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ABSTRACT

Surficial geologic (SG) maps are essential for understanding surface processes
and supporting infrastructure planning, but current workflows are labor-intensive
and difficult to scale. We introduce EarthScape, an Al-ready multimodal dataset
for SG mapping that integrates digital elevation models, aerial imagery, multi-
scale terrain features, and hydrologic and infrastructure vector data within a
unified, reproducible pipeline. We report baseline benchmarks across single-
modality, multi-scale, and multimodal configurations. In our experiments, terrain-
derived features provide the most reliable predictive signal, while spectral inputs
and raw elevation degrade substantially under cross-region evaluation. Cross-
generalization and multimodal fusion remain challenging, underscoring the need
for models that capture shape-driven surface processes. EarthScape offers a geo-
graphically compact but modality-rich benchmark for multimodal fusion, domain
adaptation, and surface-process modeling.

1 INTRODUCTION

Surficial geologic (SG) maps depict the spatial distribution of mostly unconsolidated materials on
the Earth’s surface (Compton) [1985). These maps are essential to address a range of contemporary
challenges, such as supporting economic and national security interests in critical mineral resources
(Brimhall et al.} 2005} |Schulz, [2017)), informing mitigation and response planning for geologic haz-
ards (Alcantara-Ayalal 2002; [Van Westen et al., 2003), and providing a foundation on which to
understand climate change (Anderson & Ferree, |2010). SG maps are also relevant to more practical
applications like urban land use planning (Dai et al., [2001; [Hokanson et al., 2019) and engineering
projects (Keaton, [2013)). Despite the demonstrable social benefit and scientific merit (Bernknopf,
1993), detailed SG maps cover less than 14% of the United States (U.S. Geological Survey, [2025)),
and coverage is even more limited globally.

The modern SG mapping workflow relies on manual fieldwork coupled with visual interpretation of
remote sensing (RS) imagery (Compton, 1985 Lisle et al.,2011). Because SG maps depend on ex-
pert interpretation and annotation, they may reflect local subjectivity, rather than reproducible, global
criteria. Moreover, financial costs are prohibitive, with one standard 1:24k-scale ma estimated at
$123k (Berg, [2025)). These limitations highlight the need for scalable, automated approaches.

Advancements in deep learning and the proliferation of RS imagery present an opportunity to trans-
form SG mapping and overcome current limitations. Recent studies have demonstrated the potential
of deep learning to identify or segment single class geologic hazards, such as landslides (Prakash
et al.| 2021; Wang et al., 2021} |Liu et al.| [2023) and sinkholes (Rafique et al.,|2022), and a few have
extended these ideas to mapping multiple classes of geologic materials (Behrens et al.| 2018} |[Lati-
fovic et al., 2018; Wang et al.,|2021} |Liu et al., 2024b). While these works highlight the promise of
computer vision (CV), they remain constrained by narrow scope, limited modality integration, and
the absence of standardized benchmarks.

"Map scale refers to cartographic accuracy, rather than raster resolution. At 1:24,000-scale, one map unit
represents 24,000 real-world units, and is considered the gold-standard geologic mapping scale.
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The challenges of SG mapping align closely with current directions in CV. Multimodal fusion of het-
erogeneous inputs is required to capture features invisible to any single modality (Baltrusaitis et al.,
2018 Steyaert et al.| 2023} L1 & Wul [2024). Strong spatial dependencies make it a natural testbed for
attention mechanisms and multi-scale architectures (Dosovitskiy, [2020; Niu et al.| 2021} [Fan et al.,
20215 |[Hassanin et al., [2024; |Liu et al., [2024a)), while extreme class imbalance and geographic vari-
ability mirror open challenges in long-tail learning and domain adaptation (Lin} 2017} |Ghosh et al.,
2024). Beyond SG mapping, surface morphology is an underutilized signal across domains such as
medical imaging where shape descriptors from CT or MRI improve disease prediction (Van Tim-
meren et al.,2020), autonomous navigation where terrain guides safe decision-making (Meng et al.,
2023)), and RS where benchmarks often underemphasize topography (Wang et al., 2025)).

The rapid progress in CV has been driven by the availability of large-scale, standardized datasets.
General-purpose benchmarks like ImageNet (Deng et al.l [2009) and COCO (Lin et al., [2014) have
catalyzed advances in classification, detection, and segmentation by offering vast repositories of
labeled imagery and clear evaluation protocols. However, performance on real-world tasks often
plateaus without domain-specific datasets that reflect their unique characteristics, sensing modal-
ities, and physical constraints. In the geospatial domain, datasets have emerged for land cover
classification and urban scene analysis (Schmitt et al., [2019; |Cordts et al., 2016; Demir et al., 2018;
Van Etten et al.| 2018 Sumbul et al., [2019), but these are primarily for anthropogenic features and
land use. Several geologic datasets have been introduced for hazard mapping, but these focus on dis-
crete events (Ji et al., 2020; Montello et al.} 2022; Rege Cambrin & Garza, 2024), leaving a critical
gap in geoscience datasets tailored to more realistic conditions with continuous materials.

EarthScape is a multimodal dataset developed for SG mapping, with applicability to other surface-
aware geospatial tasks. It integrates publicly available RGB and near-infrared (NIR) imagery, digi-
tal elevation models (DEM), DEM-derived terrain features computed at multiple scales, and trans-
portation and hydrological vector data into a unified, co-registered framework. This design reflects
key characteristics of SG mapping, including multi-label structure, scale-dependent morphology,
and geographic heterogeneity, and provides a benchmark for developing and evaluating multimodal
geospatial models. Our contributions are as follows:

* We introduce EarthScape, the first multimodal, multi-scale benchmark dataset designed
specifically for SG mapping and surface-aware geospatial analysis.

* We provide a unified, co-registered framework integrating imagery, elevation, multi-scale
terrain derivatives, and vector layers, enabling flexible multimodal experimentation.

* We establish reproducible baselines across unimodal, multi-scale, and multimodal config-
urations, supporting systematic evaluation of fusion strategies, backbone architectures, and
cross-domain generalization.

2 RELATED WORK

SG Mapping with Machine Learning: SG mapping focuses on unconsolidated materials formed
by active surface processes, such as weathering, erosion, sediment transport, and deposition (Comp-
ton, |1985). These materials are closely tied to landform structure and surface morphology, as ter-
rain shape governs the energy available to drive these processes (Odeh et al.l [1991} Schomberg
et al., [2005; IBrigham & Crider, 2022). Several studies have leveraged this terrain-geologic material
relationship using logistic regression, random forests, and support vector machines for classifica-
tion or segmentation of binary hazards (e.g., landslides, sinkholes) (Kirkwood et al. [2016; Zhu
& Pierskalla Jr, 2016; (Crawford et al., [2021) or SG maps (Cracknell & Reading, 2014} Johnson
& Haneberg,, 2025). However, these approaches depend on hand-crafted features, are restricted to
small geographic extents, and fail to generalize beyond the training region. More recently, deep
learning methods using convolutional neural networks (CNNs) and CNN-Transformer hybrids have
been applied to related tasks (Prakash et al.| 2021} J1 et al., [2020; Liu et al., 2023} [Latifovic et al.,
2018 Zhou et al 2023} Rafique et al., 2022). While these models better capture spatial depen-
dencies critical to geologic interpretation (Bishop et al.l |[1998}; |Behrens et al., [2018)), they remain
site-specific, lack standardized datasets, and rely on limited input modalities.

Multimodal Learning for Geologic Tasks: Multimodal learning has become a central paradigm
in geospatial CV, where combining diverse data sources, like optical imagery, SAR, and DEMs,
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Figure 1: EarthScape data processing pipeline (left) and selected modalities from a single 256 x 256
patch (right). The SG map is rasterized and used to define the area of interest (AOI), from which
all predictive features (DEM, RGB+NIR imagery, NHD hydrology, and OSM infrastructure) are
clipped and aligned. Terrain derivatives are then computed from the DEM at multiple spatial scales.
A regular grid is applied to extract 38 co-registered channels per patch.

can enhance model robustness through learned complementary information (Astruc et al.| 2024}
let al., 2022} Jain et al.} 2022} [Han et al.,[2024). In geological applications, this has often manifested
by fusing overhead RGB imagery with DEMs with early- or mid-level strategies (Prakash et al
2021} [Ji et all, [2020; [Liu et al.| 2023} [Latifovic et al., 2018}, [Zhou et al., [2023}; [Rafique et al.,[2022).
Although effective for some situations, these approaches tend to overfit to absolute elevation or local
appearance and fail to generalize to new regions. Other modalities have also been tested, including

elevation contours (Zhou et al.,[2023)), geochemical maps (Latifovic et al.}[2018;[Wang et al.,[2021)),
and aeromagnetic imagery 2024D), but these resources lack standardized availability.

RS and Geologic Datasets: RS benchmarks like SpaceNet (Van Etten et all, 2018), xView
2018), and the Functional Map of the World (Christie et al., [2018) provide high-resolution
satellite imagery annotated for object detection and scene classification in urban environments.
These datasets are optimized for anthropogenic features such as roads, buildings, and vehicles, and
are widely used for infrastructure monitoring and disaster response. Other RS datasets, including
BigEarthNet (Sumbul et al., 2019), DeepGlobe (Demir et al., 2018), and SEN12MS
[2019), support land cover classification and segmentation using multispectral or synthetic aperture
radar (SAR) imagery. However, these datasets target coarse semantic categories such as vegetation
or developed areas and lack representations of Earth’s surface necessary to understand SG processes.

Several geoscience-specific datasets have been introduced for geologic hazards, including MMFlood
for flood delineation (Montello et al.| [2022), QuakeSet for earthquake event detection (Rege Cam-
brin & Garzal 2024), and landslide detection datasets leveraging overhead imagery and DEMs (Ji
et al., [2020; [Liu et al.| 2023} [Zhou et al., [2023). While valuable for their respective domains, these
resources are narrowly scoped to discrete hazards or events, often limited to small geographic areas,
and rely on shallow modality combinations. Prior machine learning work on SG mapping similarly
relies on small, locally assembled datasets that are not publicly released or standardized (Kirkwood
let all [2016; [Zhu & Pierskalla Jt, 2016}, [Latifovic et al, 2018}, [Crawford et al 2021} Johnson &
2025), making systematic comparison and cross-region evaluation impossible. None of
these resources supports continuous SG mapping.
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3 EARTHSCAPE DATASET

3.1 DATA SOURCES AND COMPOSITION

Surficial Geologic Maps: The EarthScape dataset currently includes eight high-resolution
(1:24,000-scale) SG maps covering two areas in the central United States (Buchanan et al.l 2023}
Massey et al.| 2023 Swallom et al.l [2023; Massey et al., 2024} Hodelka et al.l [2024; [Swallom
et al., 2024} Bottoms et al., [2021; Massey et al., [2021). Each map is delivered as a vector poly-
gon dataset in ESRI geodatabase format and are rasterized during preprocessing to produce the
targets used throughout the benchmark. EarthScape includes seven SG units that form a mutually
exclusive representation of the surficial cover in each area. These units correspond to five surface-
process environments: fluvial deposits (Qal, alluvium; Qat, terrace deposits), debris-flow deposits
(Qgaf, alluvial fans), hillslope materials (Qc, colluvium; Qca, colluvial aprons), in-situ weathering
products (Qr,_residuum), and anthropogenic modification (afl, artificial fill). Although EarthScape
v1.0 is geographically limited, the mapped environments and surface processes it captures are
widespread in temperate, non-glaciated landscapes worldwide. As a result, the SG units in Earth-
Scape provide a representative set of classes for evaluating multimodal models designed to general-
ize across similar geomorphic settings. See Appendices [B.I]and [B.2]for additional information.

Aerial imagery and DEM: EarthScape includes aerial RGB+NIR imagery and LiDAR-derived
DEMs (Commonwealth of Kentuckyl, 2024), which constitute the core RS modalities in the dataset.
The aerial imagery has a ground sampling distance (GSD) of 0.15 m (= 6 in) and provides measure-
ments of surface appearance: RGB channels capture visible-wavelength variation related to land
cover and human modification: NIR band emphasizes vegetation moisture and canopy structure.
The DEM is produced from airborne LiDAR with 1.52 m GSD (= 5 ft) resolution and provides
raw elevation and surface morphology information. Variations in topography, local relief, and slope
often align with boundaries between SG materials, making DEM data an intuitive modality for SG
mapping tasks. Both datasets are publicly accessible as GeoTIFF tiles and are co-registered during
preprocessing to ensure consistent spatial alignment with all other EarthScape modalities.

Terrain Features: EarthScape includes five DEM-derived terrain features widely used in
geomorphometry (Florinsky, 2016)), each quantifying a distinct aspect of surface geometry.
Slope (S) describes local surface steepness; profile curvature (PrC) and planform curvature (PIC)
capture surface curvature parallel and perpendicular to the direction of maximum slope;
elevation percentile (EP) measures relative elevation; standard deviation of slope (SDS) character-
izes local surface roughness. See Appendix for more information.

Hydrography and Infrastructure: EarthScape includes vector data for surface hydrography and
human infrastructure. Hydrographic features consist of stream centerlines and waterbody polygons
from the U.S. Geological Survey’s National Hydrography Dataset (NHD) (U.S. Geological Survey,
2024), and infrastructure features include road and railway centerlines from OpenStreetMap (OSM)
(OpenStreetMap contributors| 2024). These layers supply contextual information about drainage
networks and built environments that complements the imagery and terrain features.

3.2 DATA PROCESSING PIPELINE

Targets: Each SG map was provided as a vector geodatabase, and the relevant polygons exported
to a non-proprietary GeoJSON format (Fig. [T). The polygons were checked for valid geometry and
their topology was validated to ensure complete coverage, preventing gaps or inconsistencies that
could produce missing or incorrect labels during rasterization. All SG units were then mapped to a
standardized set of ordinal class values shared across the entire EarthScape dataset. The vector data
were reprojected to the DEM coordinate reference system and rasterized to a common 1.52 m GSD
grid (Fig. [I). The DEM was used as the target grid because it served as the original basemap for the
mapping and provides a uniform reference for aligning all other modalities.

Raw Features: A tile index defining the footprints of the RGB+NIR imagery and DEM tiles was
obtained, and all tiles intersecting the AOI were downloaded (Fig. [I). The aerial RGB+NIR and
DEM GeoTIFF tiles were reprojected and merged into single raster mosaics at a common 1.52
m GSD resolution (Fig. [I). Vector hydrography and infrastructure datasets were also acquired
and clipped to the AOI (Fig. [I). NHD hydrographic and OSM infrastructure features were then
rasterized into two binary GeoTIFF layers aligned to the same 1.52 m GSD grid (Fig. [T).
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Figure 2: EarthScape label distribution summaries. Left: Global class frequencies ordered by de-
scending prevalence; relative frequencies shown above each bar. Center: Patch-level class-area
distributions shown as class-area proportion values and boxplots (interquartile range with whiskers
to the 5th—95th percentiles); median values displayed at top. Right: Histogram (top) and an example
area map (bottom) each symbolized by its per-patch class count.

