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Abstract
We study how multi-head softmax attention mod-
els are trained to perform in-context learning on
linear data. Through extensive empirical exper-
iments and rigorous theoretical analysis, we de-
mystify the emergence of elegant attention pat-
terns: a diagonal and homogeneous pattern in
the key-query weights, and a last-entry-only and
zero-sum pattern in the output-value weights. Re-
markably, these patterns consistently appear from
gradient-based training starting from random ini-
tialization. Our analysis reveals that such emer-
gent structures enable multi-head attention to ap-
proximately implement a debiased gradient de-
scent predictor — one that outperforms single-
head attention and nearly achieves Bayesian opti-
mality up to proportional factor. We also extend
our study to scenarios with anisotropic covariates
and multi-task linear regression. Our results re-
veal that in-context learning ability emerges from
the trained transformer as an aggregated effect of
its architecture and the underlying data distribu-
tion, paving the way for deeper understanding and
broader applications of in-context learning. Our
code is available at https://github.com/
XintianPan/ICL_linear.

1. Introduction
Large language models (LLMs) built on transformer ar-
chitectures (Vaswani, 2017) have revolutionized artificial
intelligence research. A key capability of these models
is their ability to perform in-context learning (ICL) (Dong
et al., 2022; Brown et al., 2020), which refers to learning and
adapting to new tasks or concepts simply by being provided
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with a few examples or instructions within the input con-
text, without the need for explicit retraining or fine-tuning.
Unlike traditional approaches that rely on extensive fine-
tuning, ICL enables LLMs to infer patterns directly from
input sequences and generalize to unseen examples in a
single forward pass (Huang et al., 2022). This emergent be-
havior is largely attributed to the self-attention mechanisms
in transformers, which allow the models to dynamically cap-
ture intricate relationships within the data. Recently, there
has been growing interest in exploring transformer-based
ICL in structured learning settings, such as linear regression,
using synthetic data (Bai et al., 2024; Akyürek et al., 2022;
Ahn et al., 2023a; Fu et al., 2023; Mahankali et al., 2023).
These studies not only shed light on the inner workings
of transformers but also deepen our understanding of their
statistical properties and optimization dynamics, offering a
foundation for more interpretable and efficient AI systems.

Prior work has extensively studied how transformers per-
form in-context learning for linear regression, exploring
various attention architectures and learning strategies. It
has been shown that single-head linear attention effectively
implements preconditioned gradient descent on linear data
(Zhang et al., 2024; Von Oswald et al., 2023; Akyürek et al.,
2022). This analysis has been extended to single-head soft-
max transformers (Li et al., 2024a; Huang et al., 2023) as
well as multi-head attention models (Chen et al., 2024a;c;
Deora et al., 2023; Kim & Suzuki, 2024). Beyond linear
regression, recent studies have investigated how transform-
ers learn feature representations in more complex settings,
extending in-context learning to nonlinear data distributions
(Huang et al., 2023; Yang et al., 2024; Kim & Suzuki, 2024;
Chen et al., 2024b).

Despite significant progress in understanding transformer-
based in-context learning (ICL), critical gaps persist in
characterizing the training dynamics of multi-head softmax
transformers for these tasks. While prior work has yielded
insights under constrained theoretical regimes—including
the neural tangent kernel (NTK) framework (Deora
et al., 2023), mean-field approximations (Kim & Suzuki,
2024), and specialized initialization protocols (Chen et al.,
2024a)—fundamental questions about their broader behav-
ior remain unanswered:
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(a) Learned Weights of 2-Head Attention. (b) Training Dynamic of Attention Weights.

Figure 1. Visualization of main results. Panel (a) presents the heatmaps of 2-head attention matrices trained over d = 5, L = 40. The
trained model learns one positive and one negative head. KQ and OV share the same sign for each head, while the parameter scaling is
homogeneous across heads. Panel (b) plots the dynamics of average diagonal values in KQ matrices and the last entry of OV vectors for a
2-head attention model along the training, zooming into the opposite pattern.

(i) How do the weights of randomly initialized multi-head
softmax transformers evolve during training on linear
ICL tasks?

(ii) What is the final learned transformer model and what
are its statistical properties under standard training?

(iii) Does multi-head attention confer measurable advan-
tages over single-head architectures for linear tasks?

(iv) Does softmax attention outperform linear attention in
linear ICL—particularly given the latter’s proven equiv-
alence to gradient-based optimization (e.g., Von Os-
wald et al., 2023)?

(v) How do the insights from linear ICL with isotropic
covariates extend to scenarios involving anisotropic
covariates or multiple linear regression tasks?

We answer these questions through both empirical and theo-
retical analysis of training a multi-head softmax transformer
on linear regression task. We characterize the training dy-
namics, demystify the emergence of distinct weight patterns
in learned models, and elucidate the underlying mechanisms.
We summarize our contributions as follows.

(i) We empirically analyze the training dynamics of a
multi-head softmax transformer on a single linear re-
gression task. We find that in each head, the key-query
(KQ) and output-value (OV) matrices exhibit a univer-
sal structure that implements a kernel regressor, where
the kernel is determined by the query and covariates.

(ii) We identify two global patterns emerging: (a) The KQ
weight matrices develop a diagonal structure for the
block associated with the covariates and the query. (b)
The diagonal entries of the KQ weights and the effec-
tive OV weights share the same sign. These patterns
lead to the automatic grouping of positive and negative
heads, allowing the model to effectively capture both
positive and negative components. See Figure 1.

(iii) In the trained model, the diagonal KQ weights across
all heads are nearly homogeneous in magnitude, and
the average effective OV weight is approximately zero.
We provide theoretical insights into how these patterns
emerge through training dynamics.

(iv) We discover the positive and negative heads jointly
approximate a one-step debiased gradient descent—
letting multi-head transformers outperform single-head
models on linear ICL—and the learned model is prov-
ably nearly Bayesian-optimal up to a constant factor.

(v) Furthermore, we show that softmax attention outper-
forms linear attention in linear ICL tasks, as it learns
an algorithm that successfully generalizes to longer
sequences at test time.

(vi) We extend our analysis to anisotropic covariates and
multi-task settings. In the anisotropic case, we find that
the learned model s the learned model implements a
pre-conditioned version of debiased gradient descent.
In the multi-task setting, the model behavior depends
on the task-to-head ratio. Interestingly, when the num-
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ber of tasks exceeds the number of heads but remains
below twice that number, we observe a superposition
phenomenon, where individual heads encode multiple
tasks simultaneously.

Related Work. Several works have probed transformers
on linear-regression tasks to elucidate their ICL capabilities.
Empirically, Garg et al. (2022) demonstrate near Bayes-
optimal performance, and Von Oswald et al. (2023) show
that a simplified linear transformer implements a gradient-
based inference algorithm. Theoretically, one-layer linear
attention provably learns preconditioned gradient descent
via training dynamics analysis in Zhang et al. (2024) and
loss-landscape analysis in Ahn et al. (2023a). Chen et al.
(2024a) provide the first insight into the standard softmax
attention, proving convergence to a kernel regressor under
specified initialization. In addition, Bai et al. (2024) char-
acterizes the expressive power of transformers for various
linear regression algorithms. Extensions to more complex
settings include two-stage least squares for endogeneity
(Liang et al., 2024), adaptive sparse regression (Chen et al.,
2024c), EM-based mixture modeling (Jin et al., 2024), multi-
step gradient-descent (Gatmiry et al., 2024), and analyses
of the nonlinear softmax component in regression tasks
(Aksenov et al., 2024; Sun et al., 2025).

More related works and notation is provided in §A.

2. Preliminaries
We consider the setting of training transformers over the
task of in-context linear regression, following the framework
widely considered in literature (e.g., Garg et al., 2022).

Data Distribution and Embedding. Let xℓ ∈ Rd denote
the ℓ-th covariate i.i.d drawn from a distribution Px and
let xq

i.i.d.∼ Px represent a new test input. The coefficient
β ∈ Rd is sampled from Pβ , and the corresponding response
is generated as yℓ = β⊤xℓ + ϵℓ, where the noise ϵℓ i.i.d
sampled from N (0, σ2). To perform ICL, we embed the
dataset {(xℓ, yℓ)}ℓ∈[L] along with the test input xq ∼ Px

into a sequence Zebd ∈ R(d+1)×(L+1), formatted as follows:

Zebd =
[
Z zq

]
=

[
x1 x2 . . . xL xq
y1 y2 . . . yL 0

]
, (2.1)

where we also denote by X = [x1, x2, . . . , xL]
⊤ ∈ RL×d

and y = [y1, y2, . . . , yL]
⊤ ∈ RL. In this paper, we focus

on the isotropic case where Px = N (0, Id) and Pβ =
N (0, Id/d), and the non-isometric cases are in §B.3.

Multi-Head Softmax Attention. The attention model is
a sequence-to-sequence model that takes Zebd as input and
outputs a sequence of the same shape. We focus on the
one-layer softmax attention with H heads, parametrized by

θ = {O(h), V (h),K(h), Q(h)}h∈[H] ⊆ R(d+1)×(d+1):

TFθ(Zebd) = Zebd +

H∑
h=1

O(h)V (h)Zebd

· smax ◦ msk
(
Z⊤
ebdK

(h)⊤Q(h)Zebd

)
, (2.2)

where smax(·) denotes the column-wise softmax opera-
tion and msk(·) dontes the element-wise causal mask, i.e.,
msk(·)ij = 1(i < j) − ∞ · 1(i ≥ j). Since the (K,Q)
and (O, V ) matrices always appear in tandem, we simplify
the notation by grouping them into single matrices KQ
and OV , respectively (Elhage et al., 2021). Following the
embedding in (2.1), we extract the prediction ŷq from the
(d + 1, L + 1)-th entry. The goal is to estimate the con-
ditional expectation E[yq |xq] = β⊤xq. Accordingly, we
define the model output as

ŷq := ŷq(xq; {(xℓ, yℓ)}ℓ∈[L]) = TFθ(Zebd)d+1,L+1 ∈ R.

Compared to the standard decoder-only transformer model
(e.g., Vaswani, 2017), we omit layer normalization and posi-
tional embeddings. This choice arises because a single-layer
architecture does not suffer from vanishing or exploding gra-
dients. In addition, the associated linear regression problem
is permutation-invariant in {(xℓ, yℓ)}ℓ∈[L], making posi-
tional information unnecessary.

KQ and OV Circuits. Note the computation in (2.2) only
depends on matrix products K(h)⊤Q(h) and O(h)V (h) re-
spectively. Following Elhage et al. (2021), we refer to these
matrices as the KQ and OV circuits and simplify the nota-
tion as KQ(h) = K(h)⊤Q(h) and OV (h) = O(h)V (h). In
specific, KQ circuits characterize to what extent a query
token attends to a key token, and OV circuits determine how
a token contributes to the output when attended to.

Notice that the last entry of zq is zero and we use the last
row of O(h) to get ŷq. Thus, in terms of computing ŷq, we
can write the KQ and OV circuits as

KQ(h) =

[
KQ

(h)
11 ∗

KQ
(h)
21 ∗

]
, OV (h) =

[
∗ ∗

OV
(h)
21 OV

(h)
22

]
.

Here we use “∗” to denote the entries that do not affect ŷq.
In the above two-by-two block matrix format, the top-left
blocks are d-by-d matrices. See Figure 6 for a complete
depiction of the transformer architecture.

Training Setup. To investigate how transformers learn
to solve the linear regression problem in context during
pretraining, we examine both the training dynamics and loss
landscape. Specifically, we train the model by minimizing
the population mean-squared error:

L(θ) = E(ŷq) = E[(yq − TFθ(Zebd)d+1,L+1)
2], (2.3)
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where the expectation is taken w.r.t β ∼ Pβ and (xℓ, yℓ)
i.i.d.∼

Px ⊗ Py|x(·;β) for all ℓ ∈ [L] ∪ {q}.

3. Empirical Insights
Although previous studies have explored how transformers
perform ICL under the linear regression framework, much
of this research has been limited to experimental analyses
(Garg et al., 2022), linear transformers (Von Oswald et al.,
2023), or single-head attention (Huang et al., 2023). This
leaves a gap in understanding multi-head softmax attention
models, which are used in practice. To this end, we first
conduct experiments to empirically investigate how multi-
head softmax attention models learn to solve ICL with linear
data. See §C.1 for experimental setup and additional results.

