
Published as a conference paper at ICLR 2021

INCREMENTAL FEW-SHOT LEARNING VIA VECTOR
QUANTIZATION IN DEEP EMBEDDED SPACE

Kuilin Chen
Department of Mechanical and Industrial Engineering
University of Toronto
Toronto, Ontario, Canada
kuilin.chen@mail.utoronto.ca

Chi-Guhn Lee
Department of Mechanical and Industrial Engineering
University of Toronto
Toronto, Ontario, Canada
cglee@mie.utoronto.ca

ABSTRACT

The capability of incrementally learning new tasks without forgetting old ones
is a challenging problem due to catastrophic forgetting. This challenge becomes
greater when novel tasks contain very few labelled training samples. Currently,
most methods are dedicated to class-incremental learning and rely on sufficient
training data to learn additional weights for newly added classes. Those methods
cannot be easily extended to incremental regression tasks and could suffer from
severe overfitting when learning few-shot novel tasks. In this study, we propose
a nonparametric method in deep embedded space to tackle incremental few-shot
learning problems. The knowledge about the learned tasks is compressed into a
small number of quantized reference vectors. The proposed method learns new
tasks sequentially by adding more reference vectors to the model using few-shot
samples in each novel task. For classification problems, we employ the nearest
neighbor scheme to make classification on sparsely available data and incorpo-
rate intra-class variation, less forgetting regularization and calibration of reference
vectors to mitigate catastrophic forgetting. In addition, the proposed learning vec-
tor quantization (LVQ) in deep embedded space can be customized as a kernel
smoother to handle incremental few-shot regression tasks. Experimental results
demonstrate that the proposed method outperforms other state-of-the-art methods
in incremental learning.

1 INTRODUCTION

Incremental learning is a learning paradigm that allows the model to continually learn new tasks on
novel data, without forgetting how to perform previously learned tasks (Cauwenberghs & Poggio,
2001; Kuzborskij et al., 2013; Mensink et al., 2013). The capability of incremental learning becomes
more important in real-world applications, in which the deployed models are exposed to possible
out-of-sample data. Typically, hundreds of thousands of labelled samples in new tasks are required
to re-train or fine-tune the model (Rebuffi et al., 2017). Unfortunately, it is impractical to gather
sufficient samples of new tasks in real applications. In contrast, humans can learn new concepts
from just one or a few examples, without losing old knowledge. Therefore, it is desirable to develop
algorithms to support incremental learning from very few samples.

While a natural approach for incremental few-shot learning is to fine-tune part of the base model
using novel training data (Donahue et al., 2014; Girshick et al., 2014), the model could suffer from
severe over-fitting on new tasks due to a limited number of training samples. Moreover, simple
fine-tuning also leads to significant performance drop on previously learned tasks, termed as catas-
trophic forgetting (Goodfellow et al., 2014). Recent attempts to mitigate the catastrophic forgetting
are generally categorized into two streams: memory relay of old training samples (Rebuffi et al.,
2017; Shin et al., 2017; Kemker & Kanan, 2018) and regularization on important model parameters
(Kirkpatrick et al., 2017; Zenke et al., 2017). However, those incremental learning approaches are
developed and tested on unrealistic scenarios where sufficient training samples are available in novel
tasks. They may not work well when the training samples in novel tasks are few (Tao et al., 2020b).
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To the best of our knowledge, the majority of incremental learning methodologies focus on classi-
fication problems and they cannot be extended to regression problems easily. In class-incremental
learning, the model has to expand output dimensions to learn N ′ novel classes while keeping the
knowledge of existing N classes. Parametric models estimate additional classification weights for
novel classes, while nonparametric methods compute the class centroids for novel classes. In com-
parison, output dimensions in regression problems do not change in incremental learning as neither
additional weights nor class centroids are applicable to regression problems.

Besides, we find that catastrophic forgetting in incremental few-shot classification can be attributed
to three reasons. First, the model is biased towards new classes and forgets old classes because the
model is fine-tuned on new data only (Hou et al., 2019; Zhao et al., 2020). Meanwhile, the prediction
accuracy on novel classes is not good due to over-fitting on few-shot training samples. Second,
features of novel samples could overlap with those of old classes in the feature space, leading to
ambiguity among classes in the feature space. Finally, features of old classes and classification
weights are no longer compatible after the model is fine-tuned with new data.

In this paper, we investigate the problem of incremental few-shot learning, where only a few train-
ing samples are available in new tasks. A unified model is learned sequentially to jointly recognize
all classes or regression targets that have been encountered in previous tasks (Rebuffi et al., 2017;
Wu et al., 2019). To tackle aforementioned problems, we propose a nonparametric method to han-
dle incremental few-shot learning based on learning vector quantization (LVQ) (Sato & Yamada,
1996) in deep embedded space. As such, the adverse effects of imbalanced weights in a paramet-
ric classifier can be completely avoided (Mensink et al., 2013; Snell et al., 2017; Yu et al., 2020).
Our contributions are three fold. First, a unified framework is developed, termed as incremental
deep learning vector quantization (IDLVQ), to handle both incremental classification (IDLVQ-C)
and regression (IDLVQ-R) problems. Second, we develop intra-class variance regularization, less
forgetting constraints and calibration factors to mitigate catastrophic forgetting in class-incremental
learning. Finally, the proposed methods achieve state-of-the-art performance on incremental few-
shot classification and regression datasets.

2 RELATED WORK

Incremental learning: Some incremental learning approaches rely on memory replay of old exem-
plars to prevent forgetting previously learned knowledge. Old exemplars can be saved in memory
(Rebuffi et al., 2017; Castro et al., 2018; Prabhu et al., 2020) or sampled from generative models
(Shin et al., 2017; Kemker & Kanan, 2018; van de Ven et al., 2020). However, explicit storage of
training samples is not scalable if the number of classes is large. Furthermore, it is difficult to train
a reliable generative model for all classes from very few training samples. In parallel, regularization
approaches do not require old exemplars and impose regularization on network weights or outputs
to minimize the change of parameters that are important to old tasks (Kirkpatrick et al., 2017; Zenke
et al., 2017). To avoid quick performance deterioration after learning a sequence of novel tasks
in regularization approaches, semantic drift compensation (SDC) is developed by learning an em-
bedding network via triplet loss (Schroff et al., 2015) and compensates the drift of class centroids
using novel data only (Yu et al., 2020). In comparison, IDLVQ-C saves only one exemplar per class
and uses saved exemplars to regularize the change in feature extractor and calibrate the change in
reference vectors.

