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Abstract

Normalization techniques are crucial for enhancing Transformer models’
performance and stability in time series analysis tasks, yet we originally
identify that traditional methods like batch and layer normalization often
lead to issues such as token shift, attention shift, and sparse attention.
We propose UnitNorm, a novel normalization approach that scales input
vectors by their norms and modulates attention patterns, effectively cir-
cumventing these challenges. Grounded in existing normalization frame-
works, UnitNorm’s effectiveness is demonstrated across diverse time series
analysis tasks, including forecasting, classification, and anomaly detection,
via a rigorous evaluation on 6 state-of-the-art models and 10 datasets.
UnitNorm demonstrates superior performance, particularly where robust
attention and contextual understanding are vital, achieving up to a 1.46
MSE decrease in forecasting and a 4.89% accuracy increase in classifi-
cation. This work not only calls for a re-evaluation of normalization
strategies in time series Transformers but also sets a new direction for
enhancing model performance and stability. The source code is available at
https://anonymous.4open.science/r/UnitNorm-5B84.

1 Introduction

BatchNorm

𝑵𝑫

𝑳

LayerNorm (theory)

𝑵𝑫

𝑳

LayerNorm (practice)

𝑵𝑫

𝑳

UnitNorm (Ours)

𝑵𝑫

𝑳

Figure 1: Scheme of different normalization methods applied to batched sequences of time
series tokens X ∈ RN×L×D, where N is the batch size, L is the sequence length (or
historical window length) and D is the feature dimension (number of variates) of each token
vector. The blue sections demonstrate a single slice of the input tensor for computing the
mean µ and variance σ2, while the red section shows a single slice of data for computing the
vector norm ∥x∥ (see Section C.1).

Transformers have emerged as powerful tools for time series analysis (TSA), offering new
capabilities for modeling complex temporal dependencies (Wen et al., 2023). However,
adapting them from domains like NLP (Wolf et al., 2020) and CV (Han et al., 2023) presents
challenges, especially regarding how normalization interacts with time series characteristics
like seasonality, trends, and autocorrelations. Central to these models is the represen-
tation of data as sequences of tokens, denoted by X ∈ RN×L×D, where N stands for batch
size, L is the sequence length and D represents the dimensionality of each token.

Time series data presents unique challenges that distinguish it from other domains. These
include capturing complex/multi-scale temporal dependencies, periodic patterns,
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and variable sampling frequencies. Unlike text or images, time series often exhibit
strong autocorrelations, seasonal/trend components, and non-stationarity. These
properties mean data distributions can shift significantly, making normalization easily
distortive. While Transformers have shown promise in time series forecasting, classification,
and anomaly detection, they were not originally designed with these specific characteristics
of time series data in mind. This is particularly evident in how normalization techniques,
developed for more stationary data, interact with and potentially disrupt the learning of
temporal patterns and periodic structures.

The core mechanism facilitating the Transformers’ ability to model complex dependencies is
the attention mechanism. It computes a weighted sum of value vectors V, capturing the
sequential relationships between tokens through a scalable dot-product operation of queries
Q and keys K: Attention(Q,K,V) = softmax

(
QK⊤
√
D

)
V. Vaswani et al. (2017)

To mitigate issues during the training process of Transformers related to vanishing or
exploding gradients Lubana et al. (2021); Yang & Schoenholz (2017), Layer Normalization
(LayerNorm, LN, Ba et al. 2016) plays a significant role and is therefore incorporated at
each sub-layer of the architecture (Figure S1)1. The LayerNorm operation follows the center-
and-scale standardization paradigm, by first centering the means to 0 and then rescaling the
variances of the input vectors to 1 such that LN(X) = X−µ√

σ2+ε
, where µ and σ are the mean

and standard deviation of the input vector X, respectively. Ba et al. (2016)

While LayerNorm, compared to other normalization strategies such as batch normalization
Ioffe & Szegedy (2015); Shen et al. (2020); Wang et al. (2022), has established itself as the
dominant normalization strategy in Transformers, dedicated normalization-specific research
has mostly focussed on its impact on model convergence Wang et al. (2019), its inner
dynamics Wang et al. (2022); Shen et al. (2020) or its location Xiong et al. (2020) within
the architecture. On the other hand, few works address normalization’s interaction with the
attention mechanism Kobayashi et al. (2021) (Section 5), a key challenge in TSA (Section 2)
due to attention’s dot product.

In this work, we provide a new viewpoint on these challenges by first identifying and
formalizing Transformer-specific challenges of normalization techniques, highlighting three
key issues. Building on these insights, we introduce a novel normalization technique,
UnitNorm, designed to address these challenges effectively.

Our contributions lie in: 1) We originally identify two challenges, namely token shift
and attention shift, and reassess the challenge of sparse attention Zhai et al. (2023) in
Transformers for time series analysis; 2) We propose a new normalization method, UnitNorm,
that can mitigate these issues by design, thereby better preserving crucial temporal
information; 3) We empirically validate the effectiveness of UnitNorm on nine datasets
spanning three downstream TSA tasks.

2 Challenges in Normalization

Transformers rely on attention mechanisms to achieve remarkable performance in time
series analysis tasks. However, the interplay between attention and normalization methods
introduces critical, unaddressed challenges. This paper aims to reveal the complexities
of token shift, attention shift, and sparse attention, which arise from such interaction
between normalization and the attention mechanism. Our theoretical and empirical analysis
demonstrates these challenges are intrinsic to conventional normalization, impacting self-
attention in time series Transformers.

Time series data presents distinct challenges for Transformers due to its inherent temporal
properties. Unlike text or image data, time series often contain critical periodic patterns,
trends, and seasonal components that require a balanced attention distribution to capture

1The LayerNorm used in Transformers, referred to as LayerNorm (practice), computes the
statistics within each token rather than over the whole batch as LayerNorm (theory) does (Figure 1).
In this paper, we will refer to the LayerNorm (practice) as LayerNorm if no distinction is made.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Effect of input transformations on the softmax function output. Importance
order invariant refers to whether the relative importance of the tokens is preserved. Of all
possible input transformations, only the reflection transformation will definitely change the
importance order of the tokens.

Type Function Input Output Order invariant?

None f : x 7→ x

Stretch f : x 7→ k · x, k ∈ R+ ✓

Translate f : x 7→ x+ a, a ∈ R ✓

Jitter f : x 7→ x+ ε, ε ∼ N
(
0, σ2

)
✓/✗

Reflection f : x 7→ −x ✗

effectively. Conventional normalization, effective elsewhere, can disrupt these temporal rela-
tionships, e.g., by altering token vector orientations and obscuring long-range dependencies.
This disruption is particularly problematic in applications like forecasting periodic signals,
detecting anomalies in regular patterns, or classifying time series based on their temporal
characteristics—all tasks relying on accurately interpreting temporal token relationships.

2.1 Pilot Study: Normalization Impact on Capturing Periodicity

To illustrate normalization’s impact on capturing periodicity—a key aspect of TSA—we
conducted a pilot study on a synthetic two-channel sine wave dataset with varying periods,
amplitudes, and Gaussian noise (details and full results in Table S2).

In this study (Table S2), UnitNorm (k = 0.5) drastically reduced MSE by 58.6% (from
2.721 for BatchNorm to 1.127) compared to other methods. This strongly illustrates how
traditional techniques can distort attention, via mechanisms like token shift and
by inducing sparse attention (detailed in Sections 2.2 to 2.4), thus impairing the capture
of vital periodic patterns. Whereas UnitNorm’s design, by preserving token importance
and promoting balanced attention (Section 3), directly addresses these distortions.

Input Center Scale

Data points

Dot product
− : 0.98
− : 0.92

− : 0.04
− : −0.07

− : 1
− : −1

Figure 2: Case of token shift in LayerNorm.
The green cross denotes a query vector, the
red and blue circles denote two key vectors.
Token shift at the centering step causes dot
product sign flips; scaling does not.

The subsequent sections will now dissect
these challenges, token shift (Section 2.2),
attention shift (Section 2.3), and sparse
attention (Section 2.4), both theoretically
and empirically, before detailing UnitNorm’s
methodology (Section 3).

We will further explore the relationship be-
tween normalization and attention by exam-
ining a simplified equivalent attention pro-
cess, with normalization preceding attention
(Zhang et al. 2022, Figure S1). This per-
spective allows for a detailed exploration of
how normalization influences the attention
scores derived from the query and key vectors. For simplicity, our discussion will center on a
singular instance of self-attention within the encoder layer, assuming identical query and key
vectors to streamline our analysis (see Section C.2).

2.2 Token shift

Previous study Brody et al. (2023) has attributed LayerNorm’s efficacy to its center-and-scale
operations: centering projects the input vectors to a hyperplane orthogonal to 1 vector, and
scaling normalizes the vectors to a unit sphere to prevent any token vector being contained
in the convex hull of the others. However, this can significantly alter the orientation of input
vectors, especially for those that are near parallel to the hyperplane’s norm vector 1. This
impacts dot products, potentially causing sign flips (Figure 2), severely disrupting softmax
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Table 2: Effect of normalization on the attention weight distribution based on empirical
results (Figures S6 and S7). UnitNorm shows the most faithful representation of the original
attention weights that are cross-validated by various metrics as described in Table S10, while
center-and-scale normalization significantly alters the attention weights to an extreme extent
as depicted in Figure S5.

Normalization Chebyshev
distance ↓ Cosine

similarity ↑ KL
divergence ↓ Entropy ↑

None (original) / / / High
Center-and-scale High Low High Very Low

UnitNorm Low High Low High

outputs (Table 1), and catastrophically altering token importance (Table 2). This
issue of significant deviations in attention weight distributions caused by token shift will be
further explored in Section 2.3.

