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ABSTRACT

Surficial geologic (SG) maps are critical for understanding Earth surface pro-
cesses, supporting infrastructure planning, and addressing challenges related to
climate change and natural hazards. Current workflows are labor-intensive, sub-
jective, and difficult to scale. We introduce EarthScape, an Al-ready multi-
modal dataset for advancing SG mapping and surface-aware geospatial learning.
EarthScape integrates digital elevation models, aerial imagery, multi-scale terrain
derivatives, and vector data for hydrologic and infrastructure features. We provide
an end-to-end processing pipeline for reproducibility and report baseline bench-
marks across single-modality, multi-scale, and multimodal configurations. Re-
sults show that terrain-derived features are highly predictive and that generaliza-
tion across geologically diverse regions remains a key open challenge, positioning
EarthScape as a benchmark for multimodal fusion and domain adaptation.

1 INTRODUCTION

Surficial geologic (SG) maps depict the spatial distribution of mostly unconsolidated materials on
the Earth’s surface (Compton, |1985). These maps are essential to address a range of contemporary
challenges, such as supporting economic and national security interests in critical mineral resources
(Brimhall et al., 2005}, |Schulz, [2017), informing mitigation and response planning for geologic haz-
ards (Alcantara-Ayalal [2002; Van Westen et al., 2003), and providing a foundation on which to
understand climate change (Anderson & Ferreel 2010). SG maps are also relevant to more practical
applications like urban land use planning (Dai et al.| 2001} [Hokanson et al.,[2019) and engineering
projects (Keaton, 2013). Despite the demonstrable social benefit and scientific merit (Bernknopf],
1993)), detailed SG maps cover less than 14% of the United States (U.S. Geological Survey, [2025),
and coverage is even more limited globally.

The modern SG mapping workflow relies on manual fieldwork coupled with visual interpretation
of remote sensing (RS) imagery (Compton, |1985; [Lisle et al.,2011). Because SG maps depend on
expert interpretation and annotation, they often reflect subjective judgment rather than reproducible
criteria. Moreover, financial costs are prohibitive, with one standard 1:24k-scale map estimated at
$123k (Berg, 2025). These limitations highlight the need for scalable, automated approaches.

Advancements in deep learning and the proliferation of RS imagery present an opportunity to trans-
form SG mapping and overcome current limitations. Recent studies have demonstrated the potential
of deep learning to identify or segment geologic hazards such as landslides (Prakash et al., 2021}
Wang et al., 2021} |Liu et al.l [2023)) and sinkholes (Rafique et al., [2022)), and a few have extended
these ideas to mapping multiple classes of geologic materials (Behrens et al.l 2018} |Latifovic et al.,
2018; Wang et al., 2021} [Liu et al., [2024b). While these works highlight the promise of computer
vision (CV), they remain constrained by narrow scope, limited modality integration, and the absence
of standardized benchmarks. Addressing these limitations requires methods that connect directly to
ongoing advances in multimodal and multi-scale CV.

The challenges of SG mapping align closely with current directions in CV. Multimodal fusion of
heterogeneous inputs is required to capture features invisible to any single modality (Baltrusaitis
et al., 2018} [Steyaert et al., 2023} [Li & Wu, 2024). Strong spatial dependencies make it a natural
testbed for attention mechanisms and multi-scale architectures (Dosovitskiyl 2020; Niu et al., 2021}
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Fan et al., 2021} [Hassanin et al} [2024; [Liu et al.| 2024al)), while extreme class imbalance and geo-
graphic variability mirror open challenges in long-tail learning and domain adaptation (Lin, 2017}
Ghosh et al, 2024). Beyond SG mapping, surface morphology is an underutilized signal across
domains such as medical imaging where shape descriptors from CT or MRI improve disease pre-
diction (Van Timmeren et al.,[2020), autonomous navigation where terrain interpretation guides safe
decision-making (Meng et al.,[2023), and RS where benchmarks often underemphasize topography
(Wang et al., 2025)). SG mapping is not just a niche application but a challenging benchmark for
multimodal, surface-aware learning.

The rapid progress in CV has been driven by the availability of large-scale, standardized datasets.
General-purpose benchmarks such as ImageNet (Deng et al., 2009) and COCO (Lin et al.| [2014)
have catalyzed advances in classification, detection, and segmentation by offering vast repositories
of labeled imagery and clear evaluation protocols. However, performance on real-world, domain-
specific tasks often plateaus without datasets that reflect their unique characteristics, sensing modal-
ities, and physical constraints. In the geospatial domain, several specialized datasets have emerged
for land cover classification and urban scene analysis (Schmitt et al., 2019} |Cordts et al.| 2016
Demir et al.| 2018; [Van Etten et al., |2018; Sumbul et all 2019), but these are primarily focused
on anthropogenic features and land use. Several geologic datasets have been introduced for land-
slide classification and segmentation (Ji et al.,|2020), earthquake detection (Rege Cambrin & Garza,
2024), and flood mapping (Montello et al.| |2022). While valuable, these resources focus on discrete
events, leaving a critical gap in datasets tailored to continuous materials and landforms.

EarthScape is a multimodal dataset developed for SG mapping, with applicability to other surface-
aware domains. It integrates publicly available RGB and near-infrared (NIR) imagery, digital eleva-
tion models (DEMs), DEM-derived shape-centric features computed at multiple scales, and trans-
portation and hydrological networks from vector geographic information system (GIS) sources. This
design captures the complexity of geologic processes and provides a robust benchmark for advancing
multimodal learning, geospatial vision, and geological analysis. Our contributions are as follows:

e We present EarthScape, the first Al-ready, multimodal, multi-scale benchmark dataset
specifically designed for SG mapping, developed as a living resource with broader ap-
plicability to surface analysis.

* EarthScape integrates vector GIS, imagery, elevation, and DEM-derived shape features
across scales, explicitly capturing challenges of class imbalance, geographic heterogeneity,
and surface morphology that make it an unusually challenging benchmark.

* We establish reproducible baselines across unimodal, multi-scale, and multimodal config-
urations, enabling systematic evaluation of fusion strategies, cross-region generalization,
and future extensible research on Earth surface analysis.

2 RELATED WORK

SG Mapping with Machine Learning: SG mapping focuses on unconsolidated materials formed
by active surface processes such as weathering, erosion, sediment transport, and deposition (Comp-
ton| [1985). These materials are closely tied to landform structure and surface morphology, as ter-
rain shape governs the energy available to drive these processes and influences the way sediments
are generated, transported, and deposited (Odeh et al.| [1991}; |Schomberg et al., |2005}; |Brigham &
Crider;, |2022). Several studies have leveraged this terrain-geologic material relationship using tradi-
tional methods such as logistic regression, random forests, and support vector machines for classi-
fication or segmentation of binary hazards (e.g., landslides, sinkholes) (Kirkwood et al., 2016} Zhu
& Pierskalla Jr, 2016} |Crawford et al.| |2021) or SG maps (Cracknell & Reading|, [2014; Johnson
& Haneberg, 2025). However, these approaches depend on hand-crafted features, are restricted to
small geographic extents, and fail to generalize beyond the training region. More recently, deep
learning methods using convolutional neural networks (CNNs) and CNN-Transformer hybrids have
been applied to related tasks (Prakash et al.| 2021} J1 et al., [2020; Liu et al., 2023}, [Latifovic et al.,
2018 Zhou et all 2023} [Rafique et al., 2022)). While these models better capture spatial depen-
dencies critical to geologic interpretation (Bishop et al., 1998} Behrens et al.l 2018)), they remain
site-specific, lack standardized datasets, and rely on limited input modalities.
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Figure 1: EarthScape data processing pipeline (left) and selected modalities from a single 256 x 256
patch (right). The SG map is rasterized and used to define the area of interest (AOI), from which
all predictive features (DEM, RGB+NIR imagery, NHD hydrology, and OSM infrastructure) are
clipped and aligned. Terrain derivatives are then computed from the DEM at multiple spatial scales.
A regular grid is applied to extract 38 co-registered channels per patch. See Supp. [A.2.4]and Figures
[5and [6] for additional examples.

Multimodal Learning for Geologic Tasks: Multimodal learning has become a central paradigm
in RS and geospatial CV, where combining diverse data sources such as optical imagery, SAR,
and DEMs can enhance model robustness through complementary information (Astruc et all, 2024}
Bi et al [2022; [Jain et al [2022; [Han et all, [2024). In geological applications, this has often meant
pairing overhead RGB imagery with DEMs, fused using early- or mid-level strategies (Prakash et al.]
2021}, [Ji et all, [2020; [Liu et al.| 2023}, [Latifovic et al.}, 2018}, [Zhou et all, [2023}; [Rafique et al.,[2022).
Although effective for detecting discrete hazards such as landslides or sinkholes, these approaches
tend to overfit to absolute elevation or local spectral cues and fail to generalize to new regions. Other
modalities have also been tested, including elevation contours (Zhou et all,[2023)), geochemical field
data (Latifovic et al., 2018} [Wang et al., 2021)), and aeromagnetic imagery (Liu et al.| 2024b). While
useful in specific studies, these resources are site-specific and lack standardized availability for
ML workflows. Together, this underscores the need for standardized, multimodal benchmarks that
capture continuous surface materials and landforms across scales, rather than narrowly focusing on
event-specific hazards.

RS and Geologic Datasets: RS benchmarks such as SpaceNet (Van Etten et al. 2018), xView
(Cam et al, 2018), and the Functional Map of the World (Christie et al., 2018) provide high-
resolution satellite imagery annotated for object detection and scene classification in urban envi-
ronments. These datasets are optimized for anthropogenic features such as roads, buildings, and
vehicles, and are widely used for infrastructure monitoring and disaster response. Other RS datasets
like BigEarthNet (Sumbul et al. [2019), DeepGlobe (Demir et al, [2018)), and SEN12MS
extend the domain to land cover classification and segmentation using multispectral or
synthetic aperture radar (SAR) imagery. However, these datasets target coarse semantic categories
such as vegetation or developed areas, rather than physical topographic characteristics, and therefore
lack representations of Earth’s surface that are essential for interpreting geological processes.

Several geoscience-specific datasets have been introduced in recent years, including MMFlood for
flood delineation (Montello et al.| 2022), QuakeSet for earthquake event detection (Rege Cambrin &
2024), and landslide detection datasets based on overhead imagery and DEMs (Ji et al.,[2020
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Liu et al.,|2023;|Zhou et al.| [2023). While valuable for their respective domains, these resources are
narrowly scoped to discrete hazards or events, often limited to small geographic areas, and rely on
shallow modality combinations. As such, they do not provide standardized, multimodal benchmarks
for continuous SG mapping, where the goal is to delineate overlapping geologic units formed by
surface processes, rather than to detect singular hazard events.

3 EARTHSCAPE DATASET

3.1 COMPOSITION AND FEATURES

Surficial Geologic Maps: The EarthScape dataset currently includes high-resolution (1:24.000-
scalep_-b surficial geologic maps from Warren and Hardin Counties, Kentucky, compiled by the Ken-
tucky Geological Survey (Buchanan et al., 2023} Massey et al., 2023 Swallom et al., |2023; |Massey
et al., 2024; Hodelka et al., [2024} |Swallom et al., [2024} Bottoms et al.| 2021; | Massey et al., [2021]).
These maps provide the multilabel targets and segmentation masks (Fig. [I} also see Figs. @} [5
and [). Seven SG map units are represented, capturing three dominant surface processes: flu-
vial deposition, gravitational transport, and in-situ weathering. These include alluvium (Qal) and
terrace deposits (Qat) from river activity; alluvial fans (Qaf) associated with debris flow hazards;
colluvium (Qc) and colluvial aprons (Qca) from hillslope processes; residuum (Qr) from bedrock
weathering; and artificial fill (afl) from anthropogenic modification. All maps are publicly avail-
able as vector polygons in ESRI geodatabase format. Detailed unit descriptions are provided in the

Supplemental

Aerial imagery and DEM: High-resolution aerial RGB+NIR imagery and LiDAR-derived DEMs
form the primary RS inputs for EarthScape (Commonwealth of Kentucky},|2024)). The aerial imagery
consists of RGB and NIR channels with a ground sampling distance (GSD) of 0.15 m (= 6 in). It
is particularly useful for identifying anthropogenic features (e.g., afl) that are easily distinguished
from natural landscapes (Fig. [T} also see Figs. [5] [6). The NIR band further enhances the detec-
tion of hydrological features, including alluvial deposits (Qal, Qaf, and Qat) and stream channels,
by highlighting vegetation patterns that can indicate water presence or recent sediment deposition.
However, the utility of aerial RGB and NIR in delineating detailed SG map units is limited. In
contrast, the DEM, generated from airborne LiDAR with a GSD of 1.52 m (= 5 ft) GSD spatial
resolution, is a critical feature for SG mapping (Fig. [T} also see Figs. [5]and [6). Both datasets are
distributed as publicly accessible GeoTIFF tiles.

Geomorphometric Terrain Features: The DEM provides a foundation for deriving five key terrain
features widely used in geomorphometric analysis and essential for delineating SG units (Fig. [T}
also see Figs. E] and @ (Florinsky, 2016). These include: slope (S) measures terrain steepness;
profile curvature (PrC) and planform curvature (PIC) are directional second derivatives capturing
flow acceleration and divergence; elevation percentile (EP) is a relative topographic position metric;
standard deviation of slope (SDS) is a measure of terrain roughness quantifying local variability of
slope angles. Each feature was calculated at multiple spatial scales to capture both localized and
regional landform structure. See the Supplemental [A.2.4]for additional information.

Hydrography and Infrastructure: To support downstream tasks involving fluvial and anthro-
pogenic processes, EarthScape includes vector data for hydrographic and infrastructure features
(Fig. [T} also see Figs. [5]and [6). Stream centerlines and waterbody polygons from the U.S. Ge-
ological Survey’s National Hydrography Dataset (NHD) (U.S. Geological Survey, 2024) provide
context for identifying alluvial units within stream valleys. Road and railway centerlines from Open-
StreetMap (OSM) (OpenStreetMap contributors, 2024) delineate areas modified by human activity,
such as afl. These features also help characterize geologic disturbance near infrastructure, including
slope undercutting and landslide susceptibility. Both datasets are included as binary raster images.

3.2 DATA PROCESSING

Targets: Each SG map was obtained as a vector GIS geodatabase, from which the relevant feature
class was extracted (Fig. [T). The vector polygons were inspected for topological correctness, en-

"Map scale refers to cartographic accuracy, rather than raster resolution. At 1:24,000, one map unit repre-
sents 24,000 real-world units, and is considered the gold-standard geologic mapping scale.
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Figure 2: EarthScape dataset characteristics (A—D) and SGMap-Net architecture (E). A. Choropleth
map of Warren County showing the number of classes per patch, illustrating spatial heterogeneity
and task complexity. B. Dataset-wide class distribution, highlighting significant class imbalance. C.
Proportional area of each class per patch, showing that many patches include low-exposure classes,
increasing task difficulty. D. Histogram of class counts per patch, further illustrating multilabel and
intra-patch complexity. E. SGMap-Net architecture comprising a standardization module, shared
encoder, and multilabel classification head. Fusion is implemented via early channel stacking and
mid-level cross-attention.

suring no overlaps, no gaps, and valid geometries. The validated data were saved as a standalone
GeoJSON file and used to generate a boundary polygon defining the area of interest (AOI) for clip-
ping and extracting corresponding portions of other datasets. SG target classes were encoded as
ordinal values in the GeoJSON. Finally, the vector data were rasterized to a GeoTIFF with a GSD
of 1.52 m, matching the native resolution of the DEM.

Features: Vector datasets, including the NHD, OSM, and RS image tile index, were obtained,
clipped to the target AOI, and saved as standalone GeoJSON files (Fig. [I). The tile index defines
the locations of aerial RGB+NIR and DEM tiles. Using the AOI, the relevant tile footprints were
selected and the corresponding DEM and imagery tiles downloaded (Fig. [I). DEM tiles were
merged into a single GeoTIFF mosaic at their native GSD of 1.52 m. RGB and NIR imagery
underwent the same process, with additional downsampling to GSD 1.52 m to match the DEM
resolution. NHD stream centerlines and waterbody polygons, along with OSM road and railway
centerlines, were rasterized into two binary GeoTIFFs with a GSD of 1.52 m.

