
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WAVEGS: PHYSICS-INSPIRED WAVELET SPLATTING
FOR THERMAL NOVEL VIEW SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

3D thermal infrared reconstruction aims to reconstruct a three-dimensional model
with thermal distribution information from multi-view thermal images or video
sequences. Recent studies have shown that incorporating thermodynamic knowl-
edge into 3D representations can achieve superior novel view synthesis perfor-
mance. However, without data capturing the temporal evolution or providing tem-
perature calibration, the representation learning becomes ill-posed. To address
this problem, our key insight is to leverage the low-pass characteristic of heat
conduction to model scene representations in the frequency domain. To this end,
we first represent the 3D thermal field using a continuous Vector-Matrix (VM)
decomposition, and parameterize the resulting factors with a learnable wavelet
basis. This allows us to explicitly disentangle the scene representation into low-
frequency components that capture smooth thermal variations and high-frequency
subbands that encode structural details. Next, we devise a high-frequency masking
strategy to suppress infrared noise while preserving salient details. Concurrently,
this mask guides a learnable geometric deformation field to optimize geometric
details by directly adjusting the anchor positions, thereby eliminating the need
for explicit material parameters. Finally, the modulated wavelet coefficients are
dynamically reconstructed into a spatial-domain feature field via a differentiable
inverse wavelet transform. Extensive experiments on four datasets demonstrate
that WaveGS consistently outperforms existing methods across multiple metrics.

1 INTRODUCTION

Thermal imaging technology captures the thermal radiation of objects using sensors, converting tem-
perature information into visual images. Infrared thermography offers all-weather imaging capabil-
ities, unconstrained by illumination or weather conditions, and has found widespread application in
fields such as pedestrian recognition Shi et al. (2024b; 2023; 2024a); Lin et al. (2024), medicine Ma
et al. (2023); Ring & Ammer (2012), industrial inspection Chen et al. (2024a); Wang et al. (2025a);
Zhang et al. (2025a), and agriculture Gao et al. (2023); Wang et al. (2025b). The principles of heat
conduction cause thermal energy to diffuse across object surfaces, resulting in images that are in-
herently smooth and lack distinct textural features. Consequently, synthesizing novel views from
static thermal images without temporal evolution or temperature calibration becomes a severely ill-
posed problem. Specifically, the same observation can correspond to multiple volumetric density
distributions, and the absence of distinct textural features makes the precise recovery of geometric
structures challenging.

Traditional 3D thermal reconstruction Acampora et al. (2011); Cao et al. (2018); Kriczky et al.
(2015); Abreu de Souza et al. (2023) commonly incorporates RGB imagery for geometric guidance,
as thermal images inherently suffer from the ”ghosting effect” that obscures geometric textures. This
phenomenon arises from the superposition of object-emitted thermal radiation and ambient-reflected
radiation, leading to distorted temperature measurements and loss of surface texture details. Al-
though recent neural rendering approaches such as NeRF Mildenhall et al. (2021) and 3D Gaussian
Splatting (3DGS) Kerbl et al. (2023) demonstrate capabilities in novel view synthesis from ther-
mal infrared data, physical constraint integration remains challenging. NTR-Gaussian Yang et al.
(2025) attempts to address this through inversion of thermodynamic parameters (e.g., emissivity ϵ
and convective heat transfer coefficient h), but this constitutes an ill-posed inverse problem. The
absence of ground-truth thermodynamic labels, combined with the non-uniqueness of parameter so-
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Figure 1: (a) Our method faithfully reproduces the low-frequency spectrum of GT and avoids the
structural blurring that occurs in other methods. (b) Statistical Distribution of Frequency Mag-
nitudes: Compared to visible light images, the signal energy in infrared images is predominantly
contributed by low-frequency components. (c) Spectral Decay Curve: The amplitude of infrared
images attenuates rapidly with increasing frequency, and its attenuation trend closely matches the
characteristics of an ideal low-pass filter model e−k∥ω∥2

.

lutions producing similar thermal observations, forces researchers to adopt overly simplified energy
transfer assumptions. Such limitations hinder the accurate modeling of complex real-world thermal
processes.

We identify two fundamental challenges inherent to novel view synthesis in thermal imaging. Ther-
mal infrared imagery intrinsically lacks the rich textures and distinct edge details characteristic of
visible-light images. As illustrated in Figure 1(b), the signal energy in thermal images is predom-
inantly concentrated in the low-frequency bands, posing a significant limitation for existing recon-
struction methods that rely on spatial domain feature extraction. Secondly, the amplitude of thermal
signals rapidly attenuates with increasing frequency, a trend that closely matches an ideal low-pass
filter model, as shown in Figure 1(c). It indicates that the low-pass filtering behavior intrinsic to heat
conduction causes thermal data to exhibit pronounced spectral energy concentration at lower fre-
quencies. This intrinsic physical property provides a powerful and natural inductive bias, prompting
us to utilize a low-pass prior to guide and constrain the reconstruction process.

To address the aforementioned challenges, we propose WaveGS, a framework grounded in phys-
ical priors that employs a wavelet decomposition of the 3D feature field. By parameterizing the
scene’s 3D thermal features in the frequency domain, our approach directly embeds the inherent
low-pass characteristic of heat conduction into the learning process. Following Scaffold-GS Lu
et al. (2024b), our representation of the thermal field leverages a continuous Vector-Matrix (VM)
decomposition Sun & Ansari (2016); Chen et al. (2022). This decomposition is based on a sparse
set of anchor points, a strategy that facilitates direct frequency-domain modeling and obviates the
use of dense voxel grids. Each vector and matrix factor is parameterized by learnable wavelet bases,
resulting in an explicitly frequency-aware 3D representation. Through multiscale wavelet decompo-
sition, the feature field is disentangled into low-frequency components that capture smooth thermal
distributions and high-frequency subbands that encode structural details. This design aligns with
the physical nature of heat conduction and allows efficient modulation via frequency-guided priors.
We introduce a differentiable mask to enforce structural sparsity by isolating salient high-frequency
components. This mask preserves critical details while mitigating noise, and is complemented by
an L1 regularization loss that promotes a compact representation. For geometric fidelity, we employ
the high-frequency mask to guide anchor deformation through learned offsets, constrained by regu-
larization losses enforcing spatial locality and local smoothness. The modulated wavelet coefficients
are then reconstructed into the spatial domain via differentiable inverse wavelet transform. Exten-
sive experiments on four datasets demonstrate the effectiveness of our framework. We summarize
our main contributions as follows:
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• We introduce WaveGS, the first framework to parameterize 3D thermal radiation scenes in
the wavelet domain. By leveraging the wavelet transform, we directly embed the inherent
low-pass physical characteristic of heat conduction into the 3D scene representation.