The high probability of "center-and-scale" normalization inducing such sign flips is not
merely theoretical, as Theorem 2.1 elucidates. Proof in Section B.
Theorem 2.1 (High probability of sign flip due to center operation). Assume that
x ∼ N (µx, diag

(
σ2
x

)
), y ∼ N (µy, diag

(
σ2
y

)
) are two independent token vectors, with

µx,µy,σx,σy ∈ RD. Let x̃ = x−µx

σx
and ỹ =

y−µy

σy
be the normalized vectors. If

|µ⊤
x µy| ≥ 12

(√
σ2⊤
x σ2

y + ∥σx ◦ σy∥∞
)
+

5
(√

σ2⊤
y µ2

x+
√

σ2⊤
x µ2

y+∥σy◦|µx|∥∞+∥σx◦|µy|∥∞
) (1)

then the probability that the signs of x⊤y and x̃⊤ỹ do not coincide is at least 40%, i.e.,

Pr(sgn
(
x⊤y

)
̸= sgn

(
x̃⊤ỹ

)
) ≥ 0.40. (2)

Remark 2.2. Derived from the computational methodologies for the statistics of vectors x and
y (Section C.1), BatchNorm posits that the mean vectors are the same so that µx = µy = µ,
and similarly σ2

x = σ2
y = σ2, while LayerNorm assumes that the mean and standard deviation

are shared across feature dimension: µx = µx1,µy = µy1 and σ2
x = σ2

x1,σ
2
y = σ2

y1. Given
these assumptions, the condition (1) outlined in Theorem 2.1 is satisfied for many token
vector distributions. In fact, we show that in the setup of LayerNorm, the condition (1)
allows for the quotients of token means and standard deviations, i.e., for µx/σx and µy/σy,
to decay as Ω(D−1/4) while still implying a high sign flip probability, cf. Section A.

Theorem 2.1 highlights how "center-and-scale" normalization can inadvertently alter attention.
The potential for such sign flips, demonstrated with significant likelihood, poses a serious
risk to the integrity of the attention scores, as it can lead to a complete reordering of the
tokens’ importance.

2.3 Attention shift

Attention shift represents a critical challenge in Transformer models, directly stemming
from the token shift issue. This shift perturbs the relative significance of tokens, leading to
discrepancies between attention weights from normalized versus original inputs. To validate
the prevalence of attention shift across normalization techniques, we conduct a study utilizing
pre-trained Word2Vec embeddings Fares et al. (2017). Our analysis includes a comparison of
batch normalization (BatchNorm, BN, Ioffe & Szegedy 2015), layer normalization (LayerNorm,
LN, Ba et al. 2016; Vaswani et al. 2017), root mean square layer normalization (RMSNorm,
RMSN, Zhang & Sennrich 2019), and our proposed unit normalization (UnitNorm, UN; see
Section 3).

Our investigation utilizes sequences of token vectors, X ∈ RN×L×D, as inputs to the
normalization layer, where N is the batch size, L is the sequence length, and D is the
dimensionality of each token. The attention scores A ∈ RN×L×L, given as Equation (3), are
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(a) Distribution of Chebyshev distance. Unit-
Norm and RMSNorm preserves the distribution
of attention scores; others significantly alter it.

(b) Distribution of entropy. UnitNorm and RM-
SNorm preserves the high entropy of attention
scores; others result in a collapsed distribution.

Figure 3: Empirical statistics for attention scores after each normalization method. Results
from 10 independent experiments are overlaid. k = 1.5 is used for UnitNorm.

computed for 10 independent sets of 32 batches, each containing 1,024 randomly sampled
embeddings from a total of 2 million. The primary goal is to assess the impact of normalization
on the fidelity of attention scores A and Ã, pre- and post-normalization, using the Chebyshev
distance as a metric (Table S10).

An,i = softmax

(
Xn,iX

T
n√

D

)
(3)

where An,i ∈ RL is the attention scores for the i-th anchor token Xn,i to the context sequence
Xn from the n-th batch; Ã is computed similarly from normalization output X̃.

Chebyshev distance distributions (Figure 3(a)) reveal current methods struggle to maintain
faithful attention. For them, distances cluster near 1, suggesting profound alteration
of attention weights. Conversely, UnitNorm and RMSNorm demonstrates a distribution
concentrated around zero, indicating minimal disruption to the original attention scores.

The empirical evidence underscores a fundamental issue with current normalization practices
in Transformers: they compromise attention score fidelity, distorting relational dynamics.
This harms interpretability and learning of complex dependencies. As demonstrated in our
pilot study with periodic time series data (Table S2), this issue directly affects the model’s
ability to capture important periodic patterns that are common in time series analysis tasks.

2.4 Sparse attention

The challenge of sparse attention further complicates the normalization landscape in Trans-
former models. Traditional "center-and-scale" methods often cause undesirable attention
concentration (skewing towards single point distributions). This is due to fact that centering
removes a degree of freedom from the vectors, and only query that are tightly around the
1 vector can produce uniform attention scores Brody et al. (2023). This can be depicted
by the entropy of the attention scores Ai: H(Ai) = −

∑L
j=1 Ai,j logAi,j . A higher entropy

value suggests a more uniform attention distribution, enabling models capturing periodicity
in time series. Conversely, lower entropy, or a trend towards single point distributions, limits
its attention to narrow ranges of tokens. While some studies Hyeon-Woo et al. (2022); Zhai
et al. (2023) in other fields have shown that Transformer models may benefit from capturing
longer-range, denser connections, we will show later that such sparse attention is particularly
problematic in TSA tasks and requires finer control over the attention patterns.

Analysis of normalization methods through the lens of attention score entropy (Figure 3(b))
reveals a stark contrast in their effects on model behavior. BatchNorm and LayerNorm

5
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significantly skew attention distributions towards minimal entropy. This condition not
only narrows the model’s focus but may also precipitate training instability Zhai et al.
(2023). In contrast, UnitNorm and RMSNorm maintain higher entropy levels, suggesting a
more balanced and contextually aware attention mechanism. Notably, the key deviation in
attention entropy between UnitNorm and RMSNorm is the former’s ability to modulate the
entropy pattern by adjusting the k parameter, as discussed in Section 3, while RMSNorm
maintains a consistent high entropy level close to the theoretical upper bound logL.

3 Methodology

To mitigate the challenges identified with traditional normalization methods, we introduce a
novel approach called unit normalization (UnitNorm, UN), formulated such that

UN(X) = D
k
2

X

∥X∥2
. (4)

UnitNorm omits centering, diverging from center-and-scale. Like RMSNorm, it scales inputs
by their ℓ2 norm, but further scales by D

k
2 , where k controls attention sparsity.

3.1 Theoretical foundation

UnitNorm is theoretically grounded as a variant of LayerNorm and RMSNorm. Specifically,
when taking k = 1, UnitNorm is effectively acting as LayerNorm with asserted zero mean,
and the RMSNorm can be seen as a special case of UnitNorm with k = 1.

This suggests UnitNorm inherits benefits from LayerNorm and RMSNorm (e.g., mitigating
vanishing/exploding gradients, stabilizing training). It ensures consistent forward/gradient
propagation irrespective of learnable parameter scaling, and scales down gradients to large
parameters (Proof: Section B), ensuring stability:
Theorem 3.1 (UnitNorm preseves the gradient to the input and stablize the gradient to
the learnable parameters). Given the output of an affine transformation x = Wv+ b, where
W and b are learnable parameters. If x′ = (αW)v + (αb), then the output of UnitNorm is
unchanged, i.e., x̃′ = x̃, while the gradients to loss L are given as follows:

∂L
∂x̃′ ·

∂x̃′

∂(αW)
=

1

α
· ∂L
∂x̃

· ∂x̃
∂W

=
1

α
· ∂L
∂x̃

· Jv⊤

∂L
∂x̃′ ·

∂x̃′

∂(αb)
=

1

α
· ∂L
∂x̃

· ∂x̃
∂b

=
1

α
· ∂L
∂x̃

· J

∂L
∂x̃′ ·

∂x̃′

∂v
=
∂L
∂x̃

· ∂x̃
∂v

=
∂L
∂x̃

· JW⊤

(5)

where J is the Jacobian matrix of x̃ w.r.t.x.

3.2 Selection of k values

While learnable k offers flexibility, studies show fixed k values often yield optimal performance
Section G. Specifically, values in the range of 0.5 ∼ 0.7 have been found to be particularly
effective for time series data with periodic patterns (detailed results are provided in Section G).

This optimal range can be explained by examining the entropy lower bound (ELB) charac-
teristics. With k ≈ 0.5 ∼ 0.7, UnitNorm maintains sufficient attention diversity to capture
complex patterns while still allowing for the focus on relevant tokens needed for effective
periodicity recognition. This balance is critical for time series tasks where models must
simultaneously recognize periodic patterns and adapt to temporal variations.

In practice, we recommend starting with k = 0.7 for datasets with strong periodicity, as it
typically provides an excellent trade-off between sparse and dense attention distributions.
For applications where the optimal k value is uncertain, both fixed values (k = 0.5, 0.7) and
learnable k implementations can be evaluated to determine the best configuration.
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3.3 Overcoming defects

By omitting centering, UnitNorm preserves input vector directions, addressing to-
ken/attention shift by maintaining dot product signs (Figure S3). It’s a drop-in replacement
for LayerNorm/RMSNorm in time series Transformers, needing no structural changes.

Additionally, UnitNorm confronts the sparse attention issue by introducing an entropy lower
bound (ELB) for attention scores, modulated by the hyperparameter k (proved in Section B).
This feature enables the control of attention patterns, from dense as uniform to sparse as
single point, offering versatile attention modeling:
Theorem 3.2 (UnitNorm guarantees an entropy lower bound independent of the input).
For a given set of L,D and a given k, there exists an entropy lower bound (ELB) of the
attention scores, i.e.

ELB(k;L,D) = log
(
L− 1 + ed

)
− ded

L− 1 + ed
, (6)

where d = 2Dk− 1
2 .