Few-shot learning: Few-shot learning attempts to obtain models for classification or regression
tasks with only a few labelled samples. Few-shot models are trained on widely-varying episodes of
fake few-shot tasks with labelled samples drawn from a large-scale meta-training dataset (Vinyals
et al., 2016; Finn et al., 2017; Ravi & Larochelle, 2017; Snell et al., 2017; Sung et al., 2018).
Meanwhile, recent works attempt to handle novel few-shot tasks while retraining the knowledge of
the base task. These methods are referred to as dynamic few-shot learning (Gidaris & Komodakis,
2018; Ren et al., 2019a; Gidaris & Komodakis, 2019). However, dynamic few-shot learning is
different from incremental few-shot learning, because they rely on the entire base training dataset
and an extra meta-training dataset during meta-training. In addition, dynamic few-shot learning does
not accumulate knowledge for multiple novel tasks sequentially.

Incremental few-shot learning: Prior works on incremental few-shot learning focus on classifica-
tion problems by computing the weights for novel classes in parametric classifiers, without iterative
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gradient descent. For instance, the weights of novel classes can be imprinted by normalized pro-
totypes of novel classes, while keeping the feature extractor fixed (Qi et al., 2018). Since novel
weights are computed only with the samples of novel classes, the fixed feature extractor may not be
compatible with novel classification weights. More recently, neural gas network is employed to con-
struct an undirected graph to represent knowledge of old classes (Tao et al., 2020b;a). The vertices
in the graph are constructed in an unsupervised manner using competitive Hebbian learning (Fritzke,
1995), while the feature embedding is fixed. In contrast, IDLVQ learns both feature extractor and
reference vectors concurrently in a supervised manner.

3 BACKGROUND

3.1 INCREMENTAL FEW-SHOT LEARNING

In this paper, incremental few-shot learning is studied for both classification and regression tasks.
For classification tasks, we consider the standard class-incremental setup in literature. After the
model is trained on a base task (t = 1) with sufficient data, the model learns novel tasks sequentially.
Each novel task contains a number of novel classes with only a few training samples per class.
Learning a novel task (t > 1) is referred to as an incremental learning session. In task t, we have
access only to training data Dt in the current task and previously saved exemplars (one exemplar
per class in this study). Each task has a set of classes Ct = {ct1, ..., ctnt}, where nt is the number
of classes in task t. In addition, it is assumed that there is no overlap between classes in different
tasks Ct

⋂
Cs = ∅ for t 6= s. After an incremental learning session, the performance of the model

is evaluated on a test set that contains all previously seen classes C =
⋂
i C

i. Note that our focus is
not multi-task scenario, where a task ID is exposed to the model during test phase and the model is
only required to perform a given task one time (van de Ven & Tolias, 2019). Our model is evaluated
in a task-agnostic setting, where task ID is not exposed to the model at test time.

For regression tasks, we follow a similar setting with a notable difference that the target is real-
valued y ∈ R. In addition, the target values in different tasks do not have to be mutually exclusive,
unlike the class-incremental setup.

3.2 LEARNING VECTOR QUANTIZATION

Traditional nonparametric methods, such as nearest neighbors, represent knowledge and make pre-
dictions by storing the entire training set. Despite the simplicity and effectiveness, they are not
scalable to a large-scale base dataset. Typically, incremental learning methods are only allowed to
store a small number of exemplars to preserve the knowledge of previously learned tasks. However,
randomly selected exemplars may not well present the knowledge in old tasks. LVQ is a classical
data compression method that represents the knowledge through a few learned reference vectors
(Sato & Yamada, 1996; Seo & Obermayer, 2003; Biehl et al., 2007). A new sample is classified to
the same label as the nearest reference vector in the input space. LVQ has been combined with deep
feature extractors as an alternative to standard neural networks for better interpretability (De Vries
et al., 2016; Villmann et al., 2017; Saralajew et al., 2018). The combinations of LVQ and deep
feature extractors have been applied to natural language processing (NLP), facial recognition and
biometrics (Variani et al., 2015; Wang et al., 2016; Ren et al., 2019b; Leng et al., 2015). We notice
that LVQ is a nonparametric method which is well suited for incremental few-shot learning because
the model capacity grows by incorporating more reference vectors to learn new knowledge. For
example, incremental learning vector quantization (ILVQ) has been developed to learn classification
models adaptively from raw features (Xu et al., 2012). In this study, we present the knowledge by
learning reference vectors in the feature space through LVQ and adapt them in incremental few-shot
learning. Compared with ILVQ by Xu et al. (2012), our method does not rely on predefined rules to
update reference vectors and can be learned along with deep neural networks in an end-to-end fash-
ion. Besides, our method uses a single reference vector for each class, while ILVQ automatically
assigns different numbers of prototypes for different classes.
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4 METHODOLOGY

4.1 INCREMENTAL DEEP LEARNING VECTOR QUANTIZATION

The general framework of IDLVQ for both classification and regression can be derived from a Gaus-
sian mixture perspective (Ghahramani & Jordan, 1994), with a simplified covariance structure and
supervised deep representation learning. In the base dataset (t = 1), a raw input x is projected into a
feature space F1 by a deep neural network fθ1 , where θ1 denotes the parameters in neural networks.
In addition, N1 reference vectors M1 = {m1

1, ...,m
1
N1} are placed in the feature space F1, which

can be learned to capture the representation of the base dataset. More reference vectors will be added
incrementally while learning novel tasks. The marginal distribution p(fθ1(x)) of feature vector can
be described by a Gaussian mixture model p(fθ1(x)) =