• We propose a geometric deformation field guided by a sparsity-inducing high-frequency
mask, where the field performs local geometric corrections to achieve a precise reconstruc-
tion of key details.

• WaveGS markedly enhances the visual quality of thermal novei view synthesis, demon-
strating competitive performance on both benchmarks in comparison to state-of-the-art
methods, and facilitating real-time rendering speeds exceeding 200 FPS.

2 RELATED WORK

2.1 THERMAL 3D RECONSTRUCTION

3D thermal reconstruction aims to generate a three-dimensional representation of a scene with ther-
mal information from multi-view thermal infrared imagery. Early works Schramm et al. (2022)
addressed the limited spatial resolution of thermal images by incorporating auxiliary modalities.
Rangel et al. Rangel et al. (2014) fused thermal and depth data via multimodal calibration, while
Zhao et al. Zhao et al. (2017) developed a real-time SLAM system Taketomi et al. (2017) com-
bining thermal and RGB-D inputs through depth-based ICP alignment. Li et al. Li et al. (2023)
enhanced thermal stereo matching with denoising, tailored calibration, and weighted SGBM. AT-
Loc Liu et al. (2024a) extended thermal reconstruction to aerial localization using a dedicated dataset
and a geometry-aware render-to-localization pipeline. Recent efforts increasingly adopt learning-
based methods. ThermoNeRF Hassan et al. (2024) extends Neural Radiance Fields to disentangle
color and temperature via cross-modal supervision. Thermal3D-GS Chen et al. (2024b) introduces
physics-informed Gaussian Splatting with atmospheric and conduction constraints. ThermalGaus-
sian Lu et al. (2024a) further integrates cross-modal calibration and physically motivated smoothing.
NTR-Gaussian Yang et al. (2025) models thermal radiation with neural fields to forecast dynamic
temperature evolution, under nighttime conditions.

2.2 FREQUENCY ANALYSIS

Frequency analysis Zadeh (1950) is a foundational technique in signal processing that decomposes
signals or images into components across different frequencies and scales. In visual computing, it
supports detail preservation, denoising, and multi-scale modeling. The Discrete Wavelet Transform
(DWT) Farge et al. (1992); Zhang (2019), in particular, provides excellent spatial-frequency lo-
calization, making it effective for capturing fine-grained high-frequency variations while preserving
global structure. In neural scene representation Zhao et al. (2025); Li et al. (2024); Liu et al. (2024b);
Xie et al. (2024), frequency-domain modeling has been increasingly adopted to improve rendering
fidelity and generalization. Zhang et al. Zhang et al. (2025b) emphasize the role of frequency-
aware operations in NeRF architectures for complex scenes. WaveNeRF Xu et al. (2023) introduces
wavelet-based frequency volumes to extract geometry-aware features for generalizable novel view
synthesis. TriNeRFLet Khatib & Giryes (2024) builds on this by learning wavelet-based triplane
representations, using coarse coefficients from low-resolution inputs and refining them via multi-
scale supervision with pre-trained guidance. These ideas have recently extended to 3D Gaussian
Splatting Zuo et al. (2025). FreGS Zhang et al. (2024) applies Fourier transforms to rendered and
ground-truth images, enforcing frequency-domain consistency to mitigate aliasing. FDS-GS Zeng
et al. (2025) reparameterizes Gaussian scaling to explicitly link spatial scale with frequency attenu-
ation, enhancing consistency in spectral behavior.

3 PROPOSED METHOD

3.1 OVERVIEW

Given a set of multi-view thermal infrared images, our objective is to synthesize novel views of
the target scene. Inspired by the frequency-domain solution of heat conduction, our method recon-
structs the thermal scene by explicitly modeling the low-pass characteristics inherent in heat transfer.

3
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Figure 2: Overview of the proposed pipeline. Our method takes as input a 3D scene represented
by a sparse set of anchor points. To model the scene’s feature field, we adopt a wavelet-decomposed
representation Gfield that separates the field into low-frequency coefficients ΦLFS , which capture
smooth variations, and high-frequency coefficients ΦHFS , which encode structural details. The
high-frequency coefficients are further refined by a learnable mask MHFS , which selectively pre-
serves salient structures and promotes compactness through regularization. This mask then guides
a learnable deformation field that adjusts the anchor positions, subject to a deformation loss Ldeform
and a smoothness loss Lsmooth.

We achieve this by employing wavelet decomposition to represent scene features in the frequency
domain. An overview of the proposed model is illustrated in Figure 2.

3.2 PRELIMINARY

Scaffold-GS Lu et al. (2024b) is a neural scene representation framework that extends 3D Gaussian
Splatting by introducing a learnable scaffold structure to enhance geometric fidelity and rendering
quality. Instead of representing scenes with millions of independent Gaussians, Scaffold-GS defines
each neural Gaussian’s position µij relative to a scaffold anchor point xvi using a learnable scale
lvi

and an offset vector oj :
µij = xvi + lvi · oj (1)

To predict Gaussian attributes, an MLP takes the anchor’s local feature vector fvi and the canonical
viewing direction dvc as input, generating the opacity αj , color cj , rotation qj and scale sj :

{αj , cj ,qj , sj} = MLP(fvi ,dvc) (2)

Heat Conduction. The heat equation Widder (1976); Necati et al. (1993); Bao et al. (2023); Wang
et al. (2025c) in Rn for a temperature field u(x, t) with thermal diffusivity k > 0 is:

∂u

∂t
= k∇2u, u(x, 0) = f(x) (3)

Let u(ω, t) = F(u(x, t)) and f(ω) = F(f(x)). Applying the Fourier Transform Narasimhan
(1999) converts the PDE into an ODE using the properties F(∂tu) = ∂tu and F(∇2u) = −∥ω∥2u:

du

dt
= −k∥ω∥2u (4)

The solution in the frequency domain, with the transformed initial condition, is:

u(ω, t) = f(ω)e−k∥ω∥2t (5)

The term e−k∥ω∥2t acts as a low-pass filter. The high frequency components decay rapidly with
time t, while the low frequency components persist. This inherent smoothing aligns with physical
intuition: Heat diffusion suppresses sharp thermal gradients and preserves temperature distributions.

