
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

The Expressivity of Fixed-Precision Transformers without Positional Encoding

Anonymous Authors1

Abstract
The primary objective of this study is to examine
how practical constraints impact the expressivity
of Transformers and to investigate their expressiv-
ity in real-world implementations.

To achieve this, we analyze the expressivity
of Transformer decoders operating under fixed-
precision float arithmetic, an assumption regard-
ing query-key parameters, and the presence or ab-
sence of positional encoding. Our findings reveal
that, under fixed-precision and these constraints,
Transformers are limited to recognizing finite or
co-finite languages, a proper subclass of regular
languages. While incorporating positional encod-
ing or relaxing certain assumptions marginally en-
hances expressivity, the fundamental limitations
imposed by fixed precision remain significant.

These results underscore the gap between theo-
retical models and real-world implementations,
suggesting that practical Transformers may be
fundamentally constrained to recognizing only
finite and co-finite languages, effectively func-
tioning as little more than efficient lookup tables.

1. Introduction
The expressivity of Transformer models (Vaswani et al.,
2017) has been further elucidated through recent theoretical
analyses by comparing to the range of recognizable formal
languages and solvable complexity classes. A series of
studies has established upper and lower bounds on their
expressivity under following settings.

Pérez et al. (2021) is the first study to explore the expres-
sivity of Transformers, proving their Turing-completeness
using rational numbers, assuming infinite precision float.
Subsequent studies adopting finite precision have provided
more practical insights. For instance, Merrill & Sabharwal

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Table 1. The upper and lower bound of the expressivity of fixed-
precision Transformers. Chiang et al. (2023)† identified the upper
bound of normal Transformer encoder model (i.e. fixed-precision,
sinusoidal positinoal encoding). In this study we showed that bold
parts. “?” means the bound is not known.

Asm. Assumption. 5.1 –
PE NoPE APE NoPE APE

Uppoer
bound

FinCofin
(§ 5.1) ? ?

FOC
[+;MOD]†

Lower
bound

FinCofin
(§ 5.2)

FinCofin
m-cyclic
(§ 6.1)

FinCofin
letter-set

(§ 6.2)
?

(2023; 2024a) investigated logarithmic precision, which is
finite but scales with input length n, and revealed that such
Transformers are limited to much smaller circuit complexity
classes, such as TC0 or logical class FO(M), compared to
Turing machines. Similarly, Chiang et al. (2023) examined
fixed-precision Transformers and demonstrated that their
tighter upper bounds are linked to logic FOC[+;MOD],
which is an extension of first-order logic.

Despite these theoretical advances, many studies rely on ide-
alized conditions. This paper bridges the gap between these
settings and real-world implementations, which impose sig-
nificant constraints on processing and retaining information.

We investigate how the expressivity of Transformer de-
coders is shaped by the following practical constraints:
fixed-precision floating-point numbers, positional encod-
ing variations (APE, NoPE), and assumptions on parameter
configurations(asm. 5.1). Our results indicate that expres-
sivity depends on these constraints as follows (Table 1).

• Fixed-precision (e.g., fp32, bf16) limits recognition to
finite and co-finite languages. {a, b, ba, aab} (§ 5)

• Absolute positional encoding extends recognition be-
yond finite and co-finite languages to cyclic languages.
{ab, abab, ababab, . . . } (§ 6.1)

• Non-finite values (±inf) expand expressivity to letter-
set languages, capturing specific letter inclusion.
{abbb, ccac, bbac, . . . } (§ 6.2)

Our findings extend prior results by highlighting the theo-
retical and practical implications of fixed-precision.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

2. Related Work
2.1. Transformer Models and Expressivity

The computational capabilities of neural networks, cover-
ing RNNs, CNNs, and Transformers, have been extensively
studied. The comprehensive surveys by Ackerman & Cy-
benko (2020); Merrill (2021; 2023) provide an in-depth
overview of the expressivity of neural networks as a whole.

Learnability is inherently bounded by expressivity, as the
language that a model can recognize defines the boundaries
of what it can effectively learn. Therefore, expressivity is
not only a theoretical concern, but it is also of practical
importance in guiding model design.

A survey paper (Strobl et al., 2024) and lecture notes (Chi-
ang et al., 2024) provide a comprehensive overview of recent
advances in the study of Transformer expressivity, highlight-
ing that expressivity is often analyzed in relation to three
key areas: formal languages, circuit complexity, and logic.

Formal languages Hahn (2020); Bhattamishra et al.
(2020a;b); Yao et al. (2021); Chiang & Cholak (2022) pri-
marily investigated the relationship between variants of hard-
Transformers and formal languages such as PARITY and
Dyck languages, which are commonly used benchmarks
for expressivity. Feng et al. (2023); Merrill & Sabharwal
(2024b) focused on the decoding time, inspired by chain-
of-thought reasoning (Wei et al., 2022), demonstrating that
expressivity expands significantly with multiple decoding
steps. Of particular interest, Nowak et al. (2024) examined
how Transformers assign probabilities to strings in language
modeling, identifying connections to probabilistic determin-
istic finite automata and probabilistic Turing machines.

Circuit complexity Another perspective comes from cir-
cuit complexity theory, which classifies computational prob-
lems based on their implementability within Boolean cir-
cuits of bounded depth and size. Hao et al. (2022) analyzed
hard-Transformer variants, linking them to the tiny circuit
class AC0. Merrill et al. (2022); Merrill & Sabharwal (2023)
extended this to more practical settings, showing that the
saturated attention and logarithmic precision Transformers
remain within TC0. Merrill & Sabharwal (2023) further
suggested a fundamental parallelism trade-off, arguing that
highly parallel architectures like Transformers may inher-
ently face computational limits.