Corollary 3.3 (The ELB of UnitNorm can be any possible value by modulating k). The
ELB is a monotonically decreasing function of k for a given L,D. Furthermore, it is bounded
that ∀k:

0 < ELB(k;L,D) < logL (7)

Figure 4: Landscape of k50 for different L,D.
The k50 is the value of k that achieves an ELB
of half of the theoretical maximum logL for a
given L,D pair. The landscape of k50 is rather
smooth and insensitive to the sequence length
L, indicating UnitNorm with fixed k can be
applied to sequences with variable length with-
out significant change in the attention pattern.

The adaptability of UnitNorm is further ex-
emplified by its applicability across variable
sequence lengths, with the entropy lower
bound’s sensitivity to k remaining relatively
consistent irrespective of sequence length
(Figure S4), along with the smooth land-
scape of k50, the value of k that achieves an
ELB of 1

2 logL for a given L,D pair (Fig-
ure 4), particularly with larger D. This
property, combined with the option of set-
ting k as a learnable parameter, empowers
the model to dynamically adjust its atten-
tion pattern, optimizing performance across
different tasks and data sets.

4 Experiments

In our experimental evaluation, UnitNorm
is rigorously tested across a spectrum of
TSA tasks to illustrate its theoretical ad-
vantages in practical applications, including
long term forecasting (ETTh1, ETTh2, ECL,
Exchange), classification (FaceDetection, Heartbeat, PEMS-SF, UWaveGestureLibrary) and
anomaly detection (MSL). We integrate UnitNorm into various Transformer models, namely
Crossformer Zhang & Yan (2022), FEDformer Zhou et al. (2022), Informer Zhou et al. (2021),
PatchTST Nie et al. (2022), and the vanilla Transformer Vaswani et al. (2017), all with same
set of hyperparameter as described in Wu et al. (2023). For comparison, we also include
BatchNorm, LayerNorm, RMSNorm, and various settings of UnitNorm (see figure legends).
By doing so, we aim to demonstrate its superior ability to address normalization-related
challenges, enhancing model performance in these tasks. Detailed experimental settings and
full results are provided in Tables S3 to S5 and S7 to S9. Below, we outline the significance
of these tasks and the specific benefits UnitNorm brings.

Long-term forecasting: Long-term forecasting represents a significant challenge for Trans-
former models, primarily due to the difficulty in maintaining periodic pattern recognition
over extended sequences Li et al. (2023). The conventional normalization methods often

7
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Figure 5: Average rank of normalization methods on the long-term forecasting tasks. X-axis:
number of tokens to forecast, Y-axis: average rank over models. Ranks are computed based
on the MAE or MSE of each model on each task with different normalization methods (lower
is better). UnitNorm and UnitNorm (learnable) achieve better results with the increase
of prediction horizon, and have a slower increase in prediction error compared to other
normalization methods.

exacerbate the sparse attention problem, hindering the model’s capability to capture pe-
riodicity. In contrast, UnitNorm excels here, with superior rank and slower error increase
over longer horizons across datasets (Figure 5). With a maximum increase of 1.46/0.45
in MSE/MAE on ETTh2, and 1.27/0.36 in MSE/MAE on Exchange at the longest pre-
diction horizon, it substantiates UnitNorm’s ability to preserve the attention mechanism’s
effectiveness, even with increasing prediction horizons, by maintaining balanced attention
and avoiding token/attention shift. Our analysis of dataset periodicity (see Appendix H.1)
reveals that datasets with stronger periodic patterns, such as ETTh2, particularly benefit
from UnitNorm’s attention-preserving properties.

Classification: In classification tasks, the key challenge lies in effectively capturing long-
range dependencies within sequences Vyas et al. (2022), a task at which Transformers
excel. However, the efficacy of this capability can be significantly impacted by the choice
of normalization method. UnitNorm, with its unique approach to normalization, has been
shown to enhance model performance across multiple datasets, outperforming traditional
methods in 3 out of 4 datasets on average (Figure S8), with a significant increase in accuracy
of up to 4.90% on UWaveGestureLibrary, 1.95% on Heartbeat and 0.48% on FaceDetection.
This underscores the versatility of UnitNorm in adapting to varied datasets, offering improved
accuracy by enabling a more robust, contextually aware attention mechanism.

Anomaly detection: Anomaly detection in time series data demands robust model sen-
sitivity to subtle deviations Haq & Lee (2023); Yang et al. (2023), a requirement often
compromised by normalization-induced shifts in attention. The token and attention shift
problems, in particular, pose significant challenges in learning stable representations. Unit-
Norm addresses these challenges head-on, providing a more stable foundation for anomaly
detection models to operate on, therefore gaining a maximum of 7.32% in recall, 5.58% in
F-score, and 2.81% in precision. Its effectiveness is dominant in all accuracy, recall, precision,
and F-score metrics (Figure S9), showcasing its capacity to facilitate more accurate and
reliable time series modeling for anomaly detection.

4.1 Extension to Large-Scale Dataset and Modern Architecture

To validate UnitNorm’s generalizability beyond standard benchmarks, we also evaluated
its performance on larger, more complex datasets with modern Transformer architectures.

8
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Experiments with the Pathformer model on the Solar dataset (137 channels, 52K samples)
showed that UnitNorm maintained its effectiveness even at scale, achieving the best MSE
and competitive MAE scores compared to other normalization methods. This suggests that
UnitNorm’s benefits extend to real-world, large-scale applications and remain compatible
with newer Transformer architectures. Detailed results and analysis of these experiments are
provided in Appendix H.2.

5 Discussion

Related work The development of effective normalization techniques is crucial in the
optimization of Transformer models training Wang et al. (2019). Previous research has
primarily explored two avenues: the optimal placement of normalization layers, highlighted by
the Post-Layer Normalization (Post-LN) and Pre-Layer Normalization (Pre-LN) debate, which
impacts training stability Xiong et al. (2020); and the normalization of model parameters,
examplified by Weight Normalization Salimans & Kingma (2016). These methods aim to
improve training dynamics by adjusting either the model architecture or the weights.

In contrast, our proposed UnitNorm shifts the focus from placement or parameters to the
fundamental role of normalization within the attention mechanism. UnitNorm is distinguished
by its emphasis on preserving information of token vectors, a core principle applicable to
both Post-LN and Pre-LN configurations. This focus on normalizing layer inputs to maintain
vector integrity presents a novel perspective that diverges from prior work centered on
architectural adjustments or parameter optimization.

Adopting UnitNorm in Transformer models UnitNorm invites reconsideration of nor-
malization practices in Transformers, suggesting alternatives that enhance model performance
and stability. Its simplicity and versatility suggest it could be readily adopted across various
Transformer applications. The broader impact of UnitNorm lies in its potential to improve
the applicability and efficiency of Transformers in fields where precision and model stability
are paramount. By addressing specific normalization-related challenges, UnitNorm can make
Transformers more suitable for tasks with complex sequential relationships.

Limitations While UnitNorm represents a significant advancement in normalization tech-
niques for Transformers, several areas still warrant further investigation:

• Broader Application Scope: Extending the application of UnitNorm beyond Trans-
formers to other neural network architectures could provide valuable insights into the
fundamental principles of normalization across deep learning models.

• Cross Domain Validation: Applying UnitNorm across diverse domains and challenging
datasets beyond TSA, e.g., NLP Brown et al. (2020); Devlin et al. (2019) and CV
Dosovitskiy et al. (2020), will further elucidate its effectiveness and generalizability,
providing insights into its broad utility in deep learning.

• Problem characterization: Understanding how and what certain dataset characteristics
influence the efficacy of normalization methods, including quantitatively assess the presence
of token shift, attention shift, and sparse attention in the dynamic interplay of attention
mechanisms and normalization during training, can guide the community in selecting
appropriate techniques for varied deep learning challenges.

Much as UnitNorm marks a promising advancement in normalization for Transformers, its
exploration is far from complete. The limitations identified herein not only highlight the
need for further empirical validation across domains but also the potential for refining and
extending the methodology to accommodate a wider array of architectures and applications.

Conclusion UnitNorm challenges prevailing normalization norms in Transformers for TSA,
underscoring the need for tailored approaches. By avoiding centering, it directly addresses
token shift, attention shift, and sparse attention, issues overlooked by traditional
methods. Our contribution extends beyond the theoretical introduction of UnitNorm;
it includes empirical evidence showcasing its efficacy across various tasks, setting a new
precedent for normalization techniques within the Transformer architecture. UnitNorm
enables more stable and faithful representation learning, paving the way for enhanced
Transformer performance and applicability in complex sequential data analysis.
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A Dimension Dependence of Sign-Flip Probability

We recall that Theorem 2.1 provided a condition for token vector means and variances,
condition (1), to imply that the sign of the token dot product x⊤y is flipped by center-and-
scale standardization as in LayerNorm Ba et al. (2016).

In this section, we elucidate the dimension dependence of the required relationship between
token means and standard deviations implied by this condition in the case of shared means
and standard deviations across feature dimensions, such as implicitly assumed by LayerNorm.
Corollary A.1. Assume that the mean and variance vectors of independent token vectors
x and y satisfy µx = µx1,µy = µy1 and σ2

x = σ2
x1,σ

2
y = σ2

y1. Then the mean-variance
condition (1) of Theorem 2.1 is satisfied for all L ≥ 77 if

µx
σx

≥ 6

D1/4
and

µy
σy

≥ 6

D1/4
, (8)

Furthermore, if additionally the independent token vectors are distributed as x ∼
N (µx, diag

(
σ2
x

)
), y ∼ N (µy, diag

(
σ2
y

)
), then the dot product x̃⊤ỹ of normalized vec-

tors x̃ = x−µx

σx
and ỹ =

y−µy

σy
attains a sign flip with respect to the original inner products

x⊤y with probability of at least 40%.

Theorem A.1 implies that for high-dimensional token vectors with D ≫ 1, it might become
easier to satisfy (8) given an empirical token distribution, which means that sign flips of dot
products after LayerNorm-style normalization might become even more prevalent in that
case.