3.3 WAVELET-DECOMPOSED 3D THERMAL FIELD

In thermal scene modeling, the inherent low-pass nature of heat diffusion smooths high-frequency
spatial details. A key limitation of current methods is their dependence on auxiliary voxel grids Sun
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et al. (2022); Zhang et al. (2023) for direct frequency-domain optimization of 3DGS. These grids are
a known source of both significant computational overhead and interpolation inaccuracies. To over-
come this, we adopt an anchor-based approach inspired by Scaffold-GS, enabling direct frequency
modeling on a set of sparse anchors without a grid. We represent the 3D scene as a continuous
feature field, G, constructed using a Vector-Matrix (VM) decomposition over these anchors. For any
spatial coordinate x = (x1, x2, x3), the feature Gfield(x) is queried as:

Gfield(x) =

R∑
r=1

3∑
i=1

vr,i(xi)⊙Mr,i(xj , xk) (6)

Here, for each i ∈ {1, 2, 3}, the pair (xj , xk) denotes the remaining two spatial dimensions or-
thogonal to xi. The vector vr,i(·) captures the directional variation along axis xi, while the matrix
Mr,i(·, ·) encodes context-dependent correlations in the complementary 2D plane. This decompo-
sition provides an efficient low-rank factorization of the 3D feature field.

Directly learning the VM decomposition factors poses two major challenges: the difficulty in distin-
guishing smooth low-frequency thermal distributions from sharp high-frequency geometric edges
and a high susceptibility to thermal noise. To address these issues, we employ wavelet trans-
forms Chun-Lin (2010), which offer excellent spatial-frequency localization. This enables the signal
to be decomposed into low-frequency components, which we denote ΦLFS , capturing smooth ther-
mal variations, and high-frequency subbands, collectively denoted ΦHFS , which encode structural
details. Such decomposition facilitates the incorporation of physical priors, allowing for more ef-
fective encoding of both the feature field and anchor attributes.

Leveraging the multi-scale nature of wavelet decomposition, we construct a hierarchical feature
field. For the one-dimensional vector factors vr, we employ a multi-scale wavelet decomposition:

vr(x) =
∑
k

Φ
(0)
k ϕk(x) +

S∑
s=1

∑
k

Φ
(s)
k ψ

(s)
k (x), (7)

where ϕk(x) denotes the scaling functions forming the low-frequency basis, ψ(s)
k (x) are the wavelet

functions at scale s, and Φ
(0)
k , Φ(s)

k represent the corresponding learnable coefficients.

In parallel, we extend this multi-scale wavelet modeling to the two-dimensional matrix factors Mr.
A standard 2D wavelet transform decomposes a signal into one low-frequency approximation sub-
band (LL) and three high-frequency detail sub-bands that capture horizontal (LH), vertical (HL), and
diagonal (HH) features. Accordingly, we represent each matrix factor Mr,i(xj , xk) as a complete
linear combination of these 2D wavelet bases:

Mr,i(xj , xk) =
∑
m,n

Ψ
(0)
LL,m,nϕm(xj)ϕn(xk)

+

S∑
s=1

∑
m,n

(
Ψ

(s)
LH,m,nϕm(xj)ψ

(s)
n (xk)

+ Ψ
(s)
HL,m,nψ

(s)
m (xj)ϕn(xk)

+ Ψ
(s)
HH,m,nψ

(s)
m (xj)ψ

(s)
n (xk)

)
(8)

Here, the representation is parameterized by distinct sets of learnable coefficients: Ψ
(0)
LL,m,n for

the base approximation, and Ψ
(s)
LH,m,n, Ψ(s)

HL,m,n, and Ψ
(s)
HH,m,n for the horizontal, vertical, and

diagonal details at each scale s, respectively. This complete formulation ensures that our feature field
is explicitly parameterized in the frequency domain, enabling a physically-informed representation
where low-pass thermal propagation and sharp structural variations across different orientations are
separately captured and regulated.

3.4 REGULATING WAVELET COEFFICIENTS FOR PHYSICAL PRIORS

To enhance the physical plausibility and structural accuracy of the reconstructed thermal fields,
we introduce a targeted modulation scheme on the decoupled wavelet coefficients. This scheme is
designed to promote geometric sparsity via high-frequency masking.
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Sparsity-Inducing High-Frequency Masking. To encode structural priors and promote sparse
activation across the high-frequency sub-bands, we introduce a learnable masking mechanism. This
mechanism operates on the three distinct detail components (LH, HL, HH) to generate a unified
structural mask. First, we compute an energy map for each of the three high-frequency components
at each scale s:

M
(s)
b (x) =

∥∥∥Φ(s)
b (x)

∥∥∥
2
, for b ∈ {LH, HL, HH} (9)

These per-band energy maps are then aggregated into a single high-frequency energy map for each
scale by summation:

M
(s)
HFS(x) =M

(s)
LH(x) +M

(s)
HL(x) +M

(s)
HH(x) (10)

We then aggregate these multi-scale responses using a weighted summation to produce a fused mask:

M fused
HFS(x) =

S∑
s=1

ws · σ
(
M

(s)
HFS(x)

)
, (11)

where ws are learnable weights and σ(·) denotes the sigmoid function. This unified mask is then
applied to all three high-frequency sub-bands using a straight-through estimator (STE) to enforce
sparsity while maintaining differentiability:

Φ̂b = sg
((
H(M fused

HFS)− σ(M fused
HFS)

)
⊙ Φb

)
+ σ(M fused

HFS)⊙ Φb, for b ∈ {LH, HL, HH}
(12)

where H(·) is the Heaviside step function and sg(·) denotes the stop-gradient operator. We further
regularize the fused mask via an L1 penalty to promote a compact representation:

Lsparsity = λs ·
∑
x

∣∣σ (M fused
HFS(x)

)∣∣ . (13)

In each forward pass, the spatial-domain factors vr and Mr are reconstructed from the masked high-
frequency wavelet coefficients and the low-frequency coefficients via an inverse wavelet transform.
The final anchor features are then aggregated using the tensor decomposition formulation.

