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Abstract

The Transformer architecture serves as the foundation of modern AI systems, pow-
ering recent advances in Large Language Models (LLMs) and Large Multimodal
Models (LMMs). Central to these models, attention mechanisms capture contex-
tual dependencies via token interactions. Beyond inference, attention has been
widely adopted for interpretability, offering insights into model behavior. Among
interpretability techniques, attention flow — which traces global information trans-
fer across layers — provides a more comprehensive perspective than single-layer
attention maps. However, computing attention flow is computationally intensive
due to the high complexity of max-flow algorithms. To address this challenge, we
introduce FlowPrune, a novel framework that accelerates attention flow analysis
by pruning the attention graph before applying max-flow computations. FlowPrune
uses the Max-Flow Min-Cut Theorem and two structural properties of Transformer
to identify and eliminate non-critical graph regions. It comprises two components:
Edge Pruning, which removes insignificant attention edges, and Layer Compres-
sion, which discards layers with minimal contributions to the flow. We conduct
extensive experiments on LLaMA and LLaVA to evaluate the robustness and effec-
tiveness of FlowPrune. Our results show that FlowPrune achieves high agreement
with the original attention flow in both absolute and relative error metrics, as well
as in identifying influential input tokens. Finally, case studies in both NLP and
vision domains demonstrate that FlowPrune produces consistent interpretability
outcomes as the original Attention Flow, validating its practical utility. The code
for this paper is publicly available.

1 Introduction

The Transformer architecture [1] has become the foundational backbone of modern AI systems,
driving major advances in Large Language Models (LLMs) [2–4] and Large Multimodal Models
(LMMs) [5–7]. Although various architectural modifications have since been proposed [8, 9],
attention remains the core computational primitive, enabling contextual information flow via token
interactions. Because attention weights reflect how information is propagated across tokens, they
are frequently used as proxies for interpretability. Despite ongoing debate about their faithfulness
as explanations [10, 11], attention weights remain valuable tools for interpreting, diagnosing, and
analyzing Transformer behavior across diverse applications [12, 13].
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Compared to single-layer attention maps that capture only local, layer-specific token interactions,
attention flow offers a global perspective by tracing how information propagates from input to output
across all layers. This makes it a more effective diagnostic tool for understanding model behavior.
To quantify attention flow, [14] models the entire network as a Directed Acyclic Graph (DAG),
where nodes represent token embeddings and edges denote attention weights. Within this framework,
attention flow between input and output tokens is formulated as a maximum flow problem computed
by the Highest-Level Preflow Push algorithm [15]. Although this approach captures cross-layer
information that single-layer maps overlook, its computational complexity of O(L2.5N3) — for L
layers and N tokens — makes it impractical for modern large-scale models.

To reduce computational complexity, [14] proposes Attention Rollout, which approximates attention
flow by recursively multiplying layer-wise attention matrices, reducing complexity to O(LN3) but
introduces significant limitations. Specifically, it neglects global capacity constraints and flow conser-
vation principles inherent to max-flow optimization, potentially distorting information propagation
paths [14]. As a result, it risks producing misleading explanations that contradict ground-truth flows
— an issue critical to safety-sensitive applications like medical diagnosis or legal reasoning [16, 17].

To address this, we propose FlowPrune, a novel method that accelerates attention flow computation
without heavily distorting the analyses results. FlowPrune prunes the attention graph before applying
max-flow algorithms where the pruning operation is designed based on the Max-Flow Min-Cut
Theorem [18], stating that the maximum flow between a source and a sink node equals the total
capacity of the minimum cut separating them. This implies that graph regions not contributing to the
minimum cut can be safely pruned without affecting the final flow. We leverage two key properties of
Transformer-based networks to identify such regions: the attention weights are calculated using the
softmax function, and the attention graph is strictly layered.

FlowPrune consists of two components: Edge Pruning and Layer Compression, both designed
to reduce the attention graph while preserving its critical flow structure. First, due to the softmax
operation, many attention weights are close to zero [19], contributing little to information propagation.
These weights can be safely removed without significantly affecting the overall max-flow value.
Second, because the attention graph is strictly layered, we localize minimum cut edges to specific
layers, allowing for substantial graph reduction. We use a random sampling heuristic to identify
layers with fewer minimum cut edges, which are then removed, and new edges are created between
adjacent layers to maintain connectivity. These two procedures significantly compress the attention
graph, enabling more efficient max-flow computation.

We validate FlowPrune on two sets of experiments. First, we evaluate the fidelity and efficiency of our
graph compression by applying it to two widely used models: the unimodal Llama and the multimodal
LLaVA [20, 21]. We compare the max-flow computation on the original and compressed graphs
in terms of runtime and absolute/relative error. Since attention flow is often used to assess which
input tokens contribute more to model predictions [14], we also measure the ranking discrepancy of
input tokens by comparing their relative max-flow orderings. Second, we conduct case studies on
real-world scenarios where attention flow has been applied for model analysis. Specifically, we test
the practicality of FlowPrune in two real-world scenarios: analyzing Paraphrasing Verification [22]
and constructing ViT Heatmaps, where results prove that FlowPrune is more similar with the original
Attention Flow than Attention Rollout, validating its practicality. All our code is publicly available,
and you can find it at https://github.com/ATMxsp01/FlowPrune.