∑N1

i=1 p(i)p(fθ1(x)|i) of N1 components,
where the prior p(i) = 1/N1 and the component distribution p(fθ1(x)|i) is Gaussian. By assuming
that each component distribution p(fθ1(x)|i) is isotropic Gaussian centered at m1

i with the same
covariance, the posterior distribution of a component given the input is

p1(i|x) = κ(fθ1(x),m
1
i )∑N1

j=1 κ(fθ1(x),m
1
j )
, (1)

where κ(fθ1(x),m1
i ) = exp(−‖fθ1(x)−m1

i ‖2/γ) is a Gaussian kernel and γ is a scale factor. The
conditional expectation of the output from a Gaussian mixture is ŷ =

∑N1

i=1 p
1(i|x)q1i , where q1i is

the reference target associated with reference vector m1
i . In classification problems, q1i is either 0 or

1 indicating whether m1
i and x have the same label. Since each reference vector is assigned to a class

at initialization, q1i is fixed and does not require learning. Meanwhile, q1i in regression problems
is real-valued and has to be learned. The weights in neural networks θ1, reference vectors M1,
reference targets q1i (in regression problems only) and the scale factor γ are learned concurrently by
minimizing a loss function between the true label y and the predicted label ŷ.

The proposed IDLVQ is a nonparametric method as it makes prediction based on similarity to ref-
erence vectors, instead of using any regression or classification weights. The capacity of the model
grows naturally by adding more reference vectors to learn novel tasks, while the old knowledge is
preserved in existing reference vectors.

4.2 INCREMENTAL DEEP LEARNING VECTOR QUANTIZATION FOR CLASSIFICATION

For classification problems, one reference vector is assigned to each class in our study. Thus, ŷ rep-
resents the predicted probability that an input belongs to a class. The model can be trained to classify
data correctly by minimizing the cross-entropy loss LCE between the predicted probability ŷ and
the true label y. Although the cross-entropy loss encourages separability of features in base classes,
it does not guarantee compact intra-class variation in the feature space. Specifically, in an incremen-
tal learning session, features of novel classes could overlap with those of previously learned classes.
As a result, the overall classification accuracy could deteriorate after incremental learning sessions.
A desirable feature embedding leaves large margin between classes to mitigate overlap in features
across old and new classes. Inspired by center loss (Wen et al., 2016) to enhance discriminative
capability in facial recognition, a regularization term on intra-class distance to reference vectors is
added to get compact intra-class variation.

Lintra =
∑

∀(x,y),y=i

∥∥fθ1(x)−m1
i

∥∥2 (2)

As such, fθ1(x) is forced to stay close to the reference vector with the same label and naturally
moves away from other reference vectors. Consequently, features of new classes are more likely
to lie in the margin between old classes to mitigate ambiguity in features across different classes.
The total loss in training the base task is given by L = LCE + λintraLintra, where λintra is a
hyper-parameter to control the weight for intra-class variation loss. The total loss is differentiable
w.r.t. neural network parameters θ1, reference vectors M1 = {m1

1, ...,m
1
n1} and scaling factor γ.

All parameters in the model can be trained jointly in an end-to-end fashion.

In an incremental session (t > 1), a novel dataset Dt contains nt classes and Kt samples per
class (nt-way Kt-shot). nt new reference vectors are added and each reference vector is initialized
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as the centroid of features in a class mt
i = 1

Kt

∑Kt

k=1 fθt(xk). The new reference vectors along
with the neural network parameters are fine-tuned on Dt to learn new knowledge in task t. To
preserve the knowledge from the old tasks during incremental learning, the model should be updated
only when necessary. Therefore, cross-entropy loss is not used in incremental learning sessions
because it always updates model parameters even if the sample is correctly classified. Let mt

+ be
the reference vector with the correct label and mt

− be the nearest reference vector with a wrong
label. For a training sample (x, y) in Dt, the sample is classified correctly if

∥∥fθt(x)−mt
+

∥∥2 <∥∥fθt(x)−mt
−
∥∥2. In this case, the loss should be 0. When

∥∥fθt(x)−mt
+

∥∥2 > ∥∥fθt(x)−mt
−
∥∥2,

the sample is misclassified. We adapt the margin based loss function LM from De Vries et al. (2016)
with a minor modification

LM = ReLU

(∥∥fθt(x)−mt
+

∥∥2 − ∥∥fθt(x)−mt
−
∥∥2∥∥fθt(x)−mt

+

∥∥2 + ∥∥fθt(x)−mt
−
∥∥2
)
, (3)

where ReLU(·) stands for the rectified linear unit function. The margin based loss leads to slow
training convergence because it only updates two reference vectors one time. However, the adapted
margin based loss is well suited in learning from few-shot samples while avoids unnecessary param-
eter updates.

Features for an old class could deviate away from the corresponding reference vector due to changes
in θt during incremental learning, leading to catastrophic forgetting. A forgetting loss LF is devel-
oped to regularize the drift in the feature space

LF =

Nt−1∑
i=1

‖fθt(x
′

i)− fθt−1(x
′

i)‖2, (4)

where x
′

i is the selected exemplar for class i and N t−1 denotes the total number of classes in the
base task and all previous novel tasks. Note that the exemplar x

′

i for class i ∈ [N t−1, N t] is picked
from Dt whose feature is nearest to mt

i at the end of each learning session. The total loss in the
incremental learning session t is L = LM+λFLF +λintraLintra, where λF and λintra are weights
for forgetting loss and intra-class variation loss, respectively. The total loss is optimized w.r.t. neural
network parameters θt and new reference vectors {mt

Nt−1+1, ...,m
t
Nt}.

The reference vectors for previously learned tasks are not updated by novel data to prevent catas-
trophic forgetting. However, they may not be well suited to represent knowledge and make classi-
fication in the new feature space F t as feature embedding is changed with updated θt. Although
the true optimal location of those reference vectors are difficult to estimate without using the entire
data from all tasks, they can be calculated approximately using the shift in features of exemplars.
Considering that features of an exemplar x

′

i are close to mi in the feature space, the shift of a refer-
ence vector δti in the new feature space can be approximated by the shift of the exemplar’s features
δti = fθt(x

′

i)−fθt−1(x
′

i). Therefore, the reference vectors for previously learned tasks are calibrated
mt
i = mt−1

i + δti , where mt−1
i is the uncalibrated reference vector for class i ∈ [1, N t−1]. A test

sample, which could be from any seen classes, is classified according to the distance to reference
vectors {mt

1, ...,m
t
Nt}. The pseudo code for IDLVQ-C is presented in the appendix.