Observation 1. For any number of heads with H ≥ 1, in
the trained one-layer multi-head attention model, the KQ
and OV circuits take the following form:

KQ(h) =

[
ω(h)Id ∗
0⊤
d ∗

]
, OV (h) =

[
∗ ∗
0⊤
d µ(h)

]
. (3.1)

Moreover, KQ and OV share the same signs within each
head, i.e., sign(ω(h)) = sign(µ(h)). We refer to this prop-
erty as sign-matching. In some cases, dummy heads may
emerge, where ω(h) ≈ 0 and µ(h) ≈ 0. Notably, these
patterns develop early in training and remain consistent
throughout the optimization process.

We illustrate the KQ and OV circuit patterns for both one-
head and two-head attention models in Figures 2a and 1a,
respectively. For the OV circuits, we only plot the transpose
of the last rows, i.e., OV (h)

21 and OV (h)
22 . These figures show

that the trained multi-head softmax attention models with
various numbers of heads exhibit a consistent pattern:

(a) For each KQ circuit, the top-left d-by-d submatrix is
diagonal and proportional to an identity matrix, i.e.,
KQ

(h)
11 = ω(h) · Id for some ω(h) ∈ R. Moreover, the

first d entries of the last row are all approximately zero,
i.e., KQ(h)

21 = 0⊤.
(b) The last column of each OV circuit, as a vector in Rd+1,

admits a last-entry-only pattern. That is, only the last
entry is non-zero, which is given by µ(h) ∈ R.

(c) We observe that µ(h) and ω(h) always have the same
sign. Thus, each head can be categorized into either
a positive or negative head, depending on the sign
of ω(h). Positive and negative heads are defined as
H+ = {h : ω(h) > 0} andH− = {h : ω(h) < 0}.

The pattern of KQ and OV circuits shows that the weight
matrices of the learned transformer essentially are gov-
erned by 2H numbers µ = (µ(1), . . . , µ(H))⊤ and ω =

(a) Learned Weights of Single-head Attention.
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(b) 4-Head KQ Dynamics.
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(c) 4-Head OV Dynamics.

Figure 2. Learned pattern of single-head attention and training
dynamics of 4-head model. Panel (a) plots the heatmap of 1-head
attention trained under the same setting as in Figure 1a. Panel
(b), and (c) plot the dynamics of average diagonal values in KQ
matrices and the last entry of OV vectors for a 2-head attention
model along the training. Head 2 is the positive head, Head 1&4
are coupled to act as the negative head, and Head 3 is dummy.

(ω(1), . . . , ω(H))⊤. Under such a structure, the transformer
predictor takes the form:

ŷq =

H∑
h=1

µ(h) ·
〈
y, smax(ω(h) ·Xxq)

〉
=

H∑
h=1

µ(h) ·
L∑

ℓ=1

yℓ · exp(ω(h) · x⊤ℓ xq)∑L
ℓ=1 exp(ω

(h) · x⊤ℓ xq)
∈ R. (3.2)

Thus, each head acts as a separate kernel regressor, and
thus the attention model can be interpreted as the sum of
kernel regressors (see §E.1). Here, 1/ω(h) plays the role of
bandwidth of the kernel. Each term in the sum in (3.2) is
a weighted sum of responses {yℓ}ℓ∈[L] in the ICL samples,
and the weights are computed based on the similarity be-
tween the test input xq and the sample covariate xℓ’s. The
notion of similarity is governed by the parameter ω(h)’s.

The single-head case has been studied in (Chen et al.,
2024a), which shows that the single-head model functions
as a kernel estimator to solve linear regression, where
ω(1) = 1/

√
d and µ(1) ≍

√
d when L is large. We replicate

this finding in Figure 2a, where ω(1) ≈ 0.52 ≈ 1/
√
d. Addi-

tionally, we show that such a pattern is shared by multi-head
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attention models with H ≥ 2.

Moreover, when H > 2, as we show in Figure 13, this pat-
tern persists. Additionally, we see a dummy head (Head 4 in
this case), i.e., a head whose KQ and OV matrices are close
to zero. This means that this head does not contribute to the
prediction. However, the appearance of dummy heads is not
guaranteed, even with a large number of heads, as it results
from the randomness of the optimization algorithm. As we
will show later, dummy heads do not affect the statistical
properties of the learned model and thus can be ignored in
statistical analysis.

Finally, in Figure 4 and 13, we plot the KQ and OV circuits
of two-head and four-head attention models, respectively,
along the training trajectory. We observe that the patterns in
(3.1) emerge early during training and persist throughout.

Observation 2. When H ≥ 2, (ω, µ) of the learned
attention model satisfies that

(i) Homogeneous KQ scaling: The scaling of the top-
left diagonal submatrix of each KQ(h) is nearly
identical across all positive and negative heads, i.e.,
|ω(h)| ≈ γ for all h ∈ H+ ∪H−.

(ii) Zero-sum OV: The sum of {µ(h)}h∈[H] is approxi-
mately zero, i.e., ⟨µ,1H⟩ ≈ 0.

By examining Figures 1a more closely, the two attention
heads in the two-head attention model converge to opposite
heads, i.e., ω(1) ≈ −ω(2) and µ(1) ≈ −µ(2). Moreover, as
we show in Figures 2b and 2c, similar patterns emerge in the
four-head attention model. In particular, Head 4 is a dummy
head, i.e., ω(4) ≈ µ(4) ≈ 0. Head 1 and Head 3 are negative
heads and Head 2 is a positive head. Thus, we conclude

(a) For non-dummy heads, the scaling of the non-zero
entries of the KQ circuits is nearly identical across
heads, i.e., |ω(h)| ≈ γ for all h ∈ H+ ∪H−.

(b) For the OV circuits, it holds that ⟨µ,1H⟩ ≈ 0 such that∑
h∈H+

µ(h) ≈ −
∑

h∈H−
µ(h).

In single-head attention, the attention head is either positive
or negative. The multi-head attention models have both
positive and negative heads, with special patterns in (ω, µ).

Observation 3. In terms of the ICL prediction error, the
two-head attention model outperforms single-head model.
Moreover, multi-head models with H ≥ 2 exhibit similar
performance, closely approximating that of the vanilla gra-
dient descent (GD) predictor ŷvgdq = L−1 ·

∑L
ℓ=1 x

⊤
ℓ xq ·yℓ.

Furthermore, all softmax attention models can generalize
in length during the test time. In addition, the statistical
error of the multi-head attention model is comparable to
the optimal Bayes estimator up to a proportionality factor.
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(a) Loss of Attention Model with
Different Head Number.
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(b) Loss of Attention Models
and Canonical Estimators.

Figure 3. Loss comparison of different models with different num-
bers of heads and the canonical estimators. The models are trained
over L = 40 and evaluated over different input lengths.

Comparing Figures 1a with 2a, we observe that in the two-
head attention model, the magnitude of KQ circuits (∼ 0.13)
is smaller than that of the single-head attention (∼ 0.52),
and the magnitude of OV circuits (∼ 3.50) is larger than
that of the single-head attention model (∼ 1.42). Hence, the
two-head attention model learns a different predictor than
the single-head attention model.

More interestingly, revisiting the patterns learned in Fig-
ures 1b, 2b, and 2c we see that the two-head and four-head
attention model learns the same predictor. To see this, note
that Figures 1b and 2b have the same scaling in the KQ
circuits (∼ 0.13). Similarly, the magnitude of OV circuits
aligns across positive and negative groups (∼ 3.5). This
implies that the four-head attention model ultimately con-
verges to the same predictor as the two-head model. More
broadly, this phenomenon holds across all multi-head atten-
tion models with H ≥ 2 which consistently learn nearly
identical predictors. Furthermore, to study the statistical
errors of these learned attention models, we compare their
ICL loss in the test time, defined in (2.3). In particular, we
consider length generalization where Zebd in (2.1) involves
a different length L that might be different from the training
data with L = 40. We plot the ICL losses of various models
in Figure 3a, which reveals the following findings:

(a) Multi-head attention outperforms single-head attention
while maintaining nearly identical performance across
different the number of heads used.

(b) All softmax attention models generalize in length and
the ICL loss decreases as L increases.

Moreover, we plot the ICL losses of the trained attention
models and the classical statistical estimators in Figure 3a.
This figure demonstrates that multi-head attention models
closely track the performance of both the vanilla GD pre-
dictor and its debiased variant (see §4.3). This suggests
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Figure 4. Heatmaps of the KQ matrices and OV vectors along
training epochs with H = 2, d = 5, and L = 40, trained over
106 steps with random initialization. KQ matrices (top) and OV
vectors (bottom) form the diagonal and the last-entry-only patterns
respectively during the early stages of training and then optimize
within the simplified regime described in (3.1).

that multi-head attention model approximately implements
a version of GD algorithm.

Observation 4. The training of KQ and OV circuits
across different heads follow similar trajectories under
random initializations. In particular, the patterns found
by Observations 1 and 2 appear early in the optimiza-
tion trajectory, and are preserved during training. More-
over, the magnitude of ω(h) in positive or negative heads
first increases and then decreases to converge, while the∑

h∈H+
µ(h) monotonically increase until convergence.

Despite random initializations, the parameter evolution fol-
lows a highly consistent trajectory throughout training. As
shown in Figure 4, the attention model quickly develops the
pattern in (3.1), identified in Observation 1, during the early
stages of training. The attention model continues to opti-
mize the loss function with this pattern preserved throughout
the training process. Moreover, by looking at the dynamics
of (ω, µ), we observe that the two properties identified by
Observation 2 are also preserved during the training. Fur-
thermore, the training dynamics of the KQ circuits are not
monotonic. The magnitudes of ω(h)’s first increase and then
decrease to stabilize. Whereas the magnitude of OV circuits,
i.e.,

∑
h∈H+

µ(h), increases steadily.

4. Mechanistic Interpretation
4.1. Reparametrization of Attention Model

As shown in Observation 4 in §3, the attention model devel-
ops a diagonal-only pattern in KQ circuits and a last-entry
only pattern in OV circuits during training. This structure
emerges early in the training and then continues optimizing
within this regime (see Figure 4). Thus, it is sufficient to

consider the parameterization in (3.1) to interpret the core
aspects of model training. With this reparameterization, the
evolution of the model model can be analyzed by tracking
(ω, µ), and the transformer predictor follows (3.2). Moti-
vated by the analysis in (Chen et al., 2024a), we present a
refined argument for approximating the population loss in
(2.3) under the reparameterization in (3.1). As we will see
later, gradient flow based on this approximate loss reveals
the empirical observations from a theoretical perspective.
Proposition 4.1 (Informal). Consider an H-head attention
model parameterized by (3.1) with dimension d ∈ Z+ and
sample size L ∈ Z+. Suppose that d > logL and param-
eters (ω, µ) ⊆ R2H satisfies that ∥ω∥∞ ≲

√
logL/d and

∥µ∥∞ ≲ L1/5, then it holds that

L(ω, µ) = 1 + σ2 − 2µ⊤ω + µ⊤(ωω⊤ + (1 + σ2) · L−1

· exp(dωω⊤)
)
µ+O(dH2 · L−1/5).

The formal statement and proof of Proposition 4.1 are de-
ferred to §E.2, where the result extends beyond the case
d > logL and allows a more flexible trade-off between
the scaling and the resulting approximation error. Proposi-
tion 4.1 establishes that, under certain scaling assumptions,
the true loss can be well approximated by a simplified for-
mulation in terms of (ω, µ) with the approximation error
vanishing as the ICL sample size L increases. In addition,
we provide experimental validations for Proposition 4.1. As
shown in Figure 5, the approximation can effectively cap-
ture the true loss landscape (see Figure 5b,) and performs
particularly well when ω or µ is small (see Figure 5a). See
§C.4 for more detailed explanations and additional experi-
mental validations of Proposition 4.1. Hence, to analyze the
parameter evolution of the transformer, it suffices to con-
sider the gradient dynamics of the approximate loss, which
is given by

L̃(ω, µ) = σ2 + (1− µ⊤ω)2

+ µ⊤(1 + σ2) · L−1 · exp(dωω⊤)µ. (4.1)

4.2. Training Dynamics, Emerged Patterns and Solution
Manifold

In this section, we provide a detailed analysis of the evolu-
tion of attention weights during the training process, with
a focus on multi-head attention models. Starting from ran-
dom initializations, we show that the parameters evolve to
form a pattern consistently similar. To interpret such a phe-
nomenon, we provide a theoretical explanation and follow
the training dynamics based on the approximated loss in
(4.1). Our analysis focuses on the training process using gra-
dient descent (GD). For a learning rate η > 0, the parameter
update at step t ∈ N is given by

µt+1 ← µt−η·∇µL̃(µt, ωt), ωt+1 ← ωt−η·∇ωL̃(µt, ωt).
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Figure 5. Experimental validation for Proposition 4.1 with 2-head
attention model under (ω,−ω) and (µ,−µ) with L = 40, d = 5
and σ2 = 0.1. Panel (a) plots the heatmap of difference between
the actual and approximated loss L(µ, ω) − L̃(µ, ω). Panel (b)
illustrate the actual and approximated loss landscape, respectively.
The gray arrow highlights the “river valley” loss landscape where
the loss decreases gradually in that direction towards minimum.