3.5 WAVELET-GUIDED GEOMETRIC DEFORMATION

In thermal imagery, non-thermal sources like emissivity discontinuities introduce high-frequency ar-
tifacts that are not indicative of thermal gradients Chapman (1986). These artifacts cause positional
ambiguity, degrading the accuracy and sharpness of the 3D geometric reconstruction. As directly
deforming all Gaussians is computationally intractable, our method applies a learnable deformation
field to the sparse set of anchor points. This field predicts a positional offset for each anchor, en-
abling localized corrections to the underlying geometry. Let xa denote the position of an anchor
point a. We define a learnable offset vector ∆(xa) ∈ R3 for each anchor, yielding the updated
anchor position:

xnew
a = xa +∆(xa). (14)

This offset enables localized spatial corrections to the geometry, particularly in structurally infor-
mative regions identified via high-frequency activations.

To ensure the deformation field only acts where needed, it should be activated exclusively in regions
where the high-frequency mask has a significant response. We enforce this locality by introducing a
mask-modulated regularization term on the deformation magnitude:

Ldeform =
∑
a

(
1− σ

(
M fused

HFS(xa)
))

· ∥∆(xa)∥2, (15)

This loss term penalizes deformations outside the high-frequency regions, forcing ∆(xa) towards
zero and confining the geometric adjustments to structurally relevant areas.

Furthermore, within the activated high-frequency regions, the deformation field must remain smooth
to avoid disrupting the geometric coherence of existing structural boundaries. To enforce this, we
introduce a weighted local smoothness constraint:

Lsmooth =
∑
a

∑
xb∈N (xa)

σ
(
M fused

HFS(xa)
)
· ∥∆(xa)−∆(xb)∥2, (16)

where N (xa) is the set of neighboring anchor points for anchor a. This loss can be interpreted
as a weighted Total Variation (TV) regularization on the deformation field, promoting smoothness
specifically within high-frequency areas as indicated by the mask.
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Ground Truth Ours FDS-GS Thermal3D-GS ThermalGaussian Scaffold-GS

Figure 3: Qualitative Comparison on TI-NSD. Our method reconstructs the textures of building
facades, details of ground reflections, and thermal features of foreground objects with significantly
higher fidelity and clarity, resulting in renderings that are most consistent with the ground truth.

Method RGBT-Scenes ThermoScenes TI-NSD NTR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
3DGS 24.467 0.866 0.202 30.659 0.965 0.091 32.436 0.936 0.202 32.178 0.964 0.205
4DGS 23.739 0.822 0.229 22.443 0.713 0.296 33.955 0.908 0.114 30.631 0.952 0.358
2DGS 25.310 0.883 0.181 30.630 0.965 0.098 31.810 0.943 0.217 31.584 0.952 0.294
Thermal3D-GS 24.872 0.873 0.189 25.733 0.929 0.101 34.938 0.956 0.188 30.656 0.933 0.391
ThermalGaussian 25.086 0.876 0.186 27.269 0.974 0.133 32.429 0.891 0.224 32.061 0.963 0.234
Scaffold-GS 23.827 0.860 0.207 29.508 0.957 0.100 31.305 0.930 0.217 31.233 0.950 0.319
Mip-Splatting 22.832 0.786 0.249 30.441 0.961 0.094 30.283 0.917 0.223 31.827 0.965 0.280
FDS-GS 25.412 0.884 0.173 33.263 0.977 0.071 33.178 0.949 0.189 30.944 0.945 0.298
NTR-Gaussian - - - - - - - - - 27.765 0.939 0.263

WaveGS 26.197 0.897 0.157 33.671 0.978 0.064 34.992 0.958 0.182 32.197 0.968 0.174

Table 1: Quantitative Comparison on RGBT-Scenes, ThermoScenes, TI-NSD, and NTR. Com-
parison of different methods for thermal infrared novel view synthesis. For each dataset, we color
the cells as best , second best , and third best .
4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. The proposed model is evaluated on four benchmark datasets: RGBT-Scenes Lu et al.
(2024a), a multi-view dataset of over 1,000 spatially aligned and synchronously captured TIR-RGB
image pairs; TI-NSD Chen et al. (2024b), a large-scale benchmark for TIR novel-view synthesis
with over 6,600 images from 20 diverse scenarios; ThermoScenes Hassan et al. (2024), the bench-
mark for joint RGB-thermal 3D reconstruction and synthesis across 16 real-world scenes; and NTR
Dataset Yang et al. (2025), a dynamic thermal dataset featuring four UAV-captured scenes imaged
at different nighttime intervals.
Implementation. We implemented our method, wavegs, in the PyTorch framework, building upon
the Scaffold-GS codebase. All models were trained on a single NVIDIA RTX 4090 GPU. For the
wavelet decomposition, we utilized the Biorthogonal 6.8 (Bior6.8) wavelet Joseph & Sturges (1978).
The low-frequency approximation coefficients (the LL sub-band) were initialized randomly, whereas
the high-frequency detail coefficients (the LH, HL, and HH sub-bands) were initialized to zero. The
models were trained for a total of 30,000 iterations.
Metric. We evaluate novel view synthesis using PSNR, SSIM, and LPIPS to measure perceptual
and structural fidelity.
Baseline. We compare our method against a diverse set of baselines, including general 3D represen-
tations (3DGS, Scaffold-GS, 2DGS Huang et al. (2024), 4DGS Wu et al. (2024)), frequency-guided
methods (Mip-Splatting Yu et al. (2024), FDS-GS), and physics-informed thermal synthesis ap-
proaches (Thermal3D-GS, ThermalGaussian).

