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Abstract

Causal mediation analysis is crucial for deconstructing complex mechanisms of
action. However, in current mediation analysis, complex structures derived from
causal discovery lack direct interpretation of mediation pathways, while traditional
mediation analysis and effect estimation are limited by the reliance on pre-specified
pathways, leading to a disconnection between structure discovery and causal
mechanism understanding. Therefore, a unified framework integrating structure
discovery, pathway identification, and effect estimation systematically quantifies
mediation pathways under structural uncertainty, enabling automated identification
and inference of mediation pathways. To this end, we propose Structure-Informed
Guided Mediation Analysis (SIGMA), which guides automated mediation path-
way identification through probabilistic causal structure discovery and uncertainty
quantification, enabling end-to-end propagation of structural uncertainty from
structure learning to effect estimation. Specifically, SIGMA employs differentiable
Flow-Structural Equation Models to learn structural posteriors, generating diverse
Directed Acyclic Graphs (DAGs) to quantify structural uncertainty. Based on these
DAGs, we introduce the Path Stability Score to evaluate the marginal probability
of pathways, identifying high-confidence mediation paths. For identified media-
tion pathways, we integrate Efficient Influence Functions with Bayesian model
averaging to fuse within-structure estimation uncertainty and between-structure
effect variation, propagating uncertainty to the final effect estimates. In synthetic
data experiments, SIGMA achieves state-of-the-art performance in pathway identi-
fication accuracy and effect quantification precision under structural uncertainty,
concurrent multiple pathways, and nonlinear scenarios. In real-world applications
using Human Phenotype Project data, SIGMA identifies mediation effects of sleep
quality on cardiovascular health through inflammatory and metabolic pathways,
uncovering previously unspecified multiple mediation paths.

1 Introduction

Causal Mediation Analysis (CMA) has emerged as a critical framework bridging causal inference and
machine learning. Recent studies [48, 27] emphasize the evolution of CMA from identifying causal
effects to elucidating underlying mechanisms, a transition essential for developing machine learning
systems capable of intervention reasoning, cross-domain knowledge transfer, and interpretable expla-
nations [10, 2, 55]. In particular, analyzing causal mediation pathways involving multiple mediators
arranged in parallel, sequential, or networked structures [61, 9, 28] provides deeper mechanistic
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insights in high-dimensional contexts commonly encountered in biology, social networks, and behav-
ioral sciences [21, 26, 39]. For instance, elucidating how sleep quality impacts cardiovascular health
in Human Phenotype Projects (HPP) [35] requires modeling its interplay with multiple mediators
(e.g., inflammation, metabolic) across interrelated pathways [30, 64, 7]. Therefore, quantifying the
effects of mediation pathways under causal structural uncertainty remains a challenge.

Although analyzing complex mediation pathways is both theoretically and practically significant,
current methods face several limitations: (i) Structure Discovery (SD): While mainstream causal
discovery algorithms [59, 58, 75] can automatically learn causal structures, they lack principled
mechanisms for quantifying and propagating structural uncertainty, undermining the reliability of
downstream analyses. (ii) Pathway Identification (PI): Current structure discovery methods [1, 29]
fail to explicitly identify specific mediation pathways. Meanwhile, classical mediation analysis
approaches [3, 45, 27] rely on pre-specified paths, which become infeasible in high-dimensional
data due to the exponential growth in the number of candidate paths. (iii) Effect Estimation (EE):
Semi-parametric methods like Efficient Influence Function (EIF) [6] offer theoretical guarantees
(e.g., multiple robustness) [62, 74, 41] but typically assume that the mediation structure is known and
correctly specified, which creates a contradiction with the structural uncertainty faced in the previous
two stages. Consequently, a gap between current methods becomes evident in high-dimensional
settings like HPP, where discovery yields causal structure without pathway interpretation, while
traditional mediation is confined to predefined paths, missing underlying causal mechanisms. In this
work, we argue that a unified framework integrating SD, PI, and EE can quantify the mediating
pathways under structural uncertainty in real-world settings.

To this end, we propose an end-to-end Structure-Informed Guided Mediation Analysis (SIGMA)
framework, which integrates probabilistic causal structure discovery with uncertainty quantification
to guide automatic mediation pathway identification, and propagates structural uncertainty to ro-
bust effect estimation, thus enabling integrated inference of causal structures and mediation effects.
Specifically, differentiable Flow-Structural Equation Models [67] are leveraged to learn edge param-
eters encoding structural uncertainty, from which an ensemble of directed acyclic graphs (DAGs)
is subsequently sampled. Building on this DAG ensemble, we introduce the Path Stability Score
which performs Bayesian inference by evaluating the marginal probability paths across DAGs to
select high-confidence mediation pathways, thereby circumventing manual path pre-specification.
For each identified mediation pathway, SIGMA employs Efficient Influence Functions to estimate
pathway-specific mediation effects, using nuisance functions tailored to each DAG structure. Sub-
sequently, these pathway-specific estimates are aggregated across the DAG ensemble via Bayesian
model averaging (BMA) [51], propagating structural uncertainty into the final causal effect estimates.
Furthermore, SIGMA integrates a variational autoencoder-based imputation module to explicitly-
model latent dependencies among variables, enabling accurate imputation of missing values. We
empirically demonstrate SIGMA’s effectiveness on high-dimensional, heterogeneous HPP data1,
identifying and quantifying mediation pathways connecting sleep quality to cardiovascular health
through inflammatory and metabolic mediators. The contributions are summarized as follows:

• We propose an end-to-end framework, SIGMA, unifying probabilistic structure discovery with
uncertainty quantification, high confidence path identification, and effect estimation incorporating
structural uncertainty, to address mediation analysis under uncertainty structures.

• We introduce the Path Stability Score to identify mediation by quantifying their stability across
posterior directed acyclic graph samples, thus eliminating manual pre-specification.

• We develop a structure-guided estimation approach, employing Efficient Influence Functions (EIF),
combined with Bayesian model averaging, enabling propagation of structural uncertainty and
inference by leveraging EIF properties.

• Extensive experiments validate SIGMA on real-world HPP data, revealing complex and previously
unspecified mediation pathways linking sleep quality to cardiovascular health through inflammatory
and metabolic, demonstrating its interpretability in real-world.

2 Dataset
Human Phenotype Project (HPP)1. We conduct our real-world evaluation using the HPP dataset,
a deeply phenotyped cohort comprising over 6,000 individuals with multi-night home sleep apnea

1https://knowledgebase.pheno.ai/
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Figure 1: (a) Illustration of five body system-level categories from the HPP used in this work. (b)
Timeline of data acquisition in the HPP cohort. (c) Conceptual schematic of the SIGMA framework,
showing its capacity to identify both known and previously unrecognized mediation pathways
under structural uncertainty. (d) Distributions and dependencies among variables in a representative
synthetic dataset (MidDim-S), illustrating the indirect effects of mediators M1,M2,M3 on outcome
Y under different treatment A and the direct effect of A on Y . Refer Appendix E.3 for details.

testing (HSAT) data across 16,000+ nights. Beyond sleep, HPP includes multimodal data covering
16 other body systems that represent a wide array of physiological functions and environmental
exposures [34]. This coordinated collection process, as shown in Figure 1(b), provides temporally
aligned, longitudinal measurements across multiple physiological systems. The integration of sleep
monitoring, clinical biomarkers, imaging, and omics data within a ±6-month window requires
considerable logistical effort and sustained participant engagement. These characteristics make
the HPP dataset a particularly valuable testbed for evaluating SIGMA’s ability to recover complex
mediation pathways under structural uncertainty. In total, we utilize data from 11 body systems,
covering over 500 raw clinical and physiological attributes. To support tractable and clinically
meaningful mediation analysis, we aggregated these into 62 domain-informed features by grouping
related variables across systems. Each feature was designed to reflect a coherent physiological
process suitable for pathway-level causal interpretation. Among these, five representative categories
analyzed in our work: Sleep Characteristics, Body Mass Index (BMI), Cardiovascular System,
Inflammation and Metabolic Pathways, are illustrated in Figure 1(a). Detailed data descriptions can
be found in the Appendix D. As depicted in Figure 1(c), SIGMA framework is capable of validating
previously reported mediation pathways [19] while also uncovering novel, clinically meaningful
causal mediation mechanisms spanning different systems. We provide results to demonstrate this in
Section 5.3, where we quantify these pathways and assess their natural effect.

Synthetic Data. To evaluate SIGMA’s ability to identify mediation pathways under controlled yet
realistic conditions, we generate synthetic datasets that mirror key statistical and structural charac-
teristics of real-world data (Figure 1(d)). Specifically, we simulate missing data patterns with both
missing completely at random (MCAR) [40] and missing at random (MAR) mechanisms to reflect
non-random measurement gaps common in clinical studies, and introduce heterogeneous variable
types (continuous, binary, categorical) and nonlinear relationships to mimic biological complexity.
Each synthetic dataset is constructed from a randomly sampled DAG using an Erdős-Rényi (ER) [20]
model, followed by structural equation modeling (SEM) [47] with configurable nonlinearity and
noise. We explicitly embed mediation structures—parallel, chain, or hybrid—between a designated
treatment and outcome, with tunable effect strengths to ensure identifiable direct and indirect effects.
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Functional mechanisms include both linear and nonlinear mappings (e.g., polynomial, sinusoidal), and
exogenous noise is drawn from mixed distributions to induce non-Gaussianity. Natural Direct/Indirect
Effects (NDE/NIE) [46, 52] are estimated via Monte Carlo simulations to facilitate quantitative
benchmarking. This synthetic setup enables systematic evaluation of SIGMA’s robustness across
varied structural regimes, pathway configurations, and data quality levels. See Appendix E.1 for
detailed generation procedures and E.2 for embedded mediation pathway structures.

3 Causal Mediation: Definitions, Notation, and Identification
We consider the problem of causal mediation analysis in observational data. Let A denote the
treatment variable, Y the outcome variable, M = {M1, . . . ,Mk} a set of k potential mediators,
and C a set of covariates. The variables may be continuous, discrete, or mixed-type. Let V =
{A, Y } ∪M ∪ C be the full set of observed variables and assume the underlying causal structure
is a DAG G = (V,E), where PaG(Vi) denotes the parent set of node Vi. We assume that the
true graph G∗ satisfies the Causal Markov and Faithfulness assumptions, which enable conditional
independencies to be inferred from the graph. Appendix A.1 provides a detailed discussion of these
assumptions, including Causal Sufficiency.

We adopt the Potential Outcomes Framework [53, 60] to define causal mediation effects. Let M(a)
be the potential mediator value under treatment A = a, and Y (a,m) the potential outcome if A = a
and M = m. We focus on two core mediation effects comparing treatment level a to reference level
a∗: (1) The NDE [46] is defined as NDE(a, a∗) = E[Y (a,M(a∗)) − Y (a∗,M(a∗))], quantifying
the effect of changing A from a∗ to a on Y while holding M fixed at its natural level under A = a∗.
(2) The NIE [52] is defined as NIE(a, a∗) = E[Y (a,M(a)) − Y (a,M(a∗))], capturing the effect
on Y mediated through M when A change from a∗ to a. When the true causal structure is unknown,
our goal is to estimate these effects under structural uncertainty. Under certain assumptions [49], the
Total Effect, TE(a, a∗) = E[Y (a)− Y (a∗)] can be decomposed as TE = NDE + NIE.

Identifying NDE and NIE from observational data requires several key assumptions [8, 49]. We use
⊥⊥ to denote conditional independence. Appendix A.3 discuss more about following assumptions, in-
cluding strategies for practical consideration and the theoretical implications of violation. Throughout,
identification denotes recovery of NDE and NIE under ignorability, consistency, and positivity; path
identification denotes that a path attains high posterior support as quantified by the PSS. Estimation
then proceeds via influence-function–based and plug-in estimators under these assumptions.

Consistency: if A = a′, then M =M(a′), and if A = a′ and M = m, then Y = Y (a′,m), for all
relevant treatment levels a′ (e.g., a′ ∈ {a, a∗}) and all m in the support of M .

Ignorability: The following conditional independence relations hold almost surely for all relevant
values a, a∗,m,m′: (i) A ⊥⊥ {Y (a∗,m),M(a)} | C; (ii) M ⊥⊥ Y (a,m′) | A = a,C; and (iii)
Y (a∗,m) ⊥⊥M(a) | C.

Positivity: For all a and c in the support of A and C, the treatment propensity score π(a | C) ≡
Pr(A = a | C = c) ∈ (c1, c2) for some constants 0 < c1 ≤ c2 < 1. The conditional density
function for discrete M = m given A and C = c is bounded between [ρ1, ρ2] for some constants
0 < ρ1 ≤ ρ2 <∞, almost surely for all relevant a, c, and m.

These assumptions collectively allow identification of NDE and NIE from observational data, forming
the foundation of our mediation analysis under unknown causal graph structure.

4 Methodology

4.1 SIGMA Framework Overview

We propose Structure-Informed Guided Mediation Analysis (SIGMA), a unified framework for causal
mediation analysis under structural uncertainty. SIGMA operates in an end-to-end fashion, integrating
causal discovery, pathway identification, and effect estimation within a probabilistic graphical
modeling paradigm. Given observational data over treatment, outcome, mediators, and confounders,
SIGMA performs probabilistic structure discovery via a flow-based structural equation model (Flow-
SEM), generating a posterior ensemble of DAGs that capture causal uncertainty (Section 4.2). It
then identifies stable mediation pathways using a path stability score (PSS), which quantifies the
marginal support for each path across sampled DAGs (Section 4.3). For each retained pathway,
SIGMA estimates natural direct and indirect effects using structure-guided nuisance estimation and
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a hybrid influence-function/plugin strategy, with final estimates aggregated via Bayesian model
averaging to propagate structural uncertainty (Section 4.4). This unified design enables automated,
uncertainty-aware mediation analysis in complex high-dimensional systems.

4.2 Probabilistic Structure Discovery

To model structural uncertainty in causal mediation, SIGMA employs a Flow-SEM to learn a
distribution over DAGs from observational data. Let V = {V1, . . . , Vp} denote the set of variables,
the goal is to infer a posterior distribution P (G | D) over DAGs G = (V,E) that encode the
conditional dependencies among these variables. The validity of this structure discovery step relies
on several core assumptions, including the Causal Markov, Faithfulness, and Causal Sufficiency
assumptions. Refer to Appendix A for a detailed discussion.

4.2.1 Flow-SEM Model Formulation

In Flow-SEM, each variable Vi ∈ V is modeled as a stochastic function of its parents in a candidate
DAG G, with the structural equation:

Vi = fi(PaG(Vi);ϕi) + σi(PaG(Vi);ϕi) · Ui, Ui ∼ N (0, 1), (1)
where PaG(Vi) denotes the parent set of Vi, and fi, σi are flexible neural network functions parame-
terized by ϕi. The collection Φ = {ϕi}pi=1 defines the global functional parameters. This formulation
accommodates nonlinearities and heteroskedasticity in the data-generating process.

To enable differentiable structure learning, SIGMA introduces a continuous weight matrix Wθ ∈
Rp×p, where each entry [Wθ]ji reflects the strength or existence of a directed edge from Vj to Vi.
A zero-diagonal [Wθ]ii = 0 is imposed to prevent self-loops. The parent set PaG(Vi) is inferred
from the sparsity pattern of Wθ. Under this, the joint distribution P (V |Wθ,Φ) can be derived via a
change-of-variables formulation using normalizing flows. Given an observed data sample V (j), its
log-likelihood is computed as:

logP (V (j)|Wθ,Φ) =

p∑
i=1

log pU (u
(j)
i )−

p∑
i=1

log σi(PaG(V
(j)
i );ϕi) (2)

where u(j)i = (V
(j)
i − fi(PaG(V

(j)
i );ϕi))/σi(PaG(V

(j)
i );ϕi) represents the standardized noise for

variable V (j)
i . This formulation enables likelihood-based training of both structural and functional

components via stochastic optimization.

4.2.2 Model Learning and Optimization

Model parameters (Wθ,Φ) are optimized by minimizing a regularized loss that balances data fit,
structural sparsity, and acyclicity:

L(Wθ,Φ;D) = − 1

n

n∑
j=1

logP (V (j)|Wθ,Φ) + λdagh(Wθ) + α∥Wθ∥1 (3)

where h(Wθ) = tr(exp(Wθ ⊙Wθ)) − p serves as a continuous relaxation for enforcing acyclic-
ity, exp(·) is the matrix exponential and ⊙ denotes element-wise multiplication; ∥Wθ∥1 =∑

i ̸=j |[Wθ]ji| encourages sparsity. Further technical details and acyclicity properties are discussed
in Appendix A. Gradient-based optimization is used to train the model. Once trained, Wθ captures
both the functional and structural dependencies among variables.

4.2.3 Approximate Structural Posterior and DAG Sampling

To approximate the structural posterior P (G | D), SIGMA interprets each entry in Wθ as defining a
marginal edge inclusion probability via:

pij = σ(|[Wθ]ji|), with pii = 0, (4)

where σ(·) is the sigmoid function. Candidate DAGs {Gs}NDAG
s=1 are generated by sampling each edge

independently as Bernoulli(pij), followed by cycle removal to ensure graph validity.

This ensemble of sampled DAGs provides a Monte Carlo approximation of the posterior over
causal structures, capturing both edge-level and pathway-level uncertainty. These samples are used
downstream for pathway selection and mediation effect estimation (see Sections 4.3 and 4.4).
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4.3 Automated Mediation Pathway Identification

Given a posterior ensemble of sampled DAGs {Gs = (V,Es)}NDAG
s=1 , SIGMA identifies mediation

pathways that are robust to structural uncertainty by quantifying the posterior support for each
candidate path. This is achieved through the Path Stability Score (PSS), which estimates the
marginal probability of a directed path being present in the true causal structure.

Formally, let π = (V0 → V1 → · · · → Vk) denote a directed acyclic path from treatment node
V0 = A to outcome node Vk = Y . The PSS of path π is defined as:

PSS(π) =
1

Nvalid

NDAG∑
s=1

I(π ⊆ Gs), (5)

where I(π ⊆ Gs) = 1 if all directed edges in π are present in graph Gs, and 0 otherwise. The term
Nvalid denotes the number of acyclic graphs retained after cycle removal. As shown in Appendix B.1,
PSS is an unbiased and consistent estimator of the posterior inclusion probability P (π ⊆ G | D).

To construct the candidate set of mediation paths, SIGMA enumerates all simple directed paths from
A to Y in each valid DAG Gs, subject to a maximum length constraint for computational tractability.
These paths are aggregated across DAGs, and their frequencies are normalized to obtain the empirical
PSS scores. Paths with stability above a user-specified threshold τ ∈ [0, 1] are retained as high-
confidence mediation candidates, forming the set: Πstable = {π | PSS(π) ≥ τ}. This selection
process effectively propagates structural uncertainty from edge-level variation to the pathway level,
allowing downstream effect estimation to focus on statistically supported mediation mechanisms. A
theoretical justification for using PSS as a Monte Carlo estimator and its asymptotic properties is
provided in Appendix B.1 and B.2.