Following this, the training dynamic undergoes two stages:

• In Stage I, two patterns emerged—sign matching and
zero-sum OV, which optimizes the low-order terms mainly
due to the small initialization and are maintained along
training (see (4.2)). In addition, optimality equality in
(4.3) holds approximately, which facilitates subsequent
evolution.

• In Stage II, the ω(h)’ s converge to homogeneous KQ scal-
ing in (4.4) to optimize the remaining high-order terms.
Based on the signs, these heads group into positive, nega-
tive and dummy heads. Finally, µ(h)’s fall into the solution
manifold in (4.5) defined by scale of ω(h).

Stage I: Establish the Sign-matching and Zero-sum OV
Pattern. Consider starting from a small initialization and
assume that ∥ω0∥∞ ≤ 1/

√
d and ∥µ0∥∞ ≤ c

√
d hold for

all t ∈ N with constant c ∈ (0, 1). As shown in Figure
1b, at the very beginning of the training process, the model
quickly develops the sign matching and zero-sum OV pat-
tern, summarized below: for all h ∈ [H], it holds that

⟨µ,1H⟩ = 0, and sign(ω(h)) = sign(µ(h)). (4.2)

To understand the mechanisms, we examine the gradient
update. By applying the Taylor expansion over exp(dωω⊤)
at ω = 0H , the gradient update of µ at step t followz

µt+1 ← µt + 2η ·
(
1−

(
1 + (1 + σ2)dL−1

)
⟨µt, ωt⟩

)
ωt︸ ︷︷ ︸

Sign-Matching Term

− 2η(1 + σ2)

L
·
(
⟨µt,1H⟩1H︸ ︷︷ ︸

Zero-sum OV Term

+

∞∑
k=2

dk

k!
⟨µt, ω

⊙k
t ⟩ω⊙k

t︸ ︷︷ ︸
High-Order Terms

)
,

and the updating scheme of ω shares a similar form as

ωt+1 ← ωt + 2η ·
(
1−

(
1 + (1 + σ2)dL−1

)
⟨µt, ωt⟩

)
µt︸ ︷︷ ︸

Sign-Matching Term

− 2η · (1 + σ2)

L

∞∑
k=2

dk

(k − 1)!
· ⟨µt, ω

⊙k
t ⟩ · µt ⊙ ω⊙k−1

t︸ ︷︷ ︸
High-Order Terms

.

In the early stage of training, the higher-order terms are
negligible due to small initializations, and the sign-matching
terms and zero-sum OV terms dominate. For the zero-sum
OV term, it is straightforward to see that it encourages
⟨µt,1H⟩ = 0. For sign matching terms, ⟨ωt, µt⟩ remains
small in the initial stage such that (1 + (1 + σ2) · dL−1) ·
⟨µt, ωt⟩ < 1. Thus, µt and ωt are updated in each other’s
direction, gradually aligning to share the same sign. Also,
the sign-matching terms contribute to the gradient update
until the following optimality equality is established:(

1 + (1 + σ2) · dL−1
)
· ⟨µt, ωt⟩ = 1. (4.3)

In this stage, we ignore the contribution of the high-order
terms to the gradient as both µt and ωt have small magni-
tude. After (4.2) and (4.3) are establised, the training enters
the second stage where the high-order terms dominate.

Stage II: Emergence of Homogeneous KQ Scaling. As
shown in Figure 1b, after some training steps, these heads
are grouped into positive, negative, and dummy heads. For
dummy heads, all parameters degenerate to zero, indicating
that these heads do not contribute to the final predictor
and output 0. For positive and negative heads, their KQ
parameters share the same scaling with different signs:

ω(h) = γ · sign(ω(h)) with γ > 0, ∀h ∈ [H]. (4.4)

To understand how the homogeneous scaling develops,
which significantly simplifies the predictor given by the
multi-head attention (see §4.3), we revisit the population
loss and focus on the regime where (4.2) and (4.3) are well-
established after Stage I. Note that

L̃(ωt, µt) = σ2 + (1 + σ2) · L−1 · ⟨µt,1H⟩2

+ (1− ⟨µt, ωt⟩)2 + (1 + σ2) · L−1 ·
∞∑
k=1

dk

k!
· ⟨µt, ω

⊙k
t ⟩2,

where the first two terms are constants given the zero-sum µ
and transitional optimality. Hence, the remaining high-order
terms dominates the dynamic, which satisfies

∑
k∈{2q:q∈Z+}

dk

k!
⟨µt, |ωt|⊙k⟩2 +

∑
k∈{2q−1:q∈Z+}

dk

k!
⟨|µt|, |ωt|⊙k⟩2
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≥
∑

k∈{2q−1:q∈Z+}

dk

k!
· ∥µt∥2(1−k)

1 · ⟨|µt|, |ωt|⟩2k,

where the first equality follows sign(ω(h)) = sign(µ(h))
and the last one uses non-negativity of even-power terms and
Hölder’s inequality for odd-power terms. Given zero-mean
µt, the lower bound is attained when (i) the even-power
terms reach the 0-minima by taking |ωt| = γ · 1H since
⟨µt, |ωt|⊙k⟩ = γk ·⟨µt,1H⟩ = 0 for all k ∈ {2q : q ∈ Z+},
(ii) the odd-power terms attain the lower bound if and only
if |µt| ⊙ |ωt|⊙k ∝ |µt| for all k ∈ {2q − 1 : q ∈ Z+} such
that |ωt| ∝ 1H , leading to the homogeneous pattern.

Solution Manifold. Suppose patterns in (4.2) and (4.4)
fully emerge. At this convergence stage, for arbitrary scale
γ, with a bit of abuse of notation, the approximated loss can
be rewritten as:

L̃(γ, µ) = σ2 + (1− γ · ∥µ∥1)2

+ (1 + σ2) · L−1 · sinh(dγ2) · ∥µ∥1,

where we use the Taylor series of hyperbolic sine functions.
Following this, the loss is quadratic with respect to ∥µt∥1,
thus for any fixed scale γ > 0, the minimizer satisfies that

∥µ∥1 =
(
γ2 + (1 + σ2) · L−1 · sinh(dγ2)

)−1 · γ := 2µγ .

Here we define µγ as one half of the optimal value of ∥µ∥1.
Hence, we know that the limiting ω and µ are characterized
by a solution manifold, given by S ∗ = {Sγ}γ>0, where

Sγ =
{
(ω, µ) ⊆ RH : ω(h) = γ · sign(µ(h)),∑

h∈H+

µ(h) = −
∑

h∈H−

µ(h) = µγ

}
. (4.5)

We remark that the learned scale γ depends on the learning
rate, training steps, and batch size (if SGD or Adam is
applied) due to the “river valley” loss landscape near the
global minimum (see Figure 5b). This phenomenon can
be attributed to edge of stability (Cohen et al., 2021), a
behavior commonly observed in neural network training. In
this regime, gradient descent progresses non-monotonically,
oscillating between the “valley walls” of the loss surface
and failing to fully converge to the minimum.

Although the learned γ can vary slightly, µ always lies
within its corresponding solution manifold Sγ . The optimal
value of γ and the resulting transformer-based ICL predic-
tor are derived later in §4.3. Furthermore, to explain the
evolution of the parameters, we provide a more detailed
analysis of the gradient flow of training a two-head attention
based on the approximate loss in §D under a well-specified
initialization, where the full gradient flow dynamics can be
characterized explicitly.

4.3. Expression, Approximation and Optimality

In this section, we examine the statistical properties of the
learned attention models. Our experiments show that, re-
gardless of the number of heads, attention models consis-
tently learn the diagonal-only and last-entry-only patterns
in (3.1) while using different predictors. For multi-head
attention with H ≥ 2, heads are grouped into positive, neg-
ative and dummy heads as discussed in §4.2. Positive and
negative heads are coupled to approximate gradient descent
(GD), consistent with the findings from linear transformers
(Mahankali et al., 2023; Ahn et al., 2023a; Zhang et al.,
2024), but with an additional debiasing term. As we will
show below, this is a result of the fact that the limiting val-
ues of attention parameters fall in the solution manifold Sγ

with a small γ. Moreover, when L is much larger than d,
debiased GD coincides with vanilla GD, which means that
multi-head attention learns the same algorithm as the linear
attention in this regime.

Multi-head Attention Predictor. Consider an arbitrary
scale γ > 0, then for any parameters on the solution mani-
fold (ω, µ) ⊆ Sγ , the attention predictor takes the form:

ŷq =
∑

h∈H+

µ(h) ·
L∑

ℓ=1

yℓ · exp(γ · x⊤ℓ xq)∑L
ℓ=1 exp(γ · x⊤ℓ xq)

+
∑

h∈H−

µ(h) ·
L∑

ℓ=1

yℓ · exp(−γ · x⊤ℓ xq)∑L
ℓ=1 exp(−γ · x⊤ℓ xq)

.

Then, for any H ≥ 2, the multi-head attention model im-
plements an equivalent predictor as 2-head model with
ωeff = (γ,−γ) and µeff = (

∑
h∈H+

µ(h),
∑

H−
µ(h)) with∑

h∈H+
µ(h) = −

∑
H−

µ(h) = µγ . For small scale γ > 0,
by linearizing exp(·) around 0, we have

ŷq ≈
2µγγ

L
·

L∑
ℓ=1

yℓ · x̄⊤ℓ xq ⇒ ŷgdq (η) =
η

L
·

L∑
ℓ=1

yℓ · x̄⊤ℓ xq,

where we denote x̄ℓ = xℓ − 1
L

∑L
ℓ=1 xℓ and the approxi-

mation also uses the first-order approximation of reciprocal
(see Remark F.1). Thus, multi-head attention emulates the
one-step pre-conditioned gradient descent1 to optimize the
empirical loss 1

2L

∑L
ℓ=1(β

⊤x̄ℓ − yℓ)
2 with initialization

β0 = 0, learning rate 2µγγ and the debiased covariates x̄ℓ’s.
In experiments, the learned γ is very small (∼ 0.1), which
ensures the validity of the approximations. This observa-
tion suggests that, despite the nonlinear nature of softmax,
the model can still capture the inner linearity. To achieve

1Under the isotropic setup, the pre-conditioned GD coincides
with the standard GD due to the identity covariance matrix. Here,
we refer to it as pre-conditioned GD to align with experimental ob-
servations in the anisotropic case (see §B.3), where clear evidence
indicates that it utilizes a pre-conditioner.
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this, the softmax attentions work in the linear regime by
taking small-scale γ and canceling out the constants via
coupled positive-negative heads. As shown in Figure 3b,
the learned predictor performs nearly identically to the de-
biased GD predictor, which also matches the standard GD
predictor when L is large since 1

L

∑L
ℓ=1 xℓ ≈ E[xℓ] = 0d

and 1
L

∑L
ℓ=1 yℓ ≈ E[β⊤xℓ + ϵℓ] = 0.

Single-Head Attention Predictor. Different from multi-
head models, single-head attention has less expressivity, and
the learned predictor takes the form of

ŷq = µ ·
L∑

ℓ=1

yℓ · exp(ω · x⊤ℓ xq)∑L
ℓ=1 exp(ω · x⊤ℓ xq)

.

By minimizing the approximate loss, it is shown in (Chen
et al., 2024a) that the minimizer is given by ω∗ = 1/

√
d

and µ∗ =
√
d · (1+ e · (1+ σ2) · dL−1)−1. We remark that

the single-head attention precisely implements a Nadaraya-
Watson estimator with a Gaussian RBF kernel, when the co-
variates are sampled from a sphere, i.e., supp(Px) = Sd−1.
Moreover, the optimal parameter ω∗ corresponds to a band-
width with value d1/4. Hence, we see why having one ad-
ditional attention head significantly improves the statistical
rate in in-context linear regression as shown in Figure 3—
one-head attention corresponds to a nonparametric predictor
while a multi-head attention yields a parametric predictor.

In the following, we provide a formal statement of the above
argument and establish the optimality of the learned predic-
tor in a high-dimensional asymptotic regime.
Theorem 4.2. Consider a larger parameter space S̄ ⊇
S ∗, defined as

S̄ ={(ω, µ) : min{|H+|, |H−|} > 1,

∀γ > 0, ω(h) = γ · sign(ω(h)) ∀h ∈ [H]} (4.6)

and denote
∑

h∈H+
µ(h) = µ+ and

∑
h∈H−

µ(h) = µ−.