4.2 QUANTITATIVE AND QUALITATIVE COMPARISON

We evaluated our method through a diverse set of experiments that included indoor and outdoor
environments, scenes with high-intensity heat sources, and aerial perspectives from UAVs. In in-
door and outdoor settings, our approach reconstructs the facades of buildings, the reflections of the
ground and the thermal characteristics of the foreground objects with significantly higher fidelity
and clarity (Figure 3). For scenes featuring high-intensity heat sources, our method successfully

7
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Wavelet Basis PSNR↑ SSIM↑ LPIPS↓
WaveGS(Haar) 24.590 0.864 0.225
WaveGS(Db4) 21.157 0.824 0.293
WaveGS(DMey) 22.170 0.853 0.259
WaveGS(Coif4) 24.116 0.931 0.316
WaveGS(Sym4) 25.360 0.875 0.141
WaveGS(Bior4.4) 25.731 0.888 0.174
WaveGS(Bior6.8) 26.197 0.897 0.157

Lsparsity Ldeform Lsmooth PSNR↑ SSIM↑ LPIPS↓
(1) Baseline 28.238 0.924 0.242

(2) ✓ 32.080 0.939 0.204
(3) ✓ ✓ 32.849 0.950 0.193
(4) ✓ ✓ 33.162 0.953 0.196
(5) ✓ ✓ ✓ 34.992 0.958 0.182

Table 2: Ablation Studies. (Left) Quantitative results of different wavelet bases on RGBT-Scenes.
(Right) Ablation on ThermoScenes with different loss components. For each metric, we color the
cells as best , second best , and third best .

Ground Truth Ours Thermal3D-GS ThermalGaussian

Figure 4: Qualitative Comparison on RGBT-Scenes. As Thermal3D-GS and Thermal Gaussian
exhibit noticeable blurring or artifacts when processing high-intensity heat sources. In contrast, our
method successfully preserves sharp edges and internal textures.

preserves sharp edges and internal textures, avoiding the noticeable blurring and artifacts present
in competing methods like Thermal3D-GS and ThermalGaussian (Figure 4). In aerial scenes, our
method generates crisp, realistic images by effectively reconstructing high-frequency details such
as road contours and ground textures (Figure 5). As demonstrated in Table 1, our proposed method
achieves State-of-the-Art (SOTA) performance on nearly all core metrics on the four benchmark
datasets. Compared to physics-inspired thermal reconstruction methods like Thermal3D-GS and
ThermalGaussian, our approach shows a comprehensive lead. For example, on the ThermoScenes
dataset, our PSNR of 33.671 far exceeds the 25.733 of Thermal3D-GS and 27.269 of ThermalGaus-
sian, indicating superior accuracy and perceptual quality. Moreover, our method outperforms the
strong frequency-domain baseline FDS-GS, which leverages spectral priors for geometry and ap-
pearance modeling. Although FDS-GS ranks second on several evaluation metrics, our approach
consistently achieves the best overall performance. This consistent lead highlights our method’s
more effective and precise utilization of frequency-domain priors, particularly in accurately recov-
ering high-frequency structural details.

4.3 ABLATION STUDY

Analysis on Wavelet Bases. We conducted an ablation study to evaluate the influence of different
wavelet bases on the performance of our thermal 3D reconstruction pipeline. The quantitative
results are presented in Table 2. Among the candidates tested, the Biorthogonal 6.8 (Bior6.8)
wavelet achieves the most consistent performance. It ranks first in PSNR and second in both SSIM
and LPIPS. This suggests that Bior6.8 offers a good trade-off between low-frequency approxima-
tion and high-frequency detail preservation. Its strong performance may be due to its symmetric
structure and balanced support width. In contrast, traditional wavelets such as Daubechies 4 (Db4)
and Discrete Meyer (DMey) perform significantly worse, especially in terms of PSNR and SSIM.
Interestingly, Coiflet 4 (Coif4) achieves the highest SSIM, indicating strong structural similarity.
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Ground Truth Ours Thermal3D-GS ThermalGaussianNTR-Gaussian

Figure 5: Qualitative Comparison on NTR. In the aerial scenes, the result from Thermal3D-GS is
severely blurry, losing the vast majority of details. While NTR-Gaussian and ThermalGaussian can
roughly reconstruct the scene structure, they lack detail clarity. Our method generates highly sharp
and realistic images by reconstructing high-frequency details like road contours and ground textures

Method ThermoScenes TI-NSD

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
WaveGS (s = 1) 29.507 0.956 0.264 32.080 0.927 0.194
WaveGS (s = 2) 32.849 0.950 0.196 33.294 0.946 0.200
WaveGS (s = 3) 33.671 0.978 0.064 34.952 0.958 0.182

Table 3: Ablation study of WaveGS with different wavelet scales (s) on the ThermoScenes and TI-
NSD datasets. The best results for each metric are highlighted in bold.

However, it also produces a poor LPIPS score, suggesting potential perceptual artifacts.

Analysis on Multi-scale Wavelet Decomposition To investigate the influence of different wavelet
decomposition levels on model performance, we conducted an ablation study evaluating WaveGS
with varying decomposition scales (s). The model was trained and evaluated with configurations
of s = 1, s = 2, and s = 3 on the ThermoScenes and TI-NSD benchmarks. As presented in
Table 4, the quantitative results reveal a clear and compelling trend that differs from findings in
prior work like WaveNeRF. For WaveGS, performance consistently and significantly improves as
the decomposition scale increases from 1 to 3 across both benchmarks. This outcome suggests that
for the WaveGS architecture, a hierarchical decomposition yields a powerful scene representation.

Analysis on Loss Components. We conducted an ablation study to evaluate the contribution of each
proposed loss component on ThermoScenes. The quantitative results are shown in Table 2. Adding
the wavelet sparsity loss Lsparsity leads to a clear improvement over the baseline. This confirms
its effectiveness in encouraging a compact and structurally meaningful high-frequency representa-
tion. The resulting sparse activation map serves as an important prior for subsequent geometric
refinement.We also evaluated the two deformation-related losses independently. The locality loss
Ldeform improves accuracy by focusing geometric adjustments on salient regions. The smoothness
loss Lsmooth enhances coherence by regularizing the deformation field. Finally, the complete model,
which combines the three components, achieves the best performance on all metrics. This shows that
sparsity and geometric regularization work well together to produce high-quality reconstructions.