4.4 Mediation Effect Estimation

Once a set of stable mediation pathways Πstable is identified from the DAG ensemble, SIGMA
proceeds to estimate path-specific NDE and NIE for each retained pathway π ∈ Πstable. Given that
each pathway is supported by a subset of DAGs {Gs | π ⊆ Gs}, effect estimation must account for
both within-structure statistical uncertainty and between-structure causal ambiguity. SIGMA achieves
this by combining structure-specific nuisance estimation with hybrid estimators and Bayesian model
averaging (BMA). Appendix A.3 details the assumptions required for valid estimation, including
ignorability, consistency, and positivity conditions.

4.4.1 Structure-Guided Nuisance Estimation

For each stable pathway π ∈ Πstable, SIGMA estimates the nuisance functions η̂s by leveraging
structure-specific information from each DAG Gs in the ensemble. The conditioning sets for all
components of η̂s are defined strictly by the parent sets PaGs

(·) within the corresponding DAG. Neural
networks are used to fit the conditional relationships implied by these parent sets. To reduce estimation
bias and enhance robustness, we use K-fold cross-fitting to compute out-of-sample predictions across
the dataset. This procedure yields all necessary components for downstream effect estimation via
both the EIF and plugin estimators, including the required counterfactual outcome predictions.

4.4.2 DAG Effect Estimation

After obtaining nuisance function estimates η̂s for a specific DAG Gs (as detailed in Section 4.4.1),
the SIGMA framework calculates path-specific NDE and NIE for a path π. These constitute the
single-DAG effect vector θ̂s(π) =

(
N̂DEs(π), N̂IEs(π)

)
. SIGMA employs a hybrid estimation

strategy: for paths of length L(π) (number of nodes) equal to 3 (i.e., A→ M → Y ), an influence
function based estimation method is utilized; for paths with L(π) > 3, a plugin estimator is adopted.
All effect quantifications are based on a comparison between a pre-specified exposure level a and a
reference level a∗. For a binary exposure A, these levels are 1 and 0, respectively. For a continuous
exposure A, a∗ is its estimated mean µ̃A and a is µ̃A + k · σ̃A (with k = 1 in this study), where µ̃A

and σ̃A are estimated from the first K-Fold training set for the specific (path, DAG) combination.

Influence Function-based Estimation (L(π) = 3): The point estimate θ̂s(π) is the sample mean of
the corresponding influence function scores ψi(Zi; η̂s, Gs), i.e., θ̂s(π) = 1

n

∑n
i=1 ψi(Zi; η̂s, Gs).
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For a binary exposure A, the influence functions ψNDE(Zi; η̂s) and ψNIE(Zi; η̂s) are constructed
within the SIGMA framework by combining cross-fitted estimates of several nuisance functions.
These include the propensity score P̂ (Ai = a|CA,i), outputs from the mediator modelMM |A,CM

,
which characterizes the conditional behavior of Mi given Ai = a and covariates CM,i, and the
conditional expectation of the outcome Ê[Yi|Ai = a,Mi, CY,i]. These IFs are formulated to provide
efficient, bias-corrected estimates for the target counterfactual expectations (e.g., E[Y (a′,M(a′′))])
that comprise NDE and NIE. The specific mathematical expressions for these influence functions as
utilized within SIGMA are detailed in Appendix A.3.4.

For a continuous exposureA, SIGMA constructs and applies a specific influence function. This func-
tion aims to correct plugin estimates of counterfactual expectations (e.g., γaa∗ = E[Y (a,M(a∗))),
which form the NDE and NIE, by integrating cross-fitted nuisance components using the data-driven
intervention levels (a, a∗). These key nuisance components include: (i) the conditional expectation
of A, µ̂A(CA,i); (ii) an estimate of the global homoscedastic residual variance of A, σ̂2

A|CA,res; (iii)

the conditional expectation of the outcome µ̂(i)
Y |A=level,Mobs,CY

; and (iv) individual plugin predictions
of the target counterfactual expectation γ̂aa∗,i and their sample mean γ̂aa∗ . The influence function
score ψγaa∗ (Zi) used in SIGMA to estimate a counterfactual expectation (such as γaa∗ ) is defined as:

ψγaa∗ (Zi; η̂s) =
Ai − µ̂A(CA,i)

σ̂2
A|CA,res

(
µ̂
(i)
Y |A=a,Mobs,CY

− γ̂aa∗

)
+ (γ̂aa∗,i − γ̂aa∗) , (6)

The overall influence functions for NDE and NIE are derived from linear combinations of these
component scores. The theoretical motivation and property analysis of this SIGMA-specific influence
function are detailed in Appendix A.3.5. For all influence function-based estimates, the single-DAG
variance V̂ (θ̂s(π)) is estimated by 1

n2

∑n
i=1(ψi − ψ̄)2, where ψ̄ = θ̂s(π).

Plugin Estimation (L(π) > 3): For paths longer than three nodes, SIGMA utilizes a plugin estimator.
NDE and NIE are computed by substituting the relevant cross-fitted counterfactual outcomes (i.e., indi-
vidualized µ̂(i)

Y (a,M(a′)) predictions from Section 4.4.1) into their defining expressions, followed by

averaging over the sample. Specifically, N̂IEs(π) =
1
n

∑n
i=1

(
µ̂
(i)
Y (a,M(a))− µ̂(i)

Y (a,M(a∗))
)

. Its

variance V̂ (θ̂s(π)) is calculated as 1
n

(
1

n−1

∑n
i=1(∆

(i)
CF −∆CF)

2
)

, where ∆(i)
CF denotes the individual-

level counterfactual difference.

4.4.3 Aggregation and Uncertainty Propagation

To generate final mediation effect estimates that account for structural uncertainty, SIGMA aggregates
single-DAG estimates θ̂s(π) and their variances V̂ (θ̂s(π)) for a path π across the Npath supporting
DAGs. The Bayesian Model Averaged point estimate is θ̂BMA(π) =

1
Npath

∑Npath
s=1 θ̂s(π), using uniform

weights for each supporting DAG Gs. The total BMA variance, V̂ (θ̂BMA(π)), combines the average
within-DAG variance (reflecting estimation uncertainty for each structure) and the between-DAG
variance (capturing structural uncertainty across different structures) via the law of total variance:

V̂ (θ̂BMA(π)) =
1

Npath

Npath∑
s=1

V̂ (θ̂s(π)) +
1

Npath

Npath∑
s=1

(
θ̂s(π)− θ̂BMA(π)

)2

. (7)

Here, V̂ (θ̂s(π)) is the single-DAG variance estimate from Section 4.4.2. Confidence intervals

are then constructed using the standard normal approximation: θ̂BMA(π) ± z1−α/2

√
V̂ (θ̂BMA(π)).

This aggregation framework ensures that both estimation uncertainty (within-DAG) and structural
uncertainty (between-DAG) are rigorously propagated into the final mediation effect estimates.

5 Experiments

We evaluate SIGMA across two key tasks: (1) causal structure discovery and (2) causal mediation
analysis, covering both synthetic datasets with known ground-truth effects and a real-world medical
cohort from the HPP. For structure discovery, we assess the accuracy of learned causal graphs in
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various settings with different graph topologies, nonlinearity levels, and data types. For mediation
analysis, we test SIGMA’s ability to estimate direct and indirect effects of identified mediation
pathways. The synthetic data allows controlled benchmarking, while the HPP cohort provides a
complex, high-dimensional setting with clinically relevant mediation structures. A full list of results
and details of the experimental setup are in Appendix F.1.

Experimental setup Our experimental evaluation comprises two primary tasks: (1) performance
assessment of causal structure discovery, and (2) end-to-end causal mediation analysis evaluation.
For synthetic data experiments, we construct 10 benchmark datasets that systematically vary feature
dimensionality, degree of nonlinearity, and pathway structural complexity to assess SIGMA’s robust-
ness across different complexity regimes. Each dataset contains 6,000 samples with mixed variable
types (60% continuous, 30% binary, 10% categorical) and 10% injected missingness to simulate
realistic scenarios.

The SIGMA framework is implemented through a three-stage pipeline: (1) learning the structural
posterior via Flow-SEM and sampling 1,000 DAGs; (2) identifying high-confidence mediation
pathways based on Path Stability Score (threshold τ = 0.15); (3) estimating natural direct and
indirect effects for identified pathways, with estimates aggregated across multiple DAGs via Bayesian
model averaging to propagate structural uncertainty. Effect estimation employs a 5-fold cross-fitting
strategy, utilizing EIF for paths of length 3 and plug-in estimators for longer paths.

5.1 Causal Discovery Evaluation

Datasets. We generate 10 synthetic datasets with varying characteristics, including different graph
sizes from low to high dimensional p ∈ {20, 50, 100, 200}, nonlinearity level (ρnonlin ∈ {0, 0.5}),
graph structures (parallel κ ∈ {2, 3, 6} and chain ℓ ∈ {1, 2}), and variable types variables (continuous,
binary, categorical). Dataset-specific configurations are provided in Appendix E.3.

Figure 2 shows that SIGMA demonstrates consistently strong performance across datasets.
On datasets (HighDim-D/P), DECI has a slight advantage in adjacency F1 (0.3814/0.4869 vs.
0.3741/0.4754), potentially due to differences between SIGMA’s Flow-SEM continuous optimization
framework in capturing weak connections under high-dimensional sparse conditions and DECI’s
global variational inference approach. In contrast, SIGMA shows comprehensive leadership in orien-
tation determination (average improvement of 42.1%), a capability crucial for accurate identification
of mediation pathways. Experimental results confirm that SIGMA can recover directed structures
under diverse conditions, providing a robust foundation for downstream causal effect estimation.

(a) (b) (c)

Figure 2: Causal discovery on benchmark datasets. We compare SIGMA against PC [33], (linear)
Notears [75], ICALiNGAM [58], Grandag [20] and DECI [22] on ten synthetic Datasets. (a) shows
adjacency F1 [23], (b) reports orientation F1 [63], and (c) evaluates causal accuracy [15]. Refer
Table 5 in Appendix F for detailed results.

5.2 End-to-end Causal Mediation Analysis

We evaluate SIGMA’s effect estimation performance on synthetic data by comparing estimates against
ground truth values generated via structural equation models (see Appendix F.2). For comparison, we
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use the Lasso, random forest (RF), gradient boosted machine (GBM) and DeepMed [68]. Two high-
confidence mediation pathways were selected from the synthetic dataset LowDim-L for evaluation.
As shown in Table 1, SIGMA consistently produces low bias and narrow confidence intervals across
both natural direct and indirect effects. These results indicate that by sampling multiple DAGs
from the structural posterior and applying BMA, SIGMA effectively incorporates both within-graph
estimation uncertainty and across-graph structural variation. This leads to robust and stable inference
of mediation effects under structural uncertainty.

Table 1: The empirical biases, empirical standard errors (SE) and the lower and upper bounds of
the corresponding 95% confidence intervals (CI) of the estimated N̂DE, N̂IE and T̂E across two
mediation pathways on synthetic dataset LowDim-L. (Pathway 1: V5→V19→V16; Pathway 2:
V12→V10→V6). Bias is the Monte-Carlo mean deviation from the ground truth.

N̂DE N̂IE T̂E

Method DeepMed Lasso RF GBM SIGMA DeepMed Lasso RF GBM SIGMA DeepMed Lasso RF GBM SIGMA

Pathway 1

Empirical Bias -0.0637 -0.2098 -0.2263 0.0713 -0.0066 0.0777 0.0339 0.4347 -0.2074 0.0811 0.1414 0.2084 -0.1360 -0.1361 0.0746
SE 0.0497 0.0139 0.0082 0.0058 0.0063 0.0575 0.0151 0.0095 0.0152 0.0078 0.1008 0.0207 0.0064 0.0143 0.0078
CI_Upper 0.0258 0.2292 0.2345 -0.0677 0.0112 0.2850 0.2458 -0.1661 0.4064 0.1873 0.2497 0.4587 0.0463 0.4064 0.1873
CI_Lower -0.1688 0.1748 0.2025 -0.0905 -0.0136 0.0596 0.1865 -0.2033 0.3503 0.1480 -0.0481 0.3776 0.0213 0.3503 0.1479

Pathway 2

Empirical Bias 0.0185 -0.0114 -0.0653 0.0158 0.0007 0.1397 0.0643 0.1542 0.0942 -0.0231 0.1556 0.0530 0.0889 -0.0573 -0.0224
SE 0.0306 0.0061 0.0081 0.0371 0.0057 0.0759 0.0090 0.0091 0.0328 0.0139 0.0844 0.0103 0.0123 0.1629 0.0122
CI_Upper 0.0677 0.0494 0.0366 0.1072 0.0829 0.2857 0.2300 0.3270 0.1403 0.2662 0.3128 0.2700 0.2379 0.6795 0.3491
CI_Lower -0.0524 0.0255 0.0142 0.0757 -0.0623 -0.0118 0.1947 0.2727 0.1047 0.0689 -0.0183 0.2296 0.1899 0.0408 0.3014

Table 2 reports the performance metrics of SIGMA across different dimensionalities. As feature
dimensionality increases from 500 to 2000, all three core evaluation metrics exhibit a declining trend:
Adjacency F1 decreases by 22.5% (from 0.603 to 0.467), Orientation F1 decreases by 25.9% (from
0.541 to 0.401), and Path F1 decreases by 26.9% (from 0.587 to 0.429). Despite this performance
degradation, SIGMA maintains an edge recovery F1 of 0.467 and a pathway identification F1 of
0.429 in the 2000-dimensional configuration, with all standard errors controlled within 0.083. These
results confirm the scalability of the SIGMA framework for high-dimensional mediation analysis.

Table 2: SIGMA high-dimensional scalability analysis. Setup: three synthetic configurations with
p ∈ {500, 1000, 2000}; nonlinearity degree ρ = 0.5; parallel (κ = 2) and chain (ℓ = 2) structures;
n = 6000; 10 independent runs. Metrics are reported as mean (SE).

Dimension (p) Adj F1 (Mean) Adj F1 (SE) Orient F1 (Mean) Orient F1 (SE) Path F1 (Mean) Path F1 (SE)

500 0.603 0.044 0.541 0.051 0.587 0.047
1000 0.548 0.058 0.479 0.066 0.521 0.062
2000 0.467 0.074 0.401 0.083 0.429 0.079

5.3 Real Data HPP Validation

Validation on the HPP dataset shows that the SIGMA framework successfully identified multiple
physiologically meaningful mediation pathways (Figure 3). Specifically, the pathway (sleep HRV
index→ pulse wave velocity→ carotid IMT) verified a known mechanism whereby sleep quality
affects cardiovascular health via vascular function. Previous studies have reported associations
between reduced sleep quality and autonomic dysfunction, indicated by decreased heart rate variability
(HRV), which is linked to increased arterial stiffness (PWV) and subsequently greater carotid IMT
[11, 32, 54]. Additionally, SIGMA also identified a pathway where sleep snoring severity affects
carotid IMT via body fat percentage and blood pressure regulation. This suggest an indirect effect
of sleep quality on vascular health mediated through metabolism and blood pressure. Existing
clinical studies have linked severe snoring and obstructive sleep apnea (OSA) to obesity via endocrine
disturbances [24]. Obesity, particularly increased visceral fat, has been linked to elevated blood
pressure [76], and sustained high blood pressure is associated with increased carotid IMT [36].
Moreover, as illustrated in Figure 3, the analysis reveals associations among nocturnal hypoxic
burden, OSA, body fat composition, carotid IMT, and gut microbiota abundance. This newly
identified mediation pathway suggests connections among sleep-disordered breathing, metabolism,
cardiovascular health, and gut microbiota ecology. This indicates that abnormal body fat distribution
induced by sleep disturbances may further affect cardiovascular health through elevated blood pressure
and autonomic dysfunction. Classical medical regression mediation analysis further validated these
pathways, with an overall TE error of 0.2734 and consistent NIE and NDE estimation directions.
Numerical results and visualization details are provided in the Appendix F.4.
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Figure 3: (a) Correlations of key sleep-derived features with features derived from other body systems.
See Table 3 for the corresponding features description of V0-V61. (b) The mediation pathways
reproduce a previously reported mechanism; (c) Novely discovered pathways by SIGMA, showing
potential links across sleep, metabolic state, vascular function, and gut microbiome composition.

6 Related Work
CMA has evolved from estimating total treatment effects to decomposing pathways into direct and
indirect components [27, 46, 52]. Semiparametric methods leveraging EIFs have been widely adopted
for this purpose, offering multiple robustness and asymptotic efficiency [62, 74]. Recent work such
as DeepMed [68] advances this line by using deep neural networks to estimate high-dimensional
nuisance functions without sparsity constraints, achieving semiparametric efficiency under weaker
smoothness assumptions. However, these methods generally assume a known mediation structure.
Parallelly, causal discovery frameworks like NOTEARS [75], GES [59], and DAG-GNN [20] aim
to recover causal graphs from observational data but do not target mediation-specific pathways.
DECI [22] proposes a variational approach that jointly infers causal structure and structural equations,
supporting downstream inference via interventional queries. While powerful, DECI and similar
methods [15, 63] focus on recovering global structure and interventional distributions rather than
quantifying pathway-specific mediation effects. Other works in high-dimensional mediation [7, 18]
have explored multi-mediator identification but typically rely on predefined structures or linear
assumptions. This disconnect between causal discovery and effect estimation limits their applicability
in complex, uncertain systems. Please refer Appendix C for detailed literature review.

