Optimizing DDPM Sampling with Shortcut Fine-Tuning

Ying Fan'

Abstract

In this study, we propose Shortcut Fine-Tuning
(SFT), a new approach for addressing the chal-
lenge of fast sampling of pretrained Denoising
Diffusion Probabilistic Models (DDPMs). SFT
advocates for the fine-tuning of DDPM samplers
through the direct minimization of Integral Proba-
bility Metrics (IPM), instead of learning the back-
ward diffusion process. This enables samplers
to discover an alternative and more efficient sam-
pling shortcut, deviating from the backward dif-
fusion process. Inspired by a control perspective,
we propose a new algorithm SFT- PG: Shortcut
Fine-Tuning with Policy Gradient, and prove that
under certain assumptions, gradient descent of
diffusion models with respect to IPM is equiva-
lent to performing policy gradient. To our best
knowledge, this is the first attempt to utilize rein-
forcement learning (RL) methods to train diffu-
sion models. Through empirical evaluation, we
demonstrate that our fine-tuning method can fur-
ther enhance existing fast DDPM samplers, re-
sulting in sample quality comparable to or even
surpassing that of the full-step model across vari-
ous datasets.

1. Introduction

Denoising diffusion probabilistic models (DDPMs) (Ho
et al., 2020) are parameterized stochastic Markov chains
with Gaussian noises, which are learned by gradually adding
noises to the data as the forward process, computing the pos-
terior as a backward process, and then training the DDPM to
match the backward process. Advances in DDPM (Nichol
and Dhariwal, 2021; Dhariwal and Nichol, 2021) have
shown the potential to rival GANs (Goodfellow et al., 2014)
in generative tasks. However, one major drawback of
DDPM is that a large number of steps 7" is needed. As

"UW Madison. Correspondence to: Ying Fan, Kangwook Lee
<yfan87 @wisc.edu, kangwook.lee @wisc.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Kangwook Lee '

Controller/
System

xT

initial state —— —— final state

Diffusion models

NS/ initial noise Di;wgés:g final image
a4
xT

Figure 1. Image denoising is similar to a closed-loop control sys-
tem: finding paths from pure noise to natural images.

a result, there is a line of work focusing on sampling fewer
T’ « T steps to obtain comparable sample quality: Most
works are dedicated to better approximating the backward
process as stochastic differential equations (SDEs) with
fewer steps, generally via better noise estimation or comput-
ing better sub-sampling schedules (Kong and Ping, 2021;
San-Roman et al., 2021; Lam et al., 2021; Watson et al.,
2021a; Jolicoeur-Martineau et al., 2021; Bao et al., 2021;
2022). Other works aim at approximating the backward pro-
cess with fewer steps via more complicated non-gaussian
noise distributions (Xiao et al., 2021).!

To our best knowledge, existing fast samplers of DDPM
stick to imitating the computed backward process with fewer
steps. If we treat data generation as a control task (see
Fig. 1), the backward process can be viewed as a demonstra-
tion to generate data from noise (which might not be optimal
in terms of number of steps), and the training dataset could
be an environment that provides feedback on how good the
generated distribution is. From this view, imitating the back-
ward process could be viewed as imitation learning (Hus-
sein et al., 2017) or behavior cloning (Torabi et al., 2018).
Naturally, one may wonder if we can do better than pure
imitation, since learning via imitation is generally useful
but rarely optimal, and we can explore alternative paths for
optimal solutions during online optimization.

Motivated by the above observation, we study the following

!There is another line of work focusing on fast sampling of
DDIM (Song et al., 2020a) with deterministic Markov sampling
chains, which we will discuss in Section 5.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

L. Noising steps

Q($t+1|55f,)

/ E— \H
/ II1. Fine-tuned steps
'[" < qr
A
<\ '%
II. Learned denoising steps .
E: =I P} (@i|z1) = gz, o) br

Figure 2. A visual illustration of the key idea of Shortcut Fine-
Tuning (SFT). DDPMs aim at learning the backward diffusion
model, but this approach is limited to a small number of steps.
We propose the idea of not following the backward process and
exploring other unexplored paths that can lead to improved data
generation. To this end, we directly minimize an IPM and develop
a policy gradient-like optimization algorithm. Our experimental
results show that one can significantly improve data generation
quality by fine-tuning a pretrained DDPM model with SFT. We
also provide a visualization of the difference between steps in 11
and III when T is small in Appendix A.

underexplored question:

Can we improve DDPM sampling by not following the
backward process?

In this work, we show that this is indeed possible. We fine-
tune pretrained DDPM samplers by directly minimizing an
integral probability metric (IPM) and show that finetuned
DDPM samplers have significantly better generation quali-
ties when the number of sampling steps is small. In this way,
we can still enjoy diffusion models’ multistep capabilities
with no need to change the noise distribution, and improve
the performance with fewer sampling steps.

More concretely, we first show that performing gradient
descent of the DDPM sampler w.r.t. the IPM is equivalent to
stochastic policy gradient, which echoes the aforementioned
RL view but with a changing reward from the optimal critic
function given by IPM. In addition, we present a surrogate
function that can provide insights for monotonic improve-
ments. Finally, we present a fine-tuning algorithm with
alternative updates between the critic and the generator.

‘We summarize our main contributions as follows:

* (Section 4.1) We propose a novel algorithm to fine-tune
DDPM samplers with direct IPM minimization, and
we show that performing gradient descent of diffusion
models w.r.t. IPM is equivalent to policy gradient.
To our best knowledge, this is the first work to apply
reinforcement learning methods to diffusion models.

* (Section 4.2) We present a surrogate function of IPM
in theory, which provides insights on conditions for

monotonic improvement and algorithm design.

* (Section 4.3.2) We propose a regularization for the
critic based on the baseline function, which shows
benefits for the policy gradient training.

* (Section 6) Empirically, we show that our fine-tuning
can improve DDPM sampling performance in two
cases: when T itself is small, and when T is large
but using a fast sampler where 77 « T In both cases,
our fine-tuning achieves comparable or even higher
sample quality than the DDPM with 1000 steps using
10 sampling steps.

2. Background
2.1. Denoising Diffusion Probabilistic Models (DDPM)

Here we consider denoising probabilistic diffusion models
(DDPM) as stochastic Markov chains with Gaussian noises
(Ho et al., 2020). Consider data distribution x¢ ~ qg, g €
R™.

Define the forward noising process: for t € [0,..,T — 1],

q(zip1lre) = N1 = Beyaze, Beyal), (D

where 1, .., x are variables of the same dimensionality as
Tg, 1.7 is the variance schedule.