5 CONCLUSION

In this paper, we propose WaveGS , which significantly improves the performance of novel view
synthesis in thermal infrared imaging by leveraging the low-pass characteristic of heat conduction
in the frequency domain. We parameterize the 3D scene using learnable wavelet coefficients, first
optimizing the low-frequency components to capture the coarse scene structure, and progressively
activating high-frequency coefficients to refine the details. Extensive experiments conducted on four
datasets demonstrate that our method significantly outperforms state-of-the-art approaches.
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A IMPLEMENTATION DETAILS

We implemented our WaveGS method in PyTorch, building upon the publicly available Scaffold-
GS codebase. Our framework supports multiple data formats. For real-world datasets like TI-
NSD, ThermoScenes and RGBT-Scenes, we adhere to the standard COLMAP data format. For the
synthetic NTR dataset, we follow the Blender data format protocol.

Our scene initialization strategy is dataset-dependent. For all COLMAP-based datasets, we initialize
the 3D Gaussians from the point cloud generated by Structure-from-Motion (SfM). On the synthetic
NTR dataset, our method and other baselines start from a random point cloud initialization. In
contrast, NTR-Gaussian is unique as it leverages the provided mesh for initialization on this specific
dataset. This dependency on pre-processed data also explains why its results were not reproduced on
other benchmarks; its open-source code requires a specific space features file but does not provide
the means to generate it.

Regarding our model’s specific parameters, we initialize the low-frequency approximation coeffi-
cients (LL sub-band) from a random distribution. All high-frequency detail coefficients (LH, HL,
and HH) are initialized to zero. This encourages the model to first establish a coarse scene struc-
ture. We trained all models for 30,000 iterations on a single NVIDIA RTX 4090 GPU, using the
Biorthogonal 6.8 (Bior6.8) wavele. A single Adam optimizer was used, but with distinct learning
rates for the Gaussian attributes and the learnable wavelet coefficients.

B DATASET

Our model’s effectiveness is validated across four distinct benchmarks for thermal novel view syn-
thesis. A detailed overview is provided below.

• RGBT-Scenes: The RGBT-Scenes dataset is a real-world dataset designed for thermal 3D
reconstruction and novel-view synthesis, consisting of aligned RGB and thermal images
captured from multiple viewpoints across 10 different scenes using the commercial-grade
handheld thermal-infrared camera FLIR E6 PRO (Teledyne FLIR), which can simultane-
ously capture RGB and thermal images . The camera has a resolution of 240×180, a field
of view of 33°×25°, a temperature range from -20°C to 550°C, and a temperature accuracy
of ±2% of the reading . The dataset includes over 1,000 RGB and thermal images, covering
indoor and outdoor environments, various object sizes (from large structures to everyday
items), different temperature variations (ranging from a 300°C difference to a 4°C differ-
ence), and both 360-degree and forward-facing scenarios, along with raw thermal camera
images, MSX images, and camera pose data . Compared to existing datasets like Thermal-
NeRF and ThermoNeRF, it includes both RGB and thermal images, applies multimodal
calibration methods to align these images, ensures consistent thermal measurements across
views, encompasses richer scene content, and makes calibration images available.

• TI-NSD: The TI-NSD dataset has several practical applications. In autonomous driving, it
can help train models to better recognize objects in adverse weather conditions like fog or
at night, as thermal infrared imaging isn’t hindered by low light. For security surveillance,
it enables the detection of intruders or abnormal activities in all - weather scenarios, as
thermal signatures can reveal human presence even in darkness. In urban planning, the
dataset can be used to analyze heat distribution in different areas, which is crucial for
energy - efficient building design and understanding how different materials and structures
interact with heat. Additionally, in remote sensing for environmental monitoring, TI-NSD
can assist in identifying thermal anomalies in forests (such as early signs of wildfires) or
water bodies (like thermal pollution), taking advantage of the all - weather and penetration
capabilities of thermal infrared imaging.

• ThermoScenes: The ThermoScenes dataset is the first benchmark featuring paired RGB
and thermal images for 3D scene reconstruction and novel view synthesis, comprising 16
diverse scenes—8 building facades (e.g., seasonal buildings, dorms) and 8 everyday ob-
jects (e.g., heated cups, laptops). Captured using a FLIR One Pro LT dual camera (thermal
range: -20°C to 120°C, accuracy ±3°C), it provides aligned RGB-thermal image pairs with
precise camera poses. Each scene includes training and test views (e.g., 107 train/15 test
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for ”Building (Spring)”), covering a wide temperature range from -16.2°C to 87.3°C. Raw
thermal data (extracted from MSX images) is provided to avoid texture interference, mak-
ing it ideal for evaluating multimodal methods like ThermoNeRF. It supports research in
building energy analysis, non-destructive testing, and infrastructure inspection, with public
access and plans for expansion.

• NTR Dataset: The NTR dataset is a dedicated benchmark for nighttime dynamic ther-
mal reconstruction tasks. It encompasses four distinct outdoor scenes, including two urban
scenes (S1, S2) mainly consisting of buildings and roads, and two suburban scenes (S3, S4)
dominated by farmland and ponds . For each scene, aerial thermal infrared (TIR) images
are captured at four time intervals during the night using a DJI Matrice 300 RTK drone
equipped with a DJI H20T thermal infrared camera, which has a resolution of 640×512
and a temperature measurement range from -40°C to 550°C . Additionally, based on the
high-precision 3D texture model from the UAV4DL dataset, the dataset provides accu-
rately calibrated poses for all TIR images through a render-to-match framework and gen-
erates corresponding synthetic RGB images, effectively capturing the temporal variations
in thermal radiation of objects under nighttime conditions to support research on dynamic
thermal 3D reconstruction and novel viewpoint TIR image synthesis.

C HEAT CONDUCTION

Heat Conduction. The physical process of heat conduction is governed by the heat equation, a
partial differential equation (PDE) that describes how the distribution of heat evolves over time in
a given region. The fundamental principle is that heat flows from warmer to cooler areas, causing
temperature gradients to smooth out.