7 Conclusion, Limitations and Future
The SIGMA framework we proposed provides an end-to-end solution for causal mediation analysis
under structural uncertainty by unifying structure discovery, pathway identification, and effect estima-
tion. The core innovation of this framework lies in: quantifying causal graph uncertainty through
probabilistic structural posterior learning, automatically identifying high-confidence mediation path-
ways via the Path Stability Score, and systematically propagating structural uncertainty to final
effect estimates through Bayesian model averaging. In validation experiments on HPP data, SIGMA
confirmed known sleep-cardiovascular mediation relationships and discovered previously unspecified
cross-system mediation pathways, revealing how sleep quality affects cardiovascular health through
inflammatory and metabolic pathways, providing new targets for clinical intervention. However, as
an observational research method, SIGMA remains limited by unmeasured confounders and selection
bias. To address these challenges, we plan to conduct clinical intervention experiments, validating
the inflammatory and metabolic mediation mechanisms discovered by SIGMA through sleep quality
interventions (e.g., CPAP treatment, sleep hygiene improvement), providing stronger causal evidence,
and developing sensitivity analysis tools to systematically assess the robustness of inference results,
thereby facilitating translation from computational discoveries to clinical applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of this paper precisely articulate the core contri-
butions and intended scope of our proposed SIGMA framework. We clearly define SIGMA
as an innovative end-to-end mediation pathway inference method that unifies structure
discovery, pathway identification, and effect estimation, with a strong emphasis on its unique
capability to systematically handle structural uncertainty. These claims are fully consistent
with the advanced methodology and comprehensive experimental results detailed in the
subsequent sections, accurately reflecting the value of our work.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the potential limitations of our work in Appendix A provide
an in-depth exploration of the specific considerations and strategies for addressing core
causal assumptions (e.g., Causal Markov, Faithfulness, and Causal Sufficiency) within the
SIGMA framework in Appendix A.2 "Robustness Considerations and Sensitivity Analysis
of SIGMA." This demonstrates our careful consideration of the applicability boundaries of
our method and directions for future improvements.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: This paper provides a solid theoretical foundation for all theoretical results.
We systematically elaborate on the definitions, notation, and key identification assumptions
(including consistency, ignorability, positivity) for causal mediation analysis.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We are committed to ensuring high reproducibility of our experimental results.
We believe this sufficient and transparent information provides a solid foundation for other
researchers to reproduce our main experimental results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have thoroughly described the generation methods and parame-
ters for the synthetic data in Appendix, ensuring the reproducibility of these experi-
ments. For the HPP dataset, we have provided a link to its official knowledge base
(https://knowledgebase.pheno.ai/) for reference.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: We have provided sufficient experimental setting details to ensure readers can
understand and evaluate our results.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have given due attention to the statistical significance of our experimental
results in the paper. Specifically, we clearly reports the bias, empirical standard error (SE),
root mean squared error (RMSE), and the coverage probability (CP) of their corresponding
95% confidence intervals for the estimated Natural Direct Effect (NDE) and Natural Indirect
Effect (NIE). These metrics provide robust statistical evidence for assessing the accuracy
and stability of our method’s estimates.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss in Appendix.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have strictly adhered to the NeurIPS Code of Ethics in conducting this
research. This study utilizes data from the Human Phenotype Project (HPP), which received
formal approval from the Institutional Review Board (IRB) of the Weizmann Institute of
Science.Furthermore, all participants provided written informed consent. This ensures that
our research aligns with recognized ethical standards in all respects.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a preliminary discussion of the potential impacts of our work.As
a foundational research framework designed to uncover causal mechanisms in complex
systems, SIGMA holds broad positive application potential in fields such as biomedicine,
public health, and social sciences, for instance, by aiding in the understanding of disease
mechanisms or evaluating the effects of policy interventions. While our primary focus is
on methodological innovation, we also recognize that any powerful analytical tool must be
used responsibly.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The SIGMA framework proposed in this paper is a causal inference methodol-
ogy and, as such, does not constitute a model type with a high risk of misuse (e.g., large-scale
language models or image generation models). The HPP dataset we utilized is biomedical
research data that has undergone rigorous ethical review, not a dataset scraped from the
internet or known to have high inherent risks. Therefore, specific safeguards for such models
or data are not applicable to this research. account and make a best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We strictly adhere to academic standards by appropriately crediting and citing
the creators or original owners of all existing assets (including algorithms, datasets, and
software tools) used in this paper, as detailed in our References section. For instance, for
the HPP dataset, we have clearly indicated its origin and cited relevant primary research
literature.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper itself (including the main text and appendices) serves as com-
prehensive and detailed documentation for our innovative SIGMA framework. We have
systematically elucidated all components of the SIGMA framework, its solid theoretical
underpinnings, a clear algorithmic workflow, and thorough experimental validation within
the manuscript. This content provides a complete guide for understanding and applying the
SIGMA framework.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research did not involve any crowdsourcing experiments. We utilized the
existing HPP dataset, which includes human subjects. As detailed in Appendix, the HPP
study itself adhered to strict ethical procedures, including written informed consent from all
participants. As a secondary analysis of the HPP data, this paper did not directly recruit or
interact with subjects, and therefore, providing additional instructions or compensation to
participants was not part of our research protocol. Relevant information pertaining to the
original HPP study is detailed in its respective protocols.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We place a high priority on research ethics. The Human Phenotype Project
(HPP) study protocol, from which our data is derived, received formal approval from the
Institutional Review Board (IRB) of the Weizmann Institute of Science. Furthermore, all
participants in the HPP study provided written informed consent, implying that potential
risks of the study were fully disclosed to the subjects, and their consent was obtained. This
paper strictly conducts data analysis within this ethical framework.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large Language Models (LLMs) were not utilized as an important, original, or
non-standard component in the core methodology of this research. Our research focuses
on the development and validation of the SIGMA framework, which is based on causal
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inference techniques such as structural equation models, path stability scoring, and Bayesian
model averaging. LLMs were not employed in the core algorithm design or experimental
analysis of this study.
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A Detailed Discussion of Causal Assumptions

A.1 Core Assumptions for Causal Structure Discovery and Identification

The validity of causal structures inferred by Flow-SEM—and, by extension, the SIGMA frame-
work—relies on a set of core assumptions that connect observed statistical dependencies to underly-
ing causal mechanisms. In particular, the following three foundational assumptions enable reliable
identification and interpretation of causal graphs from observational data.

A.1.1 The Causal Markov Assumption

Formal Definition. A probability distribution P (V ) is said to satisfy the Causal Markov Condi-
tion with respect to a DAG G = (V,E) if each variable Xi ∈ V is conditionally independent of its
non-descendants, given its parents in the graph. Formally, for all Xi ∈ V :

Xi ⊥⊥ NonDescG(Xi) \ PaG(Xi) | PaG(Xi), (8)

where PaG(Xi) denotes the set of parent nodes of Xi, and NonDescG(Xi) denotes its non-
descendants in G. For DAGs, this local condition is equivalent to the global Markov condition
defined via d-separation: for disjoint subsets X,Y, Z ⊆ V , if Z d-separates X and Y in G, then
X ⊥⊥ Y | Z in P (V ).

Role in SIGMA. The Causal Markov Assumption justifies the structural factorization used by
Flow-SEM in SIGMA. Specifically, it enables the modeling of the joint distribution P (V |Wθ,Φ)
as the product of conditionals:

P (V |Wθ,Φ) =

p∏
i=1

P (Vi | PaG(Vi), ϕi), (9)

which underpins the Structural Equation Model (SEM) formulation:

Vi = fi(PaG(Vi);ϕi) + σi(PaG(Vi);ϕi) · Ui, (10)

where fi and σi are flexible functions (e.g., neural networks), and Ui ∼ N (0, 1) represents exogenous
noise. This factorization supports the likelihood-based training objective used in Flow-SEM (see
Section 4.2.1). In particular, Equation 3 optimizes the negative log-likelihood while enforcing
acyclicity and sparsity constraints. Without the Causal Markov assumption, the inferred structure
may not reflect the true causal dependencies, even when the model achieves high likelihood under the
observed data distribution.

A.1.2 The Faithfulness Assumption

Formal Definition. A distribution P (V ) is faithful to a DAG G = (V,E) if every conditional
independence observed in P (V ) corresponds to a d-separation in G. Formally, for any disjoint
subsets X,Y, Z ⊆ V :

X ⊥⊥ Y | Z in P (V ) ⇐⇒ Z d-separates X from Y in G. (11)

The forward implication (⇒) corresponds to the Causal Markov Assumption, while the reverse (⇐)
constitutes the Faithfulness Assumption.

Role in SIGMA. Faithfulness is critical to ensuring that Flow-SEM accurately infers the presence
or absence of causal edges. Violations occur when distinct causal pathways counteract each other
such that their net effect cancels out. For instance, in competing mediation paths:

βAM1 · βM1Y = −βAM2 · βM2Y , (12)

which can induce conditional independencies not reflected by any d-separation in the true DAG.
While such exact cancellations are measure-zero events in parameter space, they can still arise in
practical scenarios.
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Violations of faithfulness in SIGMA result in biased structure learning. Specifically, the learned
posterior P (Gs | D) may diverge from the true posterior over the causal graph G∗:

P (Gs | D) ̸= P (G∗ | D), (13)

leading Flow-SEM to favor incorrect structural hypotheses. This has downstream effects on mediation
pathway identification, particularly through the computation of the Path Stability Score (PSS), defined
as:

PSS(π) =
1

Nvalid

NDAGs∑
s=1

I(π ⊆ Gs), (14)

where π denotes a candidate mediation path, and the indicator function returns 1 if all directed edges
in π exist in the sampled DAG Gs. As a result, true causal pathways may be assigned artificially
low PSS values due to systematically missing edges, reducing their chances of being selected for
downstream effect estimation.

A.1.3 The Causal Sufficiency Assumption

Formal Definition. A variable set Vobs is causally sufficient if for every pair X,Y ∈ Vobs, all
common causes are also in Vobs. Equivalently, no unmeasured variable U /∈ Vobs is a direct cause of
two or more variables in Vobs.

Role in SIGMA. Causal sufficiency plays a pivotal role across all components of SIGMA. In the
structure discovery phase, unmeasured confounders can distort edge estimation, leading to divergence
between the learned and true graph posteriors:

P (G | D) ̸= P (G∗ | D), (15)

where G∗ denotes the true underlying causal graph.

In the effect estimation phase (Section 4.4), causal sufficiency affects the correctness of nuisance
function estimation. These functions, which are essential for computing NDE and NIE, depend on
the appropriate conditioning sets defined by the graph:

η̂s = f(PaGs
(·)). (16)

When Gs is misspecified due to unmeasured confounding, the adjustment sets are invalid, thereby
violating key identification assumptions such as:

A ⊥⊥ Y (a∗,m),M(a) | C,Gs and M ⊥⊥ Y (a,m′) | A = a,C,Gs. (17)

SIGMA assumes that the full variable set V = {A, Y } ∪M ∪ C is causally sufficient, or that any
substantial unobserved confounding is accounted for within C. When this assumption is questionable,
violations can be partially mitigated through sensitivity analysis.

A.1.4 SIGMA Framework to Challenges in Core Causal Assumptions

The efficacy of inferring causal structures G = (V,E) and quantifying mediational pathway effects
from observational data D is intrinsically linked to a set of foundational causal assumptions. The
SIGMA framework incorporates specific mechanisms in its design to consider and respond to the
challenges these assumptions may face in complex real-world systems.

Considerations regarding the Causal Sufficiency Assumption

The Causal Sufficiency assumption, requiring that all common causes U affecting any two variables
Vi, Vj ∈ V within the system are included in the observed set V (i.e., U ⊆ V ), is an ideal yet often
challenging prerequisite for unbiased causal effect estimation. When this condition is potentially
violated, implying the existence of unmeasured confounders U /∈ V , SIGMA offers a more robust
analytical pathway through the following design considerations:

Structured Integration of High-Dimensional Covariates: SIGMA mandates the explicit inclusion
of a set of covariates C within the observed variable set V = {A, Y } ∪M ∪ C (see Section 3 of the
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main text). The Flow-SEM module (Section 4.2.1 of the main text) incorporates these covariates C
into the structural learning process, treating them equivalently to other variables (A,Mk ∈M,Y ).
This allows for the data-driven discovery of relationships between C and A,M, Y . By employing
flexible functions fi(PaG(Vi);ϕi) (Equation 1 of the main text), SIGMA can capture complex,
non-linear confounding patterns mediated by the observed covariates C, thereby adjusting for such
confounding at a structural level, which surpasses traditional methods that often treat C merely as
linear control variables.

Exploration of Structural Posterior Distribution: Rather than relying on a single, potentially
misspecified, predefined causal graph, SIGMA leverages Flow-SEM to learn a parameterized posterior
distribution P (G|D,Wθ,Φ) over causal structures. From this distribution, an ensemble of DAGs
G = {Gs}NDAG

s=1 is sampled (Section 4.2.3 of the main text). This ensemble G represents a multiplicity
of causal structure hypotheses compatible with the observed data D and the given variable set V .
This strategy acknowledges that, even conditional on V , the true causal structure may be uncertain.
Different Gs ∈ G may account for complex dependencies arising from C in various ways, thus
providing a more comprehensive examination of confounding effects mediated by observed variables.

Structure-Guided Bayesian Model Averaging: For each candidate pathway π identified via the
Path Stability Score (PSS) (Section 4.3 of the main text), SIGMA estimates pathway-specific effects
θ̂s(π) under each supporting DAG Gs ∈ Gπ ⊆ G. The nuisance functions η̂s are parameterized
based on the parent sets PaGs(·) (including relevant covariates from C) defined by that specific Gs

(Sections 4.4.1, 4.4.2 of the main text). The final effect estimate θ̂BMA(π) and its variance V̂ (θ̂BMA(π))
are obtained by BMA over Gπ (Section 4.4.3, Equation 7 of the main text). This aggregation ensures
that the final inference incorporates not only the statistical uncertainty V̂ (θ̂s(π)) within each specific
structure but also the structural uncertainty, VarGs∈Gπ

[θ̂s(π)], arising from the heterogeneity of causal
hypotheses consistent with the observed data V .

Although SIGMA cannot intrinsically detect or fully neutralize biases from truly unmeasured con-
founders (i.e., those not included in V ), its design aims to maximize the utility of all available
information within V (especially covariates C). Through structured modeling of observed covariates,
explicit modeling of structural uncertainty, and aggregation over multiple structural hypotheses,
SIGMA provides a more systematic and data-driven framework than analyses relying on a single,
fixed causal model to mitigate biases stemming from confounding by observed variables. For po-
tential unmeasured confounding beyond the scope of V , sensitivity analysis, as recommended in
Appendix A.1.3 of the main paper, remains an important complementary tool for assessing the
robustness of conclusions.

Considerations regarding the Causal Faithfulness Assumption

The Causal Faithfulness assumption posits that all conditional independence relations present in
the probability distribution P (V ) are entailed by d-separations in the true causal graph G∗, and
vice-versa (Sections 3, A.1.2 of the main text). This implies the absence of statistical independencies
arising from exact cancellations of path effects (e.g.,

∑
π∈ΠA⇝Y

effect(π) ≈ 0 while ΠA⇝Y ̸= ∅),
where underlying causal pathways exist. SIGMA’s mechanisms offer the following considerations
when facing challenges of approximate or exact unfaithfulness:

Continuous Edge Weight Learning and Probabilistic Representation: Flow-SEM (Section 4.2.3
of the main text) learns a continuous adjacency weight matrix Wθ , where entries |[Wθ]ji| reflect the
strength of a potential edge Vj → Vi. These weights are transformed into edge inclusion probabilities
pji = P (eji ∈ E|D) via σ(|[Wθ]ji|) (Section 4.2.3 of the main text). In scenarios of approximate
unfaithfulness, where the net effect of a path is close to zero, diminishing the signal for its constituent
edges, the corresponding pji values may be low but not necessarily zero (unless strong sparsity
priors are imposed). This allows edges with weak signals a non-zero probability of being included in
sampled DAGs, thus mitigating premature exclusion based on hard independence thresholds.

Statistical Filtering via Path Stability Score (PSS): The PSS(π) (Section 4.3, Equation 5 of the
main text) is defined as the frequency of path π’s appearance acrossNvalid sampled DAGs,Gs, serving
as a Monte Carlo estimate, EG∼P (G|D)[I(π ⊆ G)], of its marginal inclusion probability under the
learned posterior P (G|D). If a true path’s signal is attenuated due to approximate unfaithfulness
affecting one of its constituent edges eji (resulting in a low pji), the joint probability of observing π
(and thus its PSS(π)) will be reduced. By thresholding PSS(π) with τ , SIGMA selects paths that
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exhibit sufficient statistical consistency across the ensemble, effectively focusing on pathways whose
structural evidence remains discernible despite data noise and potential complexities in parameter
configurations.

Diversity of Structural Ensemble and BMA Weighting: SIGMA generates a diverse ensemble
of DAGs G. Even if certain parameter configurations lead to the apparent weakness or absence of a
specific path in some Gs ∈ G due to approximate unfaithfulness, such a path might still manifest in
other Gs corresponding to different plausible parameterizations, provided some evidential support
exists in D. While the BMA procedure in this work employs uniform weights for selected paths, the
PSS acts as a preceding filter. Paths consistently undermined by strong approximate unfaithfulness,
resulting in PSS values below τ , are excluded from the final effect aggregation. This prioritizes
mediational mechanisms with more robust and identifiable signals in the observed data.

Consequently, while SIGMA cannot resolve fundamental unidentifiability stemming from perfect
parameter cancellations, its probabilistic and ensemble-based framework allows for a more nuanced,
data-driven assessment of pathways whose signals might be weakened by approximate unfaithfulness.
It quantifies the evidential strength for each path via PSS, thereby focusing inferential resources
on mediational mechanisms that are statistically stable and discernible under the learned posterior
distribution of structures.

Considerations regarding the Causal Markov Condition

The Causal Markov Condition, a cornerstone of graphical causal models, states that any variable Vi
is conditionally independent of its non-descendants (excluding its parents) given its direct causes
PaG(Vi) in a DAG G (Section A.1.3 of the main text). SIGMA’s design inherently relies on and
leverages this assumption:

DAG-based Parametrization: The Flow-SEM module (Section 4.2.1 of the main text), central to
SIGMA’s structure discovery, models inter-variable relationships using a Directed Acyclic Graph
(DAG). The structural equations Vi = fi(PaG(Vi);ϕi) + σi(PaG(Vi);ϕi) · Ui (Equation 1 of the
main text) explicitly encode that the distribution of Vi is determined solely by its parents PaG(Vi)
and an exogenous noise term Ui.

Factorization of Likelihood Function: The log-likelihood function logP (V (j)|Wθ,Φ) in Flow-
SEM (Equation 2 of the main text) is expressed as a sum over terms corresponding to each variable
Vi conditioned on its parents PaG(V

(j)
i ), i.e.,

∑p
i=1

(
log pU (u

(j)
i )− log σi(PaG(V

(j)
i );ϕi)

)
. This

factorization is a direct mathematical consequence of the Causal Markov Condition, rendering the
learning of high-dimensional joint distributions computationally tractable.

Flexible Functional Forms and Structural Exploration: By employing neural networks for fi and
σi, SIGMA accommodates complex non-linear dependencies. The learning of Wθ and subsequent
sampling of the DAG ensemble G allow SIGMA to explore a rich space of DAG structures that are
compatible with the data and inherently satisfy the Markov condition. This combination enables
SIGMA to seek the best description of observed data dependencies within the class of Markovian
models representable by DAGs.

A.2 Robustness Considerations and Sensitivity Analysis of SIGMA

The theoretical guarantees for SIGMA framework validity rely on a series of core causal assumptions,
including the Causal Markov condition, Faithfulness, and Causal Sufficiency defined in Appen-
dices A.1, as well as effect identification conditions such as Ignorability and Positivity specified in
Section 3 of the main text. In practical application contexts, these assumptions may be violated to
varying degrees, threatening the validity and reliability of the estimated mediational pathway effects.
Therefore, systematic analysis of the robustness and sensitivity of results obtained under the SIGMA
framework becomes particularly necessary. Next, we discuss potential methodological frameworks
for sensitivity analysis and mathematical prospects for future research.

