
Under review as a conference paper at ICLR 2022

DIFFERENTIABLE SELF-ADAPTIVE LEARNING RATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive learning rate has been studied for a long time. In the training session
of neural networks, learning rate controls update stride and direction in a multi-
dimensional space. A large learning rate may cause failure to converge, while
a small learning rate will make the convergence too slow. Even though some
optimizers make learning rate adaptive to the training, e.g., using first-order and
second-order momentum to adapt learning rate, their network’s parameters are still
unstable during training and converges too slowly in many occasions. To solve this
problem, we propose a novel optimizer which makes learning rate differentiable
with the goal of minimizing loss function and thereby realize an optimizer with
truly self-adaptive learning rate. We conducted extensive experiments on multi-
ple network models compared with various benchmark optimizers. It is shown
that our optimizer achieves fast and high qualified convergence in extremely short
epochs, which is far more faster than those state-of-art optimizers.

1 INTRODUCTION

Learning rate is one of the most important hyper-parameters in artificial neural networks, and it is
the core of an optimizer1. In a training session of neural network, an optimizer takes the duty to
update network parameters, and directly affects the training speed and final effect.

The early SGD(stochastic gradient descent) method (Lemaréchal, 2012; Courant et al., 1994; Curry,
1944) uses a fixed learning rate in the training session. Usually, we choose a large learning rate to
accelerate training. However, this may cause network’s parameter to fluctuate around the extreme
point and even cannot converge under SGD (Ruder, 2016), which is a very unstable optimization.
Momentum (Sutskever et al., 2013b) takes the exponential moving average of historical gradient as
a stride. When parameters get into an oscillation, positive and negative gradients will neutralize with
each other, thereby reducing the update stride and getting rid of the fluctuation.

However, learning rate under Momentum cannot adapt to the training session. Actually, learning rate
needs to be larger in the beginning of training session and smaller at the later stages. AdaGrad (Duchi
et al., 2011) multiply learning with the reciprocal of two-norm of historical gradients to have learning
rate reduce along with training session. While AdaGrad is interfered a lot by historical gradient, i.e.,
learning rate in AdaGrad keeps decreasing along with training resulting that learning rate is too
small in the late stage of training. RMSProp (Graves, 2013) replaces two-norm in AdaGrad with
exponential moving average of historical gradients to reduce the interference. Adam (Kingma & Ba,
2014) combines Momentum and RMSProp, so that it can solve fluctuations and make learning rate
adaptive in the same time. However, Adam still has many limitations. Firstly, Adam usually cannot
converge well in the late stages of the training. Secondly, after an oscillation, learning rate is usually
very small resulting that it converges very slowly in next several epochs. Thirdly, the update stride
is limited by the learning rate. However, learning rate cannot grow quickly when a large stride is
needed. In a word, Adam is not sensitive enough.

Therefore, none of the current optimizers are stable and sensitive enough to ensure a fast and high
qualified convergence. To achieve these two goals, we propose a novel optimizer DSA(differentiable
self-adaptive learning rate), which makes learning rate adaptive quickly and accurately. The learning
rate in DSA is differentiable with the goal of minimizing loss function. DSA is able to get rid of
oscillation in only one or two epochs, since the learning rate in DSA can increases or decreases very
sensitively and significantly with the help of learning rate’s gradient.

1https://en.wikipedia.org/wiki/Learning_rate

1

https://en.wikipedia.org/wiki/Learning_rate


Under review as a conference paper at ICLR 2022

Based on above discussions and our researches, contributions of DSA are summarized as follows.

• We are the first to make learning rate in neural network differentiable with the goal of minimizing
loss function such that learning rate can adapt with a clear instruction.

• DSA can optimize a wide range of network models and can solve two classical and common
problems in machine learning, which are grad loss and hard convergence in the later of a training.

• We conduct extensive experiments on multiple neural network models compared with various
state-of-art optimizers. Experimental results have demonstrated the absolute advantage of DSA
in speed, stability and performance.

In the remaining of this paper, Section 2 describes the proposed method. Experiments are conducted
in Section 3. We overview related work in Section 4. Section 5 draws the conclusions.

2 METHOD

In this section, we propose our approach, DSA(differentiable self-adaptive learning rate). In Sec-
tion 2.1, we declare the motivation of DSA. The algorithm of DSA will be given out in Section 2.2
in detail. Then we will explain how to apply DSA to a training process in Section 2.3

2.1 MOTIVATION

In this section, we discuss the motivation of the proposed approach in detail.

The early optimizer SGD updates parameters as formula 1, and has three major defects. Firstly, the
fixed learning rate in SGD cannot adapt along with the training session. Therefore, it is not sensitive
enough and usually stops convergence in the late stage of training. Secondly, it is slow. gt is always
a small number, so the stride is always small too. As a result, the network converges slowly. Thirdly,
it is unstable, which we call it an oscillation as shown in Figure 6. A slightly larger learning rate
may cause parameter crosses extreme point repeatedly.