(i) (Approximation) Let η > 0 be a constant learning
rate and let δ ∈ (0, 1) be a given failure probability.
For any scaling γ > 0, we define µ̆ = η/(2γ). Con-
sider a multi-head attention with no dummy head and
θ ∈ S̄ . Moreover, we set µ+ = −µ− = µ̆. Then,
when L ≳ log(1/δ) and γ ≲ (

√
d · log(L/δ))−1, with

probability at least 1− δ, we have

|ŷq(θ)− ŷgdq (η)| ≤ Õ
(√

1 + σ2 · γ · d
)
,

where Õ(·) omits logarithmic factors. In particular,
suppose we drive γ to zero while keeping µ̆ = η/(2γ),
the resulting ŷq(θ) coincides with ŷgdq (η).

(ii) (Optimality) Consider minimizing L̃(ω, µ) over S̄ .
The minimum is attained in S ∗. In particular, the min-
imizer can be obtained by taking γ → 0+ in (4.5). As

a result, the optimal attention model that minimizes
L̃(ω, µ) coincides with the debiased GD estimator
ŷgdq (η∗), where we define η∗ = (1+(1+σ2) ·d/L)−1.

(iii) (Bayes Risk) Consider the high-dimensional regime
where L → ∞ and d/L → ξ, where ξ ∈ (0,∞) is
a constant. Suppose the noise level σ2 > 0 and ξ is
sufficiently small such that σ2 + ξ−1 > 1. Then

E(ŷgdq (η∗))

BayesRiskξ,σ2

≤ 1+σ−2·
{
(1+ξσ2)·(1+σ2+ξ−1)

}−1
,

where BayesRiskξ,σ2 denotes the limiting Bayes risk.

The proof of Theorem 4.2 is deferred to §F. In part (i),
we show that softmax transformer can represent the linear
pre-conditioned GD predictor with small scale γ . Part (ii)
analyzes the approximated global minimizer corresponds to
the debiased GD predictor. Finally, in part (iii), we compare
the learned predictor with the Bayes risk and show that it
is nearly optimal in the proportional regime, particularly
when observations are noisy or the dimensionality of the
covariates is high.

Discussions on Linear Transformer. Building on our
analysis, we can show that by working in the linear regime,
linear and softmax attention can achieve comparable expres-
sive power. However, linear transformers rely on a fixed nor-
malization factor, limiting their ability to generalize across
different sequence lengths, whereas softmax transformers
dynamically adjust for flexible length generalization (see
§B.1 for detailed discussions).

Extentions. We extend our analysis to anisotropic and
multi-task regression settings. In the anisotropic case,
trained multi-head attention continues to learn a precon-
ditioned gradient descent predictor. For multi-task learning,
the number of attention heads determines distinct learning
strategies, ranging from weighted kernel regression to inde-
pendent preconditioned gradient descent predictors for each
task, revealing an intriguing superposition phenomenon (see
§B.3, §C.2 and C.3 for details).

5. Conclusion
Our study provides a comprehensive analysis of multi-head
softmax transformers for in-context learning in linear re-
gression, uncovering key structural patterns that emerge
during training. We characterize the model’s development
and demonstrate its implementation of preconditioned gra-
dient descent, shedding light on its underlying optimization
dynamics. These findings enhance our understanding of
transformer-based ICL, highlighting its advantages over
single-head and linear attention models and offering valu-
able insights into its broader applicability.
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A. Additional Background and Related Works
Notation. For some n ∈ N+, let [n] = {i ∈ Z : 1 ≤ i ≤ n}. For vector υ ∈ Rd, denote by ⊙ the element-
wise Hadamard product and υ⊙k = (υk1 , . . . , υ

k
d). Let ∥ · ∥p denote the ℓp-norm and softmax operator is defined as

smax(υ) = (smax(υ)i)i∈[d] where smax(υ)i = exp(υi)/
∑

j exp(υj). Let sign(·) denote the sign function that returns 1,
−1 or 0 based on the sign of input x ∈ R. Let 1d and 0d denote the all-one and all-zero vector of size d and denote Id as
the d-by-d identity matrix. For vector ν ∈ Rd and indices set I ⊆ [d], we define νI = (νi)i∈I ∈ R|I|. For two functions
f(x) ≥ 0 and g(x) ≥ 0 defined on x ∈ R+, we write f(x) ≲ g(x) or f(x) as O(g(x)) if there exists two constants c > 0
such that f(x) ≤ c · g(x), we write f(x) ≍ g(x) or f(x) = Θ(g(x)) if f(x) ≲ g(x) and g(x) ≲ f(x).

A.1. Related Works

In-Context Learning (ICL). LLMs exhibit strong reasoning abilities, with their ICL capability playing a crucial role in
their performance. Unlike fine-tuned models customized for specific tasks, LLMs demonstrate comparable capabilities by
learning from informative prompts (Liu et al., 2021; Min et al., 2021; Nie et al., 2022). The theoretical understanding of ICL
remains an active area of research. One line of research interprets ICL as a form of Bayesian inference embedded within
transformer architectures (Xie et al., 2021; Zhang et al., 2023; Jeon et al., 2024; Hu et al., 2024). Another line of work
focuses on understanding how transformers internally emulate specific algorithms to address ICL tasks (Garg et al., 2022;
Nichani et al., 2024; Chen et al., 2024a; Fu et al., 2024; Sheen et al., 2024; Li et al., 2024b). Among these works, some
focus on ICL for classification problems or learning with a finite dictionary (Sheen et al., 2024; Huang et al., 2023; Yang
et al., 2024; Nichani et al., 2024), while another line of work examines how the attention model performs in-context linear
regression (Von Oswald et al., 2023; Zhang et al., 2024; Chen et al., 2024a;c; Zhang et al., 2025). Meanwhile, multiple
works demonstrate the remarkable ability of the model in feature learning (Kim & Suzuki, 2024; Yang et al., 2024; Huang
et al., 2023) and decision-making (Sinii et al., 2023; Lin et al., 2023; He et al., 2024). Beyond these works, many researchers
seek to uncover the internal ICL procedure of transformers, typically in more complex algorithms (Fu et al., 2023; Giannou
et al., 2024; Cheng et al., 2023; Lin & Lee, 2024). Other works investigate the training process with multiple tasks (Kim
et al., 2024; Tripuraneni et al., 2021), which are broadly related.

Comparison with Related Work. We provide a detailed discussion of the differences between our work and that of Chen
et al. (2024a) and Cui et al. (2024), which are among the most closely related studies.

Chen et al. (2024a) considers multi-head attention in the context of multi-task linear regression, where the number of
heads matches the number of tasks. Under a specialized initialization, they show that each head independently learns
to solve a distinct task—effectively reducing to a single-head per task setup, which corresponds to the single-head case
in our framework. In contrast, our setup allows multiple heads to be flexibly allocated to a single task, enabling a more
expressive and complex model architecture. As a result, while Chen et al. (2024a) shows that the single-head model learns a
nonparametric, kernel-type predictor with scaling of KQ parameters as 1/

√
d, we demonstrate that the multi-head model

instead learns a parametric gradient descent predictor with KQ converging to 0+. This not only recovers the known results
for linear attention (Zhang et al., 2024) but also reveals that multi-head softmax attention can outperform the single-head
one by effectively encoding the linear architecture through an explicit approximation.

Cui et al. (2024) also identifies the diagonal KQ patterns with potentially positive and negative values in two-head softmax
attention, and observe identical performance when the number of heads exceeds two. We go further by quantitatively
characterizing the learned model. Specifically, we reveal detailed sign-matching, homogeneous KQ magnitudes, and
zero-sum OV patterns for head counts beyond H = 2, and show that multi-head softmax attention learns to implement a
gradient descent predictor. From a theoretical perspective, Cui et al. (2024) adopts full-model parameterization and conducts
a loss landscape analysis. In contrast, we begin by establishing an approximate loss and then develop a comprehensive
explanation based on training dynamics, function approximation, and optimality analysis. Our results go beyond the core
argument in Cui et al. (2024) regarding the superiority of multi-head over single-head attention: we not only compare
the testing loss, but also explicitly demonstrate that single-head attention learns a nonparametric kernel regressor, while
multi-head attention learns a more powerful parametric gradient descent predictor.

A.2. Interpretation of Transformer Architecture

Interpretation of Attention Model. Note that (2.2) is a standard multi-head attention layer with a residual link. This
function can be regarded as a mapping from a sequence of L+ 1 vectors in Rd+1, i.e., {zℓ}ℓ∈[L] ∪ {zq}, to a new sequence
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Figure 6. Illustration of the derivation from the full multi-head attention architecture in (2.2) to the simplified model. In the graph, we
show the specified token embedding and read-out function with consolidated KQ and OV circuits. We use ∗ to denote the ineffective
parameters due to the read-out function or the 0 embedding for the query token.

of L + 1 vectors in Rd+1. In particular, at each token position j, the query, key, and value in the h-th head are given by
Q(h)zj , K(h)zj , and V (h)zj , respectively. To get the output at position j, we compute the similarity between the query
Q(h)zj and all the previous keys to get {⟨K(h)zi, Q

(h)zj⟩}i<j . These similarity scores are passed through the softmax
function smax(·) to form a probability distribution over all previous token positions [j − 1]. This distribution weights the
values {V (h)zi}i<j to compute the attention output. The outputs of all H heads are aggregated by the output matrices
{O(h)}h∈[H]. Combining with the input Zebd from the residual link, we get the output in (2.2).

Note that when computing the output at each token position j, we only use the key Q(h)zj to look at the queries and values
before position j. Thus, the softmax output dimension varies with j, forming a probability distribution over [j − 1] for
each j ∈ [L + 1]. In the model (2.2), this is enforced by the causal mask msk(·) before the softmax function. With the
causal mask, only the first j − 1 entries in the output vector of the softmax function are nonzero. Compared to the standard
decoder-only transformer model (e.g., Vaswani, 2017), we omit layer normalization and positional embeddings. Layer
normalization is unnecessary because a single-layer architecture does not suffer from the issue of vanishing or exploding
gradients. In addition, the regression problem is permutation invariant in {(xℓ, yℓ)}ℓ∈[L], making positional information
unnecessary.

B. Discussions and Extensions
The previous sections demonstrated that when training a multi-head attention model on linear ICL data, the learned weight
matrices exhibit significant patterns. These structured weights enable the model to implement a debiased GD estimator.
As we theoretically established, these patterns emerge from the interaction between the transformer architecture and the
underlying data distribution. In this section, we further investigate how different components contribute to this phenomenon.
Specifically, we examine the role of the softmax function in the attention model and the impact of isotropic covariate
distribution. Additionally, we extend to the multi-task in-context regression setting and study how the interplay between the
number of tasks and the number of heads affects model behavior in our empirical study.

B.1. Comparison: Linear vs. Softmax Transformer

In this section, we study the connection between linear and softmax transformers. Proposed by Von Oswald et al. (2023),
linear transformer simplifies the architecture by removing the nonlinear activation and the causal mask, given by

LinTFθ(Zebd) = Zebd +
1

L

H∑
h=1

O(h)V (h)Zebd · Z⊤
ebdK

(h)⊤Q(h)Zebd. (B.1)

Recent research has focused on understanding the inner mechanisms of transformers through the simplified linear trans-
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former(e.g., Von Oswald et al., 2023). For the linear ICL task, Zhang et al. (2024) show that linear attention can be trained
to implement the one-step GD estimator with just one head. This raises the following question:

In linear ICL tasks, does softmax attention offer advantages over linear attention?

We argue that the softmax attention models are more advantageous than linear attention due to their enhanced expressive
power. In fact, any H-head linear attention can be approximately implemented by a multi-head softmax attention with 2H
heads, when the token embeddings are centralized. Specifically, consider a 2H-head softmax attention model parameterized
as

TFθ(Zebd) = Zebd +

H∑
h=1

∑
j∈{0,1}

(−1)j

2γ
·O(h)V (h)Zebd · smax

(
(−1)jγ · Z⊤

ebdK
(h)⊤Q(h)Zebd

)
,

where we use the same parameters as in LinTFθ(·) and set γ to a small rescaling constant. We define Z̄ebd = L−1 · Zebd1L,
which averages the token embedding across the L token positions. Using a similar approximation when γ is close to zero,
we have

TFθ(Zebd) ≈ LinTFθ(Zebd)−
H∑

h=1

O(h)V (h)Z̄ebd · Z̄⊤
ebdK

(h)⊤Q(h)Zebd. (B.2)

From (B.2), the output of softmax attention closely matches its linear counterpart when the second term is small, e.g., token
embeddings are centralized such that Z̄ebd ≈ 0d, which is the case in in-context linear regression.
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Figure 7. ICL prediction errors of linear attention,
single-head and multi-head softmax attention trained
on L = 40 but evaluated over different lengths. Note
that softmax attention can generalize in length because
the prediction error decays with more examples. In con-
trast, linear attention cannot generalize in length and
the prediction error starts to increase when the number
of examples exceeds L.

