

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNITNORM: RETHINKING NORMALIZATION FOR TRANSFORMERS IN TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Normalization techniques are crucial for enhancing Transformer models' performance and stability in time series analysis tasks, yet we originally identify that traditional methods like batch and layer normalization often lead to issues such as token shift, attention shift, and sparse attention. We propose UnitNorm, a novel normalization approach that scales input vectors by their norms and modulates attention patterns, effectively circumventing these challenges. Grounded in existing normalization frameworks, UnitNorm's effectiveness is demonstrated across diverse time series analysis tasks, including forecasting, classification, and anomaly detection, via a rigorous evaluation on 6 state-of-the-art models and 10 datasets. UnitNorm demonstrates superior performance, particularly where robust attention and contextual understanding are vital, achieving up to a 1.46 MSE decrease in forecasting and a 4.89% accuracy increase in classification. This work not only calls for a re-evaluation of normalization strategies in time series Transformers but also sets a new direction for enhancing model performance and stability. The source code is available at <https://anonymous.4open.science/r/UnitNorm-5B84>.

1 INTRODUCTION

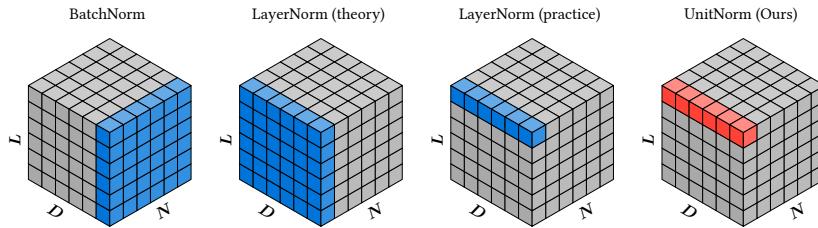


Figure 1: Scheme of different normalization methods applied to batched sequences of **time series tokens** $\mathbf{X} \in \mathbb{R}^{N \times L \times D}$, where N is the batch size, L is the sequence length (or historical window length) and D is the feature dimension (number of variates) of each token vector. The blue sections demonstrate a single slice of the input tensor for computing the mean μ and variance σ^2 , while the red section shows a single slice of data for computing the vector norm $\|\mathbf{x}\|$ (see Section C.1).

Transformers have emerged as powerful tools for time series analysis (TSA), offering new capabilities for modeling complex temporal dependencies (Wen et al., 2023). However, adapting them from domains like NLP (Wolf et al., 2020) and CV (Han et al., 2023) presents challenges, especially regarding how normalization interacts with time series characteristics like **seasonality, trends, and autocorrelations**. Central to these models is the representation of data as sequences of tokens, denoted by $\mathbf{X} \in \mathbb{R}^{N \times L \times D}$, where N stands for batch size, L is the sequence length and D represents the dimensionality of each token.

Time series data presents unique challenges that distinguish it from other domains. These include capturing **complex/multi-scale temporal dependencies, periodic patterns**,

054 and **variable sampling frequencies**. Unlike text or images, time series often exhibit
 055 **strong autocorrelations, seasonal/trend components**, and **non-stationarity**. These
 056 properties mean data distributions can shift significantly, making normalization easily
 057 distortive. While Transformers have shown promise in time series forecasting, classification,
 058 and anomaly detection, they were not originally designed with these specific characteristics
 059 of time series data in mind. This is particularly evident in how normalization techniques,
 060 developed for more stationary data, interact with and potentially disrupt the learning of
 061 temporal patterns and periodic structures.

062 The core mechanism facilitating the Transformers' ability to model complex dependencies is
 063 the attention mechanism. It computes a weighted sum of value vectors \mathbf{V} , capturing the
 064 sequential relationships between tokens through a scalable dot-product operation of queries
 065 \mathbf{Q} and keys \mathbf{K} : $\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{D}}\right)\mathbf{V}$. Vaswani et al. (2017)
 066

067 To mitigate issues during the training process of Transformers related to vanishing or
 068 exploding gradients Lubana et al. (2021); Yang & Schoenholz (2017), Layer Normalization
 069 (LayerNorm, LN, Ba et al. 2016) plays a significant role and is therefore incorporated at
 070 each sub-layer of the architecture (Figure S1)¹. The LayerNorm operation follows the center-
 071 and-scale standardization paradigm, by first centering the means to 0 and then rescaling the
 072 variances of the input vectors to 1 such that $\text{LN}(\mathbf{X}) = \frac{\mathbf{X} - \mu}{\sqrt{\sigma^2 + \epsilon}}$, where μ and σ are the mean
 073 and standard deviation of the input vector \mathbf{X} , respectively. Ba et al. (2016)

074 While LayerNorm, compared to other normalization strategies such as batch normalization
 075 Ioffe & Szegedy (2015); Shen et al. (2020); Wang et al. (2022), has established itself as the
 076 dominant normalization strategy in Transformers, dedicated normalization-specific research
 077 has mostly focussed on its impact on model convergence Wang et al. (2019), its inner
 078 dynamics Wang et al. (2022); Shen et al. (2020) or its location Xiong et al. (2020) within
 079 the architecture. On the other hand, few works address normalization's interaction with the
 080 attention mechanism Kobayashi et al. (2021) (Section 5), a key challenge in TSA (Section 2)
 081 due to attention's dot product.

082 In this work, we provide a new viewpoint on these challenges by first identifying and
 083 formalizing Transformer-specific challenges of normalization techniques, highlighting three
 084 key issues. Building on these insights, we introduce a novel normalization technique,
 085 UnitNorm, designed to address these challenges effectively.

086 Our contributions lie in: 1) We **originally identify** two challenges, namely *token shift*
 087 and *attention shift*, and reassess the challenge of *sparse attention* Zhai et al. (2023) in
 088 Transformers for time series analysis; 2) We propose a new normalization method, UnitNorm,
 089 that can mitigate these issues by design, thereby **better preserving crucial temporal**
 090 **information**; 3) We empirically validate the effectiveness of UnitNorm on nine datasets
 091 spanning three downstream TSA tasks.

093 2 CHALLENGES IN NORMALIZATION

095 Transformers rely on attention mechanisms to achieve remarkable performance in time
 096 series analysis tasks. However, the interplay between attention and normalization methods
 097 introduces critical, unaddressed challenges. This paper aims to reveal the complexities
 098 of token shift, attention shift, and sparse attention, which arise from such interaction
 099 between normalization and the attention mechanism. Our theoretical and empirical analysis
 100 demonstrates these challenges are intrinsic to conventional normalization, impacting self-
 101 attention in time series Transformers.

102 Time series data presents distinct challenges for Transformers due to its inherent temporal
 103 properties. Unlike text or image data, time series often contain critical periodic patterns,
 104 trends, and seasonal components that require a balanced attention distribution to capture
 105

106 ¹The LayerNorm used in Transformers, referred to as LayerNorm (practice), computes the
 107 statistics within each token rather than over the whole batch as LayerNorm (theory) does (Figure 1).
 In this paper, we will refer to the LayerNorm (practice) as LayerNorm if no distinction is made.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Effect of input transformations on the softmax function output. Importance order invariant refers to whether the relative importance of the tokens is preserved. Of all possible input transformations, only the reflection transformation will definitely change the importance order of the tokens.

Type	Function	Input			Output			Order invariant?
None	$f : x \mapsto x$	-2	1	3	0.01	0.12	0.88	
Stretch	$f : x \mapsto k \cdot x, k \in \mathbb{R}^+$	-4	2	6	0	0.02	0.98	✓
Translate	$f : x \mapsto x + a, a \in \mathbb{R}$	-1	2	4	0.01	0.12	0.88	✓
Jitter	$f : x \mapsto x + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$	-2.1	1.1	3	0.01	0.13	0.87	✓/✗
Reflection	$f : x \mapsto -x$	2	-1	-3	0.95	0.05	0.01	✗

effectively. Conventional normalization, effective elsewhere, can disrupt these temporal relationships, *e.g.*, by altering token vector orientations and obscuring long-range dependencies. This disruption is particularly problematic in applications like forecasting periodic signals, detecting anomalies in regular patterns, or classifying time series based on their temporal characteristics—all tasks relying on accurately interpreting temporal token relationships.

2.1 PILOT STUDY: NORMALIZATION IMPACT ON CAPTURING PERIODICITY

To illustrate normalization’s impact on capturing periodicity—a key aspect of TSA—we conducted a pilot study on a synthetic two-channel sine wave dataset with varying periods, amplitudes, and Gaussian noise (details and full results in Table S2).

In this study (Table S2), UnitNorm ($k = 0.5$) drastically reduced MSE by 58.6% (from 2.721 for BatchNorm to 1.127) compared to other methods. This strongly illustrates how **traditional techniques can distort attention, via mechanisms like token shift and by inducing sparse attention** (detailed in Sections 2.2 to 2.4), thus impairing the capture of vital periodic patterns. Whereas UnitNorm’s design, by **preserving token importance and promoting balanced attention** (Section 3), directly addresses these distortions.

The subsequent sections will now dissect these challenges, token shift (Section 2.2), attention shift (Section 2.3), and sparse attention (Section 2.4), both theoretically and empirically, before detailing UnitNorm’s methodology (Section 3).

We will further explore the relationship between normalization and attention by examining a simplified equivalent attention process, with normalization preceding attention (Zhang et al. 2022, Figure S1). This perspective allows for a detailed exploration of how normalization influences the attention scores derived from the query and key vectors. For simplicity, our discussion will center on a singular instance of self-attention within the encoder layer, assuming identical query and key vectors to streamline our analysis (see Section C.2).

2.2 TOKEN SHIFT

Previous study Brody et al. (2023) has attributed LayerNorm’s efficacy to its center-and-scale operations: centering projects the input vectors to a hyperplane orthogonal to $\mathbf{1}$ vector, and scaling normalizes the vectors to a unit sphere to prevent any token vector being contained in the convex hull of the others. However, this can significantly alter the orientation of input vectors, especially for those that are near parallel to the hyperplane’s norm vector $\mathbf{1}$. This impacts dot products, potentially causing sign flips (Figure 2), severely disrupting softmax

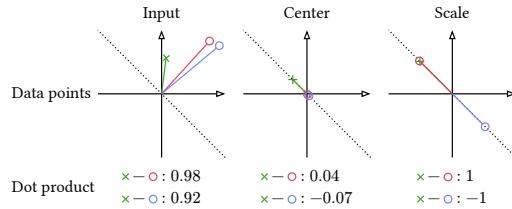


Figure 2: Case of token shift in LayerNorm. The green cross denotes a query vector, the red and blue circles denote two key vectors. Token shift at the centering step causes dot product sign flips; scaling does not.

162

163 Table 2: Effect of normalization on the attention weight distribution based on empirical
 164 results (Figures S6 and S7). UnitNorm shows the most faithful representation of the original
 165 attention weights that are cross-validated by various metrics as described in Table S10, while
 166 center-and-scale normalization significantly alters the attention weights to an extreme extent
 167 as depicted in Figure S5.

168

169

170

171

172

173

Normalization	Chebyshev distance ↓	Cosine similarity ↑	KL divergence ↓	Entropy ↑
None (original)	/	/	/	High
Center-and-scale	High	Low	High	Very Low
UnitNorm	Low	High	Low	High

174

175

176

outputs (Table 1), and **catastrophically altering token importance** (Table 2). This issue of significant deviations in attention weight distributions caused by token shift will be further explored in Section 2.3.

177

178

The high probability of "center-and-scale" normalization inducing such sign flips is not merely theoretical, as Theorem 2.1 elucidates. Proof in Section B.

179

180

181

182

Theorem 2.1 (High probability of sign flip due to center operation). *Assume that $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_x, \text{diag}(\boldsymbol{\sigma}_x^2))$, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_y, \text{diag}(\boldsymbol{\sigma}_y^2))$ are two independent token vectors, with $\boldsymbol{\mu}_x, \boldsymbol{\mu}_y, \boldsymbol{\sigma}_x, \boldsymbol{\sigma}_y \in \mathbb{R}^D$. Let $\tilde{\mathbf{x}} = \frac{\mathbf{x} - \boldsymbol{\mu}_x}{\boldsymbol{\sigma}_x}$ and $\tilde{\mathbf{y}} = \frac{\mathbf{y} - \boldsymbol{\mu}_y}{\boldsymbol{\sigma}_y}$ be the normalized vectors. If*

$$|\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y| \geq 12 \left(\sqrt{\boldsymbol{\sigma}_x^{2\top} \boldsymbol{\sigma}_y^2} + \|\boldsymbol{\sigma}_x \circ \boldsymbol{\sigma}_y\|_\infty \right) + 5 \left(\sqrt{\boldsymbol{\sigma}_y^{2\top} \boldsymbol{\mu}_x^2} + \sqrt{\boldsymbol{\sigma}_x^{2\top} \boldsymbol{\mu}_y^2} + \|\boldsymbol{\sigma}_y \circ \boldsymbol{\mu}_x\|_\infty + \|\boldsymbol{\sigma}_x \circ \boldsymbol{\mu}_y\|_\infty \right) \quad (1)$$

183

184

185

186

then the probability that the signs of $\mathbf{x}^\top \mathbf{y}$ and $\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}$ do not coincide is at least 40%, i.e.,

$$\Pr(\text{sgn}(\mathbf{x}^\top \mathbf{y}) \neq \text{sgn}(\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}})) \geq 0.40. \quad (2)$$

187

188

189

Remark 2.2. Derived from the computational methodologies for the statistics of vectors \mathbf{x} and \mathbf{y} (Section C.1), BatchNorm posits that the mean vectors are the same so that $\boldsymbol{\mu}_x = \boldsymbol{\mu}_y = \boldsymbol{\mu}$, and similarly $\boldsymbol{\sigma}_x^2 = \boldsymbol{\sigma}_y^2 = \boldsymbol{\sigma}^2$, while LayerNorm assumes that the mean and standard deviation are shared across feature dimension: $\boldsymbol{\mu}_x = \mu_x \mathbf{1}$, $\boldsymbol{\mu}_y = \mu_y \mathbf{1}$ and $\boldsymbol{\sigma}_x^2 = \sigma_x^2 \mathbf{1}$, $\boldsymbol{\sigma}_y^2 = \sigma_y^2 \mathbf{1}$. Given these assumptions, the condition (1) outlined in Theorem 2.1 is satisfied for many token vector distributions. In fact, we show that in the setup of LayerNorm, the condition (1) allows for the quotients of token means and standard deviations, i.e., for μ_x/σ_x and μ_y/σ_y , to decay as $\Omega(D^{-1/4})$ while still implying a high sign flip probability, cf. Section A.

190

191

192

193

194

195

196

197

198

Theorem 2.1 highlights how "center-and-scale" normalization can inadvertently alter attention. The potential for such sign flips, demonstrated with significant likelihood, poses a serious risk to the integrity of the attention scores, as it can lead to a complete reordering of the tokens' importance.

199

200

201

202

203

204

2.3 ATTENTION SHIFT

205

206

207

208

209

210

211

212

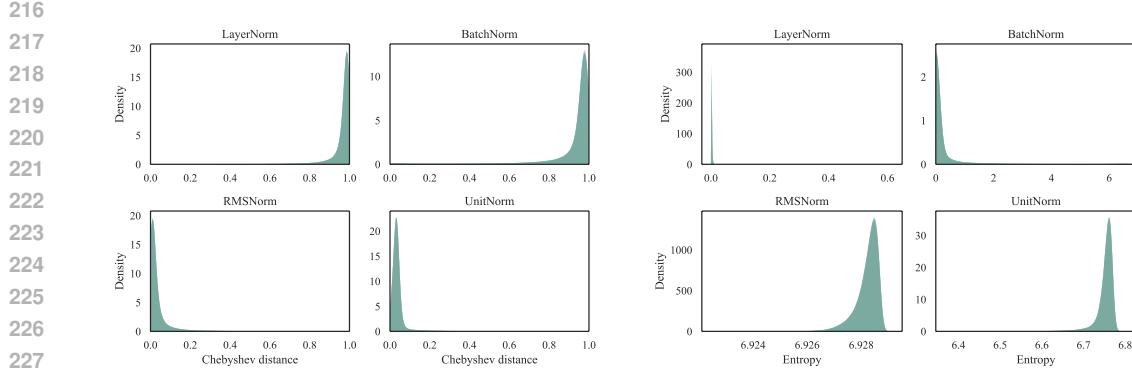
213

Attention shift represents a critical challenge in Transformer models, directly stemming from the token shift issue. This shift perturbs the relative significance of tokens, leading to discrepancies between attention weights from normalized versus original inputs. To validate the prevalence of attention shift across normalization techniques, we conduct a study utilizing pre-trained Word2Vec embeddings Fares et al. (2017). Our analysis includes a comparison of batch normalization (BatchNorm, BN, Ioffe & Szegedy 2015), layer normalization (LayerNorm, LN, Ba et al. 2016; Vaswani et al. 2017), root mean square layer normalization (RMSNorm, RMSN, Zhang & Sennrich 2019), and our proposed unit normalization (UnitNorm, UN; see Section 3).

214

215

Our investigation utilizes sequences of token vectors, $\mathbf{X} \in \mathbb{R}^{N \times L \times D}$, as inputs to the normalization layer, where N is the batch size, L is the sequence length, and D is the dimensionality of each token. The attention scores $\mathbf{A} \in \mathbb{R}^{N \times L \times L}$, given as Equation (3), are



(a) Distribution of Chebyshev distance. UnitNorm and RMSNorm preserves the distribution of attention scores; others significantly alter it.

(b) Distribution of entropy. UnitNorm and RMSNorm preserves the high entropy of attention scores; others result in a collapsed distribution.

Figure 3: Empirical statistics for attention scores after each normalization method. Results from 10 independent experiments are overlaid. $k = 1.5$ is used for UnitNorm.

computed for 10 independent sets of 32 batches, each containing 1,024 randomly sampled embeddings from a total of 2 million. The primary goal is to assess the impact of normalization on the fidelity of attention scores \mathbf{A} and $\tilde{\mathbf{A}}$, pre- and post-normalization, using the Chebyshev distance as a metric (Table S10).

$$\mathbf{A}_{n,i} = \text{softmax} \left(\frac{\mathbf{X}_{n,i} \mathbf{X}_n^T}{\sqrt{D}} \right) \quad (3)$$

where $\mathbf{A}_{n,i} \in \mathbb{R}^L$ is the attention scores for the i -th anchor token $\mathbf{X}_{n,i}$ to the context sequence \mathbf{X}_n from the n -th batch; $\tilde{\mathbf{A}}$ is computed similarly from normalization output $\tilde{\mathbf{X}}$.

Chebyshev distance distributions (Figure 3(a)) reveal current methods struggle to maintain faithful attention. For them, distances cluster near 1, suggesting profound alteration of attention weights. Conversely, UnitNorm and RMSNorm demonstrates a distribution concentrated around zero, indicating minimal disruption to the original attention scores.

The empirical evidence underscores a fundamental issue with current normalization practices in Transformers: they compromise attention score fidelity, distorting relational dynamics. This harms interpretability and learning of complex dependencies. As demonstrated in our pilot study with periodic time series data (Table S2), this issue directly affects the model's ability to capture important periodic patterns that are common in time series analysis tasks.

