALUATION

In this section, we describe the detailed setups that have been used during the inference time evaluation
on the main paper. For fair comparison, no other program was run during the experiments.
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Algorithm 2 KPConv Inference Time. Total: OKM logN)

Number of training points: B
Number of query points: N
Number of neighbors to search: K
Constructed k-d tree: T̄
k-th nearest neighbors dictionary: S = {}
for query = 1, 2, · · · , M do O(KM logN)

arr = []
for i = 1, 2, · · · , K do O(K logN)

point = SearchClosest(T̄ , query) O(logN)
T̄ = pop(T̄ , point) O(logN)
arr.append(point)

end for
S[query] = arr

end for

Algorithm 3 PAConv and PointTransformer Inference Time - Heap Construction. Total:
O(MN logK)

Number of training points: N
Number of query points: M
Number of neighbors to search: K
for query = 1, 2, · · · , m do O(MN logK)

H = InitHeap() O(K)
ShortestDist = 1e10
ShortestIdx = 0
for point = 1,2,· · · ,N do O(N logK)

if d(point, query) < ShortestDist then
reheap(H, ShortestDist, ShortestIdx, K) O(logK)
ShortestDist = d(point, query)
ShortestIdx = point

end if
end for
Heapsort(H, ShortestIdx, ShortestDist, k) O(K logK)

end for

1. CUDA version: 11.1

2. CUDNN version: 8.2.1

3. PyTorch version: 1.7.1

4. MinkowskiEngine version: 0.5.4

5. Hardware: single NVIDIA Geforce RTX 3090 GPU

6. Batch size: 1

A.4 MORE SEGEMENTATION RESULTS

We report class-wise scores in semantic segmentation task on S3DIS dataset.

mIoU mAcc ceil. floor wall beam col. wind. door chair table book. sofa board clut.
PointNet 41.09 48.98 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22
SegCloud 48.92 57.35 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60

TangentConv 52.6 62.2 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.4 39.8
PointCNN 57.26 63.86 92.31 98.24 79.41 0.00 17.60 22.77 62.09 80.59 74.39 66.67 31.67 62.05 56.74
KPConv 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
PAConv 66.58 73.00 94.55 98.59 82.37 0.00 26.43 57.96 59.96 89.73 80.44 74.32 69.80 73.50 57.72

Point Transformer 70.4 76.5 94.0 98.5 86.3 0.0 38.0 63.4 75.3 89.1 82.4 74.3 80.2 76.0 59.3
EPT (ours -5cm) 67.5 74.7 91.5 97.4 86.0 0.2 40.4 60.8 66.7 87.7 79.6 73.7 58.6 77.2 57.3
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Algorithm 4 MinkowskiNet and Ours Preparation Time - Hash Table Construction. Total: O(N)

Number of training points: N
An empty hash table: h
for point = 1, 2, · · · , N do O(N)

Insert(h, point) O(1)
end for

Algorithm 5 MinkowskiNet and Ours Inference Time - Hash Table Construction. Total: O(M)

Number of query points: M
A constructed hash table: h̄
for query = 1, 2, · · · , m do O(M)

lookup(h̄, query) O(1)
end for

A.5 QUALITATIVE RESULTS

Semantic Segmentation on the SCANNET dataset. Figure 6 visualizes more qualitative results of
semantic segmentation reported in the main paper.

Consistency Score on the SCANNET dataset. Figure 7 visualizes more qualitative results of
consistency evaluation in the main paper.
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Input MinkowskiNet Ours Ground Truth

Figure 6: Qualitative semantic segmentation results of MinkowskiNet (Choy et al., 2019) and our
EPT model on the SCANNET dataset.

MinkowskiNet Ours

CScore
High

Low

Input

Figure 7: Heatmap visualization of consistency score (CScore) of MinkowskiNet (Choy et al., 2019)
and the proposed efficient point transformer. Points with high CScore (consistently predicts the same
class) are colored blue and points with low CScore (the predicted class is not consistent with arbitrary
rigid transformations) are colored red. Table 1 shows quantitative evaluation.
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A.6 NOTATIONS

P in = {(pn, in)} Input point cloud

pn ∈ R3 The n-th point coordinate

in ∈ RDin The n-th input point feature

Pout = {(pn,on)} Output point cloud

on ∈ RDout The n-th point feature

V = {(vi, fi, ci)} Input voxels with centroids

vi ∈ R3 The i-th voxel center coordinate

fi ∈ RDin The i-th input voxel feature

ci ∈ R3 The i-th voxel centroid coordinate

M(i) A set of point indices within the i-th voxel

Ω A permutation-invariant operator (e.g., average)

V ′ = {(vi, f ′i , ci)} Output voxels with centroids

f ′i ∈ RDout The i-th output voxel feature

N (i) A set of neighbor voxel indices the i-th voxel

en The centroid-to-point positional encoding

δenc An encoding layer used in centroid-to-point positional en-
coding

on The n-th output point feature of the output point cloud Pout

⊕ A vector concatenation operation

a()̇ An attention operation

ψ A value projection layer in attention operations

gi A centroid-aware voxel feature

δrel A discretized positional encoding layer

δabs A continuous positional encoding layer
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