
Under review as a conference paper at ICLR 2024

RETINEXGAN ENABLES MORE ROBUST LOW-LIGHT
IMAGE ENHANCEMENT VIA RETINEX DECOMPOSI-
TION BASED UNSUPERVISED ILLUMINATION BRIGHT-
ENING

Anonymous authors
Paper under double-blind review

ABSTRACT

Most existing image enhancement techniques rely heavily on strict supervision
of paired images. Moreover, unsupervised enhancement methods also face chal-
lenges in achieving a balance between model performance and efficiency when
handling real-world low-light images in unknown complex scenarios. Herein, we
present a novel low-light image enhancement scheme termed RetinexGAN that
can leverage the supervision of a limited number of low-light/normal image pairs
to realize an accurate Retinex decomposition, and based on this, achieve brighten-
ing the illumination of unpaired images to reduce dependence on paired datasets
and improve generalization ability. The decomposition network is learned with
some newly established constraints for complete decoupling between reflectance
and illumination. For the first time, we introduce the feature pyramid network
(FPN) to adjust the illumination maps of other low-light images without any su-
pervision. Under this flexible framework, a wide range of backbones can be em-
ployed to work with illumination map generator, to navigate the balance between
performance and efficiency. In addition, a novel attention mechanism is integrated
into the FPN for giving the adaptability towards application scenes with different
environment like underwater image enhancement (UIE) and dark face detection.
Extensive experiments demonstrate that our proposed scheme has a more robust
performance with high efficiency facing various images from different low-light
environments over state-of-the-art methods.

1 INTRODUCTION

Image enhancement is a vital data preprocessing technology which can improve the image quality
and strengthen the image interpretation and recognition performance. It has multifarious applica-
tions ranging from underwater target detection Islam et al. (2018); Yu et al. (2020); Bernardi et al.
(2022), low light face recognition Wang et al. (2008) and scene understanding Dvornik et al. (2019);
Mottaghi et al. (2015); Nauata et al. (2019), etc. However, those application scenarios are all vul-
nerable to external lighting conditions and they also have many open challenges. Hence, image
enhancement is a necessary data preprocessing means to ameliorate the visual quality of the im-
ages directly received from vision sensor so as to realize a significant improvement the capability of
visual information perception.

However, there are many problems in existing image enhancement researches. For traditional meth-
ods like Land & McCann (1971); Jang et al. (2012); Li et al. (2018); Gilboa et al. (2004); Bettahar
et al. (2011), it will be more time-consuming to process each image, so there is no way to achieve
the enhancement for large-scale images in batches quickly which further limits the potential appli-
cation of those traditional enhancement algorithms in many popular fields. The supervised learning
based methods like Lore et al. (2017); Chen Wei (2018); Zhang et al. (2021); Moran et al. (2020)
alleviates the problem of timeliness in traditional methods to some extent. Yet they need sufficient
number of paired images to learning the mapping rules and they are usually trained by synthetic
corrupted images which are usually not photo-realistic enough, leading to various artifacts when the
trained model is applied to real-world low-light images in different environment. As for the existing

1



Under review as a conference paper at ICLR 2024

0.00 0.02 0.04 0.06 0.08 0.10

0

20

40

60

80

100

120

140

F
L

O
P

s(
G

)

Time(s)

0.5

3.2

5.9

8.6

Size(M)

EnlightenGAN KinD

RetinexNet

RetinexGAN*

Zero-DCE

(3) Raw images(2) EnlightenGAN TIP2021

(4) Zero-DCE CVPR2020

(1) RetinexNet BMVC2018

(5) KinD IJCV2021 (6) RetinexGAN*

(a) Comparision of enhanced results (b) Computation efficiency

Figure 1: This figure shows the enhanced version of low light image from different algorithms and
their computation efficiency. It indicate that the balance between model performance and efficiency
is hard to navigate for those existing works.

unsupervised methods Jiang et al. (2021); Li et al. (2021); Ma et al. (2022); Liu et al. (2021), they
all suffer from the difficulty in balancing between model performance and efficiency when handling
real-world low-light images in wild environment. We show some enhancement examples of existing
state-of-the-art methods in Figure 1. More discussion on related work is provided in the Appendix.