θ = θ − η ∗ gt (1)

Many optimizers have been proposed to solve these problems. Among them, Adam is one of the
most stable and efficient as formula 2. In the formula, θ is network’s parameter, and gt is its gra-
dient in t-th step. mt represents the first-order momentum of gradient, and vt is the second-order
momentum. η is the learning rate, and ε is an infinitesimal to avoid being divided by zero.

mt = β1 ∗mt−1 + (1− β1) ∗ gt
vt = β2 ∗ vt−1 + (1− β2) ∗ g2t
θ = θ − η ∗ mt√

vt + ε

(2)

Adam substitutes mt for gt to make the parameter of neural network more stable along with the
training session. vt amplifies the update stride reasonably and makes learning rate adaptive in each
epoch. However, unstable occasion still exist commonly especially when θ > η, θ will get into a
long-term oscillation as Figure 6. Additionally, slow convergence always exists after a big oscillation
of parameter, because mt ≈ 0 at that time while vt is still large. Apart from that, updating stride
always steps around learning rate η in the late stage of training and results in failure for further
optimization. In a word, current optimizers are still not sensitive and stable enough.

To make the learning rate significantly sensitive enough and supply more stable optimization,
we propose DSA(differentiable self-adaptive learning rate). In DSA, we design a loss func-
tion L̃(η) with learning rate η as its independent variable. η is differentiable with the goal of
min L̃(η).Therefore, we can use the gradient of learning rate to update the learning rate to make
it more sensitive. We will give the details of DSA in section 2.2.

2.2 DSA ALGORITHM

In this section, we firstly introduce the basic idea of DSA and then perform three progressive opti-
mizations to basic DSA.

2



Under review as a conference paper at ICLR 2022

2.2.1 BASIC ALGORITHM

Our target is to make learning rate differentiable to get more sensitive and stable optimizer. To
achieve this, we design a two-step training and we will talk about it in the following.

Figure 1: A decomposition diagram of the optimization process within Epoch

In DSA, the training of each epoch consists of two steps as shown in Figure 1. The first
step is performed with the goal of minθ L(θ). The second step is performed with the goal of
minη L̃(η), L̃(η) , L(θ − η ∗ g(θ)). After the first step, we get a temporary variable θ̃, θ̃ ,
θ − η ∗ g(θ). Actually, θ̃ is a function with learning rate η as its only variable. Therefore, we
have the second step rather than assigning θ0−η ∗g0 to θ1 immediately to take further optimization.

The second step is the core of DSA. Through this step, we achieve two goals. Firstly, the learning
rate is differentiable, because η is a variable of L̃(η). It means that learning rate can be adaptive
to minimize the loss function directly. Therefore, the learning rate will be extremely sensitive.
Secondly, the loss function can be optimized further. After the second step, we haveL(θ1−η1∗g1) <
L(θ0 − η0 ∗ g0). Actually, L(θ0 − η0 ∗ g0) is the result of SGD, so further optimization is achieved.

When using gradient descent to solve the second step, we will get learning rate’s gradient∑
θ,θ̃(−g(θ̃) ∗ g(θ)) through derivation in Appendix A. Then iterative equations of DSA can be

summarized as formula 3. g(θ) represents gradient of θ with the goal of minθ L(θ). β controls
the update stride of learning rate η. In the formula, θ̃ = θ − η ∗ g(θ) corresponds to the goal of
minθ L(θ) and η = η − β ∗

∑
θ,θ̃(−g(θ̃) ∗ g(θ)) corresponds to the goal of minη L(θ − η ∗ g(θ)).

And finally, parameter θ is updated according to θ = θ − η ∗ g(θ).

θ̃ = θ − η ∗ g(θ)

η = η − β ∗
∑
θ,θ̃

(−g(θ̃) ∗ g(θ)), β > 0

θ = θ − η ∗ g(θ)

(3)

In basic DSA, we use a uniform learning rate for each network’s parameter. Actually, these param-
eters usually have different requirements for learning rate, because they often need to be updated at
different speeds. Therefore, we make learning rate parameter specific in the following Section 2.2.2.

2.2.2 PARAMETER SPECIFIC LEARNING RATE

In this section, we solve parameter’s individual needs for learning rate. To achieve it, we assign a
specific learning rate for each parameter. In the following, we first declare the change to iterative
equations of DSA, then visualize and explain the process of adapting learning rate in DSA in detail.

If learning rate is specific for each network’s parameter, then the gradient of parameter θ should be
changed from

∑
θ,θ̃(−g(θ̃) ∗ g(θ)) to −g(θ̃) ∗ g(θ). Accordingly, iterative equations of DSA should

be changed to formula 4. According to formula 4, if g(θ̃) ∗ g(θt−1) > 0, the learning rate η should
increase. Otherwise, η should decrease.