2 Related Work

Attention Flow and Interpretability. The interpretability of attention mechanisms has attracted
significant interest, particularly in NLP and vision models. While some studies suggest that attention
weights offer insight into model reasoning [12, 23, 24], others argue that they may not faithfully
reflect decision-making processes [10, 11, 25]. Despite this debate, attention remains a widely used
tool for attributing model predictions to input elements. For instance, attention-based visualizations
have been used to identify important areas in image classification [26, 27], diagnose linguistic errors
in translation [28, 29], and trace causal relationships in sentence classification [10, 30]. Beyond direct
visualization, recent work has formalized attention flow as a global explanation mechanism [14],
tracing information propagation across layers via graph-based analysis. However, such methods are
computationally expensive and may become infeasible for large models. Several approximations,
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including Attention Rollout [14], have been proposed to reduce complexity, though they often
sacrifice theoretical properties such as flow conservation. Meanwhile, the observed sparsity of
attention matrices [19] motivates efficient pruning-based approaches that preserve interpretive fidelity
while improving scalability.

Maximum Flow Algorithms. The maximum flow problem is a classical topic in graph theory, which
seeks to determine the maximum amount of flow that can be sent from a source to a sink under
capacity constraints. Common algorithms include Edmonds–Karp [31], which uses breadth-first
search to find augmenting paths, Dinic’s algorithm [32], which improves throughput via level graphs,
and Push–Relabel method [33], which maintain a preflow and iteratively update local excess. Among
these, the Highest-Level Preflow-Push (HLPP) algorithm [15] has demonstrated strong practical
efficiency, especially on layered or DAG-structured graphs, making it suitable for attention flow
computation [14].

Building on this foundation, our method, FlowPrune, accelerates attention flow computation by
applying HLPP to a structurally simplified attention graph. We leverage the Max-Flow Min-Cut
Theorem [18] to guide pruning decisions, safely removing low-capacity edges and compressible
layers that do not contribute to the minimum cut. This design reduces computational complexity
while preserving critical attribution paths, enabling scalable analysis of large Transformer models.

3 FlowPrune

To address the scalability limitations of attention flow analysis in large-scale Transformer networks,
we propose an efficient approximation method named FlowPrune. In this section, we first review the
standard Attention Flow formulation and its computational bottlenecks. We then introduce two key
approximation strategies, namely Edge Pruning and Layer Compression, which jointly reduce time
complexity while preserving essential attention flow structures to calculate maximum flow.

3.1 Calculating Maximum Flow

To calculate the maximum flow that quantifies how attention propagates across layers in a L-layer
Transformer, [14] models the attention mechanism as a layered directed graph G = (V, E). Specif-
ically, V = {V1, . . . ,VL}, where each Vi represents the set of nodes corresponding to token rep-
resentations at the i-th Transformer layer. The edge set is defined as E = {E1, . . . , EL−1}, where
Ei denotes directed edges capturing attention from tokens in layer i to tokens in layer i + 1, with
normalized attention weights used as edge capacities.

Given this graph G constructed from an L-layer Transformer, the classical Highest-Level Preflow
Push (HLPP) algorithm can be applied to compute the maximum flow, with a time complexity of
O(V 2

√
E). Since the number of nodes and edges scale as V ≈ LN and E ≈ N2L respectively —

where N is the number of tokens per layer and L is the number of layers — the total computational
complexity becomes O(L2.5N3). This high cost makes the method impractical for large-scale
Transformer models.

3.2 Pruning the Attention Graph based on Max-Flow Min-Cut Theorem

Our objective is to accelerate the computation of maximum flow in large-scale transformer archi-
tectures without largely disturbing the analyses results. To achieve this, we brought ideas from
the classic Max-Flow Min-Cut Theorem [18] theory, which states that: In a directed graph with
non-negative edge capacities, the maximum amount of flow that can be sent from a source node to a
sink node equals the total capacity of the minimum cut that separates the source from the sink. This
theory provides a useful intuition: if certain regions of the graph do not have the minimum cut, they
can be safely removed without significantly changing the overall flow, e.g., by pruning low-capacity
edges or compressing intermediate layers without minimum cut.

To apply the above-mentioned insight to prune the attention graph, we also need to exploit two
key structural properties of Transformer. First, the computation of attention weights involves a
softmax operation and second, Transformer exhibits a strictly layered structure. We next show how to
integrate these two properties with Max-Flow Min-Cut Theorem to design Edge Pruning and Layer
Compression strategies for reducing the graph scale.
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Capacity <Threshold

Capacity ≥ Threshold

(a) Edge Pruning.