Table 1: Label statistics and imbalance metrics for EarthScape, including global frequency, class-
area proportion (mean and SD), majority area rate (MAR), effective number of samples (ENS)

2019), and the imbalance ratio per label (IRLbI) (Charte et al.| 2013).

Class Frequency (n) Frequency (%) Mean Class-area SD Class-area MAR ENS IRLbI

Qr 29271 94.4 0.651 0.358 0.702  9464.6 1.0
Qal 18801 60.6 0.089 0.168 0.058  8474.4 1.6
Qc 13768 44.4 0.142 0.242 0.148  7476.3 2.1
afl 10910 352 0.051 0.161 0.035 6641.4 2.7
Qca 7669 24.7 0.061 0.154 0.054  5355.7 3.8
Qat 1435 4.6 0.006 0.045 0.004 1336.9 20.4
Qaf 270 0.9 0.000 0.003 0.000 266.4 108.4

Engineered Features: Terrain features were calculated at multiple spatial scales in order to capture
hierarchical surface structure (Fig. m) The native DEM (1.52 m GSD) was downsampled to five
additional resolutions (3.05, 6.10, 15.24, 30.48, 60.96 m GSD) following a roughly logarithmic
progression commonly used in geomorphometry (Fig. [T). S, PrC, and PIC were computed on each
DEM using 5x5 neighborhood kernels, upsampled back to 1.52 m GSD (Fig. [I), and smoothed
with a Gaussian filter to reduce interpolation artifacts. EP and SDS were computed directly on the
native-resolution DEM as neighborhood statistics using kernels of 5x5, 11x11, 21x21, 51x51,
101x101, and 201x201 pixels (Fig. [T). Kernel sizes were chosen so that their effective spatial
footprint matches the approximate resolutions used for S, PrC, and PIC, ensuring comparable multi-
scale representations across modalities. Additional details are provided in Appendix

Spatial Alignment and Registration: The rasterized SG map served as the reference grid for the
entire dataset. Each rasterized feature was reprojected to a common coordinate reference system
to ensure identical spatial resolution, grid origin, and geographic extent (Fig. [I). After reprojec-
tion, all images were validated to confirm matching bounding coordinates and pixel dimensions,
guaranteeing full spatial alignment across modalities.

Patches: Vector polygons were constructed in a systematic grid to cover each SG map AOI (Fig. [I).
Each patch is 256 x256 pixels (390x390 m), overlaps adjacent cells by 50%, and is constrained to
lie completely within the AOIL. The 256 <256 patch size was selected so that identifying geomorphic
features mapped at 1:24,000-scale typically fall within an individual patch, while the overlapping
design enables users to construct larger effective context windows if needed. Each patch received a
unique ID and was used to extract all 38 channels from the aligned modalities (Figs. [T} [fH7). For
each patch, area proportions were computed from the SG mask to summarize class presence.
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3.3 DATASET PROPERTIES AND STATISTICS

Overview and Structure: EarthScape currently comprises 31,018 georeferenced patches from two
geographic regions. Each patch is 256x256 pixels with 50% overlap and contains 38 co-registered
channels, including the mask, RGB+NIR imagery, DEM, multi-scale terrain derivatives, and binary
hydrography and infrastructure layers. EarthScape includes seven SG units. Each patch includes the
pixel-level SG mask and proportional class-area summaries, enabling multilabel classification, se-
mantic segmentation, regression, and multitask configurations. See Appendix [A.3|for more details.

Class Distribution and Imbalance: EarthScape exhibits a pronounced long-tailed distribution
across its seven SG units (Table [T} Fig. [2). Qr appears in 94.4% of patches, whereas the rarest
units occur in only 4.6% (Qat) and 0.9% (Qaf) of patches. Effective number of samples ranges from
9,464 (Qr) to 266 (Qaf), and the imbalance ratio per label spans more than two orders of magnitude
(1.0-108.4), reflecting strong label-level complexity driven by frequency skew. Beyond global fre-
quencies, EarthScape exhibits marked intra-patch complexity. Mean and standard-deviation class-
area proportions show that most patches contain multiple SG units with uneven contributions, and
the majority-area rate indicates that Qr dominates more than 70% of patches while rare units almost
never occupy the largest fraction. Patch-level class counts vary widely across the regions, reflecting
strong geospatial complexity in how classes co-occur and mix spatially.

Domain Shift: EarthScape spans two disjoint regions in Kentucky, USA, consisting of 23,566
patches from Warren County and 7,452 patches from Hardin County, separated by nearly 75 km.
This structure provides a natural geographic partition for analyzing cross-region variation. We com-
pute maximum mean discrepancy (MMD) to quantify distributional differences between patch-level
feature summaries (P10, P25, P50, P75, P90) of selected input modalities from each region (Gretton
et al., [2012). We observe measurable domain shift (Table , including MMD values of 0.365 for
RGB, 0.832 for DEM, and 0.164 for a multi-scale terrain stack (EP+S+SDS). Although both re-
gions share the same label set, their input feature distributions differ, reflecting geographic variation
and providing a clean, geographically partitioned setting for studying domain shift in multimodal
geospatial learning. See Appendix [C.4]for additional details.

4 EXPERIMENTS

4.1 METHODS

Task Definition: We formulate SG mapping as a multilabel classification task over multimodal
geospatial inputs. Each input sample corresponds to a 256 x 256 image patch with co-registered
modalities and a label vector indicating the presence or absence of each of the SG units. Let D =

(24, yL)ivzl denote the dataset, where each x; = mq,ms,...,m, is a collection of n modality-
specific input tensors (e.g., DEM, EP, PIC, etc.) and each modality m; can have multiple scaled
images that we consider as channels C;. The y; € 0,1% is a binary label vector over K = 7
classes, where a class is marked positive if any part of its mask intersects the patch (i.e., even a
single pixel), without applying a proportional threshold. The model learns a mapping f : X —
[0, 1]% to predict per-class probabilities, enabling multi-class label assignment for each patch. This
formulation allows us to systematically evaluate how different modality combinations contribute to
SG feature recognition and serves as a tractable benchmark for future tasks.

Surficial Geologic Mapping Network (SGMap-Net): We introduce SGMap-Net as a lightweight
model designed to effectively integrate the complementary information across modalities and serve
as a transparent and interpretable baseline. Its simplicity allows us to isolate the contributions of
modality and fusion strategy without architectural confounds, while ensuring that results are repro-
ducible and easily extendable. Figure [3]illustrates the architecture of SGMap-Net, which consists
of three key components: a standardization module, a feature extractor, and a classification head.
As part of our early fusion strategy, we first stack all channels of each modality m; and then apply
a1 x 1 convolution followed by batch normalization and ReLU activation to standardize the input
to a common channel dimension C' = 3. This ensures compatibility with a shared encoder, while
preserving modality-specific spatial patterns through independent convolutions.

m; = ReLU(BN(Convl x 1(m;))). (1)
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Figure 3: SGMap-Net and fusion baselines. Left: SGMap-Net accepts any number of modalities
with arbitrary channels, standardizes each to a 3-channel representation, and encodes them with a
shared encoder. Modality features are projected into a latent space for multi-head attention (MHA)
and fused via attention-weighted aggregation before classification. Right: Fusion baselines used in
experiments, including early channel stacking (top) and mid-level feature concatenation (bottom).

Each standardized modality m; is passed through a shared encoder to extract feature maps f,,, =
Encoder(mi;); we experiment with ResNeXt-50 (Xie et al., 2017) and Vision Transformer (ViT-
B/16) (Dosovitskiy, [2020) backbones initialized with ImageNet-pretrained weights. Next, each fea-
ture vector f,,, is projected into a common latent space of dimension d using a fully connected layer
and augmented with a learnable modality embedding e; to get the final representations z; = fi,, +e€;.
Then we apply modality-specific multi-head attention (MHA) (Vaswani et al.|[2017) mechanisms to
enable intermediate fusion across modalities. For each modality m;, attention is computed using z;
as the query (@), and the embeddings from all other modalities as keys (K') and values (V).

ai = MHA(Q = 2, K = [2j]j2:,V = [25] i) @)

Next, we perform attention-weighted aggregation over the set of modality-specific attention out-
puts a. We begin by concatenating all outputs A = [a;]. To determine the relative importance of
each modality, we apply a learnable linear projection v; followed by a Softmax operation to ob-
tain attention weights w = Softmax(v? A). The final fused representation is then computed using

these weights, 2fysed = Zf\il w;a;. This attention-weighted aggregation adaptively emphasizes
the most informative modalities for each sample. The fused embedding zfseq is then passed through
a classification head consisting of two fully connected layers to predict the geologic class logits .
In addition to our proposed attention-based fusion strategy, two alternative approaches are evalu-
ated: (1) we stack selected channels from different modalities, extract a joint representation using
the encoder, and feed it into the classification head; (2) we concatenate modality embeddings from
the encoder and pass them directly to the classification head. These variants serve as comparative
baselines to assess the impact of modality-aware attention in our fusion framework.

Data Splits and Selection: We define training, validation, and test splits using the Warren County
subset, all selected using a fixed random seed. We randomly sampled 1,536 patches for the in-
domain test set, then 768 non-intersecting patches for validation, and the remaining 8,416 non-
intersecting patches formed the training set (Table [5} Fig. [8h). A cross-domain test set of 1,536
patches was sampled from Hardin County (Table [5; Fig. [8b). All splits exhibit similar class dis-
tributions (Fig. O). This benchmark split preserves spatial independence, reflects standard dataset
proportions, and enables clear comparison between in-domain and cross-domain performance.

Training Procedure: Each modality was normalized using channel-specific means and standard
deviations computed from the training set. Data augmentation included random flips and 90° rota-
tions that preserve surface structure, while avoiding potential label mismatch from arbitrary-angle
rotations. To address class imbalance, we used focal loss (Lin, 2017) with o = 0.25 and v = 2.0;
oversampling was tested, but reduced performance. Models were trained for 15 epochs with Adam
(learning rate 0.001, batch size 16), and the checkpoint with the lowest validation loss was used
for evaluation. Label-wise decision thresholds were tuned on the validation set and applied to both
test sets. Performance is reported using per-class and macro-averaged precision, recall, F1, AP, and
AUC. See Appendices and [C.3for additional hardware, compute, and focal loss details.
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4.2 RESULTS AND DISCUSSION

Modality Performance: Across single-modality experiments, terrain features provide the strongest
overall performance (Tables Fig. [TI). EP achieves the highest in-domain F1 (0.651),
followed by S (0.647), both outperforming RGB (0.599) and DEM (0.632). Under cross-region
evaluation, EP and RGB exhibit the largest degradations (0.291, 0.267), whereas S shows a much
smaller drop (0.049). DEM shows moderate degradation (0.105), but is less robust than its terrain
derivatives. Multi-scale EP and S do not exceed their best single-scale versions, but they improve
cross-region performance (0.068, 0.043) (Tables 2} [TTHI3} Fig. [[T). The strongest configuration is
a multi-scale, multimodal input of EP+S+SDS, which has the highest in-domain (0.657) and cross-
domain (0.598) F1 scores across all experiments (Tables Fig. [[1I). Adding RGB and
DEM to this configuration reduces performance, indicating that raw appearance and elevation is
less invariant across regions and can dilute more stable, shape-based information from the terrain
derivatives. Overall, terrain features provide the most discriminative and robust representation, and
their complementary geometric cues combine more effectively than raw appearance or elevation.

Cross-domain Performance: Cross-region performance exhibits qualitative correspondence with
the patch-level distributional differences measured by MMD (Tables 2] and [7} see also Tables BHI6|
and Fig. [TT). RGB shows moderate shift (0.365) and the largest F1 degradation (0.267), reflecting
sensitivity to location-specific appearance. DEM exhibits the highest shift (0.832), but generalizes
better than RGB, suggesting that raw elevation provides some transferable signal. EP performs well
in-domain, but shows moderate shift (0.244) and a large F1 drop (0.271), consistent with region-
specific variation in local relief. S and SDS have the lowest shifts (0.097, 0.078) and exhibit strong
transfer performance (0.070, 0.060), indicating that these shape-based features provide more region-
invariant cues. Multi-scale S shows slightly higher shift (0.155), but improves cross-region robust-
ness (0.637). Multi-scale EP+S+SDS shows similar shift (0.164) and achieves the strongest overall
transfer (0.059). While MMD does not directly predict performance, modalities with smaller input
distribution differences tend to transfer more reliably across regions.

Per Class Behavior: Class-wise AUC varies substantially across units and cannot be explained by
frequency alone (Tables [I] Figs.[2l [I2). Qr appears in 94.4% of patches and achieves strong
in- and cross-domain AUC (0.933/0.905), yet Qc shows even higher separability (0.975/0.982) while
occurring in only 44.4% of patches. Conversely, Qal is the second most common unit (60.6%),
but yields the lowest AUC (0.840/0.760). Rare units are surprisingly separable, with Qat (4.6%)
and Qaf (0.9%) achieving competitive AUC values (0.903/0.847 and 0.926/0.964), indicating that
distinct spatial expression can offset low prevalence. In our benchmarks, no single modality or scale
maximizes AUC across all units. In-domain separability is often highest with multi-scale inputs,
while cross-domain robustness tends to be strongest with single-scale features that exhibit lower
distributional shift. Overall, per-class performance is shaped by the interaction of frequency, patch-
level mixing, spatial footprint, and scale-dependent expression of each class.

Fusion and Backbone Effects: Across fusion strategies, early channel stacking consistently yields
the strongest performance, followed by mid-level concatenation, and then attention-based fusion
(Tables 2} [TTHI8} Figs. [[THI2). Backbone differences are more modest but systematic. ResNeXt-
50 and ViT-B/16 achieve their highest scores with stacking, while ViT-B/16 tends to outperform
ResNeXt-50 when attention-based fusion is used. Class-wise trends show similar structure. With
single-modality inputs, ResNeXt-50 attains higher separability (AUC) for afl, Qal, Qaf, and Qat,
whereas ViT-B/16 performs better on Qc, Qca, and Qr. Multi-scale and multimodal configurations
improve class-wise performance for both encoders, but largely preserve these relative patterns, sug-
gesting that the two backbones emphasize different aspects of the same inputs. From a geologic
standpoint, the SG units where each backbone performs best share similar surface expressions. The
units where ResNeXt-50 generalizes well tend to be smaller in spatial extent, lower-relief, and more
linear in form, whereas the units where ViT-B/16 performs best exhibit broader, regionally exten-
sive geomorphic patterns. Together, these results show that fusion strategy drives overall robustness,
while backbone choice primarily shapes how performance gains distribute across individual classes.