A.2.1 Sensitivity Analysis under Deviations from Causal Sufficiency

Consider an unobserved potential confounding variable U that simultaneously affects exposure A,
the set of mediator variables M , and the outcome variable Y . In the presence of such unobserved
confounding, we define a confounding sensitivity analysis framework modulated by U as follows:
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Assume the confounding variable U is simultaneously associated with exposure and mediators, as
well as outcomes and mediators, with their association strengths described by the following two
sensitivity parameters ΓAU ,ΓUY :

ΓAU =
supu Pr(A = a|U = u,C)

infu Pr(A = a|U = u,C)
, ΓUY =

supuE[Y |M = m,U = u,A = a,C]

infuE[Y |M = m,U = u,A = a,C]

Here ΓAU ,ΓUY ≥ 1, with larger values indicating stronger influence of the unobserved confounding
variable. To quantify the robustness of observed effects to the strength of the above unobserved
confounding, the E-value [65] can be used, defined as:

E− value(θ̂BMA(π)) = inf{ΓAU ,ΓUY ≥ 1 : 0 ∈ CIΓAU ,ΓUY
(θ̂BMA(π))}

where CIΓAU ,ΓUY
(θ̂BMA(π)) represents the confidence interval for the effect estimate adjusted for

U given the sensitivity parameters. A larger E-value indicates that the conclusion is more robust to
unobserved confounding; conversely, a smaller E-value indicates weaker robustness. Future research
could consider further integrating the above sensitivity analysis automatically into the SIGMA
process, using simulation studies to quantify its sensitivity performance under various data-generating
mechanisms.

A.2.2 Robustness Analysis under Deviations from Causal Faithfulness

Suppose the data-generating mechanism has approximate effect cancellations, where the true effect of
some path π in the path set ΠA→Y is θ(π) ≈ 0, despite this path existing in the true causal structure
(i.e., approximate unfaithfulness). This scenario leads to the estimated Path Stability Score (PSS,
Section 4.3) tending toward lower values. Sensitivity analysis considers a path stability threshold
τ ∈ [0, 1], defining a stable path set as:

Πτ = {π : PSS(π) ≥ τ}

By studying the impact of changes in τ on the final Bayesian Model Averaging (BMA) estimate
θ̂BMA(π|τ), we can examine the sensitivity of θ̂BMA(π|τ) to different τ :

∂θ̂BMA(π|τ)
∂τ

, π ∈ Πτ

In applications, if low sensitivity is found (the above derivative is small), it indicates that the SIGMA
estimation conclusion is relatively robust; conversely, if high sensitivity is found, it may suggest
that approximate unfaithfulness significantly affects the analysis, requiring cautious interpretation.
Future research could deeply explore the properties of this derivative and its theoretical and empirical
performance under different structural assumptions.

A.2.3 Robustness Analysis of Model Specification Errors in Effect Estimation

When estimating path-specific effects θ̂BMA(π), SIGMA involves multiple nuisance functions (e.g.,
propensity scores and conditional expectation functions). Setting the bias of these nuisance function
estimates as δ, the following form of bias sensitivity analysis can be considered:

Define the sensitivity function of estimator bias to nuisance function estimation bias:

∂θ̂BMA(π)

∂δ

Lower sensitivity values imply higher robustness of the estimator to model specification errors, and
vice versa. The Cross-Fitting strategy adopted in SIGMA provides a certain degree of robustness
guarantee, but future research should systematically compare the sensitivity function characteristics
of this estimation strategy with other semiparametric doubly robust estimators.
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A.2.4 Interplay

The three assumptions—Causal Markov, Faithfulness, and Causal Sufficiency—jointly define the
identification conditions for reliable causal discovery in SIGMA. The Causal Markov condition
links the graphical structure to conditional independence relations. The Faithfulness assumption
ensures that all observed independencies reflect actual graphical separations rather than coincidental
parameter cancellations. Causal Sufficiency guarantees that all relevant common causes are observed,
preventing bias from unmeasured confounding. Together, these assumptions enable SIGMA to learn
meaningful causal structures from observational data and propagate this structure into consistent
mediation effect estimation.

A.3 Identification Assumptions for NDE and NIE

TThe nonparametric identification of Natural Direct Effects (NDE) and Natural Indirect Effects (NIE)
requires a set of conditional independence assumptions that account for confounding. These effects
are defined in the potential outcomes framework (see Section 3) as: NDE(a, a∗) = E[Y (a,M(a∗))−
Y (a∗,M(a∗))] and NIE(a, a∗) = E[Y (a,M(a)) − Y (a,M(a∗))], These assumptions ensure that
observed statistical associations admit a valid causal interpretation. In the context of SIGMA, this is
particularly important because the underlying causal graph G∗ is unknown and approximated via a
sampled ensemble {Gs}.

A.3.1 Ignorability Assumptions for NDE and NIE Identification

A common set of sufficient conditions for the identification of NDE and NIE, often referred to as
"sequential ignorability" or "no unmeasured confounding" assumptions, can be stated conditional on
a set of pre-treatment covariates C [45, 8, 52]. For treatment levels a and a∗:

1. Conditional independence of treatment and potential outcomes/mediators (Controlling for
A-M and A-Y confounding): There is no unmeasured confounding of the effect of A on M , and no
unmeasured confounding of the effect of A on Y that is not mediated by M . Formally:

∀a′ ∈ A : A ⊥⊥M(a′) | C, ∀a′′,∀m ∈M : A ⊥⊥ Y (a′′,m) | C. (18)

Together, these imply that C blocks all back-door paths from A to M , and from A to Y that do not
go through M . A common shorthand formulation is:

(Y (a∗,m),M(a)) ⊥⊥ A | C. (19)

2. Conditional independence of mediator and potential outcomes, given treatment and covari-
ates (Controlling for M-Y confounding): This assumption requires that, conditional on treatment A
and covariates C, there is no unmeasured confounding between the mediator M and the outcome Y :

∀a ∈ A, ∀m′ ∈M : M ⊥⊥ Y (a,m′) | A = a,C. (20)

Under this assumption, among units with the same treatment and covariates, the mediator behaves as
if it were randomly assigned with respect to the counterfactual outcome Y (a,m′).

3. Conditional independence of treatment and potential outcomes, given mediator and covari-
ates (No treatment-induced M-Y confounding that also depends on A directly): This assumption
rules out any variable that is affected by treatment and also confounds the relationship between M
and Y . In some formulations, this condition is written as:

A ⊥⊥ Y (a∗,m) |M = m,C. (21)

However, this expression involves cross-world counterfactuals, which are often avoided in practice.
Instead, most identification strategies rely on single-world assumptions derived from the causal graph.

For example, the mediation formula [50] provides a means to identify NIE using the following
expression:

E[Y (a,M(a∗))] =
∑
m

E[Y | A = a,M = m,C = c] · P (M = m | A = a∗, C = c) · P (C = c).

(22)
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This formula is valid under Assumptions 1 and 2, as well as the Causal Markov and Faithfulness
assumptions for the underlying DAG encoding the relationships among A,M, Y,C. Within the
SIGMA framework, pathway-specific effect estimation relies on Efficient Influence Functions (EIFs),
which are computed relative to each sampled graph Gs. For example, to estimate the effect along a
mediation pathway A→Mj → Y , SIGMA computes the following nuisance quantities:

E[Y | A, Mj , PaGs
(Y ) \ {A,Mj}, C], (23)

P (Mj | A, PaGs
(Mj) \ {A}, C), P (A | PaGs

(A), C). (24)

These estimates rely on graph-structured adjustment sets and implicitly assume that the correspond-
ing back-door paths are blocked. As such, the validity of EIF-based identification hinges on the
correctness of the local parent sets derived from Gs. In cases where no variable is jointly affected by
A and also acts as a confounder of the M → Y link, the stronger cross-world independence condition
Y (a∗,m) ⊥⊥M(a) | C can be avoided [52].

Role of Graphical Structure Gs in Satisfying Ignorability within SIGMA. In SIGMA, the
Flow-SEM module generates an ensemble of candidate DAGs {Gs}. For each graph Gs = (V,Es),
the estimation of nuisance functions η̂s (see Section 4.4.1), such as the conditional expectation
E[Y | A,M,ZY ] and the conditional probability P (M | A,ZM ), relies on structure-specific
conditioning sets. These sets are constructed from the local parent sets PaGs

(·) defined by each DAG,
together with the baseline covariates C. Specifically, we define:

ZY = C ∪ PaGs
(Y ) \ {A,M}, ZM = C ∪ PaGs

(M) \ {A}. (25)

This formulation reflects the assumption that causal relationships are encoded in Gs, and that proper
conditioning on parent sets and covariates is sufficient to block non-causal pathways. The theoretical
justification rests on Pearl’s d-separation criterion and the back-door adjustment principle [47].

Under ignorability Condition 1, which requires A ⊥⊥ M(a′) | C and A ⊥⊥ Y (a′′,m) | C, a
set of variables—denoted C ′—must block all back-door paths from A to M , and from A to Y that
are not mediated through M . These paths must begin with an arrow into A, and blocking them
ensures that the necessary conditional independencies hold in Gs. For Condition 2, which assumes
M ⊥⊥ Y (a,m′) | A = a,C, the relevant conditioning set must block all back-door paths between M
and Y , conditional on A = a. This is achieved by the set C ∪ PaGs

(Y ) \ {A,M} ∪ PaGs
(M) \ {A},

where conditioning on A = a accounts for any paths passing through A as either a collider or a
non-collider.

The central premise is that each sampled DAG Gs is a candidate for the true underlying causal graph
G∗, and that the observed variable set Vobs = {A, Y } ∪M ∪ C satisfies causal sufficiency. When
these conditions hold, and if Gs accurately reflects the structural relationships encoded in G∗, then
using the parent sets PaGs

(·) in conjunction with C provides a principled approach for selecting
conditioning variables based on the d-separation criterion. For instance, if PaGs

(M) includes all
common causes of M and Y that are not affected by A and are not in C, then conditioning on
A,C,PaGs

(M) \ {A} is sufficient to satisfy the M–Y ignorability condition:

M ⊥⊥ Y (a,m′) | A = a, C ∪ PaGs
(M) \ {A}. (26)

However, since each Gs is only a hypothesis, ignorability is not guaranteed unless Gs = G∗ and the
covariate set C is truly sufficient. If either the graph is misspecified or unmeasured confounders are
omitted from both C and the parent sets, the resulting conditioning setC∪PaGs

(·) may be inadequate.
This misalignment can lead to biased nuisance function estimates and consequently biased causal
effect estimates θ̂s(π). While the BMA procedure in SIGMA propagates structural uncertainty by
averaging across sampled DAGs, it does not inherently resolve violations of ignorability that are
present across all candidate structures. Therefore, rigorous selection of covariates C remains essential
for ensuring the validity of effect estimation under structural uncertainty.

A.3.2 Consistency Assumption

The consistency assumption establishes the fundamental link between potential outcomes (defined
under hypothetical interventions) and observed outcomes in the data. It posits that for any individual,
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the observed outcome corresponds precisely to the potential outcome associated with the treatment
and mediator values that the individual actually received.

Formally, for all individuals i, the assumption requires:

Ai = a⇒Mi =Mi(a), and (Ai = a, Mi = m)⇒ Yi = Yi(a,m), (27)

which means that if an individual received treatment a, the observed mediator equals the potential
mediator under a; and if the individual received treatment a and mediator value m, the observed
outcome equals the potential outcome under those values.

These conditions can be restated as follows. For all individuals i, and any treatment level a ∈ A,
if Ai = a, then Mi = Mi(a). This expresses that the observed mediator is what would have been
realized under the assigned treatment. Similarly, for all a ∈ A and all m ∈ M, if Ai = a and
Mi = m, then Yi = Yi(a,m). This implies that the observed outcome reflects the potential outcome
under the observed treatment and mediator values. These requirements must hold for all relevant
treatment levels (e.g., a, a∗ in the definition of NDE and NIE) and all values of m within the support
of M .

Consistency is essential for expressing counterfactual estimands such as E[Y (a,M(a∗))] in terms of
observable quantities. Under this assumption, conditional expectations from the observed distribution
P (Y,A,M,C) can be equated to expectations over potential outcomes. For example, the observed
expectation E[Y | A = a,M = m,C = c] corresponds to E[Y (a,m) | A = a,M = m,C = c],
assuming that ignorability holds for the conditioning set.

In the SIGMA framework, consistency enables the interpretation of structure-specific nuisance
functions as counterfactual components. These include, for each sampled DAG Gs:

E[Y | A,M, PaGs(Y ) \ {A,M}, C], P (M | A,PaGs(M) \ {A}, C), (28)

which are estimated from observational data and treated as valid components of EIF-based iden-
tification strategies (see Section 4.4.1). This directly affects single-DAG effect estimates θ̂s(π)
(Section 4.4.2) and, through Bayesian model averaging, the final estimates θ̂BMA(π).

Violations of consistency occur when the treatment A = a or mediator M = m is ambiguously
defined in the data. For example, if multiple unobserved variants of A = a exist (e.g., “exercise
intervention” encompassing both “light jogging” and “intense weightlifting”), and these variants
have distinct effects on downstream variables, then consistency does not hold, even though the data
records only a single treatment label. The same logic applies if M is coarsely defined.

SIGMA implicitly assumes that treatment A and mediator M are sufficiently well-defined and
measured with adequate granularity such that their causal interpretation is meaningful. Ensuring
consistency is not typically addressed at the algorithmic level, but rather requires careful study design
or strong domain knowledge to define, operationalize, and measure treatments and mediators in a
causally coherent way.

A.3.3 Positivity Assumption

The positivity assumption, sometimes referred to as overlap or the experimental treatment assignment
(ETA) assumption, is essential for the nonparametric or semiparametric identification of causal effects,
including NDE and NIE. It states that, for any combination of observed pre-treatment covariates
C = c, each treatment level A = a and each mediator value M = m must occur with non-zero
probability. This ensures adequate empirical support across all necessary strata, which is required to
estimate causal contrasts without extrapolation.

Let A denote the set of treatment values,M the support of the mediator(s) M , and C the support of
covariates C. The positivity condition for NDE and NIE identification can be stated as:

∀a ∈ A,∀c ∈ C s.t. P (C = c) > 0 : P (A = a | C = c) > ϵA (29)
∀a ∈ A,∀m ∈M,∀c ∈ C s.t. P (A = a,C = c) > 0 : p(M = m | A = a,C = c) > ϵM (30)

where ϵA > 0 and ϵM > 0 are small constants ensuring strict positivity. For continuous mediators, the
density p(M = m | A = a,C = c) must be bounded away from zero over the relevant support of M .
In practical applications, especially when using estimators involving inverse probability weighting
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(e.g., EIF-based estimators), stronger bounds such as ϵA ≤ P (A = a | C = c) ≤ 1− ϵA are often
imposed to ensure numerical stability.

In SIGMA, positivity is required for the estimation of nuisance functions η̂s (Section 4.4.1), such
as the propensity score P (A | PaGs

(A), C) and the conditional mediator distribution P (Mj |
A,PaGs

(Mj) \ {A}, C), for each sampled DAG Gs. When Equation 29 or Equation 30 is violated in
practice—i.e., some combinations of A,M,C occur with near-zero probability—the corresponding
weights in EIFs or related estimators become excessively large. This can lead to inflated variance or
unstable effect estimates θ̂s(π).

For example, if p(M = m | A = a,PaGs(M) \ {A}, C = c) is close to zero in some region of the
covariate space, estimating expectations such as E[Y | A = a,M = m, . . .] requires extrapolation
into areas with limited or no observed data. This weakens the reliability of the learned nuisance
models and introduces instability in the resulting causal effect estimates.

These issues propagate to the final pathway-specific estimates through their effect on the single-DAG
estimators θ̂s(π), and subsequently affect the BMA-aggregated estimates θ̂BMA(π). Although SIGMA
employs flexible nuisance function models (e.g., neural networks), which may tolerate near-violations
better than simpler parametric approaches, such models can still produce biased or high-variance
estimates when positivity is violated. This underscores the importance of verifying covariate support
overlap in practice and ensuring estimation occurs within sufficient empirical support.

Interaction with Other Assumptions. Positivity is intrinsically linked to other core assumptions:

• Ignorability: Ignorability requires adjustment for a sufficient set of confounders C ′ (e.g.,
C∪PaGs

(·)). Positivity ensures that such adjustment is empirically feasible by guaranteeing
that all levels of A (and M ) are present across all strata of C ′. Without Positivity, even if C ′

theoretically suffices for Ignorability, the lack of common support can make the adjustment
ineffective or impossible (Appendix A.3.1).

• Causal Sufficiency: If Causal Sufficiency is violated, the set C may be inadequate. Even
if Positivity holds for the observed C, the inability to adjust for unobserved confounders
means Ignorability may still be violated, leading to biased estimates irrespective of data
overlap on C (Appendix A.1.3).

Practical Diagnostics for Positivity Violations. While SIGMA does not include automated pro-
cedures for testing positivity, several diagnostic practices are recommended to identify potential
violations:

• Examine Propensity Score Distributions: Plot histograms or density plots of estimated
propensity scores P (A = a | adjustment set) for each treatment group. Lack of overlap or
scores concentrated near 0 or 1 indicates potential Positivity issues.

• Assess Covariate Balance: After stratification or weighting by propensity scores (if ap-
plicable to a diagnostic step), check for balance in covariate distributions across treatment
groups using metrics like Standardized Mean Differences (SMDs). Large SMDs (e.g., >
0.1-0.25) can suggest poor overlap.

• Inspect Weight Distributions: For estimators that explicitly use inverse probability weights
(even internally, like some EIFs), examine the distribution of these weights. A few extremely
large weights can dominate the estimate and inflate variance, signaling Positivity problems.

• Check for Sparse Strata: For conditional mediator distributions P (M | A, adjustment set),
particularly with discrete mediators or high-dimensional adjustment sets, tabulate or examine
the number of observations in critical (A,M, adjustment set) strata to identify sparse data
regions.

• Sensitivity Analysis: Evaluate how NDE/NIE estimates change if observations with extreme
propensity scores are trimmed or if the analysis is restricted to regions of better covariate
overlap (e.g., trimming based on propensity score tails).

Addressing severe positivity violations may require restricting the analysis to subpopulations with
sufficient empirical support or applying estimation techniques designed for limited overlap (e.g.,
overlap weights or covariate balancing methods). These approaches can help reduce estimation
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variance but may also introduce new assumptions or trade-offs, such as reduced generalizability or
increased bias.

