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Abstract

Trait measurement is a critical for the plant breeding and agri-
cultural production pipeline. Typically, a suite of plant traits
is measured using laborious manual measurements and then
used to train and/or validate higher throughput trait estima-
tion techniques. Here, we introduce a relatively simple con-
volutional neural network (CNN) model that accepts multiple
sensor inputs and predicts multiple continuous trait outputs
— i.e. a multi-input, multi-output CNN (MIMO-CNN). Fur-
ther, we introduce deformable convolutional layers into this
network architecture (MIMO-DCNN) to enable the model to
adaptively adjust its receptive field, model complex variable
geometric transformations in the data, and fine-tune the con-
tinuous trait outputs. We examine how the MIMO-CNN and
MIMO-DCNN models perform on a multi-input (i.e. RGB
+ depth images), multi-trait output lettuce dataset from the
2021 Autonomous Greenhouse Challenge. Ablation studies
were conducted to examine the effect of using single ver-
sus multiple inputs, and single versus multiple outputs. The
MIMO-DCNN model resulted in a normalized mean squared
error (NMSE) of 0.068; a substantial improvement over the
top 2021 leaderboard score of 0.081. Open-source code is
provided.

Introduction and Related Work

Multi-input datasets and multi-input modeling problems are
common in breeding and agriculture machine learning ap-
plications. Examples of such public datasets include RGB
+ depth (Gené-Mola et al. 2019; Kusumam et al. 2016;
Akbar et al. 2016), RGB + infrared (Haug and Ostermann
2014; Sa et al. 2017, Lottes et al. 2018), and RGB + ther-
mal (Elsherbiny et al. 2021). Such inputs are typically used
for prediction tasks such as classification (Lashgari, Iman-
mehr, and Tavakoli 2020), object detection (Gené-Mola et al.
2020), and segmentation (Nasir, Azman, and Arsat 2021;
Pishgar et al. 2021). Common agricultural prediction tasks
include weed, disease, plant, and fruit classification, lo-
calization, and/or segmentation (Lashgari, Imanmehr, and
Tavakoli 2020; Lu and Young 2020). In recent years, con-
volutional neural networks (CNNs) have become almost
ubiquitous for these tasks due to their strong performance
on image-based datasets (Kamilaris and Prenafeta-Boldd
2018).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cultivar type

age

Figure 1: Data examples from the 2021 Autonomous Green-
house Challenge Computer Vision dataset which contained
four cultivars of lettuce imaged at various growth stages
(Hemming et al. 2021).

Regression is another highly relevant task for breed-
ing and agriculture. CNNs can be effective at regressing
plant traits from aerial and ground-based RGB imagery
(Nevavuori et al. 2020; Kestur, Meduri, and Narasipura
2019; Van Klompenburg, Kassahun, and Catal 2020;
Mortensen et al. 2019). While some studies exist, CNN-
based regression is far less common; possibly because CNN-
based regression requires some architectural and loss mod-
ification, and/or continuous trait value measurements as
ground-truth labels. Even less common are examples using
CNNss to simultaneously predict multiple trait outputs from
single or multiple sensor inputs (Sandhu et al. 2021). Al-
though multi-input, multi-output trait regression is a com-
mon problem in agriculture (Kestur, Meduri, and Narasipura
2019; Van Klompenburg, Kassahun, and Catal 2020), there
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Figure 2: Model architectures consisting of (A) single-input, single-output (SISO), (B) multi-input, single-output (MISO), (C)
single-input, multi-output (SIMO), and (D) multi-input, multi-ouput (MIMO).

is a lack of easily accessible code and frameworks for this
purpose (Kestur, Meduri, and Narasipura 2019).

