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Abstract

In the Retrieval-Augmented Generation (RAG)001
system, advanced Large Language Models002
(LLMs) have emerged as effective Query Like-003
lihood Models (QLMs) in an unsupervised way,004
which re-rank documents based on the proba-005
bility of generating the query given the content006
of a document. However, directly prompting007
LLMs to approximate QLMs inherently is bi-008
ased, where the estimated distribution might009
diverge from the actual document-specific dis-010
tribution. In this study, we introduce a novel011
framework, UR3, which leverages Bayesian de-012
cision theory to both quantify and mitigate this013
estimation bias. Specifically, UR3 reformulates014
the problem as maximizing the probability of015
document generation, thereby harmonizing the016
optimization of query and document generation017
probabilities under a unified risk minimization018
objective. Our empirical results indicate that019
UR3 significantly enhances re-ranking, particu-020
larly in improving the Top-1 accuracy. It bene-021
fits the QA tasks by achieving higher accuracy022
with fewer input documents.023

1 Introduction024

Large Language Models (LLMs) exhibit remark-025

able capabilities but face several challenges includ-026

ing hallucination and outdated knowledge (Zhao027

et al., 2023; Ji et al., 2023). Retrieval-Augmented028

Generation (RAG) has emerged as a promising so-029

lution by incorporating external knowledge (Ram030

et al., 2023; Gao et al., 2023). In the RAG system,031

a re-ranking model can serve as a second-pass doc-032

ument optimizer and refiner for the knowledge re-033

trieval. This is particularly critical in open-domain034

Question Answering (QA) tasks, where it leads035

to large gains in performance (Karpukhin et al.,036

2020; Zhu et al., 2023). The re-ranker assesses037

the relevance of the documents retrieved by the ini-038

tial retriever (e.g., BM25 (Robertson and Zaragoza,039

2009)) and effectively prioritizes the most relevant040

items at the top. This not only enhances retrieval041
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Figure 1: Method comparison in the re-ranking task.
(a) The framework of LLM-based QLM method: unsu-
pervised passage re-ranker (UPR). (b) The framework
of our proposal: Unsupervised Risk-minimization Re-
Ranker (UR3); (b1) calculating document generation
probability to quantify the biased model estimation; (b2)
calculating the query generation probability to measure
relevance.

efficiency and responsiveness but also resolves the 042

challenge of context window expansion by limiting 043

the total number of documents (Gao et al., 2023). 044

Most previous approaches trained the re-ranker 045

on manual supervision signals with complex archi- 046

tectures (Karpukhin et al., 2020; Nogueira et al., 047

2020; Formal et al., 2021), which require signifi- 048

cant human efforts and demonstrate weak general- 049

izability (Nguyen et al., 2016; Izacard et al., 2021). 050

As the size of models scales up (e.g., exceeding 10 051

billion parameters), it becomes increasingly diffi- 052

cult to fine-tune the dedicated re-ranking models. 053

To address this challenge, recent efforts have at- 054

tempted to leverage the zero-shot language under- 055

standing and generation capabilities of LLMs to 056

directly enhance document re-ranking in an unsu- 057
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pervised way.058

Recent studies have explored LLMs for permu-059

tation generation (Ma et al., 2023; Sun et al., 2023)060

as re-rankers, which yield significant performance061

by generating a ranked list of a group of documents.062

However, these models face high time complexity063

with long lists and the performance is highly sen-064

sitive to the document order in the prompt. (Zhu065

et al., 2023). In this paper, we consider a unsu-066

pervised query generation method based on Query067

Likelihood Model (QLM) (Ponte and Croft, 1998;068

Hiemstra, 2001; Zhai and Lafferty, 2001), which069

judges the relevance of each query-document pair070

independently, thus offering lower time complexity.071

The core idea behind QLM is to infer a language072

model θD for each document d, and to rank the073

documents based on the likelihood of the query074

according to this model p(q | θD).075

The typical LLM-based QLM is called Unsu-076

pervised Passage Re-ranker (UPR) (Sachan et al.,077

2022). It leverages a LLM θ′ to score the probabil-078

ity of generating the question q conditioned on the079

input document d as p(q | d; θ′), highlighting the080

zero-shot ranking capabilities of the LLM-based081

QLM. Upon closer examination, an inherent es-082

timation bias occurs when employing p(d; θ′) to083

approximate p(θD). As illustrated in Figure 1, the084

estimated distribution p(d; θ′) might not accurately085

reflect the actual document-specific distribution,086

p(θD). This divergence primarily stems from the087

estimation bias in employing a generalized model,088

such as θ′, which is not specifically tuned to captur-089

ing the document characteristics necessary for the090

query generation task (Bender and Koller, 2020;091

Wang et al., 2022; Zhong et al., 2023).092

To bridge the gap between the estimated distribu-093

tion by LLM p(q | d; θ′) and the actual document094

distribution p(θD), we introduce a novel method095

called Unsupervised Risk-minimization Re-Ranker096

(UR3). It characterizes the document selection as097

a optimization process based on Bayesian decision098

theory (Wald, 1950; Zhai and Lafferty, 2006a). In099

specific, to quantify the estimation bias, UR3 em-100

ploys the Kullback-Leibler (KL) divergence (Kull-101

back and Leibler, 1951) to reformulate the mini-102

mization of bias as the maximization of document103

generation probability. Therefore, this approach104

allows for the simultaneous maximization of both105

query and document generation probabilities, treat-106

ing them as a common objective in term of risk107

minimization.108

To prove the effectiveness of UR3, we verify109

it in the re-ranking stage in current RAG models 110

for the open-domain QA tasks. In the re-ranking 111

tasks, the results indicate that our method signifi- 112

cantly enhances the Top-1 accuracy on the open- 113

domain NQ (Kwiatkowski et al., 2019), WebQ (Be- 114

rant et al., 2013), and TriviaQA (Joshi et al., 2017) 115

datasets, with improvements of 6.64%, 6.35%, and 116

3.18% points compared with UPR. In the QA tasks, 117

the Exact Match (EM) and F1 scores exhibit in- 118

creases of up to 1.48 and 2.06, respectively, when 119

utilizing the fewest document input (only 1). 120

The contributions of this paper are as follows: 121

• From the perspective of risk minimization, 122

this paper presents a theoretical formalization 123

to rank the relevance of query-document pairs. 124

This formalization not only considers query 125

generation but also evaluates the estimation 126

bias through document generation probabili- 127

ties (See §4.2). 128

• The enhancement in performance is notable 129

for higher-ranked results, with the most pro- 130

nounced improvements at the Top-1. This sig- 131

nificantly benefits the QA tasks by achieving 132

higher accuracy with fewer input documents 133

(See §4.3). 134

2 Related Work 135

Re-rankers serve as the second-pass document 136

filter in IR, based on the relevance between the 137

query and the documents. Recently, LLMs have at- 138

tracted significant attention in the field of IR, with 139

numerous innovative approaches being proposed 140

for re-ranking tasks (Zhu et al., 2023; Gao et al., 141

2023). Existing instructions for zero-shot docu- 142

ment re-ranking with LLMs can be classified into 143

three types: query generation (Sachan et al., 2021; 144

Zhuang et al., 2023), relevance generation (Liang 145

et al., 2022) and permutation generation (Ma et al., 146

2023; Sun et al., 2023). However, permutation 147

generation models face high time complexity with 148

long lists, and relevance generation method does 149

not have an advantage in terms of performance 150

compared to others (Zhu et al., 2023). In this paper, 151

we focus on the application of query generation 152

LLMs in an unsupervised way. 153

Language modeling approaches to information 154

retrieval are attractive and promising because they 155

connect the problem of retrieval with that of lan- 156

guage model estimation. UPR (Sachan et al., 2022) 157

introduces instructional query generation methods 158
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by LLMs, as the query-document relevance score159