Proof of Theorem A.1. For the case of µx = µx1,µy = µy1 and σ2
x = σ2

x1,σ
2
y = σ2

y1, it
follows that

12
(√

σ2⊤
x σ2

y + ∥σx ◦ σy∥∞
)
+ 5

(√
σ2⊤
y µ2

x+
√
σ2⊤
x µ2

y+∥σy◦|µx|∥∞+∥σx◦|µy|∥∞
)

=12
(√

Dσ2
xσ

2
y + σxσy

)
+ 5

(√
Dσ2

yµ
2
x +

√
Dσ2

xµ
2
y + σy|µx|+ σx|µy|

)
≤12

(√
D
Dµ2

xµ
2
y

362
+
D1/4µx

6

D1/4µy
6

)

+ 5

√DD1/2µ2
y

36
µ2
x +

√
D
D1/2µ2

x

36
µ2
y +

D1/4µy
6

|µx|+
D1/4µx

6
|µy|


=12

(
D
µxµy
36

+D1/2µxµy
36

)
+

5

6

(√
DD1/2µ2

yµ
2
x +

√
DD1/2µ2

xµ
2
y +D1/4µy|µx|+D1/4µx|µy|

)
=µxµy

(
1

3
D +

1

3
D1/2 +

5

3
(D3/4 +D1/4)

)
≤ Dµxµy = |µ⊤

x µy|.

Here, we used in the first inequality the assumption Equation (8) and the fact that 1
3D

1/2 +
5
3 (D

3/4 +D1/4) ≤ 2
3D for D ≥ 77 in the last inequality. The last assertion of the theorem

then follows by application of Theorem 2.1.

B Proofs

In this section, we detail the proofs of the theoretical results of this paper. In particular, we
present the proofs of Theorem 2.1, Theorem 3.1, Theorem 3.2, Theorem 3.3, as well as of
auxiliary lemmas.

B.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Let x ∼ N (µx, diag
(
σ2
x

)
) and y ∼ N (µy, diag

(
σ2
y

)
) be independent,

and write x = (X1, . . . , XD) and y = (Y1, . . . , YD), respectively.
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then we can compute the expectation E
[
x⊤y

]
of the dot product of x and y as

E
[
x⊤y

]
=E

[
D∑
i=1

XiYi

]

=

D∑
i=1

E [XiYi]

=

D∑
i=1

E [Xi]E [Yi]

=

D∑
i=1

(µx)i(µy)i

=µ⊤
x µy.

Var
(
x⊤y

)
=E

[(
x⊤y

)2]− (E [x⊤y
])2

=E

( D∑
i=1

XiYi

)2
−

(
µ⊤
x µy

)2
=

D∑
i,j=1

E [XiYiXjXj ]−
(
µ⊤
x µy

)2
=

D∑
i,j=1

E [XiXj ]E [YiYj ]−
(
µ⊤
x µy

)2
(9)

By definition of covariance, we have σx = E
[
xx⊤]− µxµ

⊤
x , and here σx = diag(σ2

x), then
Equation (9) can be simplified as follows:

Var
(
x⊤y

)
=

D∑
i=1

(
σx + µxµ

⊤
x

)
ij

(
σy + µyµ

⊤
y

)
ij
−
(
µ⊤
x µy

)2
= ⟨σx,σy⟩F +

〈
µxµ

⊤
x ,σy

〉
F
+
〈
σx,µyµ

⊤
y

〉
F
+
〈
µxµ

⊤
x ,µxµ

⊤
x

〉
F
−
(
µ⊤
x µy

)2
=
(
σ2
x

)⊤ (
σ2
y

)
+
(
σ2
y

)⊤ (
µ2
x

)
+
(
σ2
x

)⊤ (
µ2
y

)
(10)

where ⟨·, ·⟩F is the Frobenius inner product.

Consider now the normalized random vectors x̃ = x−µx

σx
and ỹ =

y−µy

σy
. Due to the

Gaussianity assumption on x and y, it follows that the normalized vectors are also Gaussian,
and in particular, are distributed as x̃, ỹ ∼ N (0, I). Plugging the respective mean and
variance values into the formulas for the expectation and variance for dot products above,
we obtain that

E
[
x̃⊤ỹ

]
= 0 and Var

(
x̃⊤ỹ

)
= 1 (11)

As x̃⊤ỹ is a symmetric random variable, it follows that

Pr
(
x̃⊤ỹ

)
= 0.5. (12)

Next, due to the definition of the random vectors x and y, it holds that x⊤y =
∑D
i=1XiYi,

where Xi ∼ N ((µx)i, (σx)
2
i ) and Yi ∼ N ((µy)i, (σy)

2
i ) are independent normal random

variables. Going forward, we will use the ψ1-Orlicz norm

∥X∥ψ1
:= inf{t > 0 : E[exp(|X|/t)] ≤ 2}, (13)

cf. Definition 2.7.5 of Vershynin (2018). We call a random variable for which ∥ · ∥ψ1
is finite

sub-exponential, following, e.g., Vershynin (2018).
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Define now Zi := XiYi − (µx)i(µy)i. We observe that

Zi = XiYi − (µx)i(µy)i = Xi(Yi − (µy)i) + (Xi − (µx)i)(µy)i = Z
(1)
i + Z

(2)
i

with Z
(1)
i := Xi(Yi − (µy)i) and Z

(2)
i := (Xi − (µx)i)(µy)i. To bound the ψ1-norm of Zi,

we bound this norm for Z(1)
i and Z(2)

i separately.

Indeed, due to Lemma 2.7.7 of Vershynin (2018), it holds that

∥Z(1)
i ∥ψ1

≤ ∥Xi∥ψ2
∥Yi − (µy)i∥ψ2

,

where
∥X∥ψ2

:= inf{t > 0 : E[exp(X2/t2)] ≤ 2}, (14)
is the ψ2-Orlicz norm Vershynin (2018) characterizing sub-Gaussian random variables X.
From Lemma B.2, it follows therefore that

∥Z(1)
i ∥ψ1

≤ max

2(σx)i,

√
(µx)

2
i

log 2
+ (σx)2i

√8

3
(σy)i.

For the second part, since ∥ · ∥ψ2 is a norm, we estimate that

∥Z(2)
i ∥ψ1

≤ ∥Xi − (µx)i∥ψ2
∥(µy)i∥ψ2

≤
√

8

3
(σx)i∥(µy)i∥ψ2

≤
√

8

3
(σx)i

|(µy)i|√
log 2

,

where we used again Lemma 2.7.7 and (2.17) of Vershynin (2018) in the first and last
inequality, respectively, and Lemma B.2 in the second inequality.

From this, it follows that

∥Zi∥ψ1
≤ ∥Z(1)

i ∥ψ1
+ ∥Z(2)

i ∥ψ1
≤ max

2(σx)i,

√
(µx)

2
i

log 2
+ (σx)2i

√8

3
(σy)i +

√
8

3
(σx)i

|(µy)i|√
log 2

≤

2(σx)i +

√
(µx)

2
i

log 2
+ (σx)2i

√8

3
(σy)i +

√
8

3
(σx)i

|(µy)i|√
log 2

≤ 2
√
6(σx)i(σy)i +

√
8

3
(σy)i

|(µx)i|√
log 2

+

√
8

3
(σx)i

|(µy)i|√
log 2

,

(15)

using that
√
a2 + b2 ≤ a+ b for any non-negative a, b ≥ 0 in the last inequality. We next

establish a lower bound on the probability of a sign flip through normalization, i.e., for
Pr(sgn

(
x⊤y

)
̸= sgn

(
x̃⊤ỹ

)
). Assuming without loss of generality that |µ⊤

x µy| = µ⊤
x µy, we

observe that

Pr
(
sgn

(
x⊤y

)
̸= sgn

(
x̃⊤ỹ

))
= Pr

(
(x⊤y > 0) ∧ (x̃⊤ỹ < 0)

)
+ Pr

(
(x⊤y < 0) ∧ (x̃⊤ỹ > 0)

)
≥ Pr

(
(x⊤y > 0) ∧ (x̃⊤ỹ < 0)

)
.

Furthermore, since the distribution of the normalized vectors x̃ and ỹ is symmetric, the
same holds true for the dot product x̃⊤ỹ, which implies that

Pr
(
(x⊤y > 0) ∧ (x̃⊤ỹ < 0)

)
= 1− Pr

(
(x⊤y ≤ 0) ∨ (x̃⊤ỹ ≥ 0)

)
≥ 1− Pr

(
x⊤y ≤ 0

)
− Pr

(
x̃⊤ỹ ≥ 0

)
≥ 1− 0.5− Pr

(
x⊤y ≤ 0

)
= 0.5− Pr

(
x⊤y ≤ 0

)
.