Five terrain features were derived from the DEM at multiple spatial scales (Fig. [T), enabling models
to capture both local and regional landform structure. We adopted a roughly logarithmic progres-
sion of resolutions, which is common in geomorphometric analysis when no “correct” scale exists.
The DEM mosaic (native 1.52 m GSD) was downsampled using cubic convolution to five coarser
resolutions of 3.05, 6.10, 15.24, 30.48, and 60.96 m GSD. S, PrC, and PIC were computed with
5 x b kernels on each of the six DEMs, upsampled back to 1.52 m GSD using cubic convolution,
and smoothed with a Gaussian filter to reduce resampling artifacts. SDS and EP were calculated as
neighborhood statistics on the original 1.52 m DEM using kernels of 5 x5, 11 x 11, 21 x 21, 51 x 51,
101 x 101, and 201 x 201 pixels. These kernel sizes correspond to receptive fields comparable to
the effective resolutions used for S, PrC, and PIC, allowing direct comparison across modalities.
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Spatial Alignment and Registration: The target SG map GeoTIFF images served as the spatial
reference for aligning all other features in the dataset (Fig. [I). Once each feature was collected and
compiled into its respective GeoTIFF image file, they were reprojected to align with the reference
image coordinates using cubic convolution interpolation. All images were checked to ensure that
their bounding coordinates and spatial resolutions were identical across all other images.

Image Patches: Vector polygon patches were systematically constructed in a grid pattern to cover
the target AOI using the same coordinate reference system as the target GeoTIFF (Fig. [T). Each grid
cell patch was constructed so that it covers an area of exactly 256 x 256 pixels (390.14 x 390.14 m),
overlaps adjacent cells by 50%, and is fully contained within the target AOI. Each cell was assigned
a unique patch ID and used to extract 38 corresponding channels, including target mask, aerial RGB
and NIR, DEM, the five terrain features calculated at six scales, NHD, and OSM. Target masks were
then used to extract one-hot encoded class labels and the proportional areas occupied by each class
within each patch. EarthScape supports classification (labels), segmentation (masks), regression
(class proportions), object detection via derived bounding boxes, and multi-task extensions. This
flexibility positions it as a general-purpose benchmark for surface-aware geospatial learning.

3.3 DATASET STATISTICS

EarthScape currently comprises 31,018 image patch locations, each measuring 256 x 256 pixels
with 50% spatial overlap with adjacent locations (Fig. [I). Each patch contains 38 channels, stored
as individual 32-bit float GeoTIFF files with embedded geospatial metadata. Patch geometries are
defined in an accompanying GeoJSON file to support spatial querying and GIS-based evaluation.
The dataset currently spans two regions in Kentucky: a large contiguous subset of 23,566 locations
in Warren County (Fig. [2JA) and 7,452 locations in Hardin County. This geographic partition-
ing enables cross-region generalization studies and domain adaptation experiments, with additional
regions planned as new SG maps become available. The dataset exhibits significant spatial and sta-
tistical heterogeneity. Most patches contain multiple SG units, with up to six unique classes per
patch, and pronounced spatial variability across the AOISs in class co-occurrence (Fig. 2A,2D). The
dataset is highly imbalanced, with common units like Qr dominating the distribution and minority
classes Qaf and Qat appearing infrequently (Fig. 2B). Intra-patch complexity is further reflected in
the proportional area each class occupies per patch (Fig. 2IC), with many units contributing small but
meaningful fractions to the total label. These properties make EarthScape well-suited for evaluating
multilabel models under realistic geological class imbalance and spatial heterogeneity.

4 EXPERIMENTS

4.1 METHODS

Task Definition: We formulate SG mapping as a multilabel classification task over multimodal
geospatial inputs. Each input sample corresponds to a 256 x 256 image patch with co-registered
modalities and a label vector indicating the presence or absence of each of the SG units. Let

D = (w4, yi)fil denote the dataset, where each x; = mq, ms, ..., m, is a collection of n modality-
specific input tensors (e.g., DEM, EP, PIC, etc.) and each modality m; can have multiple scaled
images that we consider as channels C;. The y; € 0, 1% is a binary label vector over K = 7 classes,
where a class is marked positive if any part of its mask intersects the patch (i.e., even a single pixel),
without applying a proportional threshold. The model learns a mapping f : X — [0,1]% to pre-
dict per-class probabilities, enabling multi-class label assignment for each patch. This formulation
allows us to systematically evaluate how different modality combinations contribute to geologic
feature recognition and serves as a tractable benchmark for future tasks such as segmentation.

Surficial Geologic Mapping Network (SGMap-Net): Our dataset comprises multiple geospa-
tial image modalities with varying channel dimensionalities (e.g., RGB, DEM, terrain derivatives),
which we aim to classify into seven geologic classes. To effectively integrate the complementary in-
formation across modalities, we introduce SGMap-Net, a lightweight fusion-based model designed
as a transparent baseline. Its simplicity allows us to isolate the contributions of modality, scale,
and fusion strategy without architectural confounds, while ensuring that results are reproducible and
easily extendable. Figure 2E illustrates the overall architecture of SGMap-Net, which consists of
three key components: a standardization module, a feature extractor, and a classification head. As
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part of our early fusion strategy, we first stack all channels of each modality m; and then apply a
1 x 1 convolution followed by batch normalization and ReLU activation to standardize the input
to a common channel dimension C' = 3. This ensures compatibility with a shared encoder while
preserving modality-specific spatial patterns through independent convolutions.

m,; = ReLU(BN(Convl x 1(m;))). (1)

Each standardized modality m; is passed through a shared encoder to extract feature maps f,,, =
Encoder(m;). The shared encoder is initialized with ImageNet-pretrained weights, and we exper-
iment with ResNeXt-50 (Xie et al., 2017) and Vision Transformer (ViT-B/16) (Dosovitskiyl, [2020)
architectures. Next, each feature vector f,,, is projected into a common latent space of dimension
d using a fully connected layer and augmented with a learnable modality embedding e; to get the
final representations z; = f,,,, + e;. Then we apply modality-specific multi-head attention (MHA)
(Vaswani et al.l 2017) mechanisms to enable intermediate fusion across modalities. For each modal-
ity m;, attention is computed using z; as the query (Q), and the embeddings from all other modalities
as keys (K) and values (V).

a; = MHA(Q = 2i, K = [2j]2:, V = [25] i) 2)

Next, we perform attention-weighted aggregation over the set of modality-specific attention out-
puts a. We begin by concatenating all outputs A = [a;]. To determine the relative importance
of each modality, we apply a learnable linear projection v; followed by a Softmax operation to
obtain attention weights w = Softmax(vT A). The final fused representation is then computed
using these weights, zf,scqa = vazl w;a;. This attention-weighted aggregation adaptively empha-
sizes the most informative modalities for each sample. The fused embedding zgyq is then passed
through a classification head consisting of two fully connected layers to predict the geologic class
logits . In addition to our proposed attention-based fusion strategy, we evaluate two alternative
approaches, cross-modality channel stacking and concatenation. We stack selected channels from
different modalities, extract a joint representation using the encoder, and feed it into the classifica-
tion head. In another approach, we concatenate the modality embeddings from the encoder and pass
them directly to the classification head. These variants serve as comparative baselines to assess the
impact of modality-aware attention in our fusion framework.

Data Splits and Selection: We define training, validation, and in-domain test splits using the War-
ren County subset (see Supp. [A.3] Fig. [7] Table[3). A total of 1,536 patch locations were randomly
selected for the in-domain test set. Next, 768 non-intersecting locations were randomly sampled
for validation. All remaining patches that did not intersect the in-domain test patches or validation
patches were used for training (8,416). To evaluate geographic generalization to a geologically sim-
ilar, but previously unseen region, we sampled an additional cross-domain test set of 1,536 patches
from the Hardin County subset. While this split uses less than half of the available EarthScape
patches, it was chosen to balance typical dataset proportions and maintain spatial independence
between training and evaluation regions.

Training Procedure: All patches were normalized using modality-specific means and standard de-
viations computed over the in-domain dataset to ensure consistent input scaling. Data augmentation
included random horizontal and vertical flips and 90° rotations, reflecting that geologic features are
not orientation-dependent. Restricting rotations to right angles preserves label accuracy by prevent-
ing small classes along edges from being cropped due to padding. To address class imbalance, we
adopted focal loss (Linl 2017) with @ = 0.25 and v = 2.0 for all experiments. Oversampling
was tested, but it degraded performance, so training used the original distribution. Models were
trained for 15 epochs using the Adam optimizer, a fixed learning rate of 0.001, and a batch size
of 16. The model with the lowest validation loss was used for testing. After training, label-wise
thresholds were optimized for F1 on the validation set and applied to both in-domain (Warren) and
cross-domain (Hardin) test sets. Performance was evaluated using per-class and macro-averaged
accuracy, precision, recall, F1 score, average precision (AP), and area under the ROC curve (AUC).
See the Supplemental [A.4]and [A.3]for focal loss tuning, training time, and compute details.

4.2 RESULTS AND DISCUSSION

Single Modality Benchmarks: We first evaluated single-modality models using SGMap-Net with
ResNeXt-50 and ViT-B/16 backbones (Table [T} also see Supp. Fig. Tables [5} [6] and
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Table 1: Macro-averaged F1, precision, AUC, and accuracy on in-domain (Warren County, WC)
and cross-domain (Hardin County, HC) test sets, along with differences between WC and HC (A)
for each metric. Results are reported for the top three single-modality, multi-scale, and multimodal
models. The best and second-best scores in each column are indicated in bold and underlined,
respectively.

Model F1 Precision AUC Accuracy
wC HC A wC HC A wC HC A wC HC A

EP-51 0.651 0.380 0.271 0.612 0.382 0.230 0.876  0.663 0.213 0.862 0.818 0.044
EP-5 0.648 0.357 0.291 0.617 0.450 0.167 0.872  0.582 0.290 0.858 0.831  0.027
EP-21 0.645 0.384 0.261 0.629 0455 0.174 0.877 0.695 0.182 0.860 0.828 0.032
EP-ms 0.640 0.425 0215 0.606  0.556 0.050 0.862 0.717 0.145 0.865 0.828 0.037
S-ms 0.637 0.594 0.043 0.607 0.535 0.072 0.864 0.804 0.060 0.856  0.860 -0.004
SDS-ms 0.636  0.588 0.048 0.588 0.509 0.079 0.878 0.792  0.086 0.846 0.839  0.007
EP-ms+S-ms+SDS-ms ~ 0.657 0.598 0.059 0.626 0.546 0.080 0.882 0.806 0.076 0.875 0.867 0.008
EP-5+S-3+SDS-5 0.641 0.568 0.073 0.606 0.531 0.075 0.848 0.812 0.036 0.865 0.856 0.009
EP-201+S-61+SDS-201  0.626 0.582  0.044 0.588 0.529 0.059 0.885 0.812 0.073 0.858 0.852  0.006

[7). EP, S, and SDS consistently outperformed DEM and RGB+NIR, underscoring the value of
domain-specific terrain derivatives. Model performance declined under cross-domain testing, with
ViT exhibiting smaller generalization gaps (AF1 = 0.018) than ResNeXt (AF1 = 0.043). S and
SDS exhibited the best cross-region transfer, while raw DEM inputs underperformed, likely due to
overfitting region-specific topography.

Multi-scale Fusion: Unimodal experiments showed that no single spatial scale consistently per-
formed best across classes, motivating the evaluation of multi-scale fusion. Models trained with the
ResNeXt-50 backbone (Table [T} also see Supp. [A.6.2] Fig. [I0] Tables [8 Ol and [I0) demonstrate
that early fusion via channel stacking is consistently more effective than attention-based fusion for
cross-domain generalization. However, with ViT-B/16, multi-scale fusion achieves results compara-
ble to single-modality models. EP, S, and SDS were the best overall performers in both backbones.
With ResNeXt-50, EP continued to show the weakest generalization, consistent with single-modality
results and indicating that EP retains local elevation signatures that transfer poorly across regions
compared to S and SDS. Interestingly, PrC performed better with ViT-B/16 than with ResNeXt-50.
PrC provides a relatively weak local signal, but ViT’s patch-based tokenization and global attention
appear to leverage it more effectively than convolutional filters. Overall, these results suggest that
multi-scale fusion of S and SDS mitigates sensitivity to region-specific relief variation, and that early
channel stacking remains the most reliable and stable strategy across backbones.

Multimodal Fusion: We evaluated multimodal fusion using ResNeXt-50 and ViT-B/16 backbones
with three representative modality configurations: RGB+DEM, three variants of EP+S+SDS, and
RGB+DEM+EP+S+SDS (Table [T} also see Supp. Fig. Tables and [I3). Multi-
scale EP+S+SDS inputs consistently outperformed RGB+DEM, improving in-domain macro-F1 to
0.657 and yielding the best cross-generalization (0.059). Incorporating multi-scale versions of these
features yielded the best cross-domain performance, improving macro-F1 from 0.380 to 0.598 and
reducing the generalization gap from 0.271 to 0.059. Even reduced single-scale variants of this
modality set ranked highly and slightly outperformed single-modality and multi-scale versions of
the same modalities. Early channel stacking produced the highest in-domain scores, while mid-
level concatenation and cross-attention yielded the smallest overall domain shifts (0.028 and 0.029).
Overall, multimodal fusion with terrain-derived features substantially improves generalization to
unseen regions compared to RGB or DEM inputs alone.

Class-Level Trends: Per-class analysis shows strong variation in discriminability across the seven
units (see Supp. [A.6.4] Fig. [IT] Tables[I4]and[T3). Qc, Qca, and Qr are consistently well-identified,
whereas minority classes Qat and Qaf remain the most challenging. Multimodal models typically
yield the highest in-domain scores across backbones and reduce the generalization gap.

Comparisons with Existing Models: We conducted exploratory baselines with recent multimodal
foundation models, including SatMAE (Cong et al.,2022), SatMAE++ (Noman et al., 2024), DOFA
(Xiong et al., [2024), and Panopticon (Waldmann et al.l 2025) (see Supp. [A.6.5] Table [I6). While
SatMAE and SatMAE++ achieved competitive in-domain macro F1 scores (0.614, 0.656), their
cross-domain performance degraded sharply (0.427, 0.454). DOFA and Panopticon performed even
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worse. In contrast, our best SGMap-Net variants consistently outperformed these models in both
in-domain and cross-domain tests, highlighting the importance of shape-centric terrain features.

5 CHALLENGES AND LIMITATIONS

Geographic Scope and Extensibility: EarthScape is currently limited to two regions in Kentucky,
USA, reflecting the availability of 1:24,000-scale SG maps in standardized GIS formats. While this
geographic scope is narrow, the dataset is designed as a living resource. The patch-based curation
workflow supports continuous expansion by our team and by external contributors, provided quality-
control and assurance checks are met. Planned updates will triple the number of patches by the end of
2025 and extend coverage to additional regions in 2026, enabling broader cross-domain evaluation.

Breadth vs. Depth: EarthScape is modest in area, but each patch contains 38 co-registered chan-
nels spanning imagery, elevation, terrain derivatives, and vector data. This balance of limited spatial
breadth and high modality depth presents a unique challenge where models must learn to integrate
rich, heterogeneous inputs while generalizing across sparse geographic coverage.

Class Imbalance: The dataset includes seven SG units with highly imbalanced distributions that
reflect real-world conditions. At the patch level, the number of co-occurring classes ranges from
one to six, and many units occupy only a small fraction of a given patch. This results in both
inter-class imbalance and intra-patch heterogeneity, offering a challenging testbed for multilabel
and segmentation models that must handle sparse and noisy labels.

Geographic Generalization: SG varies significantly across regions due to localized geologic pro-
cesses. Unlike many Al benchmarks that assume spatial homogeneity, EarthScape explicitly sup-
ports the evaluation of cross-region generalization. The inclusion of two distinct geographic subsets
allows for benchmarking spatial transfer and domain adaptation under realistic conditions.