We can compute the posterior as a backward process:

q(zi|zi11,20) = N(firt1 (Teg1, 20), Bepa D), (2)

~ VB 1/ozf_,_l(l 041)
where fit11 (241, 70) = Toa, L0 T e T+l

_ t+1
appr =1 = Bepr, appr = [[as

We define a DDPM sampler parameterized by 6, which
generates data starting from some pure noise xp ~ pr:
T ~ PT :N((])I)a
ze ~ pf (we|ze41), 3)
P) (@e|zes1) = N(,uf+1(zt+1)a St41),

where X; 1 is generally chosen as 3;41/ or Bt+1f. 2

Define

ng:T =D H

J3t|30t+1 4

and we have the marginal distribution pf(z¢) =
§p8,.. (zor)dzy.7.
*In this work we consider a DDPM sampler with a fixed vari-

ance schedule 1.7 as in Ho et al. (2020), but it could also be
learned as in Nichol and Dhariwal (2021).

Optimizing DDPM Sampling with Shortcut Fine-Tuning

The sampler is trained by minimizing the sum of KL diver-
gences for each step:

T-1

J =E, ZDKL(Q($t|xt+l7xO)apf(mt‘xt+l)))
=0

Optimizing the above loss can be viewed as matching the
conditional generator p? (x¢|z;,1) with the backward pro-
cess q(x¢|zyy1, o) for each step. Song et al. (2020b) show
that .J is equivalent to score-matching loss when formulat-
ing the forward and backward process as a discrete version
of stochastic differential equations.

2.2. Integral Probability Metrics (IPM)

Given A as a set of parameters s.t. for each a € A, it
defines a critic f, : R™ — R. Given a critic f, and two
distributions pf and qo, we define

9PY, far@0) == E [fa(zo)]— E [fa(®0)]. (6)

To~Dpg To~qo

Let

D(pf, qo) := Sugg(pg,fmqo). 7
e

If A satisfies that Vo € A, 3o/ € A, s.t. for = —fa, then
D (py, q) is a pseudo metric over the probability space of
R™, making it so-called integral probability metrics (IPM).

In this paper, we consider .A that makes ®(p§, ¢o) an IPM.
For example, when A = {a : ||fallz < 1}, ®(pf, qo0) is
the Wasserstein-1 distance; when A = {a : || falleo < 1},
®(p§, qo) is the total variation distance; it also includes
maximum mean discrepancy (MMD) when A defines all
functions in Reproducing Kernel Hilbert Space (RKHS).

3. Motivation
3.1. Issues with Existing DDPM Samplers

Here we review the existing issues with DDPM samplers 1)
when T is not large enough, and 2) when sub-sampling with
the number of steps 77 « T, which inspires us to design our
fine-tuning algorithm.

Case 1. Issues caused by training DDPM with a small T’
(Fig 2). Given a score-matching loss J, the upper bound
on Wasserstein-2 distance is given by Kwon et al. (2022):

Wa(ph, q0) < O J) + I(T)Wa(pr,qr), (8

where I(T) is non-exploding and W5 (pr, gr) decays ex-
ponentially with 7" when 7' — c0. From the inequality
above, one sufficient condition for the score-matching loss
J to be viewed as optimizing the Wasserstein distance is
when T is large enough such that I(T)Ws(pr,gr) — O.

Now we consider the case when 7T is small and pr % g7.>.
The upper bound in Eq. (8) can be high since Ws(pr, ¢1)
is not neglectable. As shown in Fig 2, pure imitation
P! (z¢|ri11) ~ q(x¢|7is1,70) Would not lead the model
exactly to go when pr and g7 are not close enough.

Case 2. Issues caused by a smaller number of sub-
sampling steps (7" « T) (Fig 8 in Appendix B). We
consider DDPM sub-sampling and other fast sampling tech-
niques, where T is large enough s.t. pr ~ qr, but we try to
sample with fewer sampling steps (7). It is generally done
by choosing 7 to be an increasing sub-sequence of T steps
in [0, T starting from 0. Many works have been dedicated
to finding a subsequence and variance schedule to make the
sub-sampling steps match the full-step backward process as
much as possible (Kong and Ping, 2021; Bao et al., 2021;
2022). However, this would inevitably cause downgraded
sample quality if each step is Gaussian: as discussed in
Salimans and Ho (2021) and Xiao et al. (2021), a multi-
step Gaussian sampler cannot be distilled into a one-step
Gaussian sampler without loss of fidelity.

3.2. Problem Formulation

In both cases mentioned above, there might exist paths other
than imitating the backward process that can reach the data
distribution with fewer Gaussian steps. Thus one may expect
to overcome these issues by minimizing the IPM.

Here we present the formulation of our problem set-
ting. We assume that there is a target data distribution
qo. Given a set of critic parameters A s.t. ®(pf,q0) =
SUp e 4 9(PY, fas qo) is an IPM, and given a DDPM sam-
pler with T" steps parameterized by 6, our goal is to solve:

min @ (pg, go)- ©)

3.3. Pathwise Derivative Estimation for Shortcut
Fine-Tuning: Properties and Potential Issues

One straightforward approach is to optimize ®(pj, qo) us-
ing pathwise derivative estimation (Rezende et al., 2014)
like GAN training, which we denote as SFT (shortcut fine-
tuning). We can recursively define the stochastic mappings:

hor(z7) = 27, (10)
hot(xt) := po(hot+1(Te41)) + €41, (1D
xo = hgo(xr) (12)

where zp ~ N(O,I),Et_H ~ N(O,Zt_;,_l),t =0, ...,T -1

3Recall that during the diffusion process, we need small Gaus-
sian noise for each step set the sampling chain to also be condi-
tional Gaussian (Ho et al., 2020). As a result, a small 7" means gr
is not close to pure Gaussian, and thus pr % gr.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

Then we can write the objective function as:

[fa (he,o(l”T))] - xo@q() [fa(0)]
(13)

®(pf),q0) =sup E
aceA

xT,€1:T

Assume that Ja € A, s.t. g(p§, o, q0) = ®(pf, o). Let
a*(pf, q0) € {a : g(ph, @, q0) = ®(p§, q0)}. When fo, is
1-Lipschitz, we can compute the gradient which is similar
to WGAN (Arjovsky et al., 2017):

Vo®(ph,q0) = E [Vefoé*(pgm)(ho,o(IT))]~ (14)

T,€1:T
Implicit requirements on the family of critics .4: gra-
dient regularization. In Eq. (14), we can observe that
the critic f,+ needs to provide meaningful gradients (w.r.t.
the input) for the generator. If the gradient of the critic
happens to be 0 at some generated data points, even if the
critic’s value could still make sense, the critic would provide
no signal for the generator on these points*. Thus GANs
trained with IPMs generally need to choose A such that the
gradient of the critic is regularized: For example, Lipschitz
constraints like weight clipping (Arjovsky et al., 2017) and
gradient penalty (Gulrajani et al., 2017) for WGAN, and
gradient regularizers for MMD GAN (Arbel et al., 2018).

Potential issues. Besides the implicit requirements on the
critic, there might also be issues when computing Eq. (14) in
practice. Differentiating a composite function with T steps
can cause problems similar to RNNs: Gradient vanishing
may result in long-distance dependency being lost; Gradient
explosion may occur; Memory usage is high.