2.4 SPARSE ATTENTION

The challenge of sparse attention further complicates the normalization landscape in Transformer models. Traditional "center-and-scale" methods often cause undesirable attention concentration (skewing towards single point distributions). This is due to the fact that centering removes a degree of freedom from the vectors, and only query that are tightly around the $\mathbf{1}$ vector can produce uniform attention scores Brody et al. (2023). This can be depicted by the entropy of the attention scores \mathbf{A}_i : $H(\mathbf{A}_i) = -\sum_{j=1}^L \mathbf{A}_{i,j} \log \mathbf{A}_{i,j}$. A higher entropy value suggests a more uniform attention distribution, enabling models capturing periodicity in time series. Conversely, lower entropy, or a trend towards single point distributions, limits its attention to narrow ranges of tokens. While some studies Hyeon-Woo et al. (2022); Zhai et al. (2023) in other fields have shown that Transformer models may benefit from capturing longer-range, denser connections, we will show later that such sparse attention is particularly problematic in TSA tasks and requires finer control over the attention patterns.

Analysis of normalization methods through the lens of attention score entropy (Figure 3(b)) reveals a stark contrast in their effects on model behavior. BatchNorm and LayerNorm

significantly skew attention distributions towards minimal entropy. This condition not only narrows the model’s focus but may also precipitate training instability Zhai et al. (2023). In contrast, UnitNorm and RMSNorm maintain higher entropy levels, suggesting a more balanced and contextually aware attention mechanism. Notably, the key deviation in attention entropy between UnitNorm and RMSNorm is the former’s ability to modulate the entropy pattern by adjusting the k parameter, as discussed in Section 3, while RMSNorm maintains a consistent high entropy level close to the theoretical upper bound $\log L$.

3 METHODOLOGY

To mitigate the challenges identified with traditional normalization methods, we introduce a novel approach called **unit normalization (UnitNorm, UN)**, formulated such that

$$\text{UN}(\mathbf{X}) = D^{\frac{k}{2}} \frac{\mathbf{X}}{\|\mathbf{X}\|_2}. \quad (4)$$

UnitNorm omits centering, diverging from center-and-scale. Like RMSNorm, it scales inputs by their ℓ^2 norm, but further scales by $D^{\frac{k}{2}}$, where k controls attention sparsity.

3.1 THEORETICAL FOUNDATION

UnitNorm is theoretically grounded as a variant of LayerNorm and RMSNorm. Specifically, when taking $k = 1$, UnitNorm is effectively acting as LayerNorm with asserted zero mean, and the RMSNorm can be seen as a special case of UnitNorm with $k = 1$.

This suggests UnitNorm inherits benefits from LayerNorm and RMSNorm (e.g., mitigating vanishing/exploding gradients, stabilizing training). It ensures consistent forward/gradient propagation irrespective of learnable parameter scaling, and scales down gradients to large parameters (Proof: Section B), ensuring stability:

Theorem 3.1 (UnitNorm preserves the gradient to the input and stabilize the gradient to the learnable parameters). *Given the output of an affine transformation $\mathbf{x} = \mathbf{W}\mathbf{v} + \mathbf{b}$, where \mathbf{W} and \mathbf{b} are learnable parameters. If $\mathbf{x}' = (\alpha\mathbf{W})\mathbf{v} + (\alpha\mathbf{b})$, then the output of UnitNorm is unchanged, i.e., $\tilde{\mathbf{x}}' = \tilde{\mathbf{x}}$, while the gradients to loss \mathcal{L} are given as follows:*

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha\mathbf{W})} &= \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{W}} = \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}\mathbf{v}^\top \\ \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha\mathbf{b})} &= \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{b}} = \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J} \\ \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{v}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{v}} = \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}\mathbf{W}^\top \end{aligned} \quad (5)$$

where \mathbf{J} is the Jacobian matrix of $\tilde{\mathbf{x}}$ w.r.t. \mathbf{x} .

3.2 SELECTION OF k VALUES

While learnable k offers flexibility, studies show fixed k values often yield optimal performance Section G. Specifically, values in the range of $0.5 \sim 0.7$ have been found to be particularly effective for time series data with periodic patterns (detailed results are provided in Section G).

This optimal range can be explained by examining the entropy lower bound (ELB) characteristics. With $k \approx 0.5 \sim 0.7$, UnitNorm maintains sufficient attention diversity to capture complex patterns while still allowing for the focus on relevant tokens needed for effective periodicity recognition. This balance is critical for time series tasks where models must simultaneously recognize periodic patterns and adapt to temporal variations.

In practice, we recommend starting with $k = 0.7$ for datasets with strong periodicity, as it typically provides an excellent trade-off between sparse and dense attention distributions. For applications where the optimal k value is uncertain, both fixed values ($k = 0.5, 0.7$) and learnable k implementations can be evaluated to determine the best configuration.

324 3.3 OVERCOMING DEFECTS
325

326 By omitting centering, UnitNorm preserves input vector directions, addressing to-
327 ken/attention shift by maintaining dot product signs (Figure S3). It's a drop-in replacement
328 for LayerNorm/RMSNorm in time series Transformers, needing no structural changes.

329 Additionally, UnitNorm confronts the sparse attention issue by introducing an entropy lower
330 bound (ELB) for attention scores, modulated by the hyperparameter k (proved in Section B).
331 This feature enables the control of attention patterns, from dense as uniform to sparse as
332 single point, offering versatile attention modeling:

333 **Theorem 3.2** (UnitNorm guarantees an entropy lower bound independent of the input).
334 *For a given set of L, D and a given k , there exists an entropy lower bound (ELB) of the
335 attention scores, i.e.*

$$337 \text{ELB}(k; L, D) = \log(L - 1 + e^d) - \frac{de^d}{L - 1 + e^d}, \quad (6)$$

339 where $d = 2D^{k-\frac{1}{2}}$.

340 **Corollary 3.3** (The ELB of UnitNorm can be any possible value by modulating k). *The
341 ELB is a monotonically decreasing function of k for a given L, D . Furthermore, it is bounded
342 that $\forall k$:*

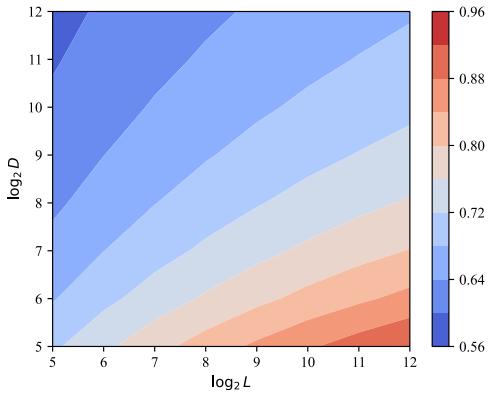
$$343 0 < \text{ELB}(k; L, D) < \log L \quad (7)$$

345 The adaptability of UnitNorm is further ex-
346 emplified by its applicability across variable
347 sequence lengths, with the entropy lower
348 bound's sensitivity to k remaining relatively
349 consistent irrespective of sequence length
350 (Figure S4), along with the smooth land-
351 scape of k_{50} , the value of k that achieves an
352 ELB of $\frac{1}{2} \log L$ for a given L, D pair (Figure
353 4), particularly with larger D . This
354 property, combined with the option of set-
355 ting k as a learnable parameter, empowers
356 the model to dynamically adjust its atten-
357 tion pattern, optimizing performance across
358 different tasks and data sets.

359 4 EXPERIMENTS
360

361 In our experimental evaluation, UnitNorm
362 is rigorously tested across a spectrum of
363 TSA tasks to illustrate its theoretical ad-
364 vantages in practical applications, including
365 long term forecasting (ETTh1, ETTh2, ECL,
366 Exchange), classification (FaceDetection, Heartbeat,
367 PEMS-SF, UWaveGestureLibrary) and
368 anomaly detection (MSL). We integrate UnitNorm into various Transformer models, namely
369 Crossformer Zhang & Yan (2022), FEDformer Zhou et al. (2022), Informer Zhou et al. (2021),
370 PatchTST Nie et al. (2022), and the vanilla Transformer Vaswani et al. (2017), all with same
371 set of hyperparameter as described in Wu et al. (2023). For comparison, we also include
372 BatchNorm, LayerNorm, RMSNorm, and various settings of UnitNorm (see figure legends).
373 By doing so, we aim to demonstrate its superior ability to address normalization-related
374 challenges, enhancing model performance in these tasks. Detailed experimental settings and
375 full results are provided in Tables S3 to S5 and S7 to S9. Below, we outline the significance
376 of these tasks and the specific benefits UnitNorm brings.

377 **Long-term forecasting:** Long-term forecasting represents a significant challenge for Trans-
378 former models, primarily due to the difficulty in maintaining periodic pattern recognition
379 over extended sequences Li et al. (2023). The conventional normalization methods often



378 Figure 4: Landscape of k_{50} for different L, D .
379 The k_{50} is the value of k that achieves an ELB
380 of half of the theoretical maximum $\log L$ for a
381 given L, D pair. The landscape of k_{50} is rather
382 smooth and insensitive to the sequence length
383 L , indicating UnitNorm with fixed k can be
384 applied to sequences with variable length with-
385 out significant change in the attention pattern.

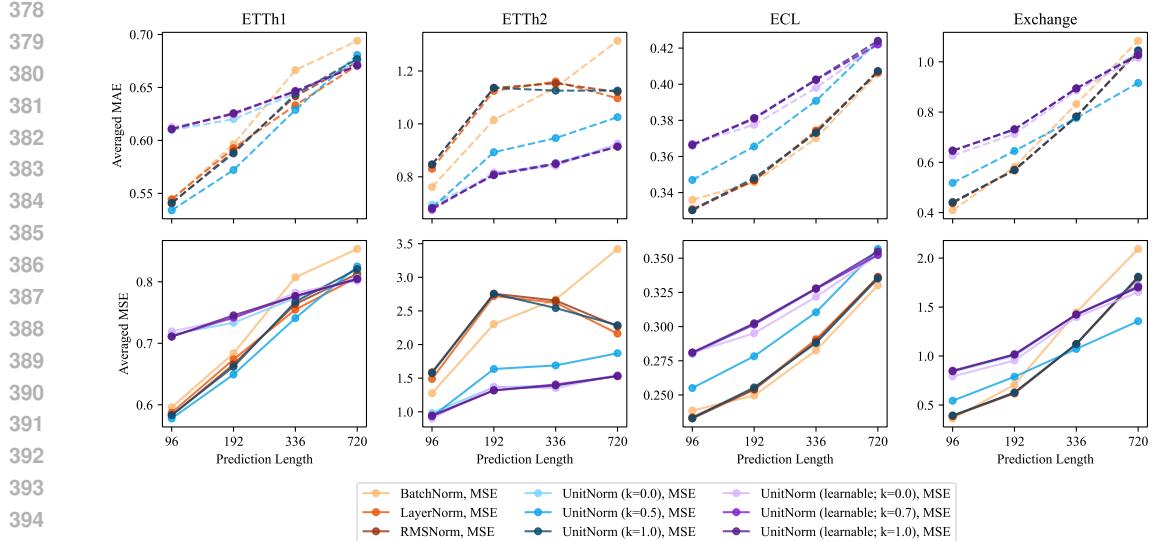


Figure 5: Average rank of normalization methods on the long-term forecasting tasks. X-axis: number of tokens to forecast, Y-axis: average rank over models. Ranks are computed based on the MAE or MSE of each model on each task with different normalization methods (lower is better). UnitNorm and UnitNorm (learnable) achieve better results with the increase of prediction horizon, and have a slower increase in prediction error compared to other normalization methods.

exacerbate the sparse attention problem, hindering the model’s capability to capture periodicity. In contrast, UnitNorm excels here, with superior rank and slower error increase over longer horizons across datasets (Figure 5). With a maximum increase of 1.46/0.45 in MSE/MAE on ETTh2, and 1.27/0.36 in MSE/MAE on Exchange at the longest prediction horizon, it substantiates UnitNorm’s ability to preserve the attention mechanism’s effectiveness, even with increasing prediction horizons, by maintaining balanced attention and avoiding token/attention shift. Our analysis of dataset periodicity (see Appendix H.1) reveals that datasets with stronger periodic patterns, such as ETTh2, particularly benefit from UnitNorm’s attention-preserving properties.

Classification: In classification tasks, the key challenge lies in effectively capturing long-range dependencies within sequences Vyas et al. (2022), a task at which Transformers excel. However, the efficacy of this capability can be significantly impacted by the choice of normalization method. UnitNorm, with its unique approach to normalization, has been shown to enhance model performance across multiple datasets, outperforming traditional methods in 3 out of 4 datasets on average (Figure S8), with a significant increase in accuracy of up to 4.90% on UWaveGestureLibrary, 1.95% on Heartbeat and 0.48% on FaceDetection. This underscores the versatility of UnitNorm in adapting to varied datasets, offering improved accuracy by enabling a more robust, contextually aware attention mechanism.

Anomaly detection: Anomaly detection in time series data demands robust model sensitivity to subtle deviations Haq & Lee (2023); Yang et al. (2023), a requirement often compromised by normalization-induced shifts in attention. The token and attention shift problems, in particular, pose significant challenges in learning stable representations. UnitNorm addresses these challenges head-on, providing a more stable foundation for anomaly detection models to operate on, therefore gaining a maximum of 7.32% in recall, 5.58% in F-score, and 2.81% in precision. Its effectiveness is dominant in all accuracy, recall, precision, and F-score metrics (Figure S9), showcasing its capacity to facilitate more accurate and reliable time series modeling for anomaly detection.

4.1 EXTENSION TO LARGE-SCALE DATASET AND MODERN ARCHITECTURE

To validate UnitNorm’s generalizability beyond standard benchmarks, we also evaluated its performance on larger, more complex datasets with modern Transformer architectures.

432 Experiments with the Pathformer model on the Solar dataset (137 channels, 52K samples)
 433 showed that UnitNorm maintained its effectiveness even at scale, achieving the best MSE
 434 and competitive MAE scores compared to other normalization methods. This suggests that
 435 UnitNorm’s benefits extend to real-world, large-scale applications and remain compatible
 436 with newer Transformer architectures. Detailed results and analysis of these experiments are
 437 provided in Appendix H.2.

438

439 5 DISCUSSION

440

441 **Related work** The development of effective normalization techniques is crucial in the
 442 optimization of Transformer models training Wang et al. (2019). Previous research has
 443 primarily explored two avenues: the optimal placement of normalization layers, highlighted by
 444 the Post-Layer Normalization (Post-LN) and Pre-Layer Normalization (Pre-LN) debate, which
 445 impacts training stability Xiong et al. (2020); and the normalization of model parameters,
 446 exemplified by Weight Normalization Salimans & Kingma (2016). These methods aim to
 447 improve training dynamics by adjusting either the model architecture or the weights.

448

449 In contrast, our proposed UnitNorm shifts the focus from placement or parameters to the
 450 fundamental role of normalization within the attention mechanism. UnitNorm is distinguished
 451 by its emphasis on preserving information of token vectors, a core principle applicable to
 452 both Post-LN and Pre-LN configurations. This focus on normalizing layer inputs to maintain
 453 vector integrity presents a novel perspective that diverges from prior work centered on
 454 architectural adjustments or parameter optimization.

455

456 **Adopting UnitNorm in Transformer models** UnitNorm invites reconsideration of nor-
 457 malization practices in Transformers, suggesting alternatives that enhance model performance
 458 and stability. Its simplicity and versatility suggest it could be readily adopted across various
 459 Transformer applications. The broader impact of UnitNorm lies in its potential to improve
 460 the applicability and efficiency of Transformers in fields where precision and model stability
 461 are paramount. By addressing specific normalization-related challenges, UnitNorm can make
 462 Transformers more suitable for tasks with complex sequential relationships.

463

464 **Limitations** While UnitNorm represents a significant advancement in normalization tech-
 465 niques for Transformers, several areas still warrant further investigation:

466

- 467 • **Broader Application Scope:** Extending the application of UnitNorm beyond Trans-
 468 formers to other neural network architectures could provide valuable insights into the
 469 fundamental principles of normalization across deep learning models.
- 470 • **Cross Domain Validation:** Applying UnitNorm across diverse domains and challenging
 471 datasets beyond TSA, e.g., NLP Brown et al. (2020); Devlin et al. (2019) and CV
 472 Dosovitskiy et al. (2020), will further elucidate its effectiveness and generalizability,
 473 providing insights into its broad utility in deep learning.
- 474 • **Problem characterization:** Understanding how and what certain dataset characteristics
 475 influence the efficacy of normalization methods, including quantitatively assess the presence
 476 of token shift, attention shift, and sparse attention in the dynamic interplay of attention
 477 mechanisms and normalization during training, can guide the community in selecting
 478 appropriate techniques for varied deep learning challenges.

479

480 Much as UnitNorm marks a promising advancement in normalization for Transformers, its
 481 exploration is far from complete. The limitations identified herein not only highlight the
 482 need for further empirical validation across domains but also the potential for refining and
 483 extending the methodology to accommodate a wider array of architectures and applications.

484

485 **Conclusion** UnitNorm challenges prevailing normalization norms in Transformers for TSA,
 486 underscoring the need for tailored approaches. By avoiding centering, it directly addresses
 487 **token shift, attention shift, and sparse attention**, issues overlooked by traditional
 488 methods. Our contribution extends beyond the theoretical introduction of UnitNorm;
 489 it includes empirical evidence showcasing its efficacy across various tasks, setting a new
 490 precedent for normalization techniques within the Transformer architecture. UnitNorm
 491 enables more **stable and faithful representation learning**, paving the way for enhanced
 492 Transformer performance and applicability in complex sequential data analysis.

486 REFERENCES
487

488 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.

489

490 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom,
491 Paul Southam, and Eamonn Keogh. The UEA multivariate time series classification archive,
492 2018, October 2018.

493

494 Shaked Brody, Uri Alon, and Eran Yahav. On the Expressivity Role of LayerNorm in
495 Transformers' Attention. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 14211–
496 14221, Toronto, Canada, July 2023. Association for Computational Linguistics.

497

498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
499 Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
500 Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
501 Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
502 Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
503 Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are
504 Few-Shot Learners. In *Advances in Neural Information Processing Systems*, volume 33,
505 pp. 1877–1901. Curran Associates, Inc., 2020.

506

507 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
508 of Deep Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy
509 Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North
510 American Chapter of the Association for Computational Linguistics: Human Language
511 Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota,
512 June 2019. Association for Computational Linguistics.

513 Sjoerd Dirksen. Tail bounds via generic chaining. *Electronic Journal of Probability*, 20(none):
514 1–29, January 2015.

515

516 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
517 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
518 Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for
519 Image Recognition at Scale. October 2020.

520

521 Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and Erik Velldal. Word vectors, reuse, and
522 replicability: Towards a community repository of large-text resources. In Jörg Tiedemann
523 and Nina Tahmasebi (eds.), *Proceedings of the 21st Nordic Conference on Computational
524 Linguistics*, pp. 271–276, Gothenburg, Sweden, May 2017. Association for Computational
Linguistics.

525

526 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyu Guo, Zhenhua Liu, Yehui
527 Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang, and Dacheng Tao.
528 A Survey on Vision Transformer. *IEEE Transactions on Pattern Analysis and Machine
Intelligence*, 45(1):87–110, January 2023. ISSN 1939-3539.