To address the aforementioned challenges, we propose a novel semi-supervised illumination bright-
ening framework, referred to as RetinexGAN, which is designed on the basis of Retinex decom-
position. This approach aims to achieve a well-balanced performance and efficiency, while also
offering flexibility in low-light image enhancement by utilizing lightweight CNNs for data-driven
Retinex decomposition and FPN with different kinds of pretrained backbones for down-sampling
in illumination generation. In conclusion, the contributions of this paper are three-fold. (1) We
design a lightweight CNN model to realize the data-driven Retinex decomposition. The decomposi-
tion model is learned with some vital constraints including the consistent reflectance and consistent
contrast shared by paired low/normal-light images, domain translation constancy and feature con-
stancy of reflectance in high dimension mapped by VGG19. (2) We, for the first time, present a
novel utilization of the FPN with a diverse array of backbones and unsupervised training loss with
spatial attention mechanisms is defined to brighten the illumination maps, endowing the adaptation
capability towards diverse application scenes with different exposure levels. (3) We undertake com-
prehensive experiments to elucidate the superiority of our approach in comparison to other state-of-
the-art methods. Our evaluation encompasses diverse image datasets, encompassing both synthetic
and real world low light images, serving as test samples to corroborate the robustness coming up
against various images in different scene and capacity of our method to maintain a balance between
performance and efficiency across various low-light scenarios.

2 METHODOLOGY

In this section, we first introduce the data-driven Retinex decomposition module with novel learning
constraints which can provide prior information for lateral illumination adjustment. Then we con-
tinue to describe the FPN based illumination generator with novel spatial attention mechanism and
its non-reference loss function is also presented.

2.1 NETWORK ARCHITECTURE

Deep Decomposition Network: Detailed information about deep decomposition network in this
paper please refer to Appendix.

Illumination Generator: We use the pretrained backbones like Inception-ResNet-v2 and Mo-
bileNet to complete down sampling. As shown in Fig.2, the size of the five feature maps are set
to 1

2 , 1
4 , 1

8 , 1
16 and 1

32 of the input image. The feature maps with 1
4 , 1

8 , 1
16 and 1

32 size of the in-
put image are then concatenated into one tensor to reconstruct the parameter maps in higher spatial
resolution. Moreover, we use a Sigmoid activation function to constrain the output of the model.
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Figure 2: The framework of RetinexGAN. The RetinexGAN contains a deep decomposition net-
work, an illumination generator (discriminator for training). The deep decomposition network is
designed to realize the data-driven Retinex decomposition and the illumination generator is estab-
lished for adjusting the illumination maps of low-light images that are utilized to synthesize the final
enhanced results.

To effectively address potential issues related to overexposure in the generated illumination maps,
we have integrated spatial attention mechanisms post the output layer. Moreover, to enhance the
model’s generalization capacity, we have introduced global residual connections into the architec-
ture. These methodological enhancements serve to bolster the overall performance and robustness
of the model.

Global Discriminator: Detailed information about discriminator in this paper please refer to Ap-
pendix.

2.2 DATA-DRIVEN RETINEX DECOMPOSITION

Our method is founded upon the Retinex model, which elucidates the constitution of a image:

Ix/y = Rx/y ⊗ Lx/y (1)

where Ix, Iy represent the images in the underexposure domain and normal-exposure domain. Rx,
Ry denote the reflectance of Ix and Iy . Lx, Ly denote the illumination of Ix and Iy . And ⊗ stand
for the element-wise multiplication.

The data-driven Retinex decomposition is realized by learning the potential mapping rules through
paired images. To address this issue, we have devised a set of carefully crafted constraints to effec-
tively steer the optimization trajectory of the model.

Reconstruction Constraints: In the context of the traditional Retinex theory, it is postulated that
any given image can be effectively disentangled into two distinct components, namely the reflectance
and the corresponding illumination maps. This fundamental property allows for the reconstruction
of the original image, irrespective of whether it is underexposed or not. Thus we can formulate the
most basic constraints as follows.

Lr = ||Rx ⊗ Lx − Ix||1 + ||Ry ⊗ Ly − Iy||1 (2)

Domain Translation Constraints: As per the traditional Retinex theory, the domain translation of
images can be accomplished by exchanging illumination maps. In our research, we aim to ensure
that the decomposition results retain this intrinsic attribute throughout our proposed approach. It
corresponds roughly to the self-reconstruction loss which can be expressed as follows.

Ldo = ||Rx ⊗ Ly − Iy||1 + ||Ry ⊗ Lx − Ix||1 (3)

Reflectance Feature Constancy Constraints: We hope to ensure consistency between the re-
flectance of low light images and their corresponding images in the normal-exposure domain, while
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simultaneously preserving consistency with the features of their respective source images in high-
dimensional space. Thus we design the reflectance feature constancy constraints expressed as fol-
lows.

Lf = ||Rx − Ry||1 +
∑
i∈C

λi (||ϕi (Rx)− ϕi (Ix) ||1 + ||ϕi (Ry)− ϕi (Iy) ||1) (4)

where ϕi denotes the feature maps from the i-th feature layer in the VGG19 pretrained on ImageNet.
C represents the set of the index of feature layer that can be formulated as C = {2, 7, 12, 21, 30}.
Contrast Consistency Constraints: The contrast ratios of reflectance maps are also essential is-
sues to improve their visual quality. We design this loss term to encourage the reflectance maps
to maintain the same contrast as images in the normal-exposure domain. It can be represented as
follows.