Multi-scale Complexity: SG features are scale-dependent, with different processes operating at
distinct spatial resolutions. EarthScape includes terrain derivatives computed at six spatial scales,
enabling models to learn both local and regional landform patterns. This supports research in multi-
scale fusion, resolution-aware architectures, and feature relevance across spatial hierarchies.

Interpretation Variability: Although EarthScape relies on expert-labeled SG maps, class bound-
aries are often approximate. The 1:24,000-scale mapping reflects geologic certainty, which prop-
agates into patch-level labels. In our benchmarks, we employ a one-hot labeling scheme, where a
class is marked as present even if it occupies only a single pixel. We provide class-area proportions
per patch, which allows future work to explore thresholding and probabilistic label assignment.

Temporal Inconsistency: Input features were acquired between 2019 and 2024, introducing poten-
tial temporal mismatches across modalities. While the main source of temporal variability is anthro-
pogenic (afl), but the underlying geology and SG classes are inherently stable on these timescales.
This stability provides a consistent foundation for benchmarking, while still enabling evaluation of
model robustness to asynchronous inputs.

6 CONCLUSIONS

We introduced EarthScape, an Al-ready, multimodal benchmark dataset for SG mapping. Earth-
Scape integrates aerial imagery, DEMs, multi-scale terrain derivatives, and GIS vector data, pro-
viding a unique resource for multimodal geospatial learning. The dataset reflects real-world chal-
lenges such as class imbalance, spatial heterogeneity, and geographic variability, making it a robust
testbed for AI models. Through baseline experiments, we established benchmarks across individ-
ual modalities, multi-scale fusion, and multimodal inputs, highlighting both the predictive value of
terrain-based features and the difficulty of cross-region generalization. Designed as a living dataset,
EarthScape is extensible in both geographic and modality space, and while geographically compact
( 31k patches), it is unusually deep, with 38 co-registered channels per patch that present a distinctive
multimodal learning challenge. Ongoing work includes expanding coverage, incorporating globally
available features, and experimenting with segmentation. By releasing data, code, and benchmarks,
we aim to foster reproducible research and cross-disciplinary collaboration, positioning EarthScape
as a benchmark for multimodal fusion and domain adaptation in geospatial Al
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. EarthScape is built exclusively from publicly avail-
able, government or community datasets under open licenses; no human subjects, personal data, or
sensitive information are involved. All source attributions and licensing terms are respected, and
no conflicts of interest are present. We caution that models trained on EarthScape should be ap-
plied with geological domain expertise, particularly outside regions with similar surficial processes,
to avoid misinterpretation in decision-making contexts. We report implementation details in the
supplemental to promote awareness of environmental impact and enable informed replication.

REPRODUCIBILITY STATEMENT

We support reproducibility through precise documentation of data sources and preprocessing, patch
generation and spatially independent splits, model and training configurations, and comprehensive
results. Upon acceptance, the full EarthScape dataset and code will be publicly released with a
data dictionary and README. These materials are intended to allow end-to-end reproduction of all
reported experiments.

REFERENCES

Irasema Alcantara-Ayala. Geomorphology, natural hazards, vulnerability and prevention of natural
disasters in developing countries. Geomorphology, 47(2-4):107-124, 2002.

Mark G Anderson and Charles E Ferree. Conserving the stage: climate change and the geophysical
underpinnings of species diversity. PloS one, 5(7):e11554, 2010.

Guillaume Astruc, Nicolas Gonthier, Clement Mallet, and Loic Landrieu. Omnisat: Self-supervised
modality fusion for earth observation. In European Conference on Computer Vision, pp. 409-427.
Springer, 2024.

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. /EEE transactions on pattern analysis and machine intelligence, 41(2):
423-443,2018.

Thorsten Behrens, Karsten Schmidt, Robert A MacMillan, and Raphael A Viscarra Rossel. Multi-
scale digital soil mapping with deep learning. Scientific reports, 8(1):15244, 2018.

Richard C. Berg. Economic Analysis of the Costs and Benefits of Geological Mapping in the
United States of America from 1994 to 2019. American Geosciences Institute, Alexandria,
VA, 2025. URL https://profession.americangeosciences.org/reports/
geological-mapping—economics/.

Richard L Bernknopf. Societal value of geologic maps, volume 1111. DIANE Publishing, 1993.

Meiqgiao Bi, Minghua Wang, Zhi Li, and Danfeng Hong. Vision transformer with contrastive learn-
ing for remote sensing image scene classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 16:738-749, 2022.

Michael P Bishop, John F Shroder Jr, Betty L Hickman, and Luke Copland. Scale-dependent anal-
ysis of satellite imagery for characterization of glacier surfaces in the karakoram himalaya. Geo-
morphology, 21(3-4):217-232, 1998.

Antonia Bottoms, Max Hammond, Matthew Massey, Emily Morris, and Michelle McHugh. Surficial
geologic map of the howe valley 7.5-minute quadrangle, central kentucky. Kentucky Geological
Survey Contract Report, 13(43), 2021.

Cassandra AP Brigham and Juliet G Crider. A new metric for morphologic variability using land-
form shape classification via supervised machine learning. Geomorphology, 399:108065, 2022.

George H Brimhall, John H Dilles, and John M Proffett. The role of geologic mapping in mineral
exploration. 2005.

10


https://profession.americangeosciences.org/reports/geological-mapping-economics/
https://profession.americangeosciences.org/reports/geological-mapping-economics/

Under review as a conference paper at ICLR 2026

Wes Buchanan, Meredith Swallom, Antonia Bottoms, Matthew Massey, Bailee Nicole Hodelka, and
Emily Morris. Surficial geologic map of the rockfield 7.5-minute quadrangle, warren, logan, and
simpson counties, kentucky. Kentucky Geological Survey Contract Report, 13(57), 2023.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6172—
6180, 2018.

Commonwealth of Kentucky. Kyfromabove: Kentucky’s elevation data aerial photography pro-
gram, 2024. URL https://kyfromabove.ky.gov, Aerial RGB+NIR imagery and DEM.
Accessed: 2024-08-01.

Robert R. Compton. Geology in the Field. John Wiley & Sons, New York, 1985. Classic field
geology manual covering mapping techniques8203;:contentReference[oaicite:41]index=41.

Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall Burke,
David Lobell, and Stefano Ermon. Satmae: Pre-training transformers for temporal and multi-
spectral satellite imagery. Advances in Neural Information Processing Systems, 35:197-211,
2022.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213-3223, 2016.

Matthew J Cracknell and Anya M Reading. Geological mapping using remote sensing data: A com-
parison of five machine learning algorithms, their response to variations in the spatial distribution
of training data and the use of explicit spatial information. Computers & Geosciences, 63:22-33,
2014.

Matthew M Crawford, Jason M Dortch, Hudson J Koch, Ashton A Killen, Junfeng Zhu, Yichuan
Zhu, Lindsey S Bryson, and William C Haneberg. Using landslide-inventory mapping for a
combined bagged-trees and logistic-regression approach to determining landslide susceptibility
in eastern kentucky, usa. Quarterly Journal of Engineering Geology and Hydrogeology, 54(4):
qjegh2020-177, 2021.

FC Dai, CF Lee, and XH Zhang. Gis-based geo-environmental evaluation for urban land-use plan-
ning: a case study. Engineering geology, 61(4):257-271, 2001.

Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat Basu, For-
est Hughes, Devis Tuia, and Ramesh Raskar. Deepglobe 2018: A challenge to parse the earth
through satellite images. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 172-181, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 6824-6835, 2021.

Igor Florinsky. Digital terrain analysis in soil science and geology. Academic Press, 2016.

Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Paula Branco, Bartosz Krawczyk, and
Nathalie Japkowicz. The class imbalance problem in deep learning. Machine Learning, 113
(7):4845-4901, 2024.

Boran Han, Shuai Zhang, Xingjian Shi, and Markus Reichstein. Bridging remote sensors with mul-
tisensor geospatial foundation models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 27852-27862, 2024.

11


https://kyfromabove.ky.gov

Under review as a conference paper at ICLR 2026

Mohammed Hassanin, Saeed Anwar, Ibrahim Radwan, Fahad Shahbaz Khan, and Ajmal Mian.
Visual attention methods in deep learning: An in-depth survey. Information Fusion, 108:102417,
2024.

Bailee Hodelka, Matthew Massey, Meredith Swallom, Steve Martin, Charles Wells, and Emily Mor-
ris. Surficial geologic map of the bristow 7.5-minute quadrangle, kentucky. Accepted for publi-
cation, 2024.

Kelly J Hokanson, CA Mendoza, and KJ Devito. Interactions between regional climate, surficial
geology, and topography: characterizing shallow groundwater systems in subhumid, low-relief
landscapes. Water Resources Research, 55(1):284-297, 2019.

Umangi Jain, Alex Wilson, and Varun Gulshan. Multimodal contrastive learning for remote sensing
tasks. arXiv preprint arXiv:2209.02329, 2022.

Shunping Ji, Dawen Yu, Chaoyong Shen, Weile Li, and Qiang Xu. Landslide detection from an
open satellite imagery and digital elevation model dataset using attention boosted convolutional
neural networks. Landslides, 17:1337-1352, 2020.

Sarah E Johnson and William C Haneberg. Machine learning for surficial geologic mapping. Earth
Surface Processes and Landforms, 50(1):¢6032, 2025.

Jeffrey R Keaton. Engineering geology: fundamental input or random variable? In Foundation
Engineering in the Face of Uncertainty: Honoring Fred H. Kulhawy, pp. 232-253. 2013.

Charlie Kirkwood, Mark Cave, David Beamish, Stephen Grebby, and Antonio Ferreira. A machine
learning approach to geochemical mapping. Journal of Geochemical Exploration, 167:49-61,
2016.

Darius Lam, Richard Kuzma, Kevin McGee, Samuel Dooley, Michael Laielli, Matthew Klaric,
Yaroslav Bulatov, and Brendan McCord. xview: Objects in context in overhead imagery. arXiv
preprint arXiv:1802.07856, 2018.

Rasim Latifovic, Darren Pouliot, and Janet Campbell. Assessment of convolution neural networks
for surficial geology mapping in the south rae geological region, northwest territories, canada.
Remote sensing, 10(2):307, 2018.

Hui Li and Xiao-Jun Wu. Crossfuse: A novel cross attention mechanism based infrared and visible
image fusion approach. Information Fusion, 103:102147, 2024.

T Lin. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Richard J. Lisle, Peter Brabham, and John W. Barnes. Basic Geological Map-
ping. John Wiley & Sons, Chichester, UK, 5th edition, 2011. ISBN
9780470686348. Field guide to mapping geology, updated with modern tech-

niques8203;:contentReference[oaicite:42]index=428203;:contentReference[oaicite:43 Jindex=43.

Sihan Liu, Yiwei Ma, Xiaoqing Zhang, Haowei Wang, Jiayi Ji, Xiaoshuai Sun, and Rongrong Ji.
Rotated multi-scale interaction network for referring remote sensing image segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26658—
26668, 2024a.

Xinran Liu, Yuexing Peng, Zili Lu, Wei Li, Junchuan Yu, Daqing Ge, and Wei Xiang. Feature-
fusion segmentation network for landslide detection using high-resolution remote sensing images
and digital elevation model data. IEEE Transactions on Geoscience and Remote Sensing, 61:
1-14, 2023.

12



Under review as a conference paper at ICLR 2026

Yao Liu, Jianyuan Cheng, Qingtian Lii, Zaibin Liu, Jingjin Lu, Zhenyu Fan, and Lianzhi Zhang.
Deep learning for geological mapping in the overburden area. Frontiers in Earth Science, 12:
1407173, 2024b.

Matthew Massey, Antonia Bottoms, Max Hammond, Emily Morris, and Michelle McHugh. Surficial
geologic map of the sonora 7.5-minute quadrangle, central kentucky. Kentucky Geological Survey
Contract Report, 13(44), 2021.

Matthew Massey, Meredith Swallom, Antonia Bottoms, Wes Buchanan, Bailee Nicole Hodelka,
and Emily Morris. Surficial geologic map of the hadley 7.5-minute quadrangle, warren county,
kentucky. Kentucky Geological Survey Contract Report, 13(56), 2023.

Matthew Massey, Meredith Swallom, Bailee Hodelka, Hannah Hayes, Charles Wells, Steve Martin,
and Emily Morris. Surficial geologic map of the bowling green south 7.5-minute quadrangle,
kentucky. Accepted for publication, 2024.

Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqgi Li, Nolan Wagener, Matthew Schmittle,
JoonHo Lee, Wentao Yuan, Zoey Chen, Samuel Deng, Greg Okopal, Dieter Fox, Byron Boots,
and Amirreza Shaban. Terrainnet: Visual modeling of complex terrain for high-speed, off-road
navigation, 2023. URL https://arxiv.org/abs/2303.15771,

Fabio Montello, Edoardo Arnaudo, and Claudio Rossi. Mmflood: A multimodal dataset for flood
delineation from satellite imagery. IEEE Access, 10:96774-96787, 2022.

Zhaoyang Niu, Guogiang Zhong, and Hui Yu. A review on the attention mechanism of deep learning.
Neurocomputing, 452:48-62, 2021.

Mubashir Noman, Muzammal Naseer, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan,
and Fahad Shahbaz Khan. Rethinking transformers pre-training for multi-spectral satellite im-
agery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 27811-27819, 2024.

IOA Odeh, DJ Chittleborough, and AB McBratney. Elucidation of soil-landform interrelationships
by canonical ordination analysis. Geoderma, 49(1-2):1-32, 1991.

OpenStreetMap contributors. Openstreetmap road and railway centerlines. https://www.
openstreetmap.org, 2024. Road and railway centerlines. Accessed: 2024-08-01.

Nikhil Prakash, Andrea Manconi, and Simon Loew. A new strategy to map landslides with a gener-
alized convolutional neural network. Scientific reports, 11(1):9722, 2021.

Muhammad Usman Rafique, Junfeng Zhu, and Nathan Jacobs. Automatic segmentation of sinkholes
using a convolutional neural network. Earth and Space Science, 9(2):e2021EA002195, 2022.

Daniele Rege Cambrin and Paolo Garza. Quakeset: A dataset and low-resource models to moni-
tor earthquakes through sentinel-1. Proceedings of the International ISCRAM Conference, May
2024. ISSN 2411-3387. doi: 10.59297/n89yc374. URL http://dx.doi.org/10.59297/
n89yc374.

Michael Schmitt, Lloyd Haydn Hughes, Chunping Qiu, and Xiao Xiang Zhu. Senl2ms-a curated
dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion.
arXiv preprint arXiv:1906.07789, 2019.

Jesse D Schomberg, George Host, Lucinda B Johnson, and Carl Richards. Evaluating the influence
of landform, surficial geology, and land use on streams using hydrologic simulation modeling.
Aquatic Sciences, 67:528-540, 2005.

Klaus J Schulz. Critical mineral resources of the United States: economic and environmental geol-
ogy and prospects for future supply. Geological Survey, 2017.

Sandra Steyaert, Marija Pizurica, Divya Nagaraj, Priya Khandelwal, Tina Hernandez-Boussard, An-
drew J Gentles, and Olivier Gevaert. Multimodal data fusion for cancer biomarker discovery with
deep learning. Nature machine intelligence, 5(4):351-362, 2023.

13


https://arxiv.org/abs/2303.15771
https://www.openstreetmap.org
https://www.openstreetmap.org
http://dx.doi.org/10.59297/n89yc374
http://dx.doi.org/10.59297/n89yc374

Under review as a conference paper at ICLR 2026

Gencer Sumbul, Marcela Charfuelan, Begiim Demir, and Volker Markl. Bigearthnet: A large-
scale benchmark archive for remote sensing image understanding. In /GARSS 2019-2019 IEEE
International Geoscience and Remote Sensing Symposium, pp. 5901-5904. IEEE, 2019.