Length Generalization. While softmax attentions use more heads,
they benefit from dynamic normalization. Notice that the linear atten-
tion in (B.1) requires a fixed normalization factor 1/L which depends
on the sequence length L. In contrast, the parameters of softmax
attention do not involve L explicitly, but it effectively produces a 1/L
normalization factor when γ is sufficiently small, as shown in (B.2).
The property of dynamic normalization enables softmax attention
trained on linear ICL data to naturally generalize to different sequence
lengths. During testing, a trained softmax model can process inputs
with many more demonstration examples than it saw during training,
and the ICL prediction error decreases as more examples are provided.
In contrast, a trained linear attention model cannot generalize to longer
sequences easily because its weights explicitly contain the normaliza-
tion factor 1/L. When the sequence length changes, linear attention
would require different model parameters.

We conduct an experiment to test the length generalization ability of
both model types. We train these models with L = 40 demonstration
examples and test them with L′ examples, where L′ ranges from 10
to 100. The ICL prediction errors in Figure 7 show that both single-
and multi-head softmax attention models generalize effectively to
longer inputs, while the linear attention fails to do so. In particular, the
prediction errors further decrease when the number of demonstration
examples L′ increases beyond L = 40. In contrast, the prediction
error of linear attention starts to increase after L′ > 40.

B.2. Ablation Study: Alternative Activations Beyond Softmax

Building on our comparison between linear and softmax transformers, we now further examine the role played by the softmax
activation function itself. Consider a normalized activation σ : Rd 7→ Rd defined by letting σ(ν)i = f(νi)/

∑d
j=1 f(νj) for

all i ∈ [d], where ν ∈ Rd is the input vector, νi is the i-th entry of ν, and σ(ν)i is the i-th entry of the output σ(ν). The
function f : R 7→ R can be any suitable univariate function, with softmax being the special case where f(·) = exp(·).
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In §4.3, we identified specific patterns in the KQ and OV circuits of trained softmax attention models. A key property
promotinh these patterns is the exponential function underlying softmax. These patterns allow the learned transformer to
implement a sum of kernel regressors where the exponential function serves as the kernel. Using the first-order approximation
exp(x) ≈ 1 + x, we proved that the model approximately implements the debiased GD. This raises questions:

(a) Suppose we use a different nonlinear activation in the attention, do we expect similar patterns in the attention weights?
(b) Does this transformer also implement debiased GD?

To answer these questions, we conduct additional experiments on the two-head attention model—using the same setup as
§3—by replacing softmax with other normalized activations f that satisfy the first order approximation f(x) ≈ 1 + Cf · x
for some constant Cf > 0. We test f1(x) = 1 +Cx, f2(x) = (1 +Cx)2 and f3(x) = 1 + tanh(x) with C ∈ {0.5, 0.8, 1}.
Their first-order coefficients Cf are given by Cf1 = C, Cf2 = 2C and Cf3 = 1 respectively.

(a) Activation f(x) = 1 + x. (b) Activation f(x) = (1 + 0.5x)2. (c) Activation f(x) = 1 + tanh(x).

Figure 8. Heatmap of KQ matrices and OV vectors of trained two-head attention using alternative activation functions. The trained models
consistently exhibit the same patterns shared by softmax attention, though the parameters of different models converge to different values.
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(a) Activation f(x) = 1 + x.
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(b) Activation f(x) = (1 + 0.5x)2.
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(c) Activation f(x) = 1 + tanh(x).

Figure 9. Comparison of the training dynamics of KQ and OV parameters for a two-head attention model with various activation functions.
In particular, Figure (c) illustrates the dynamics of the case f(·) = 1 + tanh(·), which are closer to those of the vanilla softmax attention
model.
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Activation
function exp(x) 1 + tanh(x)

1 + Cx (1 + Cx)2

C = 0.5 0.8 1 C = 0.5 0.8 1

|ω(1)| 0.1267 0.1504 0.3677 0.2411 0.1979 0.2882 0.1810 0.1452
|µ(1)| 3.5006 3.3362 2.3963 2.2819 2.2221 1.7561 1.7487 1.7448

ηeff 0.8871 1.0035 0.8810 0.8802 0.8794 1.0122 1.0128 1.0132

Table 1. Comparison of learned parameters with different activationss for two-head attention model. The table reports the learned |ω(1)|,
|µ(1)|, and the effective learning rate ηeff = 2Cf · |ω(1)| · |µ(1)|, where Cf denotes the coefficient in the first-order Taylor expansion of
each activation function f . The exponential activation corresponds to the standard softmax attention. Despite different scaling patterns in
the individual parameters, the effective learning rates ηeff remain remarkably consistent across all activation functions, demonstrating that
trained models implement similar debiased GD predictors regardless of activation choice.
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Figure 10. Comparison of two-head attention models with different activation functions and the corresponding canonical predictors—
vanilla GD and debiased GD predictor—with effective learning rate ηeff = 2Cf · |ω(1)| · |µ(1)|. As shown in the figure, the ICL prediction
error of attention models with different activations closely matches that of the vanilla GD and debiased GD predictors. While the
normalized quadratic activation exhibits slight deviations from the GD predictors for small L, the loss curves ultimately converge as L
increases.

In Figure 8, we plot the KQ and OV parameters for all these attention models. We observe the consistent positive-negative
pattern in the attention weights. That is, the first two observations of §3 are still true. This implies that all of these learned
attention models implement a sum of kernel regressors. Moreover, by examining the magnitude of the KQ and OV parameters,
we observe that the magnitude of ω = (ω(1), ω(2)) is still relatively small while the magnitude of µ = (µ(1), µ(2)) is large.
This is also consistent with the softmax attention. Mathematically, this means that the transformer predictors can be written
as

ŷq = |µ(1)| ·
( L∑

ℓ=1

yℓ · f(|ω(1)| · x⊤ℓ xq)∑L
ℓ=1 f(|ω(1)| · x⊤ℓ xq)

−
L∑

ℓ=1

yℓ · f(−|ω(1)| · x⊤ℓ xq)∑L
ℓ=1 f(−|ω(1)| · x⊤ℓ xq)

)
≈ ηeff

L

L∑
ℓ=1

yℓ · x̄⊤ℓ xq,

where ηeff = 2Cf · |ω(1)| · |µ(1)|, and x̄ℓ is the debiased covariate and the approximation can be similarly derived as in
Remark F.1.

In Table 1, we report the limiting values of |ω(1)|, |µ(1)| and ηeff of these models. We observe that while the values of
|ω(1)| and |µ(1)| differ across different activations, the values of ηeff are all close to one. This suggests that all these models
effectively learn the same debiased GD predictor ŷgdq (η∗). Here η∗ = (1 + (1 + σ2) · d/L)−1 ≈ 1 when d/L→ 0.

Moreover, in Figure 10 we report the ICL prediction errors of these learned multi-head attention models, together with the
error of the debiased GD with corresponding effective learning rate. We observe that these error curves are highly consistent
with debiased GD. Notice that all these models can readily generalize in length, which seems a benefit of the normalized
activation in attention. Thus, we expect that Theorem 4.2 can be generalized to attention models based on normalized
activations in general, as long as f(x) ≈ 1 + Cf · x around x = 0. Finally, we remark the choice of the bias term 1 is just
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for simplicity, and the argument can be readily generalized to other positive real numbers thanks to the normalization effect
in softmax attention.

Finally, we plot the training dynamics of the KQ and OV parameters in Figure 9. Interestingly, the training dynamics across
different activations exhibit slightly different behaviors. The behavior of 1 + tanh(x) is similar to the softmax, where |ω(1)|
first increases and then decreases. The behavior of the other two cases in Figure 9 seems more complicated. We defer their
study to future work.

In summary, we show that for the class of multi-head attention models normalized activations, as long as the activation f
satisfies the first-order condition f(x) ≈ 1 + Cf · x, the first three observations in §3 remain valid. That is, the attention
weights share the patterns and the limiting attention models learn the same debiased GD predictor. However, the training
dynamics are more subtle, which seem to rely on the choice of activation function.

B.3. Extension to Anisotropic Covariates

In the following, we examine how the data distribution contributes to the observed patterns in the learned attention weights.
To this end, we focus on the anisotropic case where the covariates are sampled from a centered Gaussian distribution with a
general covariance structure. In particular, we investigate the following questions:

(a) Can multi-head attention solve in-context linear regression with anisotropic covariates? (b) Do we observe the same
patterns in the learned transformer? Does the learned transformer implement a GD algorithm approximately?

Figure 11. Heatmap of KQ matrices and OV vectors trained on anisotropic covariates. The left two Figures illustrate the patterns of trained
two-head attention model, and the right Figures plot the inverse of covariance matrix Σ−1 and the conjectured optimal KQ pattern Σ̃−1 in
(B.6). The learned KQ matrices exhibit a dominant tridiagonal structure with small values in the (i, i+ 2) and (i+ 2, i) positions for all
i ∈ [d], suggesting the model deviates from a strict implementation of pre-conditioned GD using Σ−1 since the inverse covariance matrix
should be tridiagonal. However, this pattern aligns with the conjectured structure Σ̃−1, indicating the model implements a pre-conditioned
GD predictor with structural adjustment.

In our experiment, we let the covariate distribution be Px = N (0,Σ), where Σ is a Kac-Murdock-Szegö matrix (Fikioris,
2018) with parameter ρ = 0.5. That is, the (i, j)-th entry of Σ is Σij = ρ|i−j|. We train a two-head attention model with
d = 5 and L = 40.
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Transformer Learns Sum of Kernel Regressors. We observe that the diagonal pattern of the KQ circuits disappears, but
the pattern of the OV circuits as in Observation 1 in §3 persists. Moreover, as in Observation 2 in §3, the weight matrices of
the two heads sum to zero, which means they also split into a positive and a negative head. In particular, the learned weight
matrices can be written as

K(h)⊤Q(h) =

[
(−1)h+1 · γ · Ω ∗

0⊤
d ∗

]
, O(h)V (h) =

[
∗ ∗
0⊤
d (−1)h+1 · µγ

]
. (B.3)

Here γ > 0 is a small scaling parameter, µγ is defined in (??), and Ω ∈ Rd×d is a positive definite matrix. That is, the first
head is positive and the second is negative. The properties of sign-matching and zero-sum OV still hold. Moreover, the
magnitude of the OV circuits is roughly the same as in the isotropic case. While KQ matrices still have a small magnitude,
they are no longer proportional to an identity matrix. See the first column of Figure 11 for details.

As a result, the learned transformer still implements a sum of two kernel regressors:

ŷq = µγ ·
( L∑

ℓ=1

yℓ · exp(γ · x⊤ℓ Ωxq)∑L
ℓ=1 exp(γ · x⊤ℓ Ωxq)

−
L∑

ℓ=1

yℓ · exp(−γ · x⊤ℓ Ωxq)∑L
ℓ=1 exp(−γ · x⊤ℓ Ωxq)

)
, (B.4)

where the kernel function is induced by the bivariate function F (x, x′; γ,Ω) = 1/γ · exp(−γ · x⊤Ωx′). Since γ is small,
we can similarly perform a first-order Taylor expansion to exp(·) in (B.4), which implies that ŷq in (B.4) is close to a
pre-conditioned version of the debiased GD:

ŷq ≈
2γ · µγ

L

L∑
ℓ=1

yℓ · x̄⊤ℓ Ωxq. (B.5)

Thus, the effective learning rate, η = 2γ · µγ , is the same as in the isotropic case.