4. Method: Shortcut Fine-Tuning with Policy
Gradient (SFT-PG)

We note that Eq. (14) is not the only way to estimate the
gradient w.r.t. IPM. In this section, we show that performing
gradient descent of ®(pf), qo) can be equivalent to policy
gradient (Section 4.1), provide analysis towards monotonic
improvement (Section 4.2) and then present the algorithm
design (Section 4.3).

4.1. Policy Gradient Equivalence

By modeling the conditional probability through the trajec-
tory, we provide an alternative way for gradient estimation
which is equivalent to policy gradient, without differentiat-
ing through the composite functions.

Theorem 4.1. (Policy gradient equivalence)

0
Assume that both pg . (%0.7)fax (pg,q0) (T0) and
Vop?, .. (@0:7) fak (p?.q0) (T0) are continuous functions
“For example, MMD with very narrow kernels can produce

such critic functions, where each data point defines the center of
the corresponding kernel which yields gradient 0.

w.r.t. 0 and xo.7. Then

T-1
Vo®(ph, q0) = peE [fa*(pg,qo)(ffo)ve log Z P (we|zes1)]-
T0:T t=0

15)
Proof.

V9<I>(pg, %)

=Vy JP(G)(SUO)fa*(pg,qo) (mo)dxo

+V06Y*(P(9)7 CIO)VQ*(pg,qO) Jpg(fo)fa*(pg,qo)(fo)dwm

(16)

where Vo (9 001 § 90 (20) ok (58,40) (€0)do is O from the
envelope theorem. Then we have

Vo Jpg(%)fa*(pg,qo) (zo)dzo
= Vej (JpzojT(JJo:T)dILT) fot (98,40) (T0) dwo,
=V fpzo:T (‘rOZT)fa*(pg,qo) (zo)dxo.
= fpiw (20:7) fox (p8,q0) (Z0) Vo logp, (zo.)dwo.r

- E

6
p”—'D:T

T—1
[fa*(pquo)(xo) 2 Vo logpf(xt|xt+1)1 ,
t=0

o))

where the second last equality is from the continuous as-
sumptions to exchange integral and derivative and the log
derivative trick. The proof is then complete. O

MDP construction for policy gradient equivalence.
Here we explain why Eq. (15) could be viewed as policy
gradient. We can construct an MDP with a finite horizon 7"
Treat p? (24|71 1) as a policy, and assume that transition is
an identical mapping such that the action is to choose the
next state. Consider reward as f, (p¢ q,)(Z0) at the final
step, and as 0 at any other steps. Then Eq. (15) is equivalent
to performing policy gradient (Williams, 1992).

Comparing Eq. (14) and Eq. (15):

* Eq. (14) uses the gradient of the critic, while Eq. (15)
only uses the value of the critic. This indicates that for
policy gradient, weaker conditions are required for crit-
ics to provide meaningful guidance for the generator,
which means more choices of .4 can be applied here.

* We compute the sum of gradients for each step in
Eq. (15), which does not suffer from exploding or
vanishing gradients. Also, we do not need to track
gradients of the generated sequence during 71" steps.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

9N Fara- 0) + 20167 — 0]

Figure 3. Illustration of the surrogate function given a fixed critic
(red), and the actual objective @(pg/, qo) (dark). The horizontal
axis represents the variable §’. Starting from 6, a descent in the sur-
rogate function is a sufficient condition for a descent in <I>(p8/, qo)-

* However, stochastic policy gradient methods usually
suffer from higher variance (Mohamed et al., 2020).
Thanks to similar techniques in RL, we can reduce the
variance via a baseline trick, which will be discussed
in Section 4.3.1.

In conclusion, Eq. (15) is comparable to Eq. (14) in ex-
pectation, with potential benefits like numerical stability,
memory efficiency, and a wider range of the critic family
A. It could suffer from higher variance but the baseline
trick can help. We denote such kind of method as SFT-PG
(shortcut fine-tuning with policy gradient).

Empirical comparison. We conduct experiments on
some toy datasets (Fig 4), where we show the performance
of Eq. (15) with the baseline trick is at least comparable to
Eq. (14) at convergence when they use the same gradient
penalty (GP) for critic regularization. We further observe
SFT-PG with a newly proposed baseline regularization (B)
enjoys a noticeably better performance compared to SFT
with GP. The regularization methods will be introduced in
Section 4.3.2. Experimental details are in Section 6.2.2.

4.2. Towards Monotonic Improvement

The gradient update discussed in Eq. (15) only supports one
step of gradient update, given a fixed critic fa*(p& q0) that
is optimal to the current 6. Questions remain: When is our
update guaranteed to get improvement? Can we do more
than one update to get a potential descent? We answer the
questions by providing a surrogate function of the [IPM.

Theorem 4.2. (The surrogate function of IPM)

Assume that g(pl, fa, qo) is Lipschitz w.r.t. 0, given qo and
a € A. Given a fixed critic fa*(pgm), there exists | >

0 such that @(pgl, qo) is upper bounded by the surrogate
function below:

(pY , q0) < 915 , far (p9.g0)7 90) + 20]|10" —0||. (18)

Proof of Theorem 4.2 can be found in Appendix C. Here
we provide an illustration of Theorem 4.2 in Fig 3. Given
a critic that is optimal w.r.t. 6, ®(p§ ,qo) is unknown if
6 # 0. But if we can get a descent of the surrogate function,
we are also guaranteed to get a descent of @(pgl, qo), which
facilitates more potential updates even if 8’ # 6. Moreover,
using the Lagrange multiplier, we can convert minimizing
the surrogate function to a constrained optimization problem
to optimize g(pg/, fa*(pg,qo)7 go) with the constraint that
[|60' — 6]| < 6 for some § > 0. Following this idea, one
simple trick is to perform nMgeneraror Steps of gradient updates
with a small learning rate, and clip the gradient norm with
threshold . We present the empirical effect of such simple
modification in Section 6.2.3, Table 2.

Discussion. One may notice that Theorem 4.2 is similar
in spirit to Theorem 1 in TRPO (Schulman et al., 2015a),
which provides a surrogate function for a fixed but unknown
reward function. In our case, the reward function f_« (99,90)
is known for the current 6 but changing: It is dependent
on the current # so it remains unknown for 6’ # 6. The
proof techniques are also different, but they both estimate
an unknown part of the objective function.

4.3. Algorithm Design

In the previous sections, we only consider the case where we
have an optimal critic function given 6. In the training, we
adopt similar techniques in WGAN (Arjovsky et al., 2017)
to perform alternative training of the critic and generator
in order to approximate the optimal critic. Consider the
objective function below:

min max g(pl, fu, qo)- (19)
6 acA

Now we discuss techniques to reduce the variance of the
gradient estimation and regularize the critic, and then give
an overview of our algorithm.