Meredith Swallom, Matthew Massey, Wes Buchanan, Bailee Nicole Hodelka, Hannah Hayes,
Charles Wells III, and Emily Morris. Surficial geologic map of the bowling green north 7.5-
minute quadrangle, warren county, kentucky. Kentucky Geological Survey Contract Report, 13
(55), 2023.

Meredith Swallom, Bailee Hodelka, Matthew Massey, Hannah Hayes, Charles Wells, and Emily
Morris. Surficial geologic map of the smiths grove 7.5-minute quadrangle, kentucky. Accepted
for publication, 2024.

U.S. Geological Survey. National hydrography dataset (nhd) — high resolution. https://www.
usgs.gov/national-hydrography, 2024. Stream centerlines and waterbody polygons.
Accessed: 2024-08-01.

U.S. Geological Survey. National geologic map database (ngmdb). https://ngmdb.usgs.
govl 2025. Accessed May 2025.

Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow. Spacenet: A remote sensing dataset
and challenge series. arXiv preprint arXiv:1807.01232, 2018.

Janita E Van Timmeren, Davide Cester, Stephanie Tanadini-Lang, Hatem Alkadhi, and Bettina
Baessler. Radiomics in medical imaging—"how-to” guide and critical reflection. Insights into
imaging, 11(1):91, 2020.

CJ Van Westen, N Rengers, and R Soeters. Use of geomorphological information in indirect land-
slide susceptibility assessment. Natural hazards, 30:399-419, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Leonard Waldmann, Ando Shah, Yi Wang, Nils Lehmann, Adam Stewart, Zhitong Xiong, Xiao Xi-
ang Zhu, Stefan Bauer, and John Chuang. Panopticon: Advancing any-sensor foundation models
for earth observation. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 2204-2214, 2025.

Jiayu Wang, Ruizhi Wang, Jie Song, Haofei Zhang, Mingli Song, Zunlei Feng, and Li Sun.
Rs3dbench: A comprehensive benchmark for 3d spatial perception in remote sensing, 2025. URL
https://arxiv.org/abs/2509.18897.

Ziye Wang, Renguang Zuo, and Hao Liu. Lithological mapping based on fully convolutional net-
work and multi-source geological data. Remote Sensing, 13(23):4860, 2021.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492-1500, 2017.

Zhitong Xiong, Yi Wang, Fahong Zhang, Adam J Stewart, Jo€¢lle Hanna, Damian Borth, loannis Pa-
poutsis, Bertrand Le Saux, Gustau Camps-Valls, and Xiao Xiang Zhu. Neural plasticity-inspired
multimodal foundation model for earth observation. arXiv preprint arXiv:2403.15356, 2024.

Yiming Zhou, Yuexing Peng, Wei Li, Junchuan Yu, Daqing Ge, and Wei Xiang. A hyper-
pixel-wise contrastive learning augmented segmentation network for old landslide detection us-
ing high-resolution remote sensing images and digital elevation model data. arXiv preprint
arXiv:2308.01251, 2023.

Junfeng Zhu and William P Pierskalla Jr. Applying a weighted random forests method to extract
karst sinkholes from lidar data. Journal of Hydrology, 533:343-352, 2016.

14


https://www.usgs.gov/national-hydrography
https://www.usgs.gov/national-hydrography
https://ngmdb.usgs.gov
https://ngmdb.usgs.gov
https://arxiv.org/abs/2509.18897

Under review as a conference paper at ICLR 2026

A  SUPPLEMENTAL MATERIAL

A.1 CODE AVAILABILITY AND REPRODUCIBILITY

All code used for data preprocessing, patch extraction, model training, and evaluation will be pub-
licly available for the camera-ready version pending acceptance. The repository includes clear doc-
umentation and instructions for reproducing all experiments presented in the main paper and sup-
plemental material. The codebase provides tools for downloading and aligning multimodal data
(including GeoTIFF imagery and vector layers), generating spatially independent patch splits, and
computing terrain derivatives. It also includes baseline model implementations of SGMap-Net using
both ResNeXt-50 and ViT-B/16 backbones, along with scripts for training, evaluation, and visualiza-
tion. Additional utilities support focal loss configuration, per-class performance metrics, and spatial
overlays of predictions.

The full EarthScape dataset will also be publicly available upon acceptance. The dataset archive
includes geospatially registered input images, multilabel target masks, class proportion tables, a
README, and a detailed data dictionary describing all included modalities.

A.2 EXPLORING THE EARTHSCAPE DATASET
A.2.1 CURRENT STATUS AND ROADMAP

Figure 3] illustrates the current and planned geographic extent of the EarthScape dataset. Version
1.0 includes two spatially independent regions in central Kentucky: Warren County, which con-
tains the largest number of image patches, and Hardin County, which serves as an independent test
area with similar geologic and geomorphic conditions. This separation enables evaluation of cross-
region generalizability. Version 1.1 (expected Q4 2025) will nearly triple the number of patches
(Fig. [3), while Version 1.2 (expected Q2 2026) will extend coverage beyond Kentucky into adjacent
regions. EarthScape is intended as a “living” resource. We anticipate and encourage external users
to collaborate with us in contributing additional high-quality data, thereby broadening the dataset’s
geographic coverage and strengthening its value for the research community.

A.2.2 GEOLOGIC GENERALIZATION AND TRANSFERABILITY

Although EarthScape 1.0 is geographically limited, the geologic processes and terrain surface types
it represents are not unique. The dataset is directly applicable to the surficial geology exposed in the
Interior Low Plateaus and Appalachian Plateaus (Fig. [3). Comparable landscapes characterized by
carbonate bedrock, dissected plains, and mixed fluvial-colluvial systems occur globally, including
the Ozark Plateau (USA), parts of the Carpathians (Eastern Europe), the Dinaric Alps (Balkans), and
areas of central China and southeastern Australia. However, differences in geologic processes do
constrain transferability. For instance, the Central Lowlands (Fig. [3) contain fundamentally different
surficial materials and geomorphic processes as a result of widespread glaciation (rather than non-
glaciated weathering and erosion), limiting the direct applicability of EarthScape 1.0. Accordingly,
we recommend that applications of EarthScape 1.0 to new regions be guided by domain expertise to
ensure geological validity and meaningful interpretation.

A.2.3 SURFICIAL GEOLOGY AND SURFACE MORPHOLOGY

Figured]presents two examples of SG maps from the EarthScape dataset, shown as semi-transparent
overlays atop multi-directional hillshade images. This visualization emphasizes the relationship
between SG and topography. Distinct landforms, such as river valleys, plains, and steep hillslopes,
are spatially correlated with specific surficial geologic units. EarthScape leverages this relationship
to frame surficial geologic mapping as a vision task, where computer vision models can learn to
associate surface patterns with underlying geological processes. The EarthScape dataset currently
includes seven surficial geologic map units, each representing distinct surface processes. Although
the maps are from Kentucky, the units reflect fluvial deposition, gravitational transport, and in-situ
weathering processes that are active in many landscapes worldwide.

1. Artificial fill (afl): Manmade deposits consisting of transported or excavated material
placed or removed for engineering, mining, or other anthropogenic structures. Includes
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Figure 3: Map of the central United States showing the publicly available 1:24,000-scale surficial

geo
con

logic maps. Red lines show boundaries of major geologic provinces, which provide geological
straints for generalizability. EarthScape-trained models are expected to generalize effectively

throughout the Interior Low Plateaus and adjacent Appalachian Plateaus, based on shared terrain,
bedrock, and geomorphic processes. In contrast, the glaciated Central Lowlands and Coastal Plain

are

characterized by fundamentally different surficial processes and materials.

road embankments, building pads, quarries, and areas of significant topographic modifica-
tion. Often exhibits sharp, angular boundaries. The spatial extent of afl can be below the
mapping resolution and inconsistently captured on expert-curated surficial geologic maps.

2. Alluvium (Qal): Unconsolidated sediments, typically consisting of clay-, silt-, sand-, and
gravel-sized particles, deposited by modern rivers and streams. Qal is commonly found
in active floodplains and valley bottoms and reflects recent sedimentation from overbank
flooding and channel migration. These areas are generally flat, vegetated, and hydrologi-
cally dynamic.

3. Alluvial fans (Qaf): Fan-shaped deposits formed at the base of tributaries or drainages,
where sediment-laden water rapidly spreads and loses energy. These deposits are typically
coarse-grained, poorly sorted, and associated with debris flows or flash floods. Although
geologically significant, Qaf are often small, making them inconsistently represented on
typical 1:24,000-scale maps.

4. Terrace deposits (Qat): Relict alluvial sediments preserved on elevated flat surfaces above
modern stream channels. These deposits reflect former floodplain levels and subsequent
stream incision. Compositionally similar to Qal, but usually expressed as distinct landforms
above modern flood plains.

5. Colluvium (Qc): Hillslope-derived sediments that accumulate at the base of slopes due to
gravity-driven processes such as soil creep, slopewash, and shallow landslides. Qc deposits
are unsorted and variable in thickness, typically found on slopes > 12°. Qc is considered
an active geomorphic unit.

6. Colluvial aprons (Qca): Slope-derived material deposited across lower hillslopes. Qca typ-
ically occurs downslope from Qc and is more stable, having accumulated over longer time
periods. These deposits may be partially weathered, with poorly defined lower boundaries
that grade into Qr due to extended weathering and lower erosion rates.

7. Residuum (Qr): Weathered material formed in place from the physical, chemical, and bio-
logical breakdown of underlying bedrock or older unconsolidated deposits. Qr lacks signif-

16



Under review as a conference paper at ICLR 2026

T [ 7 PrE T
T = o ' iy I
2 \ 4’ i L ! §
> (ﬁ 5 :(H ( i G ",
g VAR5 B R
= | /7) : e ¢
Lo e N ! L iR 1 4 Wx & '
N \ /8
¢ e i
= e 2

aft Qal Qaf Qat Qc Qea ar 256x256 patch aft Qal Qaf Qe Qea ar 256x256 patch

(a) Surficial geologic map of part of Warren County. (b) Surficial geologic map of part of Hardin County.

Figure 4: Example surficial geologic maps showing the distribution of unconsolidated materials
overlaid on hillshade images to emphasize topographic context. The spatial correspondence between
SG map units and landscape features, such as valleys and slopes, is visually apparent. The black
grid indicates the layout of EarthScape patches, each measuring 256 x 256 pixels (390.14 x 390.14
m) with 50% overlap. Red squares in the upper left corners highlight a single patch

Table 2: Descriptions of surficial geologic units represented in EarthScape.

Class Name Dominant Process Visual Cues

afl Artificial fill Anthropogenic Sharp, angular edges; linear or rectilinear shapes;
DEM anomalies inconsistent with natural terrain.

Qal Alluvium Water-dominated Relatively wide, flat-bottomed valleys; active stream
channels; low relative elevations.

Qaf Alluvial fans Water-dominated (acute) Small, isolated, lobate landforms; located at slope-
base transitions.

Qat Terrace deposits ~ Water-dominated (relict) Flat benches above floodplains; stepped margins; of-
ten dissected.

Qc Colluvium Gravity-dominated (active) ~ Steep slopes (> 12°); may include landslides or ero-

sional hazards.

Qca  Colluvial aprons  Gravity-dominated (stable) ~Wedge-shaped landforms along slope bases with
concave profiles; transitional between slope and
plain.

Qr Residuum In-situ weathering Broad, low-relief uplands; little drainage or erosion;
variable surface texture.

icant sediment transportation and is commonly found in upland areas with minimal active
erosion. Qr is commonly gradational and poorly defined where it grades into Qc or Qca,
leading to interpretive ambiguity during mapping.

A.2.4 EARTHSCAPE MODALITIES

Figs. |§| and|§| showcase the diverse, multimodal data available for each of the 31,018 EarthScape
patches. Each patch includes 38 co-registered channels, comprising expert-labeled geologic masks,
high-resolution aerial RGB and NIR imagery, a DEM, terrain features derived from the DEM at
multiple spatial scales, and rasterized vector data representing hydrologic and infrastructure fea-
tures. Among these modalities, the DEM and its derived terrain features provide critical context for
understanding surface processes and interpreting surficial geologic units. Five terrain variables were
computed at six spatial scales to capture localized and regional landform variability.

1. Slope (S) is the first derivative of elevation, measuring the rate of change of elevation over
a horizontal distance. It quantifies the steepness of the terrain, providing insight into pro-
cesses like erosion and material movement.
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Where % and g—; are the partial derivatives of elevation in the x and y directions, respec-

tively.

2. Profile curvature (PrC) is a directional second derivative of elevation, measured along the
direction of the steepest slope. It quantifies how slope changes in that direction, reflecting
the acceleration or deceleration of flow, and influencing erosion and deposition patterns.

p2r + 2pqs + q2t
7+ )"

Where p = % and g = g—z are the first-order partial derivatives of elevation in the x and

PrC = “4)

. . 2 2 2 .
y directions, and r = %, s = BBT(S‘ZU’ and t = ng are the corresponding second-order
partial derivatives.

3. Planform curvature (PIC) is another directional second derivative of elevation, measured
perpendicular to the direction of the steepest slope. It describes the curvature of contour
lines (lines of equal elevation) and reflects how flow paths converge or diverge across the
landscape.

q27’ — 2pgs + p2t

IR OEE

&)

Where p = % and ¢ = g—z are the first-order partial derivatives of elevation in the x and
. : _ 822‘ _ 8%z _ 9%z :
y directions, and r = 5505 = Frog and t = g7 are the corresponding second-order

partial derivatives.

4. Elevation percentile (EP) measures the relative elevation of a point within a defined neigh-
borhood, expressed as a percentile rank (0—100%) of the elevation among neighboring
values. EP helps distinguish between landforms defined by relative topography, such as
ridges, valleys, or sinkholes.

{z: € Z | z; < z}
N
Where z is the elevation at the center cell, Z is the set of elevations in the neighborhood,

z; are the individual neighboring elevations, and NN is the total number of neighbors. The
numerator counts the number of neighbors with elevation less than z.

EP =100 - (6)

5. Standard deviation of slope (SDS) is a measure of roughness and quantifies the variability
in slope angle within a local window. SDS represents how rugged or uneven the surface
is, highlighting areas with complex topography that may correlate with diverse geologic
materials or processes.

1 & a2
SDS = NZ(SﬁS) (7)

i=1

Where S; is the slope angle (in degrees or radians) of the i*" cell in the neighborhood, S
is the mean slope within that neighborhood, and N is the total number of cells used in the
calculation window.
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Figure 5: Example patch from the Warren County area showcasing the 38 channels available in
EarthScape. Channels are displayed from top left to bottom right: target mask, RGB aerial imagery,
NIR aerial imagery, DEM, NHD hydrologic features, OSM infrastructure, six spatial scales of S,
PrC, and PIC derived from downsampled DEMs, and multiple scales of SDS and EP calculated
using six kernel sizes with the original DEM.
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SG Mask

Figure 6: Example patch from the Hardin County area showcasing the 38 channels available in
EarthScape. Channels are displayed from top left to bottom right: target mask, RGB aerial imagery,
NIR aerial imagery, DEM, NHD hydrologic features, OSM infrastructure, six spatial scales of S,
PrC, and PIC derived from downsampled DEMs, and multiple scales of SDS and EP calculated
using six kernel sizes with the original DEM.
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A.3 GEOSPATIAL PATCH SELECTION AND EXPERIMENTAL DESIGN

To ensure robust and geographically fair model evaluation, EarthScape patches were split into spa-
tially independent training, validation, and test sets. The Warren County region was used for in-
domain training and evaluation due to its broader spatial coverage and diversity of surficial geologic
units. We first randomly selected 1,536 test patches, followed by 768 validation patches that did not
spatially intersect with the test set, and then assigned the remaining 8,416 non-overlapping patches
to the training set (Fig. [7). These split sizes were chosen through iterative selection to satisfy several
practical constraints: (1) all splits had to be spatially non-overlapping; (2) patch counts needed to be
divisible by common batch sizes (e.g., 16 or 32) to support efficient model training; (3) the resulting
proportions had to be reasonably balanced and typical for supervised learning workflows (Table 3).