Logic Chiang et al. (2023); Merrill & Sabharwal (2024a);
Yang et al. (2024); Yang & Chiang (2024) have explored
connections between Transformer models and first-order
logic. These studies encode strings into Boolean variables
and represent languages using logical frameworks such as
first-order logic with counting quantifiers (FOC[+;MOD]).

While significant progress has been made, many studies
rely on unrealistic assumptions such as infinite precision
or hard-attention, leaving questions about their practical
relevance.

2.2. Neural Networks and Function Approximation

A fundamental result in neural network theory is the univer-
sal approximation theorem, which states that any continuous
function can be approximated arbitrarily well. While not
the focus of our study, it provides essential context for un-
derstanding the broader capabilities of neural networks.

Feedforward networks Feedforward neural networks
(FFNs) play a central role in this context. Cybenko (1989);
Hornik et al. (1989) proved that FFNs with a single hid-
den layer and arbitrary nonlinear activations can universally
approximate any Borel measurable or continuous function,
given sufficient hidden units. Park et al. (2020) further
identified the minimum width required for universal approx-
imation, given the input and output dimensions.

Transformers Recent work has extended universal ap-
proximation results to Transformers, with Yun et al.
(2020) establishing their ability to approximate continu-
ous sequence-to-sequence functions on compact domains
and highlighting the crucial role of positional encoding in
encoding order and circumventing permutation equivari-
ance constraints. Kajitsuka & Sato (2024) later showed that
even single-layer Transformers with low-rank weights can
achieve such approximation power. Furthermore, Wei et al.
(2022) introduced the statistically meaningful approxima-
tion framework, addressing limitations in classical approxi-
mation theory by incorporating learnability constraints.

3. Preliminaries
In this section, we present the foundational concepts that
support our theoretical results. For strings w,w′ ∈ Σ∗ over
the alphabet Σ, |w| denotes the length of the string, and ww′

denotes the concatenation. Furthermore, wt denotes the t-th
character, and wi:j (i, j ∈ N) denotes the subsequence of w
from the i-th to the j-th character.

3.1. Finite and Co-finite Languages, Cyclic Language,
Letter-set Language

This subsection introduces finite languages and their dual,
co-finite languages, along with letter-set languages and
cyclic languages. These languages will play a central role
in analyzing the expressivity of Transformers (§ 5, § 6).

Definition 3.1 (Finite Language). Let Σ be a finite alphabet.
A language L ⊆ Σ∗ is called a finite language if and only if
there exists k ∈ N such that for all stings w ∈ L, |w| ≤ k.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Definition 3.2 (Co-finite Language). Let Σ be a finite al-
phabet. A language L ⊆ Σ∗ is called a co-finite language if
and only if its complement Σ∗ \ L is a finite language.

Definition 3.3 (m-cyclic Language). Let Σ be a finite al-
phabet. A language L ⊆ Σ∗ is called a m-cyclic language
if and only if for some m ∈ N, for all w,w′ ∈ L and for all
0 ≤ i ≤ max(|w|, |w′|), wi ≡ w′

i mod m holds.

Definition 3.4 (Letter-set Language). Let Σ be a finite al-
phabet. A language L ⊆ Σ∗ is called a letter-set language
if and only if for some set of letters A ⊆ Σ, for all w ∈ L
includes all of the letters in A.

Example 3.5. The following languages L,L′ over Σ =
{a, b} are co-finite languages:

L = Σ∗ \ {a, b, ab, aab}
L′ = {w ∈ Σ∗ | |w| ≥ 3}

Similarly, the following language L{a,b} over Σ = {a, b, c}
is letter-set language and L3 is 3-cyclic language:

L3 = (abc)∗

L{a,b} = {w ∈ Σ∗ | w has both a and b}

3.2. p-precision Float-Point Numbers

Now we define the rigorous mathematical framework for
representing and manipulating numerical values under fi-
nite precision constraints, following (Merrill & Sabharwal,
2023).

Definition 3.6 (p-precision Floating-Point Numbers (Merrill
& Sabharwal, 2023)). The set of p-precision floating-point
numbers Dp is defined as the collection of p-bit numbers,
Dp = {0, 1}p, including special values such as +inf , −inf ,
and nan. The set Dp can be naturally extended to vectors
Dp

∗.

When p happens to be a finite number, we can also define
the operations over p-precision float since the cardinality of
the mappings between Dp vectors of m-dimension become
at most finite (= 2pm·2pm).

Definition 3.7 (Merrill & Sabharwal (2023)). A function
f : Dp

m → Dp
n is a p-precision floating-point function if

f can be computed by a p-space-bounded Turing machine.

The order and basic operations, including addition, sub-
traction, multiplication, and division, as well as operations
involving special values (+inf , −inf , nan), follow the IEEE
754 standard (iee, 2019).

The precision p can be defined as a function of the input
sequence length n, determining the scale of precision as
follows:

• Constant Precision: When p(n) is a constant function
(p(n) ∈ O(1)), the precision is fixed for any length of
input.

• Logarithmic Precision: When p(n) is a logarithmic
function (p(n) ∈ O(log n)), the precision scales loga-
rithmically with the input length.

In this work, our concern is constant precision. In the case
of constant precision, p can be treated as a constant p ∈ N.