4.3.1. BASELINE FUNCTION FOR VARIANCE
REDUCTION

Given a critic o, we can adopt a technique widely used in
policy gradient to reduce the variance of the gradient estima-
tion in Eq. (15). Similar to Schulman et al. (2015b), we can
subtract a baseline function V¥ ; (z¢1) from the cumulative
reward f,(zo), without changing the expectation:

Vog(§, far0)

T-1
1) [fa(fo) > Ve 10gpf(fft|$t+1)]

0
zo:T t=0

T-1
peE [Z (fa(w0) = Vi1 (2241)) Ve 1ngf($t|zt+1)] ;
0:T | t=0 (20)

Optimizing DDPM Sampling with Shortcut Fine-Tuning

where the optimal choice of V| (x;41) to minimize the
variance would be Viy1(xiq1,a) := E [fo(xo)|®is1]-

r0:T

Detailed derivation of Eq (20) can be found in Appendix D.
Thus, given a critic v and a generator 6, we can train a value
function V;% ; by minimizing the objective below:

Z Ve (@) = Vigr (@41, @)
pTOT t=0
(21)

Rp(a,w,)

4.3.2. CHOICES OF A: REGULARIZING THE CRITIC

Here we discuss different choices of A, which indicates
different regularization methods for the critic.

Lipschitz regularization. If we choose A to include pa-
rameters of all 1-Lipschitz functions, we can adopt regular-
ization as WGAN-GP (Gulrajani et al., 2017):

Rap(a,0) = E[(|Vao fa(zo)| = 1], (22)
Zo

where 7 is sampled uniformly on the line segment between

xh ~ pdand xf) ~ go. f. can be trained to maximize

98, fasq0) — NRap(a,w,0), n > 0 is the regularization

coefficient.

Reusing baseline for critic regularization. As discussed
in Section 4.1, since we only use the critic value during
updates, now we can afford a potentially wider range of
critic family A. Some regularization on f, is still needed;
Otherwise its value can explode. Also, regularization is
shown to be beneficial for local convergence (Mescheder
et al., 2018). So we consider regularization that can be
weaker than gradient constraints, such that the critic is more
sensitive to the changes of the generator, which could be
favorable when updating the critic for a fixed number of
training steps.

We found an interesting fact that the loss Rp(«, w, #) can
be reused to regularize the value of f, instead of the gradi-
ent, which implicitly defines a set A that shows empirical
benefits in practice.

Define

L(a,w,@) = g(pgafouqo) _ARB(aaw79)~ (23)

Given 6, our critic « and baseline w can be trained together
to maximize L(a,w,@).

We provide an explanation of such kind of implicit regular-
ization. During the update, we can view V,% | as an approxi-
mation of the expected value of f,, from the previous step.
The regularization provides a trade-off between maximizing
9(P8, fas qo) and minimizing changes in the expected value
of f,, preventing drastic changes in the critic and stabilizing

the training. Intuitively, it helps local convergence when
both the critic and generator are already near-optimal: there
is an extra cost for the critic value to diverge away from the
optimal value. As a byproduct, it also makes the baseline
function easier to fit since the regularization loss is reused.

Empirical comparison: baseline regularization and
gradient penalty. We present a comparison of gradient
penalty (GP) and baseline regularization (B) for policy gradi-
ent training (SFT-PG) in Section 6.2.2, Fig 4 on toy datasets,
which shows in policy gradient training, the baseline func-
tion performs comparably well or even better than gradient
penalty.

4.3.3. PUTTING TOGETHER: ALGORITHM OVERVIEW

Now we are ready to present our algorithm. Our critic
« and baseline w are trained to maximize L(o,w,0) =
(P8, fo,q0) —ARp(a,w,0), and the generator is trained to
minimize g(p, fa, qo) via Eq. (20). To save memory usage,
we use a buffer B that contains {x11,x¢, o, t} generated
from the current generator without tracking the gradient, and
randomly sample a batch from the buffer to compute Eq. (20)
and then perform backpropagation. The maximization and
minimization steps are performed alternatively. See details
in Alg 1.

Algorithm 1 Shortcut Fine-Tuning with Policy Gradient
and Baseline Regularization: SFT-PG (B)

Input: ncriic, Ngenerator, Datch size m, critic parameters o,
baseline function parameter w , pretrained generator 6, reg-
ularization hyperparameter A

while 6 not converged do
Initialize trajectory buffer B as ¢
for i = 0,...,ncrmc do
Obtain m i.i.d. samples from pzo:T
Add all {zyy1, ¢, o, t}to B,t =0,....,T — 1
Obtain m i.i.d. samples from gg
Update o and w via maximizing Eq. (23)
end for
for j =0,...,ngencrator A0
Obtain m samples of {z;1, x¢, xo, t} from B
Update 6 via policy gradient according to Eq. (20)
end for
end while

5. Related Works

GAN and RL. There are works using ideas from RL to
train GANs (Yu et al., 2017; Wang et al., 2017; Sarmad
et al., 2019; Bai et al., 2019). The most relevant work is Se-
qGAN (Yu et al., 2017), which uses policy gradient to train
the generator network. There are several main differences
between their settings and ours. First, different GAN objec-

Optimizing DDPM Sampling with Shortcut Fine-Tuning

tives are used: SeqGAN uses the JS divergence while we
use IPM. In SeqGAN, the next token is dependent on tokens
generated from all previous steps, while in diffusion models
the next image is only dependent on the model output from
one previous step; Also, the critic takes the whole generated
sequence as input in SeqGAN, while we only care about the
final output. Besides, in our work, rewards are mathemati-
cally derived from performing gradient descent w.r.t. IPM,
while in SeqGAN, rewards are designed manually. In con-
clusion, different from SeqGAN, we propose a new policy
gradient algorithm to optimize the IPM objective, with a
novel analysis of monotonic improvement conditions and a
new regularization method for the critic.

Diffusion and GAN. There are other works combining
diffusion and GAN training: Xiao et al. (2021) consider
multi-modal noise distributions generated by GAN to enable
fast sampling; Zheng et al. (2022) considers a truncated
forward process by replacing the last steps in the forward
process with an autoencoder to generate noise, and start
with the learned autoencoder as the first step of denoising
and then continue to generate data from the diffusion model;
Diffusion GAN (Wang et al., 2022) perturbs the data with
an adjustable number of steps, and minimizes JS divergence
for all intermediate steps by training a multi-step generator
with a time-dependent discriminator. To our best knowledge,
there is no existing work using GAN-style training to fine-
tune a pretrained DDPM sampler.