4.3 INCREMENTAL DEEP LEARNING VECTOR QUANTIZATION FOR REGRESSION

For regression problems, the model is trained to recognize regression targets by the minimizing
mean squared error (MSE) loss LMSE = (y − ŷ)2, where y is the real-valued target in training
dataset. The MSE loss function is differentiable w.r.t. neural network weights, reference vectors and
targets, and scale factor. Therefore, all parameters can be trained jointly in an end-to-end manner.
The proposed IDLVQ-R can also be interpreted as a kernel smoother in deep embedded space.
Compared with traditional kernel smoother, such as Nadaraya-Watson estimator (Nadaraya, 1964),
IDLVQ-R is sparse and hence more scalable as it only relies on a few reference vectors and targets.

In an incremental learning session (t > 1), we have access to data Dt that contains Kt pairs of
training samples (xti, y

t
i). n

t new reference vectors (nt ≤ Kt) along with corresponding targets are
added to the model to learn new knowledge in the novel task t. We randomly select nt samples from
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Dt to initialize reference vectors and targets as follows

mi+Nt−1 = fθ(x
t
i), (5)

qi+Nt−1 = yti , (6)

whereN t−1 is the total number of reference vectors in all previous tasks. The new reference vectors
and targets are fine-tuned by minimizing MSE on Dt while keeping other parameters frozen. After
new reference vectors and targets are fine-tuned with novel data Dt, the model makes prediction by
smoothing targets of all reference vectors

ŷ =

∑Nt

i=1 κ(fθ(x),mi)qi∑Nt

i=1 κ(fθ(x),mi)
, (7)

where N t is the current total number of reference vectors.

5 EXPERIMENTS

We first describe the overall protocols, then we present the results on incremental few-shot classifi-
cation and regression problems.

5.1 INCREMENTAL FEW-SHOT CLASSIFICATION

We empirically evaluate the performance of IDLVQ-C on incremental few-shot classification on
CUB200-2011 (Welinder et al., 2010) and miniImageNet datasets (Vinyals et al., 2016). The dataset
is split into base classes and multiple groups of novel classes. We apply standard data augmentation,
including random crop, horizontal flip and color jitter, on all training images. After each training
session, the model performance is evaluated on a test set, which contains all classes that the model
has been trained on.

CUB dataset is composed of 200 fine-grained bird species with 11,788 images. We split the dataset
into 5894 training images, 2947 validation images and 2947 test images. All images are resized to
224 × 224. In addition, the first 100 classes are chosen as base classes, where all training samples
in base classes are used to train the base model. The remaining 100 classes are treated as novel cat-
egories and split into 10 incremental learning sessions. Each incremental learning session contains
10 novel classes and 5 randomly selected training samples per class (10-way 5-shot).

miniImageNet dataset is a 100-class subset of the original ImageNet dataset (Deng et al., 2009).
Each class contains 500 training images, 50 validation images, and 50 test images. The images
are in RGB format of the size 84 × 84. We choose 60 and 40 classes for base and novel classes,
respectfully. The 40 novel classes are divided into 8 sessions and each session contains 5 novel
classes with 5 randomly selected training samples per class (5-way 5-shot).

ResNet18 (He et al., 2016) is used as the feature extractor for incremental classification problems.
The learning process for each dataset is repeated 10 times and the average test accuracy is reported.
The proposed method is compared with six methods for few-shot class-incremental learning: fine-
turning using Dt, joint training using the entire training set from all encountered classes, iCaRL
(Rebuffi et al., 2017), Rebalancing (Hou et al., 2019), ProtoNet (Snell et al., 2017), incremental
learning vector quantization (ILVQ) (Xu et al., 2012), SDC (Yu et al., 2020), and Imprint (Qi et al.,
2018). Note that ILVQ is applied to the features extracted by neural networks in our experiment.

The incremental few-shot learning results on CUB and miniImageNet are shown in Table 1 and 2,
respectively. Our method outperforms fine-tuning, iCaRL (Rebuffi et al., 2017), and ProtoNet (Snell
et al., 2017) by a large margin. Simply fine-tuning the weights in classifier with few-shot training
samples for novel classes significantly deteriorates the prediction accuracy. Although iCaRL alle-
viates catastrophic forgetting by tuning the model with a mix of old exemplars and novel few-shot
data, the prediction accuracy still drops quickly because iCaRL requires sufficient samples per class
to achieve satisfactory performance. The ProtoNet relies on distance to prototypes (the mean of
features within a class) to make classification but the fixed feature extractor may not be able to well
separate novel classes. ILVQ is slightly better than ProtoNet because prototypes can be learned
adaptively when more classes are available in incremental learning sessions. Some prototypes in
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ILVQ are close to the border of a class, which are more effective than class centroids in ProtoNet.
However, ILVQ does not achieve the best performance because the feature extractor is fixed and
cannot be learned along with the prototypes. IDLVQ-C has a small gain in the first couple of incre-
mental few-shot learning sessions compared with SDC (Yu et al., 2020) and Imprint (Qi et al., 2018).
Similar to ProtoNet, SDC also relies on prototypes to make classification. The performance of SDC
is better than that of ProtoNet because SDC fine-tunes the feature extractor with novel dataset and
compensates the drift in prototypes. However, the compensation for the drift of old-class prototypes
can be less accurate in SDC because it is approximated by samples in novel classes. In parallel,
the imprint method directly computes the normalized classification weights from the average of nor-
malized features within a novel class. The imprint method avoids imbalanced classification weights
and circumvents the overfitting in few-shot class-incremental learning through weight normaliza-
tion. Nevertheless, the fixed feature extractor in the imprint method may not be well suited for novel
classes. In contrast, IDLVQ-C updates the feature extractor only when necessary and compensates
the shift of old reference vectors more accurately using exemplars from old classes. That is why
the gain of IDLVQ-C increases with more incremental few-shot learning sessions. The performance
of SDC, Imprint and IDLVQ-C is better than offline joint training in early sessions of incremen-
tal few-shot learning. Offline joint training may not result in oracle performance due to extremely
imbalanced samples between base classes and novel classes.

