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Abstract

Recent advances in Natural Language Process-001
ing (NLP) have been driven by the widespread002
adoption of Large Language Models (LLMs).003
Despite these improvements, state-of-the-art004
NLP models still struggle with ambiguous005
words, often failing to recognise the intended006
meaning of less commonly used terms in a sen-007
tence. This ambiguity problem impacts vari-008
ous linguistic tasks including machine trans-009
lation and information retrieval, underscoring010
the importance of Word Sense Disambiguation011
(WSD). While significant progress has been012
made in WSD for high-resource languages like013
English, a notable research gap exists in under-014
standing how current methods perform across015
multilingual and low-resource settings. More-016
over, the impact and potential of LLMs in ad-017
vancing WSD remain underexplored. This018
work presents a critical analysis of computa-019
tional approaches to WSD, evaluating their ef-020
fectiveness across English, multilingual, and021
low-resource contexts. We highlight current022
challenges for state-of-the-art systems and pro-023
pose future directions in this evolving field.024

1 Introduction025

In Natural Language Processing (NLP) tasks, lexi-026

cal ambiguity persists as a major challenge due to027

the multiple possible meanings of a word or phrase.028

Language understanding and language generation029

require effective algorithms to capture word senses030

in a sentence to perform multiple tasks like ma-031

chine translation (MT), speech recognition (SR),032

and information retrieval (IR) (Pu et al., 2018; Zong033

et al., 2022; Goldwater et al., 2010). Misinterpret-034

ing a word’s sense in tasks like MT and IR, partic-035

ularly when embedded in social media interfaces,036

can lead to misinformation (Carpuat and Wu, 2007).037

Ambiguous words, which are commonly used in038

day-to-day communication, are particularly chal-039

lenging to interpret automatically in low-resource040

language situations.041

Often part of an NLP pipeline, Word Sense 042

Disambiguation (WSD) aims to disambiguate the 043

correct sense of a word from a sense space by 044

analysing the linguistic features of the sentence and 045

the words around the ambiguous word. Ambiguity 046

in natural text can be categorised into four groups: 047

lexical, syntactic, semantic, and pragmatic. Syntac- 048

tic ambiguity concerns sentence structure based on 049

phrase structure, coordination, modification, and 050

scope (MacDonald et al., 1994), while pragmatic 051

ambiguity involves unclear intent based on con- 052

text (Macagno and Bigi, 2018). Semantic ambi- 053

guity refers to multiple meanings at the language 054

levels of phrases, sentences, or entire passages, 055

while lexical ambiguity specifically concerns indi- 056

vidual words with multiple meanings. This work 057

focuses on various aspects of lexical ambiguity and 058

computational approaches to addressing this issue. 059

While several reviews on WSD exist, there is 060

no systematic review of it in multilingual and low- 061

resource language settings (Nanjundan and Math- 062

ews, 2023; Bevilacqua et al., 2021), nor of the 063

effect of the integration of modern approaches 064

like Large Language Models (LLMs). Through 065

a systematic literature analysis, this study identi- 066

fies critical limitations in current WSD research 067

and outlines potential future directions. This work 068

contributes a comparative examination of WSD 069

algorithms across English, multilingual, and low- 070

resource contexts. It uniquely incorporates LLMs 071

into the discussion. Next, we present a comprehen- 072

sive review of WSD research, covering both classi- 073

cal approaches and modern LLM-based methods, 074

followed by an analysis of persistent challenges in 075

WSD and proposed future directions. 076

2 Background 077

Previous research shows that words require the use 078

of their context to resolve their meaning, show- 079

ing that isolated word analysis can be prone to er- 080

rors (Luo et al., 2018a). For instance, “I connected 081
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Figure 1: Disambiguation process for the word "Mouse"

the wireless mouse for easy navigation.” contains082

mouse as an ambiguous word. According to Word-083

Net1, the word “mouse” contains four different084

noun meanings, including “a small rodent typically085

resembling diminutive rats” and “a hand-operated086

electronic device that controls the coordinates of087

a cursor”. However, identifying the correct sense088

of this problem depends on the context around the089

particular usage of “mouse”. The word “wireless”090

suggests an electronic device, which indicates that091

“mouse” here more likely refers to an electronic092

device rather than a rat or silent person. Figure 1093

demonstrates the disambiguation process of the094

word “mouse” in an ambiguous sentence. There-095

fore, positional features, Part-Of-Speech (POS)096

tags, elements of the entire sentence, and context097

around the word for disambiguation play a promi-098

nent role in WSD. These parameters can be effi-099

cient in identifying lexical ambiguity in natural text,100

while glosses from WordNet and lexical knowledge101

like synonyms, hypernyms, and antonyms can be102

used to improve the disambiguation process.103

2.1 Evolution of WSD Techniques104

WSD research began in the 1950s with rule-based105

methods using hand-crafted rules based on context-106

based clues like grammatical and syntactic struc-107

tures (Bowerman, 1978). These were labour-108

intensive and lacked scalability, as complex lan-109

guages with more vocabulary require a vast num-110

ber of rules (Palmer et al., 2006). In the 1980s,111

knowledge-based approaches emerged using lexi-112

cal resources like WordNet, dictionaries and The-113

sauri and algorithms like Lesk (Miller, 1992; Lesk,114

1986) to calculate overlapping words between the115

context and the dictionary definitions, though they116

struggled with unseen senses. In the 1990s, re-117

searchers explored supervised machine learning118

methods using annotated corpora and algorithms119

1A large lexical database of English developed at Princeton
University (Miller, 1995)