529

530 Ijaz Ul Haq and Byung Suk Lee. TransNAS-TSAD: Harnessing Transformers for Multi-
531 Objective Neural Architecture Search in Time Series Anomaly Detection, December
532 2023.

533

534 Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soder-
535 ström. Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic
536 Thresholding. In *Proceedings of the 24th ACM SIGKDD International Conference on
537 Knowledge Discovery & Data Mining*, KDD '18, pp. 387–395, New York, NY, USA, July
2018. Association for Computing Machinery. ISBN 978-1-4503-5552-0.

538

539 Nam Hyeon-Woo, Kim Yu-Ji, Byeongho Heo, Dongyo Han, Seong Joon Oh, and Tae-Hyun
Oh. Scratching Visual Transformer's Back with Uniform Attention, October 2022.

540 Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
 541 by reducing internal covariate shift. In *Proceedings of the 32nd International Conference*
 542 *on International Conference on Machine Learning - Volume 37*, ICML'15, pp. 448–456,
 543 Lille, France, July 2015. JMLR.org.

544 Goro Kobayashi, Tatsuki Kurabayashi, Sho Yokoi, and Kentaro Inui. Incorporating Residual
 545 and Normalization Layers into Analysis of Masked Language Models. In Marie-Francine
 546 Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of*
 547 *the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 4547–
 548 4568, Online and Punta Cana, Dominican Republic, November 2021. Association for
 549 Computational Linguistics.

550 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling Long- and
 551 Short-Term Temporal Patterns with Deep Neural Networks. In *The 41st International*
 552 *ACM SIGIR Conference on Research & Development in Information Retrieval*, SIGIR '18,
 553 pp. 95–104, New York, NY, USA, June 2018. Association for Computing Machinery. ISBN
 554 978-1-4503-5657-2.

555 Yan Li, Xinjiang Lu, Haoyi Xiong, Jian Tang, Jiantao Su, Bo Jin, and Dejing Dou. Towards
 556 Long-Term Time-Series Forecasting: Feature, Pattern, and Distribution. In *2023 IEEE*
 557 *39th International Conference on Data Engineering (ICDE)*, pp. 1611–1624, April 2023.

558 Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Beyond batchnorm: towards a
 559 unified understanding of normalization in deep learning. *Advances in Neural Information*
 560 *Processing Systems*, 34:4778–4791, 2021.

561 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A Time Series is
 562 Worth 64 Words: Long-term Forecasting with Transformers. September 2022.

563 Tim Salimans and Diederik P. Kingma. Weight Normalization: A Simple Reparameterization
 564 to Accelerate Training of Deep Neural Networks, June 2016.

565 Sheng Shen, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. PowerNorm:
 566 rethinking batch normalization in transformers. In *Proceedings of the 37th*
 567 *International Conference on Machine Learning*, volume 119 of *ICML'20*, pp. 8741–8751.
 568 JMLR.org, July 2020.

569 Artur Trindade. ElectricityLoadDiagrams20112014, 2015.

570 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 571 Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In *Advances in Neural*
 572 *Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

573 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in*
 574 *Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
 575 University Press, Cambridge, 2018. ISBN 978-1-108-41519-4.

576 Jayant Vyas, Nishit Bhardwaj, Bhumika, and Debasis Das. TransDBC: Transformer for
 577 Multivariate Time-Series based Driver Behavior Classification. In *2022 International Joint*
 578 *Conference on Neural Networks (IJCNN)*, pp. 1–8, July 2022.

579 Jiaxi Wang, Ji Wu, and Lei Huang. Understanding the Failure of Batch Normalization for
 580 Transformers in NLP, October 2022.

581 Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S.
 582 Chao. Learning Deep Transformer Models for Machine Translation. In Anna Korhonen,
 583 David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the*
 584 *Association for Computational Linguistics*, pp. 1810–1822, Florence, Italy, July 2019.
 585 Association for Computational Linguistics.

586 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang
 587 Sun. Transformers in Time Series: A Survey. volume 6, pp. 6778–6786, August 2023.

594 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
 595 Moi, Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
 596 Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
 597 Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers:
 598 State-of-the-Art Natural Language Processing. In Qun Liu and David Schlangen (eds.),
 599 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for Computational
 600 Linguistics.
 601

602 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
 603 Temporal 2D-Variation Modeling for General Time Series Analysis. In *The Eleventh
 604 International Conference on Learning Representations*, 2023.

605

606 Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 607 Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer
 608 architecture. In *Proceedings of the 37th International Conference on Machine Learning*,
 609 volume 119 of *ICML’20*, pp. 10524–10533. JMLR.org, July 2020.

610 Chaocheng Yang, Tingyin Wang, and Xuanhui Yan. DDMT: Denoising Diffusion Mask
 611 Transformer Models for Multivariate Time Series Anomaly Detection, October 2023.

612

613 Greg Yang and Samuel S. Schoenholz. Mean Field Residual Networks: On the Edge of
 614 Chaos, December 2017.

615 Shuangfei Zhai, Tatiana Likhomanenko, Eta Littwin, Dan Busbridge, Jason Ramapuram,
 616 Yizhe Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing Transformer Training by
 617 Preventing Attention Entropy Collapse. In *International Conference on Machine Learning*,
 618 pp. 40770–40803. PMLR, 2023.

619

620 Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In *Advances in
 621 Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.

622

623 Lily Zhang, Veronica Tozzo, John Higgins, and Rajesh Ranganath. Set Norm and Equivariant
 624 Skip Connections: Putting the Deep in Deep Sets. In *Proceedings of the 39th International
 Conference on Machine Learning*, pp. 26559–26574. PMLR, June 2022.

625

626 Yunhao Zhang and Junchi Yan. Crossformer: Transformer Utilizing Cross-Dimension
 627 Dependency for Multivariate Time Series Forecasting. September 2022.

628

629 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
 630 Zhang. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting.
 631 *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(12):11106–11115, May
 2021. ISSN 2374-3468.

632

633 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer:
 634 Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. In
 635 Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
 636 Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*,
 637 volume 162 of *Proceedings of Machine Learning Research*, pp. 27268–27286. PMLR, July
 2022.

638

639

640

641

642

643

644

645

646

647

648 A DIMENSION DEPENDENCE OF SIGN-FLIP PROBABILITY
649650 We recall that Theorem 2.1 provided a condition for token vector means and variances,
651 condition (1), to imply that the sign of the token dot product $\mathbf{x}^\top \mathbf{y}$ is flipped by center-and-
652 scale standardization as in LayerNorm Ba et al. (2016).653 In this section, we elucidate the dimension dependence of the required relationship between
654 token means and standard deviations implied by this condition in the case of shared means
655 and standard deviations across feature dimensions, such as implicitly assumed by LayerNorm.656 **Corollary A.1.** *Assume that the mean and variance vectors of independent token vectors
657 \mathbf{x} and \mathbf{y} satisfy $\boldsymbol{\mu}_x = \mu_x \mathbf{1}$, $\boldsymbol{\mu}_y = \mu_y \mathbf{1}$ and $\boldsymbol{\sigma}_x^2 = \sigma_x^2 \mathbf{1}$, $\boldsymbol{\sigma}_y^2 = \sigma_y^2 \mathbf{1}$. Then the mean-variance
658 condition (1) of Theorem 2.1 is satisfied for all $L \geq 77$ if*

660
$$\frac{\mu_x}{\sigma_x} \geq \frac{6}{D^{1/4}} \quad \text{and} \quad \frac{\mu_y}{\sigma_y} \geq \frac{6}{D^{1/4}}, \quad (8)$$

661

662 Furthermore, if additionally the independent token vectors are distributed as $\mathbf{x} \sim$
663 $\mathcal{N}(\boldsymbol{\mu}_x, \text{diag}(\boldsymbol{\sigma}_x^2))$, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_y, \text{diag}(\boldsymbol{\sigma}_y^2))$, then the dot product $\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}$ of normalized vectors
664 $\tilde{\mathbf{x}} = \frac{\mathbf{x} - \boldsymbol{\mu}_x}{\sigma_x}$ and $\tilde{\mathbf{y}} = \frac{\mathbf{y} - \boldsymbol{\mu}_y}{\sigma_y}$ attains a sign flip with respect to the original inner products
665 $\mathbf{x}^\top \mathbf{y}$ with probability of at least 40%.666 Theorem A.1 implies that for high-dimensional token vectors with $D \gg 1$, it might become
667 easier to satisfy (8) given an empirical token distribution, which means that sign flips of dot
668 products after LayerNorm-style normalization might become even more prevalent in that
669 case.

670

671 *Proof of Theorem A.1.* For the case of $\boldsymbol{\mu}_x = \mu_x \mathbf{1}$, $\boldsymbol{\mu}_y = \mu_y \mathbf{1}$ and $\boldsymbol{\sigma}_x^2 = \sigma_x^2 \mathbf{1}$, $\boldsymbol{\sigma}_y^2 = \sigma_y^2 \mathbf{1}$, it
672 follows that

673
$$\begin{aligned} & 12 \left(\sqrt{\boldsymbol{\sigma}_x^{2\top} \boldsymbol{\sigma}_y^2} + \|\boldsymbol{\sigma}_x \circ \boldsymbol{\sigma}_y\|_\infty \right) + 5 \left(\sqrt{\boldsymbol{\sigma}_y^{2\top} \boldsymbol{\mu}_x^2} + \sqrt{\boldsymbol{\sigma}_x^{2\top} \boldsymbol{\mu}_y^2} + \|\boldsymbol{\sigma}_y \circ \boldsymbol{\mu}_x\|_\infty + \|\boldsymbol{\sigma}_x \circ \boldsymbol{\mu}_y\|_\infty \right) \\ &= 12 \left(\sqrt{D \sigma_x^2 \sigma_y^2} + \sigma_x \sigma_y \right) + 5 \left(\sqrt{D \sigma_y^2 \mu_x^2} + \sqrt{D \sigma_x^2 \mu_y^2} + \sigma_y |\mu_x| + \sigma_x |\mu_y| \right) \\ &\leq 12 \left(\sqrt{D \frac{D \mu_x^2 \mu_y^2}{36^2}} + \frac{D^{1/4} \mu_x}{6} \frac{D^{1/4} \mu_y}{6} \right) \\ &\quad + 5 \left(\sqrt{D \frac{D^{1/2} \mu_y^2}{36} \mu_x^2} + \sqrt{D \frac{D^{1/2} \mu_x^2}{36} \mu_y^2} + \frac{D^{1/4} \mu_y}{6} |\mu_x| + \frac{D^{1/4} \mu_x}{6} |\mu_y| \right) \\ &= 12 \left(D \frac{\mu_x \mu_y}{36} + D^{1/2} \frac{\mu_x \mu_y}{36} \right) + \frac{5}{6} \left(\sqrt{D D^{1/2} \mu_y^2 \mu_x^2} + \sqrt{D D^{1/2} \mu_x^2 \mu_y^2} + D^{1/4} \mu_y |\mu_x| + D^{1/4} \mu_x |\mu_y| \right) \\ &= \mu_x \mu_y \left(\frac{1}{3} D + \frac{1}{3} D^{1/2} + \frac{5}{3} (D^{3/4} + D^{1/4}) \right) \leq D \mu_x \mu_y = |\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y|. \end{aligned}$$

688 Here, we used in the first inequality the assumption Equation (8) and the fact that $\frac{1}{3} D^{1/2} +$
689 $\frac{5}{3} (D^{3/4} + D^{1/4}) \leq \frac{2}{3} D$ for $D \geq 77$ in the last inequality. The last assertion of the theorem
690 then follows by application of Theorem 2.1. \square 691 B PROOFS
692693 In this section, we detail the proofs of the theoretical results of this paper. In particular, we
694 present the proofs of Theorem 2.1, Theorem 3.1, Theorem 3.2, Theorem 3.3, as well as of
695 auxiliary lemmas.696 B.1 PROOF OF THEOREM 2.1
697698 *Proof of Theorem 2.1.* Let $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_x, \text{diag}(\boldsymbol{\sigma}_x^2))$ and $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_y, \text{diag}(\boldsymbol{\sigma}_y^2))$ be independent,
699 and write $\mathbf{x} = (X_1, \dots, X_D)$ and $\mathbf{y} = (Y_1, \dots, Y_D)$, respectively.

702 then we can compute the expectation $\mathbb{E}[\mathbf{x}^\top \mathbf{y}]$ of the dot product of \mathbf{x} and \mathbf{y} as
 703

$$\begin{aligned}
 704 \mathbb{E}[\mathbf{x}^\top \mathbf{y}] &= \mathbb{E}\left[\sum_{i=1}^D X_i Y_i\right] \\
 705 &= \sum_{i=1}^D \mathbb{E}[X_i Y_i] \\
 706 &= \sum_{i=1}^D \mathbb{E}[X_i] \mathbb{E}[Y_i] \\
 707 &= \sum_{i=1}^D (\boldsymbol{\mu}_x)_i (\boldsymbol{\mu}_y)_i \\
 708 &= \boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y.
 \end{aligned}$$

$$\begin{aligned}
 718 \text{Var}(\mathbf{x}^\top \mathbf{y}) &= \mathbb{E}\left[\left(\mathbf{x}^\top \mathbf{y}\right)^2\right] - \left(\mathbb{E}[\mathbf{x}^\top \mathbf{y}]\right)^2 \\
 719 &= \mathbb{E}\left[\left(\sum_{i=1}^D X_i Y_i\right)^2\right] - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2 \\
 720 &= \sum_{i,j=1}^D \mathbb{E}[X_i Y_i X_j X_j] - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2 \\
 721 &= \sum_{i,j=1}^D \mathbb{E}[X_i X_j] \mathbb{E}[Y_i Y_j] - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2 \\
 722 &= \sum_{i,j=1}^D \mathbb{E}[X_i Y_i] \mathbb{E}[X_j Y_j] - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2 \\
 723 &= \sum_{i,j=1}^D \mathbb{E}[X_i Y_i] \mathbb{E}[X_j Y_j] - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2
 \end{aligned} \tag{9}$$

724 By definition of covariance, we have $\boldsymbol{\sigma}_x = \mathbb{E}[\mathbf{x}\mathbf{x}^\top] - \boldsymbol{\mu}_x \boldsymbol{\mu}_x^\top$, and here $\boldsymbol{\sigma}_x = \text{diag}(\boldsymbol{\sigma}_x^2)$, then
 725 Equation (9) can be simplified as follows:

$$\begin{aligned}
 726 \text{Var}(\mathbf{x}^\top \mathbf{y}) &= \sum_{i=1}^D (\boldsymbol{\sigma}_x + \boldsymbol{\mu}_x \boldsymbol{\mu}_x^\top)_{ij} (\boldsymbol{\sigma}_y + \boldsymbol{\mu}_y \boldsymbol{\mu}_y^\top)_{ij} - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2 \\
 727 &= \langle \boldsymbol{\sigma}_x, \boldsymbol{\sigma}_y \rangle_F + \langle \boldsymbol{\mu}_x \boldsymbol{\mu}_x^\top, \boldsymbol{\sigma}_y \rangle_F + \langle \boldsymbol{\sigma}_x, \boldsymbol{\mu}_y \boldsymbol{\mu}_y^\top \rangle_F + \langle \boldsymbol{\mu}_x \boldsymbol{\mu}_x^\top, \boldsymbol{\mu}_x \boldsymbol{\mu}_x^\top \rangle_F - \left(\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)^2 \\
 728 &= (\boldsymbol{\sigma}_x^2)^\top (\boldsymbol{\sigma}_y^2) + (\boldsymbol{\sigma}_y^2)^\top (\boldsymbol{\mu}_x^2) + (\boldsymbol{\sigma}_x^2)^\top (\boldsymbol{\mu}_y^2)
 \end{aligned} \tag{10}$$

729 where $\langle \cdot, \cdot \rangle_F$ is the Frobenius inner product.
 730

731 Consider now the normalized random vectors $\tilde{\mathbf{x}} = \frac{\mathbf{x} - \boldsymbol{\mu}_x}{\|\boldsymbol{\sigma}_x\|}$ and $\tilde{\mathbf{y}} = \frac{\mathbf{y} - \boldsymbol{\mu}_y}{\|\boldsymbol{\sigma}_y\|}$. Due to the
 732 Gaussianity assumption on \mathbf{x} and \mathbf{y} , it follows that the normalized vectors are also Gaussian,
 733 and in particular, are distributed as $\tilde{\mathbf{x}}, \tilde{\mathbf{y}} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$. Plugging the respective mean and
 734 variance values into the formulas for the expectation and variance for dot products above,
 735 we obtain that

$$\mathbb{E}[\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}] = 0 \quad \text{and} \quad \text{Var}(\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}) = 1 \tag{11}$$

736 As $\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}$ is a symmetric random variable, it follows that
 737

$$\Pr(\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} = 0.5) = 0.5. \tag{12}$$

738 Next, due to the definition of the random vectors \mathbf{x} and \mathbf{y} , it holds that $\mathbf{x}^\top \mathbf{y} = \sum_{i=1}^D X_i Y_i$,
 739 where $X_i \sim \mathcal{N}((\boldsymbol{\mu}_x)_i, (\boldsymbol{\sigma}_x)_i^2)$ and $Y_i \sim \mathcal{N}((\boldsymbol{\mu}_y)_i, (\boldsymbol{\sigma}_y)_i^2)$ are independent normal random
 740 variables. Going forward, we will use the ψ_1 -Orlicz norm

$$\|X\|_{\psi_1} := \inf\{t > 0 : \mathbb{E}[\exp(|X|/t)] \leq 2\}, \tag{13}$$

741 cf. Definition 2.7.5 of Vershynin (2018). We call a random variable for which $\|\cdot\|_{\psi_1}$ is finite
 742 sub-exponential, following, e.g., Vershynin (2018).