4. Transformer Decoder
This section introduces the mathematical and theoretic foun-
dations of the Transformer Decoder Model, emphasizing its
functional behavior (Def. 4.1), autoregressive capabilities
(Def. 4.2), and alignment with formal languages (Def. 4.3).

4.1. Transformer Decoder

We focus on the decoder-based GPT (generative pretrained
transformer) architecture (Radford et al., 2018). Unlike the
original implementation, positional encoding (PE; details
in § 4.1) is excluded in § 5 to facilitate theoretical analysis,
while it is included in § 6 to reflect practical settings and
evaluate its impact.

In this work, all computations within the Transformer are
conducted over the p-precision float numbers Dp (see § 3.2
and Merrill & Sabharwal (2023)). This constraint reflects a
practical adaptation to real-world computational limits.

Vocabulary space The vocabulary space of Transformers
Σ∪V comprises the alphabet Σ and a set of special tokens V
(e.g., ⟨bos⟩, ⟨eos⟩, ⟨sep⟩). Special tokens are excluded from
formal language, and there is no intersection to alphabet in
this study. Basic string operations, such as concatenation,
closure, and length, are defined over vocabulary spaces in
the standard manner.

Transformer as a function Then we formalize the Trans-
former Decoder model as a function.

Definition 4.1. A Transformer Decoder over p(n)-precision
with parameters θ ∈ Params is a function:

TDecp(·; θ) : (Σ ∪ V)∗ → Σ ∪ V

where Σ ∪ V is the vocabulary space. Params represents
the class of trainable parameters set, all components of the
model. p(n) determines the internal precision depend on
the input sequence length n.

Given an input sequence w1:n ∈ (Σ ∪ V)∗, the Trans-
former Decoder outputs a single next token wn+1 =
TDecp(n)(w1:n; θ) ∈ Σ∪V, conditioned on the prefix w1:n

and a set of parameter θ. Based on the formal definition of
TDec, the computational flow from input to output gener-
ally follows the GPT model (Radford et al., 2018; Brown
et al., 2020).

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Positional encoding Since encoder-only Transformer can-
not recognize the position of character, they need additional
positional information. We denote abusolute positional en-
coding (APE) like Vaswani et al. (2017)’s sinusoidal one in
this work. On the other hand, there are relative ones like
T5 relative PE (Raffel et al., 2020) or ALiBi (Press et al.,
2022). Alternatively, Kazemnejad et al. (2024) showed No
Positional Encoding (NoPE) has good ability to generalize.
In this work, we employ only APE and NoPE.

4.2. Autoregressive Token Generation

The Transformer Decoder model generates sentences au-
toregressively, predicting each token based on the input
sequence and previously generated tokens until output a
kind of end-of-sentence tokens. This process is formalized
as follows:

Definition 4.2. The t-times autoregressive composi-
tion (generation) of the Transformer Decoder function
TDecp(·; θ) is denoted as TDecp

t(·; θ) : (Σ∪V)∗ → Σ∪V
and is recursively defined as:

TDecp
t(σ; θ) =


TDecp(σ · TDecp

t−1(σ; θ); θ)

(if t > 1)

TDecp(σ; θ)

(if t = 1)

where · denotes token concatenation over Σ ∪ V.

This definition highlights the iterative nature of autoregres-
sive generation, Furthermore, by restricting the codomain
to the last token, this formulation aligns with the objectives
of this study, emphasizing the relationship between autore-
gressive behavior and formal language recognition. From
now on, when the context is clear, we simply write TDec.

4.3. The Language Recognized by Transformer Decoder

We now define the language recognized by a p-precision
Transformer Decoder with a certain parameter θ and t-times
decode steps, based on the definition 4.1 and 4.2.

Definition 4.3. The language recognized by such a t-times
autoregressive transformer decoder with a certain param-
eters θ over p-precision, TDecp(·; θ), L(TDecp(·; θ)) is
defined as:

L(TDecp
t(·; θ), F)

= {w ∈ Σ∗ |∃r ≤ t(|w|).TDecp
r(w·⟨sep⟩; θ) ∈ F}

(1)

where F ⊆ V is the nonempty set of accept token. Typically,
F may include tokens such as ⟨eos⟩ or other special markers
representing accept tokens.

Definition 4.3 states that an input string w is accepted if the
output sequence TDec(w · ⟨sep⟩) ∈ (Σ ∪ V)∗ contains at

least one accept token from F , within t(|w|) times or less
autoregression.

It is important to note that the special token ⟨sep⟩ is ex-
plicitly appended to the input sequence to distinguish the
decoding sequence. Additionally, the length of the output
sequence increase by a time function t : N → N, which
maps the input sequence w to a maximum allowable number
of decoding steps. For example: If t(n) = n2, polynomially
many decoding steps are permitted. If t(n) = c, decoding is
restricted to a constant steps, regardless of the input length.

Example 4.4. Let the time function be a constant function
t(n) = 4, and the set of accept tokens be F = {⟨eos⟩}.
Given that the output sequences of TDec for the input se-
quences ”aabb” and ”aa” are as follows:

TDec(aabb⟨sep⟩) = aba⟨eos⟩ . . .
TDec(aa⟨sep⟩) = aaaa . . .

In this case, the Transformer accepts only “aabb”.