Sampled Path

Mini-Cut Edge

(b) Find Potential Min-cut Edge.

Mini-Cut Edge

New Edge

(c) Layer Compression.

Figure 1: Pipeline of FlowPrune. (a) The edges with low flow capacity are removed. (b) Three paths
are sampled (blue, purple, and brown ones) to find the layers which has less mini-cut edge, where
the third layer does not contain min-cut edges. (c) The third layer is removed and the connectivity
between the second and fourth layers are re-built by multiplying two binary adjacency matrices.

Edge Pruning. In Transformers, the softmax operation used in attention computation often produces
many near-zero attention weights, which contribute minimally to the propagation of information
across layers. These negligible weights correspond to edges in the attention graph that carry insignifi-
cant flow and can therefore be safely pruned to reduce computational overhead. To eliminate such
uninformative edges, as shown in Figure 1a, we set a pruning threshold θ and remove all edges
whose capacities fall below this value, effectively treating them as having zero capacity.

Layer Compression. As previously discussed, the attention graph of a Transformer is a strictly
layered structure, ensuring all flow paths follow layer-wise transitions. This property offers two key
advantages for compression. First, it allows to localize minimum cut edges to specific layers, allowing
to treat each layer as a fundamental unit for compression. By removing layers with less critical
contributions to the overall attention flow, we can achieve substantial graph reduction while not heavily
damaging the maximum flow approximation. Second, the layered structure permits efficient removal
of entire intermediate layers and reconstruction of cross-layer connections via matrix multiplication.
Next, we show how to identify compressible layers and establish new cross-layer connections.

Motivated by the Max-Flow Min-Cut Theorem, we seek to compress layers containing edges that
minimally contribute to the network’s minimum cut, as these are less critical for information flow.
Since exact minimum cut computation is computationally expensive — equivalent to solving the
full max-flow problem [14] — we introduce an efficient sampling-based heuristic, which is shown
in Figure 1b. After constructing the attention graph, we randomly sample source-to-sink paths in
this graph and identify the lowest-capacity edge in each path as a potential min-cut edge. Then
we compress layers containing relatively few such edges. Following Transformer architecture
principles [13], we preserve the first and last layers to maintain essential signal initiation and
termination.

It should be noted that identifying the lowest-capacity edge along a sampled path as a potential
min-cut edge is a heuristic rather than a guaranteed criterion. The intuition is as follows: in the case
where a source-to-sink path does not overlap with others, the smallest-capacity edge on this path must
belong to the minimum cut by definition [18]. However, in more realistic settings where multiple
paths often share edges, this assumption becomes less precise. Nevertheless, attention graphs derived
from Transformers are densely connected in a strictly layered structure, where each token in layer i
typically attends to all tokens in layer i+ 1. This near-uniform connectivity implies that sampled
paths are equally likely to overlap on any edge. As a result, the edge with the lowest capacity on a
random path remains statistically more likely to lie on the global min-cut, justifying its use as a proxy
in our sampling-based approximation.

After identifying layers for compression, we reconnect the remaining layers to maintain attention
flow connectivity. When compressing layer i, we add direct edges from nodes in layer i to layer
i + 2 whenever a path exists through layer i + 1. In practice, this reconnection can be efficiently
implemented by multiplying binary adjacency matrices representing layer-wise connectivity, as
illustrated in Figure 1c. The new edge capacities are set to 1, which preserves the maximum flow
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since: (1) all original attention weights are normalized to [0, 1], and (2) flow network theory guarantees
that increasing edge capacities beyond actual flow values maintains the maximum flow [34].

Combining edge pruning and layer compression significantly reduces the attention graph size. We
then compute the maximum flow using Highest-Level Preflow Push algorithm on this compressed
graph, achieving substantial complexity reduction while maintaining flow accuracy.

4 Experiments

We assess the effectiveness of FlowPrune based on computational efficiency, fidelity to the original
attention flow, and practical utility in real-world tasks. We evaluate FlowPrune in two cases: (1)
generation cases on LLMs and LMMs, and (2) application cases on language and vision tasks. All
our experiments were conducted on a single server equipped with 2 AMD EPYC 7453 28-Core
Processors and 4 NVIDIA RTX A6000 GPUs.

4.1 Fundamental Evaluation

4.1.1 Experimental Settings and Evaluation Metrics

We evaluate Llama [20] and Qwen [35], representing language-only transformers, on the other hand
LLaVA [21] and QwenVL [36] representing vision-language transformers, respectively. Each model
has 32 layers. We experiment with seven compression configurations: the full model (32 layers), an
extreme compression setting (3 layers), and five intermediate retain rates of 80%, 75%, 50%, 30%,
and 25%, which correspond to 26, 24, 16, 10, and 8 layers, respectively. The edge pruning threshold
is set to 1× 10−6 throughout all experiments.

