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ABSTRACT

Surficial geologic (SG) maps are essential for understanding surface processes
and supporting infrastructure planning, but current workflows are labor-intensive
and difficult to scale. We introduce EarthScape, an AI-ready multimodal dataset
for SG mapping that integrates digital elevation models, aerial imagery, multi-
scale terrain features, and hydrologic and infrastructure vector data within a
unified, reproducible pipeline. We report baseline benchmarks across single-
modality, multi-scale, and multimodal configurations. In our experiments, terrain-
derived features provide the most reliable predictive signal, while spectral inputs
and raw elevation degrade substantially under cross-region evaluation. Cross-
generalization and multimodal fusion remain challenging, underscoring the need
for models that capture shape-driven surface processes. EarthScape offers a geo-
graphically compact but modality-rich benchmark for multimodal fusion, domain
adaptation, and surface-process modeling.

1 INTRODUCTION

Surficial geologic (SG) maps depict the spatial distribution of mostly unconsolidated materials on
the Earth’s surface (Compton, 1985). These maps are essential to address a range of contemporary
challenges, such as supporting economic and national security interests in critical mineral resources
(Brimhall et al., 2005; Schulz, 2017), informing mitigation and response planning for geologic haz-
ards (Alcántara-Ayala, 2002; Van Westen et al., 2003), and providing a foundation on which to
understand climate change (Anderson & Ferree, 2010). SG maps are also relevant to more practical
applications like urban land use planning (Dai et al., 2001; Hokanson et al., 2019) and engineering
projects (Keaton, 2013). Despite the demonstrable social benefit and scientific merit (Bernknopf,
1993), detailed SG maps cover less than 14% of the United States (U.S. Geological Survey, 2025),
and coverage is even more limited globally.

The modern SG mapping workflow relies on manual fieldwork coupled with visual interpretation of
remote sensing (RS) imagery (Compton, 1985; Lisle et al., 2011). Because SG maps depend on ex-
pert interpretation and annotation, they may reflect local subjectivity, rather than reproducible, global
criteria. Moreover, financial costs are prohibitive, with one standard 1:24k-scale map1 estimated at
$123k (Berg, 2025). These limitations highlight the need for scalable, automated approaches.

Advancements in deep learning and the proliferation of RS imagery present an opportunity to trans-
form SG mapping and overcome current limitations. Recent studies have demonstrated the potential
of deep learning to identify or segment single class geologic hazards, such as landslides (Prakash
et al., 2021; Wang et al., 2021; Liu et al., 2023) and sinkholes (Rafique et al., 2022), and a few have
extended these ideas to mapping multiple classes of geologic materials (Behrens et al., 2018; Lati-
fovic et al., 2018; Wang et al., 2021; Liu et al., 2024b). While these works highlight the promise of
computer vision (CV), they remain constrained by narrow scope, limited modality integration, and
the absence of standardized benchmarks.

1Map scale refers to cartographic accuracy, rather than raster resolution. At 1:24,000-scale, one map unit
represents 24,000 real-world units, and is considered the gold-standard geologic mapping scale.
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The challenges of SG mapping align closely with current directions in CV. Multimodal fusion of het-
erogeneous inputs is required to capture features invisible to any single modality (Baltrušaitis et al.,
2018; Steyaert et al., 2023; Li & Wu, 2024). Strong spatial dependencies make it a natural testbed for
attention mechanisms and multi-scale architectures (Dosovitskiy, 2020; Niu et al., 2021; Fan et al.,
2021; Hassanin et al., 2024; Liu et al., 2024a), while extreme class imbalance and geographic vari-
ability mirror open challenges in long-tail learning and domain adaptation (Lin, 2017; Ghosh et al.,
2024). Beyond SG mapping, surface morphology is an underutilized signal across domains such as
medical imaging where shape descriptors from CT or MRI improve disease prediction (Van Tim-
meren et al., 2020), autonomous navigation where terrain guides safe decision-making (Meng et al.,
2023), and RS where benchmarks often underemphasize topography (Wang et al., 2025).

The rapid progress in CV has been driven by the availability of large-scale, standardized datasets.
General-purpose benchmarks like ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) have
catalyzed advances in classification, detection, and segmentation by offering vast repositories of
labeled imagery and clear evaluation protocols. However, performance on real-world tasks often
plateaus without domain-specific datasets that reflect their unique characteristics, sensing modal-
ities, and physical constraints. In the geospatial domain, datasets have emerged for land cover
classification and urban scene analysis (Schmitt et al., 2019; Cordts et al., 2016; Demir et al., 2018;
Van Etten et al., 2018; Sumbul et al., 2019), but these are primarily for anthropogenic features and
land use. Several geologic datasets have been introduced for hazard mapping, but these focus on dis-
crete events (Ji et al., 2020; Montello et al., 2022; Rege Cambrin & Garza, 2024), leaving a critical
gap in geoscience datasets tailored to more realistic conditions with continuous materials.

EarthScape is a multimodal dataset developed for SG mapping, with applicability to other surface-
aware geospatial tasks. It integrates publicly available RGB and near-infrared (NIR) imagery, digi-
tal elevation models (DEM), DEM-derived terrain features computed at multiple scales, and trans-
portation and hydrological vector data into a unified, co-registered framework. This design reflects
key characteristics of SG mapping, including multi-label structure, scale-dependent morphology,
and geographic heterogeneity, and provides a benchmark for developing and evaluating multimodal
geospatial models. Our contributions are as follows:

• We introduce EarthScape, the first multimodal, multi-scale benchmark dataset designed
specifically for SG mapping and surface-aware geospatial analysis.

• We provide a unified, co-registered framework integrating imagery, elevation, multi-scale
terrain derivatives, and vector layers, enabling flexible multimodal experimentation.

• We establish reproducible baselines across unimodal, multi-scale, and multimodal config-
urations, supporting systematic evaluation of fusion strategies, backbone architectures, and
cross-domain generalization.

2 RELATED WORK

SG Mapping with Machine Learning: SG mapping focuses on unconsolidated materials formed
by active surface processes, such as weathering, erosion, sediment transport, and deposition (Comp-
ton, 1985). These materials are closely tied to landform structure and surface morphology, as ter-
rain shape governs the energy available to drive these processes (Odeh et al., 1991; Schomberg
et al., 2005; Brigham & Crider, 2022). Several studies have leveraged this terrain-geologic material
relationship using logistic regression, random forests, and support vector machines for classifica-
tion or segmentation of binary hazards (e.g., landslides, sinkholes) (Kirkwood et al., 2016; Zhu
& Pierskalla Jr, 2016; Crawford et al., 2021) or SG maps (Cracknell & Reading, 2014; Johnson
& Haneberg, 2025). However, these approaches depend on hand-crafted features, are restricted to
small geographic extents, and fail to generalize beyond the training region. More recently, deep
learning methods using convolutional neural networks (CNNs) and CNN-Transformer hybrids have
been applied to related tasks (Prakash et al., 2021; Ji et al., 2020; Liu et al., 2023; Latifovic et al.,
2018; Zhou et al., 2023; Rafique et al., 2022). While these models better capture spatial depen-
dencies critical to geologic interpretation (Bishop et al., 1998; Behrens et al., 2018), they remain
site-specific, lack standardized datasets, and rely on limited input modalities.

Multimodal Learning for Geologic Tasks: Multimodal learning has become a central paradigm
in geospatial CV, where combining diverse data sources, like optical imagery, SAR, and DEMs,
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Figure 1: EarthScape data processing pipeline (left) and selected modalities from a single 256×256
patch (right). The SG map is rasterized and used to define the area of interest (AOI), from which
all predictive features (DEM, RGB+NIR imagery, NHD hydrology, and OSM infrastructure) are
clipped and aligned. Terrain derivatives are then computed from the DEM at multiple spatial scales.
A regular grid is applied to extract 38 co-registered channels per patch.

can enhance model robustness through learned complementary information (Astruc et al., 2024; Bi
et al., 2022; Jain et al., 2022; Han et al., 2024). In geological applications, this has often manifested
by fusing overhead RGB imagery with DEMs with early- or mid-level strategies (Prakash et al.,
2021; Ji et al., 2020; Liu et al., 2023; Latifovic et al., 2018; Zhou et al., 2023; Rafique et al., 2022).
Although effective for some situations, these approaches tend to overfit to absolute elevation or local
appearance and fail to generalize to new regions. Other modalities have also been tested, including
elevation contours (Zhou et al., 2023), geochemical maps (Latifovic et al., 2018; Wang et al., 2021),
and aeromagnetic imagery (Liu et al., 2024b), but these resources lack standardized availability.

RS and Geologic Datasets: RS benchmarks like SpaceNet (Van Etten et al., 2018), xView (Lam
et al., 2018), and the Functional Map of the World (Christie et al., 2018) provide high-resolution
satellite imagery annotated for object detection and scene classification in urban environments.
These datasets are optimized for anthropogenic features such as roads, buildings, and vehicles, and
are widely used for infrastructure monitoring and disaster response. Other RS datasets, including
BigEarthNet (Sumbul et al., 2019), DeepGlobe (Demir et al., 2018), and SEN12MS (Schmitt et al.,
2019), support land cover classification and segmentation using multispectral or synthetic aperture
radar (SAR) imagery. However, these datasets target coarse semantic categories such as vegetation
or developed areas and lack representations of Earth’s surface necessary to understand SG processes.

Several geoscience-specific datasets have been introduced for geologic hazards, including MMFlood
for flood delineation (Montello et al., 2022), QuakeSet for earthquake event detection (Rege Cam-
brin & Garza, 2024), and landslide detection datasets leveraging overhead imagery and DEMs (Ji
et al., 2020; Liu et al., 2023; Zhou et al., 2023). While valuable for their respective domains, these
resources are narrowly scoped to discrete hazards or events, often limited to small geographic areas,
and rely on shallow modality combinations. Prior machine learning work on SG mapping similarly
relies on small, locally assembled datasets that are not publicly released or standardized (Kirkwood
et al., 2016; Zhu & Pierskalla Jr, 2016; Latifovic et al., 2018; Crawford et al., 2021; Johnson &
Haneberg, 2025), making systematic comparison and cross-region evaluation impossible. None of
these resources supports continuous SG mapping.
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3 EARTHSCAPE DATASET

3.1 DATA SOURCES AND COMPOSITION

Surficial Geologic Maps: The EarthScape dataset currently includes eight high-resolution
(1:24,000-scale) SG maps covering two areas in the central United States (Buchanan et al., 2023;
Massey et al., 2023; Swallom et al., 2023; Massey et al., 2024; Hodelka et al., 2024; Swallom
et al., 2024; Bottoms et al., 2021; Massey et al., 2021). Each map is delivered as a vector poly-
gon dataset in ESRI geodatabase format and are rasterized during preprocessing to produce the
targets used throughout the benchmark. EarthScape includes seven SG units that form a mutually
exclusive representation of the surficial cover in each area. These units correspond to five surface-
process environments: fluvial deposits (Qal, alluvium; Qat, terrace deposits), debris-flow deposits
(Qaf, alluvial fans), hillslope materials (Qc, colluvium; Qca, colluvial aprons), in-situ weathering
products (Qr, residuum), and anthropogenic modification (af1, artificial fill). Although EarthScape
v1.0 is geographically limited, the mapped environments and surface processes it captures are
widespread in temperate, non-glaciated landscapes worldwide. As a result, the SG units in Earth-
Scape provide a representative set of classes for evaluating multimodal models designed to general-
ize across similar geomorphic settings. See Appendices B.1 and B.2 for additional information.

Aerial imagery and DEM: EarthScape includes aerial RGB+NIR imagery and LiDAR-derived
DEMs (Commonwealth of Kentucky, 2024), which constitute the core RS modalities in the dataset.
The aerial imagery has a ground sampling distance (GSD) of 0.15 m (≈ 6 in) and provides measure-
ments of surface appearance: RGB channels capture visible-wavelength variation related to land
cover and human modification: NIR band emphasizes vegetation moisture and canopy structure.
The DEM is produced from airborne LiDAR with 1.52 m GSD (≈ 5 ft) resolution and provides
raw elevation and surface morphology information. Variations in topography, local relief, and slope
often align with boundaries between SG materials, making DEM data an intuitive modality for SG
mapping tasks. Both datasets are publicly accessible as GeoTIFF tiles and are co-registered during
preprocessing to ensure consistent spatial alignment with all other EarthScape modalities.

Terrain Features: EarthScape includes five DEM-derived terrain features widely used in
geomorphometry (Florinsky, 2016), each quantifying a distinct aspect of surface geometry.
Slope (S) describes local surface steepness; profile curvature (PrC) and planform curvature (PlC)
capture surface curvature parallel and perpendicular to the direction of maximum slope;
elevation percentile (EP) measures relative elevation; standard deviation of slope (SDS) character-
izes local surface roughness. See Appendix B.3 for more information.

Hydrography and Infrastructure: EarthScape includes vector data for surface hydrography and
human infrastructure. Hydrographic features consist of stream centerlines and waterbody polygons
from the U.S. Geological Survey’s National Hydrography Dataset (NHD) (U.S. Geological Survey,
2024), and infrastructure features include road and railway centerlines from OpenStreetMap (OSM)
(OpenStreetMap contributors, 2024). These layers supply contextual information about drainage
networks and built environments that complements the imagery and terrain features.

3.2 DATA PROCESSING PIPELINE

Targets: Each SG map was provided as a vector geodatabase, and the relevant polygons exported
to a non-proprietary GeoJSON format (Fig. 1). The polygons were checked for valid geometry and
their topology was validated to ensure complete coverage, preventing gaps or inconsistencies that
could produce missing or incorrect labels during rasterization. All SG units were then mapped to a
standardized set of ordinal class values shared across the entire EarthScape dataset. The vector data
were reprojected to the DEM coordinate reference system and rasterized to a common 1.52 m GSD
grid (Fig. 1). The DEM was used as the target grid because it served as the original basemap for the
mapping and provides a uniform reference for aligning all other modalities.

Raw Features: A tile index defining the footprints of the RGB+NIR imagery and DEM tiles was
obtained, and all tiles intersecting the AOI were downloaded (Fig. 1). The aerial RGB+NIR and
DEM GeoTIFF tiles were reprojected and merged into single raster mosaics at a common 1.52
m GSD resolution (Fig. 1). Vector hydrography and infrastructure datasets were also acquired
and clipped to the AOI (Fig. 1). NHD hydrographic and OSM infrastructure features were then
rasterized into two binary GeoTIFF layers aligned to the same 1.52 m GSD grid (Fig. 1).
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Figure 2: EarthScape label distribution summaries. Left: Global class frequencies ordered by de-
scending prevalence; relative frequencies shown above each bar. Center: Patch-level class-area
distributions shown as class-area proportion values and boxplots (interquartile range with whiskers
to the 5th–95th percentiles); median values displayed at top. Right: Histogram (top) and an example
area map (bottom) each symbolized by its per-patch class count.