Comparison with Baselines: We compare SGMap-Net to several recent multimodal RS foundation
models, including DOFA (Xiong et al., [2024), Panopticon-FM (Waldmann et al., |2025), SatMAE
(Cong et al.| [2022)), and SatMAE++ (Noman et al., 2024) (Table @) SGMap-Net achieves the
strongest overall performance. Its multimodal, terrain-only EP+S+SDS configuration attains the
highest in-domain F1 (0.657), the best cross-domain F1 (0.598), and the smallest performance drop
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Table 2: Macro-F1 and AUC for in-domain (ID), cross-domain (CD), and cross-region degradation
(A) across selected single-modality, multi-scale, and multimodal experiments. The upper block re-
ports SGMap-Net results and the lower block reports performance of existing RS foundation models.
Modality abbreviations follow Section Subscripts indicate either the DEM resolution used to
compute S, PrC, or PIC (e.g., S| 5 from the 1.5 m DEM), the kernel size for EP or SDS (e.g., EPs;
uses a 5S1x51 kernel), or multi-scale stacks of all resolutions (e.g., Sis). The best and second-best
scores in each column are shown in bold and underlined, respectively.

Model Modality Fusion Fl AUC
1D CD A D CD A

SGMap-Net (ResNeXt) RGB - 0.599  0.394  0.205 0.815  0.557 0.258
SGMap-Net (ViT) RGB - 0.579  0.332  0.267 0.793  0.526 0.267
SGMap-Net (ResNeXt) DEM - 0.632  0.527  0.105 0.883 0.730 0.153
SGMap-Net (ViT) DEM - 0.618  0.512  0.237 0.857  0.620 0.237
SGMap-Net (ResNeXt) EPs; - 0.651 0380 0.271 0.876  0.663 0.213
SGMap-Net (ViT) EPs; - 0.604 0489 0.078 0.835 0.757 0.078
SGMap-Net (ResNeXt) Sis - 0.645  0.575  0.070 0.876  0.808 0.068
SGMap-Net (ViT) Sis - 0.623  0.552  0.093 0.855  0.762 0.093
SGMap-Net (ResNeXt) Sms Attention 0494 0426  0.068 0.500  0.500 0.000
SGMap-Net (ViT) Sms Attention  0.557  0.519  0.038 0.615  0.594 0.021
SGMap-Net (ResNeXt) Sms Stacking 0.637 0.594 0.043 0.864  0.804 0.061
SGMap-Net (ViT) Sms Stacking  0.593  0.533  0.061 0.798  0.705 0.093
SGMap-Net (ResNeXt) EP, s +Sims +SDS g Attention 0.561 0.532 0.029 0.677 0.707 -0.030
SGMap-Net (ViT) EPps+Sms+SDSms Attention  0.567  0.538  0.029 0.776  0.678 0.098
SGMap-Net (ResNeXt) EPpns+Sms+SDSms Stacking  0.657  0.598  0.059 0.882  0.806 0.076
SGMap-Net (ViT) EPpns+Sms+SDSms Stacking 0.621  0.569  0.053 0.860  0.774 0.086
DOFA RGB+NIR - 0.597 0.533  0.064 0.652  0.623 0.029
Panopticon-FM RGB+NIR - 0.570 0313  0.257 0.635  0.533 0.102
SatMAE RGB+DEM+EP 5+Sims +SDSms - 0.614 0427  0.187 0.864  0.735 0.129
SatMAE++ RGB+DEM+EP ;s +Sms+SDS s - 0.656 0454  0.202 0.904 0.762 0.142

across regions (0.059). Pretrained models show weaker transfer when used with their native spectral
inputs. DOFA reaches an in-domain F1 of 0.597 and a cross-domain score of 0.533, but with a
competitive drop (0.064), while Panopticon-FM exhibits severe cross-domain collapse (0.257). To
enable a more comparable evaluation, we extended SatMAE and SatMAE++ to accept terrain chan-
nels. Although SatMAE++ achieves a strong in-domain F1 (0.656), its cross-domain performance
degrades sharply (drop of 0.202). These results indicate that pretrained spectral representations ex-
hibit substantial geographic sensitivity on this task, whereas terrain derivatives provide far more
stable cues under region shift. SGMap-Net’s use of multi-scale, shape-based geomorphic features
therefore yields significantly stronger and more consistent performance, despite its simplicity.

5 CHALLENGES AND LIMITATIONS

Geographic Scope: EarthScape v1.0 is sampled from two regions in the central United States.
Although compact, this spatial footprint keeps mapping standards, labeling conventions, and sensing
modalities consistent, simplifying interpretation and enabling clean, repeatable experiments. Both
regions differ enough to induce a measurable domain shift in our benchmarks. Future releases of
EarthScape will expand geographic coverage.

Modality Depth: EarthScape trades geographic breadth for modality depth. Although the spatial
extent is modest, each patch provides 38 co-registered channels of imagery, elevation, multi-scale
terrain derivatives, and vector features. This depth emphasizes surface-aware multimodal learning
and offers flexibility in inputs and architectures, but also increases dimensionality and complexity.

Class Imbalance: EarthScape contains seven SG units with long-tailed distributions. Many units
occupy only small portions of a patch, patches often have multiple units, and class presence varies
across space. This structure reflects the true distribution of SG materials, but requires models to
handle class imbalance, intra-patch complexity, co-occurrence patterns, and spatial heterogeneity.

Domain Shift: SG units are governed by surface processes that recur globally, but input RS modal-
ities vary geographically. Models that rely heavily on location-specific cues, such as RGB appear-
ance or raw elevation, exhibit substantial cross-region degradation, whereas terrain-derived features
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transfer more reliably. EarthScape’s cross-region design makes this explicit and provides a con-
trolled setting for studying domain shift in multimodal geospatial learning.

Multi-scale and Multimodal Complexity: SG units are expressed by surface processes spanning
a range of spatial scales. EarthScape includes terrain derivatives at six resolutions so that models
can learn both fine-scale patterns and broader positional context. Our results indicate that no single
scale optimizes performance for all classes, and multi-scale combinations generalize better than
single-scale variants. Modality follows the same pattern, and multi-scale, multimodal configurations
consistently outperform. This demonstrates the necessity of multi-scale, multimodal fusion and
scale-aware architectures, but also increases feature dimensionality and design complexity.

Interpretation Variability: EarthScape relies on expert-labeled SG maps. Classes are well-defined
by geologic process, but boundaries may be approximate where diagnostic features are sparse, in-
troducing uncertainty into patch-level labels. In our benchmarks, a unit is marked as present if
it occupies at least one pixel. We provide per-patch class-area proportions to support alternative
thresholding or probabilistic labeling.

Label and Taxonomy Constraints: The current release uses a single, aggregated taxonomy of
seven SG units and does not capture the full diversity of SG materials observed globally. This limits
the breadth of environments represented and may constrain the generality of models trained solely
on EarthScape v1.0. At the same time, classes are defined in terms of surface process, enabling
broad transferability to regions with similar geologic processes and data.

Temporal Inconsistency: Input modalities were acquired from 2019 to 2024, introducing mild
temporal misalignment among imagery, elevation, and vector layers. While SG units are stable
on these timescales, land cover and infrastructure may change, creating minor label noise. This
asynchrony is a limitation, but also reflects realistic conditions under which many Earth observation
systems operate.

Patch Overlap and Sample Independence: EarthScape uses a 50% overlapping patches to increase
spatial context, ensure dense sampling, and support multi-view aggregation, but this design also in-
troduces statistical dependence between neighboring samples. We mitigate leakage in evaluation by
enforcing spatially disjoint train/validation/test sets, but non-independence remains a consideration
when designing models and interpreting significance.

6 CONCLUSIONS

We introduced EarthScape, an Al-ready multimodal benchmark for SG mapping. EarthScape inte-
grates aerial imagery, DEMs, multi-scale terrain derivatives, and GIS vector layers into a unified,
co-registered framework, providing a modality-deep testbed for surface-aware geospatial learning.
The dataset exposes real-world challenges that are underrepresented in existing benchmarks, includ-
ing long-tailed class distributions, multi-label patch structure, multi-scale organization, and explicit
geographic domain shift between training and held-out regions.

In our baseline experiments, terrain-derived features that encode surface shape emerge as the most
informative and robust modalities, while models relying primarily on RGB or raw elevation suffer
substantial degradation under cross-region evaluation. Multi-scale and multimodal inputs improve
performance over single-scale or single-modality configurations. Cross-region transfer is more sen-
sitive to how surface inputs are fused than to backbone encoder complexity, with early channel
stacking consistently outperforming attention-based fusion. SGMap-Net is a lightweight baseline,
yet outperforms the recent spectral-based RS foundation models we evaluate. These findings under-
score that SG mapping in EarthScape is strongly shape-driven and indicate limits on the transfer-
ability of appearance-based representations in this setting.

EarthScape is designed as a living, versioned dataset and will expand in both geographic coverage
and modality space as high-quality SG maps and compatible remote sensing products become avail-
able and pass our quality-control pipeline. By releasing all data, code, and benchmark splits, we aim
to support reproducible research on multimodal fusion, domain adaptation, and geospatial learning,
and to provide a common platform for cross-disciplinary work at the intersection of computer vision,
RS, and Earth surface analysis.

10
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. EarthScape is built exclusively from publicly avail-
able, government or community datasets under open licenses; no human subjects, personal data, or
sensitive information are involved. All source attributions and licensing terms are respected, and
no conflicts of interest are present. We caution that models trained on EarthScape should be ap-
plied with geological domain expertise, particularly outside regions with similar surficial processes,
to avoid misinterpretation in decision-making contexts. We report implementation details in the
Appendix to promote awareness of environmental impact and enable informed replication.

REPRODUCIBILITY STATEMENT

We support reproducibility through precise documentation of data sources and preprocessing, patch
generation and spatially independent splits, model and training configurations, and comprehensive
results. Upon acceptance, the full EarthScape dataset and code will be publicly released with a
data dictionary and README. These materials are intended to allow end-to-end reproduction of all
reported experiments.
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A EARTHSCAPE DETAILS

A.1 PURPOSE

EarthScape is designed as a benchmark dataset for learning from continuous, spatially coherent SG
units and the surface processes they represent. Its primary purpose is to support research on multi-
modal geospatial learning, where models integrate aerial imagery, LiDAR-derived DEMs, multi-
scale terrain derivatives, and vector contextual data to infer geologic patterns expressed on the
Earth’s surface. The name EarthScape reflects this focus on surface morphology and near-surface
processes, rather than implying complete global coverage.

A.2 CODE AVAILABILITY AND REPRODUCIBILITY

All code used for data preprocessing, patch generation, model training, and evaluation will be re-
leased upon acceptance. The repository will include comprehensive documentation and scripts to
fully reproduce the dataset and all experiments reported in this contribution. This includes tools
for multimodal data alignment, terrain-derivative computation, mask rasterization, and construction
of spatially independent training/validation/test splits. The codebase also provides baseline imple-
mentations of SGMap-Net with both ResNeXt-50 and ViT-B/16 encoder backbones, along with
standardized training and evaluation pipelines. Utilities for focal loss, threshold optimization, per-
formance metrics, and visualization are included for completeness. The full dataset will also be
made publicly available at acceptance. The dataset archive contains all co-registered modalities,
multilabel target masks, per-patch class proportions, and accompanying metadata, including a de-
tailed data dictionary documenting each modality.

A.3 DATASET CONTENTS

EarthScape provides a standardized multimodal dataset for each 256256 patch aligned to a com-
mon 1.52 m GSD grid in the EPSG:3089 coordinate reference system. For every patch, the dataset
includes co-registered raster modalities (RGB, DEM, multi-scale EP, PrC, PIC, S, and SDS terrain
derivatives), along with binary hydrology (NHD) and infrastructure (OSM) masks. Each patch is
paired with a multilabel one-hot vector for the seven surficial geologic units, per-class area propor-
tions, and a GeoJSON polygon defining the exact patch footprint and unique patch ID. All rasters
are provided as GeoTIFF files, labels and areas as CSV, and patch polygons as vector GeoJSON
files. The dataset archive additionally includes global normalization statistics (per-modality means
and standard deviations) computed over the full in-domain region to support reproducible prepro-
cessing. Table 3] summarizes all contents included in the current dataset.

A.4 CURRENT STATUS AND ROADMAP

Figure []illustrates the current extent and planned expansion of the EarthScape dataset. EarthScape
v1.0 includes two regions in central Kentucky: Warren County, which contains the largest number of
image patches, and Hardin County, which serves as an independent test area that enables evaluation
of cross-region generalization. Version 2.0 will nearly triple the number of patches (Fig. [)), while
Version 3.0 will extend coverage beyond Kentucky into adjacent regions that capture additional
geologic processes and environmental conditions. EarthScape is designed as a living dataset. Future
versions will continue to evolve through the addition of new regions, modalities, and metadata. We
invite external researchers to contribute high-quality data that aligns with the dataset’s standards,
with the goal of strengthening EarthScape as a shared benchmark for multimodal geospatial learning.

A.5 EXTENSIBILITY AND COMMUNITY CONTRIBUTIONS

EarthScape is designed as a living dataset rather than a one-time release. To maintain reproducibility
while enabling growth, we follow semantic versioning with frozen releases (v1.0, v1.1, v2.0, etc.),
stable train/validation/test splits, and a public CHANGELOG documenting all modifications to re-
gions, modalities, or preprocessing steps. Newly added areas are organized as separate modules so
that existing benchmarks remain stable across versions.
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Table 3: Summary of EarthScape v1.0 dataset contents.