Table 1: Prediction accuracy on CUB all classes using the 10-way 5-shot incremental setting.
Method

sessions

1 2 3 4 5 6 7 8 9 10 11

Fine-tune 77.30 46.23 34.71 25.35 23.16 20.65 16.21 13.32 11.98 11.17 10.76

Joint train 77.30 73.28 68.80 65.34 63.75 62.00 60.81 59.71 59.06 58.69 58.23
iCaRL (Rebuffi et al., 2017) 77.30 57.18 54.67 48.11 40.76 36.85 33.12 30.42 28.22 26.84 25.23

Rebalancing (Hou et al., 2019) 77.30 64.53 56.14 47.29 38.92 34.39 31.04 27.93 27.12 24.46 23.61

ProtoNet (Snell et al., 2017) 77.30 69.76 66.01 62.29 59.58 57.10 55.13 54.09 52.40 51.65 50.36

ILVQ (Xu et al., 2012) 77.30 71.50 66.79 62.71 60.20 57.84 55.27 55.06 52.42 51.72 50.47

SDC (Yu et al., 2020) 77.34 74.45 69.45 65.27 61.81 58.26 56.14 55.71 53.31 52.79 51.52

Imprint (Qi et al., 2018) 77.02 73.39 69.50 65.61 62.81 60.74 59.39 58.61 56.85 55.93 54.82

IDLVQ-C 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81

Table 2: Prediction accuracy on miniImageNet all classes using the 5-way 5-shot incremental setting.
Method

sessions

1 2 3 4 5 6 7 8 9

Fine-tune 64.25 30.11 18.53 6.31 2.86 2.68 1.87 1.56 1.42

Joint train 64.25 58.80 55.26 52.38 49.71 48.37 45.91 44.68 43.38
iCaRL (Rebuffi et al., 2017) 64.25 48.04 43.13 38.28 30.01 24.46 21.85 19.84 17.76

Rebalancing (Hou et al., 2019) 64.25 49.21 44.17 37.71 30.11 22.92 19.99 17.96 16.25

ProtoNet (Snell et al., 2017) 64.25 55.12 51.67 48.91 46.52 44.25 41.91 40.07 38.42

ILVQ (Xu et al., 2012) 64.25 56.01 52.43 49.31 46.98 44.37 42.06 40.11 38.43

SDC (Yu et al., 2020) 64.62 59.63 55.39 50.92 48.30 45.28 42.97 42.51 41.24

Imprint (Qi et al., 2018) 64.71 59.85 55.71 52.47 49.90 47.31 44.57 42.57 41.26

IDLVQ-C 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84

Ablation studies are conducted to analyze how individual components affect the performance of
incremental few-shot learning. We study five variants of our methods: (a) new reference vectors are
initialized as class centroids and no tuning is done for feature extractor or old reference vectors; (b)
Lintra is not used in incremental learning sessions; (c) LF is not used in the incremental learning
sessions; (d) shift in old reference vectors are not compensated; (e) replace the margin based lossLM
with the cross entropy loss LCE . Table 3 shows the results of our ablation studies on CUB dataset.
Without any fine-tuning, the initial reference vectors for novel classes lead to descent accuracy
in incremental few-shot classification. It demonstrates the robustness of nonparametric classifier.
Lintra leads to 0.57% gain due to tight intra-class variation. The less forgetting regularization LF
is proved to prevent forgetting old classes and achieves a performance boost by 2.35%. The shift
compensation for reference vectors effectively adapts old reference vector in new embedding spaces
with a gain round of 1%. The margin based loss is more effective in preventing forgetting in early
sessions of incremental learning.

The effect of the number of training samples per class. The proposed method is evaluated under
different few-shot settings on CUB dataset to investigate the effect of different numbers of training
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Table 3: Ablation study on CUB using the 10-way 5-shot incremental setting.
Method

sessions

2 3 4 5 6 7 8 9 10 11

No tuning 71.93 67.14 64.21 62.61 60.13 59.04 58.47 55.64 54.25 53.66

w.o. Lintra 74.75 70.26 66.89 65.05 63.18 61.84 61.36 58.61 58.14 57.24

w.o. LF 73.85 69.54 66.21 64.02 62.74 60.28 59.49 56.97 56.38 55.46

w.o. δi 74.67 70.01 66.74 64.81 63.90 61.42 60.73 58.16 57.62 56.79

LM → LCE 73.22 69.41 66.03 63.93 63.07 61.14 60.98 58.67 58.11 57.32

IDLVQ-C 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81

samples in novel classes, including 5-shot, 10-shot and 20-shot settings. One reference vector is
assigned to each class in all few-shot settings. As shown in Fig. 2 in the appendix, the performance
of incremental learning improves as the number of samples per class increases. When the training
samples are scarce, the training samples may not well present the generative distribution of training
data. Therefore, the learned reference vectors could be biased and classification accuracy is low.
With more training samples, the learned reference vectors could well present the center of the distri-
bution and classification accuracy is improved. The gap in performance becomes more obvious as
the number of incremental learning sessions grows. The detailed results are reported in Table 7 and
8.

5.2 INCREMENTAL FEW-SHOT REGRESSION

IDLVQ-R is tested on two regression datasets: sinusoidal wave and 3D spatial data. Considering
that there is no state-of-the-art method for incremental few-shot regression, we compare IDLVQ-R
against three alternative methods: fine-tuning using novel task data only, fine-tuning using novel
task data along with exemplars and offline training using the entire training dataset from all tasks.

Sinusoidal wave is defined by a function y = sin(3πx) + 0.3 cos(9πx) + 0.5 sin(7πx) + ε, where
ε is white noise with a standard deviation of 0.1. 1000 training samples in the first task (bas task)
are generated by sampling x ∈ [−1.0, 1.0] uniformly. 5-shot training samples in two novel tasks are
generated by sampling x ∈ [1.0, 1.5] and x ∈ [1.5, 2.0], respectively.