Table 1: Label statistics and imbalance metrics for EarthScape, including global frequency, class-
area proportion (mean and SD), majority area rate (MAR), effective number of samples (ENS) (Cui
et al., 2019), and the imbalance ratio per label (IRLbl) (Charte et al., 2013).

Class Frequency (n) Frequency (%) Mean Class-area SD Class-area MAR ENS IRLbl

Qr 29271 94.4 0.651 0.358 0.702 9464.6 1.0
Qal 18801 60.6 0.089 0.168 0.058 8474.4 1.6
Qc 13768 44.4 0.142 0.242 0.148 7476.3 2.1
af1 10910 35.2 0.051 0.161 0.035 6641.4 2.7
Qca 7669 24.7 0.061 0.154 0.054 5355.7 3.8
Qat 1435 4.6 0.006 0.045 0.004 1336.9 20.4
Qaf 270 0.9 0.000 0.003 0.000 266.4 108.4

Engineered Features: Terrain features were calculated at multiple spatial scales in order to capture
hierarchical surface structure (Fig. 1). The native DEM (1.52 m GSD) was downsampled to five
additional resolutions (3.05, 6.10, 15.24, 30.48, 60.96 m GSD) following a roughly logarithmic
progression commonly used in geomorphometry (Fig. 1). S, PrC, and PlC were computed on each
DEM using 5×5 neighborhood kernels, upsampled back to 1.52 m GSD (Fig. 1), and smoothed
with a Gaussian filter to reduce interpolation artifacts. EP and SDS were computed directly on the
native-resolution DEM as neighborhood statistics using kernels of 5×5, 11×11, 21×21, 51×51,
101×101, and 201×201 pixels (Fig. 1). Kernel sizes were chosen so that their effective spatial
footprint matches the approximate resolutions used for S, PrC, and PlC, ensuring comparable multi-
scale representations across modalities. Additional details are provided in Appendix B.3.

Spatial Alignment and Registration: The rasterized SG map served as the reference grid for the
entire dataset. Each rasterized feature was reprojected to a common coordinate reference system
to ensure identical spatial resolution, grid origin, and geographic extent (Fig. 1). After reprojec-
tion, all images were validated to confirm matching bounding coordinates and pixel dimensions,
guaranteeing full spatial alignment across modalities.

Patches: Vector polygons were constructed in a systematic grid to cover each SG map AOI (Fig. 1).
Each patch is 256×256 pixels (390×390 m), overlaps adjacent cells by 50%, and is constrained to
lie completely within the AOI. The 256×256 patch size was selected so that identifying geomorphic
features mapped at 1:24,000-scale typically fall within an individual patch, while the overlapping
design enables users to construct larger effective context windows if needed. Each patch received a
unique ID and was used to extract all 38 channels from the aligned modalities (Figs. 1, 6–7). For
each patch, area proportions were computed from the SG mask to summarize class presence.
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3.3 DATASET PROPERTIES AND STATISTICS

Overview and Structure: EarthScape currently comprises 31,018 georeferenced patches from two
geographic regions. Each patch is 256×256 pixels with 50% overlap and contains 38 co-registered
channels, including the mask, RGB+NIR imagery, DEM, multi-scale terrain derivatives, and binary
hydrography and infrastructure layers. EarthScape includes seven SG units. Each patch includes the
pixel-level SG mask and proportional class-area summaries, enabling multilabel classification, se-
mantic segmentation, regression, and multitask configurations. See Appendix A.3 for more details.

Class Distribution and Imbalance: EarthScape exhibits a pronounced long-tailed distribution
across its seven SG units (Table 1; Fig. 2). Qr appears in 94.4% of patches, whereas the rarest
units occur in only 4.6% (Qat) and 0.9% (Qaf) of patches. Effective number of samples ranges from
9,464 (Qr) to 266 (Qaf), and the imbalance ratio per label spans more than two orders of magnitude
(1.0-108.4), reflecting strong label-level complexity driven by frequency skew. Beyond global fre-
quencies, EarthScape exhibits marked intra-patch complexity. Mean and standard-deviation class-
area proportions show that most patches contain multiple SG units with uneven contributions, and
the majority-area rate indicates that Qr dominates more than 70% of patches while rare units almost
never occupy the largest fraction. Patch-level class counts vary widely across the regions, reflecting
strong geospatial complexity in how classes co-occur and mix spatially.

Domain Shift: EarthScape spans two disjoint regions in Kentucky, USA, consisting of 23,566
patches from Warren County and 7,452 patches from Hardin County, separated by nearly 75 km.
This structure provides a natural geographic partition for analyzing cross-region variation. We com-
pute maximum mean discrepancy (MMD) to quantify distributional differences between patch-level
feature summaries (P10, P25, P50, P75, P90) of selected input modalities from each region (Gretton
et al., 2012). We observe measurable domain shift (Table 7), including MMD values of 0.365 for
RGB, 0.832 for DEM, and 0.164 for a multi-scale terrain stack (EP+S+SDS). Although both re-
gions share the same label set, their input feature distributions differ, reflecting geographic variation
and providing a clean, geographically partitioned setting for studying domain shift in multimodal
geospatial learning. See Appendix C.4 for additional details.

4 EXPERIMENTS

4.1 METHODS

Task Definition: We formulate SG mapping as a multilabel classification task over multimodal
geospatial inputs. Each input sample corresponds to a 256 × 256 image patch with co-registered
modalities and a label vector indicating the presence or absence of each of the SG units. Let D =

(xi, yi)
N
i=1 denote the dataset, where each xi = m1,m2, . . . ,mn is a collection of n modality-

specific input tensors (e.g., DEM, EP, PlC, etc.) and each modality mi can have multiple scaled
images that we consider as channels Ci. The yi ∈ 0, 1K is a binary label vector over K = 7
classes, where a class is marked positive if any part of its mask intersects the patch (i.e., even a
single pixel), without applying a proportional threshold. The model learns a mapping f : X →
[0, 1]K to predict per-class probabilities, enabling multi-class label assignment for each patch. This
formulation allows us to systematically evaluate how different modality combinations contribute to
SG feature recognition and serves as a tractable benchmark for future tasks.

Surficial Geologic Mapping Network (SGMap-Net): We introduce SGMap-Net as a lightweight
model designed to effectively integrate the complementary information across modalities and serve
as a transparent and interpretable baseline. Its simplicity allows us to isolate the contributions of
modality and fusion strategy without architectural confounds, while ensuring that results are repro-
ducible and easily extendable. Figure 3 illustrates the architecture of SGMap-Net, which consists
of three key components: a standardization module, a feature extractor, and a classification head.
As part of our early fusion strategy, we first stack all channels of each modality mi and then apply
a 1 × 1 convolution followed by batch normalization and ReLU activation to standardize the input
to a common channel dimension C = 3. This ensures compatibility with a shared encoder, while
preserving modality-specific spatial patterns through independent convolutions.

m̂i = ReLU(BN(Conv1× 1(mi))). (1)
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Figure 3: SGMap-Net and fusion baselines. Left: SGMap-Net accepts any number of modalities
with arbitrary channels, standardizes each to a 3-channel representation, and encodes them with a
shared encoder. Modality features are projected into a latent space for multi-head attention (MHA)
and fused via attention-weighted aggregation before classification. Right: Fusion baselines used in
experiments, including early channel stacking (top) and mid-level feature concatenation (bottom).

Each standardized modality m̂i is passed through a shared encoder to extract feature maps fmi
=

Encoder(m̂i); we experiment with ResNeXt-50 (Xie et al., 2017) and Vision Transformer (ViT-
B/16) (Dosovitskiy, 2020) backbones initialized with ImageNet-pretrained weights. Next, each fea-
ture vector fmi

is projected into a common latent space of dimension d using a fully connected layer
and augmented with a learnable modality embedding ei to get the final representations zi = fmi+ei.
Then we apply modality-specific multi-head attention (MHA) (Vaswani et al., 2017) mechanisms to
enable intermediate fusion across modalities. For each modality mi, attention is computed using zi
as the query (Q), and the embeddings from all other modalities as keys (K) and values (V ).

ai = MHA(Q = zi,K = [zj ]j ̸=i, V = [zj ]j ̸=i). (2)

Next, we perform attention-weighted aggregation over the set of modality-specific attention out-
puts a. We begin by concatenating all outputs A = [ai]. To determine the relative importance of
each modality, we apply a learnable linear projection vi followed by a Softmax operation to ob-
tain attention weights w = Softmax(vTA). The final fused representation is then computed using
these weights, zfused =

∑N
i=1 wiai. This attention-weighted aggregation adaptively emphasizes

the most informative modalities for each sample. The fused embedding zfused is then passed through
a classification head consisting of two fully connected layers to predict the geologic class logits ŷ.
In addition to our proposed attention-based fusion strategy, two alternative approaches are evalu-
ated: (1) we stack selected channels from different modalities, extract a joint representation using
the encoder, and feed it into the classification head; (2) we concatenate modality embeddings from
the encoder and pass them directly to the classification head. These variants serve as comparative
baselines to assess the impact of modality-aware attention in our fusion framework.

Data Splits and Selection: We define training, validation, and test splits using the Warren County
subset, all selected using a fixed random seed. We randomly sampled 1,536 patches for the in-
domain test set, then 768 non-intersecting patches for validation, and the remaining 8,416 non-
intersecting patches formed the training set (Table 5; Fig. 8a). A cross-domain test set of 1,536
patches was sampled from Hardin County (Table 5; Fig. 8b). All splits exhibit similar class dis-
tributions (Fig. 9). This benchmark split preserves spatial independence, reflects standard dataset
proportions, and enables clear comparison between in-domain and cross-domain performance.

Training Procedure: Each modality was normalized using channel-specific means and standard
deviations computed from the training set. Data augmentation included random flips and 90◦ rota-
tions that preserve surface structure, while avoiding potential label mismatch from arbitrary-angle
rotations. To address class imbalance, we used focal loss (Lin, 2017) with α = 0.25 and γ = 2.0;
oversampling was tested, but reduced performance. Models were trained for 15 epochs with Adam
(learning rate 0.001, batch size 16), and the checkpoint with the lowest validation loss was used
for evaluation. Label-wise decision thresholds were tuned on the validation set and applied to both
test sets. Performance is reported using per-class and macro-averaged precision, recall, F1, AP, and
AUC. See Appendices C.2 and C.3for additional hardware, compute, and focal loss details.
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4.2 RESULTS AND DISCUSSION

Modality Performance: Across single-modality experiments, terrain features provide the strongest
overall performance (Tables 2, 8–10; Fig. 11). EP achieves the highest in-domain F1 (0.651),
followed by S (0.647), both outperforming RGB (0.599) and DEM (0.632). Under cross-region
evaluation, EP and RGB exhibit the largest degradations (0.291, 0.267), whereas S shows a much
smaller drop (0.049). DEM shows moderate degradation (0.105), but is less robust than its terrain
derivatives. Multi-scale EP and S do not exceed their best single-scale versions, but they improve
cross-region performance (0.068, 0.043) (Tables 2, 11–13; Fig. 11). The strongest configuration is
a multi-scale, multimodal input of EP+S+SDS, which has the highest in-domain (0.657) and cross-
domain (0.598) F1 scores across all experiments (Tables 2, 14–16; Fig. 11). Adding RGB and
DEM to this configuration reduces performance, indicating that raw appearance and elevation is
less invariant across regions and can dilute more stable, shape-based information from the terrain
derivatives. Overall, terrain features provide the most discriminative and robust representation, and
their complementary geometric cues combine more effectively than raw appearance or elevation.

Cross-domain Performance: Cross-region performance exhibits qualitative correspondence with
the patch-level distributional differences measured by MMD (Tables 2 and 7; see also Tables 8–16
and Fig. 11). RGB shows moderate shift (0.365) and the largest F1 degradation (0.267), reflecting
sensitivity to location-specific appearance. DEM exhibits the highest shift (0.832), but generalizes
better than RGB, suggesting that raw elevation provides some transferable signal. EP performs well
in-domain, but shows moderate shift (0.244) and a large F1 drop (0.271), consistent with region-
specific variation in local relief. S and SDS have the lowest shifts (0.097, 0.078) and exhibit strong
transfer performance (0.070, 0.060), indicating that these shape-based features provide more region-
invariant cues. Multi-scale S shows slightly higher shift (0.155), but improves cross-region robust-
ness (0.637). Multi-scale EP+S+SDS shows similar shift (0.164) and achieves the strongest overall
transfer (0.059). While MMD does not directly predict performance, modalities with smaller input
distribution differences tend to transfer more reliably across regions.

Per Class Behavior: Class-wise AUC varies substantially across units and cannot be explained by
frequency alone (Tables 1, 17–18; Figs. 2, 12). Qr appears in 94.4% of patches and achieves strong
in- and cross-domain AUC (0.933/0.905), yet Qc shows even higher separability (0.975/0.982) while
occurring in only 44.4% of patches. Conversely, Qal is the second most common unit (60.6%),
but yields the lowest AUC (0.840/0.760). Rare units are surprisingly separable, with Qat (4.6%)
and Qaf (0.9%) achieving competitive AUC values (0.903/0.847 and 0.926/0.964), indicating that
distinct spatial expression can offset low prevalence. In our benchmarks, no single modality or scale
maximizes AUC across all units. In-domain separability is often highest with multi-scale inputs,
while cross-domain robustness tends to be strongest with single-scale features that exhibit lower
distributional shift. Overall, per-class performance is shaped by the interaction of frequency, patch-
level mixing, spatial footprint, and scale-dependent expression of each class.

Fusion and Backbone Effects: Across fusion strategies, early channel stacking consistently yields
the strongest performance, followed by mid-level concatenation, and then attention-based fusion
(Tables 2, 11–18; Figs. 11–12). Backbone differences are more modest but systematic. ResNeXt-
50 and ViT-B/16 achieve their highest scores with stacking, while ViT-B/16 tends to outperform
ResNeXt-50 when attention-based fusion is used. Class-wise trends show similar structure. With
single-modality inputs, ResNeXt-50 attains higher separability (AUC) for af1, Qal, Qaf, and Qat,
whereas ViT-B/16 performs better on Qc, Qca, and Qr. Multi-scale and multimodal configurations
improve class-wise performance for both encoders, but largely preserve these relative patterns, sug-
gesting that the two backbones emphasize different aspects of the same inputs. From a geologic
standpoint, the SG units where each backbone performs best share similar surface expressions. The
units where ResNeXt-50 generalizes well tend to be smaller in spatial extent, lower-relief, and more
linear in form, whereas the units where ViT-B/16 performs best exhibit broader, regionally exten-
sive geomorphic patterns. Together, these results show that fusion strategy drives overall robustness,
while backbone choice primarily shapes how performance gains distribute across individual classes.