Lc =

Np∑
i=1

∑
j∈Ωi

(
Ri

y − Rj
y

)2
Np

−
Np∑
i=1

∑
j∈Ωi

(
Ri

x − Rj
x

)2
Np

(5)

where Np represent the number of pixels in the image. Ωi denote the set of eight pixels around
pixel i (shown in Supplementary materials). Ri

y and Ri
x represent the pixels of the reflectance maps

obtained from images in the normal-exposure domain and images in the underexposure domain.

Total Variation Constraints: In our work, we further modified the weighted TV loss to refine the
demand for gradients in the strong edge parts of the illumination maps to prevent the generation of
black edges in the corresponding reflectance maps. It can be expressed as follows.

Ltv = |∇Ly +∇Lx| exp (−λs max (∇Rx,∇Ry)) (6)

Accordingly, we can derive the total constraints as follows.

L =WrLr +WdoLdo +WcLc +WfLf +WtvLtv (7)

whereWr,Wdo,Wc,Wf andWtv are weights of those constraints.

(a-1) source image  (b-1) source image (b-2) attention map(a-2) attention map  (c-1) source image (c-2) attention map

Figure 3: We have shown three groups of low-light images and their attention maps. The spatial
attention mechanism assigns lower attention values to the brighter regions in the source image,
while assigning higher attention values to the darker regions.

2.3 ILLUMINATION BRIGHTENING WITHOUT SUPERVISION

The spatial attention mechanism and non-reference losses proposed by us play a pivotal role in
achieving unsupervised optimization for illumination adjustment. Herein, we will delve into the
detailed exposition of these two components.

2.3.1 SPATIAL ATTENTION MECHANISM

As shown in Fig.2, we have designed a attention map to suppress local overexposure and local
underexposure in the final enhanced results. First, the low-light image Ix is transformed into Hue,
Saturation, Value (HSV) space and we let VIx define the value channel of Ix in HSV space. The
attention map can be designed as follows.

Ax = exp (−2VIx) (8)
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Some illustrations of our proposed spatial attention mechanism have been shown in Fig.3. This
design allows our proposed model to prioritize attention on the darker regions of the image, while
making minimal adjustments to areas with normal brightness. This aspect holds significant im-
portance, particularly for low-light images exhibiting uneven illumination distributions. And more
importantly, our proposed spatial attention mechanism can endow our model with the capability to
adapt to diverse scenes with different exposure levels as mentioned above.

2.3.2 NON-REFERENCE LOSS FUNCTION

Since this learning process don’t have any supervision of paired images, we need to design a differ-
entiable non-reference loss function to evaluate the quality of final enhanced results.

Brightness Control Loss: The average pixel value of each region can reflect the its illumination
intensity. We use the average pooling operation to calculate the mean value of a specific region in
the illumination map. The kernel size of the average pooling is denoted as Kb. The loss term can be
formulated as follows.

Bmean = AvgPoolingKb
(Lx) , Jb = ∥Bmean −Br∥2 (9)

where Br ∈ (0, 1) represent a reference average pixel value.

Feature Retention Loss: We hope the generator to produce an illumination map that preserves the
fine details present in the illumination map of the source image. Thus the loss term can be expressed
as follows.

Jf =
∑
i∈C

γi||ϕi

(
L̂x

)
− ϕi (Lx) ||1 (10)

where L̂x represent the output of illumination generator. ϕi denotes the feature maps from the i-th
feature layer in the VGG19 pretrained on ImageNet. And the setting of C is the same as that in
Eq.(4).

Attention Loss: To mitigate the occurrence of overexposure and underexposure, our objective is to
allocate higher pixel increments ∆Lx = L̂x−Lx to low-intensity regions, while applying lower in-
crements to high-intensity regions. This approach ensures a balanced enhancement of image bright-
ness across varying illumination levels. We use cosine similarity to express this loss term as follows.

Ja =

(
1− (vec (∆Lx))

T
vec (Ax)

∥vec (∆Lx) ∥2∥vec (Ax) ∥ 2

)
(11)

Adversarial Loss: This loss term is purposefully formulated to guide the generator towards gener-
ating illumination maps to synthesize a fake image that exhibits a similar level of realism compared
to real images. It can be formulated as follows.

Jadv = (D (If )− 1)
2 (12)

where D denotes the forward function of the global discriminator. If = Rx ⊗ L̂x represents the
synthetic images.