3



Under review as a conference paper at ICLR 2022

Learning rate increases Learning rate decreases

Figure 2: Visualization of learning rate adaptation. Parameter arrives at point R from point S after
last iteration and will arrive at point P if we use SGD. S-R-P is track of SGD and S-R-T is track of
DSA. g(θ̃) and g(θ) corresponds to the gradient of parameter at point P and R, respectively.

θ̃ = θt−1 − ηt−1 ∗ g(θt−1)

ηt = ηt−1 − β ∗ (−g(θ̃) ∗ g(θt−1)), β > 0

= ηt−1 + β ∗ (g(θ̃) ∗ g(θt−1))

θt = θt−1 − ηt ∗ g(θt−1)

(4)

Now we use Figure 2 to explain how the learning rate is adaptive in DSA based on formula 4. In
the left example, P still haven’t reached the extreme point, so learning rate should increase at R. In
this case, formula 4 also indicates that learning rate should increase because g(θ̃) ∗ g(θ) > 0. In the
right example, P has crossed the extreme point, so learning rate should decrease at R to avoid that.
In this case, formula 4 also indicates that learning rate should decrease because g(θ̃) ∗ g(θ) < 0.
From both of the two examples, we can conclude that learning rate in DSA is adaptive reasonably.

Even though the learning rate is now parameter specific, DSA can still not deal with the grad loss
because ηt ∗ g(θt−1) may be very small sometimes. And we will solve it in Section 2.2.3.

2.2.3 EXPONENTIAL LEARNING RATE

In this section, we try to solve grad loss in DSA. We first state the change for DSA to solve the grad
loss and then explain why it is reasonable.

Totally, we make two changes to DSA. Firstly, we use exponential the learning rate 2η instead of η.
Secondly, we use g(θ)

|g(θ)|+ε to replace g(θ). ε is an infinitesimal and g(θ)
|g(θ)|+ε ∈ {1, 0,−1}. Then the

iterative equation is changed to formula 5.

θ̃ = θt−1 − 2ηt−1 ∗ g(θt−1)

|g(θt−1)|+ ε

ηt = ηt−1 − β ∗
−g(θ̃) ∗ g(θt−1)

| − g(θ̃) ∗ g(θt−1)|+ ε

θt = θt−1 − 2ηt ∗ g(θt−1)

|g(θt−1)|+ ε

(5)

To solve grad loss, the key is the second change. After this change, the update stride is absolutely
controlled by the learning rate and has nothing to do with the value of gradient. Then the grad loss

4



Under review as a conference paper at ICLR 2022

can be solved. Additionally, we use exponential learning rate to avoid negative value of learning
rate. Otherwise parameter will move to reverse.

While in practice, the occasions of crossing the extreme point still exist under DSA. The attribution
of these occasions can be divided into two types. One is that learning rate increases so fast that
parameter crosses the extreme point. The other is that the learning rate decreases so slowly that
DSA is not able to avoid crossing the extreme point. It affects the stability of DSA, and we will
solve this problem in Section 2.2.4.

2.2.4 INCREASE SLOWLY AND DECREASE FAST

To reduce occasions where the parameter crosses extreme point, we use a small stride β2 when the
learning rate should increase, and a large stride β1 in the opposite. The reason is as follows. A
small stride can solve the occasion that the learning rate increases too fast and parameter crosses the
extreme point. A large stride can solve the occasion that the learning rate decreases too slowly so
that DSA is not able to avoid crossing the extreme point.

Thus the update equation of learning rate is changed to formula 6. According to formula 6, when
learning rate should increase, g(θ̃) ∗ g(θt−1) is positive, then ∆η equals the small stride β2. When
learning rate should decrease, g(θ̃) ∗ g(θt−1) is negative, then −∆η equals the large stride β1.

ηt = ηt−1 +
β1 + β2

2
∗ g(θ̃) ∗ g(θt−1)

| − g(θ̃) ∗ g(θt−1)|+ ε
+
β2 − β1

2
, β1 > β2 (6)

Through the above three improvement, the learning rate in DSA gets very sensitive, and DSA can
finally take extremely quick and stable optimization. Then we will illustrate the method of applying
DSA to a training process in Section 2.3.

2.3 TRAINING METHOD

In this section, we try to apply DSA to the training sessions to fit both small and large datasets. It is
easy to apply DSA to solve small datasets with updating network after each epoch, which is called
batch training. While for large datasets, it is necessary to divide th dataset into mini-batches and
updating parameters after each mini-batch, which is called mini-batch training.

In the following, we first explain how to apply DSA to solve small datasets with batch training and
then draw the method of dealing with large datasets.

We summarize the process of applying DSA to batch training in Algorithm 1 of Appendix B, which
is a simple application of formula 5 and formula 6.

Now we explain how to solve large datasets with DSA. As described above, the dataset should be di-
vided into multiple mini-batches. We can still update network after reading all the mini-batches just
like a batch training. However, it will be very slow to converge and fail to capture local features of
dataset. If we update parameters after each mini-batch, i.e. mini-batch training, the neural network
can capture local features of dataset well and take faster optimization because of more backward
propagation than batch training. However, the mini-batch training always fails to capture global
features of dataset due to the excessive attention to the latest mini-batch in each optimization.