like Naive Bayes, Decision Trees and SVM classi- 120

fiers (Le and Shimazu, 2004; Al-Bayaty and Joshi, 121

2016; Gosal, 2015), limited by data scarcity and 122

poor domain generalisation. To address this weak- 123

ness, in the mid-2000s, semi/unsupervised tech- 124

niques based on clustering and algorithms like Ex- 125

pectation Maximisation (EM) and Latent Semantic 126

Analysis (LSA ) (Pedersen, 2006; Dempster et al., 127

1977; Deerwester et al., 1990), using vector repre- 128

sentations of words based on co-occurrence statis- 129

tics were used. However, these approaches were 130

relatively lower in accuracy due to noisy cluster- 131

ing. With the advent of modern neural network 132

architectures, Word embeddings (e.g., word2vec, 133

GloVe, ELMo) improved word representation, pro- 134

ducing smaller dense vectors to capture the seman- 135

tic similarity based on target and context word 136

co-occurrence patterns (Church, 2017; Penning- 137

ton et al., 2014; Kutuzov and Kuzmenko, 2019). 138

However, static vectors lacked dynamic sense dis- 139

ambiguation. Building on recent advances in ma- 140

chine learning algorithms, Transformer-based mod- 141

els like BERT and GPT (Vaswani, 2017; Huang 142

et al., 2020) have advanced WSD with contextual 143

embeddings and domain generalisation. Current 144

trends explore Few-shot/Zero-shot learning and in- 145

context learning using LLMs (Basile et al., 2025; 146

Yae et al., 2025). 147

2.2 Key challenges in WSD 148

Current WSD algorithms face significant chal- 149

lenges when applied to real-world data (Tyagi et al., 150

2022). High polysemy (multiple meanings) of am- 151

biguous words poses a substantial challenge, par- 152

ticularly with less frequently used words. This 153

remains a common issue for most systems, as train- 154

ing data contains limited examples of less frequent 155

senses (Sumanathilaka et al., 2024c). Data scarcity, 156

especially the lack of annotated corpora, remains a 157

significant obstacle for modern WSD. High-quality, 158

sense-tagged corpora are crucial for supervised 159
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learning approaches, but creating large annotated160

datasets is time-consuming and expensive. This161

problem is particularly serious for low-resource162

languages, making training high-performing mod-163

els exceptionally challenging. Although automated164

approaches have been used to generate synthetic165

data, these methods have failed to produce suf-166

ficiently diverse corpora to handle less frequent167

senses (Ganesh et al., 2024). Furthermore, due168

to processing window limitations, classical mod-169

els struggle with the contextual complexity of170

multi-sentence contexts (Loureiro et al., 2020).171

Yet disambiguating senses often depends on long-172

distance and inter-sentential relationships. Certain173

domains, such as biomedical (Mondal et al., 2015),174

legal (Gliozzo et al., 2004), financial (Hogenboom175

et al., 2021), geospatial, and environmental, face176

significant ambiguity challenges due to the overlap177

of technical terms with general language (Buitelaar178

et al., 2006). To address these issues, researchers179

have increasingly focused on developing domain-180

specific models and enhanced disambiguation tech-181

niques that better account for specialised vocabu-182

lary nuances and contextual dependencies.183

3 Methodology184

This systematic review followed a PRISMA pro-185

cess (Page et al., 2021) for paper collection and186

analysis. The detailed methodology is provided in187

Figure 2. Our primary data sources included IEEE188

Xplore, the ACL Anthology, arXiv, SpringerLink,189

and the ACM Digital Library. Additionally, we190

utilised Google Scholar, Semantic Scholar, and Re-191

searchGate to conduct supplementary searches and192

assess publication relevance for inclusion in this193

study. We employed 42 keywords related to WSD194

and 10 keywords related to general ambiguity (see195

Appendix A) when searching data sources within196

the timeframe of 1995 to mid-2025.197

3.1 Pipeline for Data collection198

This section presents the data collection pipeline,199

which incorporates human review and LLM-200

assisted analysis, specifically using GPT and Note-201

booklm to extract and filter relevant information202

from selected papers during the initial screening203

phase. We began by gathering papers from data204

sources using a basic set of keywords to establish205

filtering criteria. The first author then reviewed206

and annotated the selected articles with appropriate207

labels provided in Appendix A. Quality assessment208

Figure 2: PRISMA process used for paper selection.