756 Define now $Z_i := X_i Y_i - (\boldsymbol{\mu}_x)_i (\boldsymbol{\mu}_y)_i$. We observe that
 757

$$758 \quad Z_i = X_i Y_i - (\boldsymbol{\mu}_x)_i (\boldsymbol{\mu}_y)_i = X_i (Y_i - (\boldsymbol{\mu}_y)_i) + (X_i - (\boldsymbol{\mu}_x)_i) (\boldsymbol{\mu}_y)_i = Z_i^{(1)} + Z_i^{(2)}$$

759 with $Z_i^{(1)} := X_i (Y_i - (\boldsymbol{\mu}_y)_i)$ and $Z_i^{(2)} := (X_i - (\boldsymbol{\mu}_x)_i) (\boldsymbol{\mu}_y)_i$. To bound the ψ_1 -norm of Z_i ,
 760 we bound this norm for $Z_i^{(1)}$ and $Z_i^{(2)}$ separately.
 761

762 Indeed, due to Lemma 2.7.7 of Vershynin (2018), it holds that
 763

$$764 \quad \|Z_i^{(1)}\|_{\psi_1} \leq \|X_i\|_{\psi_2} \|Y_i - (\boldsymbol{\mu}_y)_i\|_{\psi_2},$$

765 where

$$766 \quad \|X\|_{\psi_2} := \inf\{t > 0 : \mathbb{E}[\exp(X^2/t^2)] \leq 2\}, \quad (14)$$

767 is the ψ_2 -Orlicz norm Vershynin (2018) characterizing sub-Gaussian random variables X .
 768 From Lemma B.2, it follows therefore that
 769

$$770 \quad \|Z_i^{(1)}\|_{\psi_1} \leq \max\left(2(\boldsymbol{\sigma}_x)_i, \sqrt{\frac{(\boldsymbol{\mu}_x)_i^2}{\log 2} + (\boldsymbol{\sigma}_x)_i^2}\right) \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_y)_i}.$$

773 For the second part, since $\|\cdot\|_{\psi_2}$ is a norm, we estimate that
 774

$$775 \quad \|Z_i^{(2)}\|_{\psi_1} \leq \|X_i - (\boldsymbol{\mu}_x)_i\|_{\psi_2} \|(\boldsymbol{\mu}_y)_i\|_{\psi_2} \leq \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_x)_i} \|(\boldsymbol{\mu}_y)_i\|_{\psi_2} \leq \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_x)_i} \frac{|(\boldsymbol{\mu}_y)_i|}{\sqrt{\log 2}},$$

776 where we used again Lemma 2.7.7 and (2.17) of Vershynin (2018) in the first and last
 777 inequality, respectively, and Lemma B.2 in the second inequality.
 778

779 From this, it follows that
 780

$$781 \quad \|Z_i\|_{\psi_1} \leq \|Z_i^{(1)}\|_{\psi_1} + \|Z_i^{(2)}\|_{\psi_1} \leq \max\left(2(\boldsymbol{\sigma}_x)_i, \sqrt{\frac{(\boldsymbol{\mu}_x)_i^2}{\log 2} + (\boldsymbol{\sigma}_x)_i^2}\right) \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_y)_i} + \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_x)_i} \frac{|(\boldsymbol{\mu}_y)_i|}{\sqrt{\log 2}}$$

$$782 \quad \leq \left(2(\boldsymbol{\sigma}_x)_i + \sqrt{\frac{(\boldsymbol{\mu}_x)_i^2}{\log 2} + (\boldsymbol{\sigma}_x)_i^2}\right) \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_y)_i} + \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_x)_i} \frac{|(\boldsymbol{\mu}_y)_i|}{\sqrt{\log 2}}$$

$$783 \quad \leq 2\sqrt{6}(\boldsymbol{\sigma}_x)_i (\boldsymbol{\sigma}_y)_i + \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_y)_i} \frac{|(\boldsymbol{\mu}_x)_i|}{\sqrt{\log 2}} + \sqrt{\frac{8}{3}(\boldsymbol{\sigma}_x)_i} \frac{|(\boldsymbol{\mu}_y)_i|}{\sqrt{\log 2}},$$

784 using that $\sqrt{a^2 + b^2} \leq a + b$ for any non-negative $a, b \geq 0$ in the last inequality. We next
 785 establish a lower bound on the probability of a sign flip through normalization, i.e., for
 786 $\Pr(\text{sgn}(\mathbf{x}^\top \mathbf{y}) \neq \text{sgn}(\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}))$. Assuming without loss of generality that $|\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y| = \boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y$, we
 787 observe that

$$788 \quad \Pr(\text{sgn}(\mathbf{x}^\top \mathbf{y}) \neq \text{sgn}(\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}})) = \Pr((\mathbf{x}^\top \mathbf{y} > 0) \wedge (\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} < 0)) + \Pr((\mathbf{x}^\top \mathbf{y} < 0) \wedge (\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} > 0))$$

$$789 \quad \geq \Pr((\mathbf{x}^\top \mathbf{y} > 0) \wedge (\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} < 0)).$$

790 Furthermore, since the distribution of the normalized vectors $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ is symmetric, the
 791 same holds true for the dot product $\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}}$, which implies that
 792

$$793 \quad \Pr((\mathbf{x}^\top \mathbf{y} > 0) \wedge (\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} < 0)) = 1 - \Pr((\mathbf{x}^\top \mathbf{y} \leq 0) \vee (\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} \geq 0)) \geq 1 - \Pr(\mathbf{x}^\top \mathbf{y} \leq 0) - \Pr(\tilde{\mathbf{x}}^\top \tilde{\mathbf{y}} \geq 0)$$

$$794 \quad \geq 1 - 0.5 - \Pr(\mathbf{x}^\top \mathbf{y} \leq 0) = 0.5 - \Pr(\mathbf{x}^\top \mathbf{y} \leq 0).$$

795 It remains to show that
 796

$$797 \quad \Pr(\mathbf{x}^\top \mathbf{y} \leq 0) \leq 0.1. \quad (16)$$

798 To establish this, we see that
 799

$$800 \quad \Pr(\mathbf{x}^\top \mathbf{y} \leq 0) = \Pr(\mathbf{x}^\top \mathbf{y} - \mathbb{E}[\mathbf{x}^\top \mathbf{y}] \leq -\mathbb{E}[\mathbf{x}^\top \mathbf{y}]) = \Pr(\mathbf{x}^\top \mathbf{y} - \boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y \leq -\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y)$$

$$801 \quad = \Pr\left(\sum_{i=1}^D Z_i \leq -\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y\right)$$

810 with the random variables Z_i defined above. Using the triangle inequality of the ℓ_2 -norm, it
 811 follows from (15) that
 812

$$813 \sqrt{\sum_{i=1}^D \|Z_i\|_{\psi_1}^2} \leq 2\sqrt{6} \sqrt{(\boldsymbol{\sigma}_x^2)^\top \boldsymbol{\sigma}_y^2} + \sqrt{\frac{8}{3 \log 2}} \left(\sqrt{(\boldsymbol{\sigma}_y^2)^\top \boldsymbol{\mu}_x^2} + \sqrt{(\boldsymbol{\sigma}_x^2)^\top \boldsymbol{\mu}_y^2} \right)$$

817 and that

$$818 \max_{i=1}^D \|Z_i\|_{\psi_1} \leq 2\sqrt{6} \|\boldsymbol{\sigma}_x \circ \boldsymbol{\sigma}_y\|_\infty + \sqrt{\frac{8}{3 \log 2}} (\|\boldsymbol{\sigma}_y \circ |(\boldsymbol{\mu}_x)|\|_\infty + \|\boldsymbol{\sigma}_x \circ |(\boldsymbol{\mu}_y)|\|_\infty),$$

821 which implies that

$$822 \begin{aligned} & \sqrt{2 \sum_{i=1}^D \|Z_i\|_{\psi_1}^2 \sqrt{\log(10)} + \max_{i=1}^D \|Z_i\|_{\psi_1} \log(10)} \\ & \leq 4\sqrt{3 \log(10)} \sqrt{(\boldsymbol{\sigma}_x^2)^\top \boldsymbol{\sigma}_y^2} + \frac{4\sqrt{\log(10)}}{\sqrt{3 \log(2)}} \left(\sqrt{(\boldsymbol{\sigma}_y^2)^\top \boldsymbol{\mu}_x^2} + \sqrt{(\boldsymbol{\sigma}_x^2)^\top \boldsymbol{\mu}_y^2} \right) \\ & + 2\sqrt{6} \log(10) \|\boldsymbol{\sigma}_x \circ \boldsymbol{\sigma}_y\|_\infty + \sqrt{\frac{8}{3 \log 2}} \log(10) (\|\boldsymbol{\sigma}_y \circ |(\boldsymbol{\mu}_x)|\|_\infty + \|\boldsymbol{\sigma}_x \circ |(\boldsymbol{\mu}_y)|\|_\infty) \\ & \leq 12 \left(\sqrt{(\boldsymbol{\sigma}_x^2)^\top \boldsymbol{\sigma}_y^2} + \|\boldsymbol{\sigma}_x \circ \boldsymbol{\sigma}_y\|_\infty \right) + 5 \left(\sqrt{(\boldsymbol{\sigma}_y^2)^\top \boldsymbol{\mu}_x^2} + \sqrt{(\boldsymbol{\sigma}_x^2)^\top \boldsymbol{\mu}_y^2} + \|\boldsymbol{\sigma}_y \circ |(\boldsymbol{\mu}_x)|\|_\infty + \|\boldsymbol{\sigma}_x \circ |(\boldsymbol{\mu}_y)|\|_\infty \right) \\ & \leq |\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y|, \end{aligned}$$

835 using the assumption (1) in the last inequality. With this inequality, we can use the fact
 836 that the Z_i are independent mean-zero sub-exponential random variables and Bernstein's
 837 inequality as stated in Lemma B.1 to conclude that
 838

$$839 \Pr \left(\sum_{i=1}^D Z_i \leq -\boldsymbol{\mu}_x^\top \boldsymbol{\mu}_y \right) \leq \Pr \left(\sum_{i=1}^D Z_i \leq - \left(\sqrt{2 \sum_{i=1}^D \|Z_i\|_{\psi_1}^2 \sqrt{\log(10)} + \max_{i=1}^D \|Z_i\|_{\psi_1} \log(10)} \right) \right) \\ 840 \leq \exp(-\log(10)) = 0.1.$$

844 This establishes (16), which concludes the proof. \square

846 **Lemma B.1** (Bernstein's Inequality, cf. Lemma 5.1 of Dirksen (2015)). *Let Z_1, \dots, Z_D be
 847 independent mean-zero sub-exponential random variables. Then for every $t \geq 0$,*

$$848 \Pr \left(\sum_{i=1}^D Z_i \leq - \left(\sqrt{2 \sum_{i=1}^D \|Z_i\|_{\psi_1}^2 \sqrt{t}} + \max_{i=1}^D \|Z_i\|_{\psi_1} t \right) \right) \leq \exp(-t).$$

853 **Lemma B.2** (Bounds on ψ_2 -norm of Gaussians Vershynin (2018)). *1. If $X \sim$
 854 $\mathcal{N}(0, \sigma^2)$ is a centered Gaussian random variable with variance σ^2 , then its ψ_2 -norm
 855 (14) satisfies*

$$856 \|\boldsymbol{X}\|_{\psi_2} \leq \sqrt{\frac{8}{3}} \sigma.$$

859 *2. If $X \sim \mathcal{N}(\mu, \sigma^2)$ is a Gaussian random variable with mean μ and variance σ^2 , then
 860 its ψ_2 -norm (14) satisfies*

$$862 \|\boldsymbol{X}\|_{\psi_2} \leq \max \left(2\sigma, \sqrt{\frac{\mu^2}{\log 2} + \sigma^2} \right).$$

864 B.2 PROOF OF THEOREM 3.1
865

866 *Proof of Theorem 3.1.* Given the output of an affine transformation $\mathbf{x} = \mathbf{W}\mathbf{v} + \mathbf{b}$, where \mathbf{W}
867 and \mathbf{b} are learnable parameters. If $\mathbf{x}' = (\alpha\mathbf{W})\mathbf{v} + (\alpha\mathbf{b})$, then the output of UnitNorm is
868 unchanged, *i.e.*, $\tilde{\mathbf{x}}' = \tilde{\mathbf{x}}$, while the gradients to loss \mathcal{L} are given as follows:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha\mathbf{W})} &= \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{W}} = \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}\mathbf{v}^\top \\ \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha\mathbf{b})} &= \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{b}} = \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J} \\ \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{v}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{v}} = \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}\mathbf{W}^\top \end{aligned} \quad (17)$$

869 Proof: First we will show $\tilde{\mathbf{x}}' = \tilde{\mathbf{x}}$, for which we have:
870

$$\begin{aligned} \tilde{\mathbf{x}}' &= D^{\frac{k}{2}} \frac{\mathbf{x}'}{\|\mathbf{x}'\|} \\ &= D^{\frac{k}{2}} \frac{\alpha\mathbf{x}}{\alpha\|\mathbf{x}\|} \\ &= D^{\frac{k}{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|} \\ &= \tilde{\mathbf{x}} \end{aligned} \quad (18)$$

871 And thus for the gradients to loss \mathcal{L} , we have $\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} = \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}}$. Also, for the Jacobian matrix \mathbf{J} of
872 $\tilde{\mathbf{x}}$ *w.r.t.* \mathbf{x} , we have
873

$$\begin{aligned} \mathbf{J} &= \frac{\partial D^{\frac{k}{2}} \frac{\mathbf{x}}{\|\mathbf{x}\|}}{\partial \mathbf{x}} \\ &= D^{\frac{k}{2}} \left(\frac{\mathbf{I}}{\|\mathbf{x}\|} - \frac{\mathbf{x}\mathbf{x}^\top}{\|\mathbf{x}\|^3} \right) \end{aligned} \quad (19)$$

874 And the Jacobian matrix of $\tilde{\mathbf{x}}'$ *w.r.t.* \mathbf{x}' is given as:
875

$$\begin{aligned} \frac{\partial D^{\frac{k}{2}} \frac{\mathbf{x}'}{\|\mathbf{x}'\|}}{\partial \mathbf{x}'} &= D^{\frac{k}{2}} \left(\frac{\mathbf{I}}{\|\mathbf{x}'\|} - \frac{\mathbf{x}'\mathbf{x}'^\top}{\|\mathbf{x}'\|^3} \right) \\ &= D^{\frac{k}{2}} \left(\frac{\mathbf{I}}{\alpha\|\mathbf{x}\|} - \frac{\alpha^2\mathbf{x}\mathbf{x}^\top}{\alpha^3\|\mathbf{x}\|^3} \right) \\ &= \frac{1}{\alpha} D^{\frac{k}{2}} \left(\frac{\mathbf{I}}{\|\mathbf{x}\|} - \frac{\mathbf{x}\mathbf{x}^\top}{\|\mathbf{x}\|^3} \right) \\ &= \frac{1}{\alpha} \mathbf{J} \end{aligned} \quad (20)$$

876 Then we have the gradient of loss *w.r.t.* \mathbf{W} and $\alpha\mathbf{W}$:
877

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{W}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{W}} \\ &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}\mathbf{v}^\top \\ \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha\mathbf{W})} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{x}'} \cdot \frac{\partial \mathbf{x}'}{\partial (\alpha\mathbf{W})} \\ &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{1}{\alpha} \mathbf{J}\mathbf{v}^\top \\ \Rightarrow \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha\mathbf{W})} &= \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{W}} = \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}\mathbf{v}^\top \end{aligned} \quad (21)$$

918 Similarly, for \mathbf{b} and $\alpha\mathbf{b}$ we have:
 919

$$\begin{aligned}
 920 \quad \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{b}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{b}} \\
 921 \quad &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J} \\
 922 \quad \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha \mathbf{b})} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{x}'} \cdot \frac{\partial \mathbf{x}'}{\partial (\alpha \mathbf{b})} \\
 923 \quad &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{1}{\alpha} \mathbf{J} \\
 924 \quad \Rightarrow \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial (\alpha \mathbf{b})} &= \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{b}} = \frac{1}{\alpha} \cdot \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J}
 \end{aligned} \tag{22}$$

931
 932 And for \mathbf{v} , we have:
 933

$$\begin{aligned}
 933 \quad \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{v}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{v}} \\
 934 \quad &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J} \mathbf{W}^\top \\
 935 \quad \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{v}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{x}'} \cdot \frac{\partial \mathbf{x}'}{\partial \mathbf{v}} \\
 936 \quad &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{1}{\alpha} \mathbf{J} (\alpha \mathbf{W})^\top \\
 937 \quad \Rightarrow \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}'} \cdot \frac{\partial \tilde{\mathbf{x}}'}{\partial \mathbf{v}} &= \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{v}} = \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{x}}} \cdot \mathbf{J} \mathbf{W}^\top
 \end{aligned} \tag{23}$$

944
 945
 946 \square

947 B.3 PROOFS OF THEOREM 3.2 AND THEOREM 3.3

948
 949 *Proof of Theorem 3.2.* Let $\mathbf{X} \in \mathbb{R}^{L \times D}$ be a single sequence of token vectors, and let $\tilde{\mathbf{X}}$ be
 950 the unit normalized output with modulus k , the entropy lower bound (ELB) of the attention
 951 scores is given by the following expression:

$$\begin{aligned}
 952 \quad \text{ELB}(k; L, D) &= \min_{i=1}^L H(\mathbf{A}_i) \\
 953 \quad &= \min_{i=1}^L \left(- \sum_{j=1}^L \mathbf{A}_{i,j} \log \mathbf{A}_{i,j} \right) \\
 954 \quad &= \log \left(L - 1 + \exp \left(2D^{k-\frac{1}{2}} \right) \right) - \frac{2D^{k-\frac{1}{2}} \exp \left(2D^{k-\frac{1}{2}} \right)}{L - 1 + \exp \left(2D^{k-\frac{1}{2}} \right)}
 \end{aligned} \tag{24}$$

955
 956 Proof: Let $\tilde{\mathbf{X}} = D^{\frac{k}{2}} \mathbf{e}$ where \mathbf{e} are the vectors of unit norm. Without loss of generality, we
 957 can assume the ELB is achieved at anchor index i , where we can compute the attention
 958 scores as follows:
 959

$$\begin{aligned}
 960 \quad \mathbf{A}_i &= \text{softmax} \left(\frac{\tilde{\mathbf{X}}_i \tilde{\mathbf{X}}^\top}{\sqrt{D}} \right) \\
 961 \quad &= \text{softmax} \left(\frac{D^k \mathbf{e}_i \mathbf{e}^\top}{\sqrt{D}} \right) \\
 962 \quad &= \text{softmax} \left(D^{k-\frac{1}{2}} \mathbf{e}_i \mathbf{e}^\top \right)
 \end{aligned} \tag{25}$$

972 Since $\mathbf{e}_i \mathbf{e}_j^\top \in (-1, 1), \forall i, j = 1, 2, \dots, L$, the entropy of the attentions scores is lower bounded
 973 by the following expression when it satisfies that $\mathbf{e}_i \mathbf{e}_j = \begin{cases} 1, & j = i \\ -1, & j \neq i \end{cases}$

$$\begin{aligned}
 977 \quad & H(\mathbf{A}_i) \\
 978 \quad & = - \sum_{j=1}^L \mathbf{A}_{i,j} \log \mathbf{A}_{i,j} \\
 981 \quad & = - (L-1) \cdot \frac{\exp(-D^{k-\frac{1}{2}})}{(L-1) \exp(-D^{k-\frac{1}{2}}) + \exp(D^{k-\frac{1}{2}})} \log \frac{\exp(-D^{k-\frac{1}{2}})}{(L-1) \exp(-D^{k-\frac{1}{2}}) + \exp(D^{k-\frac{1}{2}})} \\
 985 \quad & \quad - \frac{\exp(D^{k-\frac{1}{2}})}{(L-1) \exp(-D^{k-\frac{1}{2}}) + \exp(D^{k-\frac{1}{2}})} \log \frac{\exp(D^{k-\frac{1}{2}})}{(L-1) \exp(-D^{k-\frac{1}{2}}) + \exp(D^{k-\frac{1}{2}})} \\
 988 \quad & = \frac{L-1}{L-1 + \exp(2D^{k-\frac{1}{2}})} \log(L-1 + \exp(2D^{k-\frac{1}{2}})) \\
 991 \quad & \quad + \frac{\exp(2D^{k-\frac{1}{2}})}{L-1 + \exp(2D^{k-\frac{1}{2}})} \log \frac{L-1 + \exp(2D^{k-\frac{1}{2}})}{\exp(2D^{k-\frac{1}{2}})} \\
 995 \quad & = \log(L-1 + \exp(2D^{k-\frac{1}{2}})) - \frac{2D^{k-\frac{1}{2}} \exp(2D^{k-\frac{1}{2}})}{L-1 + \exp(2D^{k-\frac{1}{2}})}
 \end{aligned} \tag{26}$$

999 Therefore, the entropy lower bound (ELB) for any L, D and k is:

$$\text{ELB}(k; L, D) = \log(L-1 + \exp(2D^{k-\frac{1}{2}})) - \frac{2D^{k-\frac{1}{2}} \exp(2D^{k-\frac{1}{2}})}{L-1 + \exp(2D^{k-\frac{1}{2}})} \tag{27}$$

1005 \square

1008 *Proof of Theorem 3.3.* The ELB is a monotonically decreasing function of k bounded between
 1009 0 and $\log L$.