Name Filename Pattern Data Type  Metadata

Mask {id}-geology.tif float SG target mask for segmentation; 1.52 m GSD
DEM {id}-dem.tif float Airborne LiDAR; 1.52 m GSD

Aerial, Red {id}.aerialr.tif float Aerial imagery, red band; 1.52 m GSD

Aerial, Green {id}.aerialg.tif float Aerial imagery, green band; 1.52 m GSD

Aerial, Blue {id}.aerialb.tif float Aerial imagery, blue band; 1.52 m GSD

Aerial, NIR {id}.aerialr.tif float Aerial imagery, near infrared band; 1.52 m GSD
Hydrography {id}-nhd.tif float Binary stream & water bodies; 1.52 m GSD
Infrastructure {id}.osm.tif float Binary road & railways; 1.52 m GSD

EPs {id}_ep-5x5.tif float Computed with 5x5 kernel & 1.52 m GSD DEM
EP11 {id}-ep-11x11.tif float Computed with 11 x 11 kernel & 1.52 m GSD DEM
EP5; {id}-ep-21x21.tif float Computed with 21 x21 kernel & 1.52 m GSD DEM
EP51 {id}-ep-51x51.tif float Computed with 51x51 kernel & 1.52 m GSD DEM
EPi01 {id}_ep-101x101.tif float Computed with 101101 kernel & 1.52 m GSD DEM
EP201 {id}_ep-201x201.tif float Computed with 201201 kernel & 1.52 m GSD DEM
PIC; 5 {id}-plancurv.tif float Computed with 5x5 kernel & 1.52 m GSD DEM
PIC3 {id}-plancurv.10.tif float Computed with 5% 5 kernel & 3.05 m GSD DEM
PIC¢ {id}.plancurv.20.tif float Computed with 5% 5 kernel & 6.1 m GSD DEM
PIC15 {id}_plancurv.50.tif float Computed with 5x5 kernel & 15.24 m GSD DEM
PIC30 {id}_plancurv_100.tif float Computed with 5X5 kernel & 30.48 m GSD DEM
PICg0o {id}-plancurv.200.tif float Computed with 5 x5 kernel & 60.96 m GSD DEM
PrCy 5 {id}-procurv.tif float Computed with 5x 35 kernel & 1.52 m GSD DEM
PrCs {id}.procurv.10.tif float Computed with 5% 5 kernel & 3.05 m GSD DEM
PrCeq {id}.procurv.20.tif float Computed with 5x 5 kernel & 6.1 m GSD DEM
PrCi5 {id}_procurv.50.tif float Computed with 5% 5 kernel & 15.24 m GSD DEM
PrCso {id}-procurv.100.tif float Computed with 5 x5 kernel & 30.48 m GSD DEM
PrCso {id}-procurv.200.tif float Computed with 5 x5 kernel & 60.96 m GSD DEM
Si.s {id}.slope.tif float Computed with 5% 5 kernel & 1.52 m GSD DEM
S3 {id}.slope_10.tif float Computed with 5% 5 kernel & 3.05 m GSD DEM
Se {id}-slope_20.tif float Computed with 5% 5 kernel & 6.1 m GSD DEM
S1s {id}-slope_50.tif float Computed with 5 x5 kernel & 15.24 m GSD DEM
S30 {id}-slope-100.tif float Computed with 5x 35 kernel & 30.48 m GSD DEM
S60 {id}.slope_200.tif float Computed with 5 x5 kernel & 60.96 m GSD DEM
SDSs {id}.stdslope_5x5.tif float Computed with 5% 5 kernel & 1.52 m GSD DEM
SDS11 {id}-stdslope_11x11l.tif float Computed with 11x 11 kernel & 1.52 m GSD DEM
SDS21 {id}-stdslope_21x21.tif float Computed with 21 x21 kernel & 1.52 m GSD DEM
SDS51 {id}-stdslope-51x51.tif float Computed with 51x51 kernel & 1.52 m GSD DEM
SDS101 {id}_stdslope.101x101.tif float Computed with 101101 kernel & 1.52 m GSD DEM
SDS3201 {id}_stdslope_-201x201.tif float Computed with 201 x201 kernel & 1.52 m GSD DEM
Class Areas earthscape_areas.csv float Patch-level class-area proportions

Labels earthscape_labels.csv int One-hot encoded labels (no pixel threshold)

Patch GIS earthscape_patches.geojson - Vector file with locations & geometries

Statistics earthscape_stats.csv float Modality mean & SDs from training split

Mapping earthscape.class_mapping. json - Label string to ordinal mapping

Train Split indomain_-train.geojson - Training split GIS file with patch IDs

Val. Split indomain.val.geojson - Validation split GIS file with patch IDs

In-dom. Test Split
Cross-dom. Test Split

indomain_-test.geojson
crossdomain_test.geojson

In-domain test split GIS file with patch IDs
Cross-domain test split GIS file with patch IDs

Although the preprocessing pipeline is fully implemented, incorporating additional SG maps re-
quires coordinated domain and data-engineering effort. Each new region must be standardized with
EarthScape’s process-based SG classes, rasterized with topologically consistent masks, aligned with
LiDAR-quality DEMs and imagery, and evaluated for geologic validity remaining uncertainty. Ex-
ternal groups may propose new regions by providing high-quality 1:24,000-scale SG maps together
with co-registered DEMs, terrain derivatives, aerial imagery, and relevant vector layers. Regions
meeting EarthScape’s quality standards and QC protocol will be incorporated into a subsequent

versioned release.
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Figure 4: Map of the central United States showing the publicly available 1:24,000-scale surficial
geologic maps. Red lines show boundaries of major geologic provinces, which provide geological
constraints for generalizability. EarthScape-trained models are expected to generalize effectively
throughout the Interior Low Plateaus and adjacent Appalachian Plateaus, based on shared terrain,
bedrock, and geomorphic processes. In contrast, the glaciated Central Lowlands and Coastal Plain
are characterized by fundamentally different surficial processes and materials.
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B GEOLOGICAL BACKGROUND AND TERRAIN DERIVATIVES

B.1 SURFICIAL GEOLOGY

Figure 5| presents two examples of SG maps from the EarthScape dataset, shown as semi-transparent
overlays atop multi-directional hillshade images. This visualization emphasizes the relationship
between SG and topography. Distinct landforms, such as river valleys, plains, and steep hillslopes,
are spatially correlated with specific surficial geologic units. EarthScape leverages this relationship
to frame surficial geologic mapping as a vision task, where computer vision models can learn to
associate surface patterns with underlying geological processes. The EarthScape dataset currently
includes seven surficial geologic map units, each representing distinct surface processes (Table [4).
Although the maps are from Kentucky, the units reflect fluvial deposition, gravitational transport,
and in-situ weathering processes that are active in many landscapes worldwide.

1. Artificial fill (afl): Manmade deposits consisting of transported or excavated material
placed or removed for engineering, mining, or other anthropogenic structures. Includes
road embankments, building pads, quarries, and areas of significant topographic modifica-
tion. Often exhibits sharp, angular boundaries. The spatial extent of afl can be below the
mapping resolution and inconsistently captured on expert-curated surficial geologic maps.

2. Alluvium (Qal): Unconsolidated sediments, typically consisting of clay-, silt-, sand-, and
gravel-sized particles, deposited by modern rivers and streams. Qal is commonly found
in active floodplains and valley bottoms and reflects recent sedimentation from overbank
flooding and channel migration. These areas are generally flat, vegetated, and hydrologi-
cally dynamic.

3. Alluvial fans (Qaf): Fan-shaped deposits formed at the base of tributaries or drainages,
where sediment-laden water rapidly spreads and loses energy. These deposits are typically
coarse-grained, poorly sorted, and associated with debris flows or flash floods. Although
geologically significant, Qaf are often small, making them inconsistently represented on
typical 1:24,000-scale maps.

4. Terrace deposits (Qat): Relict alluvial sediments preserved on elevated flat surfaces above
modern stream channels. These deposits reflect former floodplain levels and subsequent
stream incision. Compositionally similar to Qal, but usually expressed as distinct landforms
above modern flood plains.

5. Colluvium (Qc): Hillslope-derived sediments that accumulate at the base of slopes due to
gravity-driven processes such as soil creep, slopewash, and shallow landslides. Qc deposits
are unsorted and variable in thickness, typically found on slopes > 12°. Qc is considered
an active geomorphic unit.

6. Colluvial aprons (Qca): Slope-derived material deposited across lower hillslopes. Qca typ-
ically occurs downslope from Qc and is more stable, having accumulated over longer time
periods. These deposits may be partially weathered, with poorly defined lower boundaries
that grade into Qr due to extended weathering and lower erosion rates.

7. Residuum (Qr): Weathered material formed in place from the physical, chemical, and bio-
logical breakdown of underlying bedrock or older unconsolidated deposits. Qr lacks signif-
icant sediment transportation and is commonly found in upland areas with minimal active
erosion. Qr is commonly gradational and poorly defined where it grades into Qc or Qca,
leading to interpretive ambiguity during mapping.

B.2 GEOLOGIC GENERALIZATION

Although EarthScape v1.0 is geographically limited, the geologic processes and terrain surface types
it represents are not unique. The dataset is directly applicable to the surficial geology exposed in the
Interior Low Plateaus and Appalachian Plateaus (Fig. ). Comparable landscapes characterized by
carbonate bedrock, dissected plains, and mixed fluvial-colluvial systems occur globally, including
the Ozark Plateau (USA), parts of the Carpathians (Eastern Europe), the Dinaric Alps (Balkans), and
areas of central China and southeastern Australia. However, differences in geologic processes do
constrain transferability. For instance, the Central Lowlands (Fig. 4) contain fundamentally different
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(a) Surficial geologic map of part of Warren County. (b) Surficial geologic map of part of Hardin County.

Figure 5: Example SG maps showing the distribution of unconsolidated materials overlaid on hill-
shade images to emphasize topographic context. The spatial correspondence between SG map units
and landscape features, such as valleys and slopes, is visually apparent. The black grid indicates
the layout of EarthScape patches, each measuring 256 x 256 pixels (390.14 x 390.14 m) with 50%
overlap. Red squares in the upper left corners highlight a single patch

Table 4: Descriptions of SG units represented in EarthScape v1.0.

Class Name Dominant Process Visual Cues

afl Artificial fill Anthropogenic Sharp, angular edges; linear or rectilinear shapes; DEM anomalies incon-
sistent with natural terrain.

Qal Alluvium ‘Water-dominated Relatively wide, flat-bottomed valleys; active stream channels; low relative
elevations.

Qaf Alluvial fans ‘Water-dominated (acute) Small, isolated, lobate landforms; located at slope-base transitions.

Qat Terrace deposits ‘Water-dominated (relict) Flat benches above floodplains; stepped margins; often dissected.

Qc Colluvium Gravity-dominated (active) Steep slopes (> 12°); may include landslides or erosional hazards.

Qca Colluvial aprons  Gravity-dominated (stable) ~ Wedge-shaped landforms along slope bases with concave profiles; transi-
tional between slope and plain.

Qr Residuum In-situ weathering Broad, low-relief uplands; little drainage or erosion; variable surface tex-

ture.

surficial materials and geomorphic processes as a result of widespread glaciation (rather than non-
glaciated weathering and erosion), limiting the direct applicability of EarthScape v1.0. Accordingly,
we recommend that applications of EarthScape v1.0 to new regions be guided by domain expertise
to ensure geological validity and meaningful interpretation.

B.3 MODALITIES

Figs. |§| andm showcase the diverse, multimodal data available for each of the 31,018 EarthScape
patches. Each patch includes 38 co-registered channels, comprising expert-labeled geologic masks,
high-resolution aerial RGB and NIR imagery, a DEM, terrain features derived from the DEM at
multiple spatial scales, and rasterized vector data representing hydrologic and infrastructure fea-
tures. Among these modalities, the DEM and its derived terrain features provide critical context for
understanding surface processes and interpreting surficial geologic units. Five terrain variables were
computed at six spatial scales to capture localized and regional landform variability.

1. Slope (S) is the first derivative of elevation, measuring the rate of change of elevation over

a horizontal distance. It quantifies the steepness of the terrain, providing insight into pro-
cesses like erosion and material movement.

92\ > 02\ >
S =tan™" - . 3
o < dx > i ( dy ) ®
Where % and g—; are the partial derivatives of elevation in the x and y directions, respec-
tively.
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2. Profile curvature (PrC) is a directional second derivative of elevation, measured along the
direction of the steepest slope. It quantifies how slope changes in that direction, reflecting
the acceleration or deceleration of flow, and influencing erosion and deposition patterns.

pzr + 2pgqs + q2t
(2 + )"

Where p = % and ¢ = g—; are the first-order partial derivatives of elevation in the x and
: : _ 8%z _ 9%z _ 9%z :
y directions, and r = 550 5 = Brog and t = g7 are the corresponding second-order

partial derivatives.

PrC = “4)

3. Planform curvature (PIC) is another directional second derivative of elevation, measured
perpendicular to the direction of the steepest slope. It describes the curvature of contour
lines (lines of equal elevation) and reflects how flow paths converge or diverge across the
landscape.

¢*r — 2pgqs + p°t
(P2 + )3/

Where p = % and ¢ = g—fj are the first-order partial derivatives of elevation in the x and
.. 52, 52 52 .

y directions, and r = %, s = adTBZy’ and t = g—yi are the corresponding second-order

partial derivatives.

PIC = (&)

4. Elevation percentile (EP) measures the relative elevation of a point within a defined neigh-
borhood, expressed as a percentile rank (0-100%) of the elevation among neighboring
values. EP helps distinguish between landforms defined by relative topography, such as
ridges, valleys, or sinkholes.

{z; € Z | z; < z}
N (6)

Where z is the elevation at the center cell, Z is the set of elevations in the neighborhood,
z; are the individual neighboring elevations, and NN is the total number of neighbors. The
numerator counts the number of neighbors with elevation less than z.

EP =100-

5. Standard deviation of slope (SDS) is a measure of roughness and quantifies the variability
in slope angle within a local window. SDS represents how rugged or uneven the surface
is, highlighting areas with complex topography that may correlate with diverse geologic
materials or processes.

1 Y =N 2
SDS = N;(Sﬁs) (7)

Where S; is the slope angle (in degrees or radians) of the i*" cell in the neighborhood, S
is the mean slope within that neighborhood, and N is the total number of cells used in the
calculation window.
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Figure 6: Example patch from the Warren County area showcasing the 38 channels available in
EarthScape. Channels are displayed from top left to bottom right: target mask, RGB aerial imagery,
NIR aerial imagery, DEM, NHD hydrologic features, OSM infrastructure, six spatial scales of S,
PrC, and PIC derived from downsampled DEMs, and multiple scales of SDS and EP calculated
using six kernel sizes with the original DEM.
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SG Mask

Figure 7: Example patch from the Hardin County area showcasing the 38 channels available in
EarthScape. Channels are displayed from top left to bottom right: target mask, RGB aerial imagery,
NIR aerial imagery, DEM, NHD hydrologic features, OSM infrastructure, six spatial scales of S,
PrC, and PIC derived from downsampled DEMs, and multiple scales of SDS and EP calculated
using six kernel sizes with the original DEM.
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C ADDITIONAL BENCHMARK DETAILS

C.1 GEOSPATIAL PATCH SELECTION AND EXPERIMENTAL DESIGN

To ensure robust and geographically fair model evaluation, EarthScape patches were split into spa-
tially independent training, validation, and test sets. The Warren County region was used for in-
domain training and evaluation due to its broader spatial coverage and diversity of surficial geologic
units. We first randomly selected 1,536 test patches, followed by 768 validation patches that did not
spatially intersect with the test set, and then assigned the remaining 8,416 non-overlapping patches
to the training set (Fig. [8). These split sizes were chosen through iterative selection to satisfy several
practical constraints: (1) all splits had to be spatially non-overlapping; (2) patch counts needed to be
divisible by common batch sizes (e.g., 16 or 32) to support efficient model training; (3) the resulting
proportions had to be reasonably balanced and typical for supervised learning workflows (Table [3)).