The datasets used by these models to generate attention maps are GSM8K [37] and OKVQA [38],
respectively. For each model, we provided 1,000 inputs and randomly selected 100 token pairs
from each generated attention map (including those compressed using FlowPrune) to calculate the
corresponding results.

We propose four fundamental metrics to assess the efficiency and approximation quality. (1) Com-
putational Cost (Time). This metric measures the wall-clock time for computing attention flow
using FlowPrune, compared to the original implementation, serving as an indicator of computa-
tional efficiency. Lower values indicate faster inference. (2) Approximation Error. We compute
both the absolute and relative errors between the approximated and original attention flow matrices,
averaged across all examples. Smaller values reflect higher accuracy in the approximation. (3)
Top-K Token Retention. For each input, we extract the top-K highest-flow tokens from both the
original and approximated attention flows, and compute their Jaccard overlap [39]. Higher values
indicate better retention of key tokens. Specifically, IOU = |A∩B|

|A∪B| , where A/B respectively repre-
sents the top-K token pairs of the attention flows calculated by original/compressed graphs, where
K = 1, 3, 5, 10, 15, 20, 25, 50 in the experiments. (4) First Rank Divergence. We identify the first
position in the sorted top-K token rankings where the approximation diverges from the original
output, normalizing this position by sequence length. Higher values reflect better consistency with
the original ranking.

4.1.2 Results Analysis

Computational Cost (Time). Figure 2 presents the speed-up ratios of Llama and LLaVA under
varying retain rates. We use 1,000 samples from the GSM8K dataset for Llama and 1,000 samples
from OKVQA for LLaVA. Each sample corresponds to a unique attention graph, and for each graph,
attention flows are computed between 1,000 token pairs. The total computation time is used to derive
the speed-up ratios.

As previously discussed, for a Transformer with L layers and N tokens per layer, the computational
complexity of attention flow computation is O(L2.5N3). With Layer Compression, retaining only
L/R layers reduces the complexity to O(L2.5N3/R2.5), achieving a theoretical speed-up of R2.5.
The empirical results in Figures 2 and 3 generally align with this analysis. For instance, with a 50%
retain rate, Llama’s computation time is halved-down from 0.55 seconds per case. When compressed
to just three layers, FlowPrune requires only 5.31% of the original attention flow time. On LLaVA,
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FlowPrune achieves even greater gains, reducing computation time to approximately 35% of the
original at a 50% retain rate.
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Figure 2: Speed-up Ratio. The horizon-
tal axis shows the retain rate (fraction
of layers retained), and the vertical axis
shows the average time cost normalized
by the original Attention Flow runtime,
measured over 100 token pairs.

Interestingly, the two models exhibit different speed-up
patterns. LLaVA’s performance closely matches the the-
oretical expectation, whereas Llama demonstrates a more
linear reduction in average computation time. This dis-
crepancy may be attributed to differences in the attention
weight distributions across the two models. Llama may re-
tain more edges during Layer Compression, which causes
its time cost to decrease more slowly than the theoretical
estimate.

While compressing the attention graph introduces some
overhead, this step is performed only once per graph. All
subsequent token-pair computations benefit from the re-
duced graph size. Figure 3 shows the average per-pair
computation time — including compression overhead —
as the number of token pairs per graph increases. Due
to longer input sequences (approximately 500 tokens),
LLaVA has a higher average time cost than Llama (typ-
ically around 100 tokens). Nonetheless, the compression overhead is amortized as the number of
token pairs increases. For a 50% retain rate, the overhead becomes negligible after computing more
than 6 cases for Llama and 2 cases for LLaVA.
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(c) Qwen
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(d) QwenVL

Figure 3: Comparison of Average Overhead. The horizontal axis indicates the number of token
pairs computed by per attention map. The vertical axis shows the average time cost per token pair,
including the overheads. Each curve corresponds to a specific compression setting. The black dashed
line denotes the average computational time of the original (uncompressed) Attention Flow.

Approximation Error. Figures 4 provide detailed analyses of how absolute and relative errors vary
with the true attention flow values. Since relative error fluctuates with both retain rates and original
attention flow values, we present results for all retain rates in Figures 4b and 4e, and separately report
results for retain rates of 30% and above in Figures 4c and 4f.

We observe that both absolute and relative errors decrease as the original attention flow approaches
1. This is due to two properties: (1) Since the sum of all edge capacities from a source node in an
attention graph is 1, the maximum flow cannot exceed 1. Edge Pruning only reduces edges originating
from a node, so this property remains valid for the compressed graph. (2) In Layer Compression,
newly added edge capacities are set to 1, which can be regarded as positive infinity in the attention
graph, while connectivity between remaining nodes stays unchanged. This ensures that the maximum
flow from the compressed graph increases, not decreases.

Both properties constrain the errors when the original attention flow is close to 1, leading to reduced
approximation errors. This property is generally favorable, as we are primarily concerned with the
top source–destination pairs with the highest attention flow values. These pairs indicate the highest
attention weights between token pairs, which are the focus of conventional attention visualization.
The small error in this range, as observed with FlowPrune, enhances confidence in its results.