1011 Proof: Let $d = 2D^{k-\frac{1}{2}}$, then it is obvious that d is monotonically increasing with k , therefore
 1012 we only need to prove that $\text{ELB}(k; L, D)$ is monotonically decreasing with d . The derivative
 1013 of $\text{ELB}(k; L, D)$ with respect to d is given as follows:

$$\begin{aligned}
 1015 \quad & \frac{\partial \text{ELB}(k; L, D)}{\partial d} = \frac{e^d}{L-1+e^d} - \frac{(L-1+e^d)(d+1)e^d - (de^d)e^d}{(L-1+e^d)^2} \\
 1016 \quad & = \frac{e^d}{(L-1+e^d)^2} ((L-1+e^d) - (L-1+e^d)(d+1) + de^d) \\
 1017 \quad & = \frac{de^d}{(L-1+e^d)^2} (1-L) \\
 1018 \quad & (\forall L > 1) < 0
 \end{aligned} \tag{28}$$

1024 Therefore, $\text{ELB}(k; L, D)$ is monotonically decreasing with d and with k . If the limits of
 1025 $\text{ELB}(k; L, D)$ as $k \rightarrow -\infty$ and $k \rightarrow +\infty$ exist, then $\text{ELB}(k; L, D)$ is bounded between these

1026 two limits. The limits are given as follows:
 1027

$$\begin{aligned} 1028 \lim_{k \rightarrow -\infty} \text{ELB}(k; L, D) &= \lim_{d \rightarrow 0^+} \left(\log(L - 1 + e^d) - \frac{de^d}{L - 1 + e^d} \right) \\ 1029 &= \log(L - 1 + 1) - \frac{0}{L - 1 + 1} \\ 1030 &= \log L \end{aligned} \tag{29}$$

$$\begin{aligned} 1034 \lim_{k \rightarrow +\infty} \text{ELB}(k; L, D) &= \lim_{d \rightarrow +\infty} \left(\log(L - 1 + e^d) - \frac{de^d}{L - 1 + e^d} \right) \\ 1035 &= \lim_{d \rightarrow +\infty} \log e^d - \lim_{d \rightarrow +\infty} \frac{d}{(L - 1)e^{-d} + 1} \\ 1036 &= d - d \\ 1037 &= 0 \end{aligned} \tag{30}$$

1040 Therefore, $\text{ELB}(k; L, D)$ is bounded between 0 and $\log L$. \square
 1041

1042 C DISCUSSION

1044 C.1 DIFFERENCE BETWEEN THE PROPOSED NORMALIZATION AND THE OTHER 1045 NORMALIZATION

1047 BatchNorm and LayerNorm are all normalization methods that are widely used in deep
 1048 learning. They share the same center-and-scale normalization paradigm by first subtracting
 1049 the mean and then divide by standard deviation. The only difference between them in
 1050 terms of computation is the dimensions of data used to compute these statistics, as shown in
 1051 Table S1.

1052 In terms of application, BatchNorm is often used in fully connected layers and convolution
 1053 layers, while LayerNorm is often used in recurrent neural networks and Transformers. The
 1054 subtle difference between LayerNorm (theory) and LayerNorm (practice) might be attributed
 1055 to the fact that the sequence length L is often variable in Transformers, thus normalization
 1056 within each token might be more stable. But this will require further investigation to come
 1057 to a conclusion.

1058 The proposed UnitNorm is a normalization method that is used to normalize the input data
 1059 to have unit norm, which takes the same dimension for computation as LayerNorm, yet it
 1060 distinguishes itself from LayerNorm by the fact that it does not subtract the mean and divide
 1061 by standard deviation. Also, UnitNorm discard the center operation on the normalized
 1062 output, as it will also cause the problem of token shift (Section 2.2).

1063 C.2 FEASIBILITY OF SWITCHING THE ORDER OF NORMALIZATION AND PROJECTION IN 1064 THEORETICAL ANALYSIS

1066 Let $\mathbf{X} \in \mathbb{R}^{L \times D}$ be a single sequence of token vectors, and the normalization operation is
 1067 given in the following form:
 1068

$$1069 f : \mathbf{X} \mapsto \frac{\mathbf{X} - \boldsymbol{\mu}}{\boldsymbol{\sigma}} \equiv \mathbf{X}\mathbf{W} + \mathbf{b} \tag{31}$$

1071 where $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}$ are the mean and standard deviation of the input vector \mathbf{X} , respectively, and
 1072 $\mathbf{W} = \boldsymbol{\sigma}^{-1}$ and $\mathbf{b} = \boldsymbol{\mu}\boldsymbol{\sigma}^{-1}$. Depending on the normalization method, the mean and standard
 1073 deviation can be computed over different dimensions.

1074 The projection in the attention mechanism maps the input vectors to query, key and value
 1075 vectors, and here we only consider the query and key vectors for this discussion, which are
 1076 computed as follows:
 1077

$$\begin{aligned} 1079 \mathbf{Q} &= \mathbf{X}\mathbf{W}_Q + \mathbf{b}_Q \\ \mathbf{K} &= \mathbf{X}\mathbf{W}_K + \mathbf{b}_K \end{aligned} \tag{32}$$

1080

1081 Table S1: Computation of the statistics for different normalization methods. Input data $\mathbf{X} \in \mathbb{R}^{N \times L \times D}$, where N is the batch size, L is the sequence length and D is the feature dimension.
 1082 $\mathbf{X}_{n,l,d}$ denotes the d -th feature of the l -th token in the n -th sequence. Normalization is
 1083 broadcasted over the same dimension as the statistics and mathematical operations are done
 1084 element-wise. For BatchNorm, LayerNorm (theory) and LayerNorm (practice), γ and β
 1085 are optional learnable parameters that will re-scale and re-center the normalized output
 1086 element-wise, which is enabled by default in the PyTorch’s implementation.
 1087

1088

Method	Statistics	Normalization
BatchNorm	$\mu_d = \frac{1}{NL} \sum_{n=1}^N \sum_{l=1}^L \mathbf{X}_{n,l,d}$ $\sigma_d^2 = \frac{1}{NL} \sum_{n=1}^N \sum_{l=1}^L (\mathbf{X}_{n,l,d} - \mu_d)^2$ $\boldsymbol{\mu} = [\mu_1 \ \mu_2 \ \dots \ \mu_D]^\top \in \mathbb{R}^{1 \times 1 \times D}$ $\boldsymbol{\sigma}^2 = [\sigma_1^2 \ \sigma_2^2 \ \dots \ \sigma_D^2]^\top \in \mathbb{R}^{1 \times 1 \times D}$	
LayerNorm (theory)	$\mu_n = \frac{1}{LD} \sum_{l=1}^L \sum_{d=1}^D \mathbf{X}_{n,l,d}$ $\sigma_n^2 = \frac{1}{LD} \sum_{l=1}^L \sum_{d=1}^D (\mathbf{X}_{n,l,d} - \mu_n)^2$ $\boldsymbol{\mu} = [\mu_1 \ \mu_2 \ \dots \ \mu_N]^\top \in \mathbb{R}^{N \times 1 \times 1}$ $\boldsymbol{\sigma}^2 = [\sigma_1^2 \ \sigma_2^2 \ \dots \ \sigma_N^2]^\top \in \mathbb{R}^{N \times 1 \times 1}$	$\tilde{\mathbf{X}} = \frac{\mathbf{X} - \boldsymbol{\mu}}{\sqrt{\boldsymbol{\sigma}^2 + \varepsilon}}$
LayerNorm (practice)	$\mu_{n,l} = \frac{1}{D} \sum_{d=1}^D \mathbf{X}_{n,l,d}$ $\sigma_{n,l}^2 = \frac{1}{D} \sum_{d=1}^D (\mathbf{X}_{n,l,d} - \mu_{n,l})^2$ $\boldsymbol{\mu} = \begin{bmatrix} \mu_{1,1} & \mu_{1,2} & \dots & \mu_{1,L} \\ \mu_{2,1} & \mu_{2,2} & \dots & \mu_{2,L} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{N,1} & \mu_{N,2} & \dots & \mu_{N,L} \end{bmatrix}^\top \in \mathbb{R}^{N \times L \times 1}$ $\boldsymbol{\sigma}^2 = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{1,2}^2 & \dots & \sigma_{1,L}^2 \\ \sigma_{2,1}^2 & \sigma_{2,2}^2 & \dots & \sigma_{2,L}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{N,1}^2 & \sigma_{N,2}^2 & \dots & \sigma_{N,L}^2 \end{bmatrix}^\top \in \mathbb{R}^{N \times L \times 1}$	$\mathbf{Y} = \tilde{\mathbf{X}} \odot \gamma + \beta$
RMSNorm	$\ \mathbf{X}\ _{n,l} = \sqrt{\sum_{d=1}^D \mathbf{X}_{n,l,d}^2}$	$\tilde{\mathbf{X}} = \sqrt{D} \frac{\mathbf{X}}{\ \mathbf{X}\ }$ $\mathbf{Y} = \tilde{\mathbf{X}} \odot \gamma + \beta$
UnitNorm	$\ \mathbf{X}\ = \begin{bmatrix} \ \mathbf{X}\ _{1,1} & \ \mathbf{X}\ _{1,2} & \dots & \ \mathbf{X}\ _{1,L} \\ \ \mathbf{X}\ _{2,1} & \ \mathbf{X}\ _{2,2} & \dots & \ \mathbf{X}\ _{2,L} \\ \vdots & \vdots & \ddots & \vdots \\ \ \mathbf{X}\ _{N,1} & \ \mathbf{X}\ _{N,2} & \dots & \ \mathbf{X}\ _{N,L} \end{bmatrix}^\top \in \mathbb{R}^{N \times L \times 1}$	$\tilde{\mathbf{X}} = D^{\frac{k}{2}} \frac{\mathbf{X}}{\ \mathbf{X}\ }$ $\mathbf{Y} = \tilde{\mathbf{X}}$

1128

1129

1130

1131

1132 where $\mathbf{W}_Q, \mathbf{W}_K \in \mathbb{R}^{D \times D}$ are the projection matrices and $\mathbf{b}_Q, \mathbf{b}_K \in \mathbb{R}^D$ are the bias
 1133 vectors for query and key, respectively. As the normalization and projection are both linear
 1134 operations, we can combine them into a single linear operation as follows:

1134

$$\begin{aligned}
 \mathbf{Y} &= \tilde{\mathbf{X}} \mathbf{W}_Y + \mathbf{b}_Y \\
 &= (\mathbf{X} \mathbf{W} + \mathbf{b}) \mathbf{W}_Y + \mathbf{b}_Y \\
 &= \mathbf{X} (\mathbf{W} \mathbf{W}_Y) + (\mathbf{b} \mathbf{W}_Y + \mathbf{b}_Y)
 \end{aligned} \tag{33}$$

1139 for $Y \in \{Q, K\}$. Therefore, there must exist some \mathbf{W}' , \mathbf{b}' , \mathbf{W}'_Y and \mathbf{b}'_Y such that:

1140

$$\begin{aligned}
 \mathbf{W}' \mathbf{W}' &= \mathbf{W} \mathbf{W}_Y \\
 \mathbf{b}_Y \mathbf{W}' + \mathbf{b}' &= \mathbf{b} \mathbf{W}_Y + \mathbf{b}_Y
 \end{aligned} \tag{34}$$

1144 Therefore, the order of normalization and projection does not affect the theoretical analysis.
 1145 And in favor of simplicity, we can assume the normalization is performed after the projection.

1146

1147 D SUPPLEMENTARY FIGURES

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

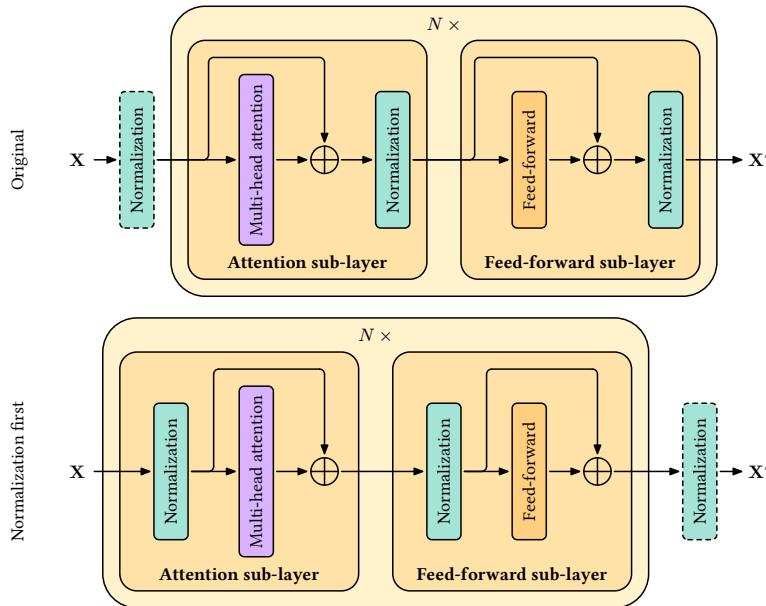
1183

1184

1185

1186

1187



1171 Figure S1: Transformer layer architecture. The original architecture is equivalent to a
 1172 normalization-first sub-layer design for simpler analysis.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

Original data

“Center-and-scale” normalization

Unit normalization

Data points

Scaled dot product

Attention weights

	x_0	x_1	x_2	x_3
x_0	1.57	0.4	3.31	3.4
x_1	1.36	0.47	3.31	3.31
x_2	0.03	0.12	0.47	0.4
x_3	1.05	0.03	1.36	1.57
Anchor	x_1	x_2	x_3	
x_0	1.36	0.47	3.31	3.31
x_1	0.03	0.12	0.47	0.4
x_2	1.05	0.03	1.36	1.57
Context	x_0	x_1	x_2	x_3

	x_0	x_1	x_2	x_3
x_0	-0.7	-1.24	1	0.94
x_1	-1.27	-1.07	1.34	1
x_2	0.45	1.86	-1.07	-1.24
x_3	1.51	0.45	-1.27	-0.7
Anchor	x_1	x_2	x_3	
x_0	1.36	0.47	3.31	3.31
x_1	0.03	0.12	0.47	0.4
x_2	1.05	0.03	1.36	1.57
Context	x_0	x_1	x_2	x_3

	x_0	x_1	x_2	x_3
x_0	0.99	0.74	1.17	1.19
x_1	0.87	0.88	1.19	1.17
x_2	0.09	1.19	0.88	0.74
x_3	1.19	0.09	0.87	0.99
Anchor	x_1	x_2	x_3	
x_0	1.36	0.47	3.31	3.31
x_1	0.03	0.12	0.47	0.4
x_2	1.05	0.03	1.36	1.57
Context	x_0	x_1	x_2	x_3

	x_0	x_1	x_2	x_3
x_0	0.08	0.02	0.43	0.47
x_1	0.06	0.03	0.45	0.45
x_2	0.2	0.22	0.3	0.28
x_3	0.23	0.08	0.31	0.38
Anchor	x_1	x_2	x_3	
x_0	0.08	0.05	0.45	0.42
x_1	0.04	0.05	0.53	0.38
x_2	0.18	0.74	0.04	0.03
x_3	0.66	0.23	0.04	0.07
Context	x_0	x_1	x_2	x_3

	x_0	x_1	x_2	x_3
x_0	0.24	0.18	0.29	0.29
x_1	0.21	0.21	0.29	0.29
x_2	0.12	0.37	0.27	0.24
x_3	0.35	0.12	0.25	0.28
Anchor	x_1	x_2	x_3	
x_0	1.36	0.47	3.31	3.31
x_1	0.03	0.12	0.47	0.4
x_2	1.05	0.03	1.36	1.57
x_3	1.05	0.03	1.36	1.57
Context	x_0	x_1	x_2	x_3

1281 Figure S3: Demonstration of the token shift and attention shift problems using artificial data.
 1282 The \mathbf{x}_0 and \mathbf{x}_1 exhibit typical token shift as shifting away from their original quadrants,
 1283 resulting in sign flip in scaled dot product (marked in orange), and leading to less attention
 1284 weights distributed to \mathbf{x}_2 and \mathbf{x}_3 than original. Attention shift and sparse attention problem
 1285 can also be observed as the maximum attention weight is altered from \mathbf{x}_2 and \mathbf{x}_3 to nearly
 1286 solely onto themselves.

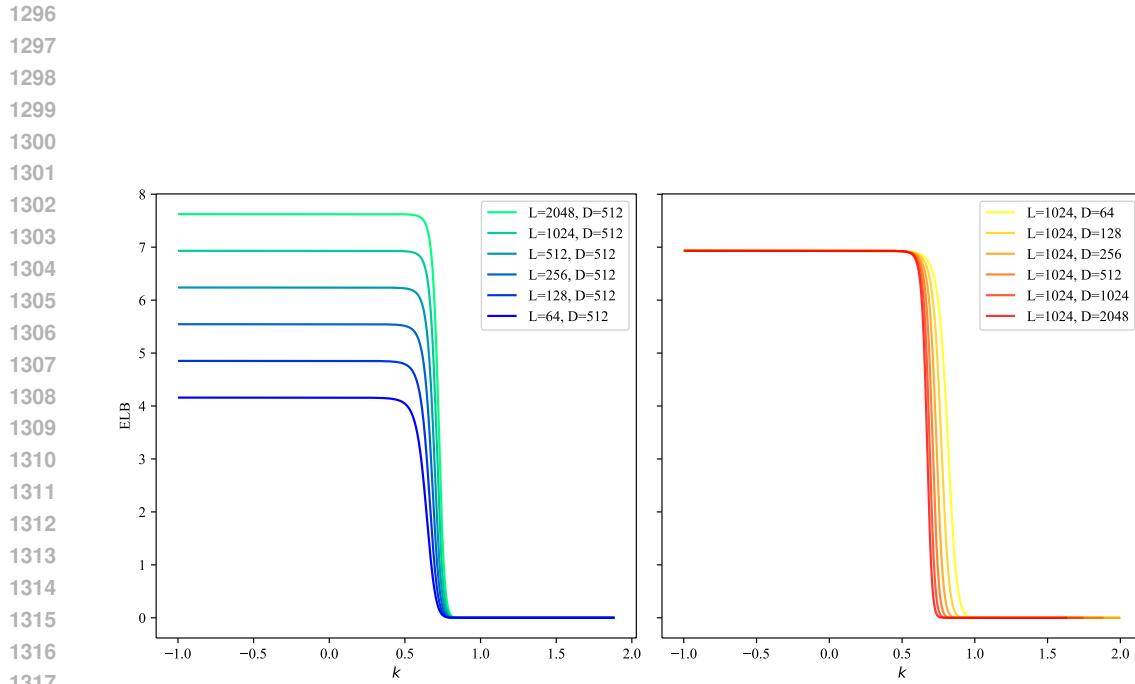


Figure S4: Entropy lower bound (ELB) against k for different L, D . The left figure shows the curve for fixed $D = 512$ and varying L , and the right figure shows the curve for fixed $L = 1024$ and varying D .