Finally, the total loss function can be expressed as:

J = ObJb +OfJf +OaJa +OadvJadv + L (13)

where Ob, Of , Oa and Oadv are positive constant which serve as the weights of the loss terms.

3 EXPERIMENTS

In this section, we will introduce the experimental results of our proposed RetinexGAN framework.
In Section 3.1, the implementation details including the structural setting, learning parameters set-
ting of our proposed method are elaborated to make our algorithms easier to be followed. Then in
Section 3.2 we carry on an ablation study on the RetinexGAN. Third in 3.3, benchmark evaluation of
the entire proposed enhancement framework is shown to the readers which involves qualitative ex-
periments through visual and perceptual comparisons and quantitative experiments through quality
evaluation metrics comparison.
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(a) source image  (c) (d)(b)  (e) (f)

Figure 4: Visual comparison from the ablation study (contribution of losses) of RetinexGAN. Row
1 (Column (b)-Column (f)) display the final enhanced results. Row 2 (Column (b)-Column (f)) are
the adjusted illumination maps generated by illumination generator. Column (a) shows the source
image (Row 1) and its illumination maps (Row 2). (b) RetinexGAN. (c) w/o Ja. (d) w/o Jadv . (e)
w/o Jf . (f) w/o Jb

3.1 IMPLEMENTATION DETAILS

The training images in LOL dataset Chen Wei (2018) is employed to train the deep decomposition
network for learning the mapping rules of Retinex decomposition. Besides, we employ 500 low-
light images and 500 normal-exposure images from the SCIE dataset (Part 1) Cai et al. (2018) to
train the unsupervised illumination generator model. All those training images are resized to the
size of 480× 640× 3.

We implement our framework with Pytorch on one NVIDIA RTX 3090 GPUs. The batch size in
training is set to be 2. The kernel weights and bias of each layer in the models (except for the down-
sampling in FPN) are initialized with standard zero mean and 0.1 standard deviation. Downsampling
operations in FPN are initialized by different pretrained backbones (e.g., Inception-ResNet-v2 and
MobileNet). We freeze their parameters in the first 5 training steps. The optimizer used in our
framework are all Adam optimizers with default parameters and fixed learning rate 0.0001. The
weight parameters are set to be Wr = 1, Wdo = 0.001, Wc = 0.1, Wf = 0.2, Wtv = 0.1,
Oc = 50, Ob = 15, Otv = 150, Ocol = 5. The pseudo codes of training process is provided in the
Appendix.

3.2 ABLATION STUDY

(c)

(b)

(a)

Figure 5: Visual comparison from the ablation
study (contribution of attention map) of Retinex-
GAN. (a): RetinexGAN. (b): w/o Ax. (c): Input.
Please zoom in view to see the details.

Contribution of Each Loss. We show the vi-
sualization results of the contribution of each
loss in ablation study in Figure 4 and Figure 9
(see it in Appendix). It can be seen that the
brightness of some regions (red box marking)
in the results without Ja has not been fully im-
proved. This shows the importance of attention
loss in enhancing images with uneven bright-
ness distribution. The adversarial loss Jadv is
designed to make the synthesized image more
realistic. The results without Jadv have lower
visual quality than the full results. Severe loss
of texture details in the adjusted illumination
maps occurs in the results without Jf . Finally,
removing the brightness control loss Jb ham-
pers the restoration of low light regions to nor-
mal exposure levels.

Contribution of Attention Map. We evalu-
ate the impact of our designed spatial attention
mechanism. The visual comparison is given in
Figure 5. Images in Row (b) suffer from severe color distortion and overexposure/underexposure
issues. Particularly in column 3, it is observed that the results obtained from RetinexGAN without
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Ax exhibit both color distortion and overexposure, leading to the loss of fine texture details in the
image.

Selection of Pretrained Backbones. The pretrained backbones in the FPN based illumination gen-
erator are essential to adjust the illumination maps of the low light images. We present the results
of the impact on the selection of pretrained backbones in Table 4. Although the Inception-ResNet-
v2 backbone can obtain enhanced images with better quality evaluation metrics, it has a large size
of trainable parameters and FLOPs. On the other hand, the results from MobileNet have the sec-
ond best evaluation metrics. It is of significance to note that while the enhanced images achieved
by MobileNet exhibit a minor disparity in comparison to those yielded by Inception-ResNet-v2, the
MobileNet notably presents a substantial reduction in computational load and inference time in con-
trast to the Inception-ResNet-v2. Both of the DenseNet and SENet backbones have large number of
parameters and high computational complexity, yet their performance is weaker than the MobileNet
and Inception-ResNet-v2. Hence, the adoption of the MobileNet backbone facilitates our proposed
RetinexGAN in attaining a commendable balance between performance and efficiency.