was performed based on the Critical Appraisal 209

Skills Programme checklist, examining the clar- 210

ity of objectives, appropriateness of methodology, 211

rigour of analysis, and relevance to WSD (Treloar 212

et al., 2000). The following criteria were used to 213

filter papers for the final study. 214

• Does the paper propose a novel technique? 215

• Does the paper explain the training and testing 216

data used for the study? 217

• Does the paper report the final results of the 218

study? 219

• For review papers, does the paper critically eval- 220

uate the approaches? 221

• For dataset creation papers, is the data creation 222

process and data distribution discussed? 223

Out of the initially selected papers (213), 15 224

papers on English WSD were chosen for the meta- 225

analysis based on their significant contributions 226

to English WSD systems and the reported perfor- 227

mance outcomes. The remaining papers (196) were 228

reviewed and discussed within the article but were 229

not included in the meta-analysis. 230

4 Approaches to WSD 231

In this section, we discuss the current approaches 232

used in WSD, focusing on both English and 233

multilingual approaches, including those for low- 234

resource languages. Given their new status as a 235

mainstream component of NLP, we will explore 236

how LLMs are applied for WSD. Additionally, Ta- 237

bles 1 and 3 present a meta-analysis of different 238

WSD methodologies across languages, providing 239

a comparative overview of their performance and 240

application. The datasets used in these studies are 241

summarised in Table 4. 242

4.1 Knowledge-based Approaches 243

Knowledge-based (KB) WSD methods leverage 244

external resources like lexical databases and on- 245

tologies to disambiguate word meanings. These 246

3



methods utilise semantic similarity metrics and247

graph-based algorithms. Techniques like the Lesk248

algorithm and LSA have been employed for WSD.249

For example, Wang et al. (2020) used seman-250

tic space and paths within sentences to enhance251

WSD using WordNet. Chaplot and Salakhutdi-252

nov (2018) scaled words in context linearly us-253

ing topic modelling, proposing a variant of La-254

tent Dirichlet Allocation (LDA) with synset pro-255

portions. Various modifications of the initial Lesk256

algorithm (Lesk, 1986) have been proposed, such257

as (Agirre and Soroa, 2009), adapted Lesk (Baner-258

jee et al., 2003), and enhanced Lesk (Basile et al.,259

2014). Lesk has been widely applied to low-260

resource WSD, particularly in Marathi (Gahankari261

et al., 2023a), Assamese (Gogoi and Baruah, 2022),262

Manipuri (Singh and Devi, 2024), Nepali (Singh263

et al., 2021) and Sinhala (Arukgoda et al., 2014).264

Graph-based algorithms are also prevalent in WSD.265

The Babelfy study, which connects Entity Link-266

ing (EL) to named entities, introduces a unified267

graph-based method for EL and WSD. This ap-268

proach identifies potential meanings and selects269

the most coherent semantic interpretations us-270

ing the densest subgraph heuristic, demonstrat-271

ing effectiveness in multilingual settings (Moro272

et al., 2014). Early WSD solutions involved ran-273

dom walks over large KB like extended Word-274

Net (Agirre et al., 2014). Jha et al. (2023c) utilised275

Hindi WordNet with weighted graphs represent-276

ing word senses and their relations, while Duarte277

et al. (2021) combined graph-based approaches278

with word embeddings and contextual information279

for semi-supervised WSD. Exploiting WordNet re-280

lations, mainly Synset definitions, the Hypernymy281

relation, and definitions of context features, fur-282

ther enhances WSD accuracy (Kolte and Bhirud,283

2009). Bootstrapping techniques incorporating284

WordNet synsets were employed by Gahankari et al.285

(2023b), and adaptive complex networks based286

on semantic similarities were explored for ambi-287

guity resolution (Kokane et al., 2021). Martinez-288

Gil (2023a) emphasised the significance of contex-289

tual information by incorporating similarity mea-290

surements. The Synset Relation-Enhanced Frame-291

work (SREF) for enriched sense embeddings ex-292

panded the WSD toolkit by augmenting basic sense293

embeddings with sense relations and a try-again294

mechanism (Wang and Wang, 2020). Combin-295

ing knowledge resources, such as cross-lingual ap-296

proaches and KB models, has also shown promise.297

KB approaches have been applied in both English 298

and other languages, such as the Persian WSD 299

technique by Rouhizadeh et al. (2020) and cross- 300

lingual approaches highlighted by Rudnick (2018). 301

ExtEnD, which frames the task as a text extrac- 302

tion problem, leveraged transformer-based architec- 303

tures to improve disambiguation accuracy (Barba 304

et al., 2022). Semi-supervised WSD using graph- 305

based SSL algorithms and various word embed- 306

dings combined with POS tags and word context 307

were explored (Duarte et al., 2021). Studies such 308

as Sumanathilaka et al. (2024c, 2023) proposed a 309

suggestion-level module with a tree structure for 310

Romanised Sinhala word disambiguation. In con- 311

trast, Perera et al. (2025) proposed a hybrid ap- 312

proach for Sinhala disambiguation, highlighting the 313

value of KB models. These studies demonstrate the 314

potential of KB, such as WordNet and BabelNet, 315

which use semantic relationships to improve disam- 316

biguation. Recent work combine KB methods with 317

machine learning to enhance scalability and adapt- 318

ability. However, challenges remain in maintaining 319

coverage for low-resource languages and handling 320

ambiguity in dynamic, real-world contexts. 321

4.2 Supervised Learning Approaches 322

Supervised WSD is a well-researched field that re- 323

lies on labelled datasets like Semcor and FEWS, 324

along with WordNet, for training models (Scar- 325

lini et al., 2020a). Researchers have explored vari- 326

ous computational techniques to address the WSD 327

problem, often reframing it as a different computa- 328

tional challenge. For instance, ConSec introduced 329

a novel approach by treating WSD as a text extrac- 330

tion problem (Barba et al., 2021b), incorporating a 331

feedback loop to focus on the ambiguous word and 332

its context. Song et al. (2021) enhanced sense in- 333

terpretation by leveraging synonyms and example 334

phrases, demonstrating the value of word senses 335

and their glosses. The ESC approach reframed 336

WSD as a span extraction problem using the ES- 337

CHER transformer-based architecture (Barba et al., 338

2021a), mitigating training data bias and achiev- 339

ing promising results. EWISER explored the in- 340

tegration of Lexical Knowledge Bases (LKB) by 341

utilising synset embeddings and relations to train 342

neural architectures (Bevilacqua et al., 2020), yield- 343

ing positive outcomes in English WSD. Additional 344

techniques like SpareLLM’s use of sparse con- 345

textualised word representations (Berend, 2020) 346

and the Bi-Encoder model’s integration of target 347
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words with context and glosses (Blevins and Zettle-348