Comparison with Baselines: We compare SGMap-Net to several recent multimodal RS foundation
models, including DOFA (Xiong et al., 2024), Panopticon-FM (Waldmann et al., 2025), SatMAE
(Cong et al., 2022), and SatMAE++ (Noman et al., 2024) (Table 2). SGMap-Net achieves the
strongest overall performance. Its multimodal, terrain-only EP+S+SDS configuration attains the
highest in-domain F1 (0.657), the best cross-domain F1 (0.598), and the smallest performance drop
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Table 2: Macro-F1 and AUC for in-domain (ID), cross-domain (CD), and cross-region degradation
(∆) across selected single-modality, multi-scale, and multimodal experiments. The upper block re-
ports SGMap-Net results and the lower block reports performance of existing RS foundation models.
Modality abbreviations follow Section 3.1. Subscripts indicate either the DEM resolution used to
compute S, PrC, or PlC (e.g., S1.5 from the 1.5 m DEM), the kernel size for EP or SDS (e.g., EP51
uses a 51×51 kernel), or multi-scale stacks of all resolutions (e.g., Sms). The best and second-best
scores in each column are shown in bold and underlined, respectively.

Model Modality Fusion F1 AUC

ID CD ∆ ID CD ∆

SGMap-Net (ResNeXt) RGB - 0.599 0.394 0.205 0.815 0.557 0.258
SGMap-Net (ViT) RGB - 0.579 0.332 0.267 0.793 0.526 0.267
SGMap-Net (ResNeXt) DEM - 0.632 0.527 0.105 0.883 0.730 0.153
SGMap-Net (ViT) DEM - 0.618 0.512 0.237 0.857 0.620 0.237
SGMap-Net (ResNeXt) EP51 - 0.651 0.380 0.271 0.876 0.663 0.213
SGMap-Net (ViT) EP51 - 0.604 0.489 0.078 0.835 0.757 0.078
SGMap-Net (ResNeXt) S1.5 - 0.645 0.575 0.070 0.876 0.808 0.068
SGMap-Net (ViT) S1.5 - 0.623 0.552 0.093 0.855 0.762 0.093
SGMap-Net (ResNeXt) Sms Attention 0.494 0.426 0.068 0.500 0.500 0.000
SGMap-Net (ViT) Sms Attention 0.557 0.519 0.038 0.615 0.594 0.021
SGMap-Net (ResNeXt) Sms Stacking 0.637 0.594 0.043 0.864 0.804 0.061
SGMap-Net (ViT) Sms Stacking 0.593 0.533 0.061 0.798 0.705 0.093
SGMap-Net (ResNeXt) EPms+Sms+SDSms Attention 0.561 0.532 0.029 0.677 0.707 -0.030
SGMap-Net (ViT) EPms+Sms+SDSms Attention 0.567 0.538 0.029 0.776 0.678 0.098
SGMap-Net (ResNeXt) EPms+Sms+SDSms Stacking 0.657 0.598 0.059 0.882 0.806 0.076
SGMap-Net (ViT) EPms+Sms+SDSms Stacking 0.621 0.569 0.053 0.860 0.774 0.086

DOFA RGB+NIR - 0.597 0.533 0.064 0.652 0.623 0.029
Panopticon-FM RGB+NIR - 0.570 0.313 0.257 0.635 0.533 0.102
SatMAE RGB+DEM+EPms+Sms+SDSms - 0.614 0.427 0.187 0.864 0.735 0.129
SatMAE++ RGB+DEM+EPms+Sms+SDSms - 0.656 0.454 0.202 0.904 0.762 0.142

across regions (0.059). Pretrained models show weaker transfer when used with their native spectral
inputs. DOFA reaches an in-domain F1 of 0.597 and a cross-domain score of 0.533, but with a
competitive drop (0.064), while Panopticon-FM exhibits severe cross-domain collapse (0.257). To
enable a more comparable evaluation, we extended SatMAE and SatMAE++ to accept terrain chan-
nels. Although SatMAE++ achieves a strong in-domain F1 (0.656), its cross-domain performance
degrades sharply (drop of 0.202). These results indicate that pretrained spectral representations ex-
hibit substantial geographic sensitivity on this task, whereas terrain derivatives provide far more
stable cues under region shift. SGMap-Net’s use of multi-scale, shape-based geomorphic features
therefore yields significantly stronger and more consistent performance, despite its simplicity.

5 CHALLENGES AND LIMITATIONS

Geographic Scope: EarthScape v1.0 is sampled from two regions in the central United States.
Although compact, this spatial footprint keeps mapping standards, labeling conventions, and sensing
modalities consistent, simplifying interpretation and enabling clean, repeatable experiments. Both
regions differ enough to induce a measurable domain shift in our benchmarks. Future releases of
EarthScape will expand geographic coverage.

Modality Depth: EarthScape trades geographic breadth for modality depth. Although the spatial
extent is modest, each patch provides 38 co-registered channels of imagery, elevation, multi-scale
terrain derivatives, and vector features. This depth emphasizes surface-aware multimodal learning
and offers flexibility in inputs and architectures, but also increases dimensionality and complexity.

Class Imbalance: EarthScape contains seven SG units with long-tailed distributions. Many units
occupy only small portions of a patch, patches often have multiple units, and class presence varies
across space. This structure reflects the true distribution of SG materials, but requires models to
handle class imbalance, intra-patch complexity, co-occurrence patterns, and spatial heterogeneity.

Domain Shift: SG units are governed by surface processes that recur globally, but input RS modal-
ities vary geographically. Models that rely heavily on location-specific cues, such as RGB appear-
ance or raw elevation, exhibit substantial cross-region degradation, whereas terrain-derived features
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transfer more reliably. EarthScape’s cross-region design makes this explicit and provides a con-
trolled setting for studying domain shift in multimodal geospatial learning.

Multi-scale and Multimodal Complexity: SG units are expressed by surface processes spanning
a range of spatial scales. EarthScape includes terrain derivatives at six resolutions so that models
can learn both fine-scale patterns and broader positional context. Our results indicate that no single
scale optimizes performance for all classes, and multi-scale combinations generalize better than
single-scale variants. Modality follows the same pattern, and multi-scale, multimodal configurations
consistently outperform. This demonstrates the necessity of multi-scale, multimodal fusion and
scale-aware architectures, but also increases feature dimensionality and design complexity.

Interpretation Variability: EarthScape relies on expert-labeled SG maps. Classes are well-defined
by geologic process, but boundaries may be approximate where diagnostic features are sparse, in-
troducing uncertainty into patch-level labels. In our benchmarks, a unit is marked as present if
it occupies at least one pixel. We provide per-patch class-area proportions to support alternative
thresholding or probabilistic labeling.

Label and Taxonomy Constraints: The current release uses a single, aggregated taxonomy of
seven SG units and does not capture the full diversity of SG materials observed globally. This limits
the breadth of environments represented and may constrain the generality of models trained solely
on EarthScape v1.0. At the same time, classes are defined in terms of surface process, enabling
broad transferability to regions with similar geologic processes and data.

Temporal Inconsistency: Input modalities were acquired from 2019 to 2024, introducing mild
temporal misalignment among imagery, elevation, and vector layers. While SG units are stable
on these timescales, land cover and infrastructure may change, creating minor label noise. This
asynchrony is a limitation, but also reflects realistic conditions under which many Earth observation
systems operate.

Patch Overlap and Sample Independence: EarthScape uses a 50% overlapping patches to increase
spatial context, ensure dense sampling, and support multi-view aggregation, but this design also in-
troduces statistical dependence between neighboring samples. We mitigate leakage in evaluation by
enforcing spatially disjoint train/validation/test sets, but non-independence remains a consideration
when designing models and interpreting significance.

6 CONCLUSIONS

We introduced EarthScape, an AI-ready multimodal benchmark for SG mapping. EarthScape inte-
grates aerial imagery, DEMs, multi-scale terrain derivatives, and GIS vector layers into a unified,
co-registered framework, providing a modality-deep testbed for surface-aware geospatial learning.
The dataset exposes real-world challenges that are underrepresented in existing benchmarks, includ-
ing long-tailed class distributions, multi-label patch structure, multi-scale organization, and explicit
geographic domain shift between training and held-out regions.

In our baseline experiments, terrain-derived features that encode surface shape emerge as the most
informative and robust modalities, while models relying primarily on RGB or raw elevation suffer
substantial degradation under cross-region evaluation. Multi-scale and multimodal inputs improve
performance over single-scale or single-modality configurations. Cross-region transfer is more sen-
sitive to how surface inputs are fused than to backbone encoder complexity, with early channel
stacking consistently outperforming attention-based fusion. SGMap-Net is a lightweight baseline,
yet outperforms the recent spectral-based RS foundation models we evaluate. These findings under-
score that SG mapping in EarthScape is strongly shape-driven and indicate limits on the transfer-
ability of appearance-based representations in this setting.

EarthScape is designed as a living, versioned dataset and will expand in both geographic coverage
and modality space as high-quality SG maps and compatible remote sensing products become avail-
able and pass our quality-control pipeline. By releasing all data, code, and benchmark splits, we aim
to support reproducible research on multimodal fusion, domain adaptation, and geospatial learning,
and to provide a common platform for cross-disciplinary work at the intersection of computer vision,
RS, and Earth surface analysis.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. EarthScape is built exclusively from publicly avail-
able, government or community datasets under open licenses; no human subjects, personal data, or
sensitive information are involved. All source attributions and licensing terms are respected, and
no conflicts of interest are present. We caution that models trained on EarthScape should be ap-
plied with geological domain expertise, particularly outside regions with similar surficial processes,
to avoid misinterpretation in decision-making contexts. We report implementation details in the
Appendix to promote awareness of environmental impact and enable informed replication.

REPRODUCIBILITY STATEMENT

We support reproducibility through precise documentation of data sources and preprocessing, patch
generation and spatially independent splits, model and training configurations, and comprehensive
results. Upon acceptance, the full EarthScape dataset and code will be publicly released with a
data dictionary and README. These materials are intended to allow end-to-end reproduction of all
reported experiments.
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Gencer Sumbul, Marcela Charfuelan, Begüm Demir, and Volker Markl. Bigearthnet: A large-
scale benchmark archive for remote sensing image understanding. In IGARSS 2019-2019 IEEE
International Geoscience and Remote Sensing Symposium, pp. 5901–5904. IEEE, 2019.

Meredith Swallom, Matthew Massey, Wes Buchanan, Bailee Nicole Hodelka, Hannah Hayes,
Charles Wells III, and Emily Morris. Surficial geologic map of the bowling green north 7.5-
minute quadrangle, warren county, kentucky. Kentucky Geological Survey Contract Report, 13
(55), 2023.

Meredith Swallom, Bailee Hodelka, Matthew Massey, Hannah Hayes, Charles Wells, and Emily
Morris. Surficial geologic map of the smiths grove 7.5-minute quadrangle, kentucky. Accepted
for publication, 2024.

U.S. Geological Survey. National hydrography dataset (nhd) – high resolution. https://www.
usgs.gov/national-hydrography, 2024. Stream centerlines and waterbody polygons.
Accessed: 2024-08-01.

U.S. Geological Survey. National geologic map database (ngmdb). https://ngmdb.usgs.
gov, 2025. Accessed May 2025.

Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow. Spacenet: A remote sensing dataset
and challenge series. arXiv preprint arXiv:1807.01232, 2018.

Janita E Van Timmeren, Davide Cester, Stephanie Tanadini-Lang, Hatem Alkadhi, and Bettina
Baessler. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into
imaging, 11(1):91, 2020.

CJ Van Westen, N Rengers, and R Soeters. Use of geomorphological information in indirect land-
slide susceptibility assessment. Natural hazards, 30:399–419, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Leonard Waldmann, Ando Shah, Yi Wang, Nils Lehmann, Adam Stewart, Zhitong Xiong, Xiao Xi-
ang Zhu, Stefan Bauer, and John Chuang. Panopticon: Advancing any-sensor foundation models
for earth observation. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 2204–2214, 2025.

Jiayu Wang, Ruizhi Wang, Jie Song, Haofei Zhang, Mingli Song, Zunlei Feng, and Li Sun.
Rs3dbench: A comprehensive benchmark for 3d spatial perception in remote sensing, 2025. URL
https://arxiv.org/abs/2509.18897.

Ziye Wang, Renguang Zuo, and Hao Liu. Lithological mapping based on fully convolutional net-
work and multi-source geological data. Remote Sensing, 13(23):4860, 2021.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Zhitong Xiong, Yi Wang, Fahong Zhang, Adam J Stewart, Joëlle Hanna, Damian Borth, Ioannis Pa-
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A EARTHSCAPE DETAILS

A.1 PURPOSE

EarthScape is designed as a benchmark dataset for learning from continuous, spatially coherent SG
units and the surface processes they represent. Its primary purpose is to support research on multi-
modal geospatial learning, where models integrate aerial imagery, LiDAR-derived DEMs, multi-
scale terrain derivatives, and vector contextual data to infer geologic patterns expressed on the
Earth’s surface. The name EarthScape reflects this focus on surface morphology and near-surface
processes, rather than implying complete global coverage.

A.2 CODE AVAILABILITY AND REPRODUCIBILITY

All code used for data preprocessing, patch generation, model training, and evaluation will be re-
leased upon acceptance. The repository will include comprehensive documentation and scripts to
fully reproduce the dataset and all experiments reported in this contribution. This includes tools
for multimodal data alignment, terrain-derivative computation, mask rasterization, and construction
of spatially independent training/validation/test splits. The codebase also provides baseline imple-
mentations of SGMap-Net with both ResNeXt-50 and ViT-B/16 encoder backbones, along with
standardized training and evaluation pipelines. Utilities for focal loss, threshold optimization, per-
formance metrics, and visualization are included for completeness. The full dataset will also be
made publicly available at acceptance. The dataset archive contains all co-registered modalities,
multilabel target masks, per-patch class proportions, and accompanying metadata, including a de-
tailed data dictionary documenting each modality.

A.3 DATASET CONTENTS

EarthScape provides a standardized multimodal dataset for each 256×256 patch aligned to a com-
mon 1.52 m GSD grid in the EPSG:3089 coordinate reference system. For every patch, the dataset
includes co-registered raster modalities (RGB, DEM, multi-scale EP, PrC, PlC, S, and SDS terrain
derivatives), along with binary hydrology (NHD) and infrastructure (OSM) masks. Each patch is
paired with a multilabel one-hot vector for the seven surficial geologic units, per-class area propor-
tions, and a GeoJSON polygon defining the exact patch footprint and unique patch ID. All rasters
are provided as GeoTIFF files, labels and areas as CSV, and patch polygons as vector GeoJSON
files. The dataset archive additionally includes global normalization statistics (per-modality means
and standard deviations) computed over the full in-domain region to support reproducible prepro-
cessing. Table 3 summarizes all contents included in the current dataset.

A.4 CURRENT STATUS AND ROADMAP

Figure 4 illustrates the current extent and planned expansion of the EarthScape dataset. EarthScape
v1.0 includes two regions in central Kentucky: Warren County, which contains the largest number of
image patches, and Hardin County, which serves as an independent test area that enables evaluation
of cross-region generalization. Version 2.0 will nearly triple the number of patches (Fig. 4), while
Version 3.0 will extend coverage beyond Kentucky into adjacent regions that capture additional
geologic processes and environmental conditions. EarthScape is designed as a living dataset. Future
versions will continue to evolve through the addition of new regions, modalities, and metadata. We
invite external researchers to contribute high-quality data that aligns with the dataset’s standards,
with the goal of strengthening EarthScape as a shared benchmark for multimodal geospatial learning.