(b) RetinexGAN* (c) EnlightenGAN (d) Zero-DCE++ (e) SCI-difficult (f) RUAS-dark (g) DeepLPF(a) Input

Figure 6: Visual comparison from the benchmark evaluation (LSRW dataset, GladNet dataset). We
have zoomed in view of some regions of interest to analyze the enhanced results in details.

(c) RUAS-dark (d) RUAS-lol (e) RUAS-upe (f) EnlightenGAN (g) Zero-DCE++(b) RetinexGAN*

(h) SCI-difficult (i) SCI-medium (j) SCI-easy (k) LIME (l) RetinexNet (m) DeepLPF (n) KinD++

(a) Input

Figure 7: Visual comparison from the benchmark evaluation (VV dataset).

3.3 BENCHMARK EVALUATIONS

We use many challenging low light image from LSRW Hai et al. (2023), NPE Wang et al. (2013),
MEF Ma et al. (2015), VV1, GladNet, ExDark Loh & Chan (2019), HDR Kalantari & Ramamoorthi
(2017) dataset in this subsection. The algorithms participating in the benchmark evaluation can be
divided into traditional method (LIME Guo et al. (2016)), supervised learning (DeepLPF Moran
et al. (2020), RetinexNet Chen Wei (2018), KinD++ Zhang et al. (2021)) and unsupervised learning
(EnlightenGANJiang et al. (2021), Zero-DCE++ Li et al. (2021), RUAS Liu et al. (2021), SCI Ma
et al. (2022)). The comparative experiments are mainly conducted through qualitative analysis of
visual perception, quantitative analysis of evaluation metrics and face detection in dark.

1https://sites.google.com/site/vonikakis/datasets

7



Under review as a conference paper at ICLR 2024

Visual and Qualitative Comparisons: Figure 6 shows the enhanced results from those recent re-
searches and our RetinexGAN. The RUAS-dark Liu et al. (2021) can induce pronounced overexpo-
sure problems when engaged in the processing of low light image enhancement, subsequently culmi-
nating in the diminishment of feature details. From the enhanced results in the third row we can find
that the enhancement effect of some unsupervised methods like EnlightenGAN Jiang et al. (2021)
and Zero-DCE++ Li et al. (2021) in crucial low-light regions is not pronounced, and the restora-
tion of pedestrian facial attributes remains insufficient. Unfortunately, the SCI-difficult Ma et al.
(2022) method produces color deviation when restoring low light images. Regarding the DeepLPF
Moran et al. (2020) scheme, although it demonstrates commendable performance in handling partic-
ular low-light images, its generalization capacity is limited due to its inability to effectively recover
textural details from darker regions.

Table 1: Quantitative Comparison With State-of-the-Arts on the NPE, MEF, VV Datasets. (The best result is
in red whereas the second best one is in blue under each case.)

Datasets LOL LSRW MEF
Paired UnPaired Paired UnPaired Paired UnPaired

✔ ✘ ✔ ✘ ✘ ✔

Metrics PSNR↑SSIM↑NIQE↓PSNR↑SSIM↑NIQE↓CEIQ↑PIQE↓NIQE↓

SCI (Ma et al. (2022)) 18.41 0.682 7.35 13.82 0.635 8.88 4.06 29.736 7.63
LIME (Guo et al. (2016)) 17.22 0.724 6.24 14.78 0.661 6.12 3.66 30.720 6.19

RetinexNet (Chen Wei (2018)) 15.99 0.718 6.08 14.37 0.665 7.86 3.75 30.738 5.82
RUAS (Liu et al. (2021)) 12.08 0.651 8.93 11.20 0.620 10.64 2.32 33.820 10.08

KinD++ (Zhang et al. (2021)) 9.31 0.565 11.25 8.91 0.552 10.53 2.11 38.351 9.96
EnlightenGAN (Jiang et al. (2021)) 19.13 0.745 5.86 15.89 0.694 6.33 4.33 29.756 4.41

Zero-DCE++ (Li et al. (2021)) 18.67 0.740 5.44 16.05 0.706 6.15 4.22 29.747 4.67
DeepLPF (Moran et al. (2020)) 10.35 0.582 9.02 9.98 0.554 10.02 1.77 36.576 8.25

RetinexGAN 18.82 0.763 4.98 16.57 0.705 6.08 4.45 27.768 4.35

Underwater images RetinexGAN* EnlightenGAN Zero-DCE SCI-difficult RUAS-dark

Figure 8: Application results in underwater image enhancement.