To assess geographic generalization, we created a cross-domain test set consisting of 1,536 ran-
domly selected patches from the Hardin County region (Fig. [7). Although geologically similar,
Hardin County is located approximately 85 km from Warren County and is spatially independent.
This separate region enables testing model performance under domain shift, simulating real-world
conditions in which models are applied beyond the area used for training.

Figure [8] shows the class distributions for each data split. All subsets reflect the inherent class
imbalance typical of surficial geologic mapping, driven by the localized nature of surface processes.
Importantly, the class distributions are consistent across the training, validation, and both test sets,
ensuring that evaluation performance is not biased by differences in class representation.

(a) Training, validation, and in-domain test patches from the Warren (b) Cross-domain test patches from
County region. the Hardin County region.

Figure 7: Spatial distribution of selected patches for EarthScape experiments. All splits are spatially
independent: no patch overlaps between splits, though patches within the same split may partially
overlap due to the 50% patch stride. See FigureElfor geographic locations.

Table 3: Patch counts and split proportions for training, validation, and testing based on the total
number of patches used for in-domain training and evaluation. An additional test set from the
spatially independent Hardin County region was used to assess cross-domain generalization.

Split Region  Patch Count (n) In-domain Proportion (%)
Training Warren 8,416 78.5

Validation Warren 768 7.2

In-domain Testing Warren 1,536 14.3
Cross-domain Testing  Hardin 1,536 -

A.4 HARDWARE AND TRAINING CONFIGURATION

All experiments were implemented in Python using the PyTorch framework. Models were trained
and evaluated on a machine equipped with an Intel Xeon processor, 128 GB of RAM, and two
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Figure 8: Class distribution and intra-patch composition across EarthScape data splits. Top row: Bar
plots showing the frequency of each surficial geologic unit in the training, validation, in-domain test,
and cross-domain test sets. Bottom row: Swarm plots overlaid with box plots showing the proportion
of each patch occupied by each class. All splits display consistent patterns in both overall frequency
and within-patch composition, supporting fair evaluation across subsets.

NVIDIA RTX A4000 GPUs. Initial training experiments were run for 25 epochs to observe con-
vergence behavior (Fig. ). Across all configurations, we found that model performance generally
stabilized within the first 10 epochs (Fig. [P). Based on these observations, we standardized all
subsequent experiments to 15 epochs, which provided a balance between sufficient training and
computational efficiency.
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(a) DEM model trained for 25 epochs. Early conver-
gence is evident by epoch 10, with decreased perfor-
mance thereafter.

(b) S (5) model trained for 15 epochs, demonstrating
stable convergence and alignment between training
and validation performance.

Figure 9: Training and validation loss and accuracy curves across epochs. Each subplot shows model
loss (left panel) and accuracy (right panel) behavior for a different input modality, with training
curves shown in blue and validation curves in orange.

A.5 FocAL Loss

To address the significant class imbalance in EarthScape, we adopted focal loss. Initial tuning was
conducted using the validation set and DEM modality only, a ResNeXt-50 backbone, the Adam
optimizer, and a fixed learning rate of 0.001 to explore the effects of focal loss parameters. We
evaluated values of v € 1.0, 1.5, 2.0, 2.5, 3.0 and tested several strategies for the class-balancing
factor (), including a fixed scalar (o« = 0.25), inverse class frequency (ICF), square root of ICF

(VICF), and class-balanced focal loss with 5 = 0.999 (CBFL) (Table E[) The combination of
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o = VICF and v = 2.0 yielded the best performance for the DEM-only configuration. However,
when this setting was applied to other modalities, training became unstable, and convergence was
inconsistent. To ensure comparability across all experiments and isolate the effects of modality and
fusion design, we adopted the original focal loss settings (o = 0.25, v = 2.0) for all remaining runs.

Table 4: Per-class and macro-averaged validation set F1 scores for different focal loss configurations
using the DEM modality and a ResNeXt-50 backbone. These results were used to guide focal loss
tuning, although the best-performing configuration did not generalize well across modalities. As a
result, we adopted o = 0.25, v = 2.0 for all subsequent experiments.

B , F1 AUC

afl Qal Qaf Qat Qc Qca Qr AVG. afl Qal Qaf Qat Qc Qca Qr AVG.
0.25 1 0743 0848 0.267 0436 0.899 0.778 0.968 0.706 0.861 0.862 0.907 0923 0.967 0923 0.937 0911
0.25 1.5 0726 0.855 0250 0.354 0914 0.751 0.968 0.688 0.866 0.874 0915 0.884 0.964 0909 0.932 0.906
0.25 2 0749 0841 0.229 0400 0914 0.778 0965 0.697 0.868 0.859 0.929 0919 0970 0929 0912 0912
0.25 2.5 0.690 0.866 0275 0387 0.895 0.767 0.971 0.693 0.844 0.887 0944 0.895 0.965 0920 0.945 0914
0.25 3 0709 0851 0267 0323 0.890 0.772 0970 0.683 0.853 0.863 0.895 0.890 0.962 0.925 0.924 0.902
ICF 1 0524 0804 0.204 039 0.831 0.640 0961 0.622 0.639 0.730 0921 0.851 0912 0828 0.851 0.819
ICF 2 059 0805 0.286 0314 0.839 0.687 0.961 0.641 0.731 0.737 0934 0.828 0916 0854 0.869 0.838
ICF 2.5 0589 0.799 0267 0326 0.843 0.671 0.962 0.637 0711 0.716 0923 0.838 0.919 0842 0.848 0.828
VICF 1  0.696 0845 0.286 0.348 0.879 0.763 0.965 0.683 0.843 0.867 0912 0905 0.955 0925 0.922 0.904
VICF 1.5 0.688 0.838 0.333 0.409 0.877 0.766 0974 0.698 0.834 0.844 0961 0909 0.951 0914 0.924 0.905
VICF 2 0726 0.841 0.444 0460 0905 0.749 0962 0.727 0.850 0.853 0945 0931 0961 0921 0913 0911
VICF 25 0.709 0.835 0293 0487 0901 0.760 0.963 0.707 0.849 0.844 0956 0.940 0.962 0926 0.893 0910
CBFL 1 0720 0.831 0412 0427 0893 0.733 0973 0.713 0.864 0.839 0965 0.903 0.962 0902 0.924 0.908
CBFL 1.5 0.715 0.841 0286 0412 0908 0.764 0.971 0.700 0.844 0.854 0940 0.906 0.971 0920 0.947 0912
CBFL 2 0727 0.866 0357 0455 0914 0.792 0.965 0.725 0.867 0.890 0918 0923 0971 0921 0914 0915
CBFL 25 0711 0.844 0455 0372 0911 0.753 0.968 0.716 0.846 0.857 0.970 0.908 0.967 0928 0.930 0.915

A.6 COMPREHENSIVE RESULTS
A.6.1 SINGLE MODALITY

Tables [5} [6] and [7] present single-modality results across F1, AUC, precision, recall, mAP, and
accuracy for both in-domain (Warren County) and cross-domain (Hardin County) test sets, using
ResNeXt-50 and ViT-B/16 backbones (see also Fig. [I0). Results highlight substantial performance
differences between modalities and backbones, particularly under domain shift.

Imagery-based models (RGB and NIR) degrade sharply when transferred across regions. For exam-
ple, RGB drops from 0.599 to 0.394 in macro-averaged F1 (Ap; = —0.205), with a corresponding
AUC decline of 0.258. NIR shows a smaller but still notable loss. In contrast, models trained on
DEM inputs retain more performance across domains, with only a 0.105 decline in F1 and a 0.153
decline in AUC.

Terrain features derived from the DEM consistently outperform both raw elevation and spectral
imagery in terms of accuracy and generalization. Among these, slope (S) and elevation percentile
(EP) stand out as the most informative and stable. For instance, S-5 achieves an in-domain F1
of 0.645 and a cross-domain F1 of 0.575 with ResNeXt-50, indicating strong transferability. EP-
51 provides high in-domain scores but suffers larger drops under domain shift, consistent with its
reliance on local elevation signatures. Standard deviation of slope (SDS) and, to a lesser extent,
curvature measures (PIC, PrC) also contribute, though curvature features remain weaker overall.

Backbone choice further influences performance. ResNeXt-50 generally achieves higher in-domain
scores, capturing localized patterns more effectively, whereas ViT-B/16 narrows the generalization
gap (e.g., AF1ly;7 = 0.018 vs. AF1gesnex: = 0.043). This suggests that convolutional back-
bones may better exploit site-specific features, while transformer backbones offer slightly greater
robustness in unfamiliar geologic settings.

A.6.2 MULTI-SCALE FUSION
Tables @ El, and [_115] present results for multi-scale fusion experiments across F1, AUC, precision,

recall, mAP, and accuracy, using both ResNeXt-50 and ViT-B/16 backbones. Two fusion strategies
were evaluated: early channel stacking and attention-based fusion.
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Figure 10: In-domain (blue) and cross-domain (orange, hatched) F1 scores for the top four models
for single-modality, multi-scale fusion, and multimodal fusion experiments. Rows show compar-
isons of ResNeXt-50 (top) vs. ViT-B/16 (bottom) backbones. Each subplot shows the four best-
performing models based on in-domain F1 scores. Cross-domain bars illustrate domain shift using
the same models selected based on in-domain performance. Model configurations are shown above
each group and indicate the input modality, or modality combination and fusion strategy.

Across nearly all configurations, early channel stacking consistently outperforms attention-based fu-
sion in in-domain performance and often improves generalization. For example, with ResNeXt-50
on EP, stacking increases in-domain F1 from 0.494 (attention-based) to 0.640, while cross-domain
results remain stable (0.426 vs. 0.425). Terrain features S and SDS achieve strong in-domain scores
(0.636-0.637) with comparatively small performance drops across domains (Ap; = 0.043-0.048),
underscoring their robustness. In contrast, curvature measures (P1C and PrC) remain weak perform-
ers, even with multi-scale inputs, reinforcing earlier findings that they are less discriminative in
isolation.

Results using the ViT-B/16 backbone largely mirror those of ResNeXt-50. Early stacking again
yields modest gains, but PrC emerges as a relative outlier: it performs best under ViT despite being
poor with ResNeXt. This contrast suggests that sensitivity to certain terrain features may depend
more on backbone architecture than on fusion strategy.

Overall, multi-scale fusion helps mitigate the limitations of single-resolution inputs, with early chan-
nel stacking proving to be the most reliable and effective strategy. Attention-based approaches fail
to match its simplicity and stability, highlighting the value of straightforward fusion mechanisms for
integrating information across spatial scales.

A.6.3 MULTIMODAL FUSION

Tableslm andﬂ}lpresent results for multimodal fusion experiments across F1, AUC, precision,
recall, mAP, and accuracy, using ResNeXt-50 and ViT-B/16 backbones. Four fusion strategies were
tested: early channel stacking, mid-level concatenation, and mid-level attention with either a shared
or separate encoder.
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Fusion strategy plays a critical role in shaping both peak performance and generalization. Early
channel stacking delivers the highest in-domain results (e.g., F1=0.657 with ResNeXt-50) but incurs
a moderate domain gap (AF'1 = 0.059). Mid-level attention with a shared encoder narrows this gap
(AF1 = 0.029) but at the cost of lower in-domain performance (F1=0.561). Mid-level concate-
nation provides the most balanced compromise, achieving moderate in-domain scores (F1=0.596)
with the smallest domain shift observed (AF'1 = 0.028). Overall, attention-based fusion underper-
forms compared to simpler strategies, suggesting that architectural sophistication does not necessar-
ily translate into better integration of geospatial modalities.

Backbone choice also influences outcomes. ResNeXt-50 generally provides a slight in-domain ad-
vantage over ViT-B/16 (e.g., 0.657 vs. 0.621), while ViT offers similar generalization. More impor-
tantly, modality selection has a larger effect than backbone choice. Pairing RGB and DEM produces
poor generalization, with domain gaps as large as AF'1 = 0.211. In contrast, engineered terrain
features (EP, S, and SDS) consistently yield the best overall results. Their multi-scale combination
achieves an in-domain F1 of 0.657 and reduces the cross-domain drop to just AF'1 = 0.059 (Fig.
[I0). Strong performance persists even with single-scale variants, underscoring the robustness of
shape-centric terrain features relative to raw elevation or spectral imagery.

While strong single-modality models exist, multimodal fusion offers slight gains in peak accuracy
and, more importantly, substantially improves generalization to unseen regions. These results em-
phasize the importance of shape-based terrain features and demonstrate that simple, well-chosen
fusion strategies can outperform more complex attention mechanisms for multimodal geospatial
learning.

A.6.4 CLASS-LEVEL TRENDS

Class-wise AUC analysis across backbones and fusion strategies reveals broadly consistent pat-
terns for both ResNeXt-50 and ViT-B/16 (Fig. [[1} Tables[I4] [I5). Units such as Qc, Qca, and Qr
consistently achieve the highest discriminability, whereas Qal, Qat, and Qaf are more challenging.
Single-modality models typically yield the best in-domain scores but are more sensitive to domain
shift. Multi-scale and multimodal fusions generally reduce this gap, though sometimes at the cost of
peak in-domain performance. Interestingly, several units perform better in cross-domain testing than
in-domain, suggesting that the training region (Warren County) may be geomorphologically more
complex than the test region (Hardin County), or that models learn transferable representations de-
spite this complexity.

Preferred modalities vary by class and backbone. For ResNeXt, most classes favor slope (S), but
at different scales. For example, afl and Qal perform best with S at 1.52 m GSD, Qat favors EP
at the smallest kernel size (consistent with its position above floodplains), and Qc/Qca prefer S,
though Qca benefits from a coarser 30.48 m GSD, reflecting its broader morphology. Qr also prefers
S, aligning with its expression as a low-relief deposit. Qaf is an exception, performing best with
PIC at 60.96 m GSD, possibly because large-scale curvature helps identify depositional fans in their
broader geomorphic context. With ViT-B/16, af1, Qal, and Qat favor EP, Qaf performs best with S
at 15.24 m GSD, Qc and Qca again prefer S at varying scales, and Qr shows a unique preference for
PrC, consistent with its occurrence in relatively flat terrain.

Multimodal models reinforce the importance of terrain-based features. With ResNeXt, nearly all
classes perform best with EP+S+SDS, with the exception of Qca, which benefits from including
RGB and DEM. Although Qca is typically slope-derived and not visually distinct, the added value
of RGB may reflect incidental correlations with infrastructure or vegetation patterns. ViT-based mul-
timodal models were tested on fewer configurations but reveal similar trends: afl and Qat perform
best with RGB+DEM, reflecting their distinctive visual patterns and human modification, while the
other five classes favor EP+S+SDS.

Overall, these results highlight the complexity of class-specific modality preferences. Optimal con-
figurations vary by unit, backbone, and fusion strategy, reflecting differences in geomorphic expres-
sion and internal variability. While no single input or fusion method works best for all classes,
shape-derived terrain features (EP, S, and SDS) emerge as consistently strong predictors of unit
separability.

25



Under review as a conference paper at ICLR 2026

L Single Modality Multi-scale . Multimodal
0 EP-51 o | EP-ms (s1) m | EP-ms+S-ms+sps-ms(sy [/ =
0.8 = *7 L 5 1 ] Mo - -
N I T 7 5
§ | N bl 04 - V- E
041 v 1V V] V
] g AL c
0.2 ¥
V1 VI
0
1.04 —7] —7
s-3 o SDS-ms (S) Mz EP-5+5-1.5+SDS-5 (St) .
J - - — i
0.8 == RN E = - b M 7
J _ L . L L e L
0.6 g %
§ 1 r] ) 1% mZmne =
0.4 % Lo - RIS % V.. >
A I/ 4
0.2 o4+ A SR
0- = |
afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr

Figure 11: In-domain (solid) and cross-domain (hatched) class-wise AUC scores for the single best-
performing models across different experiment types and backbone architectures. Rows show com-
parisons of ResNeXt-50 (top) vs. ViT-B/16 (bottom) backbones. Each subplot shows the best-
performing model based on in-domain F1 scores. Cross-domain bars illustrate domain shift using
the same model selected based on in-domain performance. Model configurations are shown above
each group and indicate the input modality, or modality combination and fusion strategy.