is determined by the average log-likelihood of160

generating the actual query tokens based on the161

document. It has been proven that some LLMs162

yield significant performance in zero-shot docu-163

ment re-ranking. Recently, research (Zhuang et al.,164

2023) has also shown that the LLMs that are pre-165

trained without any supervised instruction fine-166

tuning (such as LLaMA (Touvron et al., 2023a))167

also yield robust zero-shot ranking ability.168

Another line is to optimize prompt for better169

performance. For example, a discrete prompt opti-170

mization method Co-Prompt (Cho et al., 2023) is171

proposed for better prompt generation in re-ranking172

tasks. Besides, PaRaDe (Drozdov et al., 2023) in-173

troduces a difficulty-based method for selecting174

few-shot demonstrations to include in prompts,175

demonstrating significant improvements over zero-176

shot prompts. But the prompt engineering is not177

within the scope of this paper. Our prompt adheres178

to the original setup as UPR (e.g., "Please write179

a query based on this document") in a zero-shot180

manner.181

3 UR3: Unsupervised Risk-minimization182

Re-Ranker183

Existing methods (Sachan et al., 2022; Zhuang184

et al., 2023) have limited performance in re-ranking185

due to the oversight of biased estimation when con-186

sidering a LLM conditioned on the input document187

p(d; θ′) as the actual document language distribu-188

tion p(θD) .189

To tackle the problem, we introduce a novel re-190

ranking model UR3, which considers not only the191

query generation probability (§3.3.1) but also the192

quantification of bias (§3.3.2). For the latter, our193

method characterizes the distribution discrepancy194

between an actual document language model p(θD)195

and the LLM p(d; θ′). Utilizing the distance-based196

risk-minimization Bayes decision, the estimation197

bias can be reformulated as the probability of doc-198

ument generation, thereby forming a common opti-199

mization objective with the query generation pro-200

cess.201

3.1 Problem Formalization202

In a retrieval system, a query q from a user U is203

assumed to sampled from a query-based empirical204

distribution p(q | θQe)
1. A document model θD205

1Here we do not define a user-specific query model that
encodes detailed knowledge about the user, but rather an em-

Empirical distribution
𝑈

𝑝(𝜃!!|𝑈)
𝜃!!

Query generation
𝐪

𝑝(𝒒|𝜃!!)

Model selection
𝑆

𝑝(𝜃"|𝑆)
𝜃"

Doc generation
𝐝

𝑝(𝒅|𝜃")

𝜃"#LLM  𝜃′

Estimation
bias

Figure 2: The process for a LLM-based re-ranking
method in the view of Bayes decision theory.

is selected from the document source S according 206

to the distribution p(θD | S), and then this model 207

generates a document according to p(d | θD). 208

Let C = {d1,d2, ...,dk} be a set of candi- 209

dates from source S, where we assume that the 210

retriever provides the K most relevant documents. 211

For a candidate document d, QLM (Ponte and 212

Croft, 1998) estimates the conditional probability 213

p(q|θD)2, which captures how well the document 214

“fits” the particular query. Previous QLM-based 215

work (Sachan et al., 2022; Cho et al., 2023; Droz- 216

dov et al., 2023) score each document by comput- 217

ing the likelihood of the query conditioned on the 218

input document as p(q | d; θ′). They approximate 219

the document language model θD by applying d as 220

input into a pre-trained LLM θ′, formulated as: 221

p(θ′D)
def
= p(d; θ′) (1) 222

3.2 Bayes Decision Theory 223

The standard retrieval problem can be regarded as 224

a decision problem where the decision involves 225

choosing the best ranking. Zhai and Lafferty 226

(2006b) formalizes the decision problem within 227

a probabilistic framework of the Bayesian decision 228

theory. A possible action a is to return a single 229

document based on the expected risk R, which is 230

associated with a loss L(a, θ): 231

R(a | U ,q,S, C) =
∫
Θ
L(a, θ)p(θ | U ,q,S, C)dθ

(2) 232

The Bayesian decision rule is then to present the 233

document list a∗ having the least expected risk: 234

a∗ = argmin
a

R(a|U,q, S, C) (3) 235

pirical distribution θQe for mathematical convenience. The
query language model is concentrated on the actual query
terms.

2For convenience, the subscript i is omitted in subsequent
notations.
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We extend the framework to allow for a consid-236

eration of the the approximate document model237

θ′D with LLM θ′, as illustrated in Figure 2. The238

expected risk of action a can be formulated as:239

R(d;q)
def
= R(a = d | U,q,S, C, θ′) (4)240

∝ L(θ̂q, θ
′
D, θ̂d)241

where the distribution of θ′D is determined by the242

distribution p(d; θ′), and243

θ̂q = argmax
θQe

p(θQe | q,U)244

θ̂d = argmax
θD

p(θD | d,S)245

The detailed derivations are presented in Ap-246

pendix A.247

To summarize, the document set C is represented248

through a series of k sequential decisions. This pro-249

cess yields a list of documents ranked in ascending250

order according to the R(d;q). A smaller loss L251

means a better ranking for the document.252

3.3 Distance-based Loss Functions253

In this section, we conceptualize the loss function,254

L, as a distance-based function, ∆, quantified using255

KL divergence, initially introduced by Lafferty and256

Zhai (2001).257

Based on the dependency relationships illus-258

trated in Figure 2, the distance among models can259

be split into the sum of the following two terms,260

where the details refer to Appendix B.261

L(θ̂q, θ
′
D, θ̂d) ≈ c1∆(θ̂q, θ

′
D)+c2∆(θ′D, θ̂d) (5)262

where c1 > 0 and c2 > 0 are constants. Therefore,263

the following formula can be derived:264

R(d;q) ∝ ∆(θ̂q, θ
′
D) + α∆(θ̂d, θ

′
D) (6)265

where the α is proportional to c2/ c1. Then we266

will characterize that the minimum risk ranking267

criterion as the sum of probability of query gener-268

ation (§3.3.1) and document generation (§3.3.2),269

respectively.270

3.3.1 Probability of Query Generation271

Given θ̂q is a distribution that represents an empiri-272

cal distribution of query q, where q = q1q2 . . . qm,273

we have3: 274

∆(θ̂q, θ̂
′
d)

def
= KL[ p(θ̂q) ∥ p(θ′D) ] (7) 275

∝ − log p(q | θ′D) + cq 276

∝ − 1

m

m∑
i=1

log p(qi | q<i,d; θ
′) 277

where the constant cq presents the entropy of the 278

query model. This is precisely the log-likelihood 279

criterion that has been in used in the language mod- 280

eling approaches of query generation (Sachan et al., 281

2022; Zhuang et al., 2023). 282

3.3.2 Probability of Document Generation 283

Following previous studies (Ponte and Croft, 1998; 284

Hiemstra, 2001; Zhai and Lafferty, 2001), p(d) is 285

assumed to be uniformly distributed, if we view θ′ 286

as a stochastic variable, then 287

P (d, θ′) = P (d)P (θ′ | d) ∝ P (θ′ | d) (8) 288

Therefore, the distance from the approximate dis- 289

tribution θ′D to the actual posterior distribution θ̂d 290

is formulated as: 291

∆(θ̂d, θ
′
D)

def
= KL[ p(θ̂d) ∥ p(d, θ′) ] (9) 292

∝ KL[ p(θ̂d) ∥ p(θ′ | d) ] 293

The calculation of Formula 9 can be equiva- 294

lently reformulated as the computation of the Evi- 295

dence Lower Bound (ELBO) via variational infer- 296

ence (Hoffman et al., 2013)3: 297

KL[ p(θ̂d) ∥ p(θ′ | d)] = −ELBO(θ) + log p(d)
(10) 298

where 299

ELBO(θ) = E[log p(d | θ′)]−KL[ p(θ̂d) ∥ p(θ′)] 300

Since the latter KL divergence term in ELBO(θ) is 301

same for all d for a specific LLM, the following 302

formula can be derived: 303

∆(θ̂d, θ̂
′
d) ∝ −E[log p(d | θ′)] (11) 304

Let d = d1, d2, ..., dn, the final risk minimiza- 305

tion object can be formulated as the proportional 306

sum of query and document generation probabili- 307

ties based on Formula 7 and 11: 308

R(d;q) ∝ − 1

m

m∑
i=1

log p(qi | q<i,d; θ
′) (12) 309

− α ·

(
1

n

n∑
i=1

log p(di | d<i; θ
′)