Although CNNs have performed well on vision tasks, in-
cluding regression, they suffer from some major drawbacks.
First, convolution layers struggle to model complicated ge-
ometric transformations without exhaustive image augmen-
tation such as flipping and rotating (Dai et al. 2017), scale
segregation (Hu and Ramanan 2017), or introducing more
architectural changes (Lin et al. 2017) which turn increases
convergence time, training iterations and model complexity.
Moreover, resize augmentations, which are useful to help
with scale invariance, are not straightforward with image-
wise plant trait labels since their effect on variables such as
fresh weight can be hard to quantify. Another major draw-
back of the fixed-size kernels in conventional CNNss is their
inability to modify the size and scale of their receptive field
as they rely on pooling layers with fixed ratios (Dai et al.
2017). Deformable Convolutions solve this problem by in-
dependently generating offsets using a separate convolution
layer prior to the main convolution operation. These offsets
are then used to modify the location of the pixels which are
input to the main convolution kernel, meaning the pixels in
the output are no longer required to be dependent on neigh-
boring pixels in the input. The geometric variability in the
size and shape of plants and fruit and the high correlation of
these geometric features with continuous trait outputs (e.g.
fresh weight, leaf area, and dry weight) makes an adaptive
receptive field, greater scale invariance, and abstraction of
pixel and feature locations desirable in a model. Accord-
ingly, we hypothesized that deformable convolution layers
can be used to replace standard convolution layers, poten-
tially improving prediction for tasks with geometric rele-
vance.

Here, we present a relatively simple CNN model that ac-
cepts multiple sensor inputs and predicts multiple contin-
uous trait outputs — i.e. a multi-input, multi-output CNN
(MIMO-CNN). Furthermore, we introduce deformable con-
volutional layers into this network architecture (MIMO-
DCNN) to enable the model to adaptively adjust its recep-
tive field, model complicated variable geometric transforma-
tions in the data, and fine-tune the continuous trait outputs.
We demonstrate state-of-the-art performance on the 2021

Autonomous Greenhouse Image Processing Challenge, and
also provide a relatively simple pipeline that can be easily
modified to accept custom inputs and outputs for other agri-
cultural and plant breeding datasets.

Methods

All data used in this study was obtained from the Au-
tonomous Greenhouse Challenge Dataset (Hemming et al.
2021). First, images were cropped manually to a size small
enough to remove extraneous information but also left big
enough to avoid cutting off large crops towards the end of
the growing stages as shown in Figure 1. We defined this
cropped region as 200 to 900 in y and 650 to 1450 in x,
creating a 700 x 800 pixel image. Aligned with standard
practice, and to set the RGB and depth values within a sim-
ilar range, the images were normalized (i.e. centered and
scaled) channel-wise. The means and standard deviation of
each channel were calculated for the cropped train set alone
and used for normalization in both training and inference.
Random horizontal and vertical flip, random rotation, and
random shift was used as training augmentations.

Two sampling methods were tried during the training pro-
cess. Each image was assigned to a bin based on fresh weight
magnitude and sampled inversely proportional to the num-
ber of images in that bin (i.e. frequency). Stratified sampling
based on plant variety was also tried. However, neither of
the two methods yielded superior performance in compari-
son to a simple random sampling method without replace-
ment. As defined by the 2021 Autonomous Greenhouse or-
ganizers, the test set of 50 images was separated and held
out during the training process. The remaining 338 images
were randomly split with a train to validation ratio of 0.75
to 0.25. This resulted in a validation set of 68 images and
a train set of 270 images. Normalized Mean Squared Error
(NMSE) was used a the loss for training,
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where gt is the ground truth value, p is the predicted value,
n is the number of images, i is the batch dimension, m



is the number of traits/outputs and j is the output dimen-
sion. NMSE was chosen because it normalizes the MSE of
the prediction and ground truth by dividing it by squared
ground-truth values for each output. This allows a single
model to be trained to predict multiple distinct outputs with
different units without the need for output normalization.
This also allows for error within a single variable to be pe-
nalized according to its proportion to the actual ground truth
value.

As shown in Figure 2, we tried numerous model architec-
tures that varied 1) single (SI-) versus multiple inputs (MI-),
2) single (-SO) versus multi-output (-MO), and 3) standard
(-CNN) versus deformable convolutions (-DCNN). This re-
sulted in a total of 18 model types for each standard and
deformable convolution approaches, since (a) the SISO ap-
proach consisted of 10 total sub-models each trained on a
single-input and single-output, (b) the SIMO approach con-
sisted of two sub-models that accepted each input (RGB or
Depth), (c) the MISO models consisted of five total sub-
models each trained on a single output and all inputs, and (d)
the MIMO approach consisted of one model, trained on all
inputs and all outputs. For the multi-input models, we tried
combining the RGB and depth inputs in a single model us-
ing early and mid-fusion approaches. Early-fusion was done
by changing the initial convolution layer to accept 4 chan-
nel inputs rather than 3, but yielded worse results and was
not examined further. Our mid-fusion approach consisted of
two pretrained ResNet18 (He et al. 2016) encoders, one for
depth and the other for RGB. An additional convolutional
layer to go from 1 to 3 channels was added to the begin-
ning of the depth encoder to act as a color mapping layer.
The outputs of each encoder are concatenated before ap-
plying non-linear transformations and linear operations to
get to the output. A second architectural modification was
implemented in which all standard convolution layers were
replaced with deformable convolutional layers (Dai et al.
2017). The pre-trained weights of each original convolu-
tion layer were copied into the new deformable convolution
layer. The number of offsets was set to 3 for the input layer
and 8 for all other deformable convolution layers.