It remains to show that
Pr
(
x⊤y ≤ 0

)
≤ 0.1. (16)

To establish this, we see that

Pr
(
x⊤y ≤ 0

)
= Pr

(
x⊤y − E

[
x⊤y

]
≤ −E

[
x⊤y

])
= Pr

(
x⊤y − µ⊤

x µy ≤ −µ⊤
x µy

)
= Pr

(
D∑
i=1

Zi ≤ −µ⊤
x µy

)
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with the random variables Zi defined above. Using the triangle inequality of the ℓ2-norm, it
follows from (15) that√√√√ D∑

i=1

∥Zi∥2ψ1
≤ 2

√
6
√
(σ2

x)
⊤σ2

y +

√
8

3 log 2

(√
(σ2

y)
⊤µ2

x +
√
(σ2

x)
⊤µ2

y

)
and that

D
max
i=1

∥Zi∥ψ1 ≤ 2
√
6∥σx ◦ σy∥∞ +

√
8

3 log 2

(
∥σy ◦ |(µx)|∥∞ + ∥σx ◦ |(µy)|∥∞

)
,

which implies that√√√√2

D∑
i=1

∥Zi∥2ψ1

√
log(10) +

D
max
i=1

∥Zi∥ψ1
log(10)

≤ 4
√
3 log(10)

√
(σ2

x)
⊤σ2

y +
4
√
log(10)√
3 log(2)

(√
(σ2

y)
⊤µ2

x +
√
(σ2

x)
⊤µ2

y

)
+ 2

√
6 log(10)∥σx ◦ σy∥∞ +

√
8

3 log 2
log(10)

(
∥σy ◦ |(µx)|∥∞ + ∥σx ◦ |(µy)|∥∞

)
≤ 12

(√
(σ2

x)
⊤σ2

y + ∥σx ◦ σy∥∞
)
+ 5

(√
(σ2

y)
⊤µ2

x +
√
(σ2

x)
⊤µ2

y + ∥σy ◦ |(µx)|∥∞ + ∥σx ◦ |(µy)|∥∞
)

≤ |µ⊤
x µy|,

using the assumption (1) in the last inequality. With this inequality, we can use the fact
that the Zi are independent mean-zero sub-exponential random variables and Bernstein’s
inequality as stated in Lemma B.1 to conclude that

Pr

(
D∑
i=1

Zi ≤ −µ⊤
x µy

)
≤ Pr

 D∑
i=1

Zi ≤ −


√√√√2

D∑
i=1

∥Zi∥2ψ1

√
log(10) +

D
max
i=1

∥Zi∥ψ1
log(10)


≤ exp(− log(10)) = 0.1.

This establishes (16), which concludes the proof.

Lemma B.1 (Bernstein’s Inequality, cf. Lemma 5.1 of Dirksen (2015)). Let Z1, . . . ZD be
independent mean-zero sub-exponential random variables. Then for every t ≥ 0,

Pr

 D∑
i=1

Zi ≤ −


√√√√2

D∑
i=1

∥Zi∥2ψ1

√
t+

D
max
i=1

∥Zi∥ψ1
t

 ≤ exp(−t).

Lemma B.2 (Bounds on ψ2-norm of Gaussians Vershynin (2018)). 1. If X ∼
N (0, σ2) is a centered Gaussian random variable with variance σ2, then its ψ2-norm
(14) satisfies

∥X∥ψ2
≤
√

8

3
σ.

2. If X ∼ N (µ, σ2) is a Gaussian random variable with mean µ and variance σ2, then
its ψ2-norm (14) satisfies

∥X∥ψ2
≤ max

(
2σ,

√
µ2

log 2
+ σ2

)
.
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B.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Given the output of an affine transformation x = Wv + b, where W
and b are learnable parameters. If x′ = (αW)v + (αb), then the output of UnitNorm is
unchanged, i.e., x̃′ = x̃, while the gradients to loss L are given as follows:

∂L
∂x̃′ ·

∂x̃′

∂(αW)
=

1

α
· ∂L
∂x̃

· ∂x̃
∂W

=
1

α
· ∂L
∂x̃

· Jv⊤

∂L
∂x̃′ ·

∂x̃′

∂(αb)
=

1

α
· ∂L
∂x̃

· ∂x̃
∂b

=
1

α
· ∂L
∂x̃

· J

∂L
∂x̃′ ·

∂x̃′

∂v
=
∂L
∂x̃

· ∂x̃
∂v

=
∂L
∂x̃

· JW⊤

(17)

Proof: First we will show x̃′ = x̃, for which we have:

x̃′ =D
k
2

x′

∥x′∥

=D
k
2
αx

α ∥x∥

=D
k
2

x

∥x∥
=x̃

(18)

And thus for the gradients to loss L, we have ∂L
∂x̃′ =

∂L
∂x̃ . Also, for the Jacobian matrix J of

x̃ w.r.t.x, we have

J =
∂D

k
2

x
∥x∥

∂x

=D
k
2

(
I

∥x∥
− xx⊤

∥x∥3

) (19)

And the Jacobian matrix of x̃′ w.r.t.x′ is given as:

∂D
k
2

x′

∥x′∥

∂x′ =D
k
2

(
I

∥x′∥
− x′x′⊤

∥x′∥3

)

=D
k
2

(
I

α ∥x∥
− α2xx⊤

α3 ∥x∥3

)

=
1

α
D

k
2

(
I

∥x∥
− xx⊤

∥x∥3

)

=
1

α
J

(20)

Then we have the gradient of loss w.r.t.W and αW:

∂L
∂x̃

· ∂x̃
∂W

=
∂L
∂x̃

· ∂x̃
∂x

· ∂x
∂W

=
∂L
∂x̃

· Jv⊤

∂L
∂x̃′ ·

∂x̃′

∂(αW)
=
∂L
∂x̃′ ·

∂x̃′

∂x′ ·
∂x′

∂(αW)

=
∂L
∂x̃

· 1
α
Jv⊤

⇒ ∂L
∂x̃′ ·

∂x̃′

∂(αW)
=
1

α
· ∂L
∂x̃

· ∂x̃
∂W

=
1

α
· ∂L
∂x̃

· Jv⊤

(21)
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Similarly, for b and αb we have:

∂L
∂x̃

· ∂x̃
∂b

=
∂L
∂x̃

· ∂x̃
∂x

· ∂x
∂b

=
∂L
∂x̃

· J

∂L
∂x̃′ ·

∂x̃′

∂(αb)
=
∂L
∂x̃′ ·

∂x̃′

∂x′ ·
∂x′

∂(αb)

=
∂L
∂x̃

· 1
α
J

⇒ ∂L
∂x̃′ ·

∂x̃′

∂(αb)
=
1

α
· ∂L
∂x̃

· ∂x̃
∂b

=
1

α
· ∂L
∂x̃

· J

(22)

And for v, we have:

∂L
∂x̃

· ∂x̃
∂v

=
∂L
∂x̃

· ∂x̃
∂x

· ∂x
∂v

=
∂L
∂x̃

· JW⊤

∂L
∂x̃′ ·

∂x̃′

∂v
=
∂L
∂x̃′ ·

∂x̃′

∂x′ ·
∂x′

∂v

=
∂L
∂x̃

· 1
α
J(αW)⊤

⇒ ∂L
∂x̃′ ·

∂x̃′

∂v
=
∂L
∂x̃

· ∂x̃
∂v

=
∂L
∂x̃

· JW⊤

(23)

B.3 Proofs of Theorem 3.2 and Theorem 3.3

Proof of Theorem 3.2. Let X ∈ RL×D be a single sequence of token vectors, and let X̃ be
the unit normalized output with modulus k, the entropy lower bound (ELB) of the attention
scores is given by the following expression:

ELB(k;L,D) =
L

min
i=1

H(Ai)

=
L

min
i=1

−
L∑
j=1

Ai,j logAi,j


= log

(
L− 1 + exp

(
2Dk− 1

2

))
−

2Dk− 1
2 exp

(
2Dk− 1

2

)
L− 1 + exp

(
2Dk− 1

2

)
(24)

Proof: Let X̃ = D
k
2 e where e are the vectors of unit norm. Without loss of generality, we

can assume the ELB is achieved at anchor index i, where we can compute the attention
scores as follows:

Ai =softmax

(
X̃iX̃

⊤
√
D

)

=softmax

(
Dkeie

⊤
√
D

)
=softmax

(
Dk− 1

2 eie
⊤
)

(25)
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Since eie
⊤
j ∈ (−1, 1) , ∀i, j = 1, 2, · · · , L, the entropy of the attentions scores is lower bounded

by the following expression when it satisfies that eiej =

{
1, j = i

−1, j ̸= i
:

H(Ai)

=−
L∑
j=1

Ai,j logAi,j

=− (L− 1) ·
exp

(
−Dk− 1

2

)
(L− 1) exp

(
−Dk− 1

2

)
+ exp

(
Dk− 1

2

) log
exp

(
−Dk− 1

2

)
(L− 1) exp

(
−Dk− 1

2

)
+ exp

(
Dk− 1

2

)
−

exp
(
Dk− 1

2

)
(L− 1) exp

(
−Dk− 1

2

)
+ exp

(
Dk− 1

2

) log
exp

(
Dk− 1

2

)
(L− 1) exp

(
−Dk− 1

2

)
+ exp

(
Dk− 1

2

)
=

L− 1

L− 1 + exp
(
2Dk− 1

2

) log
(
L− 1 + exp

(
2Dk− 1

2

))

+
exp

(
2Dk− 1

2

)
L− 1 + exp

(
2Dk− 1

2

) log
L− 1 + exp

(
2Dk− 1

2

)
exp

(
2Dk− 1

2

)
= log

(
L− 1 + exp

(
2Dk− 1

2

))
−

2Dk− 1
2 exp

(
2Dk− 1

2

)
L− 1 + exp

(
2Dk− 1

2

)
(26)

Therefore, the entropy lower bound (ELB) for any L,D and k is:

ELB(k;L,D) = log
(
L− 1 + exp

(
2Dk− 1

2

))
−

2Dk− 1
2 exp

(
2Dk− 1

2

)
L− 1 + exp

(
2Dk− 1

2

) (27)

Proof of Theorem 3.3. The ELB is a monotonically decreasing function of k bounded between
0 and logL.

Proof: Let d = 2Dk− 1
2 , then it is obvious that d is monotonically increasing with k, therefore

we only need to prove that ELB(k;L,D) is monotonically decreasing with d. The derivative
of ELB(k;L,D) with respect to d is given as follows:

∂ ELB(k;L,D)

∂d
=

ed

L− 1 + ed
−
(
L− 1 + ed

)
(d+ 1)ed − (ded)ed

(L− 1 + ed)
2

=
ed

(L− 1 + ed)
2

((
L− 1 + ed

)
−
(
L− 1 + ed

)
(d+ 1) + ded

)
=

ded

(L− 1 + ed)
2 (1− L)

(∀L > 1) <0

(28)

Therefore, ELB(k;L,D) is monotonically decreasing with d and with k. If the limits of
ELB(k;L,D) as k → −∞ and k → +∞ exist, then ELB(k;L,D) is bounded between these
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two limits. The limits are given as follows:

lim
k→−∞

ELB(k;L,D) = lim
d→0+

(
log
(
L− 1 + ed

)
− ded

L− 1 + ed

)
= log (L− 1 + 1)− 0

L− 1 + 1

= logL

(29)

lim
k→+∞

ELB(k;L,D) = lim
d→+∞

(
log
(
L− 1 + ed

)
− ded

L− 1 + ed

)
= lim
d→+∞

log ed − lim
d→+∞

d

(L− 1)e−d + 1

=d− d

=0

(30)

Therefore, ELB(k;L,D) is bounded between 0 and logL.