)
310

3The theoretical derivations are detailed in Appendix C.
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where α is a hyperparameter. The expectation of311

the term in Formula 11 is calculated as the doc-312

ument generation probability on LLM θ′, which313

synchronizes the computation of the query and the314

document within one-time inference. The detailed315

instructions are included in Appendix D.316

4 Experiments317

4.1 Experimental Setup318

Datasets. For the document retrieval in the QA319

task, we use the three popular datasets of open-320

domain QA: NaturalQuestions (NQ; (Kwiatkowski321

et al., 2019)), WebQuestions (WebQ; (Berant et al.,322

2013)) and TriviaQA (Joshi et al., 2017). For323

re-ranking, we utilize the pre-processed English324

Wikipedia dump from December 2018, as released325

by Karpukhin et al. (2020), as the source of evi-326

dence documents. Then we apply the ranking re-327

sults to generate answers for questions to evaluate328

the QA performance.329

We additionally employ the BEIR Bench-330

mark (Thakur et al., 2021) for a comprehensive331

retrieval evaluation in Appendix E.332

Retrievers. In our re-ranking experiments, we333

retrieve documents from both unsupervised and334

supervised retrievers, including three unsuper-335

vised retrievers—Contriever (Izacard et al., 2021),336

BM25 (Robertson and Zaragoza, 2009), and337

MSS (Sachan et al., 2021)—and one supervised338

retriever, DPR (Karpukhin et al., 2020).339

Baselines We adopt three unsupervised re-340

ranking methods as the baselines: RankGPT341

(RG) (Sun et al., 2023), UPR (Sachan et al., 2022)342

and Interpolation (Int.) (Zhuang et al., 2023).343

• RankGPT aims to directly rank a list of docu-344

ments employing a sliding window strategy to345

re-rank subsets of candidate documents based346

on a LLM4.347

• UPR leverages a LLM to obtained the query-348

document relevance score, which is deter-349

mined by the log-likelihood of generating the350

actual query tokens based on the document.351

• Interpolation method linearly combines the352

UPR score with the scores from the first-stage353

retriever using a weighted sum of scores. We354

apply the method to both UPR and UR3 meth-355

ods with the same weight configuration.356

4For a fair comparison, the implementation of the
RankGPT method is based on the LLaMA2-7B-Chat model.

For UR3, the values of α is set to 0.25. Detailed 357

analyses about the hyperparameter are provided in 358

Appendix H. 359

Metrics Following previous work (Thakur et al., 360

2021; Sachan et al., 2022), we compute the con- 361

ventional Top-K retrieval accuracy, nDCG@K and 362

MAP@K metrics to evaluate the re-ranking per- 363

formance. And we use the EM and F1 scores for 364

evaluating the QA performance of LLMs. 365

LLMs For the re-ranking task, our experiments 366

are conducted on LLaMA2 (7B) (Touvron et al., 367

2023b), Mistral (7B) (Jiang et al., 2023) and GPT- 368

Neo (2.7B) (Gao et al., 2020) models. 369

For the QA task, a reader processes the doc- 370

uments retrieved by the retriever to generate the 371

answer to the query. We respectively employ the 372

LLaMA2 (7B and 13B), Mistral (7B) and Gemma 373

(7B) (Mesnard et al., 2024) models as the reader. 374

4.2 Document Re-ranking 375

We evaluate the performance of our UR3 method 376

across all evaluated datasets and retrievers. 377

4.2.1 Overall Performance 378

Comprehensive better than UPR. As shown 379

in the Table 1, the results demonstrate that UR3 380

enhances the overall rankings of the Top-100 docu- 381

ments, as reflected by an average increase of 1-2% 382

in the MAP@100 metric. Furthermore, improve- 383

ments are observed across all nDCG@K metrics, 384

indicating that UR3 prioritizes relevant documents 385

more effectively compared to the UPR method. 386

Closer examination of the Top-K metrics reveals 387

that UR3 shows greater accuracy enhancements for 388

rankings closer to the top, with the most substantial 389

increase (up to 6.64) observed at Top-1 accuracy. 390

This significantly enhances the suitability of our 391

method for open-domain question answering tasks. 392

Additionally, it potentially alleviates the issues as- 393

sociated with the limited input window length of 394

large models, as our method achieves higher rele- 395

vance scores with fewer input documents. 396

Why does RankGPT performance poorly? In- 397

terestingly, the RankGPT method yields lower rank- 398

ing results than the initial retrieval. This can be 399

attributed to the observation that competitive per- 400

formance is predominantly realized by model based 401

on GPT-4 (Zhu et al., 2023). When utilizing smaller 402

parameterized language models, such as LLaMA2- 403

7B, the RankGPT method underperforms compared 404

to other methods. 405
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Contriever BM25 MSS DPR

Datasets Metric Orig.* RG UPR (+Int.) UR3
(+Int.) Orig. RG UPR (+Int.) UR3

(+Int.) Orig. RG UPR (+Int.) UR3
(+Int.) Orig. RG UPR (+Int.) UR3

(+Int.)

NQ

Top-1 22.16 13.07 32.38 (32.49) 37.67 (36.37) 22.11 17.51 32.69 (33.10) 38.01 (37.42) 19.28 15.35 32.83 (33.49) 37.48 (36.43) 46.34 37.06 37.65 (48.45) 44.29 (52.24)

Top-5 47.29 46.87 61.41 (61.00) 63.96 (64.10) 43.77 38.25 59.83 (59.50) 61.97 (61.19) 41.25 35.76 59.28 (59.22) 61.08 (60.61) 68.28 67.67 69.20 (73.85) 71.99 (74.99)

Top-20 67.87 67.51 76.12 (76.26) 76.57 (76.59) 62.94 62.94 73.16 (72.63) 72.96 (72.88) 59.97 60.22 71.30 (70.97) 71.47 (71.25) 80.06 79.70 82.66 (83.10) 82.99 (83.32)

nDCG@1 22.16 13.07 32.38 (32.49) 37.67 (36.37) 22.11 17.51 32.69 (33.10) 38.01 (37.42) 19.28 15.35 32.83 (33.39) 37.48 (36.43) 46.34 17.06 37.65 (48.45) 44.29 (52.24)

nDCG@5 21.70 19.10 33.35 (33.08) 36.89 (36.36) 21.63 17.43 33.89 (33.89) 37.12 (36.51) 18.97 15.38 34.39 (34.45) 37.12 (36.53) 40.62 32.79 38.94 (45.51) 43.05 (47.97)

nDCG@20 26.15 24.20 39.08 (38.79) 41.60 (41.26) 25.75 23.45 39.27 (39.17) 41.27 (40.87) 22.88 21.10 39.36 (39.18) 41.15 (40.36) 42.42 36.43 44.78 (49.34) 47.66 (50.95)