Another visualization results with respect to VV dataset are shown in Figure 7. We present test
results for more methods in Figure 7. The RUAS approaches Liu et al. (2021) (RUAS-dark, RUAS-
lol) have the same problem as it shows in Figure 6. The detailed features in the background are blurry
due to excessive exposure. Compared to the RUAS-dark, RUAS-lol and RUAS upe Liu et al. (2021)
exhibits completely opposite performance. The EnlightenGAN Jiang et al. (2021) and Zero-DCE++
Li et al. (2021) have similar performance. The brightness of regions highlighted by red bounding
boxes are significantly insufficient. The performance of SCI-difficult is relatively better than that of
SCI-medium and SCI-easy Ma et al. (2022). However, by observing the highlighted regions in the
red bounding boxes, it can be observed that the brightness and saturation of its colors are not as good
as those of RetinexGAN. The enhanced result from traditional LIME Guo et al. (2016) method also
illustrate that there exists some regions with color distortion and artifacts in it. Supervised learning
based methods like DeepLPF Moran et al. (2020) and KinD++ Zhang et al. (2021) all fail to restore
images with normal-exposure from dark areas. The RetinexNet performs, on the whole, much better
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than DeepLPF Moran et al. (2020) and KinD++Zhang et al. (2021). But we still can find some
obvious black edges on the edges of objects in the enhanced image through observing highlighted
regions. More testing results on other datasets can be found in Appendix (Figure 10-Figure 13).

Table 2: mAP for Face Detection in the Dark Under Different
IoU Thresholds (The best result is in red whereas the second best
one is in blue under each case.)

Methods IoU thresholds

0.5 0.7 0.9

SCI Ma et al. (2022) 0.1925 0.0682 0.00134
LIME Guo et al. (2016) 0.1768 0.0544 0.00108

RetinexNet Chen Wei (2018) 0.1962 0.0623 0.00131
RUAS Liu et al. (2021) 0.1722 0.0620 0.00129

KinD++ Zhang et al. (2021) 0.1138 0.0324 0.00091
EnlightenGAN Jiang et al. (2021) 0.2075 0.0724 0.00165

Zero-DCE++ Li et al. (2021) 0.2191 0.0783 0.00174
DeepLPF Moran et al. (2020) 0.1556 0.0521 0.00107

RetinexGAN 0.2183 0.0813 0.00176

Quantitative Comparisons: In the
following, we quantitatively compare
our proposed RetinexGAN with
various state-of-the-art enhancement
methods using image evaluation
metrics. For full-reference image
quality assessment, we employ the
Peak Signal-to-Noise Ratio (PSNR,
dB), Structural Similarity (SSIM),
Natural Image Quality Evaluator
(NIQE), contrast enhancement based
contrast-changed image quality
measure (CEIQ) Yan et al. (2019)
and Perception-based Image Quality
Evaluator (PIQE) Venkatanath et al.
(2015) to quantitatively compare the
performance of different methods
on those datasets participated in our
experiments. Part of the results are
shown in Table 1 and Table 3 (see it in Appendix). It is obvious that our results are most favored by
the subjects for the NPE Wang et al. (2013), MEF Ma et al. (2015), VV datasets. Moreover, our
proposed RetinexGAN has the second best score in IT compared to those state-of-the-art methods.
Hence, our method can commendably navigate the balance between performance and efficiency
of the model that means our RetinexGAN can ensure high-quality enhancement effects while
improving model efficiency. The evaluation metrics on other datasets please refer to Appendix.

Application in Dark Face Detection and UIE: We analyze the effectiveness of RetinexGAN in
the context of the face detection task under conditions of reduced illumination. The DARK FACE
dataset Yang et al. (2016) that consists of 10000 images captured in the dark environment is used
in this experiment. We apply our RetinexGAN as well as other enhancement algorithms to enhance
1000 images from this dataset. Subsequently, Retinaface Deng et al. (2020) is employed to as the
baseline model for conducting face detection on the enhanced images. We calculate the mean aver-
age precision (mAP) for face detection under various methods through the evaluation tool provided
in DARK FACE dataset and list them in Table 2. The results show that the mAP of Retinaface
increases considerably compared to that using raw images without enhancement. Meanwhile the
RetinexGAN can obtain the highest or second highest mAP scores. The application results of UIE
are shown in Figure 8. The underwater images are selected from the OceanDark datasetMarques &
Albu (2020); Porto Marques et al. (2019). It is obvious that the results from our proposed Retinex-
GAN have high clarity and reasonable exposure level, while the color saturation is the fullest com-
pared to other methods. More visualization results please refer to Appendix.