A more effective training method is a mix of them. We first train a model for several epochs with
mini-batch training to capture the local features. Then we use batch training to train the model
continually. In this way, both local features of datasets and global features will be captured. For the
second stage, the optimizer should be able to have neural network converge fast in as few epochs as
possible. Otherwise, the local features will faded out along with batch training. There is no doubt
DSA is the best option for the second stage. As for the first stage, we choose Adamax as optimizer.
Adamax shows a stable performance in some cases as discussed in Kingma & Ba (2014), which can
be seen in our experimental result, too.

5



Under review as a conference paper at ICLR 2022

3 EXPERIMENT

To verify the performance of the proposed approaches, we conduct extensive experiments. In this
section, we first introduce the basic settings necessary for experiments in Section 3.1. Then we will
show the results and take analyses in Section 3.2. Nextly, two case studies will be conducted in
Section 3.3. Finally, we will take sensitivity analysis for DSA and put the result and analyses in
Appendix H.

3.1 EXPERIMENT SETTING

Dataset We applied DSA to FMP (Graham, 2014), DNN (Kunihiko & Fukushima, 1980; Lecun
& Bottou, 1998) and MLP (Gardner & Dorling, 1998). On FMP, we choose the well known and
widely used validation datasets MNIST (LeCun & Cortes, 2010), SVHN (svh, 2011), CIFAR10 and
CIFAR100 (Krizhevsky et al., 2009). On MLP, we choose iris, wine, car and agaricus-lepiota2 as
validation data set, since they are distinguishable to different optimizers. The basic information of
these datasets is shown in Appendix C.

Baseline According to the different optimizer’s features, we choose the following 8 optimizers as the
competitors, i.e., SGD (Lemaréchal, 2012), Momentum (Sutskever et al., 2013b), AdaGrad (Duchi
et al., 2011), AdaDelta (Zeiler, 2012), RMSProp (Graves, 2013), Adam (Kingma & Ba, 2014),
Adamax (Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2017). These optimizers are
designed to solve different problems in the early optimizer. Among them, SGD is the early optimizer.
Momentum is a speed-up optimizer. Others are learning rate adaptive optimizers.

Metrics We recorded the following metrics of the classifier to measure the effect of different opti-
mizers from different perspectives, i.e., accuracy, F1-score, recall and precision of a trained neural
network (Pedregosa et al., 2011). Additionally, the loss sequence along with training session is also
recorded to demonstrate the convergence effect.

Implementations FMP is designed with reference to Graham et al. (2018); Graham & van der
Maaten (2017) as the structure of FMP is visualized in Appendix D. DNN is designed with refer-
ence to Kunihiko & Fukushima (1980); Lecun & Bottou (1998); Behnke & Sven (2003) and we
set channel size as a small value to simplify the model to make it more sensitive to be used to dis-
tinguish different optimizers’ convergence speed. MLP sequences 5 fully connected layers. The
output feature dimensions of each layer are: 32, 64, 256 and 128. The output of the first and third
layers are processed using sigmoid activation. The output of the second and the fourth layers are
processed by prelu activation (He et al., 2015). The features output by the neural network are pro-
cessed by log softmax activation and cross-entropy loss function. For FMP, the batchsize of MNIST,
SVHN, CIFAR10, CIFAR100 is 64, 64, 128, 256 respectively, and the training epochs(T1, T2) is set
as (50,15), (75,15), (75,15), (50,15) respectively. For DNN, the batchsize of MNIST, SVHN, CI-
FAR10, CIFAR100 is 64, 64, 64, 32 respectively, and the training epochs(T1, T2) is set as (15,15).
For MLP, epochs is set as 100. For DSA, η0 is set as -12, β1 is set as 0.6, and β2 is set as 0.3. For
SGD, the learning rate is set as 0.01. For Momentum, β is set as 0.9, and the learning rate is set
as 0.01. The remaining hyper-parameters of optimizers use the built-in values (Paszke et al., 2019).
Our experiments are conducted on GTX 3090 GPU for FMP and GTX 3060Ti GPU for the others.

3.2 EXPERIMENTAL RESULTS

In this section, we show the results of three groups of experiments. Firstly, we apply DSA to the
large convolution network FMP to show that DSA is able to optimize complex model in short epochs.
Secondly, we apply DSA to a lightweight and sensitive convolution network DNN and compare it
with other benchmark optimizers to show the superiority of DSA in speed and performance. Thirdly,
we apply DSA to MLP to show the performance of DSA in batch training compared with baselines
and the ability to process feature datasets.