MAP@100 20.71 18.68 31.56 (31.18) 33.94 (33.46) 20.78 18.37 32.13 (32.05) 34.05 (33.66) 18.11 16.27 32.32 (31.98) 34.10 (33.23) 34.89 28.35 36.64 (41.39) 39.38 (42.91)

WebQ

Top-1 19.98 18.65 26.62 (28.05) 32.53 (30.81) 18.90 17.32 27.56 (28.54) 33.91 (33.56) 11.66 11.96 26.38 (25.44) 29.38 (27.66) 44.83 37.16 39.32 (46.26) 42.18 (48.03)

Top-5 43.45 41.39 54.92 (55.07) 58.71 (58.12) 41.83 40.16 54.13 (54.33) 55.17 (55.76) 29.04 28.54 48.67 (49.02) 49.85 (50.44) 65.01 59.30 66.83 (68.21) 66.88 (68.95)

Top-20 65.70 65.50 72.69 (72.44) 73.43 (72.79) 62.40 62.35 68.50 (68.55) 69.54 (69.14) 49.21 49.51 63.19 (63.24) 62.40 (62.40) 74.61 74.46 76.67 (76.53) 76.96 (77.36)

nDCG@1 19.98 18.65 26.62 (28.05) 32.53 (30.81) 18.90 17.32 27.56 (28.54) 33.91 (33.56) 11.66 11.96 26.38 (25.44) 29.38 (27.66) 44.83 37.16 39.32 (46.26) 42.18 (48.03)

nDCG@5 18.64 17.44 26.78 (26.90) 30.82 (29.89) 19.36 17.95 27.39 (28.27) 30.72 (30.86) 11.57 10.81 26.67 (26.08) 28.21 (27.53) 39.76 34.35 38.66 (42.59) 40.34 (43.67)

nDCG@20 22.22 21.53 31.18 (31.06) 33.79 (33.21) 22.12 21.41 31.44 (31.82) 33.62 (33.43) 14.84 14.45 32.46 (31.83) 33.20 (32.45) 38.95 36.21 41.81 (44.32) 42.65 (44.74)

MAP@100 18.79 18.22 25.92 (25.62) 27.82 (27.24) 19.15 18.39 26.63 (26.81) 28.09 (28.02) 12.03 11.53 26.20 (25.32) 26.84 (25.95) 33.32 30.44 36.46 (38.58) 36.82 (38.66)

TriviaQA

Top-1 34.16 25.17 51.77 (51.17) 54.95 (53.99) 46.30 35.10 55.85 (57.76) 58.70 (59.80) 30.76 21.19 52.84 (52.74) 54.35 (53.83) 57.47 37.16 62.55 (66.77) 63.47 (67.23)

Top-5 59.49 50.99 73.81 (73.69) 74.31 (74.02) 66.28 57.64 75.60 (75.98) 76.04 (75.86) 52.65 43.16 70.94 (70.78) 71.12 (70.78) 72.40 58.84 78.74 (79.06) 78.84 (79.19)

Top-20 73.91 74.10 80.08 (80.01) 80.22 (80.16) 76.41 76.24 80.68 (80.70) 80.66 (80.70) 67.18 67.44 76.34 (76.28) 76.32 (76.27) 79.77 79.66 83.13 (83.07) 83.15 (83.16)

nDCG@1 34.16 25.17 51.77 (51.17) 54.95 (53.99) 46.30 35.10 55.85 (57.76) 58.70 (59.80) 30.76 21.19 52.84 (52.74) 54.35 (53.83) 57.74 37.16 62.55 (66.77) 63.47 (67.23)

nDCG@5 30.46 23.63 49.27 (48.52) 51.21 (50.23) 41.60 32.77 53.55 (56.65) 55.28 (55.89) 27.78 19.76 50.47 (50.42) 51.60 (51.09) 49.69 34.42 59.53 (61.93) 59.99 (62.16)

nDCG@20 31.78 28.69 50.92 (50.36) 52.06 (51.43) 40.68 36.65 54.93 (55.53) 55.66 (55.93) 29.25 25.80 53.12 (52.80) 53.62 (53.12) 46.33 39.64 59.90 (61.14) 60.06 (61.18)

MAP@100 26.61 23.85 44.69 (43.93) 45.58 (44.81) 34.85 30.98 49.50 (49.91) 49.93 (50.11) 24.02 20.83 47.02 (46.47) 47.45 (46.71) 39.40 33.01 54.21 (55.34) 54.31 (55.42)

* Orig. indicates the original results from the retriever, where no re-ranking method is employed.

Table 1: Re-ranking results on the test set of datasets of the Top-100 retrieved documents with the LLaMA2-7B
model. The best results are highlighted in bold. The higher scores of original retriever compared with UR3 is
highlighted in red. The results on other models (Mistral-7B and GPT-Neo) are detailed in Appendix F.
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Figure 3: Visualization of Analysis on the Enhanced Performance in the Re-ranking task

Unstable performance on Interpolation. The406

degree of increase (or decrease) brought by the407

Interpolation method primarily depends on the per-408

formance of the initial retriever. For the supervised409

DPR retriever, its exposure to relevant paragraphs410

during training yields substantially higher Top-1 ac-411

curacy on the NQ and WebQ datasets. With results412

from the DPR, the Interpolation method usually413

brings a significant enhancement in ranking. When414

combined with our UR3 method, this can lead to415

maximal improvement. Conversely, when based416

on an unsupervised retriever, our method predomi-417

nantly outperforms the Interpolation method.418

4.2.2 Analysis on the Enhanced Performance419

To further explore why UR3 demonstrates greater420

enhancements for the ranks close to the top, we421

conduct empirical analyses on the NQ dataset with422

BM25 retriever.423

As illustrated in Figure 3a, we analyze the distri-424

butional shift of relevant document positions before425

and after re-ranking. The histogram represents the426

proportion of relevant documents at different ranks,427

and a curve fitting illustrates the trend of this dis- 428

tributional change. Overall, it is evident that UR3 429

tends to shift the distribution of relevant documents 430

towards higher ranks compared to UPR. 431

Then we explore the reason behind the forward 432

shift in this distribution. In Figure 3b, we quan- 433

tify the magnitude of rank shifts for each relevant 434

document after re-ranking. The blue solid (shad- 435

owed) histogram represents the positional change 436

in rank by UR3 compared to UPR (BM25), while 437

the green shadowed histogram indicates the change 438

by UPR compared to BM25. The bandwidth of the 439

line graph represents the variance of these changes. 440

The figure clearly shows that UR3 induces smaller 441

shifts in each position; in other words, our method 442

tunes the rankings of relevant documents within a 443

narrower range, thereby obtaining greater benefits 444

to the ranks closer to the top (as the distribution of 445

relevant documents is higher in Figure 3a). 446

Figure 3c presents a scatter plot that statistically 447

categorizes the relevant documents at the Top-1 448

rank, comparing UPR and UR3. Each green dot 449
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Model LLaMA2-13B Mistral-7B Gemma-7B

NQ WebQ TriviaQA NQ WebQ TriviaQA NQ WebQ TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Contriever 22.02 29.11 19.69 30.21 49.90 57.08 20.69 26.61 14.37 24.39 49.89 56.94 17.40 25.13 14.71 26.05 45.54 53.66
+ Inference with UPR 28.06 35.99 22.00 33.48 58.89 67.05 24.68 31.81 15.90 25.80 59.20 66.83 21.33 29.72 15.29 27.05 55.26 64.05
+ Inference with UR3 28.45 37.05 23.18 34.92 59.45 67.72 25.51 32.69 17.13 27.10 59.26 67.09 22.13 30.78 15.99 27.65 55.47 64.53