3.4 CONCLUSION

We propose a semi-supervised image enhancement scheme which can be divided into two phase.
The first phase is the learning the mapping rules of data-driven Retinex decomposition by devis-
ing a set of learning constraints. The second phase is illumination brightening through FPN with a
flexible pretrained backbone optimized by a series of unsupervised training loss terms. Extensive
experiments demonstrate that our method can commendably navigate the balance between perfor-
mance and efficiency compared to existing light enhancement methods. In the future work, we
will try to seek data-driven Retinex decomposition without the need for paired images, achieving
complete unsupervised enhancement while ensuring the efficiency and performance.

REPRODUCIBILITY STATEMENT

We are in the process of organizing the source code for this research, and all the training data (testing
data) and source code will be released. The dataset’s partitioning and utilization have been intro-
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duced at the beginning of the experimental section, and the image processing program in MATLAB
will be released alongside the source code.
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A APPENDIX

A.1 RELATED WORKS

Traditional Methods: For databases with fewer images, Earlier methods that relied on traditional
methods like Retinex theory Land & McCann (1971); Jang et al. (2012); Li et al. (2018); Gilboa
et al. (2004); Bettahar et al. (2011) can significantly improve the visibility of the low-light images
and images with color distortion. In Palma Amestoy et al. (2008), motivated by the basic phe-
nomenology of color perception, the authors propose a variational formulation of color contrast
enhancement. In Provenzi et al. (2008), a random spray Retinex based white-patch algorithm and
gray-world algorithms are combined for establishing a more robust and better performing lightening
model. However, these methods will be more time-consuming to process each image, so there is no
way to achieve the enhancement for large-scale images in batches quickly.

Supervised Methods: Driven by the development of convolution neural network (CNN), some re-
searchers have developed some CNN-based image enhancement algorithms. The initial low-light
image enhancement algorithms predominantly relied on supervised deep image enhancement net-
works, necessitating the availability of paired images. For example, in Lore et al. (2017), a deep
auto-encoder based approach is proposed to extract and denoise the signal features from low-light
images and improve contrast. InChen et al. (2018), the authors propose a deep learning-based
method for enhancing low-light images by leveraging raw sensor data, addressing challenging low-
light conditions, and achieving visually appealing results through an end-to-end process. In Tang
et al. (2022), the images are divided into content component and attribute component. On this
basis, two ResBlocks based encoders are designed to enhance the low-light images. However, as
mentioned earlier, the data requirements of such supervised algorithms are stringent, as obtaining
paired image datasets can be exceedingly challenging. Furthermore, the scarcity of accessible low-
light/normal paired images poses a challenge when relying exclusively on supervised algorithms,
as it may lead to overfitting problems and subsequently reduce the network’s ability to generalize
effectively.

Unsupervised Methods: As a response to this challenge, a myriad of unsupervised image enhance-
ment algorithms have emerged, with the primary objective of mitigating the data prerequisites for
training. In Jiang et al. (2021), the authors introduce an unsupervised image enhancement method
named EnlightenGAN, which utilizes a U-Net generator with self-attentive guidance for automatic
adjustment. In Guo et al. (2020); Li et al. (2021), the authors introduce image enhancement methods
(Zero-DCE and Zero-DCE++) employing lightweight deep curve estimation networks, resulting in
significantly improved algorithm efficiency when compared to EnlightenGAN. In a recent study, the
authors in Liu et al. (2021) proposed an unrolling framework inspired by Retinex, which incorpo-
rates architecture search techniques. And in Ma et al. (2022), the authors present a self-calibrated
illumination learning framework, designed to achieve efficient, adaptable, and resilient low-light
image enhancement. Those unsupervised algorithms have, to a certain extent, reduced network size
and the number of trainable parameters, thereby enhancing efficiency. However, their enhancement
capability is remarkably limited when facing images with extremely low illumination. We show
some corresponding results in Fig.1. While supervised learning-based methods can yield enhanced
images with superior visual quality, they often incur higher Floating Point Operations (FLOPs) and
longer inference times. Some unsupervised methods like EnlightenGAN also have large size of
trainable parameters to be optimized that reduces training efficiency. Accordingly, how to navigate
the balance between performance and efficiency of unsupervised image enhancement methods is
still a critical issue that urgently needs to be addressed.

A.2 ARCHITECTURE OF DEEP DECOMPOSITION NETWORK

The detailed architecture of deep decomposition network is shown in Fig.2. It is made up of six mod-
ules, including one convolution layer, four ResBlocks and one activation layer. The first convolution
layer calculates 16 feature maps with 7×7 kernels. The ResBlock is constructed by connecting Con-
nectUnit and ResidualUnit in series. The ConnectUnit in the first ResBlock consists of a convolution
layer that can calculate 32 feature maps with 3× 3 kernels. The ResidualUnit in the first ResBlock
consists of two convolution layer that also can calculate 32 feature maps with 3 × 3 kernels. All
the convolution layers in the second ResBlock can calculate 64 feature maps with 3 × 3 kernels.
Analogously, the convolution layers in the third ResBlock can calculate 128 feature maps with 3×3
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kernels. The convolution layers in the last ResBlock calculate 6 feature maps with 3 × 3 kernels.
We use LeakyReLu to replace the conventional ReLu activation function in those four ResBlocks
for avoiding vanishing gradient problem. The Sigmoid activation layer is adopted finally to avoid
data overflow.