Pre-Conditioning Matrix. It remains to determine the pre-conditioning matrix Ω. Recall that in the isotropic case, we
prove that multi-head softmax attention recovers the estimator found by the trained linear attention. For the anisotropic case,
it is proved that linear attention finds a pre-conditioned GD predictor (Ahn et al., 2023b), which is given by

ŷvgdq :=
1

L
·

L∑
ℓ=1

yℓ · x⊤ℓ Σ̃−1xq, with Σ̃ =

(
1 +

1

L

)
Σ+

tr(Σ) + dσ2

L
· Id. (B.6)

Besides, as we will show in §G.4, Σ̃ corresponds to the optimal pre-conditioning matrix for the pre-conditioned GD, which
minimizes the ICL risk. We conjecture that Ω is close to Σ̃−1, since (i) two-head softmax attention model and the linear
attention when γ is small, and (ii) Σ̃ enjoys optimality over all pre-conditioning matrices. In the right column of Figure 11,
we plot Σ−1 and Σ̃−1. A closer examination of Figure 11 shows that Ω is closer to Σ̃−1 than Σ−1.

Note when L is sufficiently large, Σ̃ is close Σ. Thus, while we cannot prove Ω = Σ̃−1, we know that when L is sufficiently
large, the transformer predictor is equal to L−1 ·

∑L
ℓ=1 yℓ · x⊤ℓ Σ−1xq. Also see Figure 14 in §C.2, which shows that Ω−1,

Σ, and Σ̃ are close.

B.4. Extension to In-Context Multi-Task Regression

In the following, we consider the multi-task in-context regression, where the response variable is a vector. In this setting,
as we will show below, depending on the number of heads and the number of tasks, the learned transformer may exhibit
different patterns.

Task Formulation. We first introduce the data generation process of multi-task linear regression as follows, where each
task has its own set of features.
Definition B.1 (Multi-task Linear Model). Given d ∈ Z+, we assume the covariate x ∈ Rd is independently sampled
from Px, and let β ∈ Rd be a fixed signal parameter. Let N ∈ Z+ denote the number of tasks. For each task n ∈ [N ], let
Sn ⊆ [d] denote a nonempty set of indices for task n ∈ [N ]. Let βSn and xSn denote the subvectors of β and x indexed
by Sn. We define the response vector y = [y1, . . . , yN ]⊤ ∈ RN by letting yn = β⊤

Sn
xSn + ϵn for all n ∈ [N ], where

ϵn
i.i.d.∼ N (0, σ2).
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In other words, each task n only uses features in Sn and the response is generated by a linear model with the corresponding
signal parameter βSn and covariate xSn . Now we introduce the ICL problem for multi-task regression, which is almost the
same as in the definition in §2.

Definition B.2. Suppose that the signal set {Sn}n∈[N ] is fixed but unknown. To perform ICL, we first generate β ∼ Pβ

and then generate L demonstration examples {(xℓ, yℓ)}ℓ∈[L] where xℓ
i.i.d.∼ Px and yℓ is generated by the linear model in

Definition B.1 with parameter β. Moreover, we generate another covariate xq ∼ Px and the goal is to predict the response
yq ∈ RN for the query xq .

Note that for each sequence Zebd ∈ R(d+1)×(L+N) defined as in (2.1), the signal set {Sn}n∈[N ] is shared while the signal
parameter β is randomly generated. Thus, we expect that the trained transformer model should be able to bake the shared
structure {Sn}n∈[N ] into the model. Chen et al. (2024a) study a special case of multi-task scenario with H = N . They
assume that, up to a rotation in y, each Sn does not overlap with each other, and

⋃
n∈[N ] Sn = [d]. In this special case, each

head learns to solve a separate linear task. That is, for each task n, there exists a head h(n) such that the h(n)-th head solves
the task n using the single-head attention estimator given in (??). Moreover, {h(n)}n∈[N ] is a permutation of [N ]. Thus, in
this special setup, the learned transformer model is a sum of N independent kernel regressors, where the n-th regressor is
based on the Sn-subvector of xℓ and the n-th entry of yℓ.

In contrast, we allow the signal sets {Sn}n∈[N ] to overlap with each other, which exhibits more complicated behaviors in
the learned transformer model. In our experiment, we study a simple two-task scenario with d = 6, L = 40, σ2 = 0.1, and
N = 2. We set S1 = {1, 2, 3, 4} and S2 = {3, 4, 5, 6}, which have two overlapping entries. For brevity, we defer the details
of the experiment results and their interpretations to §C.3. We present the main findings as follows.

Global Pattern. In the multi-task setip, the KQ and OV matrices are (N + d) × (N + d) matrices. Similar to §3, we
focus on the effective parameters that do not meet the zero vector in Zebd, i.e., the top-left (d+N)× d submatrix of KQ
matrix and the last N rows of OV matrix:

KQ(h) =

[
KQ

(h)
11 ∗

KQ
(h)
21 ∗

]
∈ R(d+N)×(d+N), OV (h) =

[
∗ ∗

OV
(h)
21 OV

(h)
22

]
∈ R(d+N)×(d+N). (B.7)

Here, KQ(h)
11 ∈ Rd×d and OV (h)

22 ∈ RN×N . Regardless of the number of heads, we observe the following consistent global
pattern: There exists ω(h) ∈ Rd and µ(h) ∈ RN such that

KQ
(h)
11 = diag(ω(h)), OV

(h)
22 = diag(µ(h)), KQ

(h)
21 = OV

(h)
21 = 0N×d, ∀h ∈ [H]. (B.8)

Therefore, the KQ circuit exhibits a diagonal-only pattern in the top d × d submatrix with other entries equal to zero,
and the OV circuit has non-zero values exclusively in the last N × N matrix. Following this, the trained transformer
essentially behaves like a single-task model, where each head uses a softmax function to compute similarity scores
p(h) = smax(X · ω(h) ⊙ xq) ∈ RL, then produces a weighted response µ(h) ·

∑L
ℓ=1 p

(h)
ℓ · yℓ, where p(h)ℓ is the ℓ-th entry of

p(h). In other words, the learned transformer model is a sum of H kernel regressors, but the weights computed by the kernel
are used to aggregated the vector-valued responses.

Local Patterns. However, different from the single task case, here each ω(h) does not corresponds to an all-one vector.
Rather, ω(h) can have different magnitudes in different entries, which reflects the tension of feature selections across different
tasks. Intuitively, focusing on each attention head h, the value of ω(h) determines the similarity scores p(h). If we only use it
to solve the first task, we expect that ω(h) only has non-zero entries in S1. Similarly, if we only use it to solve the second
task, we expect that ω(h) only has non-zero entries in S2. But when it contributes to solving both tasks, the problem is tricky.
How much effort does this head put into solving task one and task two? This will be reflected in the magnitude of ω(h) in
the overlapping entries.

We run experiment with multi-head attention models with H ranging from 1 to 4. Depending on the number of heads, the
trained transformer exhibit four different local patterns:

(i) H = 1: Single-head attention learns one weighted kernel regressor, assigning higher weights to the informative entries,
i.e., the entries that are shared by more Sn’s. On our simple case, these entries are S1 ∩ S2 = {3, 4}.
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(ii) H = 2: The two-head attention learns to act as one weighted pre-conditioned GD predictor with also higher weight
assigned to the informative entries.

(iii) H ≥ 2N : The attention heads are clustered into N groups corresponding to N tasks, where each group contains at
least 2 heads. Within each group, the attention heads learn to solve a single task, say, task n, via the same mechanism as
in the single-task setting. But the main difference is that these heads learns to use the true support Sn to solve the task.
Thus, this group of heads learns to implement a debiased GD predictor based on data {xℓ,Sn

, yℓ,n}ℓ∈[L], where xℓ,Sn

is the subvector of xℓ indexed by Sn and yℓ,n is the n-th entry of yℓ. In particular, the knowledge of {Sn} is encoded
in the KQ circuit, which is reflected in the support of parameter ω(h). Overall, the transformer learns to implement N
independent debiased GD predictors at the same time.

(iv) 2 < H < 2N : In this case, the learned pattern varies in repeated runs. In our experiment with H = 3 and N = 2,
we observe that an interesting head that simultaneously serves as a positive head for task one and a negative head for
task two. Interestingly, in this case, the model effectively implements N independent debiased GD predictors as in the
previous case. But it uses a complicated superposition mechanism (Elhage et al., 2022) to achieve this.

C. Auxiliary Experiment Results
In this section, we provide additional experiment results to support the discussions in §3 and §B.

C.1. Auxiliary Experiment Results for Section 3

Experiment Setups in §3. For all experiments in the main paper, we set L = 40, d = 5, σ2 = 0.1 for data generation
and employ the Adam optimizer with a learning rate η = 10−3, a batch size nbatch = 256, and update for T = 5 × 105

training steps. The weight matrices are initialized using the default random initialization in PyTorch. Each experiment
takes about 15 minutes on a single NVIDIA A100 GPU. Furthermore, we found that the results are not sensitive to the
choice of optimization algorithm, hyperparameters such as batch size and learning rate, or the configuration of the ICL
data-generating process.

To back up the argument that multi-head attentions implement the same predictor, we consider the same setting as in §3
with various number of heads and visualize the training dynamics of the KQ and OV parameters. In particular, we consider
H ∈ {2, 3, 4}, and set d = 5, L = 40, and σ2 = 0.1.

In Figure 12, we plot the training dynamics of the KQ and OV parameters for different numbers of heads. The first column
shows {ω(h)}h∈[H] and the second column shows {µ(h)}h∈[H] for different multi-head attention models. Our findings are
consistent with theoretical results in §B.1, and can be summarized as follows:

(i) The patterns of the KQ and OV matrices are consistent across different numbers of heads, and are the same as in
those described in Observation 1 and Observation 2 in §3. In particular, the property of homogeneous KQ scaling and
zero-sum OV hold for all models.

(ii) More importantly, across different models, the limiting value of ω(h)’s and µ+ =
∑

h∈H+
µ(h) are the same. Besides,

µ− =
∑

h∈H−
µ(h) = −µ+. In particular, for all non-dummy heads, the magnitude of |ω(h)| ∼ 0.13 for each model,

and µ+ and |µ−| are both ∼ 3.5.

(iii) When H > 2, we observe dummy heads, which corresponds to a head h ∈ [H] such that |ω(h)| ≈ |µ(h)| ≈ 0.

By the observation (ii) above, we know that when H ranges from 2 to 4, the trained multi-head attention models all
implements the same predictor as given in (??), which is a sum of two kernel regressors. Moreover, since the magnitude
of the KQ parameters are small, as we show in (??), such a predictor is approximately equivalent to a debiased gradient
descent predictor. Therefore, the experimental results support our theoretical findings in §B.1 that multi-head attentions
learn to implement the same predictor.

Training Dynamics of Dummy Head. As a supplementary to Figure 4, which only plots the two-head cases, we provide
the evolution of KQ and OV circuits for the four-head cases. Different from the two-head scenarios where the dummy heads
will not occur due to the constraint of solution manifold S ∗, i.e., there should be at least one positive head and one negative
head, there may occur dummy heads when H ≥ 3. In our experiment, we observe a dummy head in the four-head model.
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Figure 12. Comparison of training dynamics under the same setup with the number of heads ranging from 2 to 4. The magnitude of the
KQ parameters is the same for all non-dummy heads in all models. The values of µ+ and µ− are also consistent across different models.
This shows that all these multi-head attention models learn to implement the same predictor. Furthermore, in this experiment, we observe
an dummy head when H = 4. Dummy heads will appear when H > 2.

We note that whether the dummy head appears and the number of dummy heads are random and seem to depend on the
initialization and the optimization algorithm. We also observe dummy heads for H = 3 with different random seeds.

Furthermore, as shown in Figure 13, the KQ matrix of Head 4 demonstrates a chaotic pattern at the early stage and converges
to a zero-matrix. In correspondence, the OV vectors of the dummy heads converge to zero vectors, ensuring the dummy
heads will not contribute to the output. For positive and negative heads, the behavior is similar to two-head cases. These
observations can also be seen from the last row of Figure 12.

C.2. Additional Results for Anisotropic Covariates in Section B.3

In the following, we provide additional details of the experiments on anisotropic covariates, which is introduced in §B.3.

Kac-Murdock-Szegö matrix A key property of the Kac-Murdock-Szegö matrix is that its inverse matrix is a tridiagonal
matrix. Let Λ = (1− ρ2) · Σ−1, then the entries of Λ are given by

Λii = (1 + ρ2) · 1(i ̸= 1 and d) + 1(i = 1 or d), Λi,i+1 = Λi+1,i = −ρ, for all i ∈ [d].
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Figure 13. Heatmaps of the KQ matrices and OV vectors along training epochs with H = 4, d = 5, and L = 40, trained over T = 5×105

steps with random initialization. The behaviors of the first three heads are similar to the two-head case as shown in Figure 4. The KQ
matrix of Head 4 (dummy head) demonstrates a chaotic pattern at the early stage and converges to a zero-matrix. The OV vectors of the
dummy heads converge to zero vectors.