BM25 20.20 27.08 16.39 26.60 55.21 62.91 19.14 25.31 13.29 23.03 54.91 62.15 16.40 23.84 12.35 22.84 52.34 60.89
+ Inference with UPR 27.23 34.92 19.98 31.27 61.86 69.96 24.79 31.71 15.21 25.43 61.68 69.16 21.02 29.47 14.67 25.32 58.53 67.36
+ Inference with UR3 28.37 36.69 21.46 32.83 62.34 70.62 25.73 32.87 16.49 26.69 61.81 69.50 22.30 30.96 15.40 25.80 58.99 67.83

MSS 19.86 26.16 16.83 27.94 49.29 56.03 18.20 24.28 13.98 23.79 48.41 55.22 14.38 21.44 12.20 22.91 43.56 51.54
+ Inference with UPR 26.81 34.63 20.37 31.77 57.87 65.69 23.35 30.04 16.04 26.24 57.46 65.11 19.83 28.65 14.16 26.20 53.84 62.67
+ Inference with UR3 27.26 35.35 21.16 32.81 58.28 66.15 24.29 31.22 16.58 26.72 57.69 65.34 21.27 29.69 15.06 26.29 53.97 62.77

DPR 30.30 38.42 22.79 34.36 55.33 62.96 28.17 34.9 18.21 28.55 55.03 62.24 24.43 33.14 16.68 28.00 50.76 59.59
+ Inference with UPR 29.09 37.21 23.18 34.09 60.87 69.02 26.51 34.13 16.98 26.78 60.95 68.71 22.33 31.36 15.99 27.44 57.23 66.19
+ Inference with UR3 30.80 39.23 24.36 36.15 61.21 69.35 27.84 35.36 18.31 28.13 61.12 68.94 23.91 32.80 16.54 28.16 57.43 66.40

Table 2: EM and F1 scores for the open-domain QA task. We perform inference with the re-ranked Top-1 results of
Table 1. The best performing models are highlighted in bold. We highlight the best scores obtained by original
retriever in red. We also conduct inference on the re-ranking results of Mistral-7B in Table 7.

NQ Dataset Top-1 Top-3 Top-5

EM F1 EM F1 EM F1

Contriever 15.09 22.00 14.93 20.36 18.50 23.80
+ Inference with UPR 20.97 27.90 19.31 25.51 22.33 28.61
+ Inference with UR3 21.93 29.06 19.98 25.77 22.55 28.72

BM25 15.65 21.38 14.35 20.04 16.45 22.05
+ Inference with UPR 20.75 27.71 19.56 25.90 21.91 28.28
+ Inference with UR3 21.75 28.91 20.02 26.90 22.27 28.70

MSS 13.60 19.34 13.63 19.48 16.59 22.22
+ Inference with UPR 19.78 26.98 18.70 24.96 20.72 26.87
+ Inference with UR3 21.69 28.66 19.47 26.20 21.27 27.68

DPR 23.38 30.69 19.61 26.21 22.60 28.84
+ Inference with UPR 22.13 29.58 20.42 27.19 23.74 30.21
+ Inference with UR3 24.29 31.16 22.08 29.24 24.54 30.96

Table 3: EM and F1 scores for the open-domain QA task
with different number of input documents on the NQ
dataset with LLaMA2-7B model. The best performing
models are highlighted in bold.

represents a correct calibration by the UR3 method,450

where an irrelevant document ranked by UPR is451

adjusted to a relevant one at the Top-1 rank. Con-452

versely, each blue dot indicates a incorrect calibra-453

tion by UR3, where a previously Top-1 relevant454

document is replaced with an irrelevant one. The455

axes values denote the respective query/document456

generation negative log-likelihood loss (nll) dis-457

cussed in Formula 12. The density distribution458

of the scatter plot reveals that the positive gains459

brought about by UR3 significantly outweigh the460

negative impacts, which substantiates the improve-461

ment observed at the Top-1.462

4.3 Application in Question Answering463

As discussed above, we have demonstrated that464

UR3 significantly enhances ranking performance.465

In this section, we apply the results of the re-466

ranking (Table 1) to apply in current RAG mod-467

els for the evaluation in open-domain QA tasks.468

Specifically, we utilize the Top-n (n ≤ 5) items as469

inputs to achieve higher scores with fewer docu-470

ments.471

4.3.1 Overall Performance 472

Not More is Better. We utilize different number 473

of document inputs on NQ dataset to evaluate the 474

QA performance in Table 3. Expanding the doc- 475

uments from Top-1 to Top-3 does not invariably 476

enhance performance; in fact, it occasionally re- 477

sults in a decline in both EM and F1 scores. This 478

trend suggests that increasing the number of docu- 479

ments beyond the most relevant one may introduce 480

noise or less pertinent information. Furthermore, 481

the marginal gains observed when moving from 482

Top-1 to Top-5 are minimal, which underscores the 483

diminishing returns of adding more documents. In 484

summary, utilizing the Top-1 document emerges as 485

the most cost-effective approach, offering a balance 486

between computational efficiency and accuracy. 487

Superiority Over UPR. As illustrated in the Ta- 488

ble 2 and 3, the UR3 method substantially en- 489

hances the performance of QA tasks, achieving 490

superior EM and F1 scores compared to the UPR 491

method. Furthermore, this improvement trend is 492

consistent with the enhancements observed during 493

the re-ranking phase. 494

Outliers on DPR. In Table 1, it is notewor- 495

thy that the highest scores (indicated in red) are 496

achieved by the original DPR method on the Mis- 497

tral and Gemma models. This is explainable given 498

that both UPR and UR3 exhibit inferior re-ranking 499

performance compared to DPR for the Top-1 re- 500

sults. However, when employing the LLaMA2-13B 501

model, it demonstrates superior QA performance 502

relative to the DPR. This improvement can be at- 503

tributed to the strategic use of a generative model 504

with a distribution similar to that of the re-ranker 505

(e.g., within the same LLaMA2 series) in a QA task. 506

In UR3, maximizing the probability of document 507
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Figure 4: Distributed correlation in answer generation
with normalized NLL in the QA task.

generation has a benefit to selecting documents that508

closely align with the model’s distribution. Such509

alignment significantly enhances the model’s re-510

liance on external documents, thereby boosting the511

overall performance of the QA task.512

4.3.2 Analysis on the DPR results513

We conduct empirical analysis for the improved514

performance on DPR retriever with LLaMA2-13B.515

Figure 4 presents the distributed correlation in516

answer generation with normalized negative log-517

likelihood loss of the QA task. When the gener-518

ation probability is high, the corresponding loss519

is low. The left panel displays the distribution of520

answer NLL values. The middle and right panels521

feature scatter plots that illustrate the relationships522

between document generation NLL (doc NLL) and523

query generation NLL (query NLL) during the re-524

ranking phase. Both scatter plots include a regres-525

sion line, indicating that, compared to query loss,526

document loss shows a positive correlation. This527

suggests that higher generation probabilities for528

documents increase the likelihood of generating the529

correct answer. This finding aligns with our under-530

standing that selecting documents closely matching531

the model’s distribution can enhance the model’s532

receptivity to external documents.533

4.4 Accuracy and Efficiency Comparison534

In this section, we evaluate the impact of the num-535

ber of document candidates to be re-ranked on both536

retrieval performance and computational efficiency.537

The evaluation is conducted using the NQ test set.538

We re-rank up to the Top-100 documents obtained539

from the BM25 retriever and measure performance540

using Top-1 accuracy.541

In Figure 5, as the number of re-ranked docu-542

ments increases, both UR3 and UPR exhibit im-543

provements in Top-1 accuracy. UR3 consistently544

outperforms UPR across all document counts,545

achieving higher Top-1 accuracy. On the other546

Number of Re-ranked DocumentsTime / Query
/ A100 GPU
(in seconds) 100502010

2.36941.11400.47650.2233UPR
2.38391.12820.48720.2285UR!