4.4. Confirmation of Constraints

All other hyperparameters, such as the number of layers
L ≥ 2, the model dimension d, and attention heads, are
fixed as O(1), regardless of the input sequence length n. In
summary, this study incorporates certain modifications:

• Exclusion of positional encoding (NoPE; only for § 5)
• Two-layer Transformer Block, Single-head Attention

without pre-norm configuration (§ 4.1)
• Causal masking for attention computation, and softmax

function within the Attention mechanism (§ 4.1)
• Greedy Search decoding (Definition 4.3)

This formalization bridges the autoregressive generation
mechanism with the theoretical analysis of language recog-
nition. In subsequent sections, we explore the expressivity
of Transformer Decoder models within this framework.

5. Main Result 1: Finiteness of Fixed-Precision
Transformer without PE

In this section, we present our first main result concern-
ing the expressivity of Transformers under fixed-precision
arithmetic and softmax-based attention mechanisms. This
result establishes a direct correspondence between the class
of languages recognized by Transformers and finite or co-
finite languages (Theorem 5.2) under a natural assumption
(Assumption 5.1).

Infinity-Free Parameter Assumption We begin by intro-
ducing a natural assumption regarding the parameters of the
attention layers in Transformers.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Assumption 5.1 (Infinity-Freeness). For each attention
layer, the matrix product of query and key vectors is al-
ways greater than minus infinity (−inf ∈ Dp):

∀y, y′ ∈ Dp
d. Q(y)K(y′)T ̸= ±inf (2)

where d ∈ N is the model dimension, and Q,K : Dp
d →

Dp
d are the query and key affine transformations.

This assumption depends only on the parameters of the
query and key affine transformations. It generally holds for
most trained Transformer models.

Theorem 5.2 (Finiteness and Co-finiteness of Languages
Recognized by Transformer Decoder). Assume that Assump-
tion 5.1 holds. Under this assumption, the languages rec-
ognized by any Transformer decoders is exactly finite or
co-finite languages. Specifically, the following two state-
ments hold:

1. (upper bound) For any p ∈ N, t(n) ∈ Ω(1), θ ∈
Params, F ⊆ V, there exists a finite or co-finite lan-
guage Lf such that L(TDec, F) = Lf .

2. (lower bound) For any finite or co-finite language
L′
f , there exist parameters p′ ∈ N, t′(n) ∈ Ω(1), θ′ ∈

Params, F ′ ⊆ V such that L′
f = L(TDec, F ′).

Theorem 5.2 represents a key result of this study. It states
that, under the infinity-freeness (Assumption 5.1) and with
fixed precision p, the class of languages recognized by Trans-
former decoders aligns exactly with the class of finite and
co-finite languages, regardless of the specific parameters,
the number of decoding steps, or the set of accept states.
Or vice versa, that means when the input length exceeds a
certain number, transformer model cannot distinguish the
inputs.

The two claims of Theorem 5.2 are proved in § 5.1 and § 5.2,
respectively.

5.1. Proof of the Upper Bound under Assumption 5.1

Lemma 5.3. Suppose Assumption 5.1 holds. Then there
exists an integer L ∈ N with the following property:

For any two inputs w,w′ ∈ Σ∗ with |w|, |w′| ≥ L, the
Transformer decoder TDecp

t
(
w · ⟨sep⟩; θ

)
produces the

same output tokens as it does for TDecp
t
(
w′ · ⟨sep⟩; θ

)
,

provided w and w′ share the same final character.

Proof. Let us denote the final token of the input as v ∈
Σ∪{⟨sep⟩}. By Assumption 5.1, we know that for any vec-
tors y, y′ ∈ (Dp)

d, the dot-product Q(y)K(y′)⊤ ̸= −inf .
In particular, we can choose constants α, β in (Dp)

d (re-
lated to the embedding of v) such that the repeated sum

of exp(Q(α)K(β)⊤) over enough positions saturates the
p-precision range to +inf . Hence we define L to be the
minimum length at which this “+inf sum” occurs in the
causal masking scenario.

Let w be any string with |w| ≥ L. When the decoder
at time-step r attends over all previously seen tokens
(⟨sep⟩ appended at the end), the softmax denominator in
Attn(qv,Kw, Vw) accumulates

|w|+1∑
j=1

exp
(
qv K

⊤
j

)
and by the definition of L, this sum diverges
to +inf in p-precision. Consequently, the frac-
tion exp

(
qv K

⊤
|w|

)
/ (+inf) is effectively 0 in p-

precision,making the final token’s contribution vanish.
Repeating this for each layer (and for each of the t(|w|)
auto-regressive decoding steps) shows that any distinct
differences in w vs. w′ (provided their last character is the
same) are overshadowed as |w| → ∞.

Thus if w,w′ ∈ Σ∗ both have length ≥ L and share the same
last symbol v, the decoder outputs TDect(w · ⟨sep⟩; θ) and
TDect(w′·⟨sep⟩; θ) coincide. In other words, once the input
length is beyond L, the model cannot further distinguish
among long strings ending in the same symbol.

Why Lemma 5.3 implies finite/co-finite recognition. By
Lemma 5.3, all strings of length ≥ L that share a final
character are mapped to the same sequence of output tokens
under the t(|w|)-step decoding. Hence, if for some long
string w the decoder accepts (i.e. produces a token in F ⊆
V), then all sufficiently long strings with the same last letter
are also accepted. Thus we obtain either:

• A co-finite pattern: the model rejects only finitely
many strings (those of length < L, plus possibly
a few last-letter classes among the long strings), so
L(TDectp(·; θ), F) is co-finite.