A.3 ARCHITECTURE OF GLOBAL DISCRIMINATOR

The global discriminator is constructed for distinguishing synthetic images from real normal expo-
sure images. It consists of four ResBlocks and final output can be obtained through this four Res-
Blocks and fully connected layers. We replace the sigmoid function with the least-square GANMao
et al. (2017) and the training loss of discriminator is:

JD = Exr∼Preal
(D (xr)− 1)

2
+ Exf∼Pfake

(D (xf ))
2 (14)

where Preal stand for the distribution of the normal-exposure images. Pfake is the distribution of the
synthetic images using the adjusted illumination from the generator.

A.4 EXPERIMENT RESULTS

In the experiments of our research, we use synthetic images and real-world images to verify the
effectiveness of proposed RetinexGAN. And some additional experimental results which can not be
illustrated in the main paper due to the length limitation are shown in this section. Firstly, we provide
the pseudo codes of the training procedure for making our algorithm more transparent and easier
for readers to follow. Then we show some additional results in ablation study with respect to our
designed loss terms. Finally, sufficient benchmark evaluation results are illustrated to supplement
the experimental results in the main paper.

A.4.1 PSEUDO CODES OF THE RETINEXGAN TRAINING

Algorithm 1: RetinexGAN Training
Input: Paired Training dataset X , total number of paired training samples N , training steps

Nep, positive integer diter, batch size nb, unpaired training dataset Xu

Output: Image enhancement modelM
1 calculate the number of times a sample needs to be traversed in each training step

nbs = N//nb;
2 for i = 1; i ≤ Nep; i++ do
3 for j = 1; j ≤ nbs; j ++ do
4 if j//diter ̸= 0 then
5 Get a batch of training samples x from paired image dataset X;
6 Calculate the Retinex decomposition loss

L (x, θ)←WrLr +WdoLdo +WcLc +WfLf +WtvLtv;
7 Update the trainable parameters θ of the deep Retinex decomposition network using

Adam optimizer θ ← Adam (L (x, θ));
8 Continue;
9 else

10 Get a batch of training samples xu from unpaired image dataset Xu;
11 Calculate the non-reference illumination brightening loss

J (xu, η)← ObJb +OfJf +OaJa +OadvJadv + L;
12 Update the trainable parameters η of the illumination brightening network using

Adam optimizer η ← Adam (J (xu, η));
13 Calculate the global discriminator loss of the LSGAN and update the parameters of

the discriminator using Adam optimizer.

14 Return Image enhancement modelM (θ, η);
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A.4.2 ABLATION STUDY

The images in Figure 9 show the results of ablation study with respect to each loss term. And
they clearly demonstrate the importance of them in improving the performance of our model in
illumination brightening.

(a) source image  (c) (d)(b)  (e) (f)

Figure 9: Visual comparison from the ablation study (contribution of losses) of RetinexGAN. Row
1 (Column (b)-Column (f)) display the final enhanced results. Row 2 (Column (b)-Column (f)) are
the adjusted illumination maps generated by illumination generator. Column (a) shows the source
image (Row 1) and its illumination maps (Row 2). (b) RetinexGAN. (c) w/o Ja. (d) w/o Jadv . (e)
w/o Jf . (f) w/o Jb

A.4.3 BENCHMARK EVALUATION RESULTS

(a) Source image

(f) RetinexGAN* (g) EnlightenGAN (h) Zero-DCE++

(b) RetinexNet

(i) SCI-difficult (j) RUAS-upe

(c) DeepLPF (d) KinD++ (e) LIME

Figure 10: Enhancement Results from LSRW dataset and NPE dataset
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Table 4: Influence of Different Backbones on Model Efficiency and Performance (The best result is
in red.)

PSNR↑ NIQE↓ FLOPs(G) Pa(M)1 IT(s)2

MobileNet 23.45 4.22 49.46 1.18 0.0478

SENet 22.83 4.53 229.98 76.10 0.4208

DenseNet 23.04 4.25 134.16 10.21 0.1635

Inception3 23.88 3.95 249.63 5.19 0.2192

1 Pa is the abbreviation for total number of trainable param-
eters

2 IT is the abbreviation for inference time
3 Inception is the abbreviation for Inception-ResNet-v2
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