Figure 5: Effect of the number of document candidates
on Top-1 accuracy and calculation efficiency when re-
ranked with LLaMA2-7B model. Evaluation is done on
the NQ test set using BM25 retrieved documents.

hand, the computational time per query increases 547

linearly with the number of re-ranked documents 548

for both methods. Despite the increase in computa- 549

tional time, UR3 maintains a similar computational 550

demand compared to UPR. 551

In conclusion, the results clearly show that UR3 552

significantly enhances performance without incur- 553

ring additional computational time, which shows 554

the superiority of our method. 555

5 Conclusion 556

In this study, we introduced the UR3 framework, 557

which utilizes Bayesian decision theory to address 558

the estimation bias in QLMs based on LLMs. The 559

novelty of UR3 lies in its approach to unify the 560

probabilities of query and document generation 561

under a risk minimization framework, thereby en- 562

hancing the efficiency of document ranking and 563

question answering. 564

Our experimental results demonstrate that UR3 565

significantly improves re-ranking performance, es- 566

pecially in terms of Top-1 accuracy. In open- 567

domain question-answering tasks, UR3 contributes 568

to achieving higher accuracy with reduced reliance 569

on the number of input documents. 570

Limitations 571

• This paper observes relatively minor improve- 572

ments when ranking is extended to Top-20 573

or Top-50, marking a principal limitation. 574

However, a longer context does not neces- 575

sarily equate to superior performance for the 576

LLMs (Liu et al., 2024), which have also 577

been discussed in Section 4.3.1. Our method 578

achieves a substantial improvement in Top-1 579
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accuracy with comprehensive analysis, which580

provides optimal cost-effectiveness.581

• A limitation of UR3 is that re-ranking a large582

pool of document can have a high latency as583

it involves performing cross-attention whose584

complexity is proportional to the product of585

the question and document tokens and the586

number of layers of the LLM. We have also587

discussed this quantitatively in Section 4.4.588

• UR3 also shares the inherent limitation asso-589

ciated with all the re-ranking approaches in590

that its maximum possible performance is de-591

pendent on the first-stage retrieval.592
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A Bayes Decision Theory880

A possible action of the re-ranking process involves881

reordering the document subset C to ensure that a882

document containing the correct answer is ranked883

as highly as possible.884

In the general framework of Bayesian deci-885

sion theory, each action a is associated with886

a loss L(a, θ), which depends upon θ ≡887

(θQe , {θD}k, {θ′D}k), including the query lan-888

guage model, document language models and es-889

timated models based on a LLM. Based on the890

Figure 2, a possible action is to return a single doc-891

ument a = d, and the loss function depends on892

θQe , θD and θ′D, the expected risk of action a can893

be formulated as:894

R(d;q)
def
= R(a = d | U,q,S, C, θ′) =895 ∫

θQe

∫
Θ′

D

∫
ΘD

L(θQe , θ
′
D, θD)p(θQe | q,U)896

× p(θ′D | d, θ′) p(θD | d,S), dθQedθ
′
D dθD897

Instead of explicitly computing the parameter dis-898

tributions, the value can be approximated at the899

posterior mode as follows:900

R(d;q) ∝ L(θ̂q, θ
′
D, θ̂d)p(θ̂q | q,U)(θ̂d | d,S)901

where the distribution of θ′D is determined by the902

document d with LLM θ′ as p(d; θ′), thereby the903

posterior of p(θ′D) is a point mass distribution. And904

θ̂q = argmax
θQe

p(θQe | q,U)905

θ̂d = argmax
θD

p(θD | d,S)906

Based on the prior assumption in the QLM that907

the document prior p(d) is uniform, we can infer908

that p(θ̂d|d,S) is the same for all d. For a specific909

query, the posterior distribution of the query model910

can also be dropped, because it is unrelated to the911

ranking of documents.912

Hence, the formula of risk can be simplified as:913

R(d;q) ∝ L(θ̂q, θ
′
D, θ̂d)914

To summarize, the document set C is represented915

through a series of k sequential decisions. This pro-916

cess yields a list of documents ranked in ascending917

order according to the R(d;q). A smaller loss L918

means a better ranking for the document.919

B Distance-based Loss Function 920

KL framework of QLM. The loss is calculated
as:

L(θQe , θD) ∝ KL[P (θQe)||P (θD)]

The relevance value of a document with respect 921

to a query is measured by the distance between 922

two models. It is calculated by the KL divergence 923

from the document model distribution P (θD) to 924

the query model distribution P (θQe).

Figure 6: The estimation in QLM

925

KL framwork of UR3. Based on the QLM 926

framework, the calculation of L(θQe , θD, θ
′
D) aims 927

to measure the distance between the actual query 928

and document model distributions through a LLM. 929

It can be interpreted as the proportional sum of 930

the distance between the document model θD and 931

the estimated model θ′D, and the distance from the 932

estimated model θ′D to the query model θQe . We 933

consider the two estimations are independent (left 934

and right items in Figure 7), then we approximate 935

the distance in QLM as the sum of the following 936

items: 937

L(θQe , θD, θ
′
D) 938

= c · KL[P (θQe ||P (θD)] 939

≈ c1 · KL[P (θQ) ∥ P (θ′D)] + c1 · KL[P (θD) ∥ P (θ′D))] 940

where c, c1 and c2 are scale factors. 941

Figure 7: The estimations in UR3

C Detailed Derivation 942

C.1 Probability of Query Generation 943

According to Lafferty and Zhai (2001), when the 944

θ̂q is considered as the empirical distribution of the 945

query q = q1q2 . . . qm; that is, 946

p(w | θ̂q) = − 1

m

m∑
i=1

δ(w, qi) 947

12



where, δ is the indicator function, then we obtain948

∆(θ̂q, θ
′
D)

def
= KL[ p(θ̂q) ∥ p(θ′D) ]949

=
∑
w

p(w | θ̂q) log
p(w | θ̂q)
p(w | θ′D)

950

∝ −
∑
w

p(w | θ̂q) log p(w | θ′D) + cq951

∝ − log p(q | θ′D) + cq952

∝ − 1

m

m∑
i=1

log p(qi | q<i,d; θ
′)953

where the constant cq presents the entropy of the954

query model. This is precisely the log-likelihood955

criterion that has been in used in all work on the956

language modeling of query generation approach.957

C.2 Evidence Lower Bound (ELBO)958

Here we view p(θ̂d) and p(θ′ | d) as two distribu-959

tions across the space of θ. And we denote the dis-960

tribution p(θ̂d) as q(θ) and p(θ′ | d) as p(θ′ | d),961

thus962

KL[ p(θ̂d) ∥ p(θ′ | d)]963

= KL(q(θ) ∥ p(θ | d))964

= −
∫

q(θ) log
p(θ | d)
q(θ)

dθ965

=

∫
q(θ) log q(θ) dθ −

∫
q(θ) log p(θ | d) dθ966

= Eq[log q(θ)]− Eq[log p(θ | d)]967

= Eq[log q(θ)]− Eq

[
log

p(d, θ)

p(d)