• A finite pattern: the model accepts only finitely many
cases (if it rejects all length ≥ L strings except perhaps
a handful).

In both cases, the recognized language is either finite or
co-finite.

Remark on ⟨sep⟩. Including a special terminal token
⟨sep⟩ in the input helps ensure that the “last symbol” align-
ment is explicit. Without it, one might rely on actual last
letters in Σ, and the argument becomes a suffix-based dis-
tinction rather than a crisp boundary. Our Definition 4.3
ensures that w⟨sep⟩ standardizes the final token (or the last
letter in w if no ⟨sep⟩ is appended),leading to a simpler
classification at large lengths.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

5.2. Proof of the Lower Bound under Assumption 5.1

In this subsection, we show that a Transformer decoder
can recognize any finite or co-finite language Lf ⊆ Σ∗ in
constant (one or two) decoding steps. Formally, we will
construct a p-precision Transformer decoder that outputs a
special “accept” token (e.g. ⟨eos⟩) if and only if the input
string belongs to Lf .

Lemma 5.4. Let Lfin ⊆ Σ∗ be any finite language. Then
there exist: a precision parameter p ∈ N, a parameter set
θ ∈ Params, and a set of accept state tokens F ⊆ V, such
that the decoder recognizes Lfin in exactly one decoding
step. That is, L(TDec, F) = Lfin.

Proof. We design a two-layer Transformer decoder that
first (i) accumulates sufficient information (e.g. a partial
sum or isomorphic encoding of the entire input string), and
then (ii) employs a feed-forward network (FFN) to map
that information to a binary output: namely “w ∈ L” or
“w /∈ L”. When w ∈ Lfin, the decoder emits a special
token (⟨eos⟩) on the single decoding step; otherwise it does
not.

Embedding layer. Suppose the input tokens are
w1, . . . , wn ∈ Σ. Let p be large enough to accommodate all
numerics (we will specify p in a moment). For each token
wi, define its embedding vector as

xi := [0,emb(wi)] ∈ Dp
d

where emb(wi) ∈ Dp
d−1.

(3)

The extra leading coordinate (0) will be used to store posi-
tions or partial sums in subsequent layers.

First attention layer. We apply a uniform attention to
gather position-related or partial-sum information. For in-
stance, let the query, key, and value transformations be:

Q(x) = 1, K(x) = 1,

V (x) = [1, 0, . . . , 0] ∈ Dp
d

(4)

for all input vectors x. Then, under causal masking (each
xi only attends to x1:i), the attention output for xi is:

Attn
(
Q(xi),K(x1:i), V (x1:i)

)
=

[
1
i , 0, . . . , 0

]
. (5)

Thus, after adding the residual connection, the layer output
becomes:

a1i =
[
1
i , 0, . . . , 0

]
+ xi =

[
1
i , emb(wi)

]
. (6)

First feed-forward network. We design an FFN so that

z1i = FFN
(
a1i

)
=

[
0, emb(wi)

i

]
(7)

This step ensures each position’s embedding is scaled by
1/i and placed in the tail part of the vector.

Second attention layer. We next use the n-th token xn (or
similarly the “final step”) to attend over all z11, . . . , z

1
n. Let

Q(x) = 1, K(x) = 1, V (x) = x. Hence,

a2n = Attn
(
Q(z1n),K(z11:n), V (z11:n)

)
= 1

n

[
0,

n∑
k=1

emb(wk)
k

] (8)

Since we choose p large enough, 1
n ̸=p 0 in the p-precision

sense.

Remark. The partial sum
∑n

k=1
emb(wk)

k can be seen as
carrying isomorphic information about (w1, . . . , wn), as-
suming a suitable injection or universal approximation prop-
erty (we treat details abstractly here).

Second feed-forward network. Finally, we use a universal-
approximation argument: there is an MLP or FFN that can
decode a2n ∼ w1:n and output 1 iff w ∈ Lfin:

FFN2
(
a2n

)
=

{
1 (if w ∈ Lfin),

0 (otherwise).
(9)

We then interpret output “1” as a special accept token (e.g.
⟨eos⟩) in the output layer. Hence, the entire decoder recog-
nizes exactly Lfin

Extension to co-finite languages. For a co-finite lan-
guage Lcofin, we simply invert the behavior: almost all
strings map to “1” (accept), while the finite exceptional set
Σ∗ \ Lcofin maps to “0.” A parallel argument with slight
modifications (where the second FFN outputs 1 for nearly
all inputs, except a finite listed set of strings) completes the
proof.

Conclusion. By combining these constructions, we see
that any finite or co-finite language Lf ⊆ Σ∗ can indeed be
recognized by a p-precision, two-layer Transformer decoder
in one or two decoding steps. Thus, for such Lf , we have
Lf = L(TDec) for some parameter choice and constant
decode budget.

In summary, Assumption 5.1 plus the no-positional-
encoding policy forces the Transformer decoder to unify all
sufficiently long strings with identical trailing tokens. Hence
the language recognized cannot exceed finite or co-finite
sets, completing the proof of the upper bound.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

6. Main Result 2: The language recognized by
fixed-precision decoder

6.1. Lower Bound for asm. 5.1 and APE

We now prove that a Transformer decoder with Assump-
tion 5.1 and some APE can recognize any cyclic language.