To assess geographic generalization, we created a cross-domain test set consisting of 1,536 ran-
domly selected patches from the Hardin County region (Fig. [8). Although geologically similar,
Hardin County is located approximately 85 km from Warren County and is spatially independent.
This separate region enables testing model performance under domain shift, simulating real-world
conditions in which models are applied beyond the area used for training.

Figure [9] shows the class distributions for each data split. All subsets reflect the inherent class
imbalance typical of surficial geologic mapping, driven by the localized nature of surface processes.
Importantly, the class distributions are consistent across the training, validation, and both test sets,
ensuring that evaluation performance is not biased by differences in class representation.

(a) Training, validation, and in-domain test patches from the Warren (b) Cross-domain test patches from
County region. the Hardin County region.

Figure 8: Spatial distribution of selected patches for EarthScape experiments. All splits are spatially
independent: no patch overlaps between splits, though patches within the same split may partially
overlap due to the 50% patch stride. See Figure@for geographic locations.

Table 5: Patch counts and split proportions for training, validation, and testing based on the total
number of patches used for in-domain training and evaluation. An additional test set from the
spatially independent Hardin County region was used to assess cross-domain generalization.

Split Region Patch Count (n) In-domain Proportion (%)
Training Warren 8,416 78.5
Validation Warren 768 7.2

In-domain Testing Warren 1,536 14.3
Cross-domain Testing ~ Hardin 1,536 -
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Figure 9: Class distribution and intra-patch composition across EarthScape data splits. Top row: Bar
plots showing the frequency of each surficial geologic unit in the training, validation, in-domain test,
and cross-domain test sets. Bottom row: Swarm plots overlaid with box plots showing the proportion
of each patch occupied by each class. All splits display consistent patterns in both overall frequency
and within-patch composition, supporting fair evaluation across subsets.

C.2 HARDWARE, COMPUTE, AND TRAINING CONFIGURATION

All experiments were implemented in Python using the PyTorch framework. Models were trained
and evaluated on a machine equipped with an Intel Xeon processor, 128 GB of RAM, and two
NVIDIA RTX A4000 GPUs. Initial training experiments were run for 25 epochs to observe con-
vergence behavior (Fig. [T0). For any single-channel configuration (e.g., DEM-only), SGMap-Net
with the ResNeXt-50 encoder contains 25.35 M trainable parameters and requires 5.56 GFLOPs per
256 x 256 forward pass, while the ViT-B/16 encoder variant contains 87.51 M trainable parameters
and requires 16.87 GFLOPs. FLOPs increase slightly when multiple modalities are included, but
parameter count is invariant. Across all configurations, we found that model performance generally
stabilized within the first 10 epochs of training (Fig. [I0). Based on these observations, we standard-
ized all subsequent experiments to 15 epochs, which provided a balance between sufficient training
and computational efficiency.
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(a) DEM model trained for 25 epochs. Early conver-
gence is evident by epoch 10, with decreased perfor-
mance thereafter.

(b) S (5) model trained for 15 epochs, demonstrating
stable convergence and alignment between training
and validation performance.

Figure 10: Training and validation loss and accuracy curves across epochs. Each subplot shows
model loss (left panel) and accuracy (right panel) behavior for a different input modality, with train-
ing curves shown in blue and validation curves in orange.
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C.3 FocAL Loss

To address the significant class imbalance in EarthScape, we adopted focal loss. Initial tuning was
conducted using the validation set and DEM modality only, a ResNeXt-50 backbone, the Adam
optimizer, and a fixed learning rate of 0.001 to explore the effects of focal loss parameters. We
evaluated values of v € 1.0, 1.5, 2.0, 2.5, 3.0 and tested several strategies for the class-balancing
factor (), including a fixed scalar (o« = 0.25), inverse class frequency (ICF), square root of ICF
(VICF), and class-balanced focal loss with 5 = 0.999 (CBFL) (Table @) The combination of
a = VICF and v = 2.0 yielded the best performance for the DEM-only configuration. However,
when this setting was applied to other modalities, training became unstable, and convergence was
inconsistent. To ensure comparability across all experiments and isolate the effects of modality and
fusion design, we adopted the original focal loss settings (o = 0.25, v = 2.0) for all remaining runs.

Table 6: Per-class and macro-averaged validation set F1 and AUC scores for different focal loss
configurations using the DEM modality and a ResNeXt-50 backbone. These results were used to
guide focal loss tuning, although the best-performing configuration did not generalize well across
modalities. As a result, we adopted o = 0.25, v = 2.0 for all subsequent experiments.

o 5 F1 AUC
afl Qal Qaf Qat Qc Qca Qr AVG. afl Qal Qaf Qat Qc Qca Qr AVG.
0.25 1 0743 0848 0.267 0436 0.899 0.778 0.968 0.706 0.861 0.862 0.907 0923 0.967 0923 0.937 0911
0.25 1.5 0726 0.855 0250 0.354 0914 0.751 0.968 0.688 0.866 0.874 0915 0.884 0.964 0909 0.932 0.906
0.25 2 0749 0841 0.229 0400 0914 0.778 0965 0.697 0.868 0.859 0.929 0919 0970 0929 0912 0912
0.25 25 0.690 0.866 0275 0387 0.895 0.767 0.971 0.693 0.844 0.887 0944 0.895 0.965 0920 0.945 0914
0.25 3 0709 0851 0.267 0323 0.890 0.772 0970 0.683 0.853 0.863 0.895 0.890 0.962 0925 0.924 0.902
ICF 1 0524 0804 0.204 039 0.831 0.640 0961 0.622 0.639 0.730 0921 0.851 0912 0828 0.851 0.819
ICF 2 059 0805 0.286 0314 0.839 0.687 0961 0.641 0.731 0.737 0.934 0.828 0.916 0.854 0.869 0.838
ICF 2.5 0589 0799 0267 0326 0.843 0.671 0.962 0.637 0.711 0.716 0923 0.838 0.919 0842 0.848 0.828
VICF 1 069 0.845 0286 0348 0.879 0.763 0.965 0.683 0.843 0.867 0912 0905 0.955 0925 0.922 0.904
VICF 1.5 0.688 0.838 0.333 0.409 0877 0.766 0974 0.698 0.834 0.844 0961 00909 0951 0914 0.924 0.905
ICF 2 0726 0.841 0444 0460 0.905 0.749 0.962 0.727 0.850 0.853 0.945 00931 0961 0921 0913 0911
VICF 25 0709 0.835 0.293 0487 0901 0.760 0.963 0.707 0.849 0.844 0956 0940 0962 0926 0.893 0910
CBFL 1 0720 0.831 0412 0427 0893 0.733 0.973 0.713 0.864 0.839 0965 0903 0.962 0902 0.924 0.908
CBFL 1.5 0.715 0.841 0286 0412 0908 0.764 0.971 0.700 0.844 0.854 0940 0906 0.971 0920 0.947 0912
CBFL 2 0727 0.866 0.357 0455 0914 0.792 0.965 0.725 0.867 0.890 0918 0923 0971 0921 0914 0915
CBFL 25 0.711 0.844 0455 0372 0911 0.753 0.968 0.716 0.846 0.857 0970 0.908 0.967 0928 0.930 0915

C.4 MAXIMUM MEAN DISCREPANCY ANALYSIS

To quantify cross-region distributional differences between Warren and Hardin, we compute the
maximum mean discrepancy (MMD) between patch-level feature distributions (Gretton et al.,[2012).
Each 256256 patch is summarized using the 10th, 25th, 50th, 75th, and 90th percentiles of pixel
intensities for the relevant modality. For multi-channel inputs, percentile features are concatenated
into a joint feature vector. Percentile vectors from both regions are pooled and scaled to [0, 1],
then compared using RBF-kernel MMD. Table [/| reports MMD values for representative modali-
ties. These values indicate measurable, modality-specific covariate shift between regions, reflecting
differences in appearance, elevation, and multi-scale terrain structure.

Table 7: MMD for selected raw inputs in EarthScape v1.0.

Modality MMD
RGB 0.3654
DEM 0.8322
EPs; 0.2438
Sis 0.0974
SDS;; 0.0775
Sns 0.1549

EPins+Sms+SDS1s 0.1636
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D COMPREHENSIVE RESULTS

D.1 SINGLE MODALITY

Tables [8] O and [I0] report complete results for all single-scale, single-modality experiments, in-
cluding macro-averaged F1, AUC, precision, recall, mean average precision (mAP), and accuracy
for both the in-domain and cross-domain evaluations. Results are provided for both ResNeXt-50
and ViT-B/16 backbones. Figure [[T|summarizes the top-performing single-modality configurations
across both encoders.

Across modalities, in-domain performance is relatively similar, but cross-region behavior varies
substantially. For ResNeXt-50, EP achieves the highest in-domain scores, but exhibits the largest
performance drop under domain shift, whereas S achieves slightly lower peak performance with
significantly better transferability. For ViT-B/16, S, DEM, and EP provide the strongest overall
results, and cross-region gaps are smaller and more uniform than with ResNeXt-50. These trends
indicate that ResNeXt-50 offers higher peak performance, while ViT-B/16 yields more consistent
generalization across regions.

D.2 MULTI-SCALE FUSION

Tables [T1] [T2] and [I3] report complete results for all multi-scale, single-modality experiments for
in-domain and cross-domain evaluations of both ResNeXt-50 and ViT-B/16 backbones. Figure [IT]
summarizes the top-performing models across all multi-scale configurations for both encoders.

Across scales, ResNeXt-50 again achieves the highest peak in-domain performance, with EP lead-
ing overall. However, EP experiences the largest cross-region drop, whereas S and SDS retain
much more of their performance and exhibit smaller gaps than even in the single-scale setting. For
ViT-B/16, S similarly provides the strongest and most stable result, with even smaller cross-region
declines than its single-scale counterparts. ViT-B/16 also benefits noticeably from multi-scale cur-

Single Modality Multi-scale Multimodal

F1-score

ResNeXt

F1-score

Figure 11: In-domain (blue) and cross-domain (orange, hatched) F1 scores for the top four models
for single-modality, multi-scale fusion, and multimodal fusion experiments. Rows show compar-
isons of ResNeXt-50 (top) vs. ViT-B/16 (bottom) backbones. Each subplot shows the four best-
performing models based on in-domain F1 scores. Cross-domain bars illustrate domain shift using
the same models selected based on in-domain performance. Model configurations are shown above
each group and indicate the input modality, or modality combination and fusion strategy.
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vature inputs, with PrC emerging as a relatively strong predictor. Overall, these results indicate that
multi-scale terrain derivatives, particularly S and SDS, improve cross-region robustness, and that
backbone choice can influence which shape-based cues are most effectively leveraged.

D.3 MULTIMODAL FUSION

Tables [T4] [13] and [I6] report complete results for all multimodal fusion experiments for both en-
coders across in-domain and cross-domain evaluations. These experiments evaluate multiple fusion
strategies, including early channel stacking, mid-level concatenation, and mid-level attention vari-
ants. Figure [[1]summarizes the top-performing multimodal configurations across both encoders.

Across modalities and fusion strategies, early channel stacking consistently performs best.
ResNeXt-50 achieves its strongest performance with the multiscale EP+S+SDS combination, which
also yields the best cross-region results of any model tested. Multimodal configurations, including
those that incorporate RGB or DEM, exhibit relatively small cross-region drops. For ViT-B/16, the
highest performance is achieved using single-scale combinations of EP+S+SDS, although cross-
region performance is slightly lower than with ResNeXt-50. Overall, multimodal fusion improves
robustness for both encoders, with stacking providing the most reliable gains.

D.4 CLASS-LEVEL TRENDS

Tables Tables [T7] and [I§] report class-wise AUC for all evaluated models across both in-domain
(Warren County) and cross-domain (Hardin County) test sets. Results are provided for all single-
modality, multi-scale, and multimodal fusion configurations under both ResNeXt-50 and ViT-B/16
backbones. Figure [I2] summarizes the per-class AUC of the top-performing model for each back-
bone. These results complement the macro-averaged metrics presented earlier in the appendix and
provide a detailed view of class-level behavior across modalities, scales, and fusion strategies.

Across encoders and configurations, class-level trends are consistent. ResNeXt-50 performs best
on afl, Qal, Qaf, and Qat, whereas ViT-B/16 achieves higher scores on Qc, Qca, and Qr. Multi-
scale inputs improve overall performance, but maintain these differences, and multimodal fusion
significantly raises class-level scores for ResNeXt-50 while providing more modest gains for ViT-
B/16. Performance does not strictly follow class frequency: Qc and Qca perform highest, but have
moderate frequency; Qr performs modestly, but is most frequent; Qat and afl perform modestly,
but Qat is a rare class; Qaf also performs relatively well despite its rarity; Qal remains the weakest
across all settings, but is the second most common class.

1o Single Modality Multi-scale Multimod_al
EP-51 _ _ EP-ms (St) 0 EP-ms+S-ms+SDS-ms (St) R
0.8 e e = =
] L 17 o 5 L .
| 7 . X
é 1 7 A VA %
0.4 o o
4 7/ m
0.2 1
1 V| V]
04
1.0 — - 1 —
|53 — SDS-ms (St) 7 | EP-5+5-1.5+5DS-5 (St) o
- = R T
0.8 e | [ - - =
] L e 1 N
o 061 L . 7 R |
2 o7 SR v E
0.4 % v >
1 % v AT % =5
0.2 4
o4 1 1
afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr

Figure 12: In-domain (solid) and cross-domain (hatched) class-wise AUC scores for the single best-
performing models across different experiment types and backbone architectures. Rows show com-
parisons of ResNeXt-50 (top) vs. ViT-B/16 (bottom) backbones. Each subplot shows the best-
performing model based on in-domain F1 scores. Cross-domain bars illustrate domain shift using
the same model selected based on in-domain performance. Model configurations are shown above
each group and indicate the input modality, or modality combination and fusion strategy.
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D.5 COMPARISONS WITH EXISTING MODELS

We conducted exploratory experiments with several recent multimodal foundation models, includ-
ing SatMAE (Cong et al.| 2022), SatMAE++ (Noman et al., [2024), DOFA (Xiong et al., [2024), and
Panopticon (Waldmann et al.l 2025)). These models were developed for grouped multispectral or
multisensor satellite imagery and are not natively configured to handle LiDAR-derived terrain fea-
tures at multiple spatial scales. Our goal was not exhaustive hyperparameter optimization, but rather
to provide indicative baselines for how existing large-scale models perform on EarthScape. DOFA
and Panopticon are both transformer-based foundation models for multimodal Earth observation,
and were tested with native inputs of RGB+NIR. Following the grouping strategy of SatMAE and
SatMAE++, we organized EarthScape modalities into three groups: (1) RGB+DEM, (2) EP at four
scales (1.5, 6, 15, 30 m GSD), and (3) S and SDS at one scale (1.5 m GSD). This configuration in-
cluded ten modalities drawn from the strongest single-modality performers. Our experiments used
the same training, validation, and test splits.