moyer, 2020) have been investigated. Various349

BERT variations, including fine-tuning pre-trained350

models, have also been explored in the context of351

WSD (Huang et al., 2020). Luo et al. (2018a) in-352

troduced a gloss-augmented WSD neural network353

that jointly encodes the context and glosses of the354

target word to model the semantic relationship be-355

tween them within an improved memory network356

framework. This work has extended its gloss via357

semantic relations to enrich the gloss information358

using WordNet. Other approaches include context-359

dependent methods (Koppula et al., 2021), multi-360

ple sense identification (Orlando et al., 2021), and361

stacked bidirectional LSTM with attention mech-362

anisms (Laatar et al., 2023). Data augmentation363

techniques like SMSmix have increased the fre-364

quency of Least Frequency Senses (LFS) (Yoon365

et al., 2022), addressing training data distribution366

bias. Kaddoura and Nassar (2024) uses an En-367

hancedbert for Arabic disambiguation, which aims368

to disambiguate 100 polysemous words, while El-369

Razzaz et al. (2021) used a BERT for Arabic370

WSD. Previous studies have highlighted the signif-371

icant impact of synonyms and contextual meaning372

(paradigmatic relations) on sense identification.373

4.3 Unsupervised Learning Approaches374

Unsupervised WSD aims to determine the correct375

gloss of a word in context without using labelled376

(manually annotated) data. These methods ex-377

plore patterns, distributions, and relationships in378

large, unlabelled text corpora to infer the correct379

sense (Mao et al., 2024). LSA, Latent Dirichlet380

Allocation (LDA), Page Rank approaches and clus-381

tering of words into distinct usages are prominently382

used (Vidhu Bhala and Abirami, 2014; Masethe383

et al., 2024). Knowledge-based unsupervised al-384

gorithms use lexical contents from knowledge re-385

sources to improve the quality of information re-386

quired for the disambiguation process (Hogan et al.,387

2021). Niu et al. (2004) explored a context cluster-388

ing scheme with a Bayesian framework to capture389

sense distinctions at the category level, allowing390

for WSD across the entire vocabulary with mini-391

mal annotated training data, ultimately outperform-392

ing existing unsupervised WSD systems. The in-393

cremental cluster-based graph structures proposed394

by Widdows and Dorow (2002) focused on the sym-395

metric relationship between pairs of nouns which396

occur together. Jain and Lobiyal (2020) intro-397

duced an algorithm to identify hidden information 398

connecting words in a sentence. This implicit in- 399

formation is represented through a graph, which 400

aids in resolving word ambiguities in homonyms 401

and polysemous words. Lin and Verspoor (2008) 402

proposed a framework that incorporates semantic 403

information into language models, enabling sys- 404

tems to address NLP tasks by combining syntac- 405

tic and semantic cues. Chen et al. (2009) intro- 406

duced a graph-based method for large-scale WSD, 407

framing the task as identifying the most significant 408

node (representing word senses) within a graph. 409

Extending this approach, Jha et al. (2023b) em- 410

ployed weighted graphs where edges represent 411

semantic relationships between word senses, en- 412

hanced by Hindi WordNet-based similarity weights, 413

to improve sense selection using a random-walk 414

algorithm. Başkaya and Jurgens (2016) devel- 415

oped a semi-supervised WSD system that com- 416

bines limited sense-annotated data with sense in- 417

duction techniques to automatically discern word 418

meanings, outperforming purely supervised mod- 419

els on similar data. Sankar et al. (2016) intro- 420

duced an unsupervised WSD model leveraging 421

seed sets and collocations from a Malayalam cor- 422

pus; the method expands initial seed sets to cre- 423

ate sense clusters that identify the target word’s 424

meaning based on context. ShotgunWSD (But- 425

naru et al., 2017), performed document-level WSD 426

in three phases: brute-force WSD for probable 427

sense configurations, prefix and suffix matching, 428

and ranking by length majority voting scheme 429

based on the top configurations. This work was 430

extended in Butnaru and Ionescu (2019) by intro- 431

ducing a relatedness score between word senses. 432

Context-aware WSD systems, such as Martinez- 433

Gil (2023b), allow for flexible integration of con- 434

textual cues in similarity measures. Wiedemann 435

et al. (2019) focused on nearest-neighbour classifi- 436

cation using contextual word embeddings (CWEs) 437

and cosine distance, demonstrating the efficacy 438

of distance-based approaches in WSD tasks. Re- 439

cent studies explored cluster discrimination anal- 440

ysis over the semantic network with group alge- 441

bra, noting considerable accuracy while reduc- 442

ing the parameter count (Guzman-Olivares et al., 443

2025). Padwad et al. (2024) proposed a BERT- 444

based model supported by Euclidean distance be- 445

tween synsets for Hindi disambiguation, while Jha 446

et al. (2023a) introduced a graph-based WSD al- 447

gorithm for Hindi. Hou et al. (2020); Lyu and Mo 448
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(2023) for Chinese WSD, and Djaidri et al. (2023);449