Adam optimizer was used with a learning rate of 0.0005
and no learning rate scheduling. All models were trained us-
ing the NMSE Loss function shown in equation 1 for consis-
tency. The model was evaluated using the NMSE on the final
test set for all traits, along with mean squared error (MSE)
for each individual trait (see 1). All models were trained us-
ing the PyTorch library (Paszke et al. 2019) in Python.

After model training, the output of the offset convolution
operation in the earliest deformable convolution operation
in the MIMO model was analyzed. We analyzed the earlier
layers to avoid the “’spatial abstraction” problem discussed
previously. Although various approaches were attempted,
the simplest method to visualize the offsets was to filter out
“weaker offsets”. We defined weaker offsets as having mag-
nitude less then 3 px, from the original sampling location,
and only showed offsets that were 3 px or more away from
their standard sampling location. The red, blue, and violent
point in Figure3 show the location of these “strong” offsets
for 4 kernel points. The simple abundance of points and ar-

Figure 3: Locations of the strong offsets produced from the
first layer. Strong offsets are defined as offsets whose mag-
nitude is greater than 3 and are indicated by the red, blue and
violet points

tifacts made the offsets hard to visualize when too many off-
sets for too many kernel points were plotted at once.

Results and Discussion

We found that the MIMO-DCNN and MISO-DCNN ap-
proaches achieved the best performance in terms of NMSE
on the 2021 Autonomous Greenhouse Image Processing
Online Challenge Dataset, in addition to converging much
earlier than all other models tested. Although the overall
NMSE of both approaches were similar, the per variable
error breakdown in Table 1 shows that the MIMO-DCNN
approach performed much better on fresh weight while
the MISO-DCNN approach slightly outperformed MIMO-
DCNN in all other variables. SIMO approaches performed
worse across the board with SIMO-CNN Depth performing
the worst.

The MIMO-DCNN and MISO-DCNN models outper-
formed the other approaches, with the MIMO-DCNN model
outperforming the MISO-DCNN models, showing that mul-
tiple inputs are crucial in estimating these traits with high
accuracy. However, certain variables could be over fitting
when additional non-essential inputs are given, making abla-
tion studies useful. For example, the results for the standard
CNN models show that the single-input depth models were
consistently better at predicting leaf area than multi-input
models. While this trend did not carry over when deformable
convolutions were tested, this suggests that not all inputs



Standard Convolutions vs Deformable Convolutions
MSE NMSE
Fresh Wt Dry Wt Height Diameter Leaf Area All
CNN | DCNN | CNN | DCNN | CNN | DCNN | CNN | DCNN | CNN | DCNN | CNN | DCNN
MIMO | 8.97¢2 | 4.22¢2 | 1.21 0.97 3.05 3.07 5.31 6.63 1.19e5 | 7.52e4 | 0.092 | 0.068
MISO 9.41e2 | 6.52¢2 | 1.22 0.78 2.02 2.69 4.96 5.69 1.25e5 | 7.43e4 | 0.088 | 0.069
SIMO-R | 1.00e3 | 9.82¢e2 | 1.44 1.09 3.31 3.36 4.99 6.30 1.16e5 | 1.54e5 | 0.099 | 0.102
SIMO-D | 1.36e3 | 8.46e2 | 1.55 1.53 343 4.64 8.20 6.59 945e4 | 1.07e5 | 0.114 | 0.104
SISO-R | 1.05e¢3 | 1.07e3 | 1.26 0.89 3.01 2.71 5.74 5.52 1.19e5 | 1.35e5 | 0.098 | 0.093
SISO-D | 898e2 | 8.72¢2 | 1.68 1.58 3.00 2.34 6.89 7.61 9.72e4 | 1.01e5 | 0.098 | 0.094

Table 1: Model performance of ResNetl18-based regression models using standard and deformable convolutions with multi-
input multi-output (MIMO), multi-input single-output (MISO), single-input multi-output RGB (SIMO-R), single-input multi-
output depth (SIMO-D), single-input single-output RGB (SISO-R), single-input single-output Depth (SISO-D). For reference
the leaderboard score was 0.081 for the 2021 Autonomous Greenhouse Challenge Computer Vision competition.

are likely essential for optimal performance when predict-
ing certain variables.