The rest of the entries are zero. See, e.g., Theorem 2.1 in Fikioris (2018) for more details. We use this property to examine
the value of the KQ matrices learned by the attention model.

KQ Implements Pre-Conditioned GD with Ω = Σ̃−1. We show in (B.5) that multi-head attention learns to implement a
pre-conditioned version of the debaised GD, where Ω is the pre-conditioning matrix. Here γ ·Ω appears in the KQ matrix of
the positive head. In Figure 14, we plot the inverse of the top-left d× d submatrices of the KQ matrices, and compare them
with Σ and Σ̃. This figures shows that these matrices are all very close, which is the case when L is large.

In addition, since the Σ−1 is a tridiagonal matrix, its (i, i+ 2)- and (i+ 2, i)-entries are zero. As shown in Figure 11, Ω not
only have significant values in the tridiagonal entries but also exhibit very small values in the (i, i+2)- and (i+2, i)-entries.
This indicates that the trained model does not strictly implement pre-conditioned GD using Σ−1. In comparison, the adjusted
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Figure 14. Comparison of inverse KQ matrices trained on anisotropic covariates with the ground-truth covariance matrix Σ and the inverse
matrix of conjectured optimal KQ pattern Σ̃ in (B.6). The learned KQ matrices exhibit an positive-negative pattern, similar to the isotropic
case in §3. Additionally, the inverse KQ matrix is nearly proportional to the ground-truth covariance matrix and Σ̃, suggesting that the
model implements a pre-conditioned GD predictor.

Σ̃−1 (see bottom-right of Figure 11), also exhibits small values beyond the tridiagonal entries due to the perturbation of
tr(Σ)/L · Id. By comparing KQ matrices and Σ̃−1, we can show that the KQ matrices of two heads take the form γ · Σ̃ and
−γ · Σ̃ with a small scaling γ, aligning with the conjecture in §B.1. Meanwhile, note that the difference between Σ−1 and
Σ̃−1 is roughly O(1/L), which is negligible when L is large. Thus, it suffices to identify the estimator in (B.6) with simple
pre-conditioned GD predictor L−1

∑L
ℓ=1 yℓ · x⊤ℓ Σ−1xq in the low-dimensional regime where d/L→ 0.

C.3. Additional Results for Multi-Task Linear Regression in Section §B.4

In the following, we introduce the details of the experiments on multi-task linear regression, which is discussed in §B.4.

Experimental Setups. Recall that the data generation process is defined in Definitions B.1 and (B.2). We let
{(xℓ, yℓ)}ℓ∈[L] denote the ICL examples, where xℓ ∈ Rd and yℓ ∈ RN . We consider the isotropic case with Px = N (0, Id)
and Pβ = N (0, Id/d). Moreover, in our experiment, we focus on the two-task case with N = 2, d = 6, L = 40, σ2 = 0.1.
Moreover, we set S1 = {1, 2, 3, 4} and S2 = {3, 4, 5, 6}, i.e., the features of the tasks have overlap {3, 4}. We train
multi-head attention models with H ∈ {1, 2, 3, 4}. The rest of the experimental setup is the same as that in §3.

To simplify the notation, we let S∗ = S1 ∩ S2 and Sc = [N ]\S∗. Besides, for each n ∈ [N ], we let yℓ,n denote the n-th
entry of the response vector yℓ. For any subset S ⊆ [d], we let xℓ,S denote the subvector of xℓ with indices in S. As
discussed in §B.3, the trained transformer exhibits global patterns in the KQ and OV matrices. In specific, by writing the
KQ and OV matrices as block matrices as in (B.7), we have (B.8) for all h ∈ [H]. In other words, each head h is captured
by parameters ω(h) ∈ Rd and µ(h) ∈ RN . As we will show as follows, each four attention models illustrate one of the four
possible modes of behavior respectively.
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Figure 15. Heatmap of KQ and OV matrices trained on
multiple tasks with H = 1. The trained attention model
learns to implement a single weighted kernel regressor.

Mode I (H = 1): Single Weighted Kernel Regressor. In Figure 15,
we visualize the learned pattern of single-head attention. Upon closer
examination, the third and fourth entries, corresponding to S1 ∩ S2,
have a larger value (∼ 0.5) than other diagonal entries (∼ 0.42). That
is, ω(1)

j ≈ 0.42 for j /∈ {3, 4} and ω(1)
3 ≈ ω(1)

4 ≈ 0.5. In the general
case, we have

ω
(1)
S∗ = ω̆∗ · 1|S∗|, ω

(1)
Sc = ω̆c · 1|Sc|, µ(1) = µ̆ · 1N ,

where ω̆∗, ω̆c, and µ̆ are three scaling factors.

This indicates that, the trained single-attention model learns a
weighted kernel regressor. Specifically, for each task n ∈ [N ], the predictor is

ŷq,n = µ̆ ·
L∑

ℓ=1

exp(ω̆∗ · ⟨xℓ,S∗ , xq,S∗⟩+ ω̆c · ⟨xℓ,Sc , xq,Sc⟩) · yℓ,n∑L
ℓ=1 exp(ω̆

∗ · ⟨xℓ,S∗ , xq,S∗⟩+ ω̆c · ⟨xℓ,Sc , xq,Sc⟩)
,

which applies uses a same set of weights to aggregate responses for all tasks.

Mode II (H = 2): Single Weighted Pre-Conditioned GD Predictor. As shown in Figure 16, the two-head attention
learns an opposing positive-negative pattern which is nearly identical to the single-task we observed in §3. However, similar
to Mode I, the attention model assigns more weight on the informative entries S∗ (∼ 0.13 vs. ∼ 0.12). In addition, the
learned scale is much smaller than that in the previous single-head case, which is also observed in the single-task setting.
The pattern learned by the attention model can be summarized as below:

ω
(1)
S∗ = −ω(2)

S∗ = ω̆∗ · 1|S∗|, ω
(1)
Sc = −ω(2)

Sc = ω̆c · 1|Sc|, µ(1) = −µ(2) = µ̆ · 1N ,

where ω̆∗, ω̆c, and µ̆ are three scaling factors. Therefore, when H = 2, for each task n ∈ [N ], the predictor approximately
takes the following form:

ŷq,n ≈
2µ̆ω̆∗

L
·

L∑
ℓ=1

⟨x̄ℓ,S∗ , xq,S∗⟩ · yℓ,n +
2µ̆ω̆c

L
·

L∑
ℓ=1

⟨x̄ℓ,Sc , xq,Sc⟩ · yℓ,n.

Here we use the fact that ω̆ is small. Thus, the trained attention model solves the multi-task linear regression using weighted
debiased GD predictor, which assigns a slightly larger weight to S∗.

Figure 16. Heatmap of KQ and OV matrices trained on multi-task problem with H = 2. In the trained model, the KQ matrices exhibits a
diagonal-only pattern and the diagonal values have two magnitudes. The magnitude of {ω(h)

j }j∈{3,4} is slightly larger than the rests of
the diagonal entries. Besides, µ(1) = −µ(2) and they are proportional to an all-one vector.
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Mode III (H ≥ 2N ): N Independent Debiased GD Predictors. Recall for a single task, at least two heads are required
to implement a debiased GD predictor. Here, we explore a regime where H ≥ 2N . Thus, the transformer has the expressive
power to use two attention heads to solve each task independently, via implementing debiased GD predictors

As shown in Figure 17, the experiment result on a four-head model supports this hypothesis. In the trained model, Heads 1
and 2 are coupled to solve Task 1, focusing exclusively on S1 in KQ while contributing only to the prediction of ŷq,1. This
can be seen by noting that ω(1)

S1
= −ω(2)

S1
= ω̆ · 1|S1|, ω

(1)
Sc
1
= −ω(2)

Sc
1
= 0|Sc

1 |, µ
(1)
1 = −µ(2)

1 = µ̆, and µ(1)
2 = µ

(2)
2 = 0.

Here ω̆ and µ̆ are two positive scaling parameters and µ(h)
n denotes the n-th entry of µ(h). Similarly, Heads 3 and 4 are

coupled to solve Task 2, following the same structure. In the general case, consider H = 2N with (2n− 1)-th and 2n-th
heads solving the n-th task together. For all n ∈ [N ], the learned pattern satisfies

ω
(2n−1)
Sn

= −ω(2n)
Sn

= ω̆ · 1|Sn|, ω
(2n−1)
Sc
n

= −ω(2n)
Sc
n

= 0|Sc
n|, µ(2n−1) = −µ(2n) = µ̆ · en,

where we use en ∈ RN to denote a canonical basis whose n-th entry is one and the rest of the entries are all zero. With this
pattern, using the fact that ω̆ is small, for each task n ∈ [N ], the predictor approximately takes the following form:

ŷq,n ≈
2µ̆ω̆

L
·

L∑
ℓ=1

⟨x̄ℓ,Sn
, xq,Sn

⟩ · yℓ,n, (C.1)

where 2µ̆ω̆ ≈ 1. This implements an independent GD predictor for each task n, using {xℓ,Sn , yℓ,n}ℓ∈[L]. In other words,
the model bakes the true supports {Sn}n∈[H] into the learned model weights.

Note that in Mode I and Mode II, the same weights are applied across different tasks, relying on all covariate entries. In
contrast, when the model has sufficient expressive power, it learns to allocate dedicated heads for each task and efficiently
solve each task by using a debiased gradient descent predictor that is restricted to the true support Sn of the task.

Figure 17. Heatmap of KQ and OV matrices trained on the multi-task problem with H = 4. The trained model learns to implement N
independent pre-conditioned GD predictors by assigning each task to a unique pair of heads, ensuring that each head is exclusively used
for a single task. Task-relevant entry information is encoded in the KQ circuit and OV controls the output task.

Mode IV (2 < H < 2N ): Pre-Conditioned GD Predictors with Superposition. Unlike Mode I and Mode II, where
attention employs shared weights across all tasks, or Mode III, where each task is assigned distinct, non-overlapping heads,
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when 2 < H < 2N , we observe an intriguing superposition phenomenon. Intuitively, superposition requires requires
some heads to solve move than one task simultaneously, which means that we may observe ω(h) that have both positive
and negative values. Superposition enables the transformer model to approximate the performance of the N debiased GD
predictors despite the limited head capacity.

HEAD 1 HEAD 2 HEAD 3

ω
(h)
Sc
1,∗

-0.0316 0.0779 -0.0837

ω
(h)
Sc
2,∗

-0.0689 0.0000 0.0927

ω
(h)
S∗ -0.0893 0.0870 0.0152
µ̆
(h)
1 -3.9911 6.9204 -2.8739
µ̆
(h)
2 -7.0742 2.3371 4.7399

Figure 18. (Top left) Learned parameters of three-head attention model trained on multi-task problem. By direct calculation, we can
show that the learned parameter follow the patterns described in (C.5) and (C.6), indicating that the model effectively emulates the
pre-conditioned GD predictor despite its limited expressive power via superposition. (Remaining) Heatmap of KQ and OV matrices
trained on multi-task problem with H = 3. In this case, each head contributes to both tasks, and in particular, Head 3 is a positive head
for Task 2 and a negative head for Task 1. The trained model learns to implement the N independent debiased GD predictors with
superposition.

Figure 18 shows the learned pattern of a three-head model, trained on the two-task in-context linear regression problem. We
have the following observations:

(i) All the three heads contribute to solving both regression tasks. This can be seen from the fact that µ(h) does not have
zero entries for all h.

(ii) Head 1 is a negative head and Head 2 is a positive head, µ(1), ω(1) are negative, while µ(2), ω(2) are positive.
(iii) Head 3 has both positive and negative components, illustrating the superposition phenomenon. Head 3 is a negative

head for Task 1 and a positive head for Task 2. The first two entries of ω(3) are negative, the last two entries are positive,
and the middle two entries are close to 0.

(iv) Head 1 put more effort in solving Task 2, as µ(1)
2 has a larger magnitude than µ(1)

1 . Similarly, Head 2 focus more on
Task 1. Head 3 is rather more balanced.

These observations lead to a mathematical depiction of {ω(h), µ(h)}h∈[H] as follows. Let D denote the set of all possible
grouped divisions {S∗,Sc1,∗,Sc2,∗} with Scn,∗ = Sn\S∗ for n ∈ {1, 2}. Under our setup, we have Sc1,∗ = {1, 2}, Sc2,∗ =
{5, 6}, and S∗ = {3, 4}. The parameters of the three-head model can be summarized as follows:

H∑
h=1

µ(h) = 0N , ω
(h)
S = ω̆

(h)
S · 1|S|, ∀(h,S) ∈ [H]×D .
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In other words, the supports of the two tasks split [d] into non-overlapping groups, and the value of the KQ parameters
are the same within each group. Here, ω(h)

S denotes the subvector of ω(h) with entries in S and ω̆(h)
S is a scaling factor.