Fast samplers of DDIM and more. There is another line
of work on fast sampling of DDIM (Song et al., 2020a),
for example, knowledge distillation (Luhman and Luhman,
2021; Salimans and Ho, 2021) and solving ordinary differ-
ential equations (ODEs) with fewer steps (Liu et al., 2022;
Lu et al., 2022). Samples generated by DDIM are generally
less diverse than DDPM (Song et al., 2020a). Also, fast
sampling is generally easier for DDIM samplers (with de-
terministic Markov chains) than DDPM samplers, since it
is possible to combine multiple deterministic steps into one
step without loss of fidelity, but not for combining multiple
Gaussian steps as one (Salimans and Ho, 2021). Fine-tuning
DDIM samplers with deterministic policy gradient for fast
sampling also seems possible, but deterministic policies may
suffer from suboptimality, especially in high-dimensional
action space (Silver et al., 2014), though it might require
fewer samples. Also, it becomes less necessary since distil-
lation is already possible for DDIM.

Moreover, there is also some recent work that uses sample
quality metrics to enable fast sampling. Instead of fine-
tuning pretrained models, Watson et al. (2021b) propose
to optimize the hyperparameters of the sampling schedule
for a family of non-Markovian samplers by differentiating
through KID (Bifkowski et al., 2018), which is calculated

by pretrained inception features. It is followed by a contem-
porary work that fine-tunes pretrained DDIM models using
MMD calculated by pretrained features (Aiello et al., 2023),
which is similar to the method discussed in Section 3.3
but with a fixed critic and a deterministic sampling chain.
Generally speaking, adversarially trained critics can provide
stronger signals than fixed ones and are more helpful for
training (Li et al., 2017). As a result, besides the potential
issues discussed in Section 3.3, such training may also suffer
from sub-optimal results when pg is not close enough to qg
at initialization, and is highly dependent on the choice of
the pretrained feature.

6. Experiments

In this section, we aim to answer the following questions:

* (Section 6.2.1) Does the proposed algorithm SFT-PG
(B) work in practice?

* (Section 6.2.2) How does SFT-PG (Eq. (15)) work com-
pared to SFT (Eq. (14)) with the same regularization
(GP), and how does baseline regularization (B) com-
pared to gradient penalty (GP) in SFT-PG?

* (Section 6.2.3) Do more generator steps with gradient
clipping work as discussed in Section 4.27

* (Section 6.3) Does the proposed fine-tuning SFT-PG
(B) improve existing fast samplers of DDPM on bench-
mark datasets?

Code is available at https://github.com/
UW-Madison—-Lee—-Lab/SFT-PG.

6.1. Setup

Here we provide the setup of our training algorithm on
different datasets. Model architectures and training details
can be found in Appendix F.

Toy datasets. The toy datasets we use are swiss roll and
two moons (Pedregosa et al., 2011). We use A = 0.1,
Neritic = 9, Ngenerator = 1 With no gradient clipping. For eval-
uation, we use the Wasserstein-2 distance on 10K samples
from pg and g respectively, calculated by POT (Flamary
etal., 2021).

Image datasets. We use MNIST (LeCun et al., 1998),
CIFAR-10 (Krizhevsky et al., 2009) and CelebA (Liu
et al., 2015). For hyperparameters, we choose A = 1.0,
Neritic = 9, Ngenerator = 10, v = 0.1, except when testing
different choices of ngeperaor and v in MNIST, where we
USE Ngenerator = O and varying <. For evaluation, we use
FID (Heusel et al., 2017) measured by 50K samples gener-
ated from p and g, respectively.

https://github.com/UW-Madison-Lee-Lab/SFT-PG
https://github.com/UW-Madison-Lee-Lab/SFT-PG

Optimizing DDPM Sampling with Shortcut Fine-Tuning

o

—— SFT (GP)
————— SFT-PG (GP) o
—— SFT-PG (B)

)

w

W>(po, o)(x1072)
N

-

=)

0 100 200 300
Epochs

100 —075 050 —0.25 000 025 050 075 100

(a) Training curves of swiss roll (b) Roll, SFT (GP)

—— SFT(GP)
------ SFT-PG (GP) e
—— SFT-PG (B) 050

e

IS

w

N

W>(po, o)(x1072)

-

=)

0 100 200 300
Epochs

100 —075 050 —0.25 000 025 050 075 100

(e) Training curves of moons (f) Moons, SFT (GP)

100 —075 050 —0.25 000 025 050 075 100 100 —075 050 —0.25 000 025 050 075 100

(c) Roll, SFT-PG (GP) (d) Roll, SFT-PG (B)

100 —075 050 —0.25 000 025 050 075 100 100 075 050 —025 000 025 050 075 100

(2) Moons, SFT-PG (GP) (h) Moons, SFT-PG (B)

Figure 4. Training curves (4a, 4e) and 10K randomly generated samples from SFT (GP) (4b, 4f), SFT-PG (GP) (4c, 4g), and SFT-PG
(B) (4d, 4h) at convergence. In the visualizations, red dots indicate the ground truth data, and blue dots indicate generated data. We can
observe that SFT-PG (B) produces noticeably better distributions, which is the result of utilizing a wider range of critics.

Method W2 (p§, qo) (x1072) (1)
T =10, DDPM 8.29
T = 100, DDPM 2.36
T = 1000, DDPM 1.78
T = 10, SFT-PG (B) 0.64

Table 1. Comparison of DDPM models and our fine-tuned model
on the swiss roll dataset.

6.2. Proof-of-concept Results

In this section, we fine-tune pretrained DDPMs with T =
10, and present the effect of the proposed algorithm SFT-PG
with baseline regularization on toy datasets. We present the
results of different gradient estimations discussed in Sec-
tion 4.1, different critic regularization methods discussed in
Section 4.3.2, and the training technique with more genera-
tor steps discussed Section 4.2.

6.2.1. IMPROVEMENT FROM FINE-TUNING

On the swiss roll dataset, we first train a DDPM with 7" = 10
till convergence, and then use it as initialization of our fine-
tuning. As in Table 1, our fine-tuned sampler with 10 steps
can get better Wasserstein distance not only compared to
the DDPM with T = 10, but can even outperform DDPM
with 7' = 1000, which is reasonable since we directly opti-
mize the IPM objective. > The training curve and the data

>Besides, our algorithm also works when training from scratch
with a final performance comparable to fine-tuning, but it will take
longer time to train.

visualization can be found in Fig 4a and Fig 4d.

6.2.2. EFFECT OF DIFFERENT GRADIENT ESTIMATIONS
AND REGULARIZATIONS

On the toy datasets, we compare gradient estimation SFT-
PG and SFT, both with gradient penalty (GP). ¢ We also
compare them to our proposed algorithm SFT-PG (B). All
methods are initialized with pretrained DDPM, T' = 10,
then trained till convergence. As shown in Fig 4, we can
observe that all methods converge and the training curves
are almost comparable, while SFT-PG (B) enjoys a slightly
better final performance.