Top-K Token Retention. Many studies use attention flow methods focus on the top-K token pairs
with the highest attention flow. To address this, we use the Top-K Token Retention metric to calculate
the Jaccard overlap (IOU) of these token pairs. Figure 5 shows the results. In Figure 5, the horizontal
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Figure 4: Approximation Error vs. True Attention Flow Value. Each subplot shows the approxi-
mation error (either absolute or relative) between FlowPrune and the original Attention Flow. The
horizontal axis denotes the original attention flow values, and the vertical axis shows the average
error magnitude for all token pairs falling within each value. Subplots (a)–(c) show the absolute and
relative errors for Llama, and subplots (d)–(f), (g)-(i),(j)-(l) show the same for LLaVA, Qwen and
QwenVL. RR represents retain rates.
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Figure 5: Top-K Token Retention. We evaluate the overlap between the top-K tokens selected
by FlowPrune and those selected by the original Attention Flow method for different values of K.
Retention is measured using the Jaccard index (IoU), defined as IoU = |A∩B|

|A∪B| . Higher values indicate
better preservation of salient attention targets.

axis represents the retain rate, defined as the ratio of layers in the compressed attention map to
those in the original map. A lower retain rate corresponds to fewer remaining layers. The vertical
axis shows Jaccard overlap values. The leftmost point represents the case where the retain rate is
minimal, corresponding to compressing the attention map to three layers. Even in this case, the Top-K
Token Retention remains around 0.90, demonstrating that our approximation algorithm maintains
high fidelity for the top token pairs. This result aligns with findings from the Approximation Error
experiment, which examined error variation with original attention flow values.
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Figure 6: First Rank Divergence. This
metric records the first position in the
sorted top-K token list where the approx-
imation diverges from the original out-
put, normalized by the sequence length.

First Rank Divergence. Figure 6 shows the results of
this metric for two models. The curves depict the average
First Rank Divergence (FRD) across all attention map
samples under varying retain rates. When the retain rate
is restricted to 50%, the average FRD of both models
exceeds 0.4. Notably, even at the highest compression
level (retaining only 3 layers), the average FRD of Llama
is close to 0.2, while the average FRD of LLaVA exceeds
0.3. This result is fully sufficient for practical applications
with lower precision requirements. While the results at a
retain rate 50% are adequate for tasks with higher precision
demands.

4.2 Application Scenarios

We use two application scenarios in both NLP and Vi-
sion, which are Paraphrasing Verification and Vision
Transformer (ViT) Heatmaps, to show the practicality
of FlowPrune. Paraphrase Verification [22] involves determining whether two sentences express
the same or similar meaning. Attention Flow offers a visual analytics framework for examining
self-attention patterns, illustrating how fine-tuning sharpens attention toward task-relevant details. In
ViT, attention heatmaps depict the spatial distribution of attention weights, highlighting the model’s
focus regions during inference.

4.2.1 Paraphrasing Verification

In this task, we need to trace the attention flow from the classification token in the final layer backward
through the network, across layers and attention heads. By comparing attention patterns between
pre-trained and fine-tuned models, it reveals how fine-tuning sharpens attention on task-relevant
distinctions, such as phrases that differentiate sentence meaning. This visual comparison offers
valuable insights into the model’s reasoning and decision-making process. Here, we replace the
original Attention Flow algorithm with FlowPrune and compare its results against those of Attention
Flow and Attention Rollout, demonstrating the practical efficiency and effectiveness of FlowPrune.

In this case, we implement the experiments on MRPC (Microsoft Research Paraphrase Corpus) [40]
dataset with a 12-layer BERT model, which asks the model to determine whether two sentences have
the same meaning. We compare the results of FlowPrune and Attention Rollout with the original
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Table 1: Max-n Overlap for Paraphrasing Verification. FP represents Flowprune and AR represents
Attention Rollout.(Mean ± SE)

Max-n FP Pretrained AR Pretrained FP Fine-tuned AR Fine-tuned
n = 3 98.50± 0.86% 63.40± 2.58% 95.00± 1.50% 84.50± 2.32%
n = 5 97.93± 1.19% 84.71± 1.83% 92.50± 2.26% 76.62± 1.93%
n = 10 97.69± 1.33% 66.38± 1.58% 91.45± 2.58% 70.85± 1.56%
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Figure 7: Paraphrasing Verification Example. Visualization of attention flow results across
three methods—FlowPrune, original Attention Flow, and Attention Rollout—on a sentence-pair
classification task. The two input sentences are: (1) “The pound also made progress against the
dollar, reached fresh three-year highs at $1.6789.” and (2) “The British pound flexed its muscle
against the dollar, last up 1 percent at $1.6672.”

Attention Flow in both pre-trained and fine-tuned models. In this task, we primarily focus on the
attention metrics from tokens in the initial layer pointing to the [cls] token in the final layer. The
tokens with the highest computed attention metrics are considered the most important.