Across all foundation models, in-domain performance was lower than that of SGMap-Net, and cross-
region degradation was substantial. SatMAE++ achieved competitive in-domain scores but dropped
sharply under domain shift, while DOFA showed relatively small cross-region gaps but had much
lower overall accuracy. Panopticon similarly underperformed across both regions. In contrast, the
multimodal SGMap-Net variant outperformed all foundation models in both absolute performance
and generalization. This indicates that architectures developed for spectral imagery are insufficient
for surface-aware tasks, and that a simple, geologically-informed model like SGMap-Net can pro-
vide markedly stronger results.
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Table 8: Macro-averaged F1 and AUC for single modality models on in-domain (ID) and cross-
domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones. ID-CD
performance differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality FI (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)
CcD A ID CD A ID CD A ID CD A

DEM 0.632 0527 0.105 0.618 0512 0.237 0.883 0730 0.153 0.857 0.620 0.237
RGB 0.599 0394 0.205 0.579 0332  0.267 0.815 0557 0.258 0.793 0526 0.267
NIR 0.613 0468 0.145 0.579 0275 0.274 0.815 0.650 0.166 0.784 0509 0.274
NHD 0.515 0434 0.081 0.492 0428 0.064 0.659 0576 0.083 0.496 0509 -0.013
OSM 0.530 0463 0.067 0.500 0428 0.072 0.653 0.587 0.066 0.545 0513  0.032
EP;s 0.648 0357 0.291 0.614 0518 0.117 0.872 0582 0.290 0.854 0738 0.117
EPy, 0.639 0425 0214 0.603 0519 0.082 0.879 0.675 0.203 0.850 0.768 0.082
EP, 0.645 0384 0.6l 0.608 0.503 0.079 0.877 0.695 0.183 0.838 0.759 0.079
EPs, 0.651 0380 0271 0.604 0489 0.078 0.876 0.663 0213 0.835 0.757 0.078
EPi1 0.619 0476 0.143 0.589 0477 0.075 0.857 0739 0.118 0.819 0.744 0.075
EPy, 0.610 0391 0219 0.584 0472  0.062 0.869 0.724 0.145 0.799 0.737  0.062
PIC, 5 0491 0425 0.066 0.517 0452 0013 0.514 0513  0.001 0.603 0590 0.013
PIC; 0494 0426 0.068 0.524 0457 0.007 0.501 0.500  0.001 0.621 0614 0.007
PICs 0495 0425 0.070 0.513 0453  0.005 0.488 0485 0.002 0.632 0.627 0.005
PIC)5 0488 0425 0.063 0495 0426 0016 0472 0459 0013 0.560 0.544 0.016
PICs, 0488 0420 0.068 0.484 0422 -0.008 0511 0470 0.041 0532 0.540 -0.008
PICq0 0488 0433  0.055 0.495 0427 -0.039 0474 0528 -0.054 0.500 0.539 -0.039
PrC, 5 0493 0433 0.060 0.494 0426 -0.039 0.554 0516 0.038 0407 0.446  -0.039
PrC; 0492 0421 0.071 0497 0425 0.023 0486 0520 -0.034 0.517 0493 0.023
PrCs 0496 0415 0.081 0495 0426 -0.055 0.508 0463  0.046 0.389 0444 -0.055
PrC)s 0492 0417 0.074 0494 0426 -0.022 0440 0398 0.042 0466 0487 -0.022
PrCy 0.510 0418 0.092 0.540 0431 0.035 0.553 0491 0.062 0.613 0578 0.035
PrCqo 0495 0425 0.071 0.549 0431 0.028 0417 0428 -0.011 0.626 0599 0.028
Sis 0.645 0.575 0.070 0.623 0552 0.093 0.876 0.808 0.068 0.855 0.762 0.093
Ss 0.619 0570 0.049 0.647 0551 0.127 0.875 0.779  0.096 0.841 0713 0.127
Se 0.617 0.555 0.061 0.614 0555 0.102 0.861 0.804 0.057 0.833 0731 0.102
Sis 0.612 0537 0.075 0.600 0.554 0.081 0.841 0.744 0.096 0.812 0731 0.081
S3 0.594 0536 0.058 0.578 0528 0.061 0.811 0710 0.102 0.765 0.705 0.061
Seo 0.543 0485 0.058 0.578 0514 0.093 0.601 0578 0.023 0.770 0.676 0.093
SDSs 0.613 0567 0.045 0569 0513 0.072 0.850 0.804 0.046 0.786 0.713  0.072
SDS, 0.631 0.575 0.056 0.599 0.543  0.080 0.846 0.786 0.061 0.803 0.723  0.080
SDS», 0.633 0.573  0.060 0.591 0552 0.074 0.854 0.786  0.067 0.809 0.735 0.074
SDSs, 0.603 0.533  0.069 0.554 0536  0.038 0.841 0.746 0.095 0.727 0.689 0.038
SDSisr  0.611 0571 0.040 0.535 0502 0.037 0.848 0.756  0.092 0.718 0.681 0.037
SDS»  0.613  0.527 0.086 0.548 0508 0.064 0.837 0713 0.124 0.735 0.671 0.064
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Table 9: Macro-averaged precision and recall for single modality models on in-domain (ID) and
cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones. ID-CD
performance differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)
ID CD A 1D CD A 1D CD A 1D CD A

DEM 0.621 0.460 0.161 0.551 0432 0.125 0.661 0.653  0.008 0.800 0.674 0.125
RGB 0.553 0405 0.148 0.522  0.296 0.235 0.672 0418 0.254 0.664 0429 0235
NIR 0.564 0.486 0.078 0.521 0.273 0.384 0.698 0.514 0.184 0.668 0.284 0.384
NHD 0419 0.353 0.066 0.390 0.334 0.056 0.725 0.691 0.034 0.857 0.881 -0.024
OSM 0.442 0373 0.069 0.395 0.334 0.061 0.846 0.853 -0.007 0971 0949 0.022
EPs 0.617 0450 0.167 0.556 0452 0.112 0.706 0.333  0.373 0.733  0.621 0.112
EPy, 0.602 0474 0.128 0.552  0.449 0.060 0.748 0.428 0.320 0.690 0.631 0.060
EPy; 0.629 0455 0.173 0.548 0.435 0.089 0.737 0416 0.321 0.706 0.617 0.089
EPs; 0.612 0.382 0.230 0.565 0.440 0.087 0.705 0.389 0.316 0.664 0.577 0.087
EPyo, 0.570  0.480 0.090 0.539 0.421 0.102 0.727 0.551 0.176 0.674 0.572 0.102
EPy, 0.593 0465 0.127 0.520 0425 0.092 0.634 0.364 0.270 0.707 0.615 0.092
PIC, 5 0.390 0.333 0.057 0.419 0.359 0.078 0.837 0.829 0.007 0.806 0.728 0.078
PIC; 0.391 0.333  0.059 0.432 0370 0.119 1.000 1.000 0.000 0.871 0.752 0.119
PICq 0.393 0.333 0.060 0429 0.365 0.052 0.892 0.889 0.003 0.853 0.801 0.052
PIC3 0.390 0.332  0.058 0.392 0.334 -0.045 0.856 0.809 0.047 0.795 0.840 -0.045
PIC,5 0.390 0.334 0.057 0.403 0.338 -0.029 0.823 0.834 -0.010 0.765 0.794 -0.029
PICq 0.389 0.337 0.052 0.393  0.335 -0.022 0.842 0.921 -0.079 0.973 0.995 -0.022
PrC 5 0.392  0.341 0.052 0.391 0.333  0.000 0.967 0.946 0.021 1.000 1.000 0.000
PrC; 0.394 0335 0.059 0.406 0.336  0.000 0.819 0.853 -0.034 0919 0919 0.000
PrCq 0.396 0.328 0.068 0.392 0.333 -0.001 0.739 0.719  0.020 0.997 0.998 -0.001
PrCis 0.392 0331 0.061 0.391 0.333  0.000 0.759 0.718 0.041 1.000 1.000 0.000
PrCso 0.430 0.337 0.092 0.456 0.348 0.074 0.679 0.639 0.040 0.731 0.657 0.074
PrCeo 0.392 0332 0.060 0.464 0.350 0.100 0.896 0.854 0.042 0.748 0.648 0.100
Sis 0.616 0.506 0.110 0.578 0.489 0.051 0.681 0.687 -0.006 0.726 0.674 0.051
S; 0.590 0.507 0.084 0.614 0490 0.041 0.654 0.662 -0.009 0.693 0.653 0.041
Se 0.592 0497 0.095 0.553 0491 0.072 0.670 0.671 0.001 0.791 0.720 0.072
Sis 0.550 0478 0.072 0.537 0.484 -0.027 0.749 0.664 0.085 0.774 0.801 -0.027
S30 0.523 0464 0.059 0.508 0.464 0.054 0.744  0.679 0.065 0.717 0.663 0.054
S6o 0.469 0.409 0.060 0.500 0.436 0.064 0.697 0.651 0.047 0.736 0.672 0.064
SDSs 0.580 0.487 0.093 0.518 0435 -0.025 0.661 0.707 -0.047 0.641 0.666 -0.025
SDS;; 0.596 0.499 0.097 0.545 0460 0.084 0.689 0.698 -0.008 0.769 0.685 0.084
SDS,, 0.578 0.486 0.092 0.529 0.469 -0.006 0.768 0.740 0.027 0.690 0.696 -0.006
SDSs) 0.578 0471 0.108 0482 0443 0.022 0.638 0.646 -0.008 0.740 0.718 0.022
SDS01 0.566 0.490 0.075 0.459 0.409 -0.009 0.775 0.716  0.058 0.710 0.719 -0.009
SDS»; 0.558 0452 0.107 0.459 0411 0.044 0.709 0.660 0.048 0.796 0.752  0.044
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Table 10: Mean average precision (mAP) and macro-averaged accuracy for single modality models
on in-domain (ID) and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-
B/16 backbones. ID-CD performance differences (A) are also shown. The best and second-best
scores in each column are indicated in bold and underlined, respectively.

Modality mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)
D CD A 1D CD A 1D CD A 1D CD A

DEM 0.554 0442 0.111 0.516 0431 0.022 0.873 0.827 0.046 0.808 0.785 0.022
RGB 0.509 0.367 0.143 0.489 0.336 0.109 0.832 0.781 0.051 0.815 0.706  0.109
NIR 0.513 0387 0.125 0.485 0.337 0.020 0.833  0.809 0.025 0.812 0.792 0.020
NHD 0.403 0.339 0.064 0.391 0.333  0.058 0.682 0.634 0.048 0.523 0468 0.055
OSM 0435 0.367 0.068 0.395 0.334 0.061 0.647 0.548 0.099 0.545 0406 0.139
EPs 0.549 0385 0.164 0.516 0417 0.019 0.858 0.831 0.026 0.829 0.810 0.019
EPy, 0.551 0.397 0.154 0.510 0.409 0.024 0.854 0.832 0.022 0.829 0.805 0.024
EPy; 0.565 0.386 0.179 0.504 0.398 0.029 0.860 0.828 0.031 0.827 0.798 0.029
EPs; 0.546 0.377 0.169 0.507 0.395 0.034 0.862 0.818 0.044 0.837 0.803 0.034
EPyo, 0.528 0.401 0.128 0.500 0.385 0.034 0.835 0.812 0.024 0.818 0.784 0.034
EPy, 0.535 0381 0.154 0476 0.367 0.041 0.858 0.838 0.019 0.791 0.750 0.041
PIC, 5 0.391 0.333  0.058 0.411 0.354  0.015 0.551 0.502 0.049 0.643 0.628 0.015
PIC; 0.391 0.333  0.059 0418 0.353  0.005 0.392  0.333  0.059 0.631 0.626  0.005
PICq 0.393 0.333 0.060 0416 0.353 -0.001 0.494 0452 0.043 0.617 0.619 -0.001
PIC;5 0.391 0.334 0.057 0.397 0.335 0.053 0.533 0.482 0.051 0.644 0.591 0.053
PICs9 0.392 0333 0.059 0.392  0.334 0.064 0.524 0467 0.057 0.586 0.521 0.064
PICqo 0.390 0.335 0.055 0.393 0.335 0.062 0.525 0471 0.054 0.456 0.395 0.062
PrC 5 0.392  0.340 0.052 0.391 0.333  0.059 0.411 0.402 0.009 0.392 0.333  0.059
PrC; 0.393 0.332  0.060 0.400 0.334 0.051 0.527 0.466 0.061 0452 0401 0.051
PrCq 0.392  0.333  0.059 0.392  0.333  0.062 0.645 0.581 0.064 0.395 0.334 0.062
PrCis 0.393 0334 0.059 0.391 0.333  0.059 0.644 0.591 0.054 0.392  0.333  0.059
PrCso 0.406 0.339 0.067 0431 0.345 0.055 0.714 0.674 0.040 0.726  0.671 0.055
PrCeo 0.392 0333 0.059 0433 0.345 0.045 0.510 0463 0.047 0.723  0.677 0.045
Sis 0.552 0468 0.084 0.525 0456 0.021 0.871 0.848 0.023 0.840 0.819 0.021
S; 0.543 0472 0.071 0.542 0465 0.025 0.867 0.852 0.015 0.850 0.825 0.025
Se 0.539 0463 0.077 0.523 0.466 0.019 0.857 0.844 0.013 0.812 0.793 0.019
Sis 0.517 0455 0.062 0.506 0.463 0.012 0.807 0.799 0.008 0.794 0.781 0.012
S30 0.501 0.447 0.053 0.485 0452 -0.001 0.793  0.784  0.009 0.792  0.793 -0.001
S6o 0.450 0.398 0.052 0.481 0435 0.003 0.742 0.752 -0.010 0.784 0.780 0.003
SDSs 0.527 0.459 0.068 0.484 0420 0.011 0.853 0.833  0.020 0.820 0.809 0.011
SDS;; 0.533  0.466 0.068 0.504 0434 0.011 0.850 0.839 0.011 0.806 0.795 0.011
SDS,, 0.531 0454 0.078 0491 0435 0.007 0.836 0.819 0.017 0.816 0.809 0.007
SDSs) 0.529 0436 0.093 0459 0418 0.002 0.855 0.824 0.031 0.754 0.752  0.002
SDS 01 0.525 0461 0.064 0.448 0.400 -0.017 0.820 0.808 0.012 0.734 0.751 -0.017
SDS»0; 0.520 0.427 0.093 0.446 0.402 -0.019 0.834 0.805 0.030 0.710 0.729 -0.019
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Table 11: Macro-averaged F1 and AUC for multi-scale fusion models on in-domain (ID) and cross-
domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones under two
fusion strategies: early channel stacking (St) and cross-attention with a shared encoder (A1). ID-CD
performance differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality / F1 (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)
Fusion D CD A D CD A D CD A D CD A
EP,s (St) 0.640 0.425 0215 0.566 0.458 0.108 0.862 0.717 0.145 0.756 0.693  0.063
PICps (SO 0490 0.426 0.063 0.493 0.429 0.063 0.525 0521 0.004 0511 0536 -0.026
PrCps (St)  0.519 0.441 0.078 0.596 0.501 0.095 0.579 0.497 0.082 0.816 0.727 0.089
Sms (SP) 0.637 0.594 0.043 0.593 0.533 0.061 0.864 0.804 0.061 0.798 0.705 0.093
SDSus (St)  0.636  0.588  0.048 0.619 0.571 0.048 0.878 0.792 0.086 0.672 0.644 0.028
EP. (Al) 0494 0.426 0.068 0.561 0.445 0.117 0.500 0.500 0.000 0.759 0.664 0.095
PICns (A1) 0.494 0.426 0.068 0.505 0.435 0.070 0.500 0.500 0.000 0.578 0.581 -0.003
PrCns (Al) 0494 0426 0.068 0531 0410 0.121 0.500 0.500  0.000 0.594 0562 0.032
Sms (A1) 0.494 0426 0.068 0.557 0519 0.038 0.500 0.500  0.000 0.615 0594 0.021
SDSus (Al) 0493 0451 0.042 0494 0426 0.068 0.618 0.618 0.001 0.500 0.500  0.000