]
968

= Eq[log q(θ)]− Eq[log p(d, θ)] + log p(d)969

= −ELBO(θ) + log p(d)970

Then971

ELBO(θ)972

= Eq[log p(d, θ)]− Eq[log q(θ)]973

= Eq[log p(d | θ)p(θ)]− Eq[log q(θ)]974

= Eq[log p(d | θ)] + Eq[log p(θ)]− Eq[log q(θ)]975

= Eq[log p(d | θ)] + Eq

[
log p(θ)

log q(θ)

]
976

= Eq[log p(d | θ)] +
∫

q(θ)
log p(θ)

log q(θ)
dθ977

= Eq[log p(d | θ)]− KL[ q(θ)∥p(θ)]978

≈ log p(d | θ′)− KL[ p(θ̂d) ∥ p(θ′)]979

where the expectation of the term Eq[log p(d | θ)]980

employs the generation probability on LLM θ′ as981

log p(d | θ′) to minimize computational costs.982

D Query Generation Instruction 983

The query generation instruction (Sachan et al., 984

2021) uses the log-probability of the query. 985

Please write a question based on this pas-
sage.
Passage: {{passage}}
Question: {{query}}

986

Document Generation. Specifically, when cal- 987

culating the probability of document generation, 988

we compute the negative log loss using the docu- 989

ment portion prior to the output query under the 990

current prompt. This approach synchronizes the 991

computation of the query and the document within 992

the same output, significantly reducing computa- 993

tional costs. 994

E Performance on BEIR Benchmark 995

To evaluate the generalization of our method, we 996

conducted experiments a popular subset of the 997

BEIR benchmark dataset (Thakur et al., 2021). 998

The evaluation metrics employed are Top-1 accu- 999

racy and nDCG@10, the official metric for the 1000

BEIR benchmark. For a fair comparison, all the re- 1001

rankers consider the Top 100 documents retrieved 1002

by Contriever. The results are shown in Table 4. 1003

In summary, the results demonstrate the effec- 1004

tiveness of UR3 as the average Top-1 accuracy 1005

improves by 4.39% and the NDCG@10 scores im- 1006

prove by 2.37%. Due to the diversity in datasets, 1007

there is a considerable variation in performance 1008

gains across them. UR3 achieves the highest 1009

relative performance improvements on datasets 1010

such as Trec-Covid, NQ, Touche-2020 and DBpe- 1011

dia. These datasets typically involve information- 1012

seeking questions, which benefit significantly from 1013

our advanced re-ranking method. 1014

We also observe a decline in performance on the 1015

FIQA, ArguAna, and Scidocs datasets, each char- 1016

acterized by high average document lengths. This 1017

suggests that these datasets contain more complex 1018

and extensive information, which could be chal- 1019

lenging for UR3 to process effectively, since the 1020

UR3 might struggle with effectively calculating 1021

the estimation bias among documents with such 1022

complexity, causing a drop in performance. Addi- 1023

tionally, the Finance and Science domains might 1024

pose specific challenges that UR3 is not optimized 1025

for. 1026
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Dataset
Top-1 NDCG@10

Original UPR UR3 Original UPR UR3

NQ 22.16 32.38 37.67 23.19 35.58 38.64
HotpotQA 53.37 84.35 86.02 60.60 85.74 87.43
FIQA 21.14 40.43 39.66 29.16 48.50 48.16
MS-Marco 8.70 11.92 12.16 20.68 27.26 27.41
Trec-Covid 44.00 64.00 72.00 33.43 62.22 66.77
Touche-2020 22.49 10.23 30.64 23.89 19.68 27.03
ArguAna 0.00 9.72 7.33 0.31 28.38 22.91
DBpedia 48.25 43.00 50.75 37.64 40.37 44.65
Fever 52.51 41.13 48.23 70.33 53.32 60.14
Climate-Fever 12.64 7.88 12.18 20.68 15.18 21.04
Scifact 51.71 54.33 55.72 65.04 64.78 65.43
Scidocs 18.67 21.32 21.04 23.81 32.04 31.80

Average 29.63 35.06 39.45 34.06 42.75 45.12

Table 4: Re-ranking results on the Top100 documents
retrieved by Contriever on BEIR benchmark (Thakur
et al., 2021). On average, the performances improve
both on the Top-1 accuracy and NDCG@10 metrics.
The drop in some datasets is highlighted in red.

F Re-ranking on Mistral-7B and1027

GPT-Neo-2.7B models1028

As illustrated in Table 5 and 6, the results demon-1029

strate that UR3 enhances the overall rankings of the1030

Top-100 documents both on the Mistral and GPT-1031

Neo models. The improvements of our method1032

are observed across all nDCG@K metrics, indicat-1033

ing that UR3 prioritizes relevant documents more1034

effectively compared to the UPR method.1035
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Figure 8: Complete results of Distribution on Top-1

The Figure 8 presents the complete results of the1037

scatter plot in Figure 3c, which that statistically cat-1038

egorizes the relevant documents at the Top-1 rank,1039

comparing UPR and UR3. The class 0 denotes a1040

correct calibration where an irrelevant document1041

ranked by UPR is adjusted to a relevant one at the1042

Top-1 rank. The class 1 denotes a incorrect calibra-1043

tion from relevant document to irrelevant one. The1044

class 2 denotes the correct results on both methods,1045
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Figure 9: Comparative effects of the hyperparameter on
nDCG@K across different datasets. Evaluation is done
on the Contriever retrieved documents.

while class 3 representes the incorrect results on 1046

both models. 1047

H Discussion on Hyperparameters 1048

Here we display the detailed results about hy- 1049

perparameter α analysis on different datasets of 1050

LLaMA2-7B model with nDCG@K metrics. 1051

As depicted in Figure 9a and 9b, our analysis 1052

reveals that a hyperparameter setting of α = 0.25 1053

consistently yields robust enhancements compared 1054

to other evaluated values. While the highest ob- 1055

served NDCG@1 on the WebQ dataset exceeds 1056

0.25, the overall performance metrics substantiate 1057

that 0.25 remains the optimal choice. Consequently, 1058

this hyperparameter configuration is adopted across 1059

all experimental evaluations. 1060

I More Experiments on QA Task 1061

We conduct inference on the re-ranking results 1062

of Mistral-7B in Table 7. The UR3 method sub- 1063

stantially enhances the performance of QA tasks, 1064

achieving superior EM and F1 scores compared 1065

to the UPR method on Mistral model. While 1066

DPR method has better performances on NQ and 1067

WebQ datasets for LLaMA2-13B and Gemma-7B, 1068

this trend is consistent with the analysis in Sec- 1069

tion 4.3.2. 1070
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Contriever BM25 MSS DPR

Datasets Metric Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3

NQ

Top-1 22.16 32.63 38.61 22.11 32.55 37.89 19.28 32.60 37.04 46.34 37.65 43.30
Top-5 47.26 61.91 64.82 43.77 60.36 63.24 41.25 59.72 61.75 68.28 68.73 72.27
Top-20 67.87 75.57 76.76 62.94 72.77 73.52 59.97 71.25 71.61 80.06 81.99 82.77

nDCG@1 22.16 32.63 38.61 22.11 32.55 37.89 19.28 32.60 37.04 46.34 37.65 43.30
nDCG@5 21.70 33.67 38.21 21.63 34.02 38.03 18.97 34.53 37.90 40.62 38.37 43.21
nDCG@20 26.15 39.02 42.66 25.75 39.57 42.34 22.88 39.43 41.81 42.42 44.32 47.85