We calculate the Max-n Overlap between the most important tokens obtained using Flow-
Prune/Attention Rollout and the original Attention Flow. For FlowPrune, we use a retain rate
of 67%, reducing the original 12-layer attention map to 8 layers. Similar to the Top-K Token Re-
tention, we also use the Jaccard overlap (IOU) as the corresponding metric. We take n = 3, 5, 10
and calculate the corresponding results. Table 1 shows the results, where we can see that FlowPrune
has higher Max-n Overlap with original Attention Flow than Attention Rollout, proving FlowPrune
is a better approximation than Attention Rollout in analyzing the model behaviour. We also show
one example from MPRC in Figure 7. We find that the analysis results from FlowPrune are almost
identical to those from the original Attention Flow, and both are capable of identifying the focal
points of attention, effectively distinguishing between pretrained and fine-tuned models. In contrast,
the Attention Rollout method is limited by its inherent flaws, resulting in inferior outcomes compared
to the other two analysis methods.

4.2.2 Vision Transformer (ViT) Heatmaps

When conducting an attention interpretability analysis for the ViT model, we may be interested in
understanding the attention relevance of a specific token to all other tokens to construct an attention
heatmap. To test whether FlowPrune is useful here, we use the Deit-Small [41] model and implement
the experiments on ILSVRC2012 [42], an image classification dataset. Similarly, we primarily focus
on the attention metrics from tokens in the initial layer pointing to the [cls] token in the final layer,
and compare the relevant analysis results of Attention Flow, FlowPrune, and Attention Rollout. For
FlowPrune, we use a retain rate of 25%, reducing the 12-layer attention map to 3 layers.
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(a) Original Image (b) Attention Flow (c) FlowPrune (d) Attention Rollout

Figure 8: ViT Heapmap Example. We visualize the attention attribution maps produced by three
methods — FlowPrune, the original Attention Flow and Attention Rollout — on a ViT model. All
heatmaps correspond to the [CLS] token and show which regions of the image contribute most to the
model’s final prediction.

Table 2: Max-n Overlap for ViT Heatmap. We
report the top-n region overlap between FlowPrune
(FP), Attention Rollout (AR), and the reference
attention map computed via full Attention Flow.
(Mean ± SE)

Max-n FP AR

n = 10 100.0± 0.00% 28.18± 3.06%
n = 20 99.53± 0.12% 50.84± 3.74%
n = 30 99.59± 0.11% 78.52± 3.43%

Like Paraphrasing Verification, we calculate the
Max-n Overlap between Original Attention
Flow and FlowPrune/Attention Rollout. Con-
sidering that ViT has more input tokens, We
take n = 10, 20, 30 and get results in Table 2.
We can see FlowPrune has a much higher Max-
n Overlap with the original Attention Flow than
Attention Rollout, indicating FlowPrune is a bet-
ter approximation than Attention Rollout in con-
structing the heatmaps for ViT. Figure 8 presents
an example of a ViT heatmap, which was gener-
ated using three different methods. Deit-Small model utilizes the [CLS] token for image classification
tasks. Therefore, we focus on the attention metrics from all tokens to the [CLS] token to construct
heatmaps. The analysis results of FlowPrune once again align with the original Attention Flow, while
the Attention Rollout method, due to its inherent flaws, fails to effectively analyze the propagation of
attention.

5 Conclusion and Limitation

In this work, we propose FlowPrune, a novel framework to accelerate attention flow computation,
aiming to facilitate the analysis of Transformer-based networks. Motivated by the Max-Flow Min-Cut
Theorem, FlowPrune leverages two structural properties of Transformers: the use of the softmax
operation in attention computation and the strictly layered architecture of attention graphs. FlowPrune
introduces two key components: Edge Pruning, which removes insignificant attention edges, and
Layer Compression, which discards layers with minimal contributions to the flow. Together, these
techniques effectively reduce the scale of the attention graph while preserving the fidelity of attention
flow analysis. Our method provides a practical and efficient solution for scalable interpretability in
large Transformer models, and holds promise for guiding further analysis and application of Large
Language Models [43] [44] [45].

While FlowPrune effectively accelerates attention flow computation with minimal loss in accuracy
for most cases, its relative error tends to correlate with the magnitude of the original attention flow
values. In particular, when the original flow value is very small, the relative error introduced by
FlowPrune can become excessively large, which may render the results unreliable for interpretability
in those regions. This suggests that caution should be exercised when analyzing low-magnitude flows,
as the pruning process may disproportionately distort their values.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Flowprune algorithm introduced in the abstract and the introduction is
presented in Section 3. The experiments are described in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we introduce the limitations of the Flowprune algorithm.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The time complexity of the attention flow using the HLPP algorithm is
analyzed in Section 3. The acceleration in time due to the compression ratio is analyzed in
Section 4.1.2 under Computational Cost (Time) part.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4, we have provided all the information needed to reproduce the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided open access to our code. the code link is provided in
abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details necessary to understand the results
in Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The models we used are relatively large and the datasets are extensive. How-
ever, the random seed settings for all experiments are identical to ensure the fairness of the
comparisons.