Theorem 6.1. For any m-cyclic language Lc, there exist
some Transformer with asm. 5.1 and Abusolute Positional
Encoding, TDec′ such that Lc = L(TDec′,Fc) for some
set of special tokens Fc ⊆ V

Proof Sketch. APE to distinguish positions mod m For
given m-cyclic language, prepare suitable APE such that
have periodicity (e.g., sinusoidal embeddings (Vaswani
et al., 2017; Chiang et al., 2023)), and the Transformer
can effectively identify each position’s residue class mod-
ulo m Hence, for index i and j, if i ≡ j (mod m), their
positional encodings can be made same so that the network
recognizes the same residue class.

Attention mechanism In other words, for the head corre-
sponding to residue r, only tokens xi with i ≡ r (mod m)
receive a high attention score. Under the “inf-free” condi-
tion, no key–query product becomes −inf , so we can rely on
softmax-based attention to highlight precisely those tokens
that belong to the right residue class.

FFN to implement the m-cyclic condition Since an m-
cyclic language determines acceptance based on how sym-
bols appear in these residue classes, the final feed-forward
network can be crafted to check the patterns aggregated from
each class. Concretely, if Lc says “Positions ≡ r (mod m)
must contain letter a” or “must exclude letter b,” then af-
ter the multi-head attention, the hidden representation has
sufficient information to confirm or deny these constraints.

Putting it all together, the Transformer obtains position-
residue awareness from APE, employs attention to gather
all tokens of each residue class, and checks with a FFN
whether the cyclic criteria are satisfied. Thus, for any m-
cyclic language Lc, we construct a suitable Transformer
decoder (satisfying inf-free and using APE) so that Lc is
recognized exactly by that model, completing the proof.

6.2. Lower Bound for NoPE: Letter-set Languages

We now prove that a Transformer decoder without any posi-
tional encoding (NoPE) and Assumption 5.1 can recognize
any letter-set language. Formally, a letter-set language
LS ⊆ Σ∗ is one where acceptance only depends on which
letters (symbols) appear in w (not on their order or count).

Theorem 6.2. For any letter-set language LS , there ex-
ist some Transformer decoders with No Positional En-
coding and without Assumption 5.1, TDec′′ such that
Ls = L(TDec′′,Fs) for some set of special tokens Fs ⊆ V

Proof Sketch. A letter-set language is determined solely by
the set of unique letters in the input string. In a Transformer
decoder without positional encoding, identical letters are
mapped to identical embedding vectors, irrespective of their
positions in the input sequence. Consequently, the model
cannot distinguish whether a appears as the first or fifth
letter, but it can identify whether a is present in the input
at all. By processing embeddings, the model can determine
the existence of each letter without tracking its count or
position.

Using attention and feed-forward layers, the model can con-
solidate these embeddings to produce a “presence flag” for
each letter. The flag is set based on whether the embed-
ding is zero or non-zero. Thus, we employ the non-finite
floating-point value inf in the denominator during the tran-
sition computation to make the flags zero aligning with the
discussion in Lamma 5.3. This is why the Assumption 5.1
is removed. For example, if a appears anywhere in the
sequence, a specific hidden vector state can be activated to
indicate its presence.

Since letter-set languages are defined by finite logical com-
binations of conditions on letter presence, the final feed-
forward and output layers can evaluate these conditions. For
example, the model can output an accept token if the pres-
ence flags match the required subset S, or reject otherwise.
This process effectively ignores order and frequency, focus-
ing solely on whether each required letter is present at least
once.

The lack of positional encoding aligns naturally with the
requirements of letter-set languages. A NoPE Transformer
focuses on whether a given letter appears, without being
influenced by order or frequency. Even if a letter a appears
multiple times, the model only needs a single bit of informa-
tion (”a exists”) to make its decision. By aggregating these
presence flags, the Transformer can determine whether the
input satisfies the rules of the letter-set language.

Thus, a NoPE Transformer can recognize any letter-set lan-
guage, using its ability to abstract away positional informa-
tion and focus on the presence of letters.

7. Discussions
7.1. What is the Key Module in Transformers?

Although numerous studies have advanced our understand-
ing of Transformers, a fundamental question remains:

“Which architectural component primarily contributes to
their expressivity?” Despite extensive research on elements
like attention mechanisms, layer normalization, and em-
bedding schemes, there is no universal consensus on what
exactly determines a language model’s ability to capture
complex linguistic phenomena.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Bhattamishra et al. (2020b) focused on the Turing-
completeness and the necessity of various architectural com-
ponents and highlighted the crucial role of residual connec-
tions in maintaining expressivity. They also demonstrated
that Transformers without explicit positional encoding but
with positional masking remain Turing-complete. Simi-
larly, Chiang et al. (2023) highlighted the importance of
numerical precision (fixed vs arbitrary) and showed that the
expressivity of such an encoder Transformer can be tightly
upper-bounded by the language class FOC[+; MOD], a first-
order logic with counting quantifiers, addition, and modular
arithmetic.

A crucial difference emerges when comparing their results
to ours: they included positional encoding (specifically a
sinusoidal scheme), which allowed the model to handle pe-
riodic information effectively. In this study, We adopted a
constant precision scheme similar to Chiang et al. (2023).
Moreover, we introduced a reasonable practical Assump-
tion 5.1. Building on these settings,we identified a Trans-
former setup capable of recognizing the minimal language,
namely finite or co-finite languages, without any positional
encodings (§ 5). This setup closely resembles real-world
Transformers, leading us to hypothesize that practical Trans-
formers may inherently be restricted to recognizing finite
languages, functioning as highly efficient lookup tables.
While prior studies (Bhattamishra et al., 2020b; Kazemne-
jad et al., 2024)) demonstrated the practical effectiveness
of NoPE, our theoretical analysis suggests that NoPE has
inherent limitations in enhancing expressivity.