As shown in Fig. 1(a), IDLVQ-R achieves comparable performance to offline neural networks in
Fig. 1(d) which are trained using the entire training set from all tasks. In comparison, neural
networks trained sequentially with few-shot training samples show catastrophic forgetting on old
tasks in Fig. 1(b). With the addition of exemplars during training, the networks perform better
but still suffer from catastrophic forgetting on the base task in Fig. 1(c). In conclusion, IDLVQ-R
preserves old knowledge and adapts to new knowledge quickly using a few reference vectors and
achieves satisfactory performance on incremental few-shot regression tasks. The experiment details
can be found in the appendix.
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Figure 1: Comparison of performance for incremental few-shot regression. Red dots denote test
samples for base task, purple dots denotes test sample for novel tasks, grey lines denote model
predictions, and black crosses denotes few-shot training samples in novel tasks. (a) IDLVQ-R; (b)
neural networks incrementally fine-tuned with novel data only in each session; (c) neural networks
incrementally fine-tuned with exemplars and novel training samples; (d) offline neural networks
trained with training samples from all tasks.

3D spatial data1 is collected in North Jutland, Denmark. The inputs are longitude x1 and latitude
x2, and the output is altitude y. 2482 training samples in the 1st task are collected in the area where

1https://archive.ics.uci.edu/ml/machine-learning-databases/00246/
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x1 ∈ [9.98, 9.995] and x2 ∈ [57.0, 57.05]. 20 training samples in the 2nd task are collected in the
area where x1 ∈ [9.995, 10.0] and x2 ∈ [57.02, 57.03]. 20 training samples in the 3rd task are
collected in the area where x1 ∈ [9.995, 10.0] and x2 ∈ [57.03, 57.04]. Approximately 300 test
samples are collected for each task.

Table 4: Normalized RMSE of incremental few-shot regression on 3D spatial data

Method
sessions

1 2 3
Joint train offline 0.02174(2e-4) 0.02232(2e-4) 0.02296(2e-4)

Fine-tune w. novel data 0.02174(2e-4) 0.08462(4e-4) 0.11870(6e-4)

Fine-tune w. exemplars 0.02174(2e-4) 0.02988(2e-4) 0.03128(2e-4)

IDLVQ-R 0.02181(2e-4) 0.02641(2e-4) 0.02817(2e-4)

The normalized root mean squared errors (RMSE) between actual and predicted altitude in the
test set are listed in Table 4. The prediction accuracy drops significantly when the model is fine-
tuned with novel data only. Catastrophic forgetting can be alleviated using exemplars from previous
tasks. IDLVQ-R achieves better results than fine tuning with exemplars. The good performance of
IDLVQ-R can be attributed to two reasons. First, IDLVQ-R learns a number of reference vectors
and targets to preserve the knowledge in encountered tasks. Compared with a linear layer on top
of neural networks, a number of reference vectors represent richer information about the training
data. Second, IDLVQ-R is nonparametric and can represent local and nonlinear relationship without
learning any regression coefficient from few-shot data.

6 CONCLUSIONS

A new incremental few-shot learning approach is developed to harmonize old knowledge preserving
and new knowledge adaptation through quantized vector in deep embedded space. Prediction is
made in a nonparametric way using similarity to learned reference vectors, which circumvents biased
weights in a parametric classification layer during incremental few-shot learning. For classification
problems, additional mechanisms are developed to mitigate the forgetting in old classes and improve
representation learning for few-shot novel classes. For regression problems, the proposed approach
has been reinterpreted as a kernel smoother to predict real-valued target over novel domain.
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A APPENDIX

A.1 PSEUDO CODE FOR IDLVQ-C

Algorithm 1 IDLVQ-C
In the base task (t = 1)

Initialize θ1, {m1
1, ...,m

1
N1} and γ

Minimize L = LCE + λintraLintra w.r.t. θ1, {m1
1, ...,m

1
N1} and γ

Pick exemplars from D1 for classes in the base task: x
′

i = argminx∈D1

∥∥fθt−1(x)−m1
i

∥∥2
for novel task t = 2, 3, ... do

Initialize {mt
Nt−1+1, ...,m

t
Nt}

Minimize L = LM + λFLF + λintraLintra w.r.t. θt and {mt
Nt−1+1, ...,m

t
Nt}

Calibrate old reference vector {mt−1
1 , ...,mt−1

Nt−1} using mt
i = mt−1

i + δti
Pick exemplars from Dt for classes in the novel task t: x

′

i = argminx∈Dt ‖fθt−1(x)−mt
i‖

2

end for

A.2 PSEUDO CODE FOR IDLVQ-R

Algorithm 2 IDLVQ-R
In the base task (t = 1)

Initialize θ, {m1
1, ...,m

1
N1}, {q11 , ..., q1N1} and γ

Minimize LMSE w.r.t. θ, {m1
1, ...,m

1
N1}, {q11 , ..., q1N1} and γ

for novel task t = 2, 3, ... do
Initialize {mt

Nt−1+1, ...,m
t
Nt} and {qtNt−1+1, ..., q

t
Nt}

Minimize LMSE w.r.t. {mt
Nt−1+1, ...,m

t
Nt} and {qtNt−1+1, ..., q

t
Nt}

end for
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A.3 EXPERIMENT DETAILS FOR INCREMENTAL FEW-SHOT CLASSIFICATION

The base model is trained by the SGD optimizer (momentum of 0.9 and weight decay of 1e-4) with
a mini-batch size of 64. For CUB dataset, the initial learning rate is 0.01 and is decayed by 0.1 after
60 and 120 epochs (200 epochs in total). For miniImageNet, the learning rate also starts from 0.01
and is decayed by 0.1 every 200 epochs (600 epochs in total). In an incremental learning session
(t > 1), the model is fine-tuned with with Dt with a learning rate of 0.01 for 100 epochs. Since
novel data Dt (t > 1) contains very few training samples, all training samples in Dt are included
in one mini-batch. In addition, we use λintra = 1.0 and λF = 0.5 for both datasets. Empirically,
larger λintra leads to more compact intra-class variation. However, convergence could be slow if
λintra is too large. In addition, larger λF results in less forgetting in old classes but makes learning
novel classes more difficult.