A.5 EXTENSIBILITY AND COMMUNITY CONTRIBUTIONS

EarthScape is designed as a living dataset rather than a one-time release. To maintain reproducibility
while enabling growth, we follow semantic versioning with frozen releases (v1.0, v1.1, v2.0, etc.),
stable train/validation/test splits, and a public CHANGELOG documenting all modifications to re-
gions, modalities, or preprocessing steps. Newly added areas are organized as separate modules so
that existing benchmarks remain stable across versions.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Summary of EarthScape v1.0 dataset contents.

Name Filename Pattern Data Type Metadata

Mask {id} geology.tif float SG target mask for segmentation; 1.52 m GSD
DEM {id} dem.tif float Airborne LiDAR; 1.52 m GSD
Aerial, Red {id} aerialr.tif float Aerial imagery, red band; 1.52 m GSD
Aerial, Green {id} aerialg.tif float Aerial imagery, green band; 1.52 m GSD
Aerial, Blue {id} aerialb.tif float Aerial imagery, blue band; 1.52 m GSD
Aerial, NIR {id} aerialr.tif float Aerial imagery, near infrared band; 1.52 m GSD
Hydrography {id} nhd.tif float Binary stream & water bodies; 1.52 m GSD
Infrastructure {id} osm.tif float Binary road & railways; 1.52 m GSD
EP5 {id} ep 5x5.tif float Computed with 5×5 kernel & 1.52 m GSD DEM
EP11 {id} ep 11x11.tif float Computed with 11×11 kernel & 1.52 m GSD DEM
EP21 {id} ep 21x21.tif float Computed with 21×21 kernel & 1.52 m GSD DEM
EP51 {id} ep 51x51.tif float Computed with 51×51 kernel & 1.52 m GSD DEM
EP101 {id} ep 101x101.tif float Computed with 101×101 kernel & 1.52 m GSD DEM
EP201 {id} ep 201x201.tif float Computed with 201×201 kernel & 1.52 m GSD DEM
PlC1.5 {id} plancurv.tif float Computed with 5×5 kernel & 1.52 m GSD DEM
PlC3 {id} plancurv 10.tif float Computed with 5×5 kernel & 3.05 m GSD DEM
PlC6 {id} plancurv 20.tif float Computed with 5×5 kernel & 6.1 m GSD DEM
PlC15 {id} plancurv 50.tif float Computed with 5×5 kernel & 15.24 m GSD DEM
PlC30 {id} plancurv 100.tif float Computed with 5×5 kernel & 30.48 m GSD DEM
PlC60 {id} plancurv 200.tif float Computed with 5×5 kernel & 60.96 m GSD DEM
PrC1.5 {id} procurv.tif float Computed with 5×5 kernel & 1.52 m GSD DEM
PrC3 {id} procurv 10.tif float Computed with 5×5 kernel & 3.05 m GSD DEM
PrC6 {id} procurv 20.tif float Computed with 5×5 kernel & 6.1 m GSD DEM
PrC15 {id} procurv 50.tif float Computed with 5×5 kernel & 15.24 m GSD DEM
PrC30 {id} procurv 100.tif float Computed with 5×5 kernel & 30.48 m GSD DEM
PrC60 {id} procurv 200.tif float Computed with 5×5 kernel & 60.96 m GSD DEM
S1.5 {id} slope.tif float Computed with 5×5 kernel & 1.52 m GSD DEM
S3 {id} slope 10.tif float Computed with 5×5 kernel & 3.05 m GSD DEM
S6 {id} slope 20.tif float Computed with 5×5 kernel & 6.1 m GSD DEM
S15 {id} slope 50.tif float Computed with 5×5 kernel & 15.24 m GSD DEM
S30 {id} slope 100.tif float Computed with 5×5 kernel & 30.48 m GSD DEM
S60 {id} slope 200.tif float Computed with 5×5 kernel & 60.96 m GSD DEM
SDS5 {id} stdslope 5x5.tif float Computed with 5×5 kernel & 1.52 m GSD DEM
SDS11 {id} stdslope 11x11.tif float Computed with 11×11 kernel & 1.52 m GSD DEM
SDS21 {id} stdslope 21x21.tif float Computed with 21×21 kernel & 1.52 m GSD DEM
SDS51 {id} stdslope 51x51.tif float Computed with 51×51 kernel & 1.52 m GSD DEM
SDS101 {id} stdslope 101x101.tif float Computed with 101×101 kernel & 1.52 m GSD DEM
SDS201 {id} stdslope 201x201.tif float Computed with 201×201 kernel & 1.52 m GSD DEM

Class Areas earthscape areas.csv float Patch-level class-area proportions
Labels earthscape labels.csv int One-hot encoded labels (no pixel threshold)
Patch GIS earthscape patches.geojson - Vector file with locations & geometries
Statistics earthscape stats.csv float Modality mean & SDs from training split
Mapping earthscape class mapping.json - Label string to ordinal mapping
Train Split indomain train.geojson - Training split GIS file with patch IDs
Val. Split indomain val.geojson - Validation split GIS file with patch IDs
In-dom. Test Split indomain test.geojson - In-domain test split GIS file with patch IDs
Cross-dom. Test Split crossdomain test.geojson - Cross-domain test split GIS file with patch IDs

Although the preprocessing pipeline is fully implemented, incorporating additional SG maps re-
quires coordinated domain and data-engineering effort. Each new region must be standardized with
EarthScape’s process-based SG classes, rasterized with topologically consistent masks, aligned with
LiDAR-quality DEMs and imagery, and evaluated for geologic validity remaining uncertainty. Ex-
ternal groups may propose new regions by providing high-quality 1:24,000-scale SG maps together
with co-registered DEMs, terrain derivatives, aerial imagery, and relevant vector layers. Regions
meeting EarthScape’s quality standards and QC protocol will be incorporated into a subsequent
versioned release.
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Figure 4: Map of the central United States showing the publicly available 1:24,000-scale surficial
geologic maps. Red lines show boundaries of major geologic provinces, which provide geological
constraints for generalizability. EarthScape-trained models are expected to generalize effectively
throughout the Interior Low Plateaus and adjacent Appalachian Plateaus, based on shared terrain,
bedrock, and geomorphic processes. In contrast, the glaciated Central Lowlands and Coastal Plain
are characterized by fundamentally different surficial processes and materials.
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B GEOLOGICAL BACKGROUND AND TERRAIN DERIVATIVES

B.1 SURFICIAL GEOLOGY

Figure 5 presents two examples of SG maps from the EarthScape dataset, shown as semi-transparent
overlays atop multi-directional hillshade images. This visualization emphasizes the relationship
between SG and topography. Distinct landforms, such as river valleys, plains, and steep hillslopes,
are spatially correlated with specific surficial geologic units. EarthScape leverages this relationship
to frame surficial geologic mapping as a vision task, where computer vision models can learn to
associate surface patterns with underlying geological processes. The EarthScape dataset currently
includes seven surficial geologic map units, each representing distinct surface processes (Table 4).
Although the maps are from Kentucky, the units reflect fluvial deposition, gravitational transport,
and in-situ weathering processes that are active in many landscapes worldwide.

1. Artificial fill (af1): Manmade deposits consisting of transported or excavated material
placed or removed for engineering, mining, or other anthropogenic structures. Includes
road embankments, building pads, quarries, and areas of significant topographic modifica-
tion. Often exhibits sharp, angular boundaries. The spatial extent of af1 can be below the
mapping resolution and inconsistently captured on expert-curated surficial geologic maps.

2. Alluvium (Qal): Unconsolidated sediments, typically consisting of clay-, silt-, sand-, and
gravel-sized particles, deposited by modern rivers and streams. Qal is commonly found
in active floodplains and valley bottoms and reflects recent sedimentation from overbank
flooding and channel migration. These areas are generally flat, vegetated, and hydrologi-
cally dynamic.

3. Alluvial fans (Qaf): Fan-shaped deposits formed at the base of tributaries or drainages,
where sediment-laden water rapidly spreads and loses energy. These deposits are typically
coarse-grained, poorly sorted, and associated with debris flows or flash floods. Although
geologically significant, Qaf are often small, making them inconsistently represented on
typical 1:24,000-scale maps.

4. Terrace deposits (Qat): Relict alluvial sediments preserved on elevated flat surfaces above
modern stream channels. These deposits reflect former floodplain levels and subsequent
stream incision. Compositionally similar to Qal, but usually expressed as distinct landforms
above modern flood plains.

5. Colluvium (Qc): Hillslope-derived sediments that accumulate at the base of slopes due to
gravity-driven processes such as soil creep, slopewash, and shallow landslides. Qc deposits
are unsorted and variable in thickness, typically found on slopes > 12◦. Qc is considered
an active geomorphic unit.

6. Colluvial aprons (Qca): Slope-derived material deposited across lower hillslopes. Qca typ-
ically occurs downslope from Qc and is more stable, having accumulated over longer time
periods. These deposits may be partially weathered, with poorly defined lower boundaries
that grade into Qr due to extended weathering and lower erosion rates.

7. Residuum (Qr): Weathered material formed in place from the physical, chemical, and bio-
logical breakdown of underlying bedrock or older unconsolidated deposits. Qr lacks signif-
icant sediment transportation and is commonly found in upland areas with minimal active
erosion. Qr is commonly gradational and poorly defined where it grades into Qc or Qca,
leading to interpretive ambiguity during mapping.

B.2 GEOLOGIC GENERALIZATION

Although EarthScape v1.0 is geographically limited, the geologic processes and terrain surface types
it represents are not unique. The dataset is directly applicable to the surficial geology exposed in the
Interior Low Plateaus and Appalachian Plateaus (Fig. 4). Comparable landscapes characterized by
carbonate bedrock, dissected plains, and mixed fluvial–colluvial systems occur globally, including
the Ozark Plateau (USA), parts of the Carpathians (Eastern Europe), the Dinaric Alps (Balkans), and
areas of central China and southeastern Australia. However, differences in geologic processes do
constrain transferability. For instance, the Central Lowlands (Fig. 4) contain fundamentally different
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(a) Surficial geologic map of part of Warren County. (b) Surficial geologic map of part of Hardin County.

Figure 5: Example SG maps showing the distribution of unconsolidated materials overlaid on hill-
shade images to emphasize topographic context. The spatial correspondence between SG map units
and landscape features, such as valleys and slopes, is visually apparent. The black grid indicates
the layout of EarthScape patches, each measuring 256× 256 pixels (390.14× 390.14 m) with 50%
overlap. Red squares in the upper left corners highlight a single patch

Table 4: Descriptions of SG units represented in EarthScape v1.0.

Class Name Dominant Process Visual Cues

af1 Artificial fill Anthropogenic Sharp, angular edges; linear or rectilinear shapes; DEM anomalies incon-
sistent with natural terrain.

Qal Alluvium Water-dominated Relatively wide, flat-bottomed valleys; active stream channels; low relative
elevations.

Qaf Alluvial fans Water-dominated (acute) Small, isolated, lobate landforms; located at slope-base transitions.
Qat Terrace deposits Water-dominated (relict) Flat benches above floodplains; stepped margins; often dissected.
Qc Colluvium Gravity-dominated (active) Steep slopes (> 12◦); may include landslides or erosional hazards.
Qca Colluvial aprons Gravity-dominated (stable) Wedge-shaped landforms along slope bases with concave profiles; transi-

tional between slope and plain.
Qr Residuum In-situ weathering Broad, low-relief uplands; little drainage or erosion; variable surface tex-

ture.

surficial materials and geomorphic processes as a result of widespread glaciation (rather than non-
glaciated weathering and erosion), limiting the direct applicability of EarthScape v1.0. Accordingly,
we recommend that applications of EarthScape v1.0 to new regions be guided by domain expertise
to ensure geological validity and meaningful interpretation.

B.3 MODALITIES

Figs. 6 and 7 showcase the diverse, multimodal data available for each of the 31,018 EarthScape
patches. Each patch includes 38 co-registered channels, comprising expert-labeled geologic masks,
high-resolution aerial RGB and NIR imagery, a DEM, terrain features derived from the DEM at
multiple spatial scales, and rasterized vector data representing hydrologic and infrastructure fea-
tures. Among these modalities, the DEM and its derived terrain features provide critical context for
understanding surface processes and interpreting surficial geologic units. Five terrain variables were
computed at six spatial scales to capture localized and regional landform variability.

1. Slope (S) is the first derivative of elevation, measuring the rate of change of elevation over
a horizontal distance. It quantifies the steepness of the terrain, providing insight into pro-
cesses like erosion and material movement.

S = tan−1

√(
∂z

∂x

)2

+

(
∂z

∂y

)2
 (3)

Where ∂z
∂x and ∂z

∂y are the partial derivatives of elevation in the x and y directions, respec-
tively.
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2. Profile curvature (PrC) is a directional second derivative of elevation, measured along the
direction of the steepest slope. It quantifies how slope changes in that direction, reflecting
the acceleration or deceleration of flow, and influencing erosion and deposition patterns.

PrC =
p2r + 2pqs+ q2t

(p2 + q2)3/2
(4)

Where p = ∂z
∂x and q = ∂z

∂y are the first-order partial derivatives of elevation in the x and

y directions, and r = ∂2z
∂x2 , s = ∂2z

∂x∂y , and t = ∂2z
∂y2 are the corresponding second-order

partial derivatives.
3. Planform curvature (PlC) is another directional second derivative of elevation, measured

perpendicular to the direction of the steepest slope. It describes the curvature of contour
lines (lines of equal elevation) and reflects how flow paths converge or diverge across the
landscape.

PlC =
q2r − 2pqs+ p2t

(p2 + q2)3/2
(5)

Where p = ∂z
∂x and q = ∂z

∂y are the first-order partial derivatives of elevation in the x and

y directions, and r = ∂2z
∂x2 , s = ∂2z

∂x∂y , and t = ∂2z
∂y2 are the corresponding second-order

partial derivatives.
4. Elevation percentile (EP) measures the relative elevation of a point within a defined neigh-

borhood, expressed as a percentile rank (0–100%) of the elevation among neighboring
values. EP helps distinguish between landforms defined by relative topography, such as
ridges, valleys, or sinkholes.

EP = 100 · |{zi ∈ Z | zi < z}|
N

(6)

Where z is the elevation at the center cell, Z is the set of elevations in the neighborhood,
zi are the individual neighboring elevations, and N is the total number of neighbors. The
numerator counts the number of neighbors with elevation less than z.

5. Standard deviation of slope (SDS) is a measure of roughness and quantifies the variability
in slope angle within a local window. SDS represents how rugged or uneven the surface
is, highlighting areas with complex topography that may correlate with diverse geologic
materials or processes.