C Discussion

C.1 Difference between the proposed normalization and the other
normalization

BatchNorm and LayerNorm are all normalization methods that are widely used in deep
learning. They share the same center-and-scale normalization paradigm by first subtracting
the mean and then divide by standard deviation. The only difference between them in
terms of computation is the dimensions of data used to compute these statistics, as shown in
Table S1.

In terms of application, BatchNorm is often used in fully connected layers and convolution
layers, while LayerNorm is often used in recurrent neural networks and Transformers. The
subtle difference between LayerNorm (theory) and LayerNorm (practice) might be attributed
to the fact that the sequence length L is often variable in Transformers, thus normalization
within each token might be more stable. But this will require further investigation to come
to a conclusion.

The proposed UnitNorm is a normalization method that is used to normalize the input data
to have unit norm, which takes the same dimension for computation as LayerNorm, yet it
distinguishes itself from LayerNorm by the fact that it does not subtract the mean and divide
by standard deviation. Also, UnitNorm discard the center operation on the normalized
output, as it will also cause the problem of token shift (Section 2.2).

C.2 Feasibility of switching the order of normalization and projection in
theoretical analysis

Let X ∈ RL×D be a single sequence of token vectors, and the normalization operation is
given in the following form:

f : X 7→ X− µ

σ
≡ XW + b (31)

where µ and σ are the mean and standard deviation of the input vector X, respectively, and
W = σ−1 and b = µσ−1. Depending on the normalization method, the mean and standard
deviation can be computed over different dimensions.

The projection in the attention mechanism maps the input vectors to query, key and value
vectors, and here we only consider the query and key vectors for this discussion, which are
computed as follows:

Q =XWQ + bQ

K =XWK + bK
(32)
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Table S1: Computation of the statistics for different normalization methods. Input data X ∈
RN×L×D, where N is the batch size, L is the sequence length and D is the feature dimension.
Xn,l,d denotes the d-th feature of the l-th token in the n-th sequence. Normalization is
broadcasted over the same dimension as the statistics and mathematical operations are done
element-wise. For BatchNorm, LayerNorm (theory) and LayerNorm (practice), γ and β
are optional learnable parameters that will re-scale and re-center the normalized output
element-wise, which is enabled by default in the PyTorch’s implementation.

Method Statistics Normalization

BatchNorm

µd =
1

NL

N∑
n=1

L∑
l=1

Xn,l,d

σ2
d =

1

NL

N∑
n=1

L∑
l=1

(Xn,l,d − µd)
2

µ = [µ1 µ2 · · · µD]⊤ ∈ R1×1×D

σ2 = [σ2
1 σ2

2 · · · σ2
D]

⊤ ∈ R1×1×D

X̃ =
X− µ√
σ2 + ε

Y =X̃⊙ γ + β

LayerNorm (theory)

µn =
1

LD

L∑
l=1

D∑
d=1

Xn,l,d

σ2
n =

1

LD

L∑
l=1

D∑
d=1

(Xn,l,d − µn)
2

µ = [µ1 µ2 · · · µN ]⊤ ∈ RN×1×1

σ2 = [σ2
1 σ2

2 · · · σ2
N ]

⊤ ∈ RN×1×1

LayerNorm (practice)

µn,l =
1

D

D∑
d=1

Xn,l,d

σ2
n,l =

1

D

D∑
d=1

(Xn,l,d − µn)
2

µ =

µ1,1 µ1,2 · · · µ1,L
µ2,1 µ2,2 · · · µ2,L

...
...

. . .
...

µN,1 µN,2 · · · µN,L

⊤

∈ RN×L×1

σ2 =


σ2
1,1 σ2

1,2 · · · σ2
1,L

σ2
2,1 σ2

2,2 · · · σ2
2,L

...
...

. . .
...

σ2
N,1 σ2

N,2 · · · σ2
N,L


⊤

∈ RN×L×1

RMSNorm ∥X∥n,l =

√√√√ D∑
d=1

X2
n,l,d

∥X∥ =


∥X∥1,1 ∥X∥1,2 · · · ∥X∥1,L
∥X∥2,1 ∥X∥2,2 · · · ∥X∥2,L

...
...

. . .
...

∥X∥N,1 ∥X∥N,2 · · · ∥X∥N,L


⊤

∈RN×L×1

X̃ =
√
D

X

∥X∥
Y =X̃⊙ γ + β

UnitNorm
X̃ =D

k
2

X

∥X∥
Y =X̃

where WQ,WK ∈ RD×D are the projection matrices and bQ,bK ∈ RD are the bias
vectors for query and key, respectively. As the normalization and projection are both linear
operations, we can combine them into a single linear operation as follows:
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Y =X̃WY + bY

=(XW + b)WY + bY

=X (WWY ) + (bWY + bY )

(33)

for Y ∈ {Q,K}. Therefore, there must exist some W′, b′, W′
Y and b′

Y such that:

W′
YW

′ =WWY

bYW
′ + b′ =bWY + bY

(34)

Therefore, the order of normalization and projection does not affect the theoretical analysis.
And in favor of simplicity, we can assume the normalization is performed after the projection.
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Figure S1: Transformer layer architecture. The original architecture is equivalent to a
normalization-first sub-layer design for simpler analysis.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure S2: Distribution of values in each dimension of the word2vec embedding. The
word2vec embedding is a 300-dimensional vector, and the distribution follows a normal
distribution with means mostly around 0.
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Figure S3: Demonstration of the token shift and attention shift problems using artificial data.
The x0 and x1 exhibit typical token shift as shifting away from their original quadrants,
resulting in sign flip in scaled dot product (marked in orange), and leading to less attention
weights distributed to x2 and x3 than original. Attention shift and sparse attention problem
can also be observed as the maximum attention weight is altered from x2 and x3 to nearly
solely onto themselves.
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Figure S4: Entropy lower bound (ELB) against k for different L,D. The left figure shows
the curve for fixed D = 512 and varying L, and the right figure shows the curve for fixed
L = 1024 and varying D.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

None (original)

Shift-and-Scale

UnitNorm

Figure S5: Graphical representation of attention weights showing a simple scenario of 3
tokens. Each corner represents a single-point distribution (red, blue and green) and the center
representing a uniform distribution (white). Gray star, blue diamond, and red triangle mark
the attention weights with no normalization, center-and-scale normalization, and UnitNorm,
respectively.
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Figure S6: Joint distribution of metrics for LayerNorm (practice). Metrics used are defined
as in Table S10.
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Figure S7: Joint distribution of metrics for UnitNorm. Metrics used are defined as in
Table S10.
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Figure S8: Average rank of normalization methods on the classification tasks. X-axis: Dataset
with different normalization, Y-axis: average rank over models. Ranks are computed based
on the accuracy of each model on each task with different normalization methods (lower is
better). ∗ indicates the best performing normalization method(s) on each task. UnitNorm
and UnitNorm (learnable) outperform other normalization methods on 3 out of 5 datasets,
showing its potential in classification tasks.

Figure S9: Average rank of normalization methods on the anomaly detection tasks. X-axis:
Metrics under different normalization, Y-axis: average rank over models. Ranks are computed
based on every metric of each model with different normalization methods (lower is better).
∗ indicates the best performing normalization method(s) on each metric. UnitNorm and
UnitNorm (learnable) show a dominating performance gain over the other normalization
methods in all metrics.
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Table S2: Performance on a synthetic periodic dataset with two channels of sine waves
(varying periods 2-5 Hz, amplitudes 0.5-2, plus Gaussian noise level = 0.1). Results shown
for PatchTST model with different normalization methods, averaged over 3 random seeds
with standard deviation. Best results are in bold.

Normalization MSE MAE

BatchNorm 2.721 ± 3.409 0.956 ± 0.550

LayerNorm 3.117 ± 3.078 1.054 ± 0.532

RMSNorm 3.114 ± 3.057 1.056 ± 0.528

UnitNorm (k = 0.5) 1.127 ± 1.085 0.732 ± 0.269

UnitNorm (k = 0.7) 1.600 ± 1.762 0.800 ± 0.361

UnitNorm (k = 1.0) 3.115 ± 3.059 1.056 ± 0.528

E Supplementary Tables

Table S3: Summary of long term forecasting benchmark settings. The sequence length is the
number of historical time steps fed into the encoder, and the label length is the number of
time steps fed into the decoder as the ground truth output of the decoder. The prediction
length is the number of time steps to be predicted by the decoder.

Datasets Feature
number

Sequence
length

Label
length Prediction length Metrics License

ETTh1, ETTh2
Zhou et al. (2021) 7 CC BY-ND 4.0

ECL
Trindade (2015) 321 384 96 {96, 192, 384, 720} MSE, MAE CC BY 4.0

Exchange
Lai et al. (2018) 8 N/A

Table S4: Summary of classification benchmark settings. All datasets are from UEA Archive
Bagnall et al. (2018). The sequence length is the number of time steps in each sequence fed
into the encoder, and the prediction is made on the flattened output of the encoder by a
fully connected layer.

Datasets Feature number Class number Sequence
length Metrics License

FaceDetection 144 5890
96 Accuracy N/AHeartbeat 61 204

PEMS-SF 963 173
UWaveGestureLibrary 3 320
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Table S5: Summary of anomaly detection benchmark settings. The sequence length is the
number of time steps in each sequence fed into the model for reconstruction using MSE as
loss. The threshold is determined by the distribution of reconstruction error on the training
set, and the metrics are computed on the test set based on this threshold.