A.4 ADDITIONAL RESULTS FOR INCREMENTAL FEW-SHOT CLASSIFICATION

The accuracies for base and novel classes are reported separately in Table 5 and 6 for CUB amd
miniImageNet, respectively. The prediction accuracy of novel classes is calculated upon all novel
classes the model has been trained on. Note that the accuracy in Table 1 and 2 is calculated upon all
classes (including base and novel classes) that the model has been trained on. The proposed IDLVQ-
C demonstrates strong capability of preserving old knowledge by achieving the best performance on
old classes across all learning sessions. In parallel, Imprint method performs slightly better on novel
classes than IDLVQ-C in early incremental learning sessions, while IDLVQ-C outperforms Imprint
method in longer incremental learning sessions. The advantage of IDLVQ-C can be attributed to the
adaptive feature extractor, which is tuned in each learning session.

Table 5: Prediction accuracy on CUB base and novel classes using the 10-way 5-shot incremental
setting.

Base classes
sessions

1 2 3 4 5 6 7 8 9 10 11

Fine-tune 77.30 44.23 36.28 27.52 25.96 23.05 17.68 13.07 11.78 10.99 10.71

Joint train 77.30 75.83 75.25 74.51 74.58 73.74 73.95 73.25 73.11 73.25 73.18

iCaRL (Rebuffi et al., 2017) 77.30 59.38 58.81 54.43 48.27 43.28 39.17 34.91 32.43 29.36 25.87

Rebalancing (Hou et al., 2019) 77.30 66.43 60.32 55.36 46.39 41.76 37.12 32.58 31.26 27.03 24.25

ProtoNet (Snell et al., 2017) 77.30 72.55 72.21 72.06 71.64 71.29 71.02 70.94 70.67 70.60 70.53

ILVQ (Xu et al., 2012) 77.30 74.18 73.57 72.66 72.56 71.57 71.14 71.12 71.02 70.98 70.85

SDC (Yu et al., 2020) 77.34 76.05 75.21 74.12 72.36 71.81 71.68 71.43 71.25 71.27 70.96

Imprint (Qi et al., 2018) 77.02 74.76 74.57 73.69 72.69 70.88 70.34 70.12 70.07 69.84 69.27

IDLVQ-C 77.37 76.32 75.90 75.91 75.49 74.86 74.58 74.37 74.02 73.39 73.32

Novel classes
sessions

1 2 3 4 5 6 7 8 9 10 11

Fine-tune - 66.23 26.86 18.12 16.16 15.85 13.76 13.68 12.23 11.37 10.81

Joint train - 47.78 36.55 34.77 36.68 38.52 38.91 40.37 41.50 42.51 43.28
iCaRL (Rebuffi et al., 2017) - 35.18 33.97 27.04 21.99 23.99 23.04 24.01 22.96 24.04 24.59

Rebalancing (Hou et al., 2019) - 45.53 35.24 20.39 20.25 19.65 20.91 21.29 21.95 21.60 22.97

ProtoNet (Snell et al., 2017) - 41.86 35.01 29.72 29.43 28.72 28.65 30.02 29.56 30.59 30.19

ILVQ (Xu et al., 2012) - 40.74 32.89 29.54 29.30 30.38 28.82 32.12 29.17 30.32 30.09

SDC (Yu et al., 2020) - 58.45 40.65 35.77 33.23 31.16 30.24 33.25 30.89 32.26 32.08

Imprint (Qi et al., 2018) - 59.69 44.15 38.68 38.11 40.46 41.14 42.17 40.33 40.47 40.37

IDLVQ-C - 58.72 42.18 37.86 39.97 40.84 41.30 43.21 40.32 42.34 42.30

The test accuracy on CUB dataset using 10-way 10-shot and 10-way 20-shot incremental settings
are reported in Table 7 and 8, respectively. The prediction accuracy improves in all methods with
more training samples per class. The iCaRL and Rebalancing methods show the most significant
improvement when the number of training samples increases. The proposed IDLVQ-C is effective
in different incremental few-shot scenarios as it achieves the best performance on 5-shot, 10-shot
and 20-shot settings.

A.5 EXPERIMENT DETAILS FOR INCREMENTAL FEW-SHOT REGRESSION

Sinusoidal wave: A six-layer feedforward neural network with ReLU nonlinear activation is used
as the feature extractor. IDLVQ-R learns 10 reference vectors and targets from the base task. In
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Table 6: Prediction accuracy on miniImageNet base and novel classes using the 5-way 5-shot incre-
mental setting.

Base classes
sessions

1 2 3 4 5 6 7 8 9

Fine-tune 64.25 32.28 20.87 6.95 3.17 3.16 1.92 1.53 1.46

Joint train 64.25 63.30 62.83 62.16 62.18 62.68 61.86 61.87 61.89
iCaRL (Rebuffi et al., 2017) 64.25 51.66 48.97 45.62 37.39 30.86 28.68 26.83 24.47

Rebalancing (Hou et al., 2019) 64.25 52.87 50.16 44.78 37.48 28.75 25.58 22.97 21.57

ProtoNet (Snell et al., 2017) 64.25 59.27 58.88 58.69 58.22 57.63 57.03 56.80 56.47

ILVQ (Xu et al., 2012) 64.25 60.24 59.62 59.02 58.61 57.71 57.16 56.83 56.49

SDC (Yu et al., 2020) 64.62 63.58 62.78 61.12 60.29 59.37 59.05 59.97 59.87

Imprint (Qi et al., 2018) 64.71 63.52 62.96 62.13 61.17 61.27 60.63 59.86 59.64

IDLVQ-C 64.77 63.77 63.22 62.44 61.22 61.47 60.97 60.66 60.44

Novel classes
sessions

1 2 3 4 5 6 7 8 9

Fine-tune - 4.07 4.49 3.75 1.93 1.53 1.77 1.61 1.36

Joint train - 4.80 9.84 13.26 12.30 14.03 14.01 15.21 15.62
iCaRL (Rebuffi et al., 2017) - 4.60 8.09 8.92 7.87 9.10 8.19 7.86 7.70