A.3.4 Single-DAG Effect Estimation via Influence Functions and Plugin Estimators

This appendix details the specific construction of Efficient Influence Functions (EIFs) for estimating
the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE) within the SIGMA framework when
the exposure variable A is binary (taking values 0 or 1) and the path length is 3 (i.e., A→M → Y ).
These EIFs depend on a series of nuisance function estimates obtained through K-Fold cross-fitting
(see Section 4.4.1 in the main text for details). We define the following core nuisance functions,
where the superscript (s) indicates that these functions are estimated for a specific DAG Gs, but will
be omitted in the following for brevity:

π̂(CA) = P̂ (A = 1|CA): The propensity score for exposure A, i.e., the estimate of the conditional
probability of A = 1 given covariates CA (parent nodes of A in Gs). For the mediator M (which can
be continuous, binary, or categorical):

• µ̂M (a,CM ) = Ê[M |A = a,CM ]: When M is continuous or binary, the estimate of
its conditional expectation given A = a and covariates CM (parent nodes of M in Gs,
excluding A).

• f̂M (m|a,CM ) = P̂ (M = m|A = a,CM ): When M is discrete categorical, the estimate
of its conditional probability mass function of taking value m given A = a and CM . For
unified notation, we sometimes still use Ê[g(M)|A = a,CM ] to denote the expectation of
some function g(M) of M , which can be obtained by summing/integrating over f̂M .

µ̂Y (a,m,CY ) = Ê[Y |A = a,M = m,CY ]: The estimate of the conditional expectation of outcome
Y given A = a, M = m, and covariates CY (parent nodes of Y in Gs, excluding A,M ).

Furthermore, we define the plug-in estimator for counterfactual expectations (obtained via G-
computation using the aforementioned nuisance functions and averaged over the sample):

γ̂a′a′′ = Ê[Y (a′,M(a′′))] = 1
n

∑n
i=1

∫
µ̂Y (a

′,m,CY,i)dF̂M (m|a′′, CM,i), where the integral sign
represents summation over all possible values of the mediator M (discrete M ) or integration
(continuous M ), and dF̂M (m|a′′, CM,i) represents the estimated conditional distribution based
on µ̂M (a′′, CM,i) or f̂M (m|a′′, CM,i).

NDE and NIE can be expressed as differences of these counterfactual expectations:

• NDE = E[Y (1,M(0))]− E[Y (0,M(0))] = γ10 − γ00
• NIE = E[Y (1,M(1))]− E[Y (1,M(0))] = γ11 − γ10

Therefore, the influence functions for NDE and NIE are linear combinations of the influence functions
of their constituent counterfactual expectation terms. We present the influence function ψγa′a′′ (Zi)
for E[Y (a′,M(a′′))] (i.e., γa′a′′ ). For observed data Zi = (Ai,Mi, Yi, CA,i, CM,i, CY,i), the typical
form of ψγa′a′′ (Zi) is as follows:

ψγa′a′′ (Zi; η̂s) =
I(Ai = a′)

P̂ (Ai = a′|CA,i)

f̂M (Mi|a′′, CM,i)

f̂M (Mi|a′, CM,i)
(Yi − µ̂Y (a

′,Mi, CY,i))

+
I(Ai = a′′)

P̂ (Ai = a′′|CA,i)

(
µ̂Y (a

′,Mi, CY,i)−
∫
µ̂Y (a

′,m,CY,i)dF̂M (m|a′′, CM,i)

)
+

(∫
µ̂Y (a

′,m,CY,i)dF̂M (m|a′′, CM,i)− γ̂a′a′′

)
. (31)

Here, P̂ (Ai = a′|CA,i) is π̂(CA,i) when a′ = 1, and 1 − π̂(CA,i) when a′ = 0. When M is
continuous, f̂M (m|a,CM ) is the conditional probability density function; when M is discrete, it is
the conditional probability mass function. If the mediator model directly estimates the conditional
expectation µ̂M (a,CM ) (e.g., M is binary or continuous, and some terms in the EIF are simplified
for linearity in M ), then the parts of the formula involving f̂M are adjusted accordingly. For example,
when M is binary (0, 1), f̂M (Mi|a,CM,i) = µ̂M (a,CM,i)

Mi(1− µ̂M (a,CM,i))
1−Mi .
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Based on Equation (31), the influence functions for NDE and NIE are respectively:

ψNDE(Zi; η̂s) = ψγ10
(Zi; η̂s)− ψγ00

(Zi; η̂s) (32)
ψNIE(Zi; η̂s) = ψγ11

(Zi; η̂s)− ψγ10
(Zi; η̂s) (33)

In its implementation, the SIGMA framework computes the ψNDE(Zi) and ψNIE(Zi) scores for
each sample according to the above structure, using nuisance function estimates η̂s obtained via
cross-fitting.

A.3.5 Definition and Analysis of the Influence Function for Continuous Exposure in SIGMA

For mediation paths of length L(π) = 3 (i.e., A → M → Y ) involving a continuous exposure
variable A, the SIGMA framework defines and utilizes the influence function described herein to
estimate the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE). This section details the
mathematical construction of this influence function and the nuisance components it relies upon.

Nuisance Function Components for the AIF

The construction of this influence function is predicated on several key nuisance function components,
estimated via K-Fold cross-fitting (as detailed in Section 4.4.1) for each (path π, DAG Gs) pair. Let
Zi = (Ai,Mi, Yi, CA,i, CM,i, CY,i) denote the data for the i-th observation, where CX,i represents
the values of the parent set (covariates) of variable X under Gs for sample i.

Conditional Expectation Model Predictions for Exposure A: The cross-fitted prediction for the
conditional expectation ofA given its covariatesCA,i, obtained from a regression model (a multi-layer
perceptron in SIGMA), is denoted as:

µ̂A(CA,i) ≡ Ê[Ai|CA,i].

Global Estimate of Conditional Residual Variance of Exposure A: SIGMA assumes homoscedas-
ticity for V ar(Ai|CA,i), positing V ar(Ai|CA,i) = σ2

A|CA,res for all i. This global residual variance,
denoted σ̂2

A|CA,res, is obtained by pooling the cross-fitted residuals ei = Ai − µ̂A(CA,i) from all
samples and calculating their sample variance (defined as 1

n

∑n
j=1(ej − ē)2 or 1

n−1

∑n
j=1(ej − ē)2,

corresponding to the specific implementation).

Conditional Expectation Model Predictions for Outcome Y under Intervention on A with
Observed M,CY : For a given intervention level a on A (e.g., µ̃A or µ̃A + kσ̃A as defined in the
main text), the cross-fitted prediction of the conditional expectation Ê[Yi|Ai = a,M obs

i , CY,i] is
denoted as:

µ̂
(i)
Y |A=a,Mobs,CY

.

Individualized Plugin Predictions and Sample Means of Target Counterfactual Expectations:
For any counterfactual expectation composing NDE and NIE, such as E[Y (a′,M(a′′))] (denoted
γa′a′′ ):

The plugin prediction of the counterfactual outcome Yi(a′,Mi(a
′′)) for sample i is denoted as γ̂a′a′′,i.

This prediction is obtained via G-computation, recursively combining the nuisance functions (1)-
(3) above and outputs from the mediator modelMM |A,CM

(i.e., Ê[M |A = a′′, CM ] or P̂ (M =
m|A = a′′, CM )).And the sample mean of these individualized plugin predictions is denoted as
γ̂a′a′′ = 1

n

∑
j γ̂a′a′′,j .

Here, (a′, a′′) represent specific exposure intervention level combinations required for defining NDE
or NIE.

Mathematical Definition of the Influence Function

Within SIGMA, the influence function score ψγaa∗ (Zi) for estimating a target counterfactual ex-
pectation (e.g., γaa∗ = E[Y (a,M(a∗))) is defined as (corresponding to Equation (6) in the main
text):

ψγaa∗ (Zi; η̂s) =
Ai − µ̂A(CA,i)

σ̂2
A|CA,res

(
µ̂
(i)
Y |A=a,Mobs,CY

− γ̂aa∗

)
+ (γ̂aa∗,i − γ̂aa∗) . (34)
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This influence function comprises two main parts:

textbfFirst Part (Exposure Model Correction Term): Ai−µ̂A(CA,i)

σ̂2
A|CA,res

(
µ̂
(i)
Y |A=a,Mobs,CY

− γ̂aa∗

)
. The

term Ai−µ̂A(CA,i)

σ̂2
A|CA,res

is the score function of the log-conditional likelihood of A|CA with respect

to its mean parameter µ̂A(CA,i), under the assumption that A|CA follows a Normal distribution
N(µ̂A(CA,i), σ̂

2
A|CA,res). This score function is multiplied by a term related to the outcome model,

(µ̂
(i)
Y |A=a,Mobs,CY

− γ̂aa∗), which reflects the deviation of the conditional outcome expectation (under
intervened A = a, observed M,CY ) from the mean target counterfactual expectation.

Second Part (Centered Plugin Term): (γ̂aa∗,i − γ̂aa∗). This term is the centralization of the
individualized plugin estimate γ̂aa∗,i of the target parameter with respect to its sample mean γ̂aa∗ .

The overall influence functions for NDE and NIE are then derived from linear combinations of these
influence function scores for their constituent counterfactual expectations (i.e., γ10, γ00, γ11, where
the numerals 0 and 1 represent the reference level a∗ and target level a, respectively), according to
the definitions of NDE and NIE (NDE = γ10 − γ00, NIE = γ11 − γ10). Specifically:

ψNDE(Zi; η̂s) = ψγ10
(Zi; η̂s)− ψγ00

(Zi; η̂s) (35)
ψNIE(Zi; η̂s) = ψγ11

(Zi; η̂s)− ψγ10
(Zi; η̂s) (36)

In these combinations, each ψγa′a′′ (Zi; η̂s) term on the right-hand side adopts the structure of Equa-
tion (34), utilizing the specific nuisance function components corresponding to its target counterfactual
expectation (γ10, γ00, or γ11).

Construction Rationale and Discussion

The influence function for continuous exposure defined within the SIGMA framework (Equation (34))
is motivated by the goal of providing an estimation method that offers first-order bias correction
over simple plugin estimators while maintaining computational tractability. Its structure incorporates
elements common in influence function theory, such as leveraging score function information from
the exposure model and centering plugin estimates.

The definition of this influence function does not explicitly include direct correction terms related
to the mediator model P (M |A,CM ) beyond its implicit role in the G-computation of γ̂aa∗,i. In
semiparametric theory, fully efficient influence functions for mediation effects often contain more
complex terms explicitly dependent on the parameters or score functions of the mediator model(s) to
ensure properties like double robustness against misspecification of either the outcome or mediator
models. The influence function employed by SIGMA, while incorporating corrections related to
the exposure model and centering the outcome predictions, may differ in its statistical properties,
particularly double robustness and semiparametric efficiency, compared to such fully specified EIFs.
Its performance is thus more reliant on the accurate estimation of all nuisance models, especially the
conditional mean of the exposure µ̂A(CA) and the conditional expectations related to the outcome
µ̂Y |A=a,Mobs,CY

. The adoption of a global homoscedastic approximation for the conditional variance
of the exposure, σ̂2

A|CA,res, is a choice made for implementational simplicity.

Despite these specific implementational choices, by incorporating corrections related to the exposure
model, this influence function is expected to offer more robust performance in finite samples compared
to uncorrected plugin estimators, particularly when the exposure model is well-estimated. A detailed
theoretical analysis of this influence function under various data-generating mechanisms and an
in-depth study of its finite-sample behavior constitute important directions for future research.

B VAE-based Imputation Module

To address missing data, SG-RMA incorporates a Variational Autoencoder (VAE) specifically adapted
for imputing mixed-type tabular data. Formally, we consider the raw data matrix X ∈ RN×P , which
may contain missing entries, along with a binary mask matrix M ∈ {0, 1}N×P indicating observed
(Mij = 0) or missing (Mij = 1) values.

Data Preprocessing. Raw features are preprocessed according to their data types: continuous
variables undergo standardization, whereas categorical variables are transformed via one-hot encoding,
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expanding the feature dimensionality from P to P ′. The resulting processed dataset is denoted as
X ′ ∈ RN×P ′

. Missing entries within X ′ are initially filled with zeros to facilitate VAE training, and
the corresponding mask M is concatenated to guide the imputation process explicitly.

VAE Model Specification. The VAE consists of an encoder network qϕ(z|X ′,M) and a decoder
network pθ(X ′|z). Given an input vector (X ′

i,Mi), the encoder produces parameters of a Gaussian
posterior distribution in the latent space: mean vector µzi and variance vector σ2

zi . The latent
representation zi is then sampled via the reparameterization trick zi = µzi + σzi ⊙ ϵ, where
ϵ ∼ N (0, I). The decoder reconstructs data from latent representations, employing distinct output
layers for each original feature type: linear layers for continuous features, logistic sigmoid activation
for binary features, and softmax logits for categorical features.

The VAE optimization objective maximizes the evidence lower bound (ELBO), defined explicitly for
observed entries as:

LVAE(ϕ, θ;x
′
i,mi) = Eqϕ(zi|x′

i,mi)[log pθ(x
′
i,obs|zi)]− βDKL(qϕ(zi|x′i,mi) || p(z)), (37)

where x′i,obs denotes the observed elements of x′i. The reconstruction likelihood log pθ(x
′
i,obs|zi)

aggregates squared errors for continuous features, binary cross-entropy losses for binary features,
and categorical cross-entropy losses for categorical features. The prior distribution p(z) is standard
normal, and β is a hyperparameter balancing reconstruction quality and latent regularization. Training
employs the AdamW optimizer, adaptive learning rate schedules, and early stopping criteria based on
validation performance.

Imputation Procedure. After model training, missing data imputation proceeds as follows: For
each sample i, the trained encoder maps the filled input (X ′

filled,i,Mi) to the posterior mean latent
representation µzi . Passing this latent vector through the decoder yields reconstructed outputs x̂′i.
Reconstruction outputs are then transformed back into the original data space, applying inverse
scaling to continuous variables, thresholding via logistic sigmoid for binary variables, and category
assignment via argmax operation for categorical variables. Finally, missing entries within the original
dataset X are replaced by their respective reconstructions, while observed values remain unchanged.
The imputation procedure is summarized in Algorithm 1.

B.1 Path Stability Score: Theoretical Properties

B.1.1 PSS as Posterior Probability Estimator

Section 4.3 of the main text introduces the Path Stability Score (PSS(π)) as a measure to quantify
the evidential support for a mediation pathway π. It is defined as PSS(π) = 1

Nvalid

∑Nvalid
s=1 I(π ⊆ Gs),

where {Gs}Nvalid
s=1 is an ensemble of Nvalid valid Directed Acyclic Graphs (DAGs) sampled based on

the output of the Flow-SEM stage (Section 4.2.3). This section provides a rigorous justification for
the interpretation of PSS(π) as a Monte Carlo estimate of P (π ⊆ G|D), the posterior probability
that path π is present in a DAG G sampled from the (approximate) posterior distribution over graph
structures learned by SIGMA given data D.

Let P (G|D) denote this SIGMA-approximated posterior distribution over the space of DAGs G,
derived from the Flow-SEM model and the subsequent DAG sampling mechanism described in
Section 4.2.3. The ensemble {Gs}Nvalid

s=1 consists of Nvalid valid DAGs treated as independent and
identically distributed (i.i.d.) samples from P (G|D).

Consider a specific path π. We define an indicator random variable Xπ(G) = I(π ⊆ G), which
equals 1 if path π is a subgraph of G, and 0 otherwise. The posterior probability of path π under
P (G|D) is the expectation of this indicator variable:

P (π ⊆ G|D) ≡ EG∼P (G|D)[Xπ(G)]. (38)

The Path Stability Score, PSS(π) = 1
Nvalid

∑Nvalid
s=1 Xπ(Gs), is the sample mean of Xπ(G) based on

these Nvalid i.i.d. samples.
Theorem 1 (Statistical Properties of PSS). The Path Stability Score PSS(π) is:

1. An unbiased estimator of P (π ⊆ G|D), i.e., E[PSS(π)] = P (π ⊆ G|D).
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Algorithm 1 VAE-based Missing Value Imputation for Mixed-Type Data

Require: Trained VAE (encoder qϕ, decoder pθ), Dataset X ∈ RN×P with missing values, Feature
types {Tj}Pj=1 where Tj ∈ {continuous, binary, categorical}, Preprocessing parameters (scaling
factors {µj , σj} for continuous features, one-hot encoders for categorical features).

Ensure: Fully imputed dataset Ximputed ∈ RN×P .
1: M ← CreateMissingMask(X)
2: X ′

raw ← PreprocessFeatures(X, {Tj})
3: X ′

filled ← X ′
raw; Fill missing entries in X ′

filled (identified by M ) with 0
4: Ximputed ← X
5: for i = 1 to N in batches do
6: (µzi , log σ

2
zi)← Encoderϕ((X ′

filled)i,Mi)
7: zi ← µzi

8: X̂ ′
i ← Decoderθ(zi)

9: Initialize X̂i ∈ RP

10: for j = 1 to P do
11: if Tj = continuous then
12: X̂ij ← X̂ ′

ij · σj + µj

13: else if Tj = binary then
14: X̂ij ← 1[sigmoid(X̂ ′

ij) > 0.5]
15: else if Tj = categorical with Kj categories then
16: Let {X̂ ′

i,jk
}Kj

k=1 be the logits for all categories of feature j
17: X̂ij ← argmaxk∈{1,...,Kj} softmax({X̂ ′

i,jk
})k

18: end if
19: if Mij = 1 then
20: (Ximputed)ij ← X̂ij

21: end if
22: end for
23: end for
24: if HasRemainingMissing(Ximputed) then
25: warning "Imputation resulted in remaining NaNs."
26: end if
27: return Ximputed

2. A consistent estimator of P (π ⊆ G|D), i.e., PSS(π)
p−→ P (π ⊆ G|D) as Nvalid →∞.

Proof. (1) Unbiasedness: Let {Gs}Nvalid
s=1 be the set of Nvalid valid DAGs sampled i.i.d. from P (G|D).

E[PSS(π)] = E

[
1

Nvalid

Nvalid∑
s=1

Xπ(Gs)

]

=
1

Nvalid

Nvalid∑
s=1

E[Xπ(Gs)] (by linearity of expectation).

Since each Gs ∼ P (G|D) (i.i.d.), E[Xπ(Gs)] = EG∼P (G|D)[Xπ(G)] = P (π ⊆ G|D). Thus,

E[PSS(π)] =
1

Nvalid

Nvalid∑
s=1

P (π ⊆ G|D) = P (π ⊆ G|D).

(2) Consistency: The variables Xπ(Gs) are i.i.d. Bernoulli random variables with mean p = P (π ⊆
G|D) and finite variance p(1− p). By the Weak Law of Large Numbers (and Strong Law for almost
sure convergence), their sample mean PSS(π) converges in probability to p as Nvalid →∞.

Therefore, PSS(π) provides a statistically sound Monte Carlo approximation of the posterior proba-
bility of path π under the posterior distribution P (G|D) approximated by SIGMA. The accuracy of

33



this approximation depends on two primary factors: (i) the quality of P (G|D) as determined by the
Flow-SEM and the DAG sampling mechanism, and (ii) the number of valid DAGs Nvalid.