SDS =

√√√√ 1

N

N∑
i=1

(
Si − S̄

)2
(7)

Where Si is the slope angle (in degrees or radians) of the ith cell in the neighborhood, S̄
is the mean slope within that neighborhood, and N is the total number of cells used in the
calculation window.
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Figure 6: Example patch from the Warren County area showcasing the 38 channels available in
EarthScape. Channels are displayed from top left to bottom right: target mask, RGB aerial imagery,
NIR aerial imagery, DEM, NHD hydrologic features, OSM infrastructure, six spatial scales of S,
PrC, and PlC derived from downsampled DEMs, and multiple scales of SDS and EP calculated
using six kernel sizes with the original DEM.
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Figure 7: Example patch from the Hardin County area showcasing the 38 channels available in
EarthScape. Channels are displayed from top left to bottom right: target mask, RGB aerial imagery,
NIR aerial imagery, DEM, NHD hydrologic features, OSM infrastructure, six spatial scales of S,
PrC, and PlC derived from downsampled DEMs, and multiple scales of SDS and EP calculated
using six kernel sizes with the original DEM.
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C ADDITIONAL BENCHMARK DETAILS

C.1 GEOSPATIAL PATCH SELECTION AND EXPERIMENTAL DESIGN

To ensure robust and geographically fair model evaluation, EarthScape patches were split into spa-
tially independent training, validation, and test sets. The Warren County region was used for in-
domain training and evaluation due to its broader spatial coverage and diversity of surficial geologic
units. We first randomly selected 1,536 test patches, followed by 768 validation patches that did not
spatially intersect with the test set, and then assigned the remaining 8,416 non-overlapping patches
to the training set (Fig. 8). These split sizes were chosen through iterative selection to satisfy several
practical constraints: (1) all splits had to be spatially non-overlapping; (2) patch counts needed to be
divisible by common batch sizes (e.g., 16 or 32) to support efficient model training; (3) the resulting
proportions had to be reasonably balanced and typical for supervised learning workflows (Table 5).

To assess geographic generalization, we created a cross-domain test set consisting of 1,536 ran-
domly selected patches from the Hardin County region (Fig. 8). Although geologically similar,
Hardin County is located approximately 85 km from Warren County and is spatially independent.
This separate region enables testing model performance under domain shift, simulating real-world
conditions in which models are applied beyond the area used for training.

Figure 9 shows the class distributions for each data split. All subsets reflect the inherent class
imbalance typical of surficial geologic mapping, driven by the localized nature of surface processes.
Importantly, the class distributions are consistent across the training, validation, and both test sets,
ensuring that evaluation performance is not biased by differences in class representation.

(a) Training, validation, and in-domain test patches from the Warren
County region.

(b) Cross-domain test patches from
the Hardin County region.

Figure 8: Spatial distribution of selected patches for EarthScape experiments. All splits are spatially
independent: no patch overlaps between splits, though patches within the same split may partially
overlap due to the 50% patch stride. See Figure 4 for geographic locations.

Table 5: Patch counts and split proportions for training, validation, and testing based on the total
number of patches used for in-domain training and evaluation. An additional test set from the
spatially independent Hardin County region was used to assess cross-domain generalization.

Split Region Patch Count (n) In-domain Proportion (%)

Training Warren 8,416 78.5
Validation Warren 768 7.2
In-domain Testing Warren 1,536 14.3
Cross-domain Testing Hardin 1,536 -
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Figure 9: Class distribution and intra-patch composition across EarthScape data splits. Top row: Bar
plots showing the frequency of each surficial geologic unit in the training, validation, in-domain test,
and cross-domain test sets. Bottom row: Swarm plots overlaid with box plots showing the proportion
of each patch occupied by each class. All splits display consistent patterns in both overall frequency
and within-patch composition, supporting fair evaluation across subsets.

C.2 HARDWARE, COMPUTE, AND TRAINING CONFIGURATION

All experiments were implemented in Python using the PyTorch framework. Models were trained
and evaluated on a machine equipped with an Intel Xeon processor, 128 GB of RAM, and two
NVIDIA RTX A4000 GPUs. Initial training experiments were run for 25 epochs to observe con-
vergence behavior (Fig. 10). For any single-channel configuration (e.g., DEM-only), SGMap-Net
with the ResNeXt-50 encoder contains 25.35 M trainable parameters and requires 5.56 GFLOPs per
256× 256 forward pass, while the ViT-B/16 encoder variant contains 87.51 M trainable parameters
and requires 16.87 GFLOPs. FLOPs increase slightly when multiple modalities are included, but
parameter count is invariant. Across all configurations, we found that model performance generally
stabilized within the first 10 epochs of training (Fig. 10). Based on these observations, we standard-
ized all subsequent experiments to 15 epochs, which provided a balance between sufficient training
and computational efficiency.

(a) DEM model trained for 25 epochs. Early conver-
gence is evident by epoch 10, with decreased perfor-
mance thereafter.

(b) S (5) model trained for 15 epochs, demonstrating
stable convergence and alignment between training
and validation performance.

Figure 10: Training and validation loss and accuracy curves across epochs. Each subplot shows
model loss (left panel) and accuracy (right panel) behavior for a different input modality, with train-
ing curves shown in blue and validation curves in orange.
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C.3 FOCAL LOSS

To address the significant class imbalance in EarthScape, we adopted focal loss. Initial tuning was
conducted using the validation set and DEM modality only, a ResNeXt-50 backbone, the Adam
optimizer, and a fixed learning rate of 0.001 to explore the effects of focal loss parameters. We
evaluated values of γ ∈ 1.0, 1.5, 2.0, 2.5, 3.0 and tested several strategies for the class-balancing
factor (α), including a fixed scalar (α = 0.25), inverse class frequency (ICF), square root of ICF
(
√

ICF), and class-balanced focal loss with β = 0.999 (CBFL) (Table 6). The combination of
α =

√
ICF and γ = 2.0 yielded the best performance for the DEM-only configuration. However,

when this setting was applied to other modalities, training became unstable, and convergence was
inconsistent. To ensure comparability across all experiments and isolate the effects of modality and
fusion design, we adopted the original focal loss settings (α = 0.25, γ = 2.0) for all remaining runs.

Table 6: Per-class and macro-averaged validation set F1 and AUC scores for different focal loss
configurations using the DEM modality and a ResNeXt-50 backbone. These results were used to
guide focal loss tuning, although the best-performing configuration did not generalize well across
modalities. As a result, we adopted α = 0.25, γ = 2.0 for all subsequent experiments.

α γ
F1 AUC

af1 Qal Qaf Qat Qc Qca Qr AVG. af1 Qal Qaf Qat Qc Qca Qr AVG.

0.25 1 0.743 0.848 0.267 0.436 0.899 0.778 0.968 0.706 0.861 0.862 0.907 0.923 0.967 0.923 0.937 0.911
0.25 1.5 0.726 0.855 0.250 0.354 0.914 0.751 0.968 0.688 0.866 0.874 0.915 0.884 0.964 0.909 0.932 0.906
0.25 2 0.749 0.841 0.229 0.400 0.914 0.778 0.965 0.697 0.868 0.859 0.929 0.919 0.970 0.929 0.912 0.912
0.25 2.5 0.690 0.866 0.275 0.387 0.895 0.767 0.971 0.693 0.844 0.887 0.944 0.895 0.965 0.920 0.945 0.914
0.25 3 0.709 0.851 0.267 0.323 0.890 0.772 0.970 0.683 0.853 0.863 0.895 0.890 0.962 0.925 0.924 0.902

ICF 1 0.524 0.804 0.204 0.390 0.831 0.640 0.961 0.622 0.639 0.730 0.921 0.851 0.912 0.828 0.851 0.819
ICF 2 0.596 0.805 0.286 0.314 0.839 0.687 0.961 0.641 0.731 0.737 0.934 0.828 0.916 0.854 0.869 0.838
ICF 2.5 0.589 0.799 0.267 0.326 0.843 0.671 0.962 0.637 0.711 0.716 0.923 0.838 0.919 0.842 0.848 0.828
√

ICF 1 0.696 0.845 0.286 0.348 0.879 0.763 0.965 0.683 0.843 0.867 0.912 0.905 0.955 0.925 0.922 0.904√
ICF 1.5 0.688 0.838 0.333 0.409 0.877 0.766 0.974 0.698 0.834 0.844 0.961 0.909 0.951 0.914 0.924 0.905√
ICF 2 0.726 0.841 0.444 0.460 0.905 0.749 0.962 0.727 0.850 0.853 0.945 0.931 0.961 0.921 0.913 0.911√
ICF 2.5 0.709 0.835 0.293 0.487 0.901 0.760 0.963 0.707 0.849 0.844 0.956 0.940 0.962 0.926 0.893 0.910

CBFL 1 0.720 0.831 0.412 0.427 0.893 0.733 0.973 0.713 0.864 0.839 0.965 0.903 0.962 0.902 0.924 0.908
CBFL 1.5 0.715 0.841 0.286 0.412 0.908 0.764 0.971 0.700 0.844 0.854 0.940 0.906 0.971 0.920 0.947 0.912
CBFL 2 0.727 0.866 0.357 0.455 0.914 0.792 0.965 0.725 0.867 0.890 0.918 0.923 0.971 0.921 0.914 0.915
CBFL 2.5 0.711 0.844 0.455 0.372 0.911 0.753 0.968 0.716 0.846 0.857 0.970 0.908 0.967 0.928 0.930 0.915

C.4 MAXIMUM MEAN DISCREPANCY ANALYSIS

To quantify cross-region distributional differences between Warren and Hardin, we compute the
maximum mean discrepancy (MMD) between patch-level feature distributions (Gretton et al., 2012).
Each 256×256 patch is summarized using the 10th, 25th, 50th, 75th, and 90th percentiles of pixel
intensities for the relevant modality. For multi-channel inputs, percentile features are concatenated
into a joint feature vector. Percentile vectors from both regions are pooled and scaled to [0, 1],
then compared using RBF-kernel MMD. Table 7 reports MMD values for representative modali-
ties. These values indicate measurable, modality-specific covariate shift between regions, reflecting
differences in appearance, elevation, and multi-scale terrain structure.

Table 7: MMD for selected raw inputs in EarthScape v1.0.

Modality MMD

RGB 0.3654
DEM 0.8322
EP51 0.2438
S1.5 0.0974
SDS21 0.0775
Sms 0.1549
EPms+Sms+SDSms 0.1636
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D COMPREHENSIVE RESULTS

D.1 SINGLE MODALITY

Tables 8, 9, and 10 report complete results for all single-scale, single-modality experiments, in-
cluding macro-averaged F1, AUC, precision, recall, mean average precision (mAP), and accuracy
for both the in-domain and cross-domain evaluations. Results are provided for both ResNeXt-50
and ViT-B/16 backbones. Figure 11 summarizes the top-performing single-modality configurations
across both encoders.

Across modalities, in-domain performance is relatively similar, but cross-region behavior varies
substantially. For ResNeXt-50, EP achieves the highest in-domain scores, but exhibits the largest
performance drop under domain shift, whereas S achieves slightly lower peak performance with
significantly better transferability. For ViT-B/16, S, DEM, and EP provide the strongest overall
results, and cross-region gaps are smaller and more uniform than with ResNeXt-50. These trends
indicate that ResNeXt-50 offers higher peak performance, while ViT-B/16 yields more consistent
generalization across regions.

D.2 MULTI-SCALE FUSION

Tables 11, 12, and 13 report complete results for all multi-scale, single-modality experiments for
in-domain and cross-domain evaluations of both ResNeXt-50 and ViT-B/16 backbones. Figure 11
summarizes the top-performing models across all multi-scale configurations for both encoders.

Across scales, ResNeXt-50 again achieves the highest peak in-domain performance, with EP lead-
ing overall. However, EP experiences the largest cross-region drop, whereas S and SDS retain
much more of their performance and exhibit smaller gaps than even in the single-scale setting. For
ViT-B/16, S similarly provides the strongest and most stable result, with even smaller cross-region
declines than its single-scale counterparts. ViT-B/16 also benefits noticeably from multi-scale cur-

Figure 11: In-domain (blue) and cross-domain (orange, hatched) F1 scores for the top four models
for single-modality, multi-scale fusion, and multimodal fusion experiments. Rows show compar-
isons of ResNeXt-50 (top) vs. ViT-B/16 (bottom) backbones. Each subplot shows the four best-
performing models based on in-domain F1 scores. Cross-domain bars illustrate domain shift using
the same models selected based on in-domain performance. Model configurations are shown above
each group and indicate the input modality, or modality combination and fusion strategy.
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vature inputs, with PrC emerging as a relatively strong predictor. Overall, these results indicate that
multi-scale terrain derivatives, particularly S and SDS, improve cross-region robustness, and that
backbone choice can influence which shape-based cues are most effectively leveraged.

D.3 MULTIMODAL FUSION

Tables 14, 15, and 16 report complete results for all multimodal fusion experiments for both en-
coders across in-domain and cross-domain evaluations. These experiments evaluate multiple fusion
strategies, including early channel stacking, mid-level concatenation, and mid-level attention vari-
ants. Figure 11 summarizes the top-performing multimodal configurations across both encoders.

Across modalities and fusion strategies, early channel stacking consistently performs best.
ResNeXt-50 achieves its strongest performance with the multiscale EP+S+SDS combination, which
also yields the best cross-region results of any model tested. Multimodal configurations, including
those that incorporate RGB or DEM, exhibit relatively small cross-region drops. For ViT-B/16, the
highest performance is achieved using single-scale combinations of EP+S+SDS, although cross-
region performance is slightly lower than with ResNeXt-50. Overall, multimodal fusion improves
robustness for both encoders, with stacking providing the most reliable gains.

D.4 CLASS-LEVEL TRENDS

Tables Tables 17 and 18 report class-wise AUC for all evaluated models across both in-domain
(Warren County) and cross-domain (Hardin County) test sets. Results are provided for all single-
modality, multi-scale, and multimodal fusion configurations under both ResNeXt-50 and ViT-B/16
backbones. Figure 12 summarizes the per-class AUC of the top-performing model for each back-
bone. These results complement the macro-averaged metrics presented earlier in the appendix and
provide a detailed view of class-level behavior across modalities, scales, and fusion strategies.

Across encoders and configurations, class-level trends are consistent. ResNeXt-50 performs best
on af1, Qal, Qaf, and Qat, whereas ViT-B/16 achieves higher scores on Qc, Qca, and Qr. Multi-
scale inputs improve overall performance, but maintain these differences, and multimodal fusion
significantly raises class-level scores for ResNeXt-50 while providing more modest gains for ViT-
B/16. Performance does not strictly follow class frequency: Qc and Qca perform highest, but have
moderate frequency; Qr performs modestly, but is most frequent; Qat and af1 perform modestly,
but Qat is a rare class; Qaf also performs relatively well despite its rarity; Qal remains the weakest
across all settings, but is the second most common class.