A.6.5 COMPARISONS WITH EXISTING MODELS

We conducted exploratory experiments with recent multimodal foundation models, including Sat-
MAE (Cong et al., [2022), SatMAE++ (Noman et al., |2024)), DOFA (Xiong et al.,|2024)), and Panop-
ticon (Waldmann et al., 2025)). These models were developed for grouped multispectral or multi-
sensor satellite imagery and are not natively configured to handle LiDAR-derived terrain features
at multiple spatial scales. Our goal was not exhaustive hyperparameter optimization, but rather to
provide indicative baselines for how existing large-scale models perform on EarthScape. We present
these comparisons as exploratory and encourage future work on adapting foundation models to the
challenges highlighted by EarthScape.

Following the grouping strategy of SatMAE and SatMAE++, we organized EarthScape modalities
into three groups: (1) RGB + DEM, (2) elevation percentile (EP) at four scales (5, 51, 101, 201),
and (3) slope (S-5) and standard deviation of slope (SDS-5). This configuration included ten modal-
ities drawn from the strongest single-modality performers. Both SatMAE and SatMAE++ were
fine-tuned on the same training, validation, and testing splits used in our main experiments. Despite
achieving competitive in-domain macro F1 scores of 0.614 and 0.656, respectively, cross-domain
performance dropped sharply to 0.427 and 0.454 (Table[T6)), underscoring the difficulty of transfer-
ring pretrained representations designed for spectral imagery to geologically diverse terrain settings.

We also evaluated DOFA and Panopticon, two transformer-based foundation models for multimodal
Earth observation. Both underperformed SGMap-Net across in-domain and cross-domain tests,
reflecting the limitations of imagery-centric architectures when applied to tasks dominated by terrain
derivatives.

For comparison, our best SGMap-Net variants consistently outperformed these foundation models
in both in-domain and cross-domain settings, illustrating the strong generalization of shape-centric
features. While masked autoencoder and foundation model architectures remain promising for Earth
observation, their robustness does not readily transfer to surface-process analyses without geologi-
cally informed modality design and fusion strategies.
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Table 5: Macro-averaged F1 and AUC for single modality models on in-domain (WC) and cross-
domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones. WC-HC
differences (A) are also shown. The best and second-best scores in each column are indicated in
bold and underlined, respectively.

Model F1 (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)
WC HC A wC HC A wC HC A wC HC A

DEM 0.632 0527 0.105 0.618 0512 0.237 0.883 0.730 0.153 0.857 0.620 0.237
RGB 0.599 0394 0.205 0.579 0332 0.267 0.815 0.557 0.258 0.793 0.526  0.267
NIR 0.613 0.468 0.145 0.579 0275 0.274 0.815 0.650 0.166 0.784 0.509 0.274
NHD 0.515 0.434 0.081 0.492 0428 0.064 0.659 0576 0.083 0.496 0509 -0.013
OSM 0.530 0.463 0.067 0.500 0.428 0.072 0.653 0.587 0.066 0.545 0513 0.032
EP-5 0.648 0357 0.291 0.614 0518 0.117 0.872  0.582 0.290 0.854 0.738 0.117
EP-11 0.639 0425 0214 0.603 0519 0.082 0.879 0.675 0.203 0.850 0.768 0.082
EP-21 0.645 0.384 0.261 0.608 0.503 0.079 0.877 0.695 0.183 0.838 0.759  0.079
EP-51 0.651 0380 0.271 0.604 0.489 0.078 0.876 0.663 0.213 0.835 0.757 0.078
EP-101 0.619 0476 0.143 0.589 0477 0.075 0.857 0.739 0.118 0.819 0.744  0.075
EP-201 0.610 0391 0.219 0.584 0.472 0.062 0.869 0.724  0.145 0.799 0.737  0.062
PIC-1.5 0491 0425 0.066 0.517 0452 0.013 0.514 0513  0.001 0.603 0.590 0.013
PIC-3 0.494 0.426 0.068 0.524 0457 0.007 0.501 0.500 0.001 0.621 0.614  0.007
PIC-6 0.495 0.425 0.070 0.513 0.453  0.005 0.488 0.485 0.002 0.632  0.627  0.005
PIC-15 0.488 0.425 0.063 0.495 0426 0.016 0.472 0459 0.013 0.560 0.544 0.016
PIC-30 0.488 0.420 0.068 0.484 0.422 -0.008 0511 0470 0.041 0.532  0.540 -0.008
PIC-60 0.488 0.433 0.055 0.495 0427 -0.039 0474 0528 -0.054 0.500 0.539 -0.039
PrC-1.5 0493 0433 0.060 0.494 0426 -0.039 0.554 0516 0.038 0.407 0.446 -0.039
PrC-3 0.492 0421 0.071 0.497 0425 0.023 0.486 0.520 -0.034 0.517 0.493 0.023
PrC-6 0.496 0.415 0.081 0.495 0426 -0.055 0.508 0.463 0.046 0.389 0.444 -0.055
PrC-15 0.492 0417 0.074 0.494 0426 -0.022 0.440 0398 0.042 0.466 0.487 -0.022
PrC-30 0.510 0.418 0.092 0.540 0431 0.035 0.553 0.491 0.062 0.613 0578 0.035
PrC-60 0.495 0425 0.071 0.549 0.431 0.028 0.417 0.428 -0.011 0.626 0.599 0.028
S-1.5 0.645 0.575 0.070 0.623 0.552 0.093 0.876  0.808 0.068 0.855 0.762  0.093
S-3 0.619 0.570 0.049 0.647 0551 0.127 0.875 0.779  0.096 0.841 0.713 0.127
S-6 0.617 0555 0.061 0.614 0.555 0.102 0.861 0.804 0.057 0.833 0.731 0.102
S-15 0.612 0537 0.075 0.600 0.554 0.081 0.841 0.744  0.096 0.812 0.731 0.081
S-30 0.594 0536 0.058 0.578 0.528 0.061 0.811 0.710 0.102 0.765 0.705 0.061
S-60 0.543 0.485 0.058 0.578 0.514 0.093 0.601 0578 0.023 0.770  0.676  0.093
SDS-5 0.613 0.567 0.045 0.569 0513 0.072 0.850 0.804 0.046 0.786 0.713  0.072
SDS-11 ~ 0.631 0.575 0.056 0.599 0.543 0.080 0.846 0.786  0.061 0.803 0.723  0.080
SDS-21  0.633 0.573 0.060 0.591 0552 0.074 0.854 0.786  0.067 0.809 0.735 0.074
SDS-51  0.603 0.533 0.069 0.554 0.536  0.038 0.841 0.746  0.095 0.727  0.689  0.038
SDS-101  0.611 0.571  0.040 0.535 0502 0.037 0.848 0.756  0.092 0.718 0.681 0.037
SDS-201 0.613  0.527 0.086 0.548 0.508 0.064 0.837 0.713 0.124 0.735 0.671  0.064
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Table 6: Macro-averaged precision and recall for single modality models on in-domain (WC)
and cross-domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones.
WC-HC differences (A) are also shown. The best and second-best scores in each column are indi-
cated in bold and underlined, respectively.

Model Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)
wC HC A wC HC A wC HC A wcC HC A

DEM 0.621 0.460 0.161 0.551 0432 0.125 0.661 0.653  0.008 0.800 0.674 0.125
RGB 0.553 0405 0.148 0.522  0.296 0.235 0.672 0418 0.254 0.664 0429 0235
NIR 0.564 0.486 0.078 0.521 0.273 0.384 0.698 0.514 0.184 0.668 0.284 0.384
NHD 0419 0.353 0.066 0.390 0.334 0.056 0.725 0.691 0.034 0.857 0.881 -0.024
OSM 0.442 0373 0.069 0.395 0.334 0.061 0.846 0.853 -0.007 0971 0949 0.022
EP-5 0.617 0450 0.167 0.556 0452 0.112 0.706 0.333  0.373 0.733  0.621 0.112
EP-11 0.602 0474 0.128 0.552  0.449 0.060 0.748 0.428 0.320 0.690 0.631 0.060
EP-21 0.629 0.455 0.173 0.548 0.435 0.089 0.737 0416 0.321 0.706 0.617 0.089
EP-51 0.612 0.382 0.230 0.565 0.440 0.087 0.705 0.389 0.316 0.664 0.577 0.087
EP-101 0.570 0.480 0.090 0.539 0.421 0.102 0.727 0.551 0.176 0.674 0.572 0.102
EP-201 0.593 0465 0.127 0.520 0425 0.092 0.634 0.364 0.270 0.707 0.615 0.092
PIC-1.5 0.390 0.333 0.057 0419 0.359 0.078 0.837 0.829 0.007 0.806 0.728 0.078
PIC-3 0.391 0.333  0.059 0.432 0.370 0.119 1.000 1.000 0.000 0.871 0.752 0.119
PIC-6 0.393  0.333  0.060 0429 0.365 0.052 0.892 0.889 0.003 0.853 0.801 0.052
PIC-30 0.390 0.332  0.058 0.392  0.334 -0.045 0.856 0.809 0.047 0.795 0.840 -0.045
PIC-15 0.390 0.334 0.057 0.403 0.338 -0.029 0.823 0.834 -0.010 0.765 0.794 -0.029
PIC-60 0.389 0.337 0.052 0.393  0.335 -0.022 0.842 0.921 -0.079 0.973 0.995 -0.022
PrC-1.5  0.392 0.341 0.052 0.391 0.333  0.000 0.967 0.946 0.021 1.000 1.000 0.000
PrC-3 0.394 0335 0.059 0.406 0.336  0.000 0.819 0.853 -0.034 0919 0919 0.000
PrC-6 0.396 0.328 0.068 0.392 0.333 -0.001 0.739 0.719 0.020 0.997 0.998 -0.001
PrC-15 0.392 0331 0.061 0.391 0.333  0.000 0.759 0.718 0.041 1.000 1.000 0.000
PrC-30 0.430 0.337 0.092 0.456 0.348 0.074 0.679 0.639 0.040 0.731 0.657 0.074
PrC-60 0.392 0.332  0.060 0.464 0.350 0.100 0.896 0.854 0.042 0.748 0.648 0.100
S-1.5 0.616 0.506 0.110 0.578 0.489 0.051 0.681 0.687 -0.006 0.726 0.674 0.051
S-3 0.590 0.507 0.084 0.614 0.490 0.041 0.654 0.662 -0.009 0.693 0.653 0.041
S-6 0.592 0497 0.095 0.553 0491 0.072 0.670 0.671 0.001 0.791 0.720 0.072
S-15 0.550 0478 0.072 0.537 0.484 -0.027 0.749 0.664 0.085 0.774 0.801 -0.027
S-30 0.523 0.464 0.059 0.508 0.464 0.054 0.744  0.679 0.065 0.717 0.663 0.054
S-60 0.469 0.409 0.060 0.500 0.436 0.064 0.697 0.651 0.047 0.736 0.672 0.064
SDS-5 0.580 0.487 0.093 0.518 0435 -0.025 0.661 0.707 -0.047 0.641 0.666 -0.025
SDS-11 0.596 0.499 0.097 0.545 0460 0.084 0.689 0.698 -0.008 0.769 0.685 0.084
SDS-21 0.578 0.486 0.092 0.529 0.469 -0.006 0.768 0.740 0.027 0.690 0.696 -0.006
SDS-51 0.578 0471 0.108 0482 0443 0.022 0.638 0.646 -0.008 0.740 0.718 0.022
SDS-101  0.566 0.490 0.075 0.459 0.409 -0.009 0.775 0.716  0.058 0.710 0.719 -0.009
SDS-201  0.558 0.452 0.107 0.459 0411 0.044 0.709 0.660 0.048 0.796 0.752  0.044
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Table 7: Mean average precision (mAP) and macro-averaged accuracy for single modality models
on in-domain (WC) and cross-domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-
B/16 backbones. WC-HC differences (A) are also shown. The best and second-best scores in each
column are indicated in bold and underlined, respectively.

Model mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)
wC HC A wC HC A wC HC A wcC HC A

DEM 0.554 0442 0.111 0.516 0431 0.022 0.873 0.827 0.046 0.808 0.785 0.022
RGB 0.509 0.367 0.143 0.489 0.336 0.109 0.832 0.781 0.051 0.815 0.706  0.109
NIR 0.513 0387 0.125 0.485 0.337 0.020 0.833  0.809 0.025 0.812 0.792 0.020
NHD 0.403 0.339 0.064 0.391 0.333  0.058 0.682 0.634 0.048 0.523 0468 0.055
OSM 0435 0.367 0.068 0.395 0.334 0.061 0.647 0.548 0.099 0.545 0406 0.139
EP-5 0.549 0385 0.164 0.516 0417 0.019 0.858 0.831 0.026 0.829 0.810 0.019
EP-11 0.551 0.397 0.154 0.510 0.409 0.024 0.854 0.832 0.022 0.829 0.805 0.024
EP-21 0.565 0.386 0.179 0.504 0.398 0.029 0.860 0.828 0.031 0.827 0.798 0.029
EP-51 0.546 0.377 0.169 0.507 0.395 0.034 0.862 0.818 0.044 0.837 0.803 0.034
EP-101 0.528 0.401 0.128 0.500 0.385 0.034 0.835 0.812 0.024 0.818 0.784 0.034
EP-201 0.535 0381 0.154 0476 0.367 0.041 0.858 0.838 0.019 0.791 0.750 0.041
PIC-1.5 0.391 0.333 0.058 0411 0.354 0015 0.551 0.502 0.049 0.643 0.628 0.015
PIC-3 0.391 0.333  0.059 0418 0.353  0.005 0.392  0.333  0.059 0.631 0.626  0.005
PIC-6 0.393  0.333  0.060 0416 0.353 -0.001 0.494 0452 0.043 0.617 0.619 -0.001
PIC-15 0.391 0.334 0.057 0.397 0.335 0.053 0.533 0.482 0.051 0.644 0.591 0.053
PIC-30 0.392 0333 0.059 0.392  0.334 0.064 0.524 0467 0.057 0.586 0.521 0.064
PIC-60 0.390 0.335 0.055 0.393 0.335 0.062 0.525 0471 0.054 0.456 0.395 0.062
PrC-1.5  0.392 0.340 0.052 0.391 0.333  0.059 0.411 0.402 0.009 0.392 0.333  0.059
PrC-3 0.393 0.332 0.060 0.400 0.334 0.051 0.527 0.466 0.061 0452 0401 0.051
PrC-6 0.392  0.333  0.059 0.392  0.333  0.062 0.645 0.581 0.064 0.395 0.334 0.062
PrC-15 0.393 0334 0.059 0.391 0.333  0.059 0.644 0.591 0.054 0.392  0.333  0.059
PrC-30 0.406 0.339 0.067 0431 0.345 0.055 0.714 0.674 0.040 0.726  0.671 0.055
PrC-60 0.392 0333 0.059 0433 0.345 0.045 0.510 0463 0.047 0.723  0.677 0.045
S-1.5 0.552 0468 0.084 0.525 0456 0.021 0.871 0.848 0.023 0.840 0.819 0.021
S-3 0.543 0472 0.071 0.542 0465 0.025 0.867 0.852 0.015 0.850 0.825 0.025
S-6 0.539 0463 0.077 0.523 0.466 0.019 0.857 0.844 0.013 0.812 0.793 0.019
S-15 0.517 0455 0.062 0.506 0.463 0.012 0.807 0.799 0.008 0.794 0.781 0.012
S-30 0.501 0.447 0.053 0.485 0452 -0.001 0.793 0.784  0.009 0.792  0.793 -0.001
S-60 0.450 0.398 0.052 0.481 0435 0.003 0.742 0.752 -0.010 0.784 0.780 0.003
SDS-5 0.527 0459 0.068 0.484 0420 0.011 0.853 0.833 0.020 0.820 0.809 0.011
SDS-11 0.533  0.466 0.068 0.504 0434 0.011 0.850 0.839 0.011 0.806 0.795 0.011
SDS-21 0.531 0454 0.078 0.491 0435 0.007 0.836 0.819 0.017 0.816 0.809 0.007
SDS-51 0.529 0436 0.093 0459 0418 0.002 0.855 0.824 0.031 0.754 0.752  0.002
SDS-101  0.525 0.461 0.064 0.448 0.400 -0.017 0.820 0.808 0.012 0.734 0.751 -0.017
SDS-201  0.520 0.427 0.093 0.446 0.402 -0.019 0.834 0.805 0.030 0.710 0.729 -0.019
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Table 8: Macro-averaged F1 and AUC for multi-scale fusion models on in-domain (WC) and cross-
domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones under two
fusion strategies: channel stacking of input features (St) and cross-attention with a shared encoder
(A1). WC-HC differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Model FI (ResNeXt) F1 (ViT) AUC (ResNeX(t) AUC (ViT)
WC HC A wC HC A wWC HC A WC  HC A
EP-ms(St)  0.640 0425 0215 0.566 0.458 0.108 0.862 0717 0.145 0756 0.693 0.063
PIC-ms (St) 0490 0426 0.063 0493 0429 0.063 0.525 0.521 0.004 0.511 0536 -0.026
PrC-ms(St) 0519 0441 0.078 0.596 0.501 0.095 0.579 0497 0.082 0.816 0.727 0.089
S-ms (St) 0.637 0.594 0.043 0.593 0.533  0.061 0.864 0.804 0.061 0798 0.705 0.093
SDS-ms (St)  0.636 0.588 0.048 0.619 0571 0.048 0.878 0.792 0.086 0.672 0.644 0.028
EP-ms(Al) 0494 0426 0.068 0.561 0445 0.117 0.500 0.500 0.000 0759 0.664 0.095
PIC-ms (A1)  0.494 0426 0.068 0.505 0.435 0.070 0.500  0.500  0.000 0.578 0.581 -0.003
PrC-ms (Al) 0494 0426 0.068 0.531 0410 0.121 0.500  0.500  0.000 0.594 0562 0.032
S-ms (A1) 0494 0426 0.068 0.557 0519 0.038 0.500 0.500 0.000 0.615 0594 0.021
SDS-ms (A1) 0.493 0451 0.042 0494 0426  0.068 0.618 0.618 0.001 0.500 0.500  0.000