Alian and Awajan (2020) for Arabic WSD rep-450

resent other notable WSD algorithms. However,451

these systems often face significant performance452

challenges, primarily due to the scarcity of lexical453

resources and the limitations of embedding-based454

synset representations, which can be noisy and hin-455

der precise sense discrimination. The situation is456

further complicated by the morphological richness457

of languages such as Hindi, Sinhala, and Arabic,458

which adds complexity to clustering and graph-459

based methods. Despite these challenges, unsuper-460

vised approaches have shown particular promise for461

addressing WSD in languages with limited anno-462

tated data. To overcome data scarcity, many studies463

have constructed custom corpora or adapted exist-464

ing WordNet resources for low-resource languages.465

Additionally, some cross-lingual strategies have466

leveraged resources from high-resource languages467

like English or utilised domain-specific corpora468

from sources such as Wikipedia, Twitter, and clini-469

cal notes (Jaber and Martínez, 2021).470

4.4 Advances with Large Language Models471

Recent advances in LLMs have led to a surge of in-472

terest in exploring their capabilities across various473

NLP tasks. Their unsupervised training on mas-474

sive datasets has significantly enhanced their per-475

formance in language comprehension tasks. Sainz476

et al. (2023) demonstrated that LLMs possess an477

inherent understanding of word senses, suggest-478

ing their potential for WSD without specific train-479

ing. They framed WSD as a textual entailment480

problem, prompting LLMs to assess the suitabil-481

ity of a domain label for a sentence containing482

an ambiguous word. Notably, this zero-shot ap-483

proach outperformed random guessing and, in484

some cases, matched or even surpassed the per-485

formance of supervised WSD systems (Ortega-486

Martín et al., 2023). Additionally, cross-lingual487

word sense evaluation using contextual word-level488

translation on pre-trained language models has489

been explored, and zero-shot WSD has been evalu-490

ated through cross-lingual knowledge (Kang et al.,491

2023a). A contrastive self-training framework, CO-492

SINE, which fine-tunes pre-trained LLMs with493

weak supervision and no labelled data, was fur-494

ther investigated (Yu et al., 2021). Manjavacas and495

Fonteyn (2022) explored the use of non-parametric496

learning with effective fine-tuning of LLMs for497

Dutch and English historical resources. Qorib et al.498

(2024) demonstrated the effectiveness of encoder- 499

only models compared to decoder-only models, 500

while Sumanathilaka et al. (2024a) showed the 501

effectiveness of prompt engineering techniques 502

for WSD using in-context learning with GPT 3.5 503

Turbo and GPT 4. In their further studies, they 504

benchmarked different LLMs’ behaviour for WSD, 505

showing that Deepseek-R1 and o4-mini are more 506

suitable for disambiguation tasks compared to 507

other flagship LLMs (Sumanathilaka et al., 2024d). 508

These findings have been further supported by Kib- 509

ria et al. (2024). Yae et al. (2024) discusses the re- 510

lationship between LLM model sizes and WSD per- 511

formance, while Cahyawijaya et al. (2024) showed 512

the limitations in cross-lingual WSD in LLMs with 513

false friends words2. Recent studies have discov- 514

ered the pros and cons of large language models in 515

both English and multilingual WSD, opening a new 516

arena in efficient WSD (Kang et al., 2023b; David 517

et al., 2024; Ren et al., 2024; Abdel-Salam, 2024; 518

Laba et al., 2023). However, research on WSD for 519

low-resourced languages remains under-explored 520

due to the limited language support offered by cur- 521

rent LLMs. 522

4.5 Discussion on Meta Review 523

Tables 1 and 3 present a chronological progres- 524

sion of WSD research from 2018 to 2024 and of- 525

fer a comparative analysis of techniques. Early 526

works such as GAS and EWISE employed hy- 527

brid, BiLSTM-based models that utilised gloss em- 528

beddings enriched with semantic relations. How- 529

ever, these models were inherently limited in their 530

ability to model long-range dependencies. More- 531

over, their integration of external knowledge was 532

not fully contextualised or dynamically applied, 533

which constrained their overall effectiveness. From 534

2019 onwards, there has been a clear shift towards 535

transformer-based architectures, primarily leverag- 536

ing BERT and its variants. BERT’s bidirectional 537

self-attention mechanism allows for the deep con- 538

textualisation of word meaning based on both left 539

and right contexts, which is crucial for distinguish- 540

ing fine-grained word senses. Its ability to pro- 541

cess entire sequences simultaneously rather than 542

step-by-step, as in RNNs, enables more effective 543

representation of polysemous words in context, as 544

proven in GlossBERT and SenseEMBERT. Addi- 545

tionally, BERT and its variations use subword to- 546

2Orthographically similar but have completely different
meanings
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Models Dev Unified Eval Framework POS Tag based UEF FEWS Fewshot
SE07 SE2 SE3 SE13 SE15 N V A R ALL Dev Test

MFS 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5 52.8 51.5
Lesk 51.6 63.0 63.7 66.2 64.6 69.8 51.2 51.7 80.6 63.7 42.5 40.9
Babelfy (Moro et al., 2014) 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4 - -
GAS (Luo et al., 2018b) - 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6 - -
EWISE (Kumar et al., 2019) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8 - -
(Vial et al., 2019) 69.5 77.5 77.4 76.0 78.3 79.6 65.9 79.5 85.5 76.0 - -