Datasets Feature
number

Sequence
length

Reconstruction
error Metrics License

MSL
Hundman et al. (2018) 55 100 MSE Accuracy, F1-score,

Precision, Recall N/A

Table S6: Summary of compute resources used for the experiments. Depending on the
dataset and model, the GPU memory usage varies from 4G to 64G.

CPU Memory GPU GPU Memory
AMD Threadripper 3995WX 512G 4 × NVIDIA RTX A5000 4 × 24G
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Table S7: Long term forecasting test losses on different datasets using different models and
normalization methods. For each dataset, prediction length, metric and for each model, the
best performing normalization method(s) are bolded, and the second best are underlined.

dataset ECL ETTh1 ETTh2 Exchange

prediction length 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
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Table S8: Classification accuracies of different datasets using different models and normal-
ization methods. For each dataset and for each model, the best performing normalization
method(s) are bolded, and the second best are underlined.

dataset Face
Detection Heartbeat PEMS-SF

UWave
Gesture
Library

B
at

ch
N

or
m Crossformer 50.435 75.122 68.401 83.438

FEDformer 68.275 73.984 78.035 47.812
Informer 68.606 73.984 87.476 82.083

PatchTST 65.683 66.992 79.576 81.354
Transformer 68.663 75.610 84.200 83.542

L
ay

er
N

or
m Crossformer 52.176 73.008 26.397 82.708

FEDformer 68.861 73.659 84.393 48.438
Informer 68.076 73.821 85.742 81.979

PatchTST 67.329 69.919 84.971 81.562
Transformer 68.757 74.472 82.466 85.104

R
M

SN
or

m Crossformer 51.693 73.659 23.699 81.042
FEDformer 68.000 72.846 85.164 47.708
Informer 68.275 75.447 84.586 83.125

PatchTST 66.648 70.894 82.852 80.729
Transformer 69.154 75.935 83.237 84.167

U
ni

tN
or

m
(k

=
0.

0)

Crossformer 50.000 72.195 16.763 29.167
FEDformer 69.041 74.146 83.430 53.333
Informer 69.088 75.285 78.035 85.000

PatchTST 67.546 72.195 81.118 82.396
Transformer 68.568 75.935 82.659 87.188

U
ni

tN
or

m
(k

=
0.

7)

Crossformer 50.236 73.008 65.896 81.667
FEDformer 68.067 72.846 84.586 47.083
Informer 68.142 72.846 83.237 83.958

PatchTST 67.641 72.358 84.971 82.604
Transformer 68.634 74.797 84.200 84.896

U
ni

tN
or

m
(k

=
1.

0)

Crossformer 50.019 72.195 56.455 80.521
FEDformer 67.357 73.984 85.356 48.125
Informer 68.492 73.984 84.008 83.646

PatchTST 67.452 72.033 83.044 81.146
Transformer 68.350 73.984 80.347 84.375

U
ni

tN
or

m
(l

ea
rn

ab
le

;
k=

0.
0)

Crossformer 50.000 72.195 16.763 29.167
FEDformer 69.041 74.146 83.430 53.333
Informer 69.079 74.959 80.539 85.000

PatchTST 67.546 72.195 81.118 82.396
Transformer 68.568 75.935 82.659 87.188

U
ni

tN
or

m
(l

ea
rn

ab
le

;
k=

0.
7)

Crossformer 50.000 72.195 16.763 29.167
FEDformer 69.041 74.146 83.430 53.333
Informer 68.852 75.122 78.420 85.000

PatchTST 67.546 72.195 81.118 82.396
Transformer 68.568 75.935 82.659 87.188

U
ni

tN
or

m
(l

ea
rn

ab
le

;
k=

1.
0)

Crossformer 50.000 72.195 16.763 29.167
FEDformer 69.041 74.146 83.430 53.333
Informer 68.558 75.610 79.576 85.000

PatchTST 67.546 72.846 81.118 82.396
Transformer 68.568 75.935 82.659 87.188

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table S9: Anomaly detection accuracies of MSL dataset using different models and normal-
ization methods. For each metric and for each model, the best performing normalization
method(s) are bolded, and the second best are underlined.

metric Accuracy F-score Precision Recall

B
at

ch
N

or
m Crossformer 93.507 59.110 81.410 47.903

FEDformer 95.543 75.820 88.630 66.240
Informer 93.040 56.927 81.760 43.733

PatchTST 95.947 78.613 88.603 70.650
Transformer 90.417 30.680 64.623 20.123

L
ay

er
N

or
m Crossformer 96.313 80.640 90.330 72.823

FEDformer 96.603 82.427 90.697 75.537
Informer 96.390 81.193 90.120 73.877

PatchTST 95.950 78.727 88.347 70.993
Transformer 96.333 80.910 89.740 73.660

R
M

SN
or

m Crossformer 96.307 80.613 90.323 72.790
FEDformer 96.573 82.263 90.647 75.300
Informer 96.373 81.067 90.097 73.680

PatchTST 95.940 78.670 88.307 70.927
Transformer 96.330 80.883 89.677 73.657

U
ni

tN
or

m
(k

=
0.

0)

Crossformer 96.533 82.000 90.610 74.880
FEDformer 96.547 82.097 90.653 75.013
Informer 96.543 82.067 90.640 74.973

PatchTST 96.317 80.943 88.990 74.227
Transformer 96.540 82.060 90.637 74.960

U
ni

tN
or

m
(k

=
0.

7)

Crossformer 96.523 81.943 90.617 74.783
FEDformer 96.537 82.040 90.620 74.943
Informer 96.557 82.147 90.643 75.103

PatchTST 96.213 80.360 88.713 73.440
Transformer 96.540 82.043 90.580 74.977

U
ni

tN
or

m
(k

=
1.

0)

Crossformer 96.347 80.857 90.380 73.143
FEDformer 96.587 82.350 90.670 75.433
Informer 96.470 81.653 90.400 74.450

PatchTST 95.933 78.607 88.273 70.847
Transformer 96.337 80.933 89.753 73.687

U
ni

tN
or

m
(l

ea
rn

ab
le

;
k=

0.
0)

Crossformer 96.533 82.000 90.610 74.880
FEDformer 96.547 82.097 90.653 75.013
Informer 96.543 82.067 90.640 74.973

PatchTST 96.317 80.943 88.990 74.227
Transformer 96.540 82.060 90.637 74.960

U
ni

tN
or

m
(l

ea
rn

ab
le

;
k=

0.
7)

Crossformer 96.533 82.000 90.610 74.880
FEDformer 96.547 82.097 90.653 75.013
Informer 96.543 82.067 90.640 74.973

PatchTST 96.317 80.943 88.990 74.227
Transformer 96.540 82.060 90.637 74.960

U
ni

tN
or

m
(l

ea
rn

ab
le

;
k=

1.
0)

Crossformer 96.533 82.000 90.610 74.880
FEDformer 96.547 82.097 90.653 75.013
Informer 96.543 82.067 90.640 74.973

PatchTST 96.317 80.943 88.990 74.227
Transformer 96.540 82.060 90.637 74.960

Table S10: Metrics used for characterizing the distribution of attention scores from the
original and normalized data, denoted as An,i and Ãn,i, respectively, for the i-th sample in
the n-th batch.

Metric Definition Evaluation

Chebyshev distance DChebyshev

(
An,i, Ãn,i

)
= maxL

j=1

∣∣∣An,i,j − Ãn,i,j

∣∣∣ Lower is Better

Cosine similarity DCosine

(
An,i, Ãn,i

)
=

A⊤
n,iÃn,i

∥An,i∥∥Ãn,i∥ Higher is Better

KL divergence DKL

(
An,i∥Ãn,i

)
=

∑L
j=1 An,i,j

(
logAn,i,j − log Ãn,i,j

)
Lower is Better

Entropy E
(
Ãn,i

)
= −

∑L
j=1 Ãn,i,j log Ãn,i,j Higher is Better
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Table T1: Last-value predictor versus PatchTST with different normalization methods on
Exchange dataset. Best results aside from last-value predictor are in bold.

Model & Metric\Prediction 96 192 336 720

Last-value predictor (MAE) 0.196 0.289 0.398 0.676

PatchTST + UnitNorm (MAE) 0.202 0.300 0.411 0.698

PatchTST + BatchNorm (MAE) 0.204 0.300 0.419 0.703

PatchTST + LayerNorm (MAE) 0.209 0.301 0.412 0.713

PatchTST + RMSNorm (MAE) 0.209 0.300 0.411 0.715

Last-value predictor (MSE) 0.081 0.167 0.306 0.810

PatchTST + UnitNorm (MSE) 0.085 0.178 0.321 0.861

PatchTST + BatchNorm (MSE) 0.088 0.180 0.336 0.874

PatchTST + LayerNorm (MSE) 0.091 0.180 0.324 0.901

PatchTST + RMSNorm (MSE) 0.091 0.179 0.322 0.904

F Comparison with Last-Value Predictor

To provide a more comprehensive evaluation of UnitNorm’s effectiveness, we compared it
against a simple but effective baseline: the last-value predictor. This baseline simply uses
the last observed value as the prediction for all future time steps, which can be surprisingly
effective for time series with slow-changing patterns or high levels of noise.

Tables T1 and T2 present the comparison between the last-value predictor and PatchTST
model with different normalization methods on the Exchange and ETTh2 datasets, respec-
tively.

On the Exchange dataset (Table T1), the last-value predictor outperforms all Transformer-
based models. This is likely due to the highly stochastic nature of exchange rates, where the
most recent value is often the best predictor for future values. However, among the Trans-
former models, UnitNorm consistently achieves the best performance across all prediction
horizons for both MSE and MAE metrics. This demonstrates that even when sophisticated
models struggle to outperform simple baselines on challenging datasets, UnitNorm still
provides relative advantages over other normalization techniques.