To show that DSA is suitable for large datasets and complex neural network, we firstly apply DSA
on FMP which is to process four image datasets and record the key metrics. We have not taken
any measures that can additionally enhance the effect of the model, such as data expansion and
dropout, to clearly compare the effect of optimizers. We set the training epoch 90 at most and show

2https://archive.ics.uci.edu/ml/datasets

6

https://archive.ics.uci.edu/ml/datasets


Under review as a conference paper at ICLR 2022

the results in Table 1 after removing optimizers with poor performance. From the results, DSA
achieves an accuracy of 99.73% when FMP is running on MNIST and an improvement of about 8
percentage on CIFAR100 compared to Adamax. Obviously, DSA can deal with large neural network
and datasets in extremely short epochs and still gain extraordinary performance.

Table 1: The results on FMP. Eight different optimizers are tried. Only Adamax and Adam are
competent for this task in short epochs. We have removed useless control group from this table.
ACCU, F1, RC, PCS denotes accuracy, f1-score, recall and precision, respectively.

MNIST SVHN
ACCU F1 RC PCS ACCU F1 RC PCS

Adamax 99.52 99.52 99.52 99.52 95.42 95.11 95.29 94.98
DSA 99.73 99.73 99.73 99.73 96.21 95.95 95.89 96.02
Adam 70.21 69.23 72.56 69.69

CIFAR10 CIFAR100
ACCU F1 RC PCS ACCU F1 RC PCS

Adamax 86.91 86.99 87.17 86.91 51.13 51.09 52.89 51.13
DSA 88.84 88.84 88.86 88.84 59.50 59.63 60.02 59.50

To distinguish these optimizers clearly, we conduct experiments on a lightweight convolution neural
network DNN referencing Kunihiko & Fukushima (1980); Lecun & Bottou (1998); Behnke & Sven
(2003), where more optimizers can converge to a reasonable result in short epochs. Key part of the
results is shown in Table 2, and the details are placed in Appendix E. Further, we visualize the loss
trend along with epoch as Figure 8 of Appendix E. It is easy to see that DSA converges with an
extremely fast speed and touches the limit of DNN far more quickly than any other optimizers.

Table 2: Result on DNN. The four metrics are accuracy, f1-score, recall and precision. In the right
tabular, we stack the result of SVHN and CIFAR100 together. The first three lines are for SVHN
and the others is for CIFAR100.

MNIST
SGD 98.44 98.43 98.43 98.43

Monmentum 95.69 95.65 95.75 95.63
AdaDelta 97.35 97.33 97.37 97.33
AdaGrad 98.48 98.46 98.47 98.46

Adam 97.68 97.65 97.68 97.66
AdamW 98.42 98.41 98.40 98.42
Adamax 98.80 98.79 98.79 98.79

DSA 98.93 98.92 98.92 98.92

SVHN & CIFAR10
AdaDelta 60.42 56.39 57.54 56.69
Adamax 86.52 85.12 85.35 84.97

DSA 87.35 86.18 86.25 86.16
SGD 41.70 40.65 42.50 41.70

Monmentum 43.89 42.21 43.82 43.89
AdaGrad 53.48 53.50 53.69 53.48
Adamax 60.23 59.52 60.00 60.23

DSA 62.15 62.08 62.08 62.15

IRIS WINE CAR AGARICUS

Figure 3: Loss trend on MLP.

We then conduct experiments on four small feature datasets with result in Table 7 of Appendix F
to show the performance of DSA in batch training and processing feature datasets. Among the four
datasets, WINE and CAR are the most discriminative datasets for DSA and other optimizers, where
DSA obtains an increase of about 10 percentage in accuracy and even double performance in f1-
score and recall. Loss trend is visualized in Figure 3 and DSA converges in 50 epochs, 60 epochs, 30
epochs on WINE, CAR, AGAICUS respectively, which is impossible for other optimizers. Further,
we set epoch as 1,000 to see the performance of other optimizers as shown in Figure 4. We can
see that other optimizers stop convergence near 0.1 on IRIS, where only DSA converge to 0. On

7



Under review as a conference paper at ICLR 2022

AGARICUS, DSA use only 1
30 of other optimizer’s epochs to converge to the same level, which

means DSA is 30 times faster than other optimizers.

IRIS WINE CAR AGARICUS

Figure 4: Loss trend on MLP with 1000 epochs.

3.3 CASE STUDY

In this section, we conduct two case studies. The first is a simple regression problem to calculate the
sum of four numbers. The second is a minimization problem.

Loss Trend Track w1

Track w2 Track w3 Track w4

Figure 5: Result on sum of four numbers.

As the first case, we solve a simple regression problem named the sum of four numbers with target
of minw ||w · xT − y||, where w = [w1, w2, w3, w4] ∈ R4. Obviously, the best value of each wi
is 1. We set this case to show the concrete optimization process of each optimizer and compare
the convergence speed and stability among them from a more intuitive perspective. As shown in
Figure 5, Momentum and DSA are the most suitable optimizers for this task. While Momentum
converges quickly but unstable according to the loss trend. Therefore, DSA completes optimization
more quickly. The reason can be seen in the track of w1, where Momentum has a large oscillation
when close to 1 and take many epochs to calm down as shown in Figure 5(Track w1). While DSA
solves this occasion with a quick adaptive of learning rate and quickly converge to 1.