LMMS (Loureiro and Jorge, 2019) 68.1 76.3 75.6 75.1 77.0 78.0 64.0 80.7 83.5 75.4 - -
GlossBERT (Huang et al., 2020) 72.5 77.7 75.2 76.1 80.4 79.8 67.1 79.6 87.4 77.0 - -
ARES (Scarlini et al., 2020d) 71.0 78.0 77.1 77.3 83.2 80.6 68.3 80.5 83.5 77.9 - -
SenseEmBERT (Scarlini et al., 2020c) 60.2 72.2 69.9 78.7 75.0 80.5 50.3 74.3 80.9 72.8 - -
EWISER (Bevilacqua et al., 2020) 71.0 78.9 78.4 78.9 79.3 81.7 66.3 81.2 85.8 78.3 - -
SemEq Base Expert (Yao et al., 2021) 74.1 81.0 78.5 79.9 82.6 82.5 69.9 82.5 88.4 79.9 80.4 80.1
SemEq Large Expert (Yao et al., 2021) 74.9 81.8 79.6 81.2 81.8 83.2 71.1 83.2 87.9 80.7 81.8 82.3
ESR base (Song et al., 2021) 77.4 81.4 78.0 81.5 83.9 83.1 71.1 83.6 87.5 80.7 77.9 77.8
ESR Large (Song et al., 2021) 78.5 82.5 80.2 82.3 85.3 84.4 73.0 74.4 88.0 82.0 83.8 83.4
CoNSEC (Barba et al., 2021b) 77.4 82.3 79.9 83.2 85.2 85.4 70.8 84.0 87.3 82.0 - -
SACElarge (Wang and Wang, 2021) 82.4 81.1 76.3 82.5 83.7 81.9 84.1 72.2 86.4 89.0 - -
ESCHER (Barba et al., 2021a) 76.3 81.7 77.8 82.2 83.2 83.9 69.3 83.8 86.7 80.7 - -
RTWE Base (Zhang et al., 2023) 74.5 82.3 80.9 81.8 83.7 83.3 72.2 87.4 87.6 81.6 - -
RTWE large (Zhang et al., 2023) 77.1 85.2 83.3 83.8 86.3 85.7 75.1 90.6 88.7 84.6 - 78.4
GlossGPT (Sumanathilaka et al., 2025) 76.2 86.1 82.9 75.4 83.0 82.6 73.1 91.9 88.6 81.8 90.2 90.7

Table 1: F1 score presented for flagship models using Semcor training data and FEWS

kenisation (WordPiece) to help handle rare and547

morphologically complex words, which often pose548

challenges in WSD. Techniques such as sentence549

pair classification in ESR, gloss alignment in SE-550

MEQ, and similarity-based approaches combined551

with retry mechanisms in SACE have demonstrated552

strong performance, validating the capabilities of553

transformer-based models in capturing nuanced554

word senses. Recent advancements like Gloss-555

GPT highlight the field’s evolution toward few-shot556

learning and chain-of-thought (CoT) prompting,557

aligning with the broader trend in LLMs. Through-558

out this meta-analysis, it is notable that verbs sig-559

nificantly underperformed compared to nouns and560

adjective disambiguation. This demonstrates the561

importance of focusing on verb disambiguation as562

a priority area for future WSD research, particu-563

larly through context-sensitive architectures and564

targeted lexical resources.565

5 Evaluation Metrics566

The effectiveness of a WSD algorithm is crucial,567

and evaluating such algorithms requires consistent568

metrics and computational techniques to bench-569

mark performance (Zhang et al., 2025). The Se-570

mEval datasets (formerly known as Senseval) are571

indispensable for benchmarking and consist of mul-572

tiple WSD-related tasks spanning different years.573

Senseval-2 (Edmonds and Cotton, 2001), Senseval-574

3 (Litkowski, 2004; Snyder and Palmer, 2004),575

SemEval-2007 (Pradhan et al., 2007a), 2013 (Nav-576

igli et al., 2013), and 2015 (Moro and Navigli,577

2015) have established themselves as a standard578

in testing and comparing WSD systems across 579

different time periods and paradigms (Raganato 580

et al., 2017). FEWS evaluation set (Blevins et al., 581

2021) contains zero-shot and FEW-shot dev and 582

test data, each with 5000 datatuples. The F1 score 583

remains the most commonly used metric in WSD 584

evaluation due to its balanced assessment of pre- 585

cision and recall. Also, accuracy, precision, and 586

recall are frequently employed to provide a holis- 587

tic view of system performance. In setups with 588

highly diverse senses, evaluations at both the sense 589

and word levels are often conducted to capture the 590

nuanced behaviours in handling ambiguity. Ta- 591

ble 1 presents the F1 score of the meta-analysis. 592

While metrics such as F1 score and accuracy are 593

integral to benchmarking, human evaluation pro- 594

vides invaluable insights into the efficacy of WSD 595

systems. Human evaluators can assess both correct- 596

ness and the appropriateness of senses in nuanced, 597

context-dependent scenarios where automated sys- 598

tems might falter (Plaza et al., 2011). This process 599

often involves linguists or domain experts who an- 600

notate datasets with sense labels, serving as the 601

gold standard for evaluating system outputs. Hu- 602

man evaluation also facilitates error analysis, high- 603

lighting cases where systems misinterpret poly- 604

semy, metonymy, or rare senses (Murray and Green, 605

2004; Aimelet et al., 1999). Incorporating human 606

evaluation alongside automated metrics offers a 607

more comprehensive understanding of system per- 608

formance, fostering advancements in algorithmic 609

approaches and resource development for WSD. 610
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6 Applications of WSD611