Next, we examined how adding absolute positional encoding
(APE) and removing the assumption affected the tendency to
restrict recognition to finite languages (§ 6). However, even
with these additions, expressivity increased only slightly, as
fixed-precision still constrains expressivity to near-finiteness.
Our findings show that restricting precision from logarith-
mic (Merrill & Sabharwal, 2024b) to constant results in a
significant loss of expressiveness. Furthermore, this loss
increases as the number of decoding iterations grows, noting
that expressivity reaches P when t ∈ O(nc).

7.2. Languge Modeling

Throughout this work, we frame the Transformer as a lan-
guage recognizer, addressing the membership problem in a
more formal sense rather than as a language generator.

In practice, particularly in language modeling, a decoder-
based Transformer typically produces tokens probabilisti-
cally, generating text rather than deciding membership in
a formal language. In fact, research on the expressivity of
language modeling exists (Svete & Cotterell, 2024; Nowak
et al., 2024). While our “recognizer” viewpoint diverges
somewhat from typical usage, bridging these two outlooks
more rigorously remains a key objective for future research.

7.3. Potential Extensions

We acknowledge that our current setup is simplified, fo-
cusing on a limited subset of Transformer components: at-
tention masking, the absence of layer normalization, and
no extensive multi-head or multi-layer structure. In real-
world architectures, additional architectural features could
significantly impact expressivity.

Furthermore, we have identified gaps (Table 1). A natural
extension involves clarifying how these additional mecha-
nisms, such as relative positional encoding or the softmax-to-
hardmax transition, might shift the upper and lower bounds
on expressivity. We believe our fundamental approach can
be adapted to investigate such enhancements, while leaving
precise formalization and empirical validation for future
work.

8. Conclusion
In this work, we examined the expressivity of fixed-
precision Transformers to investigate their practical impli-
cations. To achieve this, we introduced three constraints:
fixed-precision floating-point arithmetic, a reasonable as-
sumption 5.1 regarding query-key parameters, and the pres-
ence or absence of positional encoding.

In § 5, we demonstrated that Transformers operating under
the constraints (Fixed-precision + Assumption 5.1 + NoPE)
can recognize only finite or co-finite languages. In § 6, we
further proved the role of Assumption 5.1 and also positional
encoding, as relaxing either of these constraints slightly
enhances expressivity.

These findings suggest that these constraints impose fun-
damental limitations on Transformer expressivity. Future
research could extend this analysis to language modeling or
investigate how alternative modules and hardmax replace-
ments influence expressivity.

References
Ieee standard for floating-point arithmetic. IEEE Std 754-

2019 (Revision of IEEE 754-2008), pp. 1–84, 2019. doi:
10.1109/IEEESTD.2019.8766229.

Ackerman, J. and Cybenko, G. A survey of neural networks
and formal languages, 2020. URL https://arxiv.
org/abs/2006.01338.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the Ability
and Limitations of Transformers to Recognize Formal
Languages. In Webber, B., Cohn, T., He, Y., and Liu, Y.
(eds.), Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
pp. 7096–7116, Online, November 2020a. Association
for Computational Linguistics. doi: 10.18653/v1/2020.

8

https://arxiv.org/abs/2006.01338
https://arxiv.org/abs/2006.01338

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

emnlp-main.576. URL https://aclanthology.
org/2020.emnlp-main.576/.

Bhattamishra, S., Patel, A., and Goyal, N. On the
computational power of transformers and its implica-
tions in sequence modeling. In Fernández, R. and
Linzen, T. (eds.), Proceedings of the 24th Conference
on Computational Natural Language Learning, pp. 455–
475, Online, November 2020b. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.conll-1.
37. URL https://aclanthology.org/2020.
conll-1.37/.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Lan-
guage models are few-shot learners. In Proceedings of
the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Chiang, D. and Cholak, P. Overcoming a theoretical lim-
itation of self-attention. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 7654–7664, Dublin, Ire-
land, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.527. URL https:
//aclanthology.org/2022.acl-long.527/.

Chiang, D., Cholak, P., and Pillay, A. Tighter bounds on the
expressivity of transformer encoders. In Proceedings of
the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Chiang, D., Rawski, J., Strobl, L., and Yang, A.
Esslli 2024, 2024. https://sleynas.com/
esslli-2024-summer-school-course (2025-
01 viewed).

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals, and
Systems (MCSS), 2(4):303–314, December 1989. ISSN
0932-4194. doi: 10.1007/BF02551274. URL http:
//dx.doi.org/10.1007/BF02551274.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought: a
theoretical perspective. In Proceedings of the 37th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran
Associates Inc.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 01 2020. ISSN
2307-387X. doi: 10.1162/tacl a 00306. URL https:
//doi.org/10.1162/tacl_a_00306.

Hao, Y., Angluin, D., and Frank, R. Formal language
recognition by hard attention transformers: Perspectives
from circuit complexity. Transactions of the Associa-
tion for Computational Linguistics, 10:800–810, 07 2022.
ISSN 2307-387X. doi: 10.1162/tacl a 00490. URL
https://doi.org/10.1162/tacl_a_00490.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080.
doi: https://doi.org/10.1016/0893-6080(89)90020-8.
URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Kajitsuka, T. and Sato, I. Are transformers with one layer
self-attention using low-rank weight matrices universal
approximators?, 2024. URL https://arxiv.org/
abs/2307.14023.