As shown in Table 1, single- and multi-output models
performed very similarly when multiple inputs were avail-
able. However, most of the variables in the MISO-DCNN
approach were predicted with the best performance with
exception of fresh weight, which performed better in the
MIMO-DCNN approach. This may suggest that the mutual
feature sharing of the multiple outputs may be beneficial for
some variables but detrimental for others. In this case, fresh
weight may have represented a comprehensive trait which
was correlated with the geometric traits (i.e. larger plants
likely had a higher fresh weight), such that training multi-
output models on all traits simultaneously resulted in im-
proved performance. In both the deformable and standard
convolution models, single-output models seemed to a have
higher advantage when inputs were ablated, suggesting that
mutual feature sharing can be detrimental to many variables
when only RGB or depth information is present. However,
among the single output models, the fresh weight trait was
still best predicted with a multi-input approach. Neverthe-
less, the abundance of single-input, RGB only datasets iden-
tified by (Lu and Young 2020) could make single-output not
only useful but essential in estimating multiple traits with
optimal performance.

Overall, models with deformable convolutions outper-
formed those with standard convolutions, especially when
all inputs were given to the model. In comparison to the
standard convolution models, the deformable convolution
models seemed to better utilize information from both in-
puts, since the increase in performance between single- and
multi-input models was substantially higher in the DCNN.
Deformable convolutions performed much better in predict-
ing fresh weight, dry weight and leaf area, showing that
these traits benefit from having a adaptive receptive field and
spatial abstraction of pixels and feature locations. Figure 3
shows the locations of the strongest offset for 4 kernel points
in the earliest layers. We observe these kernel points special-
izing in extracting features in a more geometrically invariant
way, since much of the offset points fall within the edges the
plant telling us the sampling location of these kernel points
mostly lie within the plant. The pixel values inside (and out-

side) the plants are then transformed into a more abstract
coordinate plane since the receptive fields are not constant,
which is likely what allows deformable convolutions to per-
form better. Importantly, this method fails to visually depict
saliency, since there can be many artifacts outside of the fea-
tures of interest (Zhang et al. 2021) and the gradients are not
back-propagated to weight the layer’s activations as in Grad-
CAM (Selvaraju et al. 2017) and other similar approaches.
Further, multi-input CNN methods still outperformed the
DCNN methods for height and diameter. This could due to
the fact that height and diameter information are relatively
simpler to estimate and do not require complicated geomet-
ric transformations and spatial abstractions to model. If true,
a simple set of kernels to determine the furthest edges in
the height/width or depth dimensions can be used to deter-
mine these traits, causing the increased parameterization of
the deformable convolution module (Dai et al. 2017) to over-
fit. Simply put, the loss/abstraction of feature locations could
be detrimental in cases where basic geometric measurement
such as height or diameter need to be estimated. Therefore,
whether the outputs that are being estimated would benefit
from higher spatial abstraction and receptive field adaptabil-
ity when considering the use of deformable convolutions is
an open question.

Conclusion

In this work we provide a simple, yet effective CNN re-
gression approach to directly predict multiple plant traits
from multiple sensor inputs. We test the performance of
this method using the 2021 Autonomous Greenhouse Chal-
lenge Computer Vision dataset, demonstrating a 16% re-
duction in NMSE compared to the top leaderboard score.
Additionally, we conducted ablation tests to examine the
importance of using multi-input RGB and depth informa-
tion and multi-output trait data with a single or multiple
models. Future work could test how more flexible methods,
such as deformable convolutions V2 (Zhu et al. 2019b) and
other spatial attention mechanisms (Zhu et al. 2019a), affect
performance on multi-input, multi-output regression prob-
lems. The technique and codebase developed here should be
broadly useful for plant breeders and agricultural producers
interested in predicting multiple traits from multiple sensors.
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