The second case is a minimization of minw1,w2
a ∗ w2

1 + b ∗ w2
2 . We set this case to show the strong

adaptive ability of DSA. On the one hand, the track of (w1, w2) will always have oscillation. The
smaller oscillation is, the stronger adaptive ability is. On the other hand, the change of update stride
in each iteration also reflects the optimizer’s adaptive ability. Our study consists of two groups, one
for SGD and Momentum and the other for RMSProp, AdaGrad, Adam, Adamax and AdamW. In the
first line of Figure 6, SGD has a violent oscillation along w2 before calming down and moving to
target slowly. Momentum also has violent oscillation along both w1 and w2, but it moves faster than
SGD. Far more better than SGD and Momentum, DSA is able to move to the target along a straight

8



Under review as a conference paper at ICLR 2022

line without any visible oscillation. Additionally, the stride continues increasing in the beginning
and decreases quickly in the end. In the second line of Figure 6(details in Appendix G), we select
a hard initial position and observe the tracks. Other adaptive optimizers all experienced a big wave
before calm down, especially for RMSProp and AdaGrad. Adam moves to the target more smoothly,
but the speed is too slow. DSA solves all these questions, with efficiently calming down and quick
movement to the target within short iterations.

DSA SGD Momentum

DSA Adam Adamax

Figure 6: Track visualization. Track starts from (-0.06,0.001), a = 1, b = 1000.

4 RELATED WORK

Stochastic gradient descent (Lemaréchal, 2012) is the most commonly used optimizer. Based on
a fixed learning rate, the gradient itself determines the update stride, which has serious efficiency
problems and is greatly affected by grad loss. Momentum (Sutskever et al., 2013b) speeds up the
training process by adding momentum information. AdaGrad (Duchi et al., 2011) adds two-norm of
historical gradient on the basis of SGD so that the learning rate can be adaptive. That is, it will keep
decreasing in the whole training session. RMSProp (Graves, 2013) introduces second-order momen-
tum to solve the problem that AdaGrad is greatly affected by historical gradients. AdaDelta is also
an adaptive optimizer. Although it does not have the concept of learning rate, it is analogous to New-
ton’s method to find a more accurate stride for each update. Adam (Kingma & Ba, 2014) combines
Momentum and RMSProp, so owns both of their advantages. Based on Adam, AdamW (Loshchilov
& Hutter, 2017) adds a regular term to achieve a better convergence effect. Adamax extends the two
norm to the infinite norm to obtain more stable and concise results. SparseAdam (Kingma & Ba,
2014) is designed to deal with sparse tensors. L-BFGS algorithm (Schmidt, 2005) is more suitable
for large-scale numerical calculations, and has the characteristics of fast convergence of Newton’s
method. ASGD (Sutskever et al., 2013a) is asynchronous stochastic gradient descent, which is
mostly used in large data parallel systems.

5 CONCLUSION & FUTURE WORK

In this paper, we propose the optimizer with truly self-adaptive learning rate for fast and stable con-
vergence.Compared with existing optimizers, DSA has stronger adaptive capabilities and is com-
petent for a variety of machine learning tasks. While this requires a reasonable initial value of the
learning rate and stride size β1 and β2. In addition, in the later stage of training, the learning rate is
still in an active state, which means pointless adaptation. Therefore, how to determine a reasonable
initial value or eliminate the negative influence of the initial value and make the learning rate of
DSA converge stably will be the main issue to be studied next.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Reading digits in natural images with unsupervised feature learning. nips workshop on deep learning
& unsupervised feature learning, 2011.

Behnke and Sven. Hierarchical neural networks for image interpretation. Springer,, 2003.

Richard Courant et al. Variational methods for the solution of problems of equilibrium and vibra-
tions. Lecture notes in pure and applied mathematics, pp. 1–1, 1994.

Haskell B Curry. The method of steepest descent for non-linear minimization problems. Quarterly
of Applied Mathematics, 2(3):258–261, 1944.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer perceptron)—a review
of applications in the atmospheric sciences. Atmospheric environment, 32(14-15):2627–2636,
1998.

Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307, 2017.

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation with
submanifold sparse convolutional networks. CVPR, 2018.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Kunihiko and Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980.

Y. Lecun and L. Bottou. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Claude Lemaréchal. Cauchy and the gradient method. Doc Math Extra, 251(254):10, 2012.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

10



Under review as a conference paper at ICLR 2022

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016. URL http://arxiv.org/abs/1609.04747.