Kazemnejad, A., Padhi, I., Ramamurthy, K. N., Das, P.,
and Reddy, S. The impact of positional encoding on
length generalization in transformers. In Proceedings of
the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA,
2024. Curran Associates Inc.

Merrill, W. Formal language theory meets modern nlp, 2021.
URL https://arxiv.org/abs/2102.10094.

Merrill, W. Formal languages and the nlp black box.
In Developments in Language Theory: 27th Interna-
tional Conference, DLT 2023, Umeå, Sweden, June
12–16, 2023, Proceedings, pp. 1–8, Berlin, Heidelberg,
2023. Springer-Verlag. ISBN 978-3-031-33263-0. doi:
10.1007/978-3-031-33264-7 1. URL https://doi.
org/10.1007/978-3-031-33264-7_1.

Merrill, W. and Sabharwal, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023. doi: 10.1162/tacl a 00562. URL https:
//aclanthology.org/2023.tacl-1.31/.

Merrill, W. and Sabharwal, A. A logic for expressing log-
precision transformers. In Proceedings of the 37th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2024a. Curran
Associates Inc.

Merrill, W. and Sabharwal, A. The expressive power of
transformers with chain of thought, 2024b. URL https:
//arxiv.org/abs/2310.07923.

9

https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.conll-1.37/
https://aclanthology.org/2020.conll-1.37/
https://aclanthology.org/2022.acl-long.527/
https://aclanthology.org/2022.acl-long.527/
https://sleynas.com/esslli-2024-summer-school-course
https://sleynas.com/esslli-2024-summer-school-course
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00490
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://arxiv.org/abs/2307.14023
https://arxiv.org/abs/2307.14023
https://arxiv.org/abs/2102.10094
https://doi.org/10.1007/978-3-031-33264-7_1
https://doi.org/10.1007/978-3-031-33264-7_1
https://aclanthology.org/2023.tacl-1.31/
https://aclanthology.org/2023.tacl-1.31/
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2310.07923

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Merrill, W., Sabharwal, A., and Smith, N. A. Saturated
transformers are constant-depth threshold circuits. Trans-
actions of the Association for Computational Linguis-
tics, 10:843–856, 08 2022. ISSN 2307-387X. doi:
10.1162/tacl a 00493. URL https://doi.org/10.
1162/tacl_a_00493.

Nowak, F., Svete, A., Butoi, A., and Cotterell, R. On
the representational capacity of neural language models
with chain-of-thought reasoning. In Ku, L.-W., Martins,
A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 12510–12548,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
676. URL https://aclanthology.org/2024.
acl-long.676/.

Park, S., Yun, C., Lee, J., and Shin, J. Minimum width
for universal approximation, 2020. URL https://
arxiv.org/abs/2006.08859.

Press, O., Smith, N., and Lewis, M. Train short, test long:
Attention with linear biases enables input length extrapo-
lation. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=R8sQPpGCv0.

Pérez, J., Barceló, P., and Marinkovic, J. Attention is turing-
complete. Journal of Machine Learning Research, 22(75):
1–35, 2021. URL http://jmlr.org/papers/
v22/20-302.html.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. 2018.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Strobl, L., Merrill, W., Weiss, G., Chiang, D., and An-
gluin, D. What formal languages can transformers ex-
press? a survey. Transactions of the Association for
Computational Linguistics, 12:543–561, 2024. doi: 10.
1162/tacl a 00663. URL https://aclanthology.
org/2024.tacl-1.30/.

Svete, A. and Cotterell, R. Transformers can represent
n-gram language models. In Duh, K., Gomez, H., and
Bethard, S. (eds.), Proceedings of the 2024 Conference
of the North American Chapter of the Association for

Computational Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pp. 6845–6881, Mex-
ico City, Mexico, June 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.naacl-long.
381. URL https://aclanthology.org/2024.
naacl-long.381/.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: a case study on approximating turing ma-
chines with transformers. In Proceedings of the 36th Inter-
national Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

Yang, A. and Chiang, D. Counting like transformers: Com-
piling temporal counting logic into softmax transform-
ers, 2024. URL https://arxiv.org/abs/2404.
04393.

Yang, A., Chiang, D., and Angluin, D. Masked hard-
attention transformers recognize exactly the star-free
languages, 2024. URL https://arxiv.org/abs/
2310.13897.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. In Zong, C., Xia, F., Li, W., and Navigli, R.
(eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 3770–3785, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.292. URL https:
//aclanthology.org/2021.acl-long.292/.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators of
sequence-to-sequence functions?, 2020. URL https:
//arxiv.org/abs/1912.10077.

10

https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
https://aclanthology.org/2024.acl-long.676/
https://aclanthology.org/2024.acl-long.676/
https://arxiv.org/abs/2006.08859
https://arxiv.org/abs/2006.08859
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2024.tacl-1.30/
https://aclanthology.org/2024.tacl-1.30/
https://aclanthology.org/2024.naacl-long.381/
https://aclanthology.org/2024.naacl-long.381/
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2404.04393
https://arxiv.org/abs/2404.04393
https://arxiv.org/abs/2310.13897
https://arxiv.org/abs/2310.13897
https://aclanthology.org/2021.acl-long.292/
https://aclanthology.org/2021.acl-long.292/
https://arxiv.org/abs/1912.10077
https://arxiv.org/abs/1912.10077