Table 9: Macro-averaged precision and recall for multi-scale fusion models on in-domain (WC)
and cross-domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under two fusion strategies: channel stacking of input features (St) and cross-attention with a shared
encoder (Al). WC-HC differences (A) are also shown. The best and second-best scores in each
column are indicated in bold and underlined, respectively.

Model Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)
wcC HC A wC HC A wcC HC A wC HC A

EP-ms (St) 0.606 0.556 0.051 0.493 0.380 0.112 0.703 0.426 0.277 0.712 0.636  0.076
PIC-ms (St) 0.391 0.335 0.056 0.391 0.335 0.056 0.738 0.738  0.000 0.872  0.940 -0.067
PrC-ms (St) 0.429 0.353 0.076 0.530 0.435 0.095 0.697 0.694 0.003 0.743 0.642 0.101
S-ms (St) 0.607 0.535 0.072 0.525 0.455 0.070 0.730 0.682 0.047 0.714 0.681 0.033
SDS-ms (St)  0.588 0.509 0.079 0.575 0.472 0.103 0.742 0.729 0.013 0.675 0.674 0.001
EP-ms (Al) 0.391 0.333 0.059 0.483 0.375 0.108 1.000 1.000 0.000 0.700 0.612  0.088
PIC-ms (A1)  0.391 0.333 0.059 0.405 0.341 0.064 1.000 1.000 0.000 0.874 0.868 0.006
PrC-ms (A1) 0.391 0.333 0.059 0.431 0.325 0.106 1.000 1.000 0.000 0.738 0.678  0.060
S-ms (A1) 0.391 0.333 0.058 0.489 0.440 0.049 1.000 1.000 0.000 0.745 0.688  0.057
SDS-ms (A1) 0.432 0.380 0.052 0.391 0.332  0.057 0.801 0.748 0.053 1.000 1.000 0.000

Table 10: Mean average precision (mAP) and macro-averaged accuracy for multi-scale fusion mod-
els on in-domain (WC) and cross-domain (HC) test sets. Results are reported for ResNeXt-50 and
ViT-B/16 backbones under two fusion strategies: channel stacking of input features (St) and cross-
attention with a shared encoder (A1). WC-HC differences (A) are also shown. The best and second-
best scores in each column are indicated in bold and underlined, respectively.

Model mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)
wC HC A wC HC A wcC HC A WC HC A

EP-ms (St) 0.555 0.403 0.152 0.460 0.360 0.099 0.865 0.828 0.037 0.774 0.724  0.050
PIC-ms (St) 0.392 0.335 0.057 0.392  0.335 0.057 0.634 0.588 0.046 0.534 0465 0.069
PrC-ms (St) 0416 0.348 0.069 0.504 0.423 0.081 0.717  0.666  0.051 0.794 0.768  0.027
S-ms (St) 0.557 0.491 0.066 0.498 0.453 0.045 0.856 0.860 -0.004 0.810 0.803 0.006
SDS-ms (St)  0.540 0.470 0.070 0.522 0447 0.075 0.846 0.839 0.007 0.851 0.826 0.025
EP-ms (Al) 0.391 0.333  0.059 0.450 0.362 0.088 0.391 0.333  0.059 0.766  0.727  0.039
PIC-ms (A1) 0.391 0.333 0.059 0.401 0.338 0.062 0.391 0.333  0.059 0.598 0.541 0.057
PrC-ms (A1) 0391 0.333 0.059 0.407 0.333 0.074 0.391 0.333  0.059 0.691 0.625 0.065
S-ms (A1) 0.391 0.333  0.058 0472 0434 0.038 0.391 0.333  0.059 0.742  0.747 -0.005
SDS-ms (A1) 0416 0.357 0.059 0.391 0.333 0.058 0.630 0.666 -0.036 0.391 0.333  0.058
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Table 11: Macro-averaged F1 and AUC for multimodal fusion models on in-domain (WC) and cross-
domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones under four
fusion strategies: channel stacking of input features (St), concatenation of modality embeddings
(C), cross-attention with a shared encoder (A1), and cross-attention with separate encoders (A2).
WC-HC differences (A) are also shown. The best and second-best scores in each column are indi-
cated in bold and underlined, respectively.

Model F1 (ResNeXt) F1 (ViT) AUC (ResNeXt) AUC (ViT)
wC HC A wC HC A wC HC A wC HC A

EP-ms+S-ms+SDS-ms (St) 0.657 0.598 0.059 0.621  0.569 0.053 0.882 0.806 0.076 0.860 0.774 0.086
EP-5+S-1.5+SDS-5 (St) 0.641 0.568 0.073 0.657 0.566 0.092 0.848 0.812 0.036 0.712  0.664 0.048
EP-201+S-60+SDS-201 (St) 0.626 0.582 0.045 0.622 0.544 0.078 0.885 0.812 0.073 0.695 0.631 0.064
EP-ms+S-ms+SDS-ms (C) 0.596 0.569 0.028 0.613 0.532 0.081 0.829 0.750  0.079 0.686 0.622 0.064
RGB+DEM (C) 0.600 0.389 0.211 0.614 0.503 0.111 0.808 0.535 0.273 0.870 0.721 0.149
RGB+DEM+EP-ms+S-ms+SDS-ms (C)  0.618  0.543  0.074 0.621 0.528 0.093 0.858 0.739 0.118 0.735 0.615 0.120
EP-ms+S-ms+SDS-ms (A1) 0.561 0.532  0.029 0.567 0.538 0.029 0.677 0.707 -0.030 0.776  0.678  0.098
RGB+DEM (Al) 0.551 0457 0.094 0.575 0.404 0.171 0.714 0.552  0.163 0.787 0.622 0.165
EP-ms+S-ms+SDS-ms (A2) 0.561 0.532 0.029 0.496 0425 0.071 0.677 0.707 -0.030 0.523  0.480 0.043
RGB+DEM (A2) 0.559 0474 0.085 0.581 0.464 0.118 0.763 0.641 0.122 0.810 0.724 0.085
RGB+DEM+EP-ms+S-ms+SDS-ms (A2)  0.494 0.426 0.068 0.520 0.457 0.063 0.500 0.500  0.000 0.572 0511 0.061

Table 12: Macro-averaged precision and recall for multimodal fusion models on in-domain (WC)
and cross-domain (HC) test sets. Results are reported for ResNeXt-50 and ViT-B/16 backbones
under four fusion strategies: channel stacking of input features (St), concatenation of modality em-
beddings (C), cross-attention with a shared encoder (A1), and cross-attention with separate encoders
(A2). WC-HC differences (A) are also shown. The best and second-best scores in each column are
indicated in bold and underlined, respectively.

Model Precision (ResNeXt) Precision (ViT) Recall (ResNeXt) Recall (ViT)
wC HC A wC HC A wC HC A wC HC A

EP-ms+S-ms+SDS-ms (St) 0.626  0.546 0.080 0.568 0491 0.077 0.735 0.666 0.068 0.761 0.711  0.050
EP-5+S-1.5+SDS-5 (St) 0.606 0.531 0.074 0.604 0482 0.122 0.697 0.623 0.074 0.731 0.708  0.023
EP-201+S-60+SDS-201 (St) 0.588 0.529 0.059 0.579 0.499 0.080 0.721 0.674 0.048 0.686 0.610 0.076
EP-ms+S-ms+SDS-ms (C) 0.542  0.529 0.013 0.541 0456 0.085 0.694 0.640 0.054 0.752  0.671  0.081
RGB+DEM (C) 0.537 0.373  0.163 0.558 0.420 0.137 0.715 0437 0.278 0.706  0.661  0.045
RGB+DEM+EP-ms+S-ms+SDS-ms (C) ~ 0.563  0.496  0.067 0.574 0.485 0.090 0.740 0.644 0.096 0.621 0.622 -0.001
EP-ms+S-ms+SDS-ms (Al) 0.487 0451 0.036 0.507 0.466 0.041 0.734 0.723 0.011 0.752  0.693  0.059
RGB+DEM (Al) 0.495 0.445 0.050 0.515 0.387 0.129 0.647 0.555 0.092 0.686 0.582 0.105
EP-ms+S-ms+SDS-ms (A2) 0.487 0451 0.036 0.392  0.332  0.060 0.734  0.723 0.011 0.984 0.889 0.095
RGB+DEM (A2) 0498 0411 0.087 0.513 0434 0.079 0.656  0.595 0.061 0.720 0.607 0.113
RGB+DEM+EP-ms+S-ms+SDS-ms (A2)  0.391 0.333  0.059 0.448 0420 0.028 1.000 1.000 0.000 0.873 0.689 0.184

Table 13: Mean average precision (mAP) and macro-averaged accuracy for multimodal fusion mod-
els on in-domain (WC) and cross-domain (HC) test sets. Results are reported for ResNeXt-50 and
ViT-B/16 backbones under four fusion strategies: channel stacking of input features (St), concate-
nation of modality embeddings (C), cross-attention with a shared encoder (A1), and cross-attention
with separate encoders (A2). WC-HC differences (A) are also shown. The best and second-best
scores in each column are indicated in bold and underlined, respectively.

Model mAP (ResNeXt) mAP (ViT) Accuracy (ResNeXt) Accuracy (ViT)
wC HC A wC HC A wC HC A wC HC A

EP-ms+S-ms+SDS-ms (St) 0.571 0495 0.076 0.534  0.463 0.070 0.875 0.867 0.008 0.834 0.823 0.011
EP-5+S-1.5+SDS-5 (St) 0.551 0471 0.080 0.540 0461 0.079 0.865 0.856 0.009 0.712  0.664 0.048
EP-201+S-60+SDS-201 (St) 0.552 0.480 0.072 0.532  0.468 0.064 0.858 0.852  0.006 0.851 0.840 0.011
EP-ms+S-ms+SDS-ms (C) 0.505 0.451 0.053 0.508 0.450 0.058 0.822 0.836  -0.015 0.817 0.806 0.011
RGB+DEM (C) 0.495 0.360 0.135 0.524 0415 0.109 0.815 0.809 0.007 0.838 0.796 0.042
RGB+DEM+EP-ms+S-ms+SDS-ms (C) ~ 0.525 0.458  0.067 0.537 0.449 0.088 0.833  0.805 0.028 0.827 0.824  0.003
EP-ms+S-ms+SDS-ms (A1) 0.474 0442  0.033 0.488 0.456 0.032 0.747 0.758 -0.011 0.750 0.752  -0.002
RGB+DEM (A1) 0.459 0.389 0.070 0.478 0.360 0.118 0.784 0.776  0.008 0.799 0.745 0.054
EP-ms+S-ms+SDS-ms (A2) 0.474 0442 0.033 0392 0.333  0.059 0.747 0.758 -0.011 0.452 0402 0.050
RGB+DEM (A2) 0.464 0.389 0.075 0.486 0.388 0.098 0.795 0.793  0.002 0.795 0.775 0.020
RGB+DEM+EP-ms+S-ms+SDS-ms (A2)  0.391 0.333  0.059 0422 0.368 0.054 0391 0.333  0.059 0.603  0.620 -0.017
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Table 14: Class-wise AUC scores for in-domain (Warren County region) performance across single-
modality, multi-scale fusion, and multimodal fusion models. Results are reported for ResNeXt-
50 and ViT-B/16 backbones under four fusion strategies: channel stacking of input features (St),
concatenation of modality embeddings (C), cross-attention with a shared encoder (A1), and cross-
attention with separate encoders (A2). The best and second-best scores in each column are indicated
in bold and underlined, respectively.