MAP@100 20.71 31.65 35.06 20.78 32.36 35.02 18.11 32.41 34.77 34.89 36.34 39.54

WebQ

Top-1 19.98 28.44 33.37 18.90 29.08 33.61 11.66 27.31 30.12 44.83 39.03 43.06
Top-5 43.45 56.25 60.86 41.83 54.13 55.95 29.04 49.56 51.13 65.01 66.58 67.96
Top-20 65.70 72.39 73.67 62.40 68.80 69.54 49.21 62.89 62.50 74.61 76.57 77.17

nDCG@1 19.98 28.44 33.37 18.90 29.08 33.61 11.66 27.31 30.12 44.83 39.03 43.06
nDCG@5 18.64 27.88 31.47 19.36 28.26 31.47 11.57 27.36 29.53 39.76 39.14 41.07
nDCG@20 22.22 31.70 34.59 22.12 32.01 34.15 14.84 32.97 34.16 38.95 42.16 43.39

MAP@100 18.79 26.31 28.49 19.15 26.98 28.59 12.03 26.72 28.08 33.32 36.63 37.53

TriviaQA

Top-1 34.16 52.63 56.07 46.30 55.48 58.24 30.76 52.87 55.00 57.47 62.48 63.99
Top-5 59.49 73.99 74.75 66.28 75.42 75.89 52.65 70.64 71.05 72.40 79.08 79.04
Top-20 73.91 79.83 80.25 76.41 80.77 80.87 67.18 76.31 76.34 79.77 83.13 83.09

nDCG@1 34.16 52.63 56.07 46.30 55.48 58.24 30.76 52.87 55.00 57.47 62.48 63.99
nDCG@5 30.46 49.63 51.78 41.60 53.35 55.17 27.78 50.64 52.04 49.69 59.60 60.31
nDCG@20 31.78 51.10 52.61 40.68 54.72 55.88 29.25 53.22 54.10 46.33 60.05 60.27

MAP@100 26.61 44.86 46.06 34.85 49.36 50.36 24.02 47.12 47.95 39.40 54.25 54.46

Table 5: Re-ranking results on the test set of datasets of the Top-100 retrieved documents with the Mistral-7B model.
The best results are highlighted in bold.

Contriever BM25 MSS DPR

Datasets Metric Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3 Orig. UPR UR3

NQ

Top-1 22.16 29.86 34.02 22.11 29.83 33.77 19.28 30.78 33.63 46.34 36.48 40.64
Top-5 47.29 57.45 59.72 43.77 56.34 58.31 41.25 56.34 57.92 68.28 66.90 68.70
Top-20 67.87 74.16 74.65 62.94 71.63 71.69 59.97 69.86 69.86 80.06 81.16 81.99

nDCG@1 22.16 29.86 34.02 22.11 29.83 33.77 19.28 30.78 33.63 46.34 36.48 40.64
nDCG@5 21.70 30.93 33.58 21.63 31.32 33.55 18.97 32.06 34.07 40.62 37.34 39.87
nDCG@20 26.15 35.97 37.99 25.75 36.65 38.27 22.88 36.99 38.23 42.42 42.43 44.39

MAP@100 20.71 29.17 30.92 20.78 30.11 31.48 18.11 30.39 31.49 34.89 34.86 36.43

WebQ

Top-1 19.98 26.13 28.40 18.90 27.21 29.82 11.66 25.39 28.00 44.83 36.86 39.62
Top-5 43.45 54.53 57.33 41.83 52.51 52.95 29.04 49.26 50.49 65.01 63.73 65.70
Top-20 65.70 71.36 72.74 62.40 68.01 68.26 49.21 62.16 62.20 74.61 75.74 76.23

nDCG@1 19.98 26.13 28.40 18.90 27.21 29.82 11.66 25.39 28.00 44.83 36.86 39.62
nDCG@5 18.64 25.72 28.28 19.36 26.51 28.58 11.57 25.97 27.71 39.76 36.46 38.25
nDCG@20 22.22 29.73 31.70 22.12 30.27 31.68 14.84 31.40 32.33 38.95 39.89 40.78

MAP@100 18.79 24.62 26.08 19.15 25.69 26.79 12.03 25.18 25.91 33.32 34.87 35.34

TriviaQA

Top-1 34.16 51.22 53.50 46.30 53.81 55.87 30.76 50.85 52.14 57.47 59.52 60.02
Top-5 59.49 71.74 71.93 66.28 74.05 74.30 52.65 69.00 69.39 72.4 76.93 77.18
Top-20 73.91 79.02 78.98 76.41 80.24 80.08 67.18 75.48 75.51 79.77 82.44 82.53

nDCG@1 34.16 51.22 53.50 46.30 53.81 55.87 30.76 50.85 52.14 57.47 59.52 60.02
nDCG@5 30.46 47.26 48.61 41.60 51.36 52.45 27.78 48.40 49.22 49.69 59.21 56.57
nDCG@20 31.78 48.02 48.82 40.68 52.37 52.71 29.25 50.54 51.05 46.33 56.52 56.67

MAP@100 26.61 41.77 42.77 34.85 46.82 46.86 24.02 44.33 44.80 39.40 50.74 50.88

Table 6: Re-ranking results on the test set of datasets of the Top-100 retrieved documents with the GPT-Neo-2.7B
model. The best results are highlighted in bold.
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Model LLaMA2-13B Mistral-7B Gemma-7B

NQ WebQ TriviaQA NQ WebQ TriviaQA NQ WebQ TriviaQA
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Contriever 22.02 29.11 19.69 30.21 49.90 57.08 20.69 26.61 14.37 24.39 49.89 56.94 17.40 25.13 14.71 26.05 45.54 53.66
+ UPR 28.56 36.81 21.80 33.18 59.06 67.23 25.29 32.30 16.78 26.67 59.35 67.01 22.11 30.70 15.00 26.95 55.78 64.67
+ UR3 29.00 37.39 22.54 34.47 59.43 67.69 25.93 32.98 17.42 27.77 59.32 67.13 23.02 31.27 15.60 27.04 55.89 64.96

BM25 20.20 27.08 16.39 26.60 55.21 62.91 19.14 25.31 13.29 23.03 54.91 62.15 16.40 23.84 12.35 22.84 52.34 60.89
+ UPR 27.62 35.63 19.59 30.25 62.25 70.27 24.32 31.10 15.55 25.30 62.50 69.88 22.52 31.09 14.12 25.22 59.52 68.23
+ UR3 29.06 36.82 20.67 31.81 62.50 70.59 25.37 32.24 15.85 25.71 62.61 70.02 22.99 31.45 14.42 25.05 59.66 68.32

MSS 19.86 26.16 16.83 27.94 49.29 56.03 18.20 24.28 13.98 23.79 48.41 55.22 14.38 21.44 12.20 22.91 43.56 51.54
+ UPR 26.70 34.61 20.77 31.58 57.94 65.94 24.04 30.88 16.04 26.24 58.09 65.76 20.94 29.40 14.35 26.79 54.42 63.08
+ UR3 27.95 35.75 21.80 32.99 58.23 66.20 24.27 31.03 16.54 26.64 58.11 65.86 22.11 30.22 14.76 26.58 54.30 63.28

DPR 30.30 38.42 22.79 34.36 55.33 62.96 28.17 34.9 18.21 28.55 55.03 62.24 24.43 33.14 16.68 28.00 50.76 59.59
+ UPR 30.86 37.93 21.78 33.74 60.61 68.79 26.65 34.01 17.42 27.90 60.53 68.54 23.43 32.44 17.22 28.54 57.27 66.16
+ UR3 30.97 38.38 22.75 35.50 60.98 69.21 28.20 34.94 18.40 28.57 60.69 68.74 24.10 33.07 16.44 28.02 57.30 66.21

Table 7: EM and F1 scores for the open-domain QA task. We perform inference with the re-ranked Top-1 results of
Table 5. The best performing models are highlighted in bold.
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