Let u(x, t) represent the temperature at a spatial location x ∈ Rn and time t. The heat equation is
formulated as:

∂u

∂t
= k∇2u (17)

where k is the thermal diffusivity, a material-specific property that determines the rate of heat trans-
fer. The Laplacian operator, ∇2 =

∑n
i=1

∂2

∂x2
i

, measures the local curvature of the temperature field.
For a 2D case, where x = (x, y), this expands to:

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
(18)

with an initial temperature distribution u(x, y, 0) = f(x, y).

Solving this PDE directly can be complex. The Fourier Transform provides an elegant solution by
converting the PDE in the spatial domain into a simpler ordinary differential equation (ODE) in
the frequency domain. Let u(ω, t) = F(u(x, t)) be the Fourier transform of the temperature field,
where ω is the frequency vector. Key properties of the Fourier transform are F(∂tu) = ∂tu and
F(∇2u) = −∥ω∥2u. Applying these to the heat equation yields:

du(ω, t)

dt
= −k∥ω∥2u(ω, t) (19)

This is a first-order ODE whose solution, given the transformed initial condition f(ω) = F(f(x)),
is:

u(ω, t) = f(ω)e−k∥ω∥2t (20)
This solution holds for any number of dimensions. For the 3D case relevant to volumetric rendering,
where ω = (ωx, ωy, ωz), the solution is:

u(ωx, ωy, ωz, t) = f(ωx, ωy, ωz)e
−k(ω2

x+ω2
y+ω2

z)t. (21)

The term e−k∥ω∥2t acts as a Gaussian low-pass filter. The magnitude of the frequency vector, ∥ω∥,
is high for sharp details and low for smooth variations. The equation shows that high-frequency
components are attenuated exponentially faster over time t than low-frequency components. This
mathematical result perfectly mirrors the physical reality: sharp temperature differences (e.g., a hot
spot on a cool surface) dissipate quickly, while large-scale, smooth temperature fields persist much
longer. This physical prior is a core motivation for our work.
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Figure 6: Evaluation on high-frequency detail preservation. We compare our method against
Baseline and FDS-GS using the WDPR metric (lower is better), which quantifies the error in high-
frequency detail reconstruction.

D ANALYSIS ON HIGH-FREQUENCY DETAIL PRESERVATION.

To further assess frequency-specific reconstruction quality, we introduce the Wavelet Decomposi-
tion Power Ratio (WDPR) Sun et al. (2024), which quantifies the discrepancy in high-frequency
components. Specifically, we perform a λ-level wavelet decomposition as:

WDPR(ytrue, ysyn, λ) =
|P (W (ytrue, λ))− P (W (ysyn, λ))|

P (W (ytrue, λ))
(22)

where W (·, λ) denotes the wavelet coefficients at level λ, and P (·) computes the corresponding sig-
nal power. The quantitative results, summarized in Figure 6, validate the superiority of our method
in preserving high-frequency details. According to the WDPR metric (lower is better), our approach
consistently and significantly outperforms both the Baseline and the enhanced FDS-GS method
across all datasets. The advantage is particularly pronounced on the TI-NSD dataset, where our
model reduces the high-frequency reconstruction error by a remarkable 80.6% against the baseline
and 68.7% against FDS-GS. This substantial margin of improvement is maintained across the Ther-
moScenes and RGBT-Scenes datasets, confirming the robustness and generalization capability of
our approach. By explicitly modeling the sparse and nonuniform nature of high-frequency informa-
tion, our method reconstructs fine-grained textures and sharp edges.

E ANALYSIS ON WAVELET-DOMAIN ENERGY CHARACTERISTICS

To validate the effectiveness of our proposed wavelet-decomposition field and high-frequency
guided deformation, we first analyze the intrinsic properties of thermal signals and then present
a quantitative comparison of reconstruction fidelity. As illustrated in Figure 7, our analysis of signal
energy distribution in the wavelet domain provides the theoretical foundation for our methodol-
ogy. The left panel reveals that signal energy is predominantly concentrated in the low-frequency
subband, while high-frequency components exhibit natural sparsity, with their energy being or-
ders of magnitude lower. This inherent sparsity justifies our strategy of representing features in
the wavelet domain and applying L1 regularization to enforce a compact and efficient representa-
tion. Furthermore, the right panel demonstrates that the high-frequency energy distribution varies
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Figure 7: Wavelet-Domain Energy Characteristics of Thermal Imagery. (Left) A log-scale plot
showing that signal energy is predominantly concentrated in the low-frequency components, while
high-frequency (HF) components are sparse. (Right) The proportion of high-frequency energy is
highly variable across different scenes, indicating that structural details are not uniformly present.

Method ThermoScenes TI-NSD

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
WaveGS (s = 1) 29.507 0.956 0.264 32.080 0.927 0.194
WaveGS (s = 2) 32.849 0.950 0.196 33.294 0.946 0.200
WaveGS (s = 3) 33.671 0.978 0.064 34.952 0.958 0.182

Table 4: Ablation study of WaveGS with different wavelet scales (s) on the ThermoScenes and TI-
NSD datasets. The best results for each metric are highlighted in bold.

markedly across scenes, highlighting the non-uniform spatial distribution of geometric details. This
observation underscores the necessity of an adaptive mechanism that targets structurally critical
regions. Our high-frequency guided deformable field addresses this requirement by employing a
learned mask to apply geometric corrections exclusively in relevant areas.