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the information required to reproduce the experiments is mentioned at the
beginning of Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and complied with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets we used have been properly
credited. These can be verified in Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Materials

To provide additional qualitative evidence for the effectiveness of the proposed FlowPrune framework,
this appendix presents five supplementary examples for both Paraphrasing Verification and Vision
Transformer (ViT) Heatmaps Analysis in Section 4. We also included an application scenario
experiment on Question Answer Verification [22], which is also based on BERT. In addition, we
provide a detailed description of the dynamic programming algorithm used to determine which
attention layers to compress in FlowPrune.

A.1 Paraphrasing Verification

To further validate the effectiveness of FlowPrune in interpretability tasks, we conduct additional
experiments on the MRPC dataset for paraphrasing verification. This task involves determining
whether two input sentences convey the same meaning. For example, the sentence pair [CLS] It
affected earnings per share by a penny. [SEP] The company said this impacted earnings by a penny a
share. [SEP] is labeled as a paraphrase (positive example), since both sentences express semantically
equivalent content.

In this setting, we compute attention flow values between token pairs from both sentences using
FlowPrune, and compare the results with those obtained from the original Attention Flow and
Attention Rollout algorithms. The analysis is performed using both the pre-trained and fine-tuned
BERT models. FlowPrune is applied to reduce the computational complexity while preserving
essential interpretability signals.

Figures 9 through 13 show five representative examples of the resulting attention heatmaps. As
demonstrated, FlowPrune consistently aligns with the original Attention Flow in highlighting key
semantic alignments and distinguishing features between the sentences. Notably, the differences
between pre-trained and fine-tuned models are also clearly reflected in the FlowPrune heatmaps,
showcasing its ability to retain meaningful interpretability insights under compression.
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Figure 9: Paraphrasing Verification Example 1. The two input sentences are: (1) “The driver ,
Eugene Rogers , helped to remove children from the bus , Wood said .” and (2) “At the accident scene
, the driver was " covered in blood " but helped to remove children , Wood said .”
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Figure 10: Paraphrasing Verification Example 2. The two input sentences are: (1) “Cooley said he
expects Muhammad will similarly be called as a witness at a pretrial hearing for Malvo .” and (2)

“Lee Boyd Malvo will be called as a witness Wednesday in a pretrial hearing for fellow sniper suspect
John Allen Muhammad .”
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Figure 11: Paraphrasing Verification Example 3. The two input sentences are: (1) “" If we don ’t
march into Tehran , I think we will be in pretty good shape , " he said .” and (2) “" As long as we don

’t march on Tehran , I think we are going to be in pretty good shape , " he said .”
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Figure 12: Paraphrasing Verification Example 4. The two input sentences are: (1) “Sales for the
quarter beat expectations , rising 37 percent year-on-year to 1.76 billion euros .” and (2) “Sales rose
37 per cent year-on-year to 1.76bn , beating expectations .”
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Figure 13: Paraphrasing Verification Example 5. The two input sentences are: (1) “If the MTA ’s
appeal to a higher court is successful , the $ 2 bus and subway base fare won ’t be rolled back .” and
(2) “If the MTA ’s appeal is successful , the $ 2 bus and subway base fare won ’t change .”

A.2 Vision Transformer (ViT) Heatmaps

To further evaluate the utility of FlowPrune in visual interpretability tasks, we provide additional
examples using the Vision Transformer (ViT) model. Specifically, we apply FlowPrune to the
DeiT-Small[41] model on the ILSVRC2012[42] image classification dataset. The aim is to generate
attention heatmaps that reflect the relevance between each input image token and the [CLS] token,
which is responsible for final classification decisions. In this setting, we compare three interpretability
methods: FlowPrune, the original Attention Flow, and Attention Rollout.
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Figures 14 through 18 illustrate five representative examples of attention heatmaps produced by these
three methods. As shown in the visualizations, FlowPrune yields results that closely match those
of the full Attention Flow, successfully highlighting semantically relevant regions in the image. In
contrast, Attention Rollout generates more diffuse and less informative maps, often failing to localize
key visual areas.

These results demonstrate that FlowPrune not only retains the interpretability of the original attention
mechanism but also achieves substantial computational savings, making it a practical and efficient
alternative for ViT visualization.

(a) Original Image (b) Attention Flow (c) FlowPrune (d) Attention Rollout

Figure 14: ViT Heapmap Example 1.

(a) Original Image (b) Attention Flow (c) FlowPrune (d) Attention Rollout

Figure 15: ViT Heapmap Example 2.

(a) Original Image (b) Attention Flow (c) FlowPrune (d) Attention Rollout

Figure 16: ViT Heapmap Example 3.