On the ETTh2 dataset (Table T2), all Transformer models substantially outperform the last-
value predictor, with UnitNorm showing the best overall performance. UnitNorm achieves
the best MSE scores across all prediction horizons and the best MAE for horizons 96, 192,
and 336. This confirms UnitNorm’s ability to enable Transformer models to effectively
capture periodic patterns present in this dataset, as indicated by the higher periodicity scores
shown in Table T4.

These results highlight an important insight: UnitNorm’s effectiveness is most pronounced
on datasets with strong periodic components (like ETTh2), while its advantages may be less
significant on datasets where complex models are less suitable overall (like Exchange). This
aligns with our theoretical analysis that UnitNorm helps preserve attention distributions and
mitigate token shift issues, which are particularly beneficial for modeling periodic patterns
in time series data.
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Table T2: Last-value predictor versus PatchTST with different normalization methods on
ETTh2 dataset. Best results are in bold.

Model & Metric\Prediction 96 192 336 720

Last-value predictor (MAE) 0.422 0.473 0.511 0.519

PatchTST + UnitNorm (MAE) 0.341 0.394 0.429 0.449

PatchTST + BatchNorm (MAE) 0.346 0.399 0.435 0.453

PatchTST + LayerNorm (MAE) 0.345 0.399 0.431 0.447

PatchTST + RMSNorm (MAE) 0.345 0.399 0.431 0.448

Last-value predictor (MSE) 0.432 0.534 0.597 0.594

PatchTST + UnitNorm (MSE) 0.290 0.369 0.417 0.429

PatchTST + BatchNorm (MSE) 0.292 0.376 0.421 0.435

PatchTST + LayerNorm (MSE) 0.297 0.380 0.417 0.429

PatchTST + RMSNorm (MSE) 0.297 0.379 0.418 0.429

G Selection of hyperparameter k

The hyperparameter k in UnitNorm plays a crucial role in determining the sparsity of
attention scores and consequently affects model performance. To empirically identify the
optimal k values for time series applications, we conducted extensive experiments with
various k values on multiple datasets.

G.1 Experimental setup

We performed a comprehensive sweep of fixed k values (k = 0.1, 0.3, . . . , 0.9, 1.1) on the
ETTh2 datasets using the PatchTST model. We trained the model with different prediction
horizons (96, 192, 336, and 720 time steps) and measured the Mean Square Error (MSE).
All experiments were conducted with 3 different random seeds (41, 42, and 43), and the
reported results are averaged across these runs.

G.2 Results on ETTh2

Table T3 presents the MSE performance of PatchTST on the ETTh2 dataset with different
fixed k values. The results show that the optimal k value depends on the prediction horizon,
but generally falls within the range of 0.5 to 0.7. For the ETTh2 dataset, k = 0.7 achieves
the best performance for prediction horizons of 96, 336, and 720, while k = 0.5 performs
best for the horizon of 192.

G.3 Analysis

Our experiments reveal several important findings regarding the selection of k:

1. Performance Robustness: The performance of UnitNorm is generally not highly
sensitive to small perturbations in the k value. This is evident from the relatively
small percentage differences between adjacent k values, especially in the 0.5 to 0.7
range.

2. Optimal Range: The optimal k value consistently falls within the range of 0.5 to
0.7 across different prediction horizons and datasets. This range provides a good
balance between attention diversity and focus.

3. Performance Gain: The appropriate selection of k can lead to moderate but
meaningful performance improvements. For example, using k = 0.7 instead of
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Table T3: MSE of PatchTST on ETTh2 with different fixed k values. The relative difference
from the best performing k value is shown in parentheses. The best performing k for each
prediction length is highlighted in bold.

k \ prediction length 96 192 336 720

0.1 0.2897 (+0.633%) 0.3716 (+1.866%) 0.4148 (+0.3%) 0.4278 (+0.787%)

0.3 0.293 (+1.769%) 0.3668 (+0.535%) 0.414 (+0.088%) 0.4314 (+1.629%)

0.5 0.29 (+0.719%) 0.3648 (+0.0%) 0.4197 (+1.469%) 0.4252 (+0.168%)

0.7 0.2879 (+0.0%) 0.3717 (+1.896%) 0.4136 (+0.0%) 0.4245 (+0.0%)

0.9 0.2967 (+3.069%) 0.3764 (+3.187%) 0.4175 (+0.937%) 0.4283 (+0.904%)

1.1 0.2987 (+3.744%) 0.365 (+0.057%) 0.4188 (+1.265%) 0.435 (+2.472%)

k = 1.1 for the 720-step prediction horizon on ETTh2 results in a 2.5% reduction in
MSE.

4. Dataset Dependence: The optimal k value is somewhat dataset-dependent,
reflecting the varying degrees of periodicity and other temporal patterns across
different time series data.

G.4 Practical Recommendations

Based on our findings, we offer the following practical recommendations for selecting k values:

• For datasets with strong periodicity, starting with k = 0.7 is recommended as it
generally provides good performance across various prediction horizons.

• For datasets where the optimal k is uncertain, we recommend trying both k = 0.5
and k = 0.7 to determine which works better for the specific application.

• In scenarios requiring maximum flexibility, implementing UnitNorm with a learnable
k parameter allows the model to adaptively determine the optimal attention sparsity
during training.

• For comprehensive optimization, a validation-based approach can be employed
where different fixed k values are evaluated on a validation set to select the best
configuration.

H Extended Experimental Results

This section provides additional experimental results and analyses that supplement the main
experiments presented in Section 4.

H.1 Periodicity Measurement Analysis

Time series periodicity is a crucial factor in forecasting performance, especially for long-term
predictions. To quantify the periodic patterns present in our experimental datasets, we
conducted a comprehensive periodicity analysis using normalized correlation between input
and expected output series.

As shown in Table T4, the datasets exhibit varying degrees of periodicity across different
prediction horizons. ETTh2 consistently shows the strongest periodic patterns (with scores
around 0.41-0.42), followed by Exchange (0.33-0.40) and ETTh1 (0.34-0.35), while ECL
demonstrates the weakest periodicity (0.16-0.17).

Interestingly, the Exchange dataset shows an increasing trend in periodicity as the prediction
horizon extends, reaching its highest correlation value (0.396) at the 720-step horizon. This
suggests that longer-term patterns become more apparent in financial exchange data when
viewed over extended time frames.
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Table T4: Periodicity measurement on datasets. Scores are given as the maximum normalized
correlation between input and expected output series. Higher scores indicate stronger periodic
patterns that may be leveraged by forecasting models.

Dataset\Prediction 96 192 336 720

ETTh1 0.347 0.351 0.353 0.338

ETTh2 0.404 0.415 0.420 0.413

ECL 0.156 0.162 0.165 0.158

Exchange 0.328 0.340 0.353 0.396

The ability of UnitNorm to maintain consistent attention distributions, as discussed in
Section 3, makes it particularly well-suited for capturing these periodic patterns, especially
in datasets with stronger periodicity. This helps explain UnitNorm’s superior performance
on datasets like ETTh2 and Exchange in the long-term forecasting experiments.

H.2 Performance on Large-Scale Dataset with Modern Architecture

To evaluate UnitNorm’s effectiveness beyond standard benchmarks, we conducted additional
experiments using the Pathformer model on the Solar dataset, which represents a significant
increase in scale and complexity compared to our other test datasets.

Solar Dataset The Solar dataset is a large-scale time series collection containing data
from 137 photovoltaic power plants across the United States, with approximately 52,000
samples. Its high dimensionality and real-world nature make it an excellent test case for
evaluating normalization techniques in complex, practical scenarios.

Pathformer Model Pathformer is a state-of-the-art time series Transformer architecture
that introduces innovations in handling multivariate time series through path-wise modeling.
Unlike traditional Transformer architectures, Pathformer incorporates specialized mechanisms
for capturing both temporal and cross-series dependencies.

Table T5: Pathformer performance on the Solar dataset (large-scale, 137 channels, 52K
samples) with prediction horizon of 96. Results are averaged over 3 random seeds with
standard deviation reported. Best results are in bold; second best are in italic. These
results demonstrate UnitNorm’s effectiveness even with modern architectures and large-scale
datasets.

Normalization MSE MAE

BatchNorm 0.2215 ± 0.0080 0.2075 ± 0.0121

LayerNorm 0.2177 ± 0.0064 0.1996 ± 0.0100

RMSNorm 0.2225 ± 0.0031 0.2097 ± 0.0151

UnitNorm (k = 0.0) 0.2202 ± 0.0038 0.2062 ± 0.0082

UnitNorm (k = 0.5) 0.2176 ± 0.0041 0.2053 ± 0.0181

UnitNorm (k = 0.7) 0.2177 ± 0.0091 0.2074 ± 0.0133

UnitNorm (k = 1.0) 0.2267 ± 0.0092 0.2074 ± 0.0054

Result Analysis As shown in Table T5, UnitNorm with k = 0.5 achieves the best MSE
(0.2176 ± 0.0041) and competitive MAE (0.2053 ± 0.0181, second only to LayerNorm).
Several observations are worth noting:

• UnitNorm’s performance remains strong even with more complex model architectures
and larger datasets, demonstrating its generalizability.
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• The optimal value of k for this dataset appears to be around 0.5-0.7, which aligns
with our findings in the main experiments.

• While LayerNorm achieves the best MAE, UnitNorm provides more balanced perfor-
mance across both MSE and MAE metrics.

• Compared to RMSNorm and BatchNorm, UnitNorm consistently delivers superior
results, reinforcing its advantages over these traditional normalization methods.

These results further substantiate UnitNorm’s potential as a broadly applicable normalization
technique for time series analysis tasks across various model architectures and dataset scales.
The consistent performance on the Solar dataset, with its high dimensionality and large
sample size, suggests that UnitNorm’s benefits extend to real-world, large-scale applications.
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