6.2.3. EFFECT OF GRADIENT CLIPPING WITH MORE
GENERATOR STEPS

In Section 4.2, we discussed that performing more generator
steps with the same fixed critic and clipping the gradient
norm can improve the training of our algorithm. Here we
present the effect of ngeperaior = 1 or 5 with different gra-
dient clipping thresholds v on MNIST, initialized with a
pretrained DDPM with 7' = 10, FID=7.34. From Table 2,
we find that a small «y with more steps can improve the final
performance, but could hurt the performance if too small.
Randomly generated samples from the model with the best
FID are in Fig 6. We also conducted similar experiments on
the toy datasets, but we find no significant difference on the

SFor gradient penalty coefficient, we tested different choices
in [0.001, 10] and pick the best choice 0.001. We also tried spec-
tral normalization for Lipschitz constraints, but we found that its
performance is worse than gradient penalty on these datasets.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

(a) CIFARI10, Initialization (b) CIFAR10, SFT-PG (B)

(c) CelebA, Initialization (d) CelebA, SFT-PG (B)

Figure 5. Randomly generated images before and after fine-tuning, on CIFAR10 (32 x 32) and CelebA (64 x 64), T" = 10. The
initialization is from pretrained models with 7' = 1000 and sub-sampling schedules with 7 = 10 calculated from FastDPM (Kong and

Ping, 2021).

final results, which is expected since the task is too simple.

Method FID (|)
1 step 1.35
5 steps, v = 10 0.83
5 steps, v = 1.0 0.82
5 steps, ¥ = 0.1 0.89
5 steps, v = 0.001 1.46

Table 2. Effect of ngenerator and y. Figure 6. Generated samples.

6.3. Benchmark Results

To compare with existing fast samplers of DDPM, we take
pretrained DDPMs with 7' = 1000 and fine-tune them
with sampling steps 7" = 10 on image benchmark datasets
CIFAR-10 and CelebA.

Our baselines include various fast DDPM samplers
with Gaussian noises: naive DDPM sub-sampling, Fast-
DPM (Kong and Ping, 2021), and recently advanced
samplers like Analytic DPM (Bao et al., 2021) and SN-
DPM (Bao et al., 2022). For fine-tuning, we use the fixed
variance and sub-sampling schedules computed by Fast-
DPM with 7" = 10 and only train the mean prediction
model. From Table 3, we can observe that the performance
of fine-tuning with 77 = 10 is comparable to the pretrained
model with T" = 1000, outperforming the existing fast
DDPM samplers. Randomly generated images before and
after fine-tuning are in Fig 5.

We also present a comparison with DDIM sampling methods
on CIFAR 10 benchmark in Appendix E, where our method
is comparable to progressive distillation with 7" = 8.

6.4. Discussions and Limitations

In our experiments, we only train p¢ given a pretrained
DDPM. It is also possible to learn the variance via fine-
tuning with the same objective, and we leave it as future
work. Although we do not need to track the gradients during

all sampling steps, we still need to run 7" inference steps to
collect the sequence, which is inevitably slower than GAN.

Method CIFAR-10 (32 x 32) CelebA (64 x 64)
DDPM 34.76 36.69
FastDPM 29.43 28.98
Analytic-DPM 22.94 28.99
SN-DDPM 16.33 20.60
SFT-PG (B) 2.28 2.01

Table 3. FID (|) on CIFAR-10 and CelebA, T" = 10 for all meth-
ods. Our fine-tuning produces comparable results with the full-step
pretrained models (FID = 3.03 for CIFAR-10, and FID = 3.26 for
CelebA, T' = 1000).

7. Conclusion

In this work, we fine-tune DDPM samplers to minimize the
IPMs via policy gradient. We show performing gradient
descent of stochastic Markov chains w.r.t. IPM is equivalent
to policy gradient, and present a surrogate function of the
IPM which sheds light on monotonic improvement condi-
tions. Our fine-tuning improves the existing fast samplers of
DDPM, achieving comparable or even higher sample quality
than the full-step model on various datasets.

Acknowledgements

Support for this research was provided by the University
of Wisconsin-Madison Office of the Vice Chancellor for
Research and Graduate Education with funding from the
Wisconsin Alumni Research Foundation, and NSF Award
DMS-2023239.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

References

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in Neural Infor-
mation Processing Systems, 33:6840-6851, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In Interna-
tional Conference on Machine Learning, pages 8162—
8171. PMLR, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion mod-
els beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780-8794, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems, volume 27, 2014.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion
probabilistic models. arXiv preprint arXiv:2106.00132,
2021.

Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise
estimation for generative diffusion models. arXiv preprint
arXiv:2104.02600, 2021.

Max WY Lam, Jun Wang, Rongjie Huang, Dan Su, and
Dong Yu. Bilateral denoising diffusion models. arXiv
preprint arXiv:2108.11514, 2021.

Daniel Watson, Jonathan Ho, Mohammad Norouzi,
and William Chan. Learning to efficiently sample
from diffusion probabilistic models. arXiv preprint
arXiv:2106.03802, 2021a.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer,
Tal Kachman, and Ioannis Mitliagkas. Gotta go fast when
generating data with score-based models. arXiv preprint
arXiv:2105.14080, 2021.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-
dpm: an analytic estimate of the optimal reverse variance
in diffusion probabilistic models. In International Con-
ference on Learning Representations, 2021.

Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and
Bo Zhang. Estimating the optimal covariance with im-
perfect mean in diffusion probabilistic models. In Inter-
national Conference on Machine Learning, pages 1555—
1584. PMLR, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. In International Conference on Learning Represen-
tations, 2021.

10

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Confer-
ence on Learning Representations, 2020a.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1-35,
2017.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
cloning from observation. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
pages 4950-4957, 2018.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning Rep-
resentations, 2020b.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based
generative modeling secretly minimizes the wasserstein
distance. In Advances in Neural Information Processing
Systems, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. In International
Conference on Learning Representations, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate infer-
ence in deep generative models. In International con-
ference on machine learning, pages 1278—1286. PMLR,
2014.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks. In Inter-
national conference on machine learning, pages 214-223.
PMLR, 2017.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training
of wasserstein gans. Advances in neural information
processing systems, 30, 2017.

Michael Arbel, Danica J Sutherland, Mikotaj Bifikowski,
and Arthur Gretton. On gradient regularizers for mmd
gans. Advances in neural information processing systems,
31, 2018.

Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Re-
inforcement learning, pages 5-32, 1992.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and
Andriy Mnih. Monte carlo gradient estimation in machine
learning. J. Mach. Learn. Res., 21(132):1-62, 2020.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jor-
dan, and Philipp Moritz. Trust region policy optimization.
In International conference on machine learning, pages
1889-1897. PMLR, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015b.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge?
In International conference on machine learning, pages
3481-3490. PMLR, 2018.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan:
Sequence generative adversarial nets with policy gradi-
ent. In Proceedings of the AAAI conference on artificial
intelligence, volume 31, 2017.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui
Xu, Benyou Wang, Peng Zhang, and Dell Zhang. Irgan: A
minimax game for unifying generative and discriminative
information retrieval models. In Proceedings of the 40th
International ACM SIGIR conference on Research and
Development in Information Retrieval, pages 515-524,
2017.