Word sense disambiguation has been a major neces-612

sity in many computational linguistics tasks. WSD613

has been explored in many domains, and ablation614

studies have been conducted in the last few decades.615

WSD has been a key component in machine trans-616

lation, and several key experiments have been con-617

sidered. Chan et al. (2007) explored phrase-based618

MT integrating WSD systems, while Carpuat and619

Wu (2007) integrated WSD with statistical ma-620

chine translation systems to enhance MT accu-621

racy. Neale et al. (2016) demonstrated that word622

sense awareness is essential for accurate transla-623

tion, while Wang et al. (2023) discussed the impor-624

tance of WSD in Neural MT. Additionally, studies625

such as Carpuat and Wu (2005); Xiong and Zhang626

(2014); Costa-Jussá and Farrús (2014) explored sta-627

tistical MT with WSD, and Pu et al. (2018); Iyer628

et al. (2023); Han et al. (2019) focused on Neural629

MT with WSD. Not only for MT, but IR has also630

significantly benefited from effective WSD. Zhong631

and Ng (2012) explored the use of word sense in632

language modelling approaches for IR, and Hris-633

tea and Colhon (2020) showed that the usage of634

WSD for unsupervised solutions in IR is impactful.635

Moreover, the SemEval-2007 Task (Agirre et al.,636

2008) investigated WSD in cross-lingual IR, further637

explored by Kang et al. (2004), Clough and Steven-638

son (2004), and Manwar et al. (2024). However,639

in linguistics-related tasks and applications, the in-640

volvement of WSD has been extensively discussed.641

For co-reference resolution, WSD is instrumental642

in resolving references to entities in texts with am-643

biguous terms (Sukthanker et al., 2020). It also644

supports morphological analysis by determining645

the correct sense of inflected or derived forms in646

morphologically rich languages. In Named Entity647

Recognition (NER), WSD helps distinguish poly-648

semous terms, enabling the differentiation between649

named entities and common nouns or verbs (Garla650

and Brandt, 2013; Aliwy et al., 2021). Addition-651

ally, in lexical substitution, WSD ensures that word652

substitutions retain their original sense, enhancing653

paraphrase generation. Moreover, lexical chaining,654

semantic similarity computation, and knowledge-655

based reasoning rely on accurate WSD to avoid656

semantic inconsistencies and errors (Urena-López657

et al., 2001). These applications underscore the658

fundamental importance of WSD in advancing lin-659

guistic analysis and natural language understand-660

ing. WSD plays a major role indirectly in various661

non-computing domains, not only in linguistically 662

related domains. Garla and Brandt (2013) uses a 663

knowledge-based WSD method for accurate clin- 664

ical text classification. These studies have been 665

further developed for clinical abbreviation disam- 666

biguation (Wu et al., 2015b,a) and acronyms disam- 667

biguation (Moon et al., 2015). The financial indus- 668

try has mainly benefited from accurate WSD, pri- 669

marily in stock price prediction (Hogenboom et al., 670

2021) and market prediction based on sentiment 671

analysis of news headlines (Seifollahi and Shajari, 672

2019). In mathematics (Jiang et al., 2025) and 673

social science, semantic disambiguation has been 674

used for information discovery (Diamantini et al., 675

2015), while the impact of WSD on social media 676

text analysis on micro posts is explored (Sumanth 677

and Inkpen, 2015). WSD has also facilitated the 678

disambiguation of complex terminology in law and 679

medicine, ensuring clarity and precision in critical 680

decision-making processes (Buitelaar et al., 2006). 681

These examples highlight how WSD bridges lin- 682

guistic research and practical applications, foster- 683

ing innovation and efficiency across various fields. 684

7 Discussion and Concluding Remarks 685

Despite LLMs improving English WSD, low- 686

resourced languages still have not enjoyed the 687

same benefits. Building fine-grained WordNets for 688

morphologically rich languages remains challeng- 689

ing due to required human involvement. Domain- 690

specific variations pose difficulties because of di- 691

vergent sense distributions. English WSD tech- 692

niques show promising trends, with LLMs success- 693

fully leveraging contextual awareness and position- 694

based gloss encoding systems enhancing perfor- 695

mance. Future research should explore integrating 696

knowledge graphs with LLMs to address less fre- 697

quent word ambiguity. Multilingual WSD, espe- 698

cially for low-resource languages, requires further 699

development of neural models beyond the currently 700

dominant knowledge-based approaches. Key find- 701

ings from our systematic literature review: 702

• Building high-performance WSD models re- 703

mains a significant challenge. 704

• Verb disambiguation lags behind nouns and ad- 705

jectives in accuracy. 706

• Less frequent senses remain difficult to disam- 707

biguate, requiring balanced training data. 708

• Low-resource language WSD needs further ex- 709

ploration through multilingual approaches. 710
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Limitations711

While these limitations do not significantly affect712

the overall findings of this review, we believe it is713

important to acknowledge them for transparency714

and clarity. The primary focus of this review was715

to discuss the challenges and limitations of current716

WSD methods in both English and non-English do-717

mains. However, greater emphasis has been placed718

on English WSD due to the wider availability of re-719

search in this area. The sample size for non-English720

WSD studies was limited by resource availability,721

and some relevant papers could not be included722

due to access restrictions. Additionally, extended723

abstracts and certain non-English studies were ex-724

cluded due to the absence of sufficient results or725

details required for thorough analysis.726
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Weakly Supervised WSD, Neural Networks for 1689
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WSD, WSD in Natural Language Processing1690

(NLP), Contextual Embeddings for WSD, BERT1691

for Word Sense Disambiguation, Knowledge-based1692

WSD, Dictionary-based WSD, Lexical Semantics1693

in WSD, Machine Learning for WSD, Sense1694

Inventory for WSD, Sense Representation in WSD,1695

Graph-based Approaches in WSD, Evaluation1696

Metrics for WSD, Ambiguity Resolution in NLP,1697

Contextualized Word Representations, WSD Ap-1698

plications in Information Retrieval, Cross-lingual1699

WSD, Hybrid Approaches to WSD, Explainable1700

WSD Models, Multi-sense Embedding Models,1701

Deep Learning for WSD, Comparative Studies1702

in WSD Algorithms, Lesk Algorithm for WSD,1703

Translation-based WSD, WSD in Machine Trans-1704

lation, Biomedical Word Sense Disambiguation,1705

Chinese Word Sense Disambiguation, Arabic1706

Word Sense Disambiguation, Hindi Word Sense1707

Disambiguation, Co-occurrence Graphs for WSD,1708

Mesh Indexing for WSD, Capsule Networks for1709

WSD, Self-Attention Mechanisms in WSD, Lan-1710

guage Models for WSD, Generative Adversarial1711

Networks (GANs) for WSD, Accuracy in Word1712

Sense Disambiguation, Short Literature Review on1713

WSD, Context Exploitation for WSD.1714

Sub-heading used for extracting information1715

The labelling used to extract the information for1716

the papers is shown in the table 2.1717

Figure 3: Year-wise paper distribution (1995-2024)
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Selected Attribute Description
Year Indicate the year of publication
Overview A summary of the paper
Technology stack List of technologies used including models, programming

languages and specific modules
Improvements to the existing al-
gorithms

Advancement on current literature and changes done on
algorithms

Contributions to the State of Art major contributions of the study focusing on performance
and resource creations