B.1.2 Asymptotic Properties of PSS: Convergence Analysis with Increasing Sample Size

Theorem 1 establishes that the Path Stability Score, PSS(π), serves as an unbiased and consistent
estimator for pπ ≡ P (π ⊆ G|D). The consistency, derived from the Law of Large Numbers, ensures
that with a sufficiently large ensemble of Nvalid valid DAGs, PSS(π) converges to pπ. This section
further elaborates on the asymptotic properties of PSS(π) as Nvalid increases, particularly its rate of
convergence and distributional characteristics, which are fundamental for understanding its reliability
and for guiding the choice of Nvalid.

Asymptotic Normality via the Central Limit Theorem (CLT). Since PSS(π) is a sample mean
of Nvalid independent and identically distributed (i.i.d.) Bernoulli random variables Xπ(Gs) = I(π ⊆
Gs) (each with mean pπ and finite variance pπ(1− pπ)), the Central Limit Theorem (CLT) applies.
The CLT states that for a sufficiently large Nvalid:√

Nvalid(PSS(π)− pπ)
d−→ N (0, pπ(1− pπ)), (39)

where d−→ denotes convergence in distribution. Equivalently, for large Nvalid, PSS(π) itself is approxi-
mately normally distributed:

PSS(π) ∼approx N
(
pπ,

pπ(1− pπ)
Nvalid

)
. (40)

Variance Analysis and Rate of Convergence. The exact variance of the PSS(π) estimator is:

Var(PSS(π)) =
pπ(1− pπ)
Nvalid

. (41)

This shows that the variance is inversely proportional to Nvalid. The standard error of PSS(π) is
thus SE(PSS(π)) =

√
pπ(1− pπ)/Nvalid, decreasing at a rate of O(1/

√
Nvalid). This implies that

to halve the standard error, Nvalid must be quadrupled. The variance is maximized when pπ = 0.5,
indicating that more samples are needed for precise estimation when the true path probability is near
0.5.

Confidence Interval Construction and Practical Considerations for Nvalid. The asymptotic
normality (Equation 40) allows for the construction of approximate Wald-type confidence intervals
for pπ:

PSS(π)± z1−α/2

√
PSS(π)(1− PSS(π))

Nvalid
, (42)

where z1−α/2 is the (1− α/2)-quantile of the standard normal distribution, and PSS(π) is used to
estimate pπ in the standard error term. This interval provides a range of plausible values for the true
posterior probability pπ . The reliability of this interval and the PSS estimate itself depends on Nvalid.
For probabilities pπ very close to 0 or 1, fewer samples may suffice for a given precision.

Connection to Bayesian Model Averaging (BMA). The statistical properties of PSS, particularly
its interpretation as a posterior probability estimate, directly support the subsequent Bayesian Model
Averaging (BMA) stage of SIGMA (Section 4.4.3). By using a threshold τ on PSS(π) to identify
stable paths, SIGMA focuses computational resources on pathways with substantial evidential support
under P (G|D). The ensemble {Gs}Nvalid

s=1 used to compute PSS is the same basis for BMA, ensuring
a coherent propagation of structural uncertainty. For a stable path π, the BMA estimate θ̂BMA(π) and
its variance V̂ (θ̂BMA(π)) represent the model-averaged effect and its associated uncertainty. This
averaging is performed over the plausible graph structures within the ensemble that support path π,
effectively integrating over the structural uncertainty concerning these specific pathways as captured
by P (G|D).

34



B.2 Discussion on path stability score threshold

The Path Stability Score (PSS) is defined as the frequency of path π in the posterior DAG sample set:

PSS(π) =
1

N

N∑
s=1

I(π ⊆ Gs),

where π represents the candidate mediational path, Gs is the s-th DAG sample drawn from the
structural posterior distribution, N is the total number of DAG samples, and I(·) is the indicator
function. Given a threshold τ ∈ [0, 1] for the path stability score, we define the stable path set as:

Πstable(τ) = {π : PSS(π) ≥ τ}.

The selection of threshold τ directly determines the size and composition of Πstable, thereby further
influencing the Bayesian Model Averaging (BMA) estimate of path-specific effects:

θ̂BMA(π|τ) =
1

|Gπ(τ)|
∑

Gs∈Gπ(τ)

θ̂s(π),

where Gπ(τ) = {Gs : π ⊆ Gs,PSS(π) ≥ τ} represents the subset of DAGs containing path π given
threshold τ , and θ̂s(π) is the mediation effect estimated based on the DAG sample Gs.

A smaller value of τ may lead to the inclusion of more low-frequency paths, increasing the risk
of false path discoveries (false positives); a larger value of τ may exclude paths with real effects
but weaker statistical support (increasing false negatives). Therefore, in practice, the recommended
strategy is to select a moderate intermediate value (e.g., τ = 0.15), and then make fine adjustments
based on the specific characteristics of the data and prior knowledge in the relevant domain. We
explicitly adopted this strategy in the numerical experiments and practical algorithm implementation
in this paper, and observed that this approach can achieve a reasonable balance between robustness
and sensitivity in path selection.

C Related Work

Causal Structure Learning. Differentiable neural approaches have advanced causal DAG discovery
by casting it as continuous optimization. Zheng et al. (2018) introduced the seminal NOTEARS [75]
method, which enforces an analytic acyclicity constraint to learn DAGs via standard gradient-based
solvers. This breakthrough spurred many extensions to capture nonlinear relations and improve
scalability. For example, GraN-DAG [20] extended NOTEARS to nonlinear settings by using
feedforward networks to model causal mechanisms, and DAG-GNN [72] embedded a variational
autoencoder with a graph neural network to learn DAG structures from data. Subsequent works
proposed alternative differentiable formulations of the acyclicity constraint for stability and speed.
ENCO [37] optimizes independent edge likelihoods without explicit acyclicity constraints, while
Nazaret et al. introduce a spectral constraint in a Stable DCD [44] approach to improve numerical
stability and scale causal discovery to thousands of variables .

Reinforcement learning (RL) has also been applied to structure learning – e.g., Zhu and Chen [78]
use an RL agent to sequentially build the DAG, avoiding expensive combinatorial searches. Beyond
point estimation of a single graph, recent variational methods estimate a distribution over plausible
DAGs. For instance, BCD-Nets [16] perform Bayesian causal discovery via variational inference,
yielding a posterior over DAG structures and quantifying uncertainty. Similarly, Differentiable Causal
Discovery with Interventions (DCDI) [12] integrates normalizing flows to model complex causal
mechanisms under interventions.

Mediation Analysis. Deep learning has also been applied to mediation analysis to estimate path-
specific effects (natural direct and indirect effects) in complex settings. DeepMed [68] is a recent
example that uses deep neural networks to flexibly estimate the necessary nuisance functions in the
efficient influence function for mediation, achieving semiparametric-optimal estimation of direct
and indirect effects. By cross-fitting DNNs for propensity and outcome models, DeepMed debiases
mediator and outcome predictions and attains the efficiency bound without restrictive model assump-
tions. Other works leverage deep latent-variable models to handle mediators and hidden confounding.
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CMA-VAE [13] introduced a variational autoencoder for causal mediation that accounts for latent con-
founders, enabling estimation of natural direct and indirect effects even with unobserved confounders.
Building on this, Disentangled Mediation Analysis VAE (DMAVAE) [69] separates latent factors
into mediating, confounding, and irrelevant components. This disentanglement allows DMAVAE to
consistently estimate direct and indirect effects under weaker assumptions than traditional sequential
ignorability, significantly improving mediation effect estimation in the presence of multiple types of
latent confounders.

In parallel, deep models have been used for path-specific effect estimation in high-dimensional
settings like text and fairness. CausalBERT [66] fine-tunes transformer language models to learn
low-dimensional text embeddings that retain information needed for causal adjustment. This approach
enables estimation of causal effects from text (e.g., the effect of a review’s content on outcomes) by
adjusting for textual confounders within the embedding space. Similarly, in algorithmic fairness,
researchers have examined path-specific effects via deep nets to detect mediated discrimination.
For example, Chiappa [14] studies counterfactual fairness by removing information about protected
attributes along certain causal paths, and Nabi & Shpitser [43] develop methods to identify path-
specific effects under mediation and confounding. These efforts underscore a growing theme:
integrating deep representation learning with causal mediation analysis to uncover nuanced causal
pathways (e.g., via stability analysis or regularization to select stable mediators) in complex, high-
dimensional data.

Deep Treatment Effect Estimation. Estimating individualized treatment effects (ITEs) or hetero-
geneous causal effects has benefited greatly from deep learning, particularly through representation
learning and efficient influence function (EIF) techniques. A landmark work by Johansson et al. [31]
introduced learning balanced representations for treatment and control groups to improve ITE gener-
alization. This approach, extended by Shalit et al. [56] with integral probability metric regularization,
underlies methods like TARNet/CFR that reduce selection bias by aligning latent representations
across treatment groups. Subsequent methods added adversarial objectives to enforce balance: Yao et
al. [70] propose a SITE approach that preserves local similarity while using adversarial training to
minimize covariate distribution differences, and GANITE [71] directly employs GANs to generate
counterfactual outcomes for ITE estimation.

Another line of work incorporates semiparametric theory to improve estimation efficiency and
robustness. DragonNet [57] is a neural architecture that adapts the network training to target the
efficient influence function of the average treatment effect. By jointly learning the outcome and
propensity predictor with a targeted regularization term, DragonNet yields doubly-robust estimates
that empirically outperform earlier architectures. In a related vein, CEVAE [38] uses deep variational
inference to handle unobserved confounders, learning a latent variable model that estimates treatment
effects under a causal graphical model assumption. Extensions of CEVAE have further improved
disentanglement; for instance, TEDVAE [73] factorizes latent confounders into multiple parts to
better separate causal effects.

To inject inductive biases about potential outcomes, FlexTENet [17] adaptively learns what represen-
tations to share between the treated and control outcome functions, reflecting the assumption that
many predictive factors are common between potential outcomes. Beyond standard observational
studies, deep models have tackled more complex causal inference tasks: DeepIV [25] uses deep
nets for instrumental variable regression to estimate counterfactual predictions in the presence of
hidden confounding, and other works address time-series and panel data with recurrent networks for
sequential treatment effects [5].

Causal Inference under Structural Uncertainty A distinguishing challenge for methods like
SIGMA is causal inference under structural uncertainty, where the true causal graph is unknown
or ambiguous. Recent research has begun to explicitly account for this uncertainty using Bayesian
deep learning, model averaging, and ensembles of causal models. One approach is to perform
Bayesian model averaging (BMA) over DAGs: rather than committing to a single estimated graph,
one can weight effect estimates by each graph’s posterior probability. Cundy et al. [16] implement
this via their variational BCD-Nets, which output a distribution over possible DAG structures. By
sampling DAGs from the learned posterior, BCD-Nets can compute expectation of causal effects
across many graph realizations, inherently providing credible intervals for effects. DECI [22], a deep
end-to-end causal inference framework, uses normalizing flows within a variational Bayesian scheme.
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DECI simultaneously learns a DAG posterior and estimates causal quantities, essentially performing
causal discovery and inference in one unified model.

Furthermore, techniques like stability selection have been adapted to causal structure learning to
identify consensus edges under data perturbations, thereby informing model averaging strategies
(e.g., selecting only edges that consistently appear across high-scoring DAGs) [44]. Such ideas
align with the stability analysis component of SIGMA, which seeks robust mediation pathways by
exploring variations in the learned structure. Overall, the literature suggests that accounting for
structural uncertainty – through Bayesian posterior averaging, DAG ensembles, or stability-based
model selection – can substantially improve the reliability of causal effect estimates in complex
models. SIGMA builds on these insights by integrating BMA of mediation pathways with EIF-based
effect estimation, ensuring that uncertainty in the causal graph is properly propagated into uncertainty
in estimated direct and indirect effects.

D Human Phenotype Project Dataset

D.1 Description of HPP Cohort

The Human Phenotype Project (HPP) is a deeply phenotyped, longitudinal cohort study conducted in
Israel, designed to investigate the interplay between various physiological systems and environmental
exposures. The present study analyzed data collected from 6,748 participants aged 40–75 years
between January 2019 and December 2022. All participants provided written informed consent, and
the study protocol was approved by the institutional review board of the Weizmann Institute of Science
(IRB no. 1719-1). Participants underwent comprehensive profiling, including clinical, physiological,
behavioral, and multi-omics assessments, which were categorized into 17 body systems [34], one
of which focused on sleep. Sleep characteristics were derived from home sleep apnea testing
(HSAT) using the WatchPAT 300 device (ZOLL Itamar), with each participant completing up to two
monitoring series, each comprising three nights of testing over a two-week period. A total of 16,812
nights of valid HSAT recordings from 6,366 individuals (47.8% male, 52.2% female; mean age 52.4
± 7.7 years; mean BMI 26.1 ± 4.1 kg/m2) were included in the final analysis.

The cohort primarily consisted of healthy, educated individuals of European (Ashkenazi) Jewish
ancestry residing in a relatively homogenous environmental context. Exclusion criteria included
severe medical conditions at enrollment. Participants were scheduled for biennial follow-up assess-
ments over a 25-year period. This extensive data resource enables a high-resolution investigation of
associations between sleep and systemic health.

D.2 Body System-Derived Features

We utilize data from 11 body systems, comprising over 500 raw clinical and physiological attributes.
To facilitate tractable and clinically meaningful mediation analysis, we derived a set of 62 aggregated
features by domain-informed grouping of related variables across systems. These features are con-
structed to capture coherent physiological constructs suitable for pathway-level causal interpretation.
Please see Table 3 for the detailed description of our aggregated features.

Sleep Characteristic Sleep characteristics were captured using the WatchPAT 300 home sleep mon-
itoring device across up to three nights per participant. A total of 448 features were extracted, compris-
ing two main subgroups: 100 sleep test measurements and 348 pulse rate variability (PRV) features.
Sleep test features included metrics related to respiratory events (e.g., peripheral apnea–hypopnea
index [pAHI]), oxygen desaturation (e.g., mean SpO2 nadir, time below 90% saturation), snoring
intensity, sleep stage distribution (light, deep, REM), sleep efficiency, and body position during sleep.
PRV features were derived from the peripheral arterial tonometry signal using the NeuroKit2 li-
brary [42], spanning time- and frequency-domain indices, entropy, and nonlinear dynamics, computed
across REM, NREM, wake, and full-night segments.

Metabolic Pathways Metabolic pathway features were derived from metagenomic profiling of the
gut microbiome using the HUMAnN3 [4] functional annotation pipeline. Relative abundances of
microbial metabolic pathways were quantified based on high-throughput sequencing data, followed
by taxonomic and functional mapping against a curated reference database. Only pathways present in
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Table 3: Summary of physiological systems, features and medical explanations
No. System Features (V0 → V61) Medical Explanation

1 Body Fat Composition

body fat percentage high values are linked to obesity and metabolic risk
ag fat ratio Reflects android-to-gynoid fat distribution; a higher ratio suggests central obesity and cardiovascular

risk
visceral fat volume Quantifies visceral fat volume around organs; associated with insulin resistance and inflammation.
appendicular lean mass Measures limb muscle mass; a key indicator for sarcopenia and frailty.

2 OSA-Related Phenotypes
osa severity Indicates severity of obstructive sleep apnea (OSA); high levels suggest moderate to severe OSA.
snoring severity Key indicator of OSA severity, based on snoring loudness and frequency.
snoring ratio Proportion of snoring time during total sleep time; linked to OSA risk.

3 Sleep Structure Quality

sleep duration Total sleep length; short duration is associated with various disorders.
sleep efficiency Ratio of actual sleep time to time in bed; reflects sleep maintenance quality.
sleep continuity Measures fragmentation; lower continuity indicates more fragmented sleep.
restorative sleep ratio Ratio of restorative sleep stages to total sleep; reflects sleep quality.

4 Sleep HRV

night mean HR Average nighttime heart rate; reflects autonomic balance.
hrv index HRV index during sleep; lower HRV linked to stress and metabolic issues.
hrv stage variation HRV variability across sleep stages; reflects sleep structure quality.
hrv wake delta HRV difference between sleep and wake; indicates recovery capacity.

5 Nocturnal Hypoxia Burden
oxygen desaturation Measures oxygen drop severity during sleep; indicates hypoxia level.
oxygen burden Cumulative oxygen burden from all events; reflects physiological load.

6 Blood Pressure Lying
lying diastolic pressure Diastolic blood pressure measured while lying.
lying pulse rate Pulse rate measured while lying.
lying systolic pressure Systolic blood pressure measured while lying.

7 Blood Pressure Sitting
sitting diastolic pressure Diastolic blood pressure measured while sitting.
sitting pulse rate Pulse rate measured while sitting.
sitting systolic pressure Systolic blood pressure measured while sitting.

8 Blood Pressure Standing

standing 1min diastolic pressure Diastolic blood pressure measured after standing for 1 minute.
standing 1min pulse rate Pulse rate measured after standing for 1 minute.
standing 1min systolic pressure Systolic blood pressure measured after standing for 1 minute.
standing 3min diastolic pressure Diastolic blood pressure measured after standing for 3 minutes.
standing 3min pulse rate Pulse rate measured after standing for 3 minutes.
standing 3min systolic pressure Systolic blood pressure measured after standing for 3 minutes.

9 Blood Pressure Resting
resting systolic pressure Systolic blood pressure at rest.
resting diastolic pressure Diastolic blood pressure at rest.
resting pulse rate Pulse rate at rest.

10 Blood Pressure Orthostatic

orthostatic SBP drop 1min Drop in systolic blood pressure 1 minute after standing.
orthostatic DBP change 1min Change in diastolic blood pressure 1 minute after standing.
orthostatic SBP drop 3min Drop in systolic blood pressure 3 minutes after standing.
orthostatic DBP change 3min Change in diastolic blood pressure 3 minutes after standing.

11 Blood Pressure Pulse
pulse rate increase 1min Increase in pulse rate 1 minute after standing.
pulse rate increase 3min Increase in pulse rate 3 minutes after standing.

12 Vascular Health
ABI min Ankle-brachial index; values <0.9 suggest peripheral artery disease.
PWV mean Pulse wave velocity; indicates arterial stiffness and cardiovascular risk.
SBP max Maximum systolic blood pressure; indicates peak arterial load.

13 Carotid Ultrasound IMT

imt left Intima-media thickness (IMT) of left carotid artery.
imt right Intima-media thickness (IMT) of right carotid artery.
imt window width left Window width of IMT measurement on the left side.
imt window width right Window width of IMT measurement on the right side.
imt fit left IMT fit value on the left side.
imt fit right IMT fit value on the right side.
mean cimt Average carotid IMT across measured regions.
max cimt Maximum carotid IMT observed.
abnormal cimt Indicates presence of abnormal IMT exceeding clinical thresholds.