Figure 12: In-domain (solid) and cross-domain (hatched) class-wise AUC scores for the single best-
performing models across different experiment types and backbone architectures. Rows show com-
parisons of ResNeXt-50 (top) vs. ViT-B/16 (bottom) backbones. Each subplot shows the best-
performing model based on in-domain F1 scores. Cross-domain bars illustrate domain shift using
the same model selected based on in-domain performance. Model configurations are shown above
each group and indicate the input modality, or modality combination and fusion strategy.
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D.5 COMPARISONS WITH EXISTING MODELS

We conducted exploratory experiments with several recent multimodal foundation models, includ-
ing SatMAE (Cong et al., 2022), SatMAE++ (Noman et al., 2024), DOFA (Xiong et al., 2024), and
Panopticon (Waldmann et al., 2025). These models were developed for grouped multispectral or
multisensor satellite imagery and are not natively configured to handle LiDAR-derived terrain fea-
tures at multiple spatial scales. Our goal was not exhaustive hyperparameter optimization, but rather
to provide indicative baselines for how existing large-scale models perform on EarthScape. DOFA
and Panopticon are both transformer-based foundation models for multimodal Earth observation,
and were tested with native inputs of RGB+NIR. Following the grouping strategy of SatMAE and
SatMAE++, we organized EarthScape modalities into three groups: (1) RGB+DEM, (2) EP at four
scales (1.5, 6, 15, 30 m GSD), and (3) S and SDS at one scale (1.5 m GSD). This configuration in-
cluded ten modalities drawn from the strongest single-modality performers. Our experiments used
the same training, validation, and test splits.

Across all foundation models, in-domain performance was lower than that of SGMap-Net, and cross-
region degradation was substantial. SatMAE++ achieved competitive in-domain scores but dropped
sharply under domain shift, while DOFA showed relatively small cross-region gaps but had much
lower overall accuracy. Panopticon similarly underperformed across both regions. In contrast, the
multimodal SGMap-Net variant outperformed all foundation models in both absolute performance
and generalization. This indicates that architectures developed for spectral imagery are insufficient
for surface-aware tasks, and that a simple, geologically-informed model like SGMap-Net can pro-
vide markedly stronger results.
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Table 8: Macro-averaged F1 and AUC for single modality models on in-domain (ID) and cross-
domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones. ID-CD
performance differences (∆) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality F1 (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

DEM 0.632 0.527 0.105 0.618 0.512 0.237 0.883 0.730 0.153 0.857 0.620 0.237
RGB 0.599 0.394 0.205 0.579 0.332 0.267 0.815 0.557 0.258 0.793 0.526 0.267
NIR 0.613 0.468 0.145 0.579 0.275 0.274 0.815 0.650 0.166 0.784 0.509 0.274
NHD 0.515 0.434 0.081 0.492 0.428 0.064 0.659 0.576 0.083 0.496 0.509 -0.013
OSM 0.530 0.463 0.067 0.500 0.428 0.072 0.653 0.587 0.066 0.545 0.513 0.032

EP5 0.648 0.357 0.291 0.614 0.518 0.117 0.872 0.582 0.290 0.854 0.738 0.117
EP11 0.639 0.425 0.214 0.603 0.519 0.082 0.879 0.675 0.203 0.850 0.768 0.082
EP21 0.645 0.384 0.261 0.608 0.503 0.079 0.877 0.695 0.183 0.838 0.759 0.079
EP51 0.651 0.380 0.271 0.604 0.489 0.078 0.876 0.663 0.213 0.835 0.757 0.078
EP101 0.619 0.476 0.143 0.589 0.477 0.075 0.857 0.739 0.118 0.819 0.744 0.075
EP201 0.610 0.391 0.219 0.584 0.472 0.062 0.869 0.724 0.145 0.799 0.737 0.062

PlC1.5 0.491 0.425 0.066 0.517 0.452 0.013 0.514 0.513 0.001 0.603 0.590 0.013
PlC3 0.494 0.426 0.068 0.524 0.457 0.007 0.501 0.500 0.001 0.621 0.614 0.007
PlC6 0.495 0.425 0.070 0.513 0.453 0.005 0.488 0.485 0.002 0.632 0.627 0.005
PlC15 0.488 0.425 0.063 0.495 0.426 0.016 0.472 0.459 0.013 0.560 0.544 0.016
PlC30 0.488 0.420 0.068 0.484 0.422 -0.008 0.511 0.470 0.041 0.532 0.540 -0.008
PlC60 0.488 0.433 0.055 0.495 0.427 -0.039 0.474 0.528 -0.054 0.500 0.539 -0.039

PrC1.5 0.493 0.433 0.060 0.494 0.426 -0.039 0.554 0.516 0.038 0.407 0.446 -0.039
PrC3 0.492 0.421 0.071 0.497 0.425 0.023 0.486 0.520 -0.034 0.517 0.493 0.023
PrC6 0.496 0.415 0.081 0.495 0.426 -0.055 0.508 0.463 0.046 0.389 0.444 -0.055
PrC15 0.492 0.417 0.074 0.494 0.426 -0.022 0.440 0.398 0.042 0.466 0.487 -0.022
PrC30 0.510 0.418 0.092 0.540 0.431 0.035 0.553 0.491 0.062 0.613 0.578 0.035
PrC60 0.495 0.425 0.071 0.549 0.431 0.028 0.417 0.428 -0.011 0.626 0.599 0.028

S1.5 0.645 0.575 0.070 0.623 0.552 0.093 0.876 0.808 0.068 0.855 0.762 0.093
S3 0.619 0.570 0.049 0.647 0.551 0.127 0.875 0.779 0.096 0.841 0.713 0.127
S6 0.617 0.555 0.061 0.614 0.555 0.102 0.861 0.804 0.057 0.833 0.731 0.102
S15 0.612 0.537 0.075 0.600 0.554 0.081 0.841 0.744 0.096 0.812 0.731 0.081
S30 0.594 0.536 0.058 0.578 0.528 0.061 0.811 0.710 0.102 0.765 0.705 0.061
S60 0.543 0.485 0.058 0.578 0.514 0.093 0.601 0.578 0.023 0.770 0.676 0.093

SDS5 0.613 0.567 0.045 0.569 0.513 0.072 0.850 0.804 0.046 0.786 0.713 0.072
SDS11 0.631 0.575 0.056 0.599 0.543 0.080 0.846 0.786 0.061 0.803 0.723 0.080
SDS21 0.633 0.573 0.060 0.591 0.552 0.074 0.854 0.786 0.067 0.809 0.735 0.074
SDS51 0.603 0.533 0.069 0.554 0.536 0.038 0.841 0.746 0.095 0.727 0.689 0.038
SDS101 0.611 0.571 0.040 0.535 0.502 0.037 0.848 0.756 0.092 0.718 0.681 0.037
SDS201 0.613 0.527 0.086 0.548 0.508 0.064 0.837 0.713 0.124 0.735 0.671 0.064
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Table 9: Macro-averaged precision and recall for single modality models on in-domain (ID) and
cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones. ID-CD
performance differences (∆) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

DEM 0.621 0.460 0.161 0.551 0.432 0.125 0.661 0.653 0.008 0.800 0.674 0.125
RGB 0.553 0.405 0.148 0.522 0.296 0.235 0.672 0.418 0.254 0.664 0.429 0.235
NIR 0.564 0.486 0.078 0.521 0.273 0.384 0.698 0.514 0.184 0.668 0.284 0.384
NHD 0.419 0.353 0.066 0.390 0.334 0.056 0.725 0.691 0.034 0.857 0.881 -0.024
OSM 0.442 0.373 0.069 0.395 0.334 0.061 0.846 0.853 -0.007 0.971 0.949 0.022

EP5 0.617 0.450 0.167 0.556 0.452 0.112 0.706 0.333 0.373 0.733 0.621 0.112
EP11 0.602 0.474 0.128 0.552 0.449 0.060 0.748 0.428 0.320 0.690 0.631 0.060
EP21 0.629 0.455 0.173 0.548 0.435 0.089 0.737 0.416 0.321 0.706 0.617 0.089
EP51 0.612 0.382 0.230 0.565 0.440 0.087 0.705 0.389 0.316 0.664 0.577 0.087
EP101 0.570 0.480 0.090 0.539 0.421 0.102 0.727 0.551 0.176 0.674 0.572 0.102
EP201 0.593 0.465 0.127 0.520 0.425 0.092 0.634 0.364 0.270 0.707 0.615 0.092

PlC1.5 0.390 0.333 0.057 0.419 0.359 0.078 0.837 0.829 0.007 0.806 0.728 0.078
PlC3 0.391 0.333 0.059 0.432 0.370 0.119 1.000 1.000 0.000 0.871 0.752 0.119
PlC6 0.393 0.333 0.060 0.429 0.365 0.052 0.892 0.889 0.003 0.853 0.801 0.052
PlC30 0.390 0.332 0.058 0.392 0.334 -0.045 0.856 0.809 0.047 0.795 0.840 -0.045
PlC15 0.390 0.334 0.057 0.403 0.338 -0.029 0.823 0.834 -0.010 0.765 0.794 -0.029
PlC60 0.389 0.337 0.052 0.393 0.335 -0.022 0.842 0.921 -0.079 0.973 0.995 -0.022

PrC1.5 0.392 0.341 0.052 0.391 0.333 0.000 0.967 0.946 0.021 1.000 1.000 0.000
PrC3 0.394 0.335 0.059 0.406 0.336 0.000 0.819 0.853 -0.034 0.919 0.919 0.000
PrC6 0.396 0.328 0.068 0.392 0.333 -0.001 0.739 0.719 0.020 0.997 0.998 -0.001
PrC15 0.392 0.331 0.061 0.391 0.333 0.000 0.759 0.718 0.041 1.000 1.000 0.000
PrC30 0.430 0.337 0.092 0.456 0.348 0.074 0.679 0.639 0.040 0.731 0.657 0.074
PrC60 0.392 0.332 0.060 0.464 0.350 0.100 0.896 0.854 0.042 0.748 0.648 0.100

S1.5 0.616 0.506 0.110 0.578 0.489 0.051 0.681 0.687 -0.006 0.726 0.674 0.051
S3 0.590 0.507 0.084 0.614 0.490 0.041 0.654 0.662 -0.009 0.693 0.653 0.041
S6 0.592 0.497 0.095 0.553 0.491 0.072 0.670 0.671 0.001 0.791 0.720 0.072
S15 0.550 0.478 0.072 0.537 0.484 -0.027 0.749 0.664 0.085 0.774 0.801 -0.027
S30 0.523 0.464 0.059 0.508 0.464 0.054 0.744 0.679 0.065 0.717 0.663 0.054
S60 0.469 0.409 0.060 0.500 0.436 0.064 0.697 0.651 0.047 0.736 0.672 0.064

SDS5 0.580 0.487 0.093 0.518 0.435 -0.025 0.661 0.707 -0.047 0.641 0.666 -0.025
SDS11 0.596 0.499 0.097 0.545 0.460 0.084 0.689 0.698 -0.008 0.769 0.685 0.084
SDS21 0.578 0.486 0.092 0.529 0.469 -0.006 0.768 0.740 0.027 0.690 0.696 -0.006
SDS51 0.578 0.471 0.108 0.482 0.443 0.022 0.638 0.646 -0.008 0.740 0.718 0.022
SDS101 0.566 0.490 0.075 0.459 0.409 -0.009 0.775 0.716 0.058 0.710 0.719 -0.009
SDS201 0.558 0.452 0.107 0.459 0.411 0.044 0.709 0.660 0.048 0.796 0.752 0.044
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Table 10: Mean average precision (mAP) and macro-averaged accuracy for single modality models
on in-domain (ID) and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-
B/16 backbones. ID-CD performance differences (∆) are also shown. The best and second-best
scores in each column are indicated in bold and underlined, respectively.

Modality mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

DEM 0.554 0.442 0.111 0.516 0.431 0.022 0.873 0.827 0.046 0.808 0.785 0.022
RGB 0.509 0.367 0.143 0.489 0.336 0.109 0.832 0.781 0.051 0.815 0.706 0.109
NIR 0.513 0.387 0.125 0.485 0.337 0.020 0.833 0.809 0.025 0.812 0.792 0.020
NHD 0.403 0.339 0.064 0.391 0.333 0.058 0.682 0.634 0.048 0.523 0.468 0.055
OSM 0.435 0.367 0.068 0.395 0.334 0.061 0.647 0.548 0.099 0.545 0.406 0.139

EP5 0.549 0.385 0.164 0.516 0.417 0.019 0.858 0.831 0.026 0.829 0.810 0.019
EP11 0.551 0.397 0.154 0.510 0.409 0.024 0.854 0.832 0.022 0.829 0.805 0.024
EP21 0.565 0.386 0.179 0.504 0.398 0.029 0.860 0.828 0.031 0.827 0.798 0.029
EP51 0.546 0.377 0.169 0.507 0.395 0.034 0.862 0.818 0.044 0.837 0.803 0.034
EP101 0.528 0.401 0.128 0.500 0.385 0.034 0.835 0.812 0.024 0.818 0.784 0.034
EP201 0.535 0.381 0.154 0.476 0.367 0.041 0.858 0.838 0.019 0.791 0.750 0.041

PlC1.5 0.391 0.333 0.058 0.411 0.354 0.015 0.551 0.502 0.049 0.643 0.628 0.015
PlC3 0.391 0.333 0.059 0.418 0.353 0.005 0.392 0.333 0.059 0.631 0.626 0.005
PlC6 0.393 0.333 0.060 0.416 0.353 -0.001 0.494 0.452 0.043 0.617 0.619 -0.001
PlC15 0.391 0.334 0.057 0.397 0.335 0.053 0.533 0.482 0.051 0.644 0.591 0.053
PlC30 0.392 0.333 0.059 0.392 0.334 0.064 0.524 0.467 0.057 0.586 0.521 0.064
PlC60 0.390 0.335 0.055 0.393 0.335 0.062 0.525 0.471 0.054 0.456 0.395 0.062

PrC1.5 0.392 0.340 0.052 0.391 0.333 0.059 0.411 0.402 0.009 0.392 0.333 0.059
PrC3 0.393 0.332 0.060 0.400 0.334 0.051 0.527 0.466 0.061 0.452 0.401 0.051
PrC6 0.392 0.333 0.059 0.392 0.333 0.062 0.645 0.581 0.064 0.395 0.334 0.062
PrC15 0.393 0.334 0.059 0.391 0.333 0.059 0.644 0.591 0.054 0.392 0.333 0.059
PrC30 0.406 0.339 0.067 0.431 0.345 0.055 0.714 0.674 0.040 0.726 0.671 0.055
PrC60 0.392 0.333 0.059 0.433 0.345 0.045 0.510 0.463 0.047 0.723 0.677 0.045

S1.5 0.552 0.468 0.084 0.525 0.456 0.021 0.871 0.848 0.023 0.840 0.819 0.021
S3 0.543 0.472 0.071 0.542 0.465 0.025 0.867 0.852 0.015 0.850 0.825 0.025
S6 0.539 0.463 0.077 0.523 0.466 0.019 0.857 0.844 0.013 0.812 0.793 0.019
S15 0.517 0.455 0.062 0.506 0.463 0.012 0.807 0.799 0.008 0.794 0.781 0.012
S30 0.501 0.447 0.053 0.485 0.452 -0.001 0.793 0.784 0.009 0.792 0.793 -0.001
S60 0.450 0.398 0.052 0.481 0.435 0.003 0.742 0.752 -0.010 0.784 0.780 0.003