Mark Schmidt. minfunc: unconstrained differentiable multivariate optimization in matlab. Software
available at http://www. cs. ubc. ca/˜ schmidtm/Software/minFunc. htm, 2005.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013a.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013b.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

11

http://arxiv.org/abs/1609.04747


Under review as a conference paper at ICLR 2022

A CALCULATE THE GRADIENT OF LEARNING RATE

According to the description in Section 2.2.1, we have L̃(η) , L(θ−η ∗g(θ)) and θ̃ , θ−η ∗g(θ).
η is learning rate and g(θ) is gradient of θ with the goal of minθ L(θ). Obviously, η’s gradient is
dL̃(η)
dη and we can calculate it with formula 7.

dL̃(η)

dη
=

dL(θ − η ∗ g(θ))

dη

=
dL(θ̃)

dη

=
∑
θ̃

∂L(θ̃)

∂θ̃
∗ ∂θ̃
∂η

=
∑
θ,θ̃

∂L(θ̃)

∂θ̃
∗ ∂θ − η ∗ g(θ)

∂η
· · · θ̃ , θ − η ∗ g(θ)

=
∑
θ,θ̃

g(θ̃) ∗ (
∂(θ − η ∗ g(θ))

∂η
)

=
∑
θ,θ̃

(−g(θ̃) ∗ g(θ))

(7)

B PSEUDO CODE OF DSA WHEN APPLIED TO BATCH TRAINING

Algorithm 1 In Line 2-3, we take once forward and backward propagation to calculate the gradient
for θ̃ which is used for calculating the learning rate’s gradient. In Line 4-5, we compute the learning
rate’s gradient and update the learning rate according to its gradient. In Line 6, we finally update
network’s parameter based on updated the learning rate and gradient calculated in Line 2.
Input: neural network model f(θ0), data set X,y, initial learning rate η0, learning rate update step

size β1 and β2, the number of iterations T , infinitesimal ε
Output: trained neural network model f(θT )

1: for t : 1 7→ T do
2: ŷ ← f(X|θt−1), g(θt−1)← ∇θt−1

. Calculate gradients of θt−1
3: θ̃ ← θt−1 − 2ηt−1 ∗ g(θt−1)

|g(θt−1)|+ε . Calculate θ̃ according to formula 5

4: ŷ ← f(X|θ̃), g(θ̃)← ∇θ̃ . Calculate gradients of θ̃

5: ηt ← ηt−1 + β1+β2

2 ∗ g(θ̃)∗g(θt−1)

|−g(θ̃)∗g(θt−1)|+ε
+ β2−β1

2 . Update learning rate η according to
formula 6

6: θt ← θt−1 − 2ηt ∗ g(θt−1)
|g(θt−1)|+ε . Update network’s parameters according to formula 5

7: end for

12



Under review as a conference paper at ICLR 2022

C META INFORMATION OF DATASETS

Table 3: Dataset information
Dataset #Train/ #Test #Attributes #Class
MNIST 60,000 /10,000 1*28*28 10
SVHN 73,257 /26,032 3*32*32 10
CIFAR10 50,000 /10,000 3*32*32 10
CIFAR100 50,000 /10,000 3*32*32 100
IRIS 120/ 30 4 3
WINE 142/ 36 13 3
CAR 1,382/ 346 6 4
AGARICUS 6,499 / 1,625 116 2

D STRUCTURE OF FMP

We visualize the structure of FMP in Figure 7 supposing the input is a image of 28 × 28. FMP
is composed of 6 convolution block and 1 linear block. Each convolution block ends up with a
fractional maxpool. Each output of a convolution layer is processed by prelu activation.

𝑐𝑜𝑛𝑣	𝑏𝑙𝑜𝑐𝑘!
(64@28×28)

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑣	𝑏𝑙𝑜𝑐𝑘"
(128@28×28)

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑣	𝑏𝑙𝑜𝑐𝑘#
(256@28×28)

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑣	𝑏𝑙𝑜𝑐𝑘$
(256@28×28)

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑣	𝑏𝑙𝑜𝑐𝑘%
(512@28×28)

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑣	𝑏𝑙𝑜𝑐𝑘&
(512@28×28)

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑙𝑖𝑛𝑒𝑎𝑟	𝑏𝑙𝑜𝑐𝑘$
(1024×512×𝑛𝑐𝑙𝑎𝑠𝑠)

𝑖𝑛𝑝𝑢𝑡

Figure 7: Structure of FMP.

13



Under review as a conference paper at ICLR 2022

E RESULTS OF LARGE DATASETS IN DETAIL

Table 4: Dnn MNIST result detail
MNIST

ACCU F1-SCORE RECALL PRECISION

SGD 98.44 98.43 98.43 98.43
Monmentum 95.69 95.65 95.75 95.63

RMSProp 11.35 2.04 1.14 10
Adadelta 97.35 97.33 97.37 97.33
Adagrad 98.48 98.46 98.47 98.46
ADAM 97.68 97.65 97.68 97.66