F ANALYSIS ON MULTI-SCALE WAVELET DECOMPOSITION

The superior performance can be attributed to a fundamental distinction in methodology. WaveGS
builds its 3D feature field upon a grid-free, anchor-based Vector-Matrix (VM) decomposition,
parameterizing the factors with learnable wavelet coefficients. This design circumvents the chal-
lenges of feature map resolution and padding at higher decomposition levels, which are often en-
countered by methods that rely on explicit cost volumes and plane sweeps. A greater number of
scales (s = 3) allows for a more refined disentanglement of the scene into a richer combination of
low- and high-frequency components, a process visually conceptualized in Figure 8. This enables
the model to capture macroscopic thermodynamic distributions with smoother basis functions (anal-
ogous to the LL sub-bands) while simultaneously representing fine-grained geometric edges and
structural details with a more diverse set of high-frequency bases (the LH, HL, and HH sub-bands).
Furthermore, a deeper decomposition provides a more flexible framework for embedding the low-
pass physical prior of heat conduction. The model can more accurately concentrate energy in the
low-frequency bands while performing sparse and precise detail refinement in the high-frequency
subbands, a characteristic quantitatively visualized by the sparse, high-magnitude coefficients in
Figure 9, leading to superior reconstruction fidelity. In conclusion, the experimental results demon-
strate that increasing the wavelet decomposition scale significantly enhances the performance of
WaveGS. This is primarily due to its efficient grid-free, anchor-based architecture, which effectively
capitalizes on the benefits of hierarchical feature disentanglement without incurring the computa-
tional and memory bottlenecks associated with volume-based methods at higher scales.
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G ADDITIONAL VISUALIZATIONS

To further demonstrate the superior performance of our proposed WaveGS, we conducted extensive
qualitative evaluations. We compared its novel view synthesis results against current state-of-the-art
methods on several benchmark datasets. These supplementary results clearly highlight the advan-
tages of our approach. It generates views with richer details and fewer artifacts. This is particularly
evident in regions with complex thermal patterns and fine structures. This improvement is a di-
rect result of our physics-informed wavelet splatting mechanism. This mechanism more effectively
preserves high-frequency details within the scene.

TI-NSD Figure 10 presents the qualitative comparison on the TI-NSD dataset. The results show
that our method achieves the highest clarity and detail fidelity. This applies to the fine structures
of windows, textures on building roofs, and outlines of small objects. The synthesized images
from our method are closest to the Ground Truth. In contrast, other methods like Thermal3D-GS,
ThermalGaussian, Scaffold-GS, and FDS-GS exhibit various issues. These issues include blurring,
loss of detail, or shape distortion when rendering these complex structures. This demonstrates that
WaveGS better preserves thermal structures and detail sharpness.

RGBT-Scenes Figure 11 provides a qualitative comparison on the RGBT-Scenes dataset. This
dataset features diverse and challenging scenes. Examples include nighttime lights, complex veg-
etation, and man-made objects with fine structures like scooters. WaveGS performs exceptionally
well in these scenarios. Its results are highly consistent with the Ground Truth in terms of detail.
For instance, in the third row, our method clearly reproduces the thermal patterns among the leaves
of the trees. Other methods show significant blurring and artifacts. Similarly, in the fourth row,
WaveGS accurately renders the scooter’s contour and temperature distribution. This showcases its
powerful capability for detail capture.

ThermoScenes The comparison on the ThermoScenes dataset is shown in Figure 12. This figure
further validates the superiority of WaveGS. It excels at generating sharp structural contours and
accurate thermal regions. As highlighted in the red boxes, our method produces sharper outlines for
building edges and roof details. It also renders more precise thermal patterns. The results are clearly
superior to baseline methods such as Thermal3DGS, ThermalGaussian, Scaffold-GS, and FDS-GS.

NTR Dataset Finally, we conducted evaluations on the NTR dataset. The results are presented in
Figure 13 and Figure 14. In the s2 scene (Figure 13), the aerial view generated by our method (Ours)
is significantly better. It shows greater clarity in the road network and fewer artifacts across the
entire scene compared to 2DGS and other methods. Our result most closely resembles the Ground
Truth (GT). Similar observations were made in the s4 scene (Figure 14). WaveGS maintains high
structural fidelity and detail clarity when reconstructing large-scale urban scenes, whereas other
methods suffer from noticeable blurring and distortion.

In summary, these extensive qualitative comparisons collectively prove the advanced performance of
WaveGS for thermal novel view synthesis. Our method effectively utilizes wavelet transform to rep-
resent and render high-frequency thermal information. As a result, it achieves precise reconstruction
of fine structures and thermal patterns across a wide variety of complex scenes.
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Figure 8: Visualization of a 3-level 2D Discrete Wavelet Transform (DWT). The original im-
age (top left) is progressively decomposed into an approximation sub-band (LL) and three detail
sub-bands: horizontal (LH), vertical (HL), and diagonal (HH). The LL sub-band retains the low-
frequency, coarse representation of the image, while the detail sub-bands effectively isolate the
directional edge features at each respective scale.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 9: Quantitative and frequency-domain analysis of DWT detail coefficients. The 3D
surface plots visualize the magnitude of coefficients in the detail sub-bands (LH, HL, HH), where
peaks indicate strong edge features. The frequency spectrum plots on the right reveal the energy
distribution at each decomposition level. Notably, the prominent vertical line in the Level 2 spectrum
confirms a strong dominance of horizontal features, corresponding to the building’s structural lines.

Ground Truth Ours FDS-GS Thermal3D-GS ThermalGaussian Scaffold-GS

Figure 10: Qualitative comparison on TI-NSD From left to right: Ground Truth, Our Method,
Thermal3DGS, Thermal-Gaussian, Scaffold-GS and FDS-GS. Our method better preserves thermal
structures and detail sharpness.
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           GT                                        Ours                            Thermal3D-GS                ThermalGaussian                   Scaffold-GS                              FDS-GS

Figure 11: Qualitative comparison on RGBT-Scenes. From left to right: Ground Truth, Our
Method, Thermal3DGS, Thermal-Gaussian, Scaffold-GS and FDS-GS. Our method better preserves
thermal structures and detail sharpness.

Ground Truth Ours Thermal3DGS ThermalGaussian Scaffold-GS FDS-GS

Figure 12: Qualitative comparison on ThermoScenes. WaveGS generates sharper structural con-
tours and more accurate thermal regions than baseline methods.
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           GT                         Ours                       2DGS              NTR-Gaussian       Thermal3DGS        ThermalGaussian

Figure 13: Qualitative comparison on NTR (s2).

           GT                         Ours                       2DGS              NTR-Gaussian       Thermal3DGS        ThermalGaussian

Figure 14: Qualitative comparison on NTR (s4).

H LLMS USAGE

We utilized Large Language Models (LLMs) solely for language editing and refinement. Their appli-
cation was limited to correcting grammar, optimizing sentence structure, and enhancing the overall
readability of the manuscript. All core research contributions, including the conceptual framework,
methodology, data analysis, and conclusions, are entirely the original work of the authors.
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