SDS5 0.527 0.459 0.068 0.484 0.420 0.011 0.853 0.833 0.020 0.820 0.809 0.011
SDS11 0.533 0.466 0.068 0.504 0.434 0.011 0.850 0.839 0.011 0.806 0.795 0.011
SDS21 0.531 0.454 0.078 0.491 0.435 0.007 0.836 0.819 0.017 0.816 0.809 0.007
SDS51 0.529 0.436 0.093 0.459 0.418 0.002 0.855 0.824 0.031 0.754 0.752 0.002
SDS101 0.525 0.461 0.064 0.448 0.400 -0.017 0.820 0.808 0.012 0.734 0.751 -0.017
SDS201 0.520 0.427 0.093 0.446 0.402 -0.019 0.834 0.805 0.030 0.710 0.729 -0.019
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Table 11: Macro-averaged F1 and AUC for multi-scale fusion models on in-domain (ID) and cross-
domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones under two
fusion strategies: early channel stacking (St) and cross-attention with a shared encoder (A1). ID–CD
performance differences (∆) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality /
Fusion

F1 (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

EPms (St) 0.640 0.425 0.215 0.566 0.458 0.108 0.862 0.717 0.145 0.756 0.693 0.063
PlCms (St) 0.490 0.426 0.063 0.493 0.429 0.063 0.525 0.521 0.004 0.511 0.536 -0.026
PrCms (St) 0.519 0.441 0.078 0.596 0.501 0.095 0.579 0.497 0.082 0.816 0.727 0.089
Sms (St) 0.637 0.594 0.043 0.593 0.533 0.061 0.864 0.804 0.061 0.798 0.705 0.093
SDSms (St) 0.636 0.588 0.048 0.619 0.571 0.048 0.878 0.792 0.086 0.672 0.644 0.028

EPms (A1) 0.494 0.426 0.068 0.561 0.445 0.117 0.500 0.500 0.000 0.759 0.664 0.095
PlCms (A1) 0.494 0.426 0.068 0.505 0.435 0.070 0.500 0.500 0.000 0.578 0.581 -0.003
PrCms (A1) 0.494 0.426 0.068 0.531 0.410 0.121 0.500 0.500 0.000 0.594 0.562 0.032
Sms (A1) 0.494 0.426 0.068 0.557 0.519 0.038 0.500 0.500 0.000 0.615 0.594 0.021
SDSms (A1) 0.493 0.451 0.042 0.494 0.426 0.068 0.618 0.618 0.001 0.500 0.500 0.000

Table 12: Macro-averaged precision and recall for multi-scale fusion models on in-domain (ID)
and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under two fusion strategies: early channel stacking (St) and cross-attention with a shared encoder
(A1). ID–CD performance differences (∆) are also shown. The best and second-best scores in each
column are indicated in bold and underlined, respectively.

Modality /
Fusion

Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

EPms (St) 0.606 0.556 0.051 0.493 0.380 0.112 0.703 0.426 0.277 0.712 0.636 0.076
PlCms (St) 0.391 0.335 0.056 0.391 0.335 0.056 0.738 0.738 0.000 0.872 0.940 -0.067
PrCms (St) 0.429 0.353 0.076 0.530 0.435 0.095 0.697 0.694 0.003 0.743 0.642 0.101
Sms (St) 0.607 0.535 0.072 0.525 0.455 0.070 0.730 0.682 0.047 0.714 0.681 0.033
SDSms (St) 0.588 0.509 0.079 0.575 0.472 0.103 0.742 0.729 0.013 0.675 0.674 0.001

EPms (A1) 0.391 0.333 0.059 0.483 0.375 0.108 1.000 1.000 0.000 0.700 0.612 0.088
PlCms (A1) 0.391 0.333 0.059 0.405 0.341 0.064 1.000 1.000 0.000 0.874 0.868 0.006
PrCms (A1) 0.391 0.333 0.059 0.431 0.325 0.106 1.000 1.000 0.000 0.738 0.678 0.060
Sms (A1) 0.391 0.333 0.058 0.489 0.440 0.049 1.000 1.000 0.000 0.745 0.688 0.057
SDSms (A1) 0.432 0.380 0.052 0.391 0.332 0.057 0.801 0.748 0.053 1.000 1.000 0.000

Table 13: Mean average precision (mAP) and macro-averaged accuracy for multi-scale fusion mod-
els on in-domain (ID) and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and
ViT-B/16 backbones under two fusion strategies: early channel stacking (St) and cross-attention
with a shared encoder (A1). ID–CD performance differences (∆) are also shown. The best and
second-best scores in each column are indicated in bold and underlined, respectively.

Modality /
Fusion

mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

EPms (St) 0.555 0.403 0.152 0.460 0.360 0.099 0.865 0.828 0.037 0.774 0.724 0.050
PlCms (St) 0.392 0.335 0.057 0.392 0.335 0.057 0.634 0.588 0.046 0.534 0.465 0.069
PrCms (St) 0.416 0.348 0.069 0.504 0.423 0.081 0.717 0.666 0.051 0.794 0.768 0.027
Sms (St) 0.557 0.491 0.066 0.498 0.453 0.045 0.856 0.860 -0.004 0.810 0.803 0.006
SDSms (St) 0.540 0.470 0.070 0.522 0.447 0.075 0.846 0.839 0.007 0.851 0.826 0.025

EPms (A1) 0.391 0.333 0.059 0.450 0.362 0.088 0.391 0.333 0.059 0.766 0.727 0.039
PlCms (A1) 0.391 0.333 0.059 0.401 0.338 0.062 0.391 0.333 0.059 0.598 0.541 0.057
PrCms (A1) 0.391 0.333 0.059 0.407 0.333 0.074 0.391 0.333 0.059 0.691 0.625 0.065
Sms (A1) 0.391 0.333 0.058 0.472 0.434 0.038 0.391 0.333 0.059 0.742 0.747 -0.005
SDSms (A1) 0.416 0.357 0.059 0.391 0.333 0.058 0.630 0.666 -0.036 0.391 0.333 0.058
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Table 14: Macro-averaged F1 and AUC for multimodal fusion models on in-domain (ID) and cross-
domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones under four
fusion strategies: early channel stacking (St), concatenation of modality embeddings (C), cross-
attention with a shared encoder (A1), and cross-attention with separate encoders (A2). ID–CD
performance differences (∆) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality / Fusion F1 (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

EPms+Sms+SDSms (St) 0.657 0.598 0.059 0.621 0.569 0.053 0.882 0.806 0.076 0.860 0.774 0.086
EP5+S1.5+SDS5 (St) 0.641 0.568 0.073 0.657 0.566 0.092 0.848 0.812 0.036 0.712 0.664 0.048
EP201+S60+SDS201 (St) 0.626 0.582 0.045 0.622 0.544 0.078 0.885 0.812 0.073 0.695 0.631 0.064

EPms+Sms+SDSms (C) 0.596 0.569 0.028 0.613 0.532 0.081 0.829 0.750 0.079 0.686 0.622 0.064
RGB+DEM (C) 0.600 0.389 0.211 0.614 0.503 0.111 0.808 0.535 0.273 0.870 0.721 0.149
RGB+DEM+EPms+Sms+SDSms (C) 0.618 0.543 0.074 0.621 0.528 0.093 0.858 0.739 0.118 0.735 0.615 0.120

EPms+Sms+SDSms (A1) 0.561 0.532 0.029 0.567 0.538 0.029 0.677 0.707 -0.030 0.776 0.678 0.098
RGB+DEM (A1) 0.551 0.457 0.094 0.575 0.404 0.171 0.714 0.552 0.163 0.787 0.622 0.165

EPms+Sms+SDSms (A2) 0.561 0.532 0.029 0.496 0.425 0.071 0.677 0.707 -0.030 0.523 0.480 0.043
RGB+DEM (A2) 0.559 0.474 0.085 0.581 0.464 0.118 0.763 0.641 0.122 0.810 0.724 0.085
RGB+DEM+EPms+Sms+SDSms (A2) 0.494 0.426 0.068 0.520 0.457 0.063 0.500 0.500 0.000 0.572 0.511 0.061

Table 15: Macro-averaged precision and recall for multimodal fusion models on in-domain (ID)
and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under four fusion strategies: early channel stacking (St), concatenation of modality embeddings (C),
cross-attention with a shared encoder (A1), and cross-attention with separate encoders (A2). ID–CD
performance differences (∆) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Modality / Fusion Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

EPms+Sms+SDSms (St) 0.626 0.546 0.080 0.568 0.491 0.077 0.735 0.666 0.068 0.761 0.711 0.050
EP5+S1.5+SDS5 (St) 0.606 0.531 0.074 0.604 0.482 0.122 0.697 0.623 0.074 0.731 0.708 0.023
EP201+S60+SDS201 (St) 0.588 0.529 0.059 0.579 0.499 0.080 0.721 0.674 0.048 0.686 0.610 0.076

EPms+Sms+SDSms (C) 0.542 0.529 0.013 0.541 0.456 0.085 0.694 0.640 0.054 0.752 0.671 0.081
RGB+DEM (C) 0.537 0.373 0.163 0.558 0.420 0.137 0.715 0.437 0.278 0.706 0.661 0.045
RGB+DEM+EPms+Sms+SDSms (C) 0.563 0.496 0.067 0.574 0.485 0.090 0.740 0.644 0.096 0.621 0.622 -0.001
EPms+Sms+SDSms (A1) 0.487 0.451 0.036 0.507 0.466 0.041 0.734 0.723 0.011 0.752 0.693 0.059
RGB+DEM (A1) 0.495 0.445 0.050 0.515 0.387 0.129 0.647 0.555 0.092 0.686 0.582 0.105

EPms+Sms+SDSms (A2) 0.487 0.451 0.036 0.392 0.332 0.060 0.734 0.723 0.011 0.984 0.889 0.095
RGB+DEM (A2) 0.498 0.411 0.087 0.513 0.434 0.079 0.656 0.595 0.061 0.720 0.607 0.113
RGB+DEM+EPms+Sms+SDSms (A2) 0.391 0.333 0.059 0.448 0.420 0.028 1.000 1.000 0.000 0.873 0.689 0.184

Table 16: Mean average precision (mAP) and macro-averaged accuracy for multimodal fusion mod-
els on in-domain (ID) and cross-domain (CD) test sets. Results are reported for ResNeXt-50 and
ViT-B/16 backbones under four fusion strategies: early channel stacking (St), concatenation of
modality embeddings (C), cross-attention with a shared encoder (A1), and cross-attention with sep-
arate encoders (A2). ID–CD performance differences (∆) are also shown. The best and second-best
scores in each column are indicated in bold and underlined, respectively.

Modality / Fusion mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)

ID CD ∆ ID CD ∆ ID CD ∆ ID CD ∆

EPms+Sms+SDSms (St) 0.571 0.495 0.076 0.534 0.463 0.070 0.875 0.867 0.008 0.834 0.823 0.011
EP5+S1.5+SDS5 (St) 0.551 0.471 0.080 0.540 0.461 0.079 0.865 0.856 0.009 0.712 0.664 0.048
EP201+S60+SDS201 (St) 0.552 0.480 0.072 0.532 0.468 0.064 0.858 0.852 0.006 0.851 0.840 0.011

EPms+Sms+SDSms (C) 0.505 0.451 0.053 0.508 0.450 0.058 0.822 0.836 -0.015 0.817 0.806 0.011
RGB+DEM (C) 0.495 0.360 0.135 0.524 0.415 0.109 0.815 0.809 0.007 0.838 0.796 0.042
RGB+DEM+EPms+Sms+SDSms (C) 0.525 0.458 0.067 0.537 0.449 0.088 0.833 0.805 0.028 0.827 0.824 0.003

EPms+Sms+SDSms (A1) 0.474 0.442 0.033 0.488 0.456 0.032 0.747 0.758 -0.011 0.750 0.752 -0.002
RGB+DEM (A1) 0.459 0.389 0.070 0.478 0.360 0.118 0.784 0.776 0.008 0.799 0.745 0.054

EPms+Sms+SDSms (A2) 0.474 0.442 0.033 0.392 0.333 0.059 0.747 0.758 -0.011 0.452 0.402 0.050
RGB+DEM (A2) 0.464 0.389 0.075 0.486 0.388 0.098 0.795 0.793 0.002 0.795 0.775 0.020
RGB+DEM+EPms+Sms+SDSms (A2) 0.391 0.333 0.059 0.422 0.368 0.054 0.391 0.333 0.059 0.603 0.620 -0.017
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Table 17: Class-wise AUC scores for in-domain performance across single-modality, multi-scale fu-
sion, and multimodal fusion models. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under four fusion strategies: early channel stacking (St), concatenation of modality embeddings (C),
cross-attention with a shared encoder (A1), and cross-attention with separate encoders (A2). The
best and second-best scores in each column are indicated in bold and underlined, respectively.