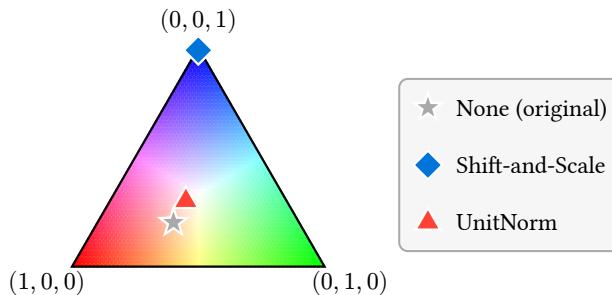


Figure S5: Graphical representation of attention weights showing a simple scenario of 3 tokens. Each corner represents a single-point distribution (red, blue and green) and the center representing a uniform distribution (white). Gray star, blue diamond, and red triangle mark the attention weights with no normalization, center-and-scale normalization, and UnitNorm, respectively.

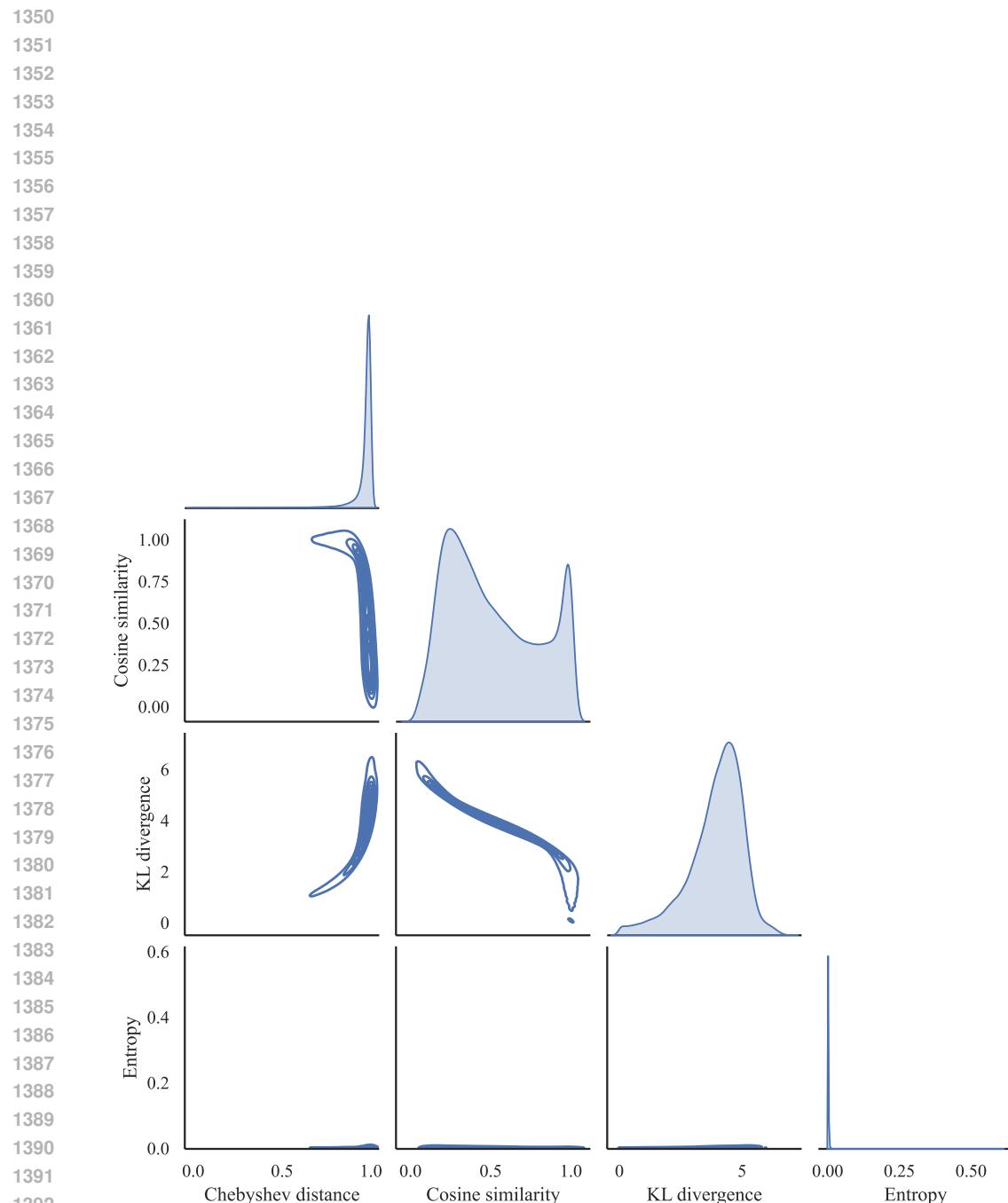


Figure S6: Joint distribution of metrics for LayerNorm (practice). Metrics used are defined as in Table S10.

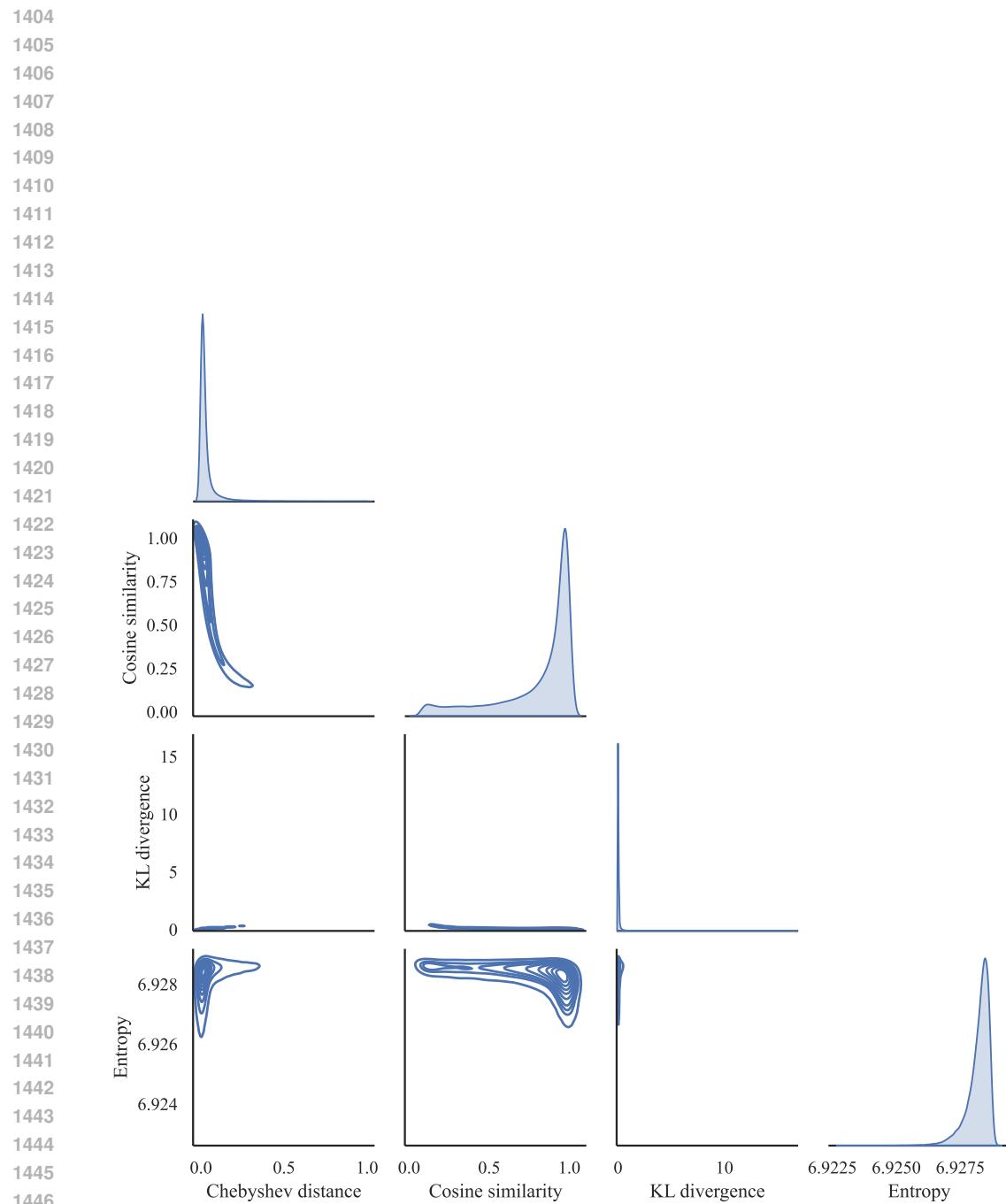


Figure S7: Joint distribution of metrics for UnitNorm. Metrics used are defined as in Table S10.

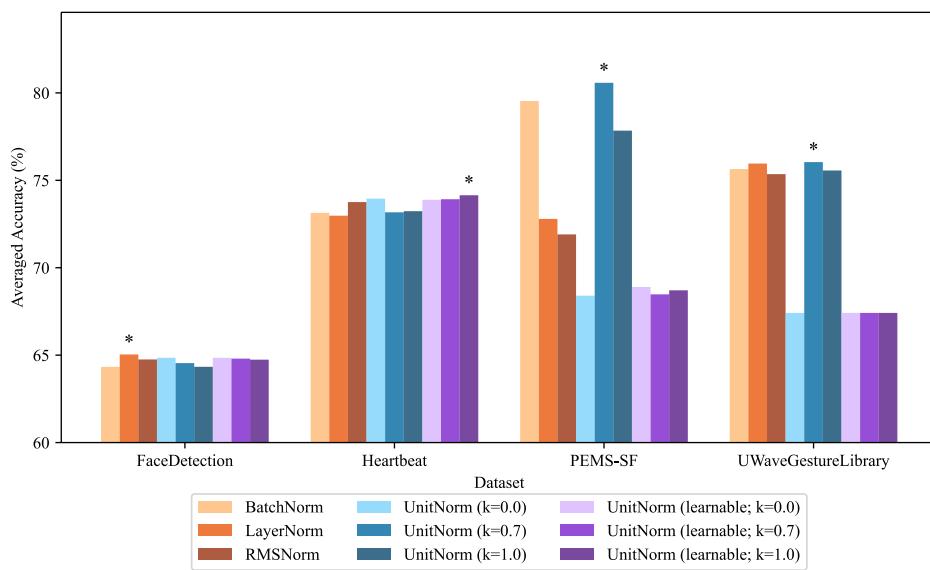


Figure S8: Average rank of normalization methods on the classification tasks. X-axis: Dataset with different normalization, Y-axis: average rank over models. Ranks are computed based on the accuracy of each model on each task with different normalization methods (lower is better). * indicates the best performing normalization method(s) on each task. UnitNorm and UnitNorm (learnable) outperform other normalization methods on 3 out of 5 datasets, showing its potential in classification tasks.

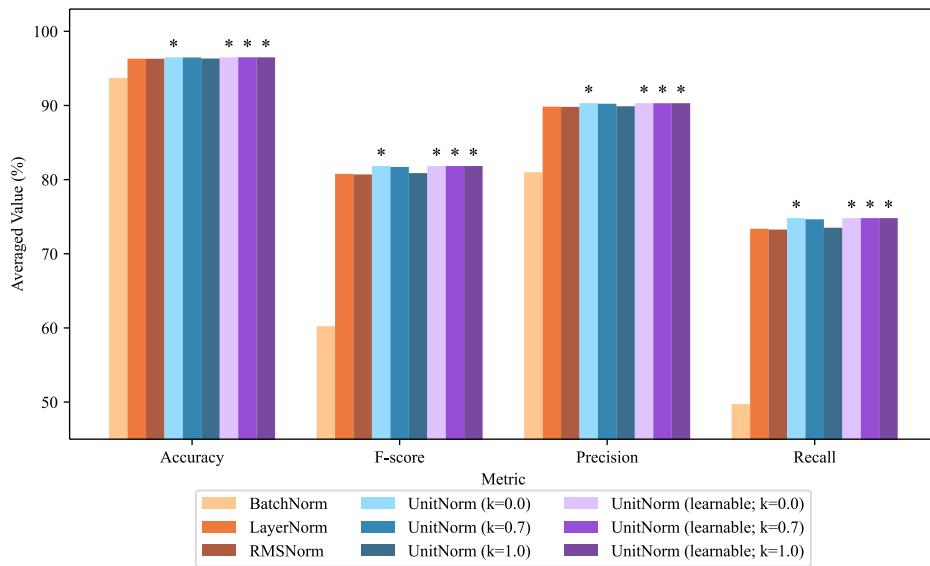


Figure S9: Average rank of normalization methods on the anomaly detection tasks. X-axis: Metrics under different normalization, Y-axis: average rank over models. Ranks are computed based on every metric of each model with different normalization methods (lower is better). * indicates the best performing normalization method(s) on each metric. UnitNorm and UnitNorm (learnable) show a dominating performance gain over the other normalization methods in all metrics.

1512

1513 Table S2: Performance on a synthetic periodic dataset with two channels of sine waves
 1514 (varying periods 2-5 Hz, amplitudes 0.5-2, plus Gaussian noise level = 0.1). Results shown
 1515 for PatchTST model with different normalization methods, averaged over 3 random seeds
 1516 with standard deviation. Best results are in **bold**.

1517

Normalization	MSE	MAE
BatchNorm	2.721 ± 3.409	0.956 ± 0.550
LayerNorm	3.117 ± 3.078	1.054 ± 0.532
RMSNorm	3.114 ± 3.057	1.056 ± 0.528
UnitNorm ($k = 0.5$)	1.127 ± 1.085	0.732 ± 0.269
UnitNorm ($k = 0.7$)	1.600 ± 1.762	0.800 ± 0.361
UnitNorm ($k = 1.0$)	3.115 ± 3.059	1.056 ± 0.528

1527

1528 E SUPPLEMENTARY TABLES

1529

1530
 1531 Table S3: Summary of long term forecasting benchmark settings. The sequence length is the
 1532 number of historical time steps fed into the encoder, and the label length is the number of
 1533 time steps fed into the decoder as the ground truth output of the decoder. The prediction
 1534 length is the number of time steps to be predicted by the decoder.

1535

1536

Datasets	Feature number	Sequence length	Label length	Prediction length	Metrics	License
ETTh1, ETTh2 Zhou et al. (2021)	7					CC BY-ND 4.0
ECL Trindade (2015)	321	384	96	{96, 192, 384, 720}	MSE, MAE	CC BY 4.0
Exchange Lai et al. (2018)	8					N/A

1545

1546

1547 Table S4: Summary of classification benchmark settings. All datasets are from UEA Archive
 1548 Bagnall et al. (2018). The sequence length is the number of time steps in each sequence fed
 1549 into the encoder, and the prediction is made on the flattened output of the encoder by a
 1550 fully connected layer.

1551

Datasets	Feature number	Class number	Sequence length	Metrics	License
FaceDetection	144	5890			
Heartbeat	61	204			
PEMS-SF	963	173	96	Accuracy	N/A
UWaveGestureLibrary	3	320			

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

Table S5: Summary of anomaly detection benchmark settings. The sequence length is the number of time steps in each sequence fed into the model for reconstruction using MSE as loss. The threshold is determined by the distribution of reconstruction error on the training set, and the metrics are computed on the test set based on this threshold.

1577

1578

1579

1580

1581

Datasets	Feature number	Sequence length	Reconstruction error	Metrics	License
MSL Hundman et al. (2018)	55	100	MSE	Accuracy, F1-score, Precision, Recall	N/A

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

Table S6: Summary of compute resources used for the experiments. Depending on the dataset and model, the GPU memory usage varies from 4G to 64G.

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Table S7: Long term forecasting test losses on different datasets using different models and normalization methods. For each dataset, prediction length, metric and for each model, the best performing normalization method(s) are bolded, and the second best are underlined.