ResNeXt ViT

Model

afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr
DEM 0.845 0.832 0.820 0.887 0.964 0.922 0.910 0.663 0.771 0926 0.871 0.956 0.923 0.888
RGB 0.834 0.713 0.684 0.815 0912 0.857 0.886 0.816 0.679 0.744 0.780 0.891 0.834 0.805
NIR 0.816 0.698 0.782 0.793 0.907 0.866 0.842 0.760 0.664 0.797 0.799 0.886 0.816 0.763
NHD 0.549 0.655 0.682 0.782 0.618 0.630 0.697 0.497 0571 0.441 0.354 0.506 0.502 0.505
OSM 0.807 0.586 0.702 0.586 0.708 0.627 0.557 0.505 0.484 0.693 0.606 0.5 0513 0487
EP-5 0.837 0.805 0.845 0.845 0.947 0.905 0.920 0.791 0.783 0.838 0.865 0.914 0.885 0.903
EP-11 0.868 0816 0.833 0.888 0.936 0.905 0.902 0.778 0.781 0.834 0.882 0.891 0.889 0.898
EP-21 0.856 0.807 0.842 0.883 0.945 0.908 0.900 0.783 0.776  0.799 0.858 0.888 0.885 0.880
EP-51 0.860 0.825 0.827 0.870 0.921 0.906 0.924 0.794 0.766 0.791 0.858 0.877 0.888 0.870
EP-101 0.853 0.806 0.759 0.886 0.904 0.904 0.890 0.757 0.751 0.758 0.860 0.850 0.884 0.874
EP-201 0.846 0.812 0.844 0.879 0.901 0.894 0.904 0.734 0.750 0.756 0.830 0.789 0.872 0.864
PIC-1.5 0.440 0491 0.610 0.515 0513 0514 0516 0.438 0.509 0.719 0.610 0.575 0.725 0.645
PIC-3 0.501 0501 0.500 0.500 0.501 0.501 0.500 0.445 0494 0.769 0.675 0.499 0.773 0.689
PIC-6 0459 0516 0491 0497 0455 0.505 0.490 0.451 0478 0.746 0.712 0.668 0.719 0.649
PIC-15 0.526 0.505 0.362 0.387 0.547 0.476 0.500 0.466 0.523 0.655 0.620 0.578 0.575 0.505
PIC-30 0.517 0490 0.604 0473 0.501 0.524 0.465 0.469 0.567 0.650 0.515 0.531 0.529 0.465
PIC-60 0462 0413 0.617 0414 0479 0494 0439 0.461 0.627 0.620 0.382 0.524 0482 0.402
PrC-1.5 0.465 0.566 0.569 0473 0.564 0516 0.724 0.444 0.545 0.546 0.236  0.501 0.347 0.233
PrC-3 0.549 0555 0324 0.537 0341 0.554  0.539 0.545 0.501 0.630 0.400 0.420 0.613 0.508
PrC-6 0.526 0.494 0445 0.503 0472 0.539 0579 0.493 0.602 0.487 0.190 0.541 0224 0.186
PrC-15 0.443 0423 0.602 0.522 0.145 0377 0.567 0.501 0429 0477 0.378 0.501 0.499 0.476
PrC-30 0.515 0432 0465 0.608 0.530 0.681 0.640 0.501 0.341 0.523 0.845 0.512 0.738 0.833
PrC-60 0482 0499 0494 0.244 0473 0474 0253 0.511 0326 0.558 0.859 0.601 0.682 0.846
S-1.5 0.863 0.800 0.813 0.870 0.968 0.905 0.910 0.794 0.748 0.853 0.854 0.974 0.900 0.864
S-3 0.816 0.805 0.840 0.870 0.971 0915 0.908 0.770  0.759 0.772 0.829 0.975 0910 0.868
S-6 0.778 0.809 0.764 0.877 0.974 0.921 0.905 0.718 0.765 0.809 0.853 0.975 0.910 0.803
S-15 0.648 0.788 0.842 0.873 0.966 0.926 0.842 0.641 0.750 0.826 0.796 0.974 0.908 0.789
S-30 0.619 0.750 0.803 0.831 0.957 0.912 0.807 0.623 0.707 0.791 0.725 0.947 0.869 0.696
S-60 0416 0535 0.681 0.595 0.838 0.815 0.324 0.626 0.666 0.818 0.750 0.909 0.880 0.738
SDS-5 0.855 0.733 0.789 0.860 0.944 0.890 0.883 0.772  0.665 0.800 0.757 0.921 0.833 0.751
SDS-11 0.839 0.751 0.774 0.866 0.946 0.877 0.871 0.792 0.671 0.817 0.757 0.933 0.853 0.800
SDS-21 0.842 0.750 0.842 0.841 0.953 0.889 0.860 0.769 0.685 0.853 0.767 0.934 0.837 0.816
SDS-51 0.832 0.719 0.851 0.800 0.951 0.883 0.852 0.675 0.620 0.777 0.684 0.889 0.759 0.689
SDS-101 0.814 0.732 0.860 0.813 0.964 0.882 0.874 0.659 0.608 0.804 0.659 0.891 0.751 0.655
SDS-201 0.802 0.679 0.812 0.833 0.967 0.897 0.870 0.633 0.605 0.855 0.666 0913 0.741 0.729
EP-ms (St) 0.823 0.824 0.734 0.878 0.945 0911 0917 0.823 0.824 0.734 0.878 0.945 0911 0917
PIC-ms (St) 0.504 0.500 0.641 0.501 0.514 0.500 0.514 0.504 0.500 0.641 0.501 0.514 0.500 0.514
PrC-ms (St) 0494 0.653 0567 0.721 0.628 0.791 0.201 0.494 0.653 0.567 0.721 0.628 0.791 0.201
S-ms (St) 0.863 0.787 0.760 0.870 0.962 0.911 0.900 0.863 0.787 0.760 0.870 0.962 0911 0.900
SDS-ms (St) 0.839 0.766 0917 0.876 0.964 0.898 0.889 0.839 0.766 0.917 0.876 0.964 0.898 0.889
EP-ms (Al) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PIC-ms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PrC-ms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
S-ms (Al) 0.499 0501 0.500 0.500 0.501 0.499 0.500 0.499 0.501 0.500 0.500 0.501 0.499 0.500
SDS-ms (A1) 0.552 0576 0.801 0.602 0.679 0.540 0.580 0.552  0.576 0.801 0.602 0.679 0.540 0.580
EP-ms+S-ms+SDS-ms ~ 0.866 0.840 0.790 0.858 0.975 0913 0.933 0.780 0.772 0.864 0.847 0.976 0.890 0.890
Sy
EP-5+S-1.5+SDS-5 0.845 0.797 0712 0.829 0.964 0.904 0.886 0.837 0.803 0.858 0.884 0.974 0912 0.901
(St
EP-201+S-60+SDS- 0.846 0.802 0.840 0.903 0.961 0911 0.933 0752 0.799 0.848 0.856 0.967 0.937 0.905
201 (St)
EP-ms+S-ms+SDS-ms ~ 0.723  0.802 0.746 0.809 0.959 0.879 0.885 0.728 0.720 0.871 0.816 0.969 0.890 0.898
©)
RGB+DEM (C) 0.821 0.708 0.804 0.803 0.871 0.845 0.803 0.800 0.756 0.874 0.899 0.949 0.901 0911
RGB+DEM+EP-ms+S-  0.837 0.774 0.842 0.827 0.963 0.899 0.860 0.746  0.755 0.875 0.878 0.975 0910 0.921
ms+SDS-ms (C)
EP-ms+S-ms+SDS-ms ~ 0.486  0.575 0.726 0.641 0.930 0.784 0.599 0.698 0.623 0.831 0.660 0.961 0.879 0.785
(AD)
RGB+DEM (A1) 0.687 0476 0.747 0.762 0.837 0.801 0.692 0.711 0.629 0.813 0.815 0.886 0.842 0.811
EP-ms+S-ms+SDS-ms ~ 0.486  0.575 0.726 0.641 0.930 0.784 0.599 0.500 0.500 0.623 0.534 0.500 0.500 0.494
(A2)
RGB+DEM (A2) 0.752 0.617 0.780 0.816 0.825 0.786 0.764 0.704 0.692 0.856 0.806 0.930 0.841 0.839
RGB+DEM+EP-ms+S-  0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.501 0477 0.768 0.557 0.499 0.753 0.626

ms+SDS-ms (A2)
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Table 15: Class-wise AUC scores for cross-domain (Hardin County region) performance across
Results are reported for
ResNeXt-50 and ViT-B/16 backbones under four fusion strategies: channel stacking of input fea-
tures (St), concatenation of modality embeddings (C), cross-attention with a shared encoder (A1),
and cross-attention with separate encoders (A2). The best and second-best scores in each column
are indicated in bold and underlined, respectively.

single-modality, multi-scale fusion, and multimodal fusion models.

ResNeXt ViT

Model

afl Qal Qaf Qat Qc Qca Qr afl Qal Qaf Qat Qc Qca Qr
DEM 0.804 0.613 0.612 0472 0.969 0.907 0.733 0.587 0.549 0.379 0.210 0.958 0.947 0.710
RGB 0.757 0576 0.403 0486 0.654 0.515 0.507 0.575 0.527 0.782 0.650 0.270 0.381 0.494
NIR 0.733  0.519 0490 0.550 0.703 0.824 0.727 0.502 0.578 0474 0.641 0466 0348 0.554
NHD 0.556  0.642 0.630 0.722 0.485 0.494 0.504 0.494 0506 0.538 0.498 0.516 0.510 0.618
OSM 0.833 0518 0.479 0.572 0.624 0.586 0.496 0503 05 0543 0553 05 0505 0.584
EP-5 0.769 0.635 0.782 0.847 0.291 0.352 0.399 0.764 0.651 0.626 0.622 0.860 0.882 0.757
EP-11 0.790 0.687 0.801 0.763 0.463 0.563 0.662 0.763 0.698 0.734 0.667 0.807 0.870 0.840
EP-21 0.818 0.700 0.846 0.746 0.392 0.668 0.694 0.778 0.696 0.725 0.662 0.817 0.842 0.796
EP-51 0.821 0.676 0.769 0.778 0.409 0.519 0.672 0.779 0.633 0.798 0.684 0.771 0.851 0.786
EP-101 0.851 0.716 0.726 0.769 0.621 0.748 0.742 0.745 0.633 0.815 0.629 0.759 0.842 0.789
EP-201 0.786 0.737 0.805 0.752 0.573 0.697 0.717 0.698 0.676 0.821 0.729 0.718 0.818 0.701
PIC-1.5 0.492  0.501 0.599 0.548 0.487 0.509 0.453 0.514 0.340 0.650 0.518 0.561 0.792 0.752
PIC-3 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.511 0305 0.733 0.638 0.500 0.791 0.819
PIC-6 0.517 0480 0.529 0478 0474 0492 0426 0.530 0304 0.758 0.701 0.627 0.703 0.766
PIC-15 0511 0464 0275 0397 0.557 0497 0511 0.517 0470 0.711 0.600 0.537 0.532 0.442
PIC-30 0.513 0514 0324 0516 0497 0472 0454 0.517 0.527 0.809 0.512 0.536 0.527 0.349
PIC-60 0.510 0472 0899 0.537 0465 0.503 0.311 0.501 0.562 0.831 0.515 0.554 0.523 0.285
PrC-1.5 0426 0.559 0.263 0418 0.679 0.710 0.559 0412 0.633 0.219 0.362 0.500 0.592 0.404
PrC-3 0.597 0379 0.797 0.612 0.277 0.363 0.614 0.574 0.508 0.507 0.448 0.372 0.539 0.505
PrC-6 0498 0.490 0408 0414 0478 0491 0459 0.417 0.644 0.348 0.468 0.584 0.393 0.256
PrC-15 0.493 0493 0426 0.551 0.136 0.248 0.438 0.500 0.458 0476 0.496 0.500 0.500 0.482
PrC-30 0.506 0.448 0.150 0.505 0.552 0.631 0.646 0.532 0428 0.566 0.528 0.463 0.664 0.867
PrC-60 0467 0543 0464 0435 0431 0429 0225 0.534 0424 0.569 0.574 0.573 0.612  0.905
S-1.5 0.863 0.737 0.611 0.754 0.975 0915 0.801 0.759 0.579 0.646 0.667 0.981 0.923 0.778
S-3 0.781 0.731 0.531 0.696 0.976 0.922 0.815 0.683 0.563 0.528 0.530 0.981 0.937 0.772
S-6 0.713 0.704 0.889 0.706 0.976 0.924 0.717 0.621 0.569 0.786 0.708 0.981 0.941 0.509
S-15 0.625 0.619 0.674 0.665 0.974 0.936 0.718 0.529 0.551 0.964 0477 0971 0952 0.673
S-30 0.550 0549 0.746 0.537 0.965 0.945 0.675 0.533 0.559 0.704 0.372 0.945 0.959 0.859
S-60 0467 0545 0.541 0365 0.802 0.890 0435 0.524 0533 0.607 0.348 0.919 0.962 0.842
SDS-5 0.858 0.637 0.805 0.737 0.963 0.886 0.744 0.776  0.561 0.503 0.593 0.958 0.864 0.739
SDS-11 0.861 0.671 0.587 0.701 0.971 0.905 0.804 0.762 0.538 0.556 0.631 0.957 0.863 0.753
SDS-21 0.838 0.673 0.749 0.794 0.969 0.869 0.613 0.741 0.543 0.658 0.694 0.952 0.853 0.704
SDS-51 0.822 0.649 0.608 0.605 0.959 0.834 0.749 0.670 0.515 0.511 0.673 0943 0.824 0.686
SDS-101 0.809 0.611 0.443 0.788 0.960 0.886 0.795 0.656 0.474 0.491 0.644 0.954 0.871 0.677
SDS-201 0.752 0579 0.503 0.645 0.964 0.804 0.744 0.641 0479 0.477 0.640 0.942 0.870 0.647
EP-ms (St) 0.769 0.722 0.828 0.722 0.603 0.701 0.671 0.769 0.722 0.828 0.722 0.603 0.701 0.671
PIC-ms (St) 0.479 0.524 0.603 0.489 0.553 0.567 0.432 0.479 0.524 0.603 0.489 0.553 0.567 0.432
PrC-ms (St) 0496 0567 0301 0.440 0.687 0.788 0.202 0.496 0.567 0.301 0.440 0.687 0.788 0.202
S-ms (St) 0.881 0.711 0.643 0.741 0.977 0915 0.759 0.881 0.711 0.643 0.741 0.977 0915 0.759
SDS-ms (St) 0.843 0.679 0.629 0.762 0.966 0.889 0.777 0.843 0.679 0.629 0.762 0.966 0.889 0.777
EP-ms (Al) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PIC-ms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PrC-ms (A1) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
S-ms (Al) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
SDS (Al) 0.558 0592 0.699 0.679 0.626 0.602 0.568 0.558 0.592 0.699 0.679 0.626 0.602 0.568
EP-ms+S-ms+SDS-ms ~ 0.857 0.760 0.612 0.736 0972 0914 0.792 0.734 0.586 0.740 0.650 0.982 0.922 0.805
Sy
EP-5+S-1.5+SDS-5 0.860 0.638 0.735 0.760 0.960 0.899 0.833 0.848 0.683 0.685 0.697 0.980 0.922 0.803
(St
EP-201+S-60+SDS- 0.859 0.717 0.699 0.685 0.962 0911 0.855 0.657 0.587 0.748 0.646 0.976 0.962 0.879
201 (St)
EP-ms+S-ms+SDS-ms ~ 0.701  0.693 0.498 0.689 0.962 0.902 0.804 0.679 0.577 0.633 0.582 0.973 0.938 0.765
©)
RGB+DEM (C) 0.788 0.460 0.173 0406 0.661 0.621 0.635 0.752  0.554 0.545 0.611 0930 0.923 0.732
RGB+DEM+EP-ms+S-  0.841 0.644 0452 0.493 0.964 0.946 0.833 0.660 0.540 0.687 0.594 0.965 0.933 0.825
ms+SDS-ms (C)
EP-ms+S-ms+SDS-ms ~ 0.555 0.525 0.674 0.552 0921 0.907 0.816 0.653 0.483 0.500 0.377 0973 0.955 0.805
(AD)
RGB+DEM (A1) 0.708 0.527 0.274 0.130 0.836 0.740 0.647 0.671 0513 0.271 0.548 0916 0.901 0.531
EP-ms+S-ms+SDS-ms ~ 0.555 0.525 0.674 0.552 0.921 0.907 0.816 0.500 0.500 0.362 0.497 0.500 0.500 0.505
(A2)
RGB+DEM (A2) 0.743 0482 0325 0499 0.905 0.835 0.695 0.688 0.498 0.695 0.676 0.941 0.894 0.677
RGB+DEM+EP-ms+S-  0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.515 0451 0.250 0.350 0.500 0.860 0.670

ms+SDS-ms (A2)
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Table 16: Macro-averaged F1 and AUC for DOFA (Xiong et al., [2024)), Panopticon (Waldmann
et al.| [2025), SatMAE (Cong et al.| [2022), SatMAE++ (Noman et al.,2024), and SGMap-Net archi-
tectures. Two SGMap-Net variants are shown: one with a comparable set of input modalities and
one representing the best overall configuration. Fusion in SGMap-Net is implemented using either
concatenation (C) or channel stacking (St). Metrics are reported for in-domain (Warren County,
WC) and cross-domain (Hardin County, HC) test sets, with WC-HC differences (A) also shown.
The best and second-best scores in each column are highlighted in bold and underlined, respectively.

Model Modalities Fl AUC
wC HC A wC HC A
DOFA RGB+NIR 0.597 0.533 0.064 0.652 0.623 0.029
Panopticon-FM  RGB+NIR 0.570 0.313 0.257 0.635 0.533 0.102
SatMAE RGB+DEM+EP-5+EP-51+EP- 0.614 0427 0.187 0.864 0.735 0.129
101+EP-201+S-1.5+SDS-5
SatMAE++ RGB+DEM+EP-5+EP-51+EP- 0.656 0.454 0.202 0.904 0.762 0.142
101+EP-201+S-1.5+SDS-5
SGMap-Net RGB+DEM+EP-ms+S-ms+SDS-  0.618 0.543 0.074 0.858 0.739 0.118
ms (C)
SGMap-Net EP-ms+S-ms+SDS-ms (St) 0.657 0.598 0.059 0.882 0.806 0.076
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