Muhammad Sarmad, Hyunjoo Jenny Lee, and Young Min
Kim. Rl-gan-net: A reinforcement learning agent con-
trolled gan network for real-time point cloud shape com-
pletion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5898—
5907, 2019.

Xueying Bai, Jian Guan, and Hongning Wang. A model-
based reinforcement learning with adversarial training for
online recommendation. Advances in Neural Information
Processing Systems, 32, 2019.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and
Mingyuan Zhou. Truncated diffusion probabilistic mod-
els and diffusion-based adversarial auto-encoders. arXiv
preprint arXiv:2202.09671, 2022.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu
Chen, and Mingyuan Zhou. Diffusion-gan: Training gans
with diffusion. arXiv preprint arXiv:2206.02262, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds.
arXiv preprint arXiv:2202.09778, 2022.

11

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for
diffusion probabilistic model sampling in around 10 steps.
arXiv preprint arXiv:2206.00927, 2022.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In International conference
on machine learning, pages 387-395. PMLR, 2014.

Daniel Watson, William Chan, Jonathan Ho, and Moham-
mad Norouzi. Learning fast samplers for diffusion models
by differentiating through sample quality. In International
Conference on Learning Representations, 2021b.

Mikotaj Bifikowski, Danica J Sutherland, Michael Arbel,
and Arthur Gretton. Demystifying mmd gans. arXiv
preprint arXiv:1801.01401, 2018.

Emanuele Aiello, Diego Valsesia, and Enrico Magli. Fast in-
ference in denoising diffusion models via mmd finetuning.
arXiv preprint arXiv:2301.07969, 2023.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,
and Barnabas P6czos. Mmd gan: Towards deeper under-
standing of moment matching network. Advances in
neural information processing systems, 30, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort,
Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Cham-
bon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras,
Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud,
Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J.
Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of
Machine Learning Research, 22(78):1-8, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings
of the IEEE international conference on computer vision,
pages 3730-3738, 2015.

Optimizing DDPM Sampling with Shortcut Fine-Tuning

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing
systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

12

Optimizing DDPM Sampling with Shortcut Fine-Tuning

A. Visualization: Effect of Shortcut Fine-Tuning

0.25 0.25

0.00 0.00
—0.25 —0.25 A
-0.50 A —0.50 A
-0.75 4 -0.75 4
~1.00 4 -1.00 4

71?00 7Oj75 70‘50 70j25 0.60 0.é5 0.50 0.‘75 l.IOO 71j00 70j75 70‘.50 70?25 0.60 0.‘25 0..")0 0.‘7’5 l.IOO
(a) Sampling steps before fine-tuning from DDPM (b) Sampling steps after fine-tuning

Figure 7. Visualization of the sampling path before (7a) and after short-cut fine-tuning (7b).

We provide visualizations of the complete sampling chain before and after fine-tuning in Fig 7. We generate 50 data points
using the same random seed for DDPM and our fine-tuned model, trained on the same Gaussian cluster centered at the red
spot (0.5,0.5) with a standard deviation of 0.01 in each dimension, 7' = 2. The whole sampling path is visualized where
different steps are marked with different intensities of the color: data points with the darkest color are finally generated. As
shown in Fig 7, our fine-tuning does find a ’shortcut” path to the final distribution.

B. Illustration of Sub-sampling with 7" « T"in DDPM

L. Noising steps (—) and learned denoising steps (—)

q(@et1]me) Py ($t|$t+1) ~ q(@t| w41, 20)
& &—
5= ey s
- % I1I. Fine-tuned steps \
B————®

/ IL. Sub sampling steps pr &= 4r
E‘: =I pq—l J;‘I‘L|ITH,1 ~ Q(xﬂ|xn+1a$0)

Figure 8. When T is large but we sub-sample with 7" « T cannot approximate the backward process accurately when each step is
Gaussian as discussed in Case 2, Section 3.1. In this case, shortcut fine-tuning can also solve the issue by directly minimizing the IPM as
an objective function.

C. Towards Monotonic Improvement

Here we present detailed proof of Theorem 4.2. For simplicity, we denote p§ as pg, qo as ¢, and z € R? to replace x as a
variable in our sample space.

Recall the generated distribution: pg. Given target distribution g, the objective function is:

minmax g(pg, fa,q), o
6 acA

where g(pg, fo,q) = §(po(2) — q(2)) fa(2)dz

13

Optimizing DDPM Sampling with Shortcut Fine-Tuning

Recall ®(ps, g) = max (po(2) — 4(2)) fa (=)= = §(po(=) — 4(=) fuk () ()i

Assume that g(pg, fa,q) is Lipschitz w.r.t. 8, given g and « € A. Our goal is to show that there exists [= 0 s.t.:

(I)(p9/7q) < g(pe’afoz*(pg,q)yq) + 2[”0 — 9/”,

where the equality is achieved when 6 = 6'.

(25)

If the above inequality holds, Ly (0) = g(per, fa* (ps.q)» @) +2||0 —0'|| can be a surrogate function of ®(py, ¢): P(per, q) —
D(pg,q) < Lg(0) — Lg(0), Lo(0) = P(ps,q), which means 6’ that can improve Ly (f’) is also guaranteed to get

improvement on ®(py, q).

Proof. Consider

(per, q) — P(pe, q)

= [002) = 4 i () = [00(2) = 6D far ()=
= [002) = 4D a0 () = [00(2) = 42D (e
+ [00 = D s ()= = [B0l2) = 42D .y (e
— [00) = 6D a0 2) = Laraa Dz + [(00() = Dol fan o (21
— [(@) = 20 a0 (2) = Faria e + [0(2) = 5o o ()

We have

f (€(2) = 0 () ot o) (2) — o (2))d2
- f (00(2) — P (2)) ot (00) (2) — Fart (o) (2))dl2 — f<pe<z> — 4() ot o) (2) = oty (2))d2
< f(p9<z) — Py (Z))(fa*(pg,q) (Z) - fa*(pg/,q)(z>>dz>

where the last inequality comes from the definition: a* (pg, ¢) = arg max {(pg(2) — q(2)) fu(2).
acA
So
@(por;) — ®(po, q)

~ [002) = P st ()2 + [(@) = 90 (D) 0.2~ Fawi (i

< g(p9’7 fa*(pe,q))q) - g(p97 fa*(pg,q)vq) + J(pQ(Z) _pe’(z))(foz*(pg,q)(z) - fa*(pe/,q)(z))dz

< g(pG’vfoz*(pg,q)aQ) - g(anf(x*(pg,q)7Q) + 2l||0 - 9/”’

(26)

27

(28)

where the last inequality comes from the Lipschitz assumption of g(ps, fa(p,.q)> @) given @™ (pg, q) and a*(py,). Recall

that ®(pg, ¢) = 9(Pe, fax (ps.q)> 1)» the proof is then complete.