Rebalancing (Hou et al., 2019) - 5.29 8.23 9.43 8.00 8.93 8.81 8.83 8.27

ProtoNet (Snell et al., 2017) - 5.32 8.41 9.79 11.42 12.14 11.67 11.39 11.35

ILVQ (Xu et al., 2012) - 5.25 9.29 10.47 12.09 12.35 11.86 11.45 11.34

SDC (Yu et al., 2020) - 12.23 11.05 10.12 12.33 11.46 10.81 12.58 13.30

Imprint (Qi et al., 2018) - 15.81 12.21 13.83 16.09 13.81 12.45 12.93 13.69

IDLVQ-C - 13.07 12.19 13.34 15.86 14.14 12.55 13.11 13.94

Table 7: Prediction accuracy on CUB using the 10-way 10-shot incremental setting.
Method

sessions

1 2 3 4 5 6 7 8 9 10 11

Fine-tune 77.30 47.16 36.34 26.92 24.08 21.24 17.19 14.31 12.73 11.75 11.43

Joint train 77.30 73.29 71.54 68.72 66.38 65.42 64.98 65.74 64.82 64.47 64.16
iCaRL (Rebuffi et al., 2017) 77.30 59.66 56.24 52.26 48.77 46.37 44.54 43.17 42.35 41.19 40.92

Rebalancing (Hou et al., 2019) 77.30 64.53 58.35 53.82 49.27 47.12 45.16 43.05 42.37 41.02 40.86

ProtoNet (Snell et al., 2017) 77.30 69.82 66.12 63.19 61.17 58.85 58.04 57.75 55.84 55.82 55.60

ILVQ (Xu et al., 2012) 77.30 71.26 66.84 63.82 62.66 59.71 58.92 58.11 56.31 56.14 56.03

SDC (Yu et al., 2020) 77.34 74.67 69.73 66.71 66.49 62.14 61.33 59.84 58.01 57.39 56.62

Imprint (Qi et al., 2018) 77.02 74.07 70.26 66.84 64.45 62.46 61.85 61.02 59.20 58.93 58.43

IDLVQ-C 77.37 74.79 70.96 68.08 65.94 64.12 63.58 62.98 60.85 60.54 59.72

Table 8: Prediction accuracy on CUB using the 10-way 20-shot incremental setting.
Method

sessions

1 2 3 4 5 6 7 8 9 10 11

Fine-tune 77.30 47.68 36.75 27.01 24.56 21.72 17.88 15.24 12.84 11.89 11.52

Joint train 77.30 74.34 72.59 70.85 70.14 70.01 69.69 69.67 69.48 69.41 69.42
iCaRL (Rebuffi et al., 2017) 77.30 68.85 63.56 60.34 57.71 56.28 55.97 55.02 54.62 52.21 52.23

Rebalancing (Hou et al., 2019) 77.30 69.36 65.49 61.32 59.30 58.68 58.77 57.42 56.25 55.33 54.17

ProtoNet (Snell et al., 2017) 77.30 70.84 67.82 64.81 62.95 61.71 60.98 60.73 59.51 59.30 58.95

ILVQ (Xu et al., 2012) 77.30 71.50 68.77 66.12 64.31 62.89 62.31 62.00 61.52 59.79 59.23

SDC (Yu et al., 2020) 77.34 74.62 71.63 68.66 66.75 65.24 64.21 63.62 61.97 61.54 61.11

Imprint (Qi et al., 2018) 77.02 74.14 70.72 67.75 65.88 64.63 64.28 63.82 62.00 61.84 61.40

IDLVQ-C 77.37 74.84 72.07 69.05 67.28 65.51 65.19 64.84 62.77 62.55 61.96

each incremental learning sessions, 5 pairs of reference vectors and targets are added. After new
reference vectors and targets are fine-tuned, the model is capable of make prediction for all seen
tasks. 10 exemplars are selected uniformly from the training set in the base task. In the incremental
learning session of the 2nd task, the model is fine-tuned on 10 exemplars and 5 novel training
samples. After the training converges, 5 novel training samples in the current task are added to the
exemplar set. In the incremental learning session of the 3rd task, the model is fine-tuned with 15
exemplars from old tasks and 5 novel training samples.

3D spatial data: We follow the same training and test protocols as the sinusoidal wave dataset. We
choose 40, 15 and 15 reference vectors and targets for 1st, 2nd and 3rd tasks, respectively. Adding
more reference vectors does not result in obvious improvement in accuracy in our experiments.
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Figure 2: Comparison results of different few-shot settings, evaluated with ResNet18 on CUB
dataset

A.6 VISUALIZATION OF IDLVQ-C

We show the visualization of standard neural networks and IDLVQ-C with/without intra-class vari-
ation loss in Fig. 3. MNIST dataset is used as a toy example for visualization. Classes 0-7 are old
classes with sufficient training samples, and classes 8 and 9 are novel classes with few-shot train-
ing samples. It can be observed in Fig. 3(a) and 3(b) that standard neural networks and IDLVQ-C
(without intra-class variation loss) trained by cross-entropy loss do not have compact intra-class
variation. Consequently, features of novel classes are more likely to overlap with old classes. In
this case, the performance of class-incremental learning degrades very quickly because the classifier
cannot distinguish between features from different classes. In comparison, the proposed IDLVQ-C
makes intra-class variation compact and leaves large margin between classes in Fig 3(c). As a result,
the features of novel classes are less likely to overlap existing classes. The compact intra-class varia-
tion and large margin between classes make features of novel classes distinguishable so that learning
novel classes is easier. In addition, the margin based loss only updates the model parameters when
necessary and avoids catastrophic forgetting of old classes.
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Figure 3: Visualization of feature spaces in different methods. Dots represent features of samples
and crosses denote references vectors of classes. (a) standard neural networks; (b) IDLVQ-C without
Lintra; (c) IDLVQ-C.
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