ADAMW 98.42 98.41 98.4 98.42
ADAMax 99.02 99.02 99.02 99.02

DSA 98.93 98.92 98.92 98.92

Table 5: Dnn SVHN result detail
SVHN

ACCU F1-SCORE RECALL PRECISION

SGD 19.59 3.28 1.96 10
Monmentum 19.59 3.28 1.96 10

RMSProp 19.59 3.28 1.96 10
Adadelta 60.42 56.39 57.54 56.69
Adagrad 19.59 3.28 1.96 10
ADAM 19.59 3.28 1.96 10

ADAMW 19.59 3.28 1.96 10
ADAMax 86.52 85.12 85.35 84.97

DSA 87.35 86.18 86.25 86.16

Table 6: Dnn cifar10 result detail
CIFAR10

ACCU F1-SCORE RECALL PRECISION

SGD 41.7 40.65 42.5 41.7
Monmentum 43.89 42.21 43.82 43.89

RMSProp 10 1.82 1 10
Adadelta 40.52 40.55 43.11 40.52
Adagrad 53.48 53.5 53.69 53.48
ADAM 10 1.82 1 10

ADAMW 10 1.82 1 10
ADAMax 60.23 59.52 60 60.23

DSA 62.15 62.08 62.08 62.15

14



Under review as a conference paper at ICLR 2022

MNIST SVHN CIFAR10

Figure 8: Loss trend on DNN with different optimizers.

F RESULTS OF SMALL DATASETS IN DETAIL

Table 7: Result on MLP with four feature datasets.
IRIS WINE

ACCU F1 RC PCS ACCU F1 RC PCS
SGD 20.00 11.11 06.67 33.33 77.78 56.91 52.70 62.20
Monmentum 20.00 11.11 06.67 33.33 66.67 48.53 44.44 53.57
RMSProp 43.33 20.16 14.44 33.33 44.44 20.51 14.81 33.33
Adadelta 100.0 100.0 100.0 100.0 80.56 59.02 55.19 64.29
Adagrad 100.0 100.0 100.0 100.0 80.56 59.02 55.19 64.29
ADAM 100.0 100.0 100.0 100.0 80.56 59.45 56.52 64.29
ADAMW 100.0 100.0 100.0 100.0 80.56 59.02 55.19 64.29
ADAMax 100.0 100.0 100.0 100.0 83.33 79.10 78.89 80.26
DSA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

CAR AGARICUS
ACCU F1 RC PCS ACCU F1 RC PCS

SGD 69.36 20.48 17.34 25.00 52.43 34.40 26.22 50.00
Monmentum 69.36 20.48 17.34 25.00 52.43 34.40 26.22 50.00
RMSProp 69.36 20.48 17.34 25.00 52.43 34.40 26.22 50.00
Adadelta 69.36 20.48 17.34 25.00 90.34 90.23 90.98 90.05
Adagrad 88.73 59.47 54.83 66.86 99.94 99.94 99.94 99.94
ADAM 77.46 33.05 33.35 33.86 99.94 99.94 99.94 99.94
ADAMW 77.46 33.05 33.35 33.86 99.94 99.94 99.94 99.94
ADAMax 74.28 29.12 30.23 30.38 99.75 99.75 99.76 99.75
DSA 98.55 96.31 97.68 95.08 100.0 100.0 100.0 100.0

15



Under review as a conference paper at ICLR 2022

G RESULTS OF TRACK ADAPTIVE OPTIMIZERS IN DETAIL

DSA RMSPROP AdaGrad

Adam Adamax AdamW

Figure 9: Start from (-0.06,0.001), a = 1, b = 1000

H SENSITIVITY ANALYSIS

In this section, we analyse the effect of different hyper-parameters of DSA. There are 3 hyper-
parameters in DSA, i.e., the initial value of learning rate η0, updating stride β1 and β2. The larger
η0 and β2 is, the faster DSA moves in the beginning. The larger β1 is, the faster DSA converges in
the end. A group of DSA’s tracks with different hyper-parameters are contained in Figure 10. When
η0 or β2 increases, the convergence will speed up because of larger stride. When β1 increases, the
convergence will speed up because of the stronger adaptive capacity.

η0 = −12, β1 = 0.6, β2 = 0.3 η0 = −9, β1 = 0.6, β2 = 0.3 η0 = −6, β1 = 0.6, β2 = 0.3

η0 = −12, β1 = 0.6, β2 = 0.6 η0 = −12, β1 = 0.9, β2 = 0.3 η0 = −12, β1 = 0.3, β2 = 0.3

Figure 10: Start from (-1,1), a = 1, b = 95

16


	Introduction
	Method
	Motivation
	DSA algorithm
	Basic algorithm
	Parameter specific learning rate
	Exponential learning rate
	Increase slowly and decrease fast

	Training method

	Experiment
	experiment setting
	Experimental results
	case study

	Related work
	Conclusion "3026  Future work
	Calculate the gradient of learning rate
	Pseudo code of DSA when applied to batch training
	Meta information of datasets
	Structure of FMP
	Results of large datasets in detail
	Results of small datasets in detail
	Results of track adaptive optimizers in detail
	sensitivity analysis