14 Carotid Ultrasound Plaque
plaque presence by fit Indicates presence of plaque based on IMT fit criteria.
plaque presence by thickness Indicates presence of plaque based on IMT thickness threshold.

15 Gut Microbiome Abundance

butyrate producers abundance Abundance of butyrate-producing bacteria; linked to anti-inflammatory effects and gut barrier integrity.
propionate producers abundance Propionate-producing bacteria; involved in appetite regulation and metabolism.
probiotic fermenters abundance Probiotic fermenting bacteria; produce lactic acid and other beneficial metabolites.
vitamin producers abundance Bacteria capable of synthesizing vitamins such as B vitamins.
akkermansia abundance Abundance of *Akkermansia*, associated with metabolic health.
LPS producers abundance Bacteria producing lipopolysaccharides (LPS); may promote inflammation.
sulfate reducers abundance Sulfate-reducing bacteria; potentially harmful.
TMA producers abundance Bacteria producing TMA (precursor of TMAO); linked to cardiovascular disease.
proteolytic bacteria abundance Bacteria that degrade proteins; involved in production of toxic metabolites.
shannon diversity index Shannon index; measures richness and evenness of gut microbes — a key marker of gut health.

at least 5% of participants were retained for analysis, and abundance values were log10-transformed to
stabilize variance. These pathways represent a functional summary of microbial activity, covering key
domains such as amino acid biosynthesis, vitamin and cofactor metabolism, carbohydrate degradation,
and short-chain fatty acid production. They were used to probe host–microbiome interactions relevant
to systemic metabolic health and potential associations with sleep-disordered breathing phenotypes.

Cardiovascular System Cardiovascular features encompassed a comprehensive set of hemody-
namic and structural measurements obtained through non-invasive techniques. Peripheral and central
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blood pressures were measured in sitting, supine, and standing positions. Arterial stiffness was evalu-
ated using pulse wave velocity (PWV) recorded with the Falcon device (Viasonix), and endothelial
function was indirectly assessed through carotid intima-media thickness using high-resolution ultra-
sonography (SuperSonic Aixplorer MACH 30). Retinal microvascular parameters were extracted via
fundus imaging (iCare DRSplus) and processed with the AutoMorph [77] Python package. Cardiac
electrical activity was characterized by 12-lead resting ECG (PC-ECG 1200, NORAV), from which
standard and derived indices (e.g., heart rate, QT intervals) were calculated. The cardiovascular
dataset thus integrates structural, functional, and electrophysiological dimensions of cardiovascular
health, enabling multiscale association testing with sleep traits.

Inflammation The inflammation system features were derived from standard clinical laboratory
tests obtained from participants’ health maintenance organizations (HMOs) as part of their routine
medical care. Participants were encouraged to upload results from various tests, including those
indicative of systemic inflammation. Key biomarkers relevant to the inflammation system included
C-reactive protein (CRP), white blood cell (WBC) count, and differential counts such as neutrophils,
lymphocytes, monocytes, eosinophils, and basophils. These markers provide insights into both acute
and chronic inflammatory states. CRP, an acute-phase protein synthesized by the liver, serves as a
sensitive indicator of systemic inflammation and is commonly elevated in response to infection or
tissue injury. The WBC count and its differentials offer information on the immune system’s cellular
components, with variations potentially reflecting underlying inflammatory or immune responses.
All laboratory values were standardized and stored in a structured format to facilitate downstream
analyses.

Baseline Characteristics (BMI) Body mass index (BMI) was calculated as weight in kilograms
divided by height in meters squared (kg/m2) and was treated as a baseline covariate alongside age
and sex. Though BMI is not classified as a standalone body system in this analysis, it serves as a
critical covariate due to its known influence on both sleep-disordered breathing and cardiometabolic
risk. It was excluded from the body composition system to avoid redundancy in statistical modeling.

E Synthetic Datasets Details

E.1 Generation Process

We construct synthetic datasets using a modular simulation framework that mimics realistic causal sys-
tems with configurable complexity. The generation process is parameterized to control graph structure,
variable types, functional complexity, effect magnitudes, missing data patterns, and more, making the
synthetic data suitable for benchmarking causal discovery and mediation analysis algorithms. The
entire dataset generation procedure is outlined in Algorithm 2.

Causal Graph Construction Each dataset is generated from a DAGG over p variables and contains
n observational samples. The graph is sampled from an Erdős-Rényi (ER) model with a specified
expected average in-degree k, followed by a random topological sort to ensure acyclicity. The DAG
defines the full set of causal relationships among the p variables, with no predefined roles assigned
to individual variables. To support the construction of realistic and diverse causal structures, we
explicitly control two key properties of the graph: the chain path length ℓ, which determines the
depth of the longest directed chain in the DAG, and the number of structurally parallel paths κ,
which specifies how many disjoint or partially overlapping causal routes exist across the graph. This
parameterization allows us to generate graphs that reflect varying levels of structural complexity,
enabling robust evaluation of causal discovery and inference methods under different topological
regimes.

Structural Equation Modeling Let v = (v1, · · · , vp) be a collection of random variables. Each
node is randomly assigned a variable type according to a multinomial distribution over three categories:
continuous with probability πc, binary with πb, and categorical (with up to Lcat levels) with probability
πcat, where πc + πb + πcat = 1. Once the types are assigned, we generate variables according to
a structural equation modeling (SEM) [47] framework based on a given DAG. Specifically, each
variable vi is assigned a structural equation of the form:

vi = Fi

(
vpa(i;G), zi

)
, (43)
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where zi is an exogenous noise term independent of all other variables, pa(i;G) denotes the set of
parent nodes of i in the graph G, and Fi is the deterministic function governing the influence of
parent variables on vi. In this work, we focus on a special class of SEMs known as additive noise
models (ANMs), where the structural equations take the simplified form:

vi = fi
(
vpa(i;G)

)
+ zi, or in vector form: v = fG(v) + z. (44)

The functional form fi may be linear or nonlinear, including polynomial (e.g., v2), sinusoidal (e.g.,
sin(v)), or exponential (e.g., exp(−|v|)) transformations. To control the proportion of nonlinear
mechanisms, we define a nonlinearity ratio parameter ρnonlin ∈ [0, 1], which specifies the expected
fraction of nodes governed by nonlinear functions. For nodes not selected as nonlinear, fi defaults to
a linear combination of parent variables. This stochastic selection enables systematic benchmarking
across datasets with different levels of structural complexity. Pairwise interactions between parent
variables can also be incorporated to increase structural complexity. The exogenous noise zi is
sampled from a mixture of distributions—Gaussian, exponential, or Student-t—with user-defined
mixture weights to simulate heteroskedasticity and non-Gaussian variability. For discrete variables,
logistic or softmax functions are used to generate probabilistic outcomes conditioned on parent
variables.

Causal Effect Scaling To enable controlled experimentation with mediation analysis, the generator
includes an effect-scaling mechanism that adjusts the magnitude of causal effects along specific
paths. Structural coefficients on the direct path from treatment to outcome, and on the indirect paths
through mediators, are scaled such that the resulting absolute values of the natural direct effect (NDE)
and natural indirect effect (NIE) fall within user-specified intervals, denoted by [τmin

NDE, τ
max
NDE ] and

[τmin
NIE , τ

max
NIE ], respectively. This ensures that generated datasets reflect a wide spectrum of causal

regimes, from dominantly direct to heavily mediated effects.

Missingness Injection and Ground Truth Estimation To further enhance realism, the framework
optionally injects missingness into the dataset under both missing completely at random (MCAR) and
missing at random (MAR) mechanisms. The overall missingness rate rmiss determines the proportion
of missing entries. In addition, the framework allows configuration of the proportion of variables and
the conditional dependencies under which missingness occurs. Ground-truth causal effects, including
total effect (TE), NDE, and NIE, are estimated via Monte Carlo simulation using a large number
of samples (e.g., 10,000 or more) by evaluating counterfactual outcomes under interventions on
treatment and mediator variables.

Algorithm 2 Synthetic Dataset Generation Procedure

1: Require: Number of variables p, samples n, average in-degree k
2: Target effect ranges τNDE, τNIE
3: Number of parallel paths in DAG: κ
4: Length of the chain path in DAG: ℓ
5: Variable type proportions: πc, πb, πcat
6: Nonlinearity proportion ρnonlin
7: Noise distribution mix Dnoise, missingness rate rmiss
8: Ensure: Synthetic dataset D with DAG G, SEM specs, and ground-truth effects
9: Generate DAG G using Erdős–Rényi model with p nodes and average in-degree k.

10: Verify that G contains κ parallel directed paths of length ≤ ℓ
11: Assign variable types to each vi ∈ v:
12: Continuous with πc; Binary with πb; Categorical (up to Lcat) with πcat.
13: for each node v ∈ v do
14: Define: vi ← fi

(
vpa(i;G)

)
+ zi;

15: Choose fi as linear or nonlinear (e.g., poly2, sin, exp, interaction) with probability ρnonlin;
16: Sample noise zi ∼ Dnoise
17: end for
18: Generate n samples by topological traversal of G
19: Inject missing values using rmiss and conditional rules (e.g., MAR/MCAR).
20: Estimate ground-truth effects (TE, NDE, NIE) via Monte Carlo simulation.
21: return D
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E.2 Mediation Pathway Structures

To evaluate mediation analysis methods under diverse structural assumptions, we incorporate a
range of causal graphs with varying mediation configurations into the synthetic data generator.
Figure 4 illustrates several representative DAG structures that are automatically instantiated within
our framework. These examples cover key topologies relevant for causal mediation, including both
simple and complex pathways, as well as potential nonlinear effects.

X Y

(a) Two node

X1

X2

M Y

(b) Single Mediator with Confounding

X1

X2

M1

M2

Y

(c) Dual Independent Mediators

X

M1

M2

Y

(d) Nonlinear Dual Mediators

X

M1

M2

M3 Y

(e) Hybrid Chain-and-Parallel Mediation

Figure 4: DAG graphs. Unless otherwise stated, we take X as the treatment, Y as the outcome, and
M as mediator variable.

1. (a) Direct-only structure (“Two-Node Path”): This minimal structure includes only a
direct effect from treatment X to outcome Y , with no mediators. It serves as a baseline for
evaluating spurious mediation detection.

2. (b) Single mediator with confounding inputs (“Single Mediator with Confounding”): A
single mediator M lies between X and Y , but additional variables (e.g., X1, X2) influence
the mediator, simulating a confounded or high-dimensional mediator function.

3. (c) Parallel mediation (“Dual Independent Mediators”): Two mediators M1 and M2 are
both affected by X and influence Y independently, forming parallel mediation paths.

4. (d) Nonlinear parallel mediation (“Nonlinear Dual Mediators”): Similar to (c), but
the structural functions between nodes involve nonlinearities such as interactions or
sine/exponential transforms.

5. e) Mixed mediation (“Hybrid Chain-and-Parallel Mediation”): A more complex topology
where two mediators M1 and M2 form parallel channels, and a third node M3 forms a chain
extending toward Y . This structure tests the ability of algorithms to disentangle indirect
effects across multiple pathways.

E.3 Dataset Benchmarks

Table 4 summarizes the configurations used to generate representative datasets in our experiments.
These settings allow us to benchmark the performance of causal inference methods across regimes
with varying dimensionality, mediation complexity, and data quality. Specifically, we hold constant
the overall variable type proportions (πc = 0.6, πb = 0.3, πcat = 0.1), category levels (Lcat = 5),
missingness (rmiss = 0.1), average in-degree (k = 3) and the target standard deviation ranges of the
causal effects (τNDE ∈ [0.2, 0.4], τNIE ∈ [0.15, 0.3]). This design allows for controlled benchmarking
across varying causal and statistical challenges.

To further validate the quality of mediation structures embedded in the synthetic datasets, we visualize
the variable relationships of sampled mediation pathways. Specifically, we examine the empirical
dependencies among treatment, mediator, and outcome variables to see whether the intended causal
effects are faithfully reflected in the generated data. We analyze four types of associations: (i)
Treatment → Mediator, (ii) Mediator → Outcome, (iii) Treatment → Outcome, and (iv) Mediator
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Dataset ID p n ρnonlin κ ℓ Configuration Focus

LowDim-L 20 6000 0 1 3 Baseline (Low-dim, linear, simple graph)
LowDim-N 20 6000 0.5 1 3 Baseline (Low-dim, nonlinear, simple graph)
LowDim-P 20 6000 0.5 2 2 Complex path (Low-dim, parallel, nonlinear)
LowDim-D 20 6000 0.5 1 6 Complex path (Low-dim, long chain, nonlinear)
MidDim-S 100 6000 0.5 1 3 Mid-dim effect (long chain, nonlinear, simple graph)
MidDim-D 100 6000 0.5 1 6 Mid-dim effect (long chain, nonlinear, complex graph)
HigDim-S 200 6000 0.5 1 3 High-dim effect (nonlinear, simple grapgh)
HigDim-D 200 6000 0.5 1 6 High-dim effect. (long chain, nonlinear, upper bound)
MidDim-P 100 6000 0.5 2 2 Model misspecification test (nonlinear, parallel)
MidDim-C 50 6000 0.5 1 6 Mid-dim effect (nonlinear, long chain, smoothed comparison)

Table 4: Parameter configurations for synthetic datasets used in our experiments.

→ Outcome under different treatment. These visualizations provide intuitive verification that the
synthetic data preserves the expected mediation mechanisms and highlight the nonlinear or conditional
dependencies that may arise under the configured data-generating process.

LowDim-L: LowDim-L serves as the baseline configuration in the benchmark suite, featuring
low dimensionality (p = 20), a fully linear structural specification (ρnonlin = 0.0), and a simple
graph topology with a single short causal path (κ = 1, ℓ = 3). The graph structure is minimal and
interpretable, offering a clean testbed for evaluating algorithmic correctness in effect estimation
under idealized, statistically well-behaved conditions. The causal graph consists of a binary treatment
variable V 8, a continuous mediator V 2, a categorical mediator V 18, and a binary outcome V 13.
This setup enables clean interpretability of causal effects and serves as a reference for assessing
performance under idealized conditions. LowDim-L provides a controlled environment for validating
the correctness of pathway identification and effect estimation algorithms under structurally simple
and statistically well-behaved conditions.

Figure 5: Visualization of variable relationships of a sampled mediation pathway in LowDim-L.
The pathway comprises a binary treatment variable V 8, a continuous mediator V 2, a categorical
mediator V 18, and a binary outcome V 13.
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LowDim-N: LowDim-N mirrors the low-dimensional structure of LowDim-L (p = 20, n = 6000),
but introduces nonlinear functional mechanisms (ρnonlin = 0.5) while maintaining a structurally
simple graph with one short directed path (κ = 1, ℓ = 3). This setting incorporates nonlinear
mappings within the graph’s structural equations, allowing us to evaluate whether causal inference
methods remain robust to nonlinearity. The variable types are consistent: treatment V 8 is binary,
mediators V 2 and V 18 are continuous and categorical respectively, and outcome V 13 is binary. In
contrast to LowDim-L, the functional dependencies here include non-additive effects and interactions,
enabling the examination of empirical recoverability under nonlinear data-generating processes. In
particular, the direction of the mediator–outcome relationship is reversed: V 2 now has a positive
rather than negative effect on V 13, consistent with the design of its generating function. Conditional
plots further highlight interactions modulated by treatment levels, providing visual confirmation of
nonlinear mediation behavior.

Figure 6: Visualization of variable relationships of a sampled mediation pathway in LowDim-N.
The pathway comprises a binary treatment variable V 8, a continuous mediator V 2, a categorical
mediator V 18, and a binary outcome V 13.
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LowDim-P: LowDim-P is designed to introduce structural complexity through multiple causal
pathways, while maintaining low dimensionality (p = 20, n = 6000) and moderate nonlinearity
(ρnonlin = 0.5). The graph contains κ = 2 parallel paths of moderate depth (ℓ = 3), representing con-
current channels of influence. The variable configuration includes a binary treatment V8, continuous
mediator V2, categorical mediator V18, binary mediator V7, and binary outcome V13. This setup is
designed to evaluate the interaction and combined influence of multiple concurrent mediators under
nonlinear conditions.

Figure 7: Visualization of variable relationships of a sampled mediation pathway in LowDim-P.
The pathway comprises binary treatment variable V 8, a continuous mediator V 2, a categorical
mediator V 18, a binary mediator V 7 and a binary outcome V 13.
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LowDim-D: LowDim-D represents a more structurally complex synthetic setting with p = 20,
n = 6000, moderate nonlinearity (ρnonlin = 0.5), and a long-chain causal structure characterized by a
single deep path (κ = 1, ℓ = 6). It includes a binary treatment variable V 8, continuous mediators V 2,
V 16, and V 19, a categorical mediator V 18, a binary mediator V 11, and a binary outcome V 13. This
configuration captures extended sequential dependencies, where indirect effects propagate through
multiple intermediate variables. It provides a testbed for assessing robustness in effect estimation
under deeper, multi-step causal pathways.

Figure 8: Visualization of variable relationships of a sampled mediation pathway in LowDim-D.
The pathway comprises binary treatment variable V 8, continuous mediators V 2, V 16 and V 19, a
categorical mediator V 18, a binary mediator V 11 and a binary outcome V 13.
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MidDim-S: MidDim-S increases both dimensionality and structural complexity, with p = 100,
n = 6000, and a moderate level of nonlinearity (ρnonlin = 0.5), while preserving a simple causal
topology with a single short directed path (κ = 1, ℓ = 3). The treatment variable V 35 is binary,
mediators include a categorical variable V 2, a binary variable V 13, and a continuous variable V 14,
with V 17 serving as the continuous outcome. This setup is designed to assess algorithm performance
in mid-dimensional regimes where the causal structure remains sparse and shallow, isolating the
effect of dimensional scaling under otherwise controlled conditions.

Figure 9: Visualization of variable relationships of a sampled mediation pathway in MidDim-S.
The pathway comprises binary treatment variable V 35, a continuous mediator V 14, a categorical
mediator V 2, a binary mediator V 13 and a continuous outcome V 17.
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MidDim-D: MidDim-D extends the structural complexity of the mid-dimensional setting with
p = 100, n = 6000, a nonlinearity ratio of ρnonlin = 0.5, and a long-chain causal configuration
characterized by a single extended path (κ = 1, ℓ = 6). The DAG includes multiple layers of
intermediate variables connected through a deep sequential structure, challenging algorithms to
recover indirect effects that accumulate across heterogeneous transformations. The treatment variable
V 35 is binary, and the mediation pathway involves heterogeneous mediators: a categorical variable
V 2, binary variables V 13, V 15 and V 89, and continuous variables V 14 and V 40, with a continuous
outcome V 17. This dataset is well-suited for evaluating a method’s ability to capture layered,
nonlinear, and high-dimensional mediation dynamics.