Table 12: Macro-averaged precision and recall for multi-scale fusion models on in-domain (ID)
and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under two fusion strategies: early channel stacking (St) and cross-attention with a shared encoder
(A1). ID-CD performance differences (A) are also shown. The best and second-best scores in each
column are indicated in bold and underlined, respectively.

Modality / Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)
Fusion ID CD A ID CD A ID CD A ID CD A
EP,,s (St) 0.606 0.556 0.051 0.493 0.380 0.112 0.703 0426 0.277 0.712 0.636 0.076
PIC,5 (St) 0.391 0.335 0.056 0.391 0.335 0.056 0.738  0.738  0.000 0.872  0.940 -0.067
PrCyys (St) 0.429 0.353 0.076 0.530 0435 0.095 0.697 0.694 0.003 0.743 0.642 0.101
Sms (St) 0.607 0.535 0.072 0.525 0.455 0.070 0.730 0.682 0.047 0.714 0.681 0.033
SDSns (St)  0.588  0.509 0.079 0.575 0472 0.103 0.742  0.729 0.013 0.675 0.674 0.001
EP, (Al) 0.391 0.333 0.059 0.483 0.375 0.108 1.000 1.000 0.000 0.700 0.612 0.088
PICs (A1)  0.391 0.333 0.059 0.405 0.341 0.064 1.000 1.000 0.000 0.874 0.868 0.006
PrCps (A1) 0391 0.333  0.059 0431 0325 0.106 1.000 1.000 0.000 0.738  0.678  0.060
Sms (A1) 0.391 0.333 0.058 0.489 0.440 0.049 1.000 1.000 0.000 0.745 0.688  0.057
SDSns (A1) 0.432  0.380 0.052 0.391 0332 0.057 0.801 0.748 0.053 1.000 1.000 0.000

Table 13: Mean average precision (mAP) and macro-averaged accuracy for multi-scale fusion mod-
els on in-domain (ID) and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and
ViT-B/16 backbones under two fusion strategies: early channel stacking (St) and cross-attention
with a shared encoder (A1l). ID-CD performance differences (A) are also shown. The best and
second-best scores in each column are indicated in bold and underlined, respectively.

Modality / mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)
Fusion ID CD A ID CD A ID CD A ID CD A
EP,,s (St) 0.555 0.403 0.152 0.460 0.360 0.099 0.865 0.828 0.037 0.774 0.724  0.050
PIC,s (St) 0.392 0.335 0.057 0.392 0.335 0.057 0.634 0.588 0.046 0.534 0.465 0.069
PrCs (St) 0.416 0.348 0.069 0.504 0.423 0.081 0.717 0.666 0.051 0.794 0.768 0.027
Sis (St) 0.557 0.491 0.066 0.498 0.453 0.045 0.856 0.860 -0.004 0.810 0.803 0.006
SDSs (St) 0.540 0.470 0.070 0.522 0.447 0.075 0.846 0.839 0.007 0.851 0.826 0.025
EP,s (A1) 0.391 0.333 0.059 0.450 0.362 0.088 0.391 0.333 0.059 0.766 0.727 0.039
PICs (A1)  0.391 0.333 0.059 0.401 0.338 0.062 0.391 0.333  0.059 0.598 0.541 0.057
PrCys (A1)  0.391 0.333  0.059 0.407 0.333 0.074 0.391 0.333  0.059 0.691 0.625 0.065
Sms (A1) 0.391 0.333 0.058 0.472 0.434 0.038 0.391 0.333  0.059 0.742  0.747 -0.005
SDS,s (A1) 0416 0.357 0.059 0.391 0.333 0.058 0.630 0.666 -0.036 0.391 0.333 0.058

34



Under review as a conference paper at ICLR 2026

Table 14: Macro-averaged F1 and AUC for multimodal fusion models on in-domain (ID) and cross-
domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones under four
fusion strategies: early channel stacking (St), concatenation of modality embeddings (C), cross-
attention with a shared encoder (Al), and cross-attention with separate encoders (A2). ID-CD
performance differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality / Fusion F1 (ResNeXt) F1 (ViT) AUC (ResNeX) AUC (ViT)
ID CD A D CD A ID CD A D CD A

EP,+Sms+SDSys (S1) 0.657 0.598 0.059 0.621 0.569 0.053 0.882 0.806 0.076 0.860 0.774 0.086
EPs+S; 5+SDSs (St) 0.641 0568 0.073 0.657 0.566 0.092 0.848 0.812  0.036 0712 0.664 0.048
EP,,+S60+SDS50; (St) 0.626 0.582 0.045 0.622 0544 0.078 0.885 0812 0073 0.695 0.631 0.064
EP,+Sns+SDSyys (C) 0.596 0.569 0.028 0.613 0532 0.081 0.829 0750 0.079 0.686 0.622  0.064
RGB+DEM (C) 0.600 0.389 0.211 0.614 0503 0.111 0.808 0.535 0273 0.870 0721 0.149
RGB+DEM+EP,+S1,+SDSps (C)  0.618  0.543  0.074 0.621 0528 0.093 0.858 0739 0.118 0735 0.615 0.120
EP,+Sms+SDSys (A1) 0.561 0.532 0.029 0.567 0.538  0.029 0.677 0.707 -0.030 0.776  0.678 0.098
RGB+DEM (Al) 0.551 0457 0.094 0.575 0.404 0.171 0714 0552 0.163 0.787 0.622 0.165
EPs+Sms+SDS s (A2) 0.561 0.532  0.029 0.496 0425 0.071 0.677 0.707 -0.030 0.523 0480 0.043
RGB+DEM (A2) 0.559 0474  0.085 0.581 0464 0.118 0763 0641 0.122 0.810 0724 0.085
RGB+DEMH+EP,,+S,,+SDS s (A2) 0494 0426  0.068 0520 0457 0.063 0.500 0.500  0.000 0572 0511 0.061

Table 15: Macro-averaged precision and recall for multimodal fusion models on in-domain (ID)
and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under four fusion strategies: early channel stacking (St), concatenation of modality embeddings (C),
cross-attention with a shared encoder (A1), and cross-attention with separate encoders (A2). ID-CD
performance differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality / Fusion Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)
ID CD A ID CD A ID CD A ID CD A

EPys+Sms+SDSps (St) 0.626 0.546 0.080 0.568 0.491 0.077 0.735 0.666 0.068 0.761 0.711 0.050
EPs+S; 5+SDSs (St) 0.606 0.531 0.074 0.604 0482 0.122 0.697 0.623 0.074 0.731 0.708 0.023
EP201+S60+SDS201 (St) 0.588 0.529 0.059 0.579 0.499 0.080 0.721 0.674 0.048 0.686 0.610 0.076
EPpps+Sms+SDSs (C) 0.542 0529 0.013 0.541 0456 0.085 0.694 0.640 0.054 0.752  0.671  0.081
RGB+DEM (C) 0.537 0.373 0.163 0.558 0.420 0.137 0.715 0437 0.278 0.706 0.661 0.045
RGB+DEM+EP ;,+S s +SDS s (C) 0563 0.496  0.067 0.574 0.485 0.090 0.740 0.644 0.096 0.621 0.622  -0.001
EPp+Sms+SDSs (A1) 0.487 0451 0.036 0.507 0.466 0.041 0.734 0.723 0.011 0.752  0.693  0.059
RGB+DEM (A1) 0495 0.445 0.050 0.515 0387 0.129 0.647 0.555 0.092 0.686 0.582 0.105
EPys+Sms+SDSs (A2) 0.487 0.451 0.036 0392 0.332  0.060 0.734 0.723 0.011 0.984 0.889 0.095
RGB+DEM (A2) 0.498 0.411 0.087 0513 0434 0.079 0.656 0.595 0.061 0.720 0.607 0.113
RGB+DEM+EP;,i+S1,s+SDSs (A2) 0391 0.333  0.059 0.448 0420 0.028 1.000 1.000 0.000 0.873 0.689 0.184

Table 16: Mean average precision (mAP) and macro-averaged accuracy for multimodal fusion mod-
els on in-domain (ID) and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and
ViT-B/16 backbones under four fusion strategies: early channel stacking (St), concatenation of
modality embeddings (C), cross-attention with a shared encoder (A1), and cross-attention with sep-
arate encoders (A2). ID-CD performance differences (A) are also shown. The best and second-best
scores in each column are indicated in bold and underlined, respectively.

Modality / Fusion mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)
1D CD A D CD A D CD A D CD A

EPpy+Sms+SDS s (St) 0.571 0.495 0.076 0.534 0.463 0.070 0.875 0.867 0.008 0.834 0.823 0.011
EPs+S;5+SDSs (St) 0.551 0.471  0.080 0.540 0461 0.079 0.865 0.856 0.009 0.712  0.664  0.048
EP201+S60+SDS201 (St) 0.552  0.480 0.072 0.532  0.468 0.064 0.858 0.852  0.006 0.851 0.840 0.011
EPpy+Sms+SDS s (C) 0.505 0.451 0.053 0.508 0.450 0.058 0.822 0.836 -0.015 0.817 0.806 0.011
RGB+DEM (C) 0.495 0.360 0.135 0.524 0415 0.109 0.815 0.809 0.007 0.838 0.796 0.042
RGB+DEM+EP i +S,,+SDS s (C)  0.525  0.458  0.067 0.537 0.449 0.088 0.833 0.805 0.028 0.827 0.824  0.003
EPs+Sms+SDSms (A1) 0.474 0442 0.033 0.488 0.456 0.032 0.747 0.758 -0.011 0.750 0.752  -0.002
RGB+DEM (Al) 0.459 0.389 0.070 0.478 0.360 0.118 0.784 0.776  0.008 0.799 0.745 0.054
EPp+Sms+SDSpy (A2) 0.474 0.442  0.033 0392 0.333  0.059 0.747 0.758 -0.011 0.452 0.402 0.050
RGB+DEM (A2) 0.464 0.389 0.075 0.486 0.388 0.098 0.795 0.793  0.002 0.795 0.775 0.020
RGB+DEM+EP i +S,,+SDS s (A2)  0.391  0.333  0.059 0.422 0.368 0.054 0.391 0.333  0.059 0.603 0.620 -0.017
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Table 17: Class-wise AUC scores for in-domain performance across single-modality, multi-scale fu-
sion, and multimodal fusion models. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under four fusion strategies: early channel stacking (St), concatenation of modality embeddings (C),
cross-attention with a shared encoder (A1), and cross-attention with separate encoders (A2). The
best and second-best scores in each column are indicated in bold and underlined, respectively.