O

Consider the optimization objective: minimizey Ly(6"). Using the Lagrange multiplier, we can convert the problem to a

constrained optimization problem:

14

Optimizing DDPM Sampling with Shortcut Fine-Tuning

mini@rlnize 9(per s fax (pe,9)> q)

st. ||00—0| <o

(29)

where 0 > 0. The constraint is a convex set and the projection to the set is easy to compute via norm regularization, as we
discussed in Section 4.2. Intuitively, it means that as long as we only optimize in the neighborhood of the current generator

0', we can treat g(por, fa* (ps,q)» @) @S an approximation of ®(py, ¢) during gradient updates.

D. Baseline Function for Variance Reduction

Here we present the derivation of Eq (20), which is very similar to Schulman et al. (2015b).

To show

T-1
E | fa(wo) D) Vo Ingf(zt|zt+l)1 = E
p

0
Pao.p t=0 zo:T

T-1
[Y, (falwo) = Vi1 (2e41)) Vo log pf (elzer1) | 4
t=0

we only need to show

GE [V;Ujrl(iﬁt+1)v6 Ingte(xtlxt+1)] =0.
zo.T
Note that
9E [‘/;ﬁl(gjt+1)V9Ing?(xt|xt+1)]

z0:T

E

0
Py

E [V}ﬁl(xtﬂ)velogpf($t|$t+1)$t+1:T]]

Pzg.4

E

6
p’”t+1:T

IE: [‘/t‘:}ﬁ-l (+1) Ve 10gp§($t|$t+1)|$t+1:T]])

S,

where E [V (2011) Vo log pf (2¢|2141) |24 1.7] = O when pf (2¢|241) and Vop{ (;|2+1) are continuous:

Ty

IE: [Vﬁrl(xtwtl)ve 10gpf(£t|$t+1)|$t+1:T]

Tt

= Vi1 (zi41) fpg,, (z¢)Volog pf (z¢|zes1)day
= Vi1 (@e41) fpi,, (2)Volog p! (v¢|zs41)dzy
— Vit (i) [Fopt il)do

— Vi (2041) Vs j P (el) dze

= 0.

E. Comparison with DDIM Sampling

(30)

3D

(32)

(33)

We present a comparison with DDIM sampling methods on CIFAR 10 benchmark as below. Methods marked with * require
additional model training, and NFE is the number of sampling steps (number of score function evaluations). All methods are

based on the same pretrained DDPM model with 7' = 1000.

15

Optimizing DDPM Sampling with Shortcut Fine-Tuning

Method (DDPM, stochastic) NFE FID Method (DDIM, deterministicy NFE FID
DDPM 10 34.76 DDIM 10 17.33
SN-DDPM 10 16.33 DPM-solver 10 4.70
SFT-PG* 10 2.28

SFT-PG* 8 2.64 Progressive distillation** 8 2.57

Table 4. Comparison with DDIM sampling methods which is deterministic given the initial noise.

We can observe that SFT-PG with NFE=10 produces the best FID, and SFT-PG with NFE=8 is comparable to progressive
distillation with the same NFE. Our method is orthogonal to other fast sampling methods like distillation. We also note
that our fine-tuning is more computationally efficient than progressive distillation: For example, for CIFAR10, progressive
distillation takes about a day using 8 TPUv4 chips, while our method takes about 6h using 4 RTX 2080Ti, and the original
DDPM training takes 10.6h using TPU v3.8. Besides, since we use a fixed small learning rate during training (le-6), it is
also possible to further accelerate our training by choosing appropriate learning rate schedules.

F. Experimental Details

Here we provide more details for our fine-tuning settings for reproducibility.

F.1. Experiments on Toy Datasets

Training sets. For 2D toy datasets, each training set contains 10K samples.

Model architecture. The generator we adopt is a 4-layer MLP with 128 hidden units and soft-plus activations. The critic
and the baseline function we use are 3-layer MLPs with 128 hidden units and ReLU activations.

Training details. For optimizers, we use Adam (Kingma and Ba, 2014) with Ir = 5 x 107> for the generator, and
Ir = 1 x 1072 for both the critic and baseline functions. Pretraining for DDPM is conducted for 2000 epochs for
T = 10,100, 1000 respectively. Both pretraining and fine-tuning use batch size 64 and we train 300 epochs for fine-tuning.

F.2. Experiments on Image Datasets

Training sets. We use 60K training samples from MNIST, 50K training samples from CIFAR-10, and 162K samples from
CelebA.

Model architecture. For model architecture, we use U-Net as the generative model as Ho et al. (2020). For the critic, we
adopt 3 convolutional layers with kernel size = 4, stride = 2, padding = 1 for downsampling, followed by 1 final convolutional
layer with kernel size = 4, stride = 1, padding = 0, and then take the average of the final output. The numbers of output
channels are 256,512,1024,1 for each layer, with Leaky ReLU (slope = 0.2) as activation. For the baseline function, we use
a 4-layer MLP with timestep embeddings. The numbers of hidden units are 1024, 1024, 256, and the output dimension is 1.

Training details. For MNIST, we train a DDPM with T" = 10 steps for 100 epochs to convergence as a pretrained model.
For CIFAR-10 and CelebA, we use the pretrained model in Ho et al. (2020) and Song et al. (2020a) respectively with
T = 1000, and use the sampling schedules calculated by FastDPM (Kong and Ping, 2021) with VAR approximation and
DDPM sampling schedule as initialization for our fine-tuning. We found that rescaling the pixel values to [0,1] is a default
choice in FastDPM, but it hurts the training if we put the rescaled images directly into the critic, so we remove the rescaling
part during our fine-tuning. For optimizers, we use Adam with Ir = 1 x 10~ for the generator, and Ir = 1 x 10~ for both
the critic and baseline functions. We found that smaller learning rates help the stability of training, which is compliant with
the theoretical result in Section 4.2. For MNIST and CIFAR-10, we train 100 epochs with batch size = 128. For CelebA we
trained 100 epochs with batch size = 64.

More generated samples. We present generated samples from the initialized FastDPM and our fine-tuned model
respectively using the same random seed to show the effect of our fine-tuning in Fig 9 and Fig 10. We notice that some of

16

Optimizing DDPM Sampling with Shortcut Fine-Tuning

the images generated by our fine-tuned model are similar to images at initialization but with much richer colors and more
details, and there are also some cases that the images after fine-tuning look very different than that from initialization.

Figure 9. Images generated from FastDPM as initialization (on the top) and from the fine-tuned model (on the bottom), generated using
the same seed, trained on CIFAR-10.

Figure 10. Images generated from FastDPM as initialization (on the top) and from the fine-tuned model (on the bottom), generated using
the same seed, trained on CelebA.

17