Modality / Fusion ResNeXt ViT

af1 Qal Qaf Qat Qc Qca Qr af1 Qal Qaf Qat Qc Qca Qr

DEM 0.845 0.832 0.820 0.887 0.964 0.922 0.910 0.663 0.771 0.926 0.871 0.956 0.923 0.888
RGB 0.834 0.713 0.684 0.815 0.912 0.857 0.886 0.816 0.679 0.744 0.780 0.891 0.834 0.805
NIR 0.816 0.698 0.782 0.793 0.907 0.866 0.842 0.760 0.664 0.797 0.799 0.886 0.816 0.763
NHD 0.549 0.655 0.682 0.782 0.618 0.630 0.697 0.497 0.571 0.441 0.354 0.506 0.502 0.505
OSM 0.807 0.586 0.702 0.586 0.708 0.627 0.557 0.505 0.484 0.693 0.606 0.5 0.513 0.487
EP5 0.837 0.805 0.845 0.845 0.947 0.905 0.920 0.791 0.783 0.838 0.865 0.914 0.885 0.903
EP11 0.868 0.816 0.833 0.888 0.936 0.905 0.902 0.778 0.781 0.834 0.882 0.891 0.889 0.898
EP21 0.856 0.807 0.842 0.883 0.945 0.908 0.900 0.783 0.776 0.799 0.858 0.888 0.885 0.880
EP51 0.860 0.825 0.827 0.870 0.921 0.906 0.924 0.794 0.766 0.791 0.858 0.877 0.888 0.870
EP101 0.853 0.806 0.759 0.886 0.904 0.904 0.890 0.757 0.751 0.758 0.860 0.850 0.884 0.874
EP201 0.846 0.812 0.844 0.879 0.901 0.894 0.904 0.734 0.750 0.756 0.830 0.789 0.872 0.864
PlC1.5 0.440 0.491 0.610 0.515 0.513 0.514 0.516 0.438 0.509 0.719 0.610 0.575 0.725 0.645
PlC3 0.501 0.501 0.500 0.500 0.501 0.501 0.500 0.445 0.494 0.769 0.675 0.499 0.773 0.689
PlC6 0.459 0.516 0.491 0.497 0.455 0.505 0.490 0.451 0.478 0.746 0.712 0.668 0.719 0.649
PlC15 0.526 0.505 0.362 0.387 0.547 0.476 0.500 0.466 0.523 0.655 0.620 0.578 0.575 0.505
PlC30 0.517 0.490 0.604 0.473 0.501 0.524 0.465 0.469 0.567 0.650 0.515 0.531 0.529 0.465
PlC60 0.462 0.413 0.617 0.414 0.479 0.494 0.439 0.461 0.627 0.620 0.382 0.524 0.482 0.402
PrC1.5 0.465 0.566 0.569 0.473 0.564 0.516 0.724 0.444 0.545 0.546 0.236 0.501 0.347 0.233
PrC3 0.549 0.555 0.324 0.537 0.341 0.554 0.539 0.545 0.501 0.630 0.400 0.420 0.613 0.508
PrC6 0.526 0.494 0.445 0.503 0.472 0.539 0.579 0.493 0.602 0.487 0.190 0.541 0.224 0.186
PrC15 0.443 0.423 0.602 0.522 0.145 0.377 0.567 0.501 0.429 0.477 0.378 0.501 0.499 0.476
PrC30 0.515 0.432 0.465 0.608 0.530 0.681 0.640 0.501 0.341 0.523 0.845 0.512 0.738 0.833
PrC60 0.482 0.499 0.494 0.244 0.473 0.474 0.253 0.511 0.326 0.558 0.859 0.601 0.682 0.846
S1.5 0.863 0.800 0.813 0.870 0.968 0.905 0.910 0.794 0.748 0.853 0.854 0.974 0.900 0.864
S3 0.816 0.805 0.840 0.870 0.971 0.915 0.908 0.770 0.759 0.772 0.829 0.975 0.910 0.868
S6 0.778 0.809 0.764 0.877 0.974 0.921 0.905 0.718 0.765 0.809 0.853 0.975 0.910 0.803
S15 0.648 0.788 0.842 0.873 0.966 0.926 0.842 0.641 0.750 0.826 0.796 0.974 0.908 0.789
S30 0.619 0.750 0.803 0.831 0.957 0.912 0.807 0.623 0.707 0.791 0.725 0.947 0.869 0.696
S60 0.416 0.535 0.681 0.595 0.838 0.815 0.324 0.626 0.666 0.818 0.750 0.909 0.880 0.738
SDS5 0.855 0.733 0.789 0.860 0.944 0.890 0.883 0.772 0.665 0.800 0.757 0.921 0.833 0.751
SDS11 0.839 0.751 0.774 0.866 0.946 0.877 0.871 0.792 0.671 0.817 0.757 0.933 0.853 0.800
SDS21 0.842 0.750 0.842 0.841 0.953 0.889 0.860 0.769 0.685 0.853 0.767 0.934 0.837 0.816
SDS51 0.832 0.719 0.851 0.800 0.951 0.883 0.852 0.675 0.620 0.777 0.684 0.889 0.759 0.689
SDS101 0.814 0.732 0.860 0.813 0.964 0.882 0.874 0.659 0.608 0.804 0.659 0.891 0.751 0.655
SDS201 0.802 0.679 0.812 0.833 0.967 0.897 0.870 0.633 0.605 0.855 0.666 0.913 0.741 0.729

EPms (St) 0.823 0.824 0.734 0.878 0.945 0.911 0.917 0.823 0.824 0.734 0.878 0.945 0.911 0.917
PlCms (St) 0.504 0.500 0.641 0.501 0.514 0.500 0.514 0.504 0.500 0.641 0.501 0.514 0.500 0.514
PrCms (St) 0.494 0.653 0.567 0.721 0.628 0.791 0.201 0.494 0.653 0.567 0.721 0.628 0.791 0.201
Sms (St) 0.863 0.787 0.760 0.870 0.962 0.911 0.900 0.863 0.787 0.760 0.870 0.962 0.911 0.900
SDSms (St) 0.839 0.766 0.917 0.876 0.964 0.898 0.889 0.839 0.766 0.917 0.876 0.964 0.898 0.889
EPms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PlCms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PrCms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Sms (A1) 0.499 0.501 0.500 0.500 0.501 0.499 0.500 0.499 0.501 0.500 0.500 0.501 0.499 0.500
SDSms (A1) 0.552 0.576 0.801 0.602 0.679 0.540 0.580 0.552 0.576 0.801 0.602 0.679 0.540 0.580

EPms+Sms+SDSms (St) 0.866 0.840 0.790 0.858 0.975 0.913 0.933 0.780 0.772 0.864 0.847 0.976 0.890 0.890
EP5+S1.5+SDS5 (St) 0.845 0.797 0.712 0.829 0.964 0.904 0.886 0.837 0.803 0.858 0.884 0.974 0.912 0.901
EP201+S60+SDS201 (St) 0.846 0.802 0.840 0.903 0.961 0.911 0.933 0.752 0.799 0.848 0.856 0.967 0.937 0.905
EPms+Sms+SDSms (C) 0.723 0.802 0.746 0.809 0.959 0.879 0.885 0.728 0.720 0.871 0.816 0.969 0.890 0.898
RGB+DEM (C) 0.821 0.708 0.804 0.803 0.871 0.845 0.803 0.800 0.756 0.874 0.899 0.949 0.901 0.911
RGB+DEM+EPms+
Sms+SDSms (C)

0.837 0.774 0.842 0.827 0.963 0.899 0.860 0.746 0.755 0.875 0.878 0.975 0.910 0.921

EPms+Sms+SDSms (A1) 0.486 0.575 0.726 0.641 0.930 0.784 0.599 0.698 0.623 0.831 0.660 0.961 0.879 0.785
RGB+DEM (A1) 0.687 0.476 0.747 0.762 0.837 0.801 0.692 0.711 0.629 0.813 0.815 0.886 0.842 0.811
EPms+Sms+SDSms (A2) 0.486 0.575 0.726 0.641 0.930 0.784 0.599 0.500 0.500 0.623 0.534 0.500 0.500 0.494
RGB+DEM (A2) 0.752 0.617 0.780 0.816 0.825 0.786 0.764 0.704 0.692 0.856 0.806 0.930 0.841 0.839
RGB+DEM+EPms+
Sms+SDSms (A2)

0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.501 0.477 0.768 0.557 0.499 0.753 0.626
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Table 18: Class-wise AUC for cross-domain performance across single-modality, multi-scale fusion,
and multimodal fusion models. Results are reported for ResNeXt-50 and ViT-B/16 backbones under
four fusion strategies: early channel stacking (St), concatenation of modality embeddings (C), cross-
attention with a shared encoder (A1), and cross-attention with separate encoders (A2). Best and
second-best scores in each column are indicated in bold and underlined, respectively.

Modality / Fusion ResNeXt ViT

af1 Qal Qaf Qat Qc Qca Qr af1 Qal Qaf Qat Qc Qca Qr

DEM 0.804 0.613 0.612 0.472 0.969 0.907 0.733 0.587 0.549 0.379 0.210 0.958 0.947 0.710
RGB 0.757 0.576 0.403 0.486 0.654 0.515 0.507 0.575 0.527 0.782 0.650 0.270 0.381 0.494
NIR 0.733 0.519 0.490 0.550 0.703 0.824 0.727 0.502 0.578 0.474 0.641 0.466 0.348 0.554
NHD 0.556 0.642 0.630 0.722 0.485 0.494 0.504 0.494 0.506 0.538 0.498 0.516 0.510 0.618
OSM 0.833 0.518 0.479 0.572 0.624 0.586 0.496 0.503 0.5 0.543 0.553 0.5 0.505 0.584
EP5 0.769 0.635 0.782 0.847 0.291 0.352 0.399 0.764 0.651 0.626 0.622 0.860 0.882 0.757
EP11 0.790 0.687 0.801 0.763 0.463 0.563 0.662 0.763 0.698 0.734 0.667 0.807 0.870 0.840
EP21 0.818 0.700 0.846 0.746 0.392 0.668 0.694 0.778 0.696 0.725 0.662 0.817 0.842 0.796
EP51 0.821 0.676 0.769 0.778 0.409 0.519 0.672 0.779 0.633 0.798 0.684 0.771 0.851 0.786
EP101 0.851 0.716 0.726 0.769 0.621 0.748 0.742 0.745 0.633 0.815 0.629 0.759 0.842 0.789
EP201 0.786 0.737 0.805 0.752 0.573 0.697 0.717 0.698 0.676 0.821 0.729 0.718 0.818 0.701
PlC1.5 0.492 0.501 0.599 0.548 0.487 0.509 0.453 0.514 0.340 0.650 0.518 0.561 0.792 0.752
PlC3 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.511 0.305 0.733 0.638 0.500 0.791 0.819
PlC6 0.517 0.480 0.529 0.478 0.474 0.492 0.426 0.530 0.304 0.758 0.701 0.627 0.703 0.766
PlC15 0.511 0.464 0.275 0.397 0.557 0.497 0.511 0.517 0.470 0.711 0.600 0.537 0.532 0.442
PlC30 0.513 0.514 0.324 0.516 0.497 0.472 0.454 0.517 0.527 0.809 0.512 0.536 0.527 0.349
PlC60 0.510 0.472 0.899 0.537 0.465 0.503 0.311 0.501 0.562 0.831 0.515 0.554 0.523 0.285
PrC1.5 0.426 0.559 0.263 0.418 0.679 0.710 0.559 0.412 0.633 0.219 0.362 0.500 0.592 0.404
PrC3 0.597 0.379 0.797 0.612 0.277 0.363 0.614 0.574 0.508 0.507 0.448 0.372 0.539 0.505
PrC6 0.498 0.490 0.408 0.414 0.478 0.491 0.459 0.417 0.644 0.348 0.468 0.584 0.393 0.256
PrC15 0.493 0.493 0.426 0.551 0.136 0.248 0.438 0.500 0.458 0.476 0.496 0.500 0.500 0.482
PrC30 0.506 0.448 0.150 0.505 0.552 0.631 0.646 0.532 0.428 0.566 0.528 0.463 0.664 0.867
PrC60 0.467 0.543 0.464 0.435 0.431 0.429 0.225 0.534 0.424 0.569 0.574 0.573 0.612 0.905
S1.5 0.863 0.737 0.611 0.754 0.975 0.915 0.801 0.759 0.579 0.646 0.667 0.981 0.923 0.778
S3 0.781 0.731 0.531 0.696 0.976 0.922 0.815 0.683 0.563 0.528 0.530 0.981 0.937 0.772
S6 0.713 0.704 0.889 0.706 0.976 0.924 0.717 0.621 0.569 0.786 0.708 0.981 0.941 0.509
S15 0.625 0.619 0.674 0.665 0.974 0.936 0.718 0.529 0.551 0.964 0.477 0.971 0.952 0.673
S30 0.550 0.549 0.746 0.537 0.965 0.945 0.675 0.533 0.559 0.704 0.372 0.945 0.959 0.859
S60 0.467 0.545 0.541 0.365 0.802 0.890 0.435 0.524 0.533 0.607 0.348 0.919 0.962 0.842
SDS5 0.858 0.637 0.805 0.737 0.963 0.886 0.744 0.776 0.561 0.503 0.593 0.958 0.864 0.739
SDS11 0.861 0.671 0.587 0.701 0.971 0.905 0.804 0.762 0.538 0.556 0.631 0.957 0.863 0.753
SDS21 0.838 0.673 0.749 0.794 0.969 0.869 0.613 0.741 0.543 0.658 0.694 0.952 0.853 0.704
SDS51 0.822 0.649 0.608 0.605 0.959 0.834 0.749 0.670 0.515 0.511 0.673 0.943 0.824 0.686
SDS101 0.809 0.611 0.443 0.788 0.960 0.886 0.795 0.656 0.474 0.491 0.644 0.954 0.871 0.677
SDS201 0.752 0.579 0.503 0.645 0.964 0.804 0.744 0.641 0.479 0.477 0.640 0.942 0.870 0.647

EPms (St) 0.769 0.722 0.828 0.722 0.603 0.701 0.671 0.769 0.722 0.828 0.722 0.603 0.701 0.671
PlCms (St) 0.479 0.524 0.603 0.489 0.553 0.567 0.432 0.479 0.524 0.603 0.489 0.553 0.567 0.432
PrCms (St) 0.496 0.567 0.301 0.440 0.687 0.788 0.202 0.496 0.567 0.301 0.440 0.687 0.788 0.202
Sms (St) 0.881 0.711 0.643 0.741 0.977 0.915 0.759 0.881 0.711 0.643 0.741 0.977 0.915 0.759
SDSms (St) 0.843 0.679 0.629 0.762 0.966 0.889 0.777 0.843 0.679 0.629 0.762 0.966 0.889 0.777
EPms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PlCms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PrCms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Sms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
SDS (A1) 0.558 0.592 0.699 0.679 0.626 0.602 0.568 0.558 0.592 0.699 0.679 0.626 0.602 0.568

EPms+Sms+SDSms (St) 0.857 0.760 0.612 0.736 0.972 0.914 0.792 0.734 0.586 0.740 0.650 0.982 0.922 0.805
EP5+S1.5+SDS5 (St) 0.860 0.638 0.735 0.760 0.960 0.899 0.833 0.848 0.683 0.685 0.697 0.980 0.922 0.803
EP201+S60+SDS201 (St) 0.859 0.717 0.699 0.685 0.962 0.911 0.855 0.657 0.587 0.748 0.646 0.976 0.962 0.879
EPms+Sms+SDSms (C) 0.701 0.693 0.498 0.689 0.962 0.902 0.804 0.679 0.577 0.633 0.582 0.973 0.938 0.765
RGB+DEM (C) 0.788 0.460 0.173 0.406 0.661 0.621 0.635 0.752 0.554 0.545 0.611 0.930 0.923 0.732
RGB+DEM+EPms+
Sms+SDSms (C)

0.841 0.644 0.452 0.493 0.964 0.946 0.833 0.660 0.540 0.687 0.594 0.965 0.933 0.825

EPms+Sms+SDSms (A1) 0.555 0.525 0.674 0.552 0.921 0.907 0.816 0.653 0.483 0.500 0.377 0.973 0.955 0.805
RGB+DEM (A1) 0.708 0.527 0.274 0.130 0.836 0.740 0.647 0.671 0.513 0.271 0.548 0.916 0.901 0.531
EPms+Sms+SDSms (A2) 0.555 0.525 0.674 0.552 0.921 0.907 0.816 0.500 0.500 0.362 0.497 0.500 0.500 0.505
RGB+DEM (A2) 0.743 0.482 0.325 0.499 0.905 0.835 0.695 0.688 0.498 0.695 0.676 0.941 0.894 0.677
RGB+DEM+EPms+
Sms+SDSms (A2)

0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.515 0.451 0.250 0.350 0.500 0.860 0.670
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