(a) Original Image (b) Attention Flow (c) FlowPrune (d) Attention Rollout

Figure 17: ViT Heapmap Example 4.
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(a) Original Image (b) Attention Flow (c) FlowPrune (d) Attention Rollout

Figure 18: ViT Heapmap Example 5.

A.3 Question Answer Verification

The Question Answer Verification (QAV) experiment aims to investigate how fine-tuning affects
BERT’s ability to validate whether a given answer correctly addresses a question. Using the QNLI [40]
dataset from GLUE, the study fine-tunes a BERT-base model and employs Attention Flows to analyze
changes in the model’s attention mechanisms. The results show that fine-tuning enables the model to
better focus on task-relevant details, such as key connecting words and phrases between the question
and answer, thereby improving its accuracy in determining the validity of the answer.

In this experiment, we continue to utilize a 12-layer BERT model. We aim to compare the outcomes
of FlowPrune and Attention Rollout with those of the original Attention Flow, both in pre-trained
and fine-tuned models. The primary focus of this task is the attention metrics from tokens in the
initial layer that point to the [cls] token in the final layer. Tokens with the highest computed attention
metrics are deemed the most significant.

Table 3: Max-n Overlap for Question Answer Verification. FP represents Flowprune and AR
represents Attention Rollout.(Mean ± SE)

Max-n FP Pretrained AR Pretrained FP Fine-tuned AR Fine-tuned
n = 3 98.05± 1.11% 64.68± 2.91% 96.10± 1.54% 85.71± 2.59%
n = 5 97.31± 1.54% 84.48± 2.14% 94.16± 2.31% 76.31± 2.21%
n = 10 97.01± 1.72% 66.50± 1.88% 93.42± 2.60% 71.03± 1.76%
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Figure 19: Question Answer Verification. Visualization of attention flow results across three
methods—FlowPrune, original Attention Flow, and Attention Rollout.

We quantify the Max-n Overlap between the most salient tokens derived via FlowPrune/Attention
Rollout and the original Attention Flow. For FlowPrune, a retain rate of 67% is employed, thereby
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condensing the original 12-layer attention map into 8 layers. Analogous to the Top-K Token Retention
method, the Jaccard overlap (IOU) is utilized as the evaluation metric. The results are presented in
Table 3. Additionally, an illustrative example from the MPRC dataset is depicted in Figure 19.

A.4 Layer Selection via Dynamic Programming for FlowPrune

To identify which attention layers to compress in the FlowPrune framework, we formulate the
selection process as a dynamic programming (DP) problem that aims to preserve critical regions in
the attention flow graph while reducing computational cost.

As described in the main text, the attention structure of Transformers forms a strictly layered directed
acyclic graph (DAG), in which each token in layer i attends to all tokens in layer i + 1. This
layered property enables layer-wise flow analysis and facilitates compression strategies based on
edge removal and reconnection.

To estimate the relative importance of each layer, we apply a sampling-based heuristic inspired by
the Max-Flow Min-Cut Theorem. Specifically, we sample multiple source-to-sink paths through the
attention graph and treat the lowest-capacity edge on each path as a potential min-cut edge. For each
intermediate layer i, we count the number ai of such edges it contains. A lower count indicates that
the layer contributes less to the overall minimum cut and is thus a better candidate for compression.

Given these layer-wise scores {a1, a2, . . . , aL−2}, where the first and last layers are excluded from
compression for structural consistency, our goal is to select N layers to retain (i.e., not compress)
such that the total number of potential min-cut edges in the retained layers is maximized.

We define the dynamic programming state as:

• f(i, j, 0): the maximum total number of potential min-cut edges when the first i layers are
reduced to j layers, and the i-th layer is compressed.

• f(i, j, 1): the same, but the i-th layer is retained.

The recurrence relations are:

f(i, j, 0) = max (f(i− 1, j, 0), f(i− 2, j − 1, 1))

f(i, j, 1) = max (f(i− 1, j − 1, 0), f(i− 1, j − 1, 1)) + ai

The boundary conditions are:

f(0, 0, 0) = −∞, f(0, 0, 1) = 0

f(i, j, 0) = −∞ if i ≤ j

f(i, j, 1) = −∞ if i < j

f(i, 1, 0) = 0 for i > 1

The optimal value is given by:

max (f(L,N, 0), f(L,N, 1))

where L is the total number of intermediate layers (excluding the first and last).

To reconstruct the compression scheme, we backtrack from the optimal DP state and trace the
transition path:

• If the current state is (l, n, 0), we move to the maximum of f(l−1, n, 0) or f(l−2, n−1, 1),
and record that layer l is compressed.

• If the current state is (l, n, 1), we move to the maximum of f(l−1, n−1, 0) or
f(l−1, n−1, 1), and record that layer l is retained.

This dynamic programming approach ensures that layers essential to maintaining attention flow—
those with higher concentrations of potential min-cut edges—are preserved. Meanwhile, layers with
relatively minor contributions are removed.
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