Methodology The steps/ algorithm used to solve the problem
Limitations Identified issues by the original author and the annotator
Dataset used list of datasets used for training and testing
Evaluation Matrix Quantitative and Qualitative evaluation techniques used
Usage/benefits Additions indirect outcomes
Keywords tags to easily filter the literature
Challenges Identified challenges during the study period

Table 2: Summary of selected attributes and their descriptions

Figure 4: Ambiguities in Natural Text

Model Supervision BERT/LMs Gloss Use Sense Embeddings Contextualized Embeddings Nearest Neighbor Advanced LM*
GAS (2018) Hybrid ✗ ✓ ✗ ✗ ✗ ✗

EWISE (2019) Hybrid ✓ ✗ ✗ ✓ ✗ ✗

Vial et al. (2019) Supervised ✓ ✗ ✓ ✓ ✗ ✓

LMMS (2019) Knowledge-based ✓ ✗ ✓ ✓ ✓ ✓

GlossBERT (2020) Supervised ✓ ✓ ✗ ✓ ✗ ✓

ARES (2020) Semi-supervised ✓ ✗ ✓ ✓ ✓ ✓

SenseEMBERT (2020) Hybrid ✓ ✗ ✓ ✓ ✓ ✓

EWISER (2020) Supervised ✓ ✗ ✗ ✓ ✗ ✓

SEMEQ (2021) Hybrid ✓ ✓ ✗ ✓ ✗ ✓

ESR (2021) Supervised ✓ ✗ ✗ ✓ ✗ ✓

CONSEC (2021) Supervised ✓ ✗ ✗ ✓ ✗ ✓

SACE (2021) Supervised ✓ ✗ ✗ ✓ ✗ ✓

ESCHER (2021) Supervised ✓ ✓ ✗ ✓ ✗ ✓

RTWE (2023) Supervised ✓ ✗ ✗ ✓ ✗ ✓

GlossGPT (2024) Hybrid ✓ ✓ ✗ ✓ ✗ ✓

Table 3: Comparative A nalysis on papers of Meta analysis. LM: Language models *Architectural enhancements or
fine-tuning employed
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Category Dataset Description Citation(s)
English SemCor – Manually annotated corpus from the Brown Corpus with

226K annotations.
(Miller et al., 1993; Francis and
Kucera, 1979)

MASC-WSA – 45 lemma-pos pairs with crowd-sourced annotations. (Ide et al., 2010)
Princeton WordNet Gloss Corpus – 330,499 manually/semi-
automatically annotated glosses.

(Miller, 1995; Baldwin et al.,
2008)

OntoNotes – Rich syntactic and semantic annotations across genres. (Pradhan et al., 2007b)
FEWS – Corpus from Wiktionary with 121k sentences and 35k poly-
semous words.

(Blevins et al., 2021)

OMSTI – Semi-automated corpus from English-Chinese parallel data
for bilingual WSD.

(Taghipour and Ng, 2015)

SEW (Semantically Enriched Wikipedia) – Propagated annotations
across Wikipedia using links.

(Raganato et al., 2016)

FOOL – Four different test sets for evaluating WSD model robustness. (Ballout et al., 2024)
Multilingual BabelNet – Integrates lexicographic and encyclopedic knowledge for

263 languages.
(Navigli et al., 2021; Navigli and
Ponzetto, 2010)

SenseDefs – Automatic disambiguation of definitions in 263 lan-
guages based on Princeton Gloss Corpus.

(Camacho-Collados et al., 2019)

EuroSense – Parallel corpus-based multilingual dataset for 21 lan-
guages using Europarl.

(Bovi et al., 2017)

Train-o-Matic – Automatically annotated dataset without relying on
parallel corpora.

(Pasini et al., 2017; Pasini,
Tommaso and Navigli, Roberto,
2020)

OneSeC – Domain-specific multilingual corpus. (Scarlini et al., 2019, 2020b)
DiBIMT – Benchmark dataset for 8 languages. (Martelli et al., 2024)

Low-
Resource
Languages*

Bengali WSD Dataset – 100 polysemous words with 10 sense para-
graphs each.

(Das Dawn et al., 2023; Pal et al.,
2018)

IndoWordNet – Lexical database for 18 Indian languages highlighting
synsets and semantic relations.

(Dash et al., 2017; Bhat-
tacharyya, 2017)

Manually created Assamese corpus (Sarmah and Sarma, 2016)
Sinhala, Tamil, Malayalam, Urdu, BanglaNet, Assamese and Kannada
WordNets Regional lexical databases for low-resource languages

(Welgama et al., 2011; Rajendran
et al., 2002; Rajendran and So-
man, 2017; Adeeba and Hussain,
2011; Saeed et al., 2019; Rahit
et al., 2018; Sarmah and Sarma,
2016; Sahoo and Vidyasagar,
2003)

Romanised Sinhala Dataset – For transliteration disambiguation. (Sumanathilaka et al., 2024b)
HowNet-based Chinese WSD dataset (Zhou et al., 2019)

Table 4: Key WSD Datasets by Language Scope *Many studies related to low resource uses custom corpora
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