		dataset		BatchNorm		LayerNorm		RMSNorm		prediction length		metric		ECL		ETTh1			ETTh2			Exchange																										
1620	1621	0.445 0.280 0.499 0.325 0.282	0.403 0.271 0.417	0.309 0.249	0.416 0.270 0.4100 0.309 0.249	0.408 0.278 0.435 0.311	0.246	MAE	96	192	336	720	MSE	0.320 0.1810 0.3250 0.1950 0.148	0.310 0.184 0.357 0.198	0.144	MAE	96	192	336	720	MSE																										
1622	0.359 0.189 0.457 0.211 0.184	0.303 0.182 0.334	0.195 0.150	0.427 0.277 0.444 0.324 0.262	0.436 0.2760 0.436 0.324 0.262	0.409 0.285 0.448	0.322 0.265	MAE	192	336	720	MSE	0.358 0.1870 0.3550 0.2110 0.162	0.321 0.191	0.162	MAE	192	336	720	MSE																												
1623	0.460 0.284 0.520 0.345 0.295	0.427 0.277 0.444 0.324 0.262	0.366 0.211 0.162	0.343 0.188 0.366	0.358 0.1870 0.3550 0.2110 0.162	0.499 0.2910 0.443 0.347 0.291	0.463 0.300 0.455	MAE	336	720	MSE	MSE	0.490 0.293 0.448 0.346 0.292	0.463 0.300 0.455	0.342 0.290	MAE	336	720	MSE																													
1624	0.392 0.193 0.485 0.238 0.200	0.343 0.188 0.366	0.211 0.162	0.454 0.209 0.497 0.265 0.212	0.441 0.204 0.370 0.235 0.196	0.458 0.2040 0.364 0.236 0.192	0.407 0.207 0.376	MAE	720	MSE	720	MSE	0.454 0.209 0.497 0.265 0.212	0.441 0.204 0.370 0.235 0.196	0.2340 0.189	MAE	720	MSE																														
1625	0.505 0.300 0.530 0.368 0.309	0.490 0.293 0.448 0.346 0.292	0.441 0.204 0.370 0.235 0.196	0.454 0.209 0.497 0.265 0.212	0.441 0.204 0.370 0.235 0.196	0.458 0.2040 0.364 0.236 0.192	0.407 0.207 0.376	MAE	720	MSE	720	MSE	0.454 0.209 0.497 0.265 0.212	0.441 0.204 0.370 0.235 0.196	0.2340 0.189	MAE	720	MSE																														
1626	0.498 0.332 0.535 0.398 0.348	0.539 0.327 0.460 0.365 0.261	0.264	0.514 0.2460 0.391 0.262 0.266	0.514 0.2460 0.391 0.262 0.266	0.461 0.248 0.417 0.270 0.255	0.461 0.248 0.417 0.270 0.255	MAE	720	MSE	720	MSE	0.498 0.332 0.535 0.398 0.348	0.539 0.327 0.460 0.365 0.261	0.2340 0.189	MAE	720	MSE																														
1627	0.435 0.252 0.517 0.303 0.257	0.511 0.247 0.399 0.261 0.264	0.511 0.247 0.399 0.261 0.264	0.748 0.396 0.720 0.420 0.439	0.748 0.396 0.720 0.420 0.439	0.814 0.3950 0.661 0.422 0.426	0.814 0.3950 0.661 0.422 0.426	MAE	96	192	336	720	MSE	0.800 0.401 0.816 0.440 0.591	0.745 0.396 0.709 0.421 0.431	0.3740 0.790 0.389 0.417	MAE	96	192	336	720	MSE																										
1628	0.990 0.384 1.104 0.410 0.686	0.882 0.377 0.864 0.380 0.409	0.884 0.377 0.877 0.379 0.419	0.884 0.377 0.877 0.379 0.419	0.884 0.377 0.877 0.379 0.419	1.008 0.3740 0.790 0.389 0.417	1.008 0.3740 0.790 0.389 0.417	MAE	96	192	336	720	MSE	0.990 0.384 1.104 0.410 0.686	0.882 0.377 0.864 0.380 0.409	0.3740 0.790 0.389 0.417	MAE	96	192	336	720	MSE																										
1629	0.791 0.431 0.814 0.457 0.607	0.802 0.425 0.781 0.445 0.495	0.802 0.426 0.792 0.444 0.500	0.802 0.426 0.792 0.444 0.500	0.802 0.426 0.792 0.444 0.500	0.805 0.429 0.792 0.449 0.507	0.805 0.429 0.792 0.449 0.507	MAE	96	192	336	720	MSE	0.791 0.431 0.814 0.457 0.607	0.802 0.426 0.781 0.445 0.495	0.422 0.507	MAE	96	192	336	720	MSE																										
1630	0.979 0.431 1.111 0.440 0.705	0.984 0.421 0.995 0.420 0.508	1.003 0.422 1.013 0.420 0.511	1.003 0.422 1.013 0.420 0.511	1.003 0.422 1.013 0.420 0.511	1.014 0.426 1.015 0.433 0.531	1.014 0.426 1.015 0.433 0.531	MAE	96	192	336	720	MSE	0.842 0.453 0.843 0.477 0.607	0.870 0.448 0.822 0.471 0.597	0.447 0.842 0.471 0.572	MAE	96	192	336	720	MSE																										
1631	1.076 0.471 1.141 0.472 0.709	1.123 0.463 1.112 0.462 0.658	1.081 0.460 1.148 0.464 0.621	1.081 0.460 1.148 0.464 0.621	1.081 0.460 1.148 0.464 0.621	1.161 0.478 1.230 0.483 0.684	1.161 0.478 1.230 0.483 0.684	MAE	96	192	336	720	MSE	0.844 0.483 0.891 0.503 0.649	0.808 0.495 0.857 0.507 0.703	0.833 0.492 0.855 0.507 0.667	MAE	96	192	336	720	MSE																										
1632	1.077 0.486 1.212 0.497 0.759	1.030 0.520 1.172 0.505 0.836	1.078 0.511 1.174 0.507 0.765	1.078 0.511 1.174 0.507 0.765	1.078 0.511 1.174 0.507 0.765	1.054 0.506 1.357 0.516 0.834	1.054 0.506 1.357 0.516 0.834	MAE	96	192	336	720	MSE	0.999 0.341 1.155 0.399 0.576	1.211 0.345 1.573 0.393 0.709	1.188 0.345 1.502 0.395 0.721	MAE	96	192	336	720	MSE																										
1633	1.099 0.341 1.155 0.399 0.576	2.276 0.297 4.058 0.350 0.963	2.205 0.297 3.574 0.351 1.014	2.205 0.297 3.574 0.351 1.014	2.205 0.297 3.574 0.351 1.014	1.093 0.346 1.414 0.395 0.557	1.093 0.346 1.414 0.395 0.557	MAE	96	192	336	720	MSE	1.518 0.290 2.060 0.355 0.694	2.181 0.359 0.857 0.507 0.703	2.182 0.359 0.856 0.506 0.703	MAE	96	192	336	720	MSE																										
1634	1.189 0.394 1.258 0.441 0.756	1.815 0.396 1.216 0.437 0.904	1.820 0.396 1.216 0.437 0.904	1.820 0.396 1.216 0.437 0.904	1.820 0.396 1.216 0.437 0.904	1.258 0.399 2.105 0.434 0.787	1.258 0.399 2.105 0.434 0.787	MAE	96	192	336	720	MSE	2.231 0.369 2.582 0.430 1.214	5.030 0.379 6.495 0.425 1.451	5.161 0.380 6.156 0.425 1.487	MAE	96	192	336	720	MSE																										
1635	1.248 0.429 1.287 0.480 0.811	1.806 0.431 1.941 0.475 1.116	1.699 0.431 1.864 0.475 1.331	1.699 0.431 1.864 0.475 1.331	1.699 0.431 1.864 0.475 1.331	1.603 0.435 2.215 0.473 0.961	1.603 0.435 2.215 0.473 0.961	MAE	96	192	336	720	MSE	2.358 0.417 2.396 0.476 1.297	5.043 0.418 5.358 0.469 1.985	4.549 0.417 4.990 0.469 2.686	MAE	96	192	336	720	MSE																										
1636	1.291 0.449 1.306 0.490 1.071	1.480 0.448 1.663 0.488 1.525	1.390 0.447 1.652 0.488 1.506	1.390 0.447 1.652 0.488 1.506	1.390 0.447 1.652 0.488 1.506	1.833 0.453 2.307 0.486 1.491	1.833 0.453 2.307 0.486 1.491	MAE	96	192	336	720	MSE	1.023 0.206 1.016 0.298 0.688	0.580 0.209 0.730 0.297 0.371	0.589 0.209 0.733 0.297 0.378	MAE	96	192	336	720	MSE																										
1637	1.535 0.088 1.497 0.170 0.913	0.569 0.091 0.841 0.169 0.261	0.581 0.091 0.830 0.169 0.274	0.581 0.091 0.830 0.169 0.274	0.581 0.091 0.830 0.169 0.274	0.665 0.088 0.770 0.169 0.122	0.665 0.088 0.770 0.169 0.122	MAE	96	192	336	720	MSE	1.121 0.299 1.066 0.385 0.772	0.783 0.300 0.866 0.383 0.522	0.786 0.301 0.836 0.383 0.531	MAE	96	192	336	720	MSE																										
1638	1.848 0.178 1.646 0.279 1.057	1.046 0.179 1.158 0.277 0.485	1.047 0.180 1.0810 0.276 0.502	1.047 0.180 1.0810 0.276 0.502	1.047 0.180 1.0810 0.276 0.502	1.458 0.180 1.308 0.276 0.315	1.458 0.180 1.308 0.276 0.315	MAE	96	192	336	720	MSE	1.203 0.418 1.186 0.487 1.177	1.045 0.411 1.077 0.488 0.882	1.051 0.412 1.073 0.488 0.890	MAE	96	192	336	720	MSE																										
1639	2.122 0.331 2.042 0.438 2.187	1.742 0.322 1.840 0.440 1.262	1.745 0.324 1.817 0.440 2.188	1.745 0.324 1.817 0.440 2.188	1.745 0.324 1.817 0.440 2.188	2.578 0.336 3.221 0.438 0.658	2.578 0.336 3.221 0.438 0.658	MAE	96	192	336	720	MSE	1.111 0.707 1.200 0.820	1.246 0.715 1.386 0.824 1.045	1.212 0.713 1.409 0.824 1.047	MAE	96	192	336	720	MSE																										
1640	1.717 0.876 2.155 1.145 2.711	2.354 0.904 2.875 1.153 1.695	2.297 0.901 2.967 1.153 1.701	2.297 0.901 2.967 1.153 1.701	2.297 0.901 2.967 1.153 1.701	3.069 0.874 4.284 1.151 1.086	3.069 0.874 4.284 1.151 1.086	MSE	96	192	336	720	MSE	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673

Continued on next page

dataset		ECL						ETTh1						ETTh2						Exchange															
		96	192	336	720	96	192	336	720	96	192	336	720	96	192	336	720	96	192	336	720	96	192	336	720										
prediction length		metric		Crossformer		FEDformer		Informer		PatchTST		Transformer		Crossformer		FEDformer		Informer		PatchTST		Transformer		Crossformer		FEDformer		Informer		PatchTST		Transformer			
				0.449	0.280	0.502	0.325	0.282	0.449	0.280	0.502	0.325	0.282	0.405	0.271	0.418	0.309	0.249	0.420	0.274	0.463	0.320	0.257	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE				
				0.359	0.189	0.462	0.211	0.184	0.361	0.189	0.461	0.211	0.184	0.304	0.182	0.335	0.195	0.149	0.331	0.183	0.401	0.204	0.156	0.569	0.091	0.877	0.169	0.263	0.965	0.085	1.068	0.170	0.430	0.530	
				0.460	0.284	0.522	0.345	0.295	0.460	0.284	0.520	0.345	0.295	0.459	0.284	0.508	0.344	0.293	0.428	0.277	0.446	0.324	0.265	0.446	0.280	0.492	0.335	0.274	0.428	0.178	1.457	0.279	0.702	0.644	
				0.392	0.193	0.490	0.238	0.200	0.392	0.193	0.486	0.238	0.200	0.388	0.193	0.460	0.237	0.198	0.346	0.188	0.368	0.211	0.165	0.371	0.189	0.434	0.222	0.176	0.504	0.296	0.501	0.354	0.299	0.504	
				0.505	0.300	0.531	0.368	0.309	0.505	0.300	0.530	0.368	0.309	0.492	0.300	0.526	0.367	0.305	0.491	0.292	0.447	0.346	0.290	0.504	0.205	0.441	0.242	0.204	0.508	0.328	0.558	0.385	0.339	0.508	
				0.498	0.332	0.547	0.394	0.348	0.498	0.332	0.538	0.394	0.348	0.493	0.331	0.539	0.398	0.349	0.540	0.327	0.464	0.365	0.341	0.508	0.328	0.558	0.385	0.339	0.508	0.328	0.558	0.385	0.339	0.508	
				0.435	0.252	0.531	0.300	0.257	0.435	0.252	0.519	0.300	0.257	0.427	0.251	0.523	0.304	0.258	0.411	0.247	0.402	0.261	0.254	0.459	0.247	0.543	0.283	0.251	0.459	0.247	0.543	0.283	0.251	0.459	
				0.813	0.401	0.817	0.440	0.583	0.813	0.401	0.815	0.440	0.583	0.780	0.400	0.850	0.440	0.593	0.745	0.396	0.713	0.421	0.431	0.662	0.397	0.748	0.428	0.436	0.662	0.397	0.748	0.428	0.436	0.662	
				1.003	0.384	1.104	0.410	0.653	1.003	0.384	1.107	0.410	0.653	0.963	0.384	1.169	0.410	0.671	0.881	0.377	0.869	0.380	0.409	0.751	0.381	0.963	0.386	0.408	0.751	0.381	0.963	0.386	0.408	0.751	
				0.828	0.431	0.810	0.456	0.605	0.828	0.431	0.807	0.456	0.605	0.808	0.430	0.820	0.457	0.605	0.802	0.425	0.780	0.445	0.487	0.736	0.428	0.751	0.448	0.498	0.736	0.428	0.751	0.448	0.498	0.736	
				1.037	0.431	1.110	0.432	0.710	1.037	0.431	1.109	0.434	0.710	1.010	0.431	1.120	0.439	0.700	0.984	0.421	0.992	0.420	0.492	0.917	0.427	0.981	0.423	0.499	0.917	0.427	0.981	0.423	0.499	0.917	
				0.849	0.453	0.846	0.480	0.604	0.849	0.453	0.845	0.480	0.604	0.849	0.453	0.844	0.477	0.611	0.871	0.448	0.823	0.471	0.606	0.821	0.451	0.800	0.471	0.600	0.821	0.451	0.800	0.471	0.600	0.821	
				1.091	0.471	1.142	0.476	0.704	1.091	0.471	1.141	0.476	0.704	1.101	0.471	1.149	0.470	0.719	1.125	0.463	1.113	0.462	0.674	1.073	0.461	1.061	0.462	0.643	1.073	0.461	1.061	0.462	0.643	1.073	
				0.854	0.483	0.888	0.509	0.621	0.854	0.483	0.887	0.509	0.621	0.817	0.483	0.894	0.508	0.651	0.806	0.495	0.849	0.501	0.735	0.874	0.484	0.871	0.502	0.673	0.874	0.484	0.871	0.502	0.673	0.874	
				1.100	0.486	1.211	0.504	0.723	1.100	0.486	1.209	0.504	0.723	1.036	0.486	1.226	0.504	0.725	1.036	0.519	1.160	0.519	0.726	1.026	0.519	1.190	0.497	0.739	1.026	0.519	1.190	0.497	0.739	1.026	
				0.985	0.341	1.119	0.396	0.568	0.985	0.341	1.093	0.396	0.568	1.393	0.291	1.172	0.355	0.742	1.213	0.345	1.155	0.393	0.723	0.914	0.343	1.109	0.401	0.657	0.914	0.343	1.109	0.401	0.657	0.914	
				1.495	0.290	1.911	0.355	0.673	1.495	0.290	1.861	0.355	0.673	1.160	0.394	1.251	0.445	0.797	1.216	0.394	1.237	0.441	0.794	1.283	0.297	1.395	0.437	0.910	1.243	0.291	1.384	0.437	0.910	1.243	
				1.160	0.394	1.233	0.445	0.797	1.160	0.394	1.233	0.445	0.797	1.160	0.394	1.251	0.445	0.797	1.216	0.394	1.237	0.441	0.794	1.391	0.393	1.410	0.438	0.832	1.391	0.393	1.410	0.438	0.832	1.391	
				2.112	0.369	2.415	0.434	1.268	2.112	0.369	2.407	0.434	1.268	2.312	0.370	2.430	0.430	1.324	5.050	0.380	6.448	0.425	1.467	3.050	0.380	6.448	0.425	1.467	3.050	0.380	6.448	0.425	1.467	3.050	
				1.229	0.429	1.268	0.480	0.834	1.229	0.429	1.284	0.480	0.834	1.228	0.428	1.259	0.480	0.811	1.802	0.430	1.849	0.475	1.072	1.356	0.433	1.343	0.480	1.120	1.356	0.433	1.343	0.480	1.120	1.356	
				2.378	0.417	2.314	0.475	1.379	2.378	0.417	2.388	0.475	1.379	2.284	0.416	2.273	0.476	1.316	5.019	0.418	4.921	0.469	1.886	2.854	0.420	2.696	0.475	2.004	2.854	0.420	2.696	0.475	2.004	2.854	
				1.290	0.449	1.305	0.485	1.041	1.290	0.449	1.306	0.485	1.041	1.306	0.448	1.327	0.490	1.058	1.480	0.446	1.661	0.484	1.554	1.379	0.449	1.448	0.483	1.339	1.379	0.449	1.448	0.483	1.339	1.379	
				2.399	0.429	2.436	0.480	1.914	2.399	0.429	2.427	0.480	1.914	2.386	0.428	2.491	0.486	1.940	3.242	0.426	3.883	0.481	3.409	2.669	0.431	2.927	0.474	2.851	2.669	0.431	2.927	0.474	2.851	2.669	
				1.023	0.202	1.021	0.293	0.688	1.023	0.202	1.031	0.293	0.688	0.982	0.204	0.986	0.298	0.663	0.580	0.209	0.750	0.297	0.373	0.782	0.202	0.838	0.298	0.472	0.580	0.209	0.838	0.298	0.472	0.580	
				1.535	0.084	1.527	0.164	0.913	1.535	0.084	1.557	0.164	0.913	1.121	0.300	1.075	0.385	0.772	1.097	0.300	1.029	0.385	0.754	0.569	0.091	0.877	0.169	0.263	0.965	0.085	1.068	0.170	0.430	1.535	
				1.121	0.300	1.081	0.385	0.772	1.121	0.300	1.075	0.385	0.772	1.122	0.300	1.057	0.705	0.280	1.057	1.772	0.179	1.541	0.279	1.000	1.046	0.179	1.137	0.277	0.486	1.046	0.179	1.137	0.277	0.486	1.046
				1.848	0.180	1.725	0.280	1.057	1.848	0.180	1.705	0.280	1.057	1.772	0.179	1.541	0.279	1.000	1.772	0.179	1.541	0.279	1.000	1.772	0.179	1.541	0.279	1.000	1.772	0.179	1.541	0.279	1.000	1.772	
				1.203	0.418	1.186	0.487	1.177	1.203	0.418	1.186	0.487	1.177	1.192	0.417	1.174	0.487	1.159	1.046	0.411	1.077	0.488	0.886	0.993	0.411	1.028	0.487	0.964	0.993	0.411	1.028	0.487	0.964	0.993	
				2.122	0.331	2.042	0.438	2.187	2.122	0.331	2.042	0.438	2.187	2.084	0.330	2.001	0.438	2.132	1.742	0.322	1.841	0.440	1.270	1.484	0.321	1.595	0.438	1.526	2.122	0.322	1.841	0.440	1.270	1.484	
				1.111	0.703	1.150	0.830	1.338	1.111	0.703	1.163	0.830	1.338	1.079	0.710	1.147	0.820	1.323	1.246	0.715	1.396	0.824	1.048	0.911	0.703	1.220	0.715	1.396	0.824	1.048	0.911	0.703	1.220	0.715	
				1.717	0.869	2.031	1.167	2.711	1.717	0.869	2.083	1.167	2.711	1.618	0.882	1.963	1.145	2.659	2.354	0.904	2.936	1.153	1.702	1.196	0.861	1.608	1.145	1.702	1.196	0.861	1.608	1.145	1.702	1.196	

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736 Table S8: Classification accuracies of different datasets using different models and normal-
 1737 ization methods. For each dataset and for each model, the best performing normalization
 1738 method(s) are bolded, and the second best are underlined.

	dataset	Face Detection	Heartbeat	PEMS-SF	UWave Gesture Library
1739 1740 1741 1742 1743	Crossformer	50.435	75.122	68.401	83.438
	FEDformer	68.275	<u>73.984</u>	78.035	47.812
	Informer	68.606	<u>73.984</u>	87.476	82.083
	PatchTST	65.683	66.992	79.576	81.354
	Transformer	68.663	<u>75.610</u>	<u>84.200</u>	83.542
1744 1745 1746 1747 1748	Crossformer	52.176	73.008	26.397	82.708
	FEDformer	<u>68.861</u>	73.659	84.393	48.438
	Informer	68.076	73.821	<u>85.742</u>	81.979
	PatchTST	67.329	69.919	84.971	81.562
	Transformer	<u>68.757</u>	74.472	82.466	<u>85.104</u>
1749 1750 1751 1752 1753	Crossformer	51.693	<u>73.659</u>	23.699	81.042
	FEDformer	68.000	<u>72.846</u>	85.164	47.708
	Informer	68.275	75.447	84.586	83.125
	PatchTST	66.648	70.894	82.852	80.729
	Transformer	69.154	75.935	83.237	84.167
1754 1755 1756 1757 1758	Crossformer	50.000	72.195	16.763	29.167
	FEDformer	69.041	74.146	83.430	53.333
	Informer	69.088	75.285	78.035	85.000
	PatchTST	<u>67.546</u>	72.195	81.118	<u>82.396</u>
	Transformer	68.568	75.935	82.659	87.188
1759 1760 1761 1762 1763	Crossformer	50.236	73.008	65.896	81.667
	FEDformer	68.067	72.846	84.586	47.083
	Informer	68.142	72.846	83.237	<u>83.958</u>
	PatchTST	67.641	<u>72.358</u>	84.971	82.604
	Transformer	68.634	74.797	84.200	84.896
1764 1765 1766 1767 1768	Crossformer	50.019	72.195	56.455	80.521
	FEDformer	67.357	<u>73.984</u>	85.356	48.125
	Informer	68.492	73.984	84.008	83.646
	PatchTST	67.452	72.033	<u>83.044</u>	81.146
	Transformer	68.350	73.984	80.347	84.375
1769 1770 1771 1772 1773	Crossformer	50.000	72.195	16.763	29.167
	FEDformer	69.041	74.146	83.430	53.333
	Informer	69.079	74.959	80.539	85.000
	PatchTST	<u>67.546</u>	72.195	81.118	<u>82.396</u>
	Transformer	68.568	75.935	82.659	87.188
1774 1775 1776 1777 1778	Crossformer	50.000	72.195	16.763	29.167
	FEDformer	69.041	74.146	83.430	53.333
	Informer	68.558	<u>75.610</u>	79.576	85.000
	PatchTST	<u>67.546</u>	72.846	81.118	<u>82.396</u>
	Transformer	68.568	75.935	82.659	87.188