. . ResNeXt ViT
Modality / Fusion
afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr

DEM 0.845 0.832 0.820 0.887 0.964 0.922 0910 0.663 0.771 0926 0.871 0.956 0.923 0.888
RGB 0.834 0.713 0.684 0.815 0912 0.857 0.886 0.816 0.679 0.744 0.780 0.891 0.834 0.805
NIR 0.816 0.698 0.782 0.793 0.907 0.866 0.842 0.760 0.664 0.797 0.799 0.886 0.816 0.763
NHD 0.549 0.655 0.682 0.782 0.618 0.630 0.697 0.497 0571 0.441 0354 0.506 0.502 0.505
OSM 0.807 0.586 0.702 0.586 0.708 0.627 0.557 0.505 0.484 0.693 0.606 0.5 0513 0487
EPs 0.837 0.805 0.845 0.845 0.947 0.905 0.920 0.791 0.783 0.838 0.865 0.914 0.885 0.903
EPy; 0.868 0816 0.833 0.888 0.936 0.905 0.902 0.778 0.781 0.834 0.882 0.891 0.889 0.898
EP;, 0.856 0.807 0.842 0.883 0.945 0.908 0.900 0.783 0.776  0.799 0.858 0.888 0.885 0.880
EPs; 0.860 0.825 0.827 0.870 0.921 0.906 0.924 0.794 0.766 0.791 0.858 0.877 0.888 0.870
EPyg, 0.853 0.806 0.759 0.886 0.904 0.904 0.890 0.757 0.751 0.758 0.860 0.850 0.884 0.874
EPy, 0.846 0.812 0.844 0.879 0.901 0.894 0.904 0.734 0.750 0.756 0.830 0.789 0.872 0.864
PIC; 5 0440 0491 0.610 0.515 0.513 0514 0516 0.438 0.509 0.719 0.610 0.575 0.725 0.645
PIC; 0.501 0501 0.500 0.500 0.501 0.501 0.500 0.445 0494 0.769 0.675 0499 0.773 0.689
PICe 0459 0516 0491 0497 0455 0.505 0.490 0.451 0478 0.746 0.712 0.668 0.719 0.649
PIC;s 0.526  0.505 0362 0.387 0.547 0.476 0.500 0.466 0.523 0.655 0.620 0.578 0.575 0.505
PIC3, 0.517 0490 0.604 0473 0.501 0.524 0.465 0.469 0.567 0.650 0.515 0.531 0.529 0.465
PICqo 0462 0413 0.617 0414 0479 0494 0439 0461 0.627 0.620 0.382 0.524 0482 0.402
PrC, s 0465 0566 0.569 0473 0.564 0.516 0.724 0.444 0545 0.546 0.236 0.501 0.347 0.233
PrCs 0.549 0555 0324 0.537 0341 0.554  0.539 0.545 0501 0.630 0.400 0420 0.613 0.508
PrCq 0.526 0.494 0445 0503 0472 0.539 0579 0.493 0.602 0.487 0.190 0.541 0.224 0.186
PrCis 0443 0423 0.602 0.522 0.145 0.377 0.567 0.501 0.429 0477 0378 0.501 0499 0476
PrCs 0.515 0432 0465 0.608 0.530 0.681 0.640 0.501 0341 0.523 0.845 0.512 0.738 0.833
PrCep 0482 0499 0494 0.244 0473 0474 0.253 0511 0326 0.558 0.859 0.601 0.682 0.846
Sis 0.863 0.800 0.813 0.870 0.968 0.905 0.910 0.794 0.748 0.853 0.854 0.974 0.900 0.864
S3 0.816 0.805 0.840 0.870 0.971 0915 0.908 0.770  0.759 0.772 0.829 0.975 0910 0.868
Se 0.778 0.809 0.764 0.877 0.974 0.921 0.905 0.718 0.765 0.809 0.853 0.975 0.910 0.803
Sis 0.648 0.788 0.842 0.873 0.966 0.926 0.842 0.641 0.750 0.826 0.796 0.974 0.908 0.789
S3o 0.619 0.750 0.803 0.831 0.957 0912 0.807 0.623 0.707 0.791 0.725 0.947 0.869 0.696
Seo 0416 0535 0.681 0.595 0.838 0.815 0.324 0.626 0.666 0.818 0.750 0.909 0.880 0.738
SDSs 0.855 0.733 0.789 0.860 0.944 0.890 0.883 0.772  0.665 0.800 0.757 0.921 0.833 0.751
SDSy; 0.839 0.751 0.774 0.866 0.946 0.877 0.871 0.792 0.671 0.817 0.757 0.933 0.853 0.800
SDSy; 0.842 0.750 0.842 0.841 0.953 0.889 0.860 0.769 0.685 0.853 0.767 0.934 0.837 0.816
SDSs; 0.832 0.719 0851 0.800 0.951 0.883 0.852 0.675 0.620 0.777 0.684 0.889 0.759 0.689
SDS o 0.814 0.732 0.860 0.813 0.964 0.882 0.874 0.659 0.608 0.804 0.659 0.891 0.751 0.655
SDS»0; 0.802 0.679 0.812 0.833 0.967 0.897 0.870 0.633 0.605 0.855 0.666 0913 0.741 0.729
EPyys (St) 0.823 0.824 0.734 0.878 0945 0911 0917 0.823 0.824 0.734 0.878 0.945 0911 0.917
PIC, (St) 0.504 0500 0.641 0.501 0.514 0.500 0.514 0.504 0.500 0.641 0.501 0.514 0.500 0514
PrCp, (St) 0494 0.653 0567 0.721 0.628 0.791 0.201 0.494 0.653 0.567 0.721 0.628 0.791 0.201
Sns (SO 0.863 0.787 0.760 0.870 0962 0911 0.900 0.863 0.787 0.760 0.870 0.962 0911 0.900
SDSs (St) 0.839 0.766 0917 0.876 0.964 0.898 0.889 0.839 0.766 0.917 0.876 0.964 0.898 0.889
EPp (Al) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PIC,s (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PrCp (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Sms (A1) 0.499 0501 0.500 0.500 0.501 0.499 0.500 0.499 0.501 0.500 0.500 0.501 0.499 0.500
SDS,s (A1) 0.552 0576 0.801 0.602 0.679 0.540 0.580 0.552  0.576 0.801 0.602 0.679 0.540 0.580
EP;+Sps+SDSy,s (St)  0.866  0.840 0.790 0.858 0.975 0913 0.933 0.780 0.772 0.864 0.847 0.976 0.890 0.890
EPs+S, 5+SDSs (St) 0.845 0.797 0.712 0.829 0.964 0.904 0.886 0.837 0.803 0.858 0.884 0.974 0912 0.901
EPy1+S60+SDSy0; (St)  0.846 0.802 0.840 0.903 0961 0911 0.933 0.752  0.799 0.848 0.856 0.967 0.937 0.905
EPs+Sps+SDSy (C) 0.723 0.802 0.746 0.809 0.959 0.879 0.885 0.728 0.720 0.871 0.816 0.969 0.890 0.898
RGB+DEM (C) 0.821 0.708 0.804 0.803 0.871 0.845 0.803 0.800 0.756 0.874 0.899 0.949 0.901 0911
RGB+DEM+EP,,+ 0.837 0.774 0.842 0.827 0.963 0.899 0.860 0.746  0.755 0.875 0.878 0.975 0910 0.921
Sms+SDSps (C)

EPp+Sms+SDSs (A1) 0486 0575 0.726  0.641 0.930 0.784 0.599 0.698 0.623 0.831 0.660 0.961 0.879 0.785
RGB+DEM (A1) 0.687 0476 0.747 0.762 0.837 0.801 0.692 0.711 0.629 0.813 0.815 0.886 0.842 0.811
EP;+Sps+SDSys (A2) 0486  0.575 0.726  0.641 0930 0.784 0.599 0.500 0.500 0.623 0.534 0.500 0.500 0.494
RGB+DEM (A2) 0.752 0.617 0.780 0.816 0.825 0.786 0.764 0.704 0.692 0.856 0.806 0.930 0.841 0.839
RGB+DEM+EP,,+ 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.501 0.477 0.768 0.557 0.499 0.753 0.626

Sis+SDSg (A2)
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Table 18: Class-wise AUC for cross-domain performance across single-modality, multi-scale fusion,
and multimodal fusion models. Results are reported for ResNeXt-50 and ViT-B/16 backbones under
four fusion strategies: early channel stacking (St), concatenation of modality embeddings (C), cross-
attention with a shared encoder (A1), and cross-attention with separate encoders (A2). Best and
second-best scores in each column are indicated in bold and underlined, respectively.

. . ResNeXt ViT
Modality / Fusion
afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr

DEM 0.804 0.613 0612 0472 0.969 0.907 0.733 0.587 0.549 0.379 0.210 0.958 0.947 0.710
RGB 0.757 0576 0.403 0486 0.654 0.515 0.507 0.575 0527 0.782 0.650 0.270 0.381 0.494
NIR 0.733 0519 0.490 0.550 0.703 0.824 0.727 0.502 0.578 0.474 0.641 0.466 0.348 0.554
NHD 0.556  0.642 0.630 0.722 0485 0.494 0.504 0.494 0506 0.538 0498 0.516 0510 0.618
OSM 0.833 0518 0.479 0.572 0.624 0.586 0.496 0503 05 0543 0553 05 0505 0584
EPs 0.769 0.635 0.782 0.847 0.291 0.352 0.399 0.764 0.651 0.626 0.622 0.860 0.882 0.757
EPy; 0.790 0.687 0.801 0.763 0463 0.563 0.662 0.763 0.698 0.734 0.667 0.807 0.870 0.840
EP;, 0.818 0.700 0.846 0.746 0.392 0.668 0.694 0.778 0.696 0.725 0.662 0.817 0.842 0.796
EPs; 0.821 0.676 0.769 0.778 0.409 0.519 0.672 0.779 0.633 0.798 0.684 0.771 0.851 0.786
EPyg, 0.851 0.716 0.726 0.769 0.621 0.748 0.742 0.745 0.633 0.815 0.629 0.759 0.842 0.789
EPy, 0.786 0.737 0.805 0.752 0.573 0.697 0.717 0.698 0.676 0.821 0.729 0.718 0.818 0.701
PIC; 5 0492 0501 0.599 0.548 0.487 0.509 0453 0.514 0340 0.650 0.518 0.561 0.792 0.752
PIC; 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.511 0305 0.733 0.638 0.500 0.791 0.819
PICe 0.517 0480 0.529 0478 0474 0492 0426 0.530 0.304 0.758 0.701 0.627 0.703 0.766
PIC;s 0511 0464 0275 0397 0.557 0497 0511 0.517 0470 0.711 0.600 0.537 0.532 0.442
PIC3, 0513 0514 0324 0516 0497 0472 0454 0.517 0527 0.809 0.512 0.536 0.527 0.349
PICqo 0.510 0472 0.899 0.537 0.465 0.503 0.311 0501 0.562 0.831 0.515 0.554 0.523 0.285
PrC, s 0426 0559 0263 0418 0.679 0.710 0.559 0412 0.633 0.219 0.362 0.500 0.592 0.404
PrCs 0.597 0379 0.797 0.612 0.277 0.363 0.614 0.574 0508 0.507 0.448 0.372 0.539 0.505
PrCq 0.498 0490 0408 0414 0478 0491 0459 0.417 0.644 0.348 0.468 0.584 0.393 0.256
PrCis 0493 0493 0426 0.551 0.136 0.248 0438 0.500 0.458 0.476 0.496 0.500 0.500 0.482
PrCsg 0.506 0.448 0.150 0.505 0.552 0.631 0.646 0.532 0428 0.566 0.528 0.463 0.664 0.867
PrCep 0467 0543 0464 0435 0431 0429 0.225 0.534 0424 0569 0.574 0.573 0.612  0.905
Sis 0.863 0.737 0.611 0.754 0.975 0915 0.801 0.759 0.579 0.646 0.667 0.981 0.923 0.778
S3 0.781 0.731 0.531 0.696 0.976 0.922 0.815 0.683 0.563 0.528 0.530 0.981 0.937 0.772
Se 0.713 0.704 0.889 0.706 0.976 0.924 0.717 0.621 0569 0.786 0.708 0.981 0.941 0.509
Sis 0.625 0.619 0.674 0.665 0.974 0.936 0.718 0.529 0.551 0964 0477 0971 0952 0.673
S3p 0.550 0549 0.746 0.537 0.965 0.945 0.675 0.533 0559 0.704 0372 0945 0959 0.859
Seo 0467 0545 0.541 0365 0.802 0.890 0.435 0.524 0.533 0.607 0.348 0.919 0.962 0.842
SDSs 0.858 0.637 0.805 0.737 0.963 0.886 0.744 0.776  0.561 0.503 0.593 0.958 0.864 0.739
SDSy; 0.861 0.671 0587 0.701 0.971 0.905 0.804 0.762 0.538 0.556 0.631 0.957 0.863 0.753
SDSy; 0.838 0.673 0.749 0.794 0.969 0.869 0.613 0.741 0.543 0.658 0.694 0.952 0.853 0.704
SDSs; 0.822 0.649 0.608 0.605 0.959 0.834 0.749 0.670 0.515 0.511 0.673 0.943 0.824 0.686
SDS o 0.809 0.611 0443 0.788 0.960 0.886 0.795 0.656 0.474 0.491 0.644 0954 0.871 0.677
SDS»0; 0.752 0579 0.503 0.645 0.964 0.804 0.744 0.641 0479 0477 0.640 0.942 0.870 0.647
EPyys (St) 0.769 0.722 0.828 0.722 0.603 0.701 0.671 0.769 0.722 0.828 0.722 0.603 0.701 0.671
PIC, (St) 0479 0524 0.603 0489 0.553 0.567 0432 0.479 0.524 0.603 0.489 0.553 0.567 0432
PrCp, (St) 0496 0567 0301 0.440 0.687 0.788 0.202 0.496 0.567 0.301 0.440 0.687 0.788 0.202
Sns (SO 0.881 0.711 0.643 0.741 0.977 0915 0.759 0.881 0.711 0.643 0.741 0977 0915 0.759
SDSys (St) 0.843 0.679 0.629 0.762 0.966 0.889 0.777 0.843 0.679 0.629 0.762 0.966 0.889 0.777
EPp, (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PIC,s (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PrCp (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Sms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
SDS (Al) 0.558 0592 0.699 0.679 0.626 0.602 0.568 0.558 0.592 0.699 0.679 0.626 0.602 0.568
EP;+Sps+SDSy (St)  0.857  0.760 0.612 0.736 0972 0914 0.792 0.734 0586 0.740 0.650 0.982 0.922 0.805
EPs+S, 5+SDSs (St) 0.860 0.638 0.735 0.760 0.960 0.899 0.833 0.848 0.683 0.685 0.697 0.980 0.922 0.803
EP1+S60+SDSy0; (St)  0.859 0.717 0.699 0.685 0962 0911 0.855 0.657 0.587 0.748 0.646 0.976 0.962 0.879
EPps+Sps+SDSy (C) 0.701  0.693 0.498 0.689 0.962 0.902 0.804 0.679 0577 0.633 0.582 0.973 0.938 0.765
RGB+DEM (C) 0.788 0.460 0.173 0.406 0.661 0.621 0.635 0.752  0.554 0.545 0.611 0.930 0.923 0.732
RGB+DEM+EP,,+ 0.841 0.644 0452 0493 0.964 0.946 0.833 0.660 0.540 0.687 0.594 0.965 0.933 0.825
Sms+SDSms (C)

EPp+Sms+SDSs (A1) 0.555  0.525 0.674 0.552 0.921 0.907 0.816 0.653 0.483 0.500 0.377 0.973 0.955 0.805
RGB+DEM (A1) 0.708 0.527 0.274 0.130 0.836 0.740 0.647 0.671 0513 0.271 0.548 0916 0.901 0.531
EP;+Sps+SDSys (A2)  0.555  0.525 0.674 0552 0921 0.907 0.816 0.500 0.500 0.362 0.497 0.500 0.500 0.505
RGB+DEM (A2) 0.743 0482 0325 0499 0.905 0.835 0.695 0.688 0.498 0.695 0.676 0.941 0.894 0.677
RGB+DEM+EP,,+ 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.515 0.451 0.250 0.350 0.500 0.860 0.670

Sims+SDSs (A2)
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