Figure 10: Visualization of variable relationships of a sampled mediation pathway in MidDim-D
. The pathway comprises a binary treatment variable V 35, continuous mediators V 14 and V 40, a
categorical mediator V 2, binary mediators V 13, V 15 and V 89, and a continuous outcome V 17.
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HigDim-S: HighDim-S explores a high-dimensional setting with p = 200, n = 6000, moderate
nonlinearity (ρnonlin = 0.5), and a sparse causal structure characterized by a single short path (κ = 1,
ℓ = 3). The causal pathway consists of a binary treatment variable V 71, a continuous mediator
V 35, a binary mediator V 28, and a binary outcome V 83. Despite the limited path depth, the
high-dimensional background introduces substantial noise and potential confounding, making this
configuration well-suited for testing robustness in pathway recovery under low-signal regimes. It is
designed to assess performance when precise signal extraction is required in the presence of many
irrelevant or weakly related variables.

Figure 11: Visualization of variable relationships of a sampled mediation pathway in HigDim-S.
The pathway comprises a binary treatment variable V 71, a continuous mediator V 35, a binary
mediator V 28, and a binary outcome V 83.
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HigDim-D: HighDim-D represents the most structurally complex setting in the benchmark, with
high dimensionality (p = 200), moderate nonlinearity (ρnonlin = 0.5), and a deep causal pathway
characterized by a single extended chain (κ = 1, ℓ = 6). The underlying DAG contains multiple layers
of variables with diverse data types, connected through a long directed path. The causal structure
includes a binary treatment V 71, continuous mediators V 35 and V 176, categorical mediators V 5
and V 57, binary mediators V 28, V 15, and V 89, and a binary outcome V 83. This design models
rich causal hierarchies and nonlinear dependencies, mimicking the structure of intricate biological or
behavioral systems.

Figure 12: Visualization of variable relationships of a sampled mediation pathway in HigDim-D.
The pathway comprises a binary treatment variable V 71, continuous mediators V 35 and V 176,
categorical mediators V 5 and V 57, binary mediators V 28, V 15 and V 89, and a binary outcome V 83.

49



MidDim-P: MidDim-P is designed to evaluate robustness under potential model misspecification,
featuring moderate dimensionality (p = 100), nonlinearity (ρnonlin = 0.5), and a parallel causal
structure with overlapping pathways (κ = 2, ℓ = 3). The causal graph includes a binary treatment
V 35, continuous mediators V 14, V 68, and V 72, a categorical mediator V 2, and a continuous
outcome V 17. Unlike prior configurations emphasizing either deep chains or sparse connections,
this setting introduces partially redundant, nonlinear paths that may obscure structural signals and
challenge estimation accuracy when assumptions are violated.

Figure 13: Visualization of variable relationships of a sampled mediation pathway in MidDim-P.
The pathway comprises a binary treatment variable V 35, continuous mediators V 14, V 68 and V 72,
a categorical mediator V 2, and a continuous outcome V 17.
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MidDim-C: MidDim-C explores mid-dimensional, high-complexity causal dynamics under nonlin-
ear transformations, with p = 50, n = 6000, and a deep chain structure defined by a single extended
path (κ = 1, ℓ = 6). The treatment variable V 35 is binary, the mediators—V 6, V 14, V 33, V 42, and
V 48—are all continuous, and the binary outcome is V 45. This configuration emphasizes smooth,
continuous interactions across multiple intermediate nodes, where causal influence accumulates
gradually along the chain. It is designed to test methods’ ability to detect and quantify multi-step
effects under structurally rich yet low-parallelism conditions.

Figure 14: Visualization of variable relationships of a sampled mediation pathway in MidDim-C.
The pathway comprises a binary treatment variable V 35, continuous mediators V 6, V 14, V 33, V 42
and V 48, and a binary outcome V 45.
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F Experiment

F.1 Experiment Setup

In the structure discovery phase, we configure the Flow-SEM model with a two-layer MLP (hid-
den_dim_multiplier=2) as the conditional distribution model. The model is trained using the Adam
optimizer with a learning rate of 0.001, an initial DAG constraint penalty coefficient λ = 0.1, which
increases by a factor of 10 when the acyclicity constraint is violated (h_threshold=10−8), up to a
maximum of 105. Sparsity is controlled through L1 regularization (α = 0.01), with a maximum gra-
dient norm limit of 1.0. The training iterates for 1000 epochs, with early stopping if no improvement
occurs for 100 consecutive epochs.

In the posterior sampling phase, we extract 1000 DAG samples from the learned structure. During
sampling, each node retains only the top 3 highest probability incoming edges to control sparseness,
and a sigmoid function converts the weight matrix to edge existence probabilities. Graph structures are
randomly sampled according to a Bernoulli distribution, validated for acyclicity through topological
sorting, and cyclic graphs are discarded.

For path identification, we set the frequency threshold to 5%, meaning paths appearing with frequency
above this threshold in the DAG sample set are identified as stable paths. The maximum path length
is limited to 10, and multi-processor parallel computing is employed to accelerate the identification
process.

The mechanism modeling phase implements 5-fold cross-validation. Each model uses uniform
parameters: 50 iterations, batch size of 128, learning rate of 10−4, and hidden layer dimension of
128. For continuous treatment variables, intervention levels are set at the mean (µ) and the mean plus
one standard deviation (µ+ σ), while binary variables use intervention levels {0,1}.

Effect estimation employs a mixed approach: paths of length 3 use Efficient Influence Function
estimation, while longer paths use plugin estimation. Multiple DAG effects are aggregated through
Bayesian Model Averaging, considering both within-DAG estimation uncertainty (average variance)
and between-DAG structural uncertainty (effect variation), constructing 95% confidence intervals.

We test SIGMA on 10 synthetic datasets with feature dimensions p ∈ {20, 50, 100, 200}, nonlinearity
degree ρ ∈ {0, 0.5}, containing parallel (κ ∈ {2, 3, 6}) and chain (ℓ ∈ {1, 2}) structures.

F.2 Computation of Ground Truth Mediation Effects

To validate SIGMA’s estimation accuracy, we compute the true NDE and NIE values for the two
mediation pathways through counterfactual simulation. For a mediation pathway X → M → Y ,
we define three counterfactual data sets: Dref = {(Xi = xref ,Mi(xref ), Yi(xref ,Mi(xref )))}ni=1,
Dcomp = {(Xi = xcomp,Mi(xcomp), Yi(xcomp,Mi(xcomp)))}ni=1, and Dcf = {(Xi =
xcomp,Mi(xref ), Yi(xcomp,Mi(xref )))}ni=1, where Mi(x) denotes the potential mediator value
when treatment Xi = x, and Yi(x,m) represents the potential outcome when Xi = x and Mi = m.

Based on these counterfactual sets, the true mediation effects are calculated as: NDE =
E[Y (xcomp,M(xref ))] − E[Y (xref ,M(xref ))] and NIE = E[Y (xcomp,M(xcomp))] −
E[Y (xcomp,M(xref ))]. In Monte Carlo simulation, these expectations are estimated via sam-
ple means: N̂DE = 1

n

∑n
i=1 Yi(xcomp,Mi(xref )) − 1

n

∑n
i=1 Yi(xref ,Mi(xref )) and N̂IE =

1
n

∑n
i=1 Yi(xcomp,Mi(xcomp))− 1

n

∑n
i=1 Yi(xcomp,Mi(xref )).

We compute these effects using structural equation model specifications with 5000 simulation samples,
setting intervention levels for pathway 1 (V5→V19→V16) at xref = 0.012 and xcomp = 1.253, and
for pathway 2 (V12→V10→V6) at xref = 0.243 and xcomp = 0.926. To generate Dcf , we extract
Mi(xref ) values from Dref , then set Xi = xcomp and fix Mi =Mi(xref ), employing topological
sorting to ensure proper variable generation order in the DAG.
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F.3 Causal Discovery Evaluation

Table 5: Causal discovery on benchmark datasets.
Method Metrics Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10

PC [33]
Adjacency F1 0.4082 0.439 0.5217 0.4091 0.4427 0.4479 0.3498 0.3475 0.4436 0.5333
Orientation F1 0.2326 0.2286 0.2564 0.1143 0.2869 0.2929 0.1771 0.1605 0.2823 0.3551
Causal Accuracy 0.577 0.5735 0.5849 0.5286 0.6268 0.6243 0.5893 0.5806 0.6247 0.6478

Notears [75]
Adjacency F1 0.3728 0.4061 0.4741 0.3727 0.4018 0.4141 0.32 0.3194 0.4039 0.4849
Orientation F1 0.2158 0.2065 0.2313 0.1056 0.2636 0.2695 0.1601 0.1448 0.2578 0.3261
Causal Accuracy 0.5291 0.5301 0.5407 0.4828 0.5745 0.5692 0.5388 0.5244 0.577 0.594

Grandag [20]
Adjacency F1 0.3922 0.4161 0.5075 0.3935 0.4216 0.436 0.3296 0.3283 0.4186 0.5225
Orientation F1 0.2247 0.2172 0.2485 0.1119 0.2738 0.2859 0.1701 0.1571 0.2693 0.3384
Causal Accuracy 0.5424 0.5485 0.5703 0.5066 0.5915 0.5985 0.5633 0.5471 0.6026 0.614

ICANLiGAM [58]
Adjacency F1 0.377 0.4168 0.4897 0.384 0.4171 0.413 0.3228 0.3226 0.4102 0.4987
Orientation F1 0.218 0.2141 0.2432 0.1062 0.2676 0.2747 0.1644 0.1514 0.2628 0.3323
Causal Accuracy 0.5476 0.5371 0.5401 0.4957 0.5792 0.5833 0.5456 0.5417 0.5879 0.5998

DECI [22]
Adjacency F1 0.431 0.4453 0.5188 0.4049 0.4512 0.4477 0.3326 0.3814 0.4869 0.5077
Orientation F1 0.2252 0.2256 0.2576 0.1141 0.2858 0.2891 0.1758 0.1551 0.295 0.353
Causal Accuracy 0.5833 0.5661 0.623 0.5266 0.6129 0.5955 0.5872 0.5643 0.6776 0.6625

SIGMA (Ours)
Adjacency F1 0.5263 0.4909 0.5602 0.4512 0.4939 0.4998 0.3998 0.3741 0.4754 0.5918
Orientation F1 0.4474 0.2601 0.2784 0.1266 0.3185 0.3163 0.1925 0.1782 0.3162 0.386
Causal Accuracy 0.7695 0.643 0.6719 0.5712 0.6808 0.6747 0.6437 0.6561 0.6914 0.7259

F.4 Real Data HPP Validation

Table 6: Estimated N̂DE, N̂IE and T̂E with the corresponding 95% confidence intervals (CI) across
all the sub-pathways within the validated mediation pathways shown in Figure 15(b). Estimates are
obtained using the proposed SIGMA framework with structural uncertainty propagation.

T̂E N̂DE N̂IE

Pathways Estimate CI Lower CI Upper Estimate CI Lower CI Upper Estimate CI Lower CI Upper

4→ 1→ 6 0.1880 0.1292 0.2432 0.1422 0.0902 0.1995 0.0458 0.0112 0.0823
4→ 1→ 12→ 6 0.1880 0.1306 0.2111 0.1636 0.0818 0.2006 0.0243 0.0036 0.0597
4→ 1→ 2→ 6 0.0462 0.0072 0.0737 -0.0076 -0.0614 0.0502 0.0538 0.0127 0.0921

4→ 1→ 2→ 12→ 6 0.0554 -0.0756 -0.0310 0.0244 0.0006 0.0604 0.0310 -0.0034 0.0790
4→ 1→ 13→ 6 0.0554 -0.0625 -0.0313 0.0391 -0.0077 0.0758 0.0163 -0.0149 0.0580
3→ 1→ 12→ 6 0.0965 0.0638 0.1384 0.0821 -0.0024 0.1100 0.0144 -0.0075 0.0543

3→ 1→ 2→ 12→ 6 0.0965 0.0472 0.1198 0.0192 -0.0033 0.0575 0.0773 0.0502 0.1023
2→ 1→ 6 0.1584 0.0853 0.2267 -0.0252 -0.0884 0.0522 0.1836 0.0777 0.2409

2→ 1→ 12→ 6 0.0323 -0.0580 0.0811 0.1314 0.0816 0.1402 -0.0991 -0.1346 -0.0124
2→ 1→ 2→ 12→ 6 -0.0397 -0.0653 -0.0036 -0.0462 -0.0809 -0.0093 0.0065 0.0132 0.0502

2→ 1→ 2→ 6 0.1584 0.0834 0.1839 0.1410 0.0023 0.2262 0.0174 0.0000 0.0408

Table 7: Estimated N̂DE, N̂IE and T̂E with the corresponding 95% confidence intervals (CI) across
all the sub-pathways within the validated mediation pathways shown in Figure 15(b). Estimates are
obtained using classical regression-based mediation analysis without structural uncertainty modeling.

T̂E N̂DE N̂IE

Pathways Estimate CI Lower CI Upper Estimate CI Lower CI Upper Estimate CI Lower CI Upper

4→ 12→ 6 0.1880 0.1624 0.2133 0.1875 0.1618 0.2126 0.0005 -0.0063 0.0017
4→ 12 0.1880 0.1623 0.2124 0.1684 0.1414 0.1950 0.0196 0.0115 0.0285

4→ 2→ 12→ 6 -0.0554 -0.0871 -0.0302 -0.0502 -0.0767 -0.0249 -0.0052 -0.0097 -0.0035
4→ 2→ 13 -0.0554 -0.0800 -0.0273 -0.0626 -0.0866 -0.0381 0.0072 0.0031 0.0118

4→ 12→ 13 0.0462 0.0210 0.0713 0.0340 0.0074 0.0614 0.0123 0.0042 0.0203
3→ 1→ 12 0.0964 0.0736 0.1240 0.0482 0.0204 0.0752 0.0483 0.0334 0.0638
3→ 1→ 6 0.0858 0.0624 0.1100 0.0853 0.0574 0.1123 -0.0005 -0.0147 0.0157

3→ 1→ 12→ 6 -0.0730 -0.1087 -0.0545 -0.0821 -0.1091 -0.0553 0.0000 -0.0002 0.0002
3→ 1→ 2→ 12→ 6 0.0964 0.0745 0.1188 0.0956 0.0612 0.1297 0.0004 -0.0011 0.0040

3→ 1→ 2→ 6 0.1853 0.1537 0.2165 0.1835 0.1519 0.2150 0.0019 -0.0051 0.0078
2→ 1→ 6 0.0323 -0.0100 0.0706 -0.0183 -0.0578 0.0198 0.0506 0.0195 0.0863

2→ 1→ 12→ -13 -0.0397 -0.0655 -0.0124 -0.0365 -0.0459 -0.0285 0.0077 0.0029 0.0131
2→ 1→ 12→ 6 0.1584 0.1338 0.1828 0.1839 0.1430 0.2250 0.0008 -0.0004 0.0023
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Table 8: Estimated N̂DE, N̂IE and T̂E with the corresponding 95% confidence intervals (CI) across all
the sub-pathways within the novely discovered mediation pathways shown in Figure 15(c). Estimates
are obtained using the proposed SIGMA framework with structural uncertainty propagation.

T̂E N̂DE N̂IE

Pathways Estimate CI Lower CI Upper Estimate CI Lower CI Upper Estimate CI Lower CI Upper

3→ 9→ -13 -0.0720 -0.0997 -0.0499 0.0534 0.0014 0.0815 -0.1254 -0.1774 -0.0917
4→ 9→ -13 -0.0858 -0.1084 -0.0624 0.0756 0.0315 0.1028 -0.1614 -0.2148 -0.1172
4→ 3→ -13 -0.0554 -0.0719 -0.0310 0.0823 0.0544 0.1036 -0.1377 -0.1845 -0.1036

10→ -13 -0.0359 -0.0528 -0.0128 0.0306 0.0008 0.0526 -0.0665 -0.0904 -0.0206
10→ -12→ -13 -0.0270 -0.0442 -0.0072 0.0425 0.0127 0.0568 -0.0695 -0.0917 -0.0326

10→ -12→ -14→ -13 -0.0441 -0.0652 -0.0209 0.0387 0.0095 0.0652 -0.0828 -0.1152 -0.0411
8→ -11→ -13 -0.0333 -0.0508 -0.0126 0.0315 0.0011 0.0452 -0.0648 -0.0842 -0.0221

8→ -11→ -12→ -13 -0.0550 -0.0770 -0.0291 0.0506 0.0018 0.0814 -0.1056 -0.1515 -0.0633
8→ -13→ -15 0.0763 0.0501 0.1011 -0.0516 -0.1002 -0.0173 0.1279 0.0814 0.1919

Table 9: Estimated N̂DE, N̂IE and T̂E with the corresponding 95% confidence intervals (CI) across all
the sub-pathways within the novely discovered mediation pathways shown in Figure 15(c). Estimates
are obtained using classical regression-based mediation analysis without structural uncertainty
modeling.

T̂E N̂DE N̂IE

Pathways Estimate CI Lower CI Upper Estimate CI Lower CI Upper Estimate CI Lower CI Upper

3→ 9→ -13 -0.0723 -0.0955 -0.0500 -0.0764 -0.0987 -0.0533 0.0030 0.0014 0.0054
4→ 9→ -13 0.0858 0.0614 0.1094 0.0983 0.0734 0.1221 -0.0096 0.0002 -0.0088

4→ 9→ -13→ -12 -0.0554 -0.0800 -0.0306 -0.0576 -0.0841 -0.0326 0.0022 0.0007 0.0041
10→ -13 0.0462 0.0212 0.0712 0.0554 0.0312 0.0809 -0.0083 0.0010 -0.0063

10→ -13→ -12 0.0360 0.0132 0.0584 0.0306 0.0080 0.0531 0.0053 0.0010 0.0092
10→ -13→ -12→ -1 -0.0270 -0.0501 -0.0042 -0.0271 -0.0494 -0.0043 0.0001 -0.0010 0.0005

13→ -12→ -1 -0.0441 -0.0681 -0.0205 -0.0521 -0.0748 -0.0295 0.0077 0.0054 0.0116
2→ -1 -0.0167 -0.0391 0.0049 -0.0254 -0.0464 -0.0036 0.0090 0.0025 0.0156

2→ -1→ -15 -0.0325 -0.0594 -0.0085 -0.0113 -0.0330 0.0104 -0.0212 -0.0393 -0.0051
8→ -2→ -1→ -15 -0.0325 -0.0694 0.0028 -0.0087 -0.0315 0.0140 -0.0239 -0.0510 0.0032

8→ -13→ -15 -0.0325 -0.0665 0.0015 0.0014 -0.0225 0.0246 -0.0340 -0.0702 0.0019
8→ -5→ -13 -0.0547 -0.0812 -0.0281 -0.0151 -0.0778 0.0477 -0.0035 -0.0065 -0.0017

3→ -15 0.0763 -0.1011 0.0515 -0.0765 -0.1014 -0.0477 0.0002 -0.0013 0.0019

Figure 15: Visualization of the effect estimation on HPP data.
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