1782

1783

1784 Table S9: Anomaly detection accuracies of MSL dataset using different models and normalization
1785 methods. For each metric and for each model, the best performing normalization
1786 method(s) are bolded, and the second best are underlined.
1787

	metric	Accuracy	F-score	Precision	Recall
1788	Crossformer	93.507	59.110	81.410	47.903
	FEDformer	95.543	75.820	88.630	66.240
	Informer	93.040	56.927	81.760	43.733
	PatchTST	95.947	78.613	88.603	70.650
	Transformer	90.417	30.680	64.623	20.123
1789	Crossformer	96.313	80.640	90.330	72.823
	FEDformer	96.603	82.427	90.697	75.537
	Informer	96.390	81.193	90.120	73.877
	PatchTST	95.950	78.727	88.347	70.993
	Transformer	96.333	80.910	89.740	73.660
1790	Crossformer	96.307	80.613	90.323	72.790
	FEDformer	96.573	82.263	90.647	75.300
	Informer	96.373	81.067	90.097	73.680
	PatchTST	95.940	78.670	88.307	70.927
	Transformer	96.330	80.883	89.677	73.657
1791	Crossformer	96.533	82.000	90.610	74.880
	FEDformer	96.547	82.097	90.653	75.013
	Informer	96.543	82.067	90.640	74.973
	PatchTST	96.317	80.943	88.990	74.227
	Transformer	<u>96.540</u>	<u>82.060</u>	<u>90.637</u>	<u>74.960</u>
1792	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1793	Crossformer	96.347	80.857	90.380	73.143
	FEDformer	<u>96.587</u>	<u>82.350</u>	<u>90.670</u>	<u>75.433</u>
	Informer	96.470	81.653	90.400	74.450
	PatchTST	95.933	78.607	88.273	70.847
	Transformer	96.337	<u>80.933</u>	89.753	73.687
1794	Crossformer	96.533	82.000	90.610	74.880
	FEDformer	96.547	82.097	90.653	75.013
	Informer	96.543	82.067	90.640	74.973
	PatchTST	96.317	80.943	88.990	74.227
	Transformer	96.540	<u>82.060</u>	<u>90.637</u>	<u>74.960</u>
1795	Crossformer	96.533	82.000	90.610	74.880
	FEDformer	96.547	82.097	90.653	75.013
	Informer	96.543	82.067	90.640	74.973
	PatchTST	96.317	80.943	88.990	74.227
	Transformer	96.540	<u>82.060</u>	<u>90.637</u>	<u>74.960</u>
1796	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1797	Crossformer	96.347	80.857	90.380	73.143
	FEDformer	<u>96.587</u>	<u>82.350</u>	<u>90.670</u>	<u>75.433</u>
	Informer	96.470	81.653	90.400	74.450
	PatchTST	95.933	78.607	88.273	70.847
	Transformer	96.337	<u>80.933</u>	89.753	73.687
1798	Crossformer	96.533	82.000	90.610	74.880
	FEDformer	96.547	82.097	90.653	75.013
	Informer	96.543	82.067	90.640	74.973
	PatchTST	96.317	80.943	88.990	74.227
	Transformer	96.540	<u>82.060</u>	<u>90.637</u>	<u>74.960</u>
1799	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1800	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1801	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1802	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1803	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1804	Crossformer	96.347	80.857	90.380	73.143
	FEDformer	<u>96.587</u>	<u>82.350</u>	<u>90.670</u>	<u>75.433</u>
	Informer	96.470	81.653	90.400	74.450
	PatchTST	95.933	78.607	88.273	70.847
	Transformer	96.337	<u>80.933</u>	89.753	73.687
1805	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1806	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1807	Crossformer	96.347	80.857	90.380	73.143
	FEDformer	<u>96.587</u>	<u>82.350</u>	<u>90.670</u>	<u>75.433</u>
	Informer	96.470	81.653	90.400	74.450
	PatchTST	95.933	78.607	88.273	70.847
	Transformer	96.337	<u>80.933</u>	89.753	73.687
1808	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1809	Crossformer	96.347	80.857	90.380	73.143
	FEDformer	<u>96.587</u>	<u>82.350</u>	<u>90.670</u>	<u>75.433</u>
	Informer	96.470	81.653	90.400	74.450
	PatchTST	95.933	78.607	88.273	70.847
	Transformer	96.337	<u>80.933</u>	89.753	73.687
1810	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1811	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1812	Crossformer	96.347	80.857	90.380	73.143
	FEDformer	<u>96.587</u>	<u>82.350</u>	<u>90.670</u>	<u>75.433</u>
	Informer	96.470	81.653	90.400	74.450
	PatchTST	95.933	78.607	88.273	70.847
	Transformer	96.337	<u>80.933</u>	89.753	73.687
1813	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1814	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1815	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1816	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>
1817	Crossformer	<u>96.523</u>	<u>81.943</u>	<u>90.617</u>	<u>74.783</u>
	FEDformer	96.537	82.040	90.620	74.943
	Informer	96.557	82.147	90.643	75.103
	PatchTST	96.213	80.360	88.713	73.440
	Transformer	96.540	82.043	<u>90.580</u>	<u>74.977</u>

1836
 1837 Table T1: Last-value predictor versus PatchTST with different normalization methods on
 1838 Exchange dataset. Best results *aside from last-value predictor* are in **bold**.

Model & Metric\Prediction	96	192	336	720
Last-value predictor (MAE)	0.196	0.289	0.398	0.676
PatchTST + UnitNorm (MAE)	0.202	0.300	0.411	0.698
PatchTST + BatchNorm (MAE)	0.204	0.300	0.419	0.703
PatchTST + LayerNorm (MAE)	0.209	0.301	0.412	0.713
PatchTST + RMSNorm (MAE)	0.209	0.300	0.411	0.715
Last-value predictor (MSE)	0.081	0.167	0.306	0.810
PatchTST + UnitNorm (MSE)	0.085	0.178	0.321	0.861
PatchTST + BatchNorm (MSE)	0.088	0.180	0.336	0.874
PatchTST + LayerNorm (MSE)	0.091	0.180	0.324	0.901
PatchTST + RMSNorm (MSE)	0.091	0.179	0.322	0.904

1856 F COMPARISON WITH LAST-VALUE PREDICTOR

1857 To provide a more comprehensive evaluation of UnitNorm’s effectiveness, we compared it
 1858 against a simple but effective baseline: the last-value predictor. This baseline simply uses
 1859 the last observed value as the prediction for all future time steps, which can be surprisingly
 1860 effective for time series with slow-changing patterns or high levels of noise.

1861 Tables T1 and T2 present the comparison between the last-value predictor and PatchTST
 1862 model with different normalization methods on the Exchange and ETTh2 datasets, respec-
 1863 tively.

1864 On the Exchange dataset (Table T1), the last-value predictor outperforms all Transformer-
 1865 based models. This is likely due to the highly stochastic nature of exchange rates, where the
 1866 most recent value is often the best predictor for future values. However, among the Trans-
 1867 former models, UnitNorm consistently achieves the best performance across all prediction
 1868 horizons for both MSE and MAE metrics. This demonstrates that even when sophisticated
 1869 models struggle to outperform simple baselines on challenging datasets, UnitNorm still
 1870 provides relative advantages over other normalization techniques.

1871 On the ETTh2 dataset (Table T2), all Transformer models substantially outperform the last-
 1872 value predictor, with UnitNorm showing the best overall performance. UnitNorm achieves
 1873 the best MSE scores across all prediction horizons and the best MAE for horizons 96, 192,
 1874 and 336. This confirms UnitNorm’s ability to enable Transformer models to effectively
 1875 capture periodic patterns present in this dataset, as indicated by the higher periodicity scores
 1876 shown in Table T4.

1877 These results highlight an important insight: UnitNorm’s effectiveness is most pronounced
 1878 on datasets with strong periodic components (like ETTh2), while its advantages may be less
 1879 significant on datasets where complex models are less suitable overall (like Exchange). This
 1880 aligns with our theoretical analysis that UnitNorm helps preserve attention distributions and
 1881 mitigate token shift issues, which are particularly beneficial for modeling periodic patterns
 1882 in time series data.

1890
 1891 Table T2: Last-value predictor versus PatchTST with different normalization methods on
 1892 ETTh2 dataset. Best results are in **bold**.

Model & Metric \ Prediction	96	192	336	720
Last-value predictor (MAE)	0.422	0.473	0.511	0.519
PatchTST + UnitNorm (MAE)	0.341	0.394	0.429	0.449
PatchTST + BatchNorm (MAE)	0.346	0.399	0.435	0.453
PatchTST + LayerNorm (MAE)	0.345	0.399	0.431	0.447
PatchTST + RMSNorm (MAE)	0.345	0.399	0.431	0.448
Last-value predictor (MSE)	0.432	0.534	0.597	0.594
PatchTST + UnitNorm (MSE)	0.290	0.369	0.417	0.429
PatchTST + BatchNorm (MSE)	0.292	0.376	0.421	0.435
PatchTST + LayerNorm (MSE)	0.297	0.380	0.417	0.429
PatchTST + RMSNorm (MSE)	0.297	0.379	0.418	0.429

G SELECTION OF HYPERPARAMETER k

1912 The hyperparameter k in UnitNorm plays a crucial role in determining the sparsity of
 1913 attention scores and consequently affects model performance. To empirically identify the
 1914 optimal k values for time series applications, we conducted extensive experiments with
 1915 various k values on multiple datasets.

G.1 EXPERIMENTAL SETUP

1919 We performed a comprehensive sweep of fixed k values ($k = 0.1, 0.3, \dots, 0.9, 1.1$) on the
 1920 ETTh2 datasets using the PatchTST model. We trained the model with different prediction
 1921 horizons (96, 192, 336, and 720 time steps) and measured the Mean Square Error (MSE).
 1922 All experiments were conducted with 3 different random seeds (41, 42, and 43), and the
 1923 reported results are averaged across these runs.

G.2 RESULTS ON ETTh2

1926 Table T3 presents the MSE performance of PatchTST on the ETTh2 dataset with different
 1927 fixed k values. The results show that the optimal k value depends on the prediction horizon,
 1928 but generally falls within the range of 0.5 to 0.7. For the ETTh2 dataset, $k = 0.7$ achieves
 1929 the best performance for prediction horizons of 96, 336, and 720, while $k = 0.5$ performs
 1930 best for the horizon of 192.

G.3 ANALYSIS

1933 Our experiments reveal several important findings regarding the selection of k :

1. **Performance Robustness:** The performance of UnitNorm is generally not highly sensitive to small perturbations in the k value. This is evident from the relatively small percentage differences between adjacent k values, especially in the 0.5 to 0.7 range.
2. **Optimal Range:** The optimal k value consistently falls within the range of 0.5 to 0.7 across different prediction horizons and datasets. This range provides a good balance between attention diversity and focus.
3. **Performance Gain:** The appropriate selection of k can lead to moderate but meaningful performance improvements. For example, using $k = 0.7$ instead of

1944

1945 Table T3: MSE of PatchTST on ETTh2 with different fixed k values. The relative difference
1946 from the best performing k value is shown in parentheses. The best performing k for each
1947 prediction length is highlighted in **bold**.

$k \setminus$ prediction length	96	192	336	720
0.1	0.2897 (+0.633%)	0.3716 (+1.866%)	0.4148 (+0.3%)	0.4278 (+0.787%)
0.3	0.293 (+1.769%)	0.3668 (+0.535%)	0.414 (+0.088%)	0.4314 (+1.629%)
0.5	0.29 (+0.719%)	0.3648 (+0.0%)	0.4197 (+1.469%)	0.4252 (+0.168%)
0.7	0.2879 (+0.0%)	0.3717 (+1.896%)	0.4136 (+0.0%)	0.4245 (+0.0%)
0.9	0.2967 (+3.069%)	0.3764 (+3.187%)	0.4175 (+0.937%)	0.4283 (+0.904%)
1.1	0.2987 (+3.744%)	0.365 (+0.057%)	0.4188 (+1.265%)	0.435 (+2.472%)

1958

1959

1960 $k = 1.1$ for the 720-step prediction horizon on ETTh2 results in a 2.5% reduction in
1961 MSE.1962 4. **Dataset Dependence:** The optimal k value is somewhat dataset-dependent,
1963 reflecting the varying degrees of periodicity and other temporal patterns across
1964 different time series data.

1965

1966 G.4 PRACTICAL RECOMMENDATIONS

1967

1968 Based on our findings, we offer the following practical recommendations for selecting k values:

- 1969 For datasets with strong periodicity, starting with $k = 0.7$ is recommended as it
1970 generally provides good performance across various prediction horizons.
- 1971 For datasets where the optimal k is uncertain, we recommend trying both $k = 0.5$
1972 and $k = 0.7$ to determine which works better for the specific application.
- 1973 In scenarios requiring maximum flexibility, implementing UnitNorm with a learnable
1974 k parameter allows the model to adaptively determine the optimal attention sparsity
1975 during training.
- 1976 For comprehensive optimization, a validation-based approach can be employed
1977 where different fixed k values are evaluated on a validation set to select the best
1978 configuration.

1979

1980 H EXTENDED EXPERIMENTAL RESULTS

1981

1982 This section provides additional experimental results and analyses that supplement the main
1983 experiments presented in Section 4.

1984

1985 H.1 PERIODICITY MEASUREMENT ANALYSIS

1986

1987 Time series periodicity is a crucial factor in forecasting performance, especially for long-term
1988 predictions. To quantify the periodic patterns present in our experimental datasets, we
1989 conducted a comprehensive periodicity analysis using normalized correlation between input
1990 and expected output series.

1991

1992 As shown in Table T4, the datasets exhibit varying degrees of periodicity across different
1993 prediction horizons. ETTh2 consistently shows the strongest periodic patterns (with scores
1994 around 0.41-0.42), followed by Exchange (0.33-0.40) and ETTh1 (0.34-0.35), while ECL
1995 demonstrates the weakest periodicity (0.16-0.17).

1996

1997 Interestingly, the Exchange dataset shows an increasing trend in periodicity as the prediction
1998 horizon extends, reaching its highest correlation value (0.396) at the 720-step horizon. This
1999 suggests that longer-term patterns become more apparent in financial exchange data when
viewed over extended time frames.

1998

1999 Table T4: Periodicity measurement on datasets. Scores are given as the maximum normalized
2000 correlation between input and expected output series. Higher scores indicate stronger periodic
2001 patterns that may be leveraged by forecasting models.

	Dataset \ Prediction	96	192	336	720
2002	ETTh1	0.347	0.351	0.353	0.338
2003	ETTh2	0.404	0.415	0.420	0.413
2004	ECL	0.156	0.162	0.165	0.158
2005	Exchange	0.328	0.340	0.353	0.396

2006

2007 The ability of UnitNorm to maintain consistent attention distributions, as discussed in
2008 Section 3, makes it particularly well-suited for capturing these periodic patterns, especially
2009 in datasets with stronger periodicity. This helps explain UnitNorm’s superior performance
2010 on datasets like ETTh2 and Exchange in the long-term forecasting experiments.

2011

2012

H.2 PERFORMANCE ON LARGE-SCALE DATASET WITH MODERN ARCHITECTURE

2013 To evaluate UnitNorm’s effectiveness beyond standard benchmarks, we conducted additional
2014 experiments using the Pathformer model on the Solar dataset, which represents a significant
2015 increase in scale and complexity compared to our other test datasets.

2016

2017 **Solar Dataset** The Solar dataset is a large-scale time series collection containing data
2018 from 137 photovoltaic power plants across the United States, with approximately 52,000
2019 samples. Its high dimensionality and real-world nature make it an excellent test case for
2020 evaluating normalization techniques in complex, practical scenarios.

2021

2022 **Pathformer Model** Pathformer is a state-of-the-art time series Transformer architecture
2023 that introduces innovations in handling multivariate time series through path-wise modeling.
2024 Unlike traditional Transformer architectures, Pathformer incorporates specialized mechanisms
2025 for capturing both temporal and cross-series dependencies.

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036 Table T5: Pathformer performance on the Solar dataset (large-scale, 137 channels, 52K
2037 samples) with prediction horizon of 96. Results are averaged over 3 random seeds with
2038 standard deviation reported. Best results are in **bold**; second best are in *italic*. These
2039 results demonstrate UnitNorm’s effectiveness even with modern architectures and large-scale
2040 datasets.

Normalization	MSE	MAE
BatchNorm	0.2215 ± 0.0080	0.2075 ± 0.0121
LayerNorm	0.2177 ± 0.0064	$\mathbf{0.1996} \pm \mathbf{0.0100}$
RMSNorm	0.2225 ± 0.0031	0.2097 ± 0.0151
UnitNorm ($k = 0.0$)	0.2202 ± 0.0038	0.2062 ± 0.0082
UnitNorm ($k = 0.5$)	$\mathbf{0.2176} \pm \mathbf{0.0041}$	0.2053 ± 0.0181
UnitNorm ($k = 0.7$)	0.2177 ± 0.0091	0.2074 ± 0.0133
UnitNorm ($k = 1.0$)	0.2267 ± 0.0092	0.2074 ± 0.0054

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051 **Result Analysis** As shown in Table T5, UnitNorm with $k = 0.5$ achieves the best MSE
(0.2176 ± 0.0041) and competitive MAE (0.2053 ± 0.0181 , second only to LayerNorm).
Several observations are worth noting:

- UnitNorm’s performance remains strong even with more complex model architectures and larger datasets, demonstrating its generalizability.

2052
2053
2054
2055
2056
2057

- The optimal value of k for this dataset appears to be around 0.5-0.7, which aligns with our findings in the main experiments.
- While LayerNorm achieves the best MAE, UnitNorm provides more balanced performance across both MSE and MAE metrics.
- Compared to RMSNorm and BatchNorm, UnitNorm consistently delivers superior results, reinforcing its advantages over these traditional normalization methods.

2058 These results further substantiate UnitNorm’s potential as a broadly applicable normalization
2059 technique for time series analysis tasks across various model architectures and dataset scales.
2060 The consistent performance on the Solar dataset, with its high dimensionality and large
2061 sample size, suggests that UnitNorm’s benefits extend to real-world, large-scale applications.
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105