Moreover, the OV parameters sum to a zero vector, generalizes single-task setting. Let µ̆(h) denote the learned value of µ(h).
Then Head h contributes to the prediction of Task n via the parameter µ̆(h)

n , and we have
∑H

h=1 µ̆
(h)
n = 0 for all n.

By plugging the values of {ω(h), µ(h)}h∈[H] into the transformer model, for each task n ∈ [N ], its output can be written as

ŷq,n =

H∑
h=1

µ̆(h)
n ·

L∑
ℓ=1

exp(⟨xℓ, ω̆(h) ⊙ xq⟩) · yℓ,n∑L
ℓ=1 exp(⟨xℓ, ω̆(h) ⊙ xq⟩)

, (C.2)

where ω(h) ⊙ xq denotes the Hadamard product. By the construction of D , we have

⟨xℓ, ω̆(h) ⊙ xq⟩ =
∑
S∈D

ω̆
(h)
S · ⟨xℓ,S , xq,S⟩. (C.3)

When L is sufficiently large, we combine (C.3) and apply Taylor expansion in (C.2) to obtain that

ŷq,n ≈
H∑

h=1

µ̆(h)
n ·

L∑
ℓ=1

yℓ,n
L
·

(
1 +

∑
S∈D

ω̆
(h)
S · ⟨x̄ℓ,S , xq,S⟩

)

=

H∑
h=1

∑
S∈D

µ̆
(h)
n ω̆

(h)
S

L
·

L∑
ℓ=1

⟨x̄ℓ,S , xq,S⟩ · yℓ,n, (C.4)

the last equality follows from the fact that
∑H

h=1 µ̆
(h)
n = 0. That is, ŷq,n can be viewed as a sum of |D | independent debiased

GD predictors, each of which is restricted to the support S.

Furthermore, we carefully examine the learned values of {ω(h), µ(h)}h∈[H], which are listed in Table 18. We observe that
the following conditions hold:

H∑
h=1

µ̆
(h)
1 ω̆

(h)
Sc
1,∗

=

H∑
h=1

µ̆
(h)
1 ω̆

(h)
S∗ ≈ 1,

H∑
h=1

µ̆
(h)
1 ω̆

(h)
Sc
2,∗

= 0, (C.5)

H∑
h=1

µ̆
(h)
2 ω̆

(h)
Sc
2,∗

=

H∑
h=1

µ̆
(h)
2 ω̆

(h)
S∗ ≈ 1,

H∑
h=1

µ̆
(h)
2 ω̆

(h)
Sc
1,∗

= 0. (C.6)

As a result, ŷq,n in (C.4) can be simplified as

ŷq,n ≈
∑
h=1

1

L
·

L∑
ℓ=1

⟨x̄ℓ,Sn , xq,Sn⟩ · yℓ,n, ∀n ∈ [N ].

This estimator is identical to that in (C.1). This means that, when H = 3 and N = 2, the trained transformer model learns
the same estimator – sum of two independent debiased GD estimator – as the case when H = 2N . But here the transformer
model achieves by exploiting the superposition. That is, each head is used to solve both tasks, and the aggregated effect is
that the model can approximate the performance of the N independent debiased GD predictors. Here we only study a toy
case with H = 3 and N = 2. We believe that the superposition phenomenon is a general phenomenon that occurs when
2 < H < 2N . But more a larger N , the superposition phenomenon becomes more complex and entangled. For the general
multi-task setting, characterizing the training dynamics and solution manifold of the multi-head attention with superposition
is an important direction for future work.

C.4. Experimental Results for Loss Approximation

In the following, we examine the difference of the true population loss of ICL and the approximate loss in (4.1) in terms of
the training dynamics.
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Intuitions of Approximation and Scaling in Proposition E.1. In the proof of loss approximation, the main rationale
is that the high-order terms are negligible when the prompt length L is sufficiently large under certain conditions. For a
fixed d, the intuition is that p = smax(ω ·Xxq) should be distributed relatively “uniformly” across the entries, resulting in a
quite small norm ∥p∥k2 for k ≥ 2. As shown in Figure 19a, with a fixed d, the norm concentrates around 0 as the length L
increases. However, this property may not hold in the high-dimensional proportional regime, i.e., d/L→ ξ (see Figure 19b).
To address this issue, we impose scaling conditions ∥ω∥2∞ ≲ logL/d to offset the effects of high dimensionality and ensure
that the norm remains small (see Figure 19c).
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(a) Low-dimension, ω = 0.5.
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(b) High-dimension, ω = 0.5.
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(c) High-dimension, ω = 0.35.

Figure 19. Distribution of norm ∥p∥22. Figure (a) depicts the low-dimensional regime with a fixed d = 5. As the sequence length L
increases, the distribution of ∥p∥22 converges to singleton at zero. Figure (b) and (c) illustrate the proportional regime d/L = 1/8. As L
increases and the scaling factor ω decreases, the norm ∥p∥22 becomes increasingly concentrated around zero.

Training Dynamics of True Loss and Approximate Loss. To further evaluate the performance of approximate loss in
(4.1), we compare the training dynamics given by these two different losses. Consider the four-head attention model with
d = 5, L = 40, σ2 = 0.1. By comparing Figures 20a and 20b, we observe that the approximate loss effectively captures the
evolution of parameters seen in the full model. Additionally, we note that the actual training dynamics appear less “regular”
due to the finite batch size (as opposed to the population risk used in the approximate loss) and internal perturbations arising
from parameters at non-target positions in the full model.

D. Analysis on Training Dynamics of Two-head Attention
In this section, we offer a more comprehensive analysis of the gradient flow on the approximate loss defined in (4.1) with a
two-head attention model. This analysis provides justification for the evolution of the parameters {ω(h), µ(h)}h∈[2] in Figure
1b. For simplicity, we consider the gradient flow of L̃/2 with a two-head attention, where L̃ is the approximate loss function.
We let θ denote the vector of all parameters, i.e., θ = (µ, ω) ∈ R4, where µ = (µ(1), µ(2)) ∈ R2 and ω = (ω(1), ω(2)) ∈ R2.
Consider the gradient flow algorithm. We let θt denote the parameter at time t. The gradient flow dynamics is characterized
by an ordinary differential equation (ODE):

∂tθt = −∇θL(θt), where L(θ) := L̃(θ)/2.

Here we slightly abuse the notation by writing L̃/2 as L, which is the case only in this section. For simplification, we
consider the following initialization.

Definition D.1 (Initialization). Consider a two-head attention model with symmetric initialization such that µ = ω =
(α,−α) where α > 0 is a sufficiently small constant defining the initial scale.

Under initialization in Definition D.1, gradient flow starts from a point satisfying sign-matching and homogeneous scaling
(see §4.2). In the following, we show that these patterns, once emerged, are preserved along the gradient flow trajectory.
This aligns with the experimental results shown in Figure 1b, where we train the full parameters of the attention model from
random initialization.
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(b) Approximate Training Dynamics.

Figure 20. Comparison of training dynamics between the true loss and the approximate loss for four-head attention model. The approximate
training dynamics closely capture the behavior of the true dynamics, providing an effective characterization of the whole training process.

Preservation of Symmetry and Homogeneous Scaling. Based on gradient calculations and the definition of gradient
flow, the time derivative of parameters satisfies that

∂tµt = ωt − µ⊤
t ωt · ωt − λ · exp(dωtω

⊤
t ) · µt,

∂tωt = µt − µ⊤
t ωt · µt − dλ ·

(
exp(dωtω

⊤
t )⊙ (µtµ

⊤
t )
)
· ωt,

where we define λ = (1 + σ2)/L for notational simplicity. Let st = exp(d · (ω(1)
t )2) − exp(d · (ω(2)

t )2) and ut =
(⟨µt,1⟩, ⟨ωt,1⟩, st) ∈ R3. By direct calculation and careful decomposition, we have

∂t⟨µt,1⟩ = (1− µ⊤
t ωt) · ⟨ωt,1⟩ − λ · exp(d · ω(1)

t ω
(2)
t ) · ⟨µt,1⟩

+ λ · exp(d · (ω(1)
t )2) · ⟨µt,1⟩+ λ · µ(2)

t · st := ⟨g1,t, ut⟩, (D.1)

∂t⟨ωt,1⟩ = (1− µ⊤
t ωt) · ⟨µt,1⟩ − dλ · µ(1)

t µ
(2)
t · exp(d · ω

(1)
t ω

(2)
t ) · ⟨ωt,1⟩

− dλ · ω(1)
t · (µ

(1)
t )2 · st − dλ · (µ(1)

t )2 · exp(d · (ω(2)
t )2) · ⟨ωt,1⟩

− dλ · ω(2)
t · exp(d · (ω

(2)
t )2) · (µ(2)

t − µ
(1)
t ) · ⟨µt,1⟩ := ⟨g2,t, ut⟩. (D.2)

Here we observe that the time-derivatives of both ⟨µt,1⟩ and ⟨ωt,1⟩ are linear functions of ut, and we let g1,t and g2,t
denote the linear coefficients, respectively. Furthermore, it is easy to see that

∂tst = 2d · exp
(
d · (ω(1)

t )2
)
· ω(1)

t · ∂tω
(1)
t − 2d · exp

(
d · (ω(2)

t )2
)
· ω(2)

t · ∂tω
(2)
t

= 2d · ω(1)
t · ∂tω

(1)
t · st + 2d · exp(d · (ω(2)

t )2) · ∂tω(1)
t · ⟨ωt,1⟩

− 2d · exp(d · (ω(2)
t )2) · ω(2)

t · ∂t⟨ωt,1⟩ := ⟨g3,t, ut⟩. (D.3)
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In other words, the time-derivative of st is also a linear function of ut, with coefficient given by g3,t. Here the last equality
uses the fact that we can write ∂t⟨ωt,1⟩ = ⟨g2,t, ut⟩ as shown in (D.2). We note that g1,t, g2,t, and g3,t are functions of ut.

To show that µ(1) = −µ(2) and ω(1) = −ω(2) are preserved along the gradient flow, note that based on (D.1), (D.2) and
(D.3), we can characterize the dynamics of ut with a matrix ODE ∂tut = Gtut where Gt = [g1,t, g2,t, g3,t]

⊤ ∈ R3×3. By
solving the ODE, we have ut = ϖ · exp

( ∫ t

0
Gsds

)
, where ϖ is a constant vector that reflects the initial condition, i.e.,

u0 = ϖ. Note that the initialization in Definition D.1 indicates that u0 = ϖ = 0. Therefore, ut = 0 at any time t. In
particular, this implies that µ(1)

t + µ
(2)
t = ω

(1)
t + ω

(2)
t = 0. See Figure 21a for an illustration, which plot the full evolution

of µ and ω.

Hence, we can track the dynamics of (µt, ωt) by only focusing on µ(1)
t and ω(1)

t . For notational clarity, we let φt and ϱt
denote µ(1)

t and ω(1)
t , respectively. Then the evolution of (φt, ϱt) is given by the following ODE system:

∂tφt = ϱt − 2φtϱ
2
t − λφt ·

(
exp(dϱ2t )− exp(−dϱ2t )

)
,

∂tϱt = φt − 2φ2
tϱt − dλφ2

tϱt ·
(
exp(dϱ2t ) + exp(−dϱ2t )

)
.

(D.4)

Such an ODE system does not admit a closed-form solution, but can be solved numerically. To gain some insight, in Figures
21a and 21b, we plot the full dynamics of µ and ω with L = 40, d = 5 and σ = 0.1, as well as the dynamics in the early
stage of gradient flow. In addition, in Figure 21c we plot the evolution of the loss L̃(θt) as a function of t, as well as the
ratio φt/ϱt. In Figure 21d, we plot the dynamics of φt, together with φt · ϱt and φ∗(ϱt). Here φ∗(ϱt) denotes the optimal
value of φt that minimizes the approximate loss function, when ϱt is fixed. See (D.17) for its definition. In addition, we
additionally plot the dynamics of µ and ω in the case with d = 10 in Figure 21. We observe almost identical behaviors as in
the case with d = 5.

By examining these figures, we observe that the evolution of the ODE system in (D.4) exhibits the following three phases:

• Phase I (Exponential and Synchronous Growth). From a small initialization, both φt and ϱt grow exponentially fast in
t at nearly the same rate. This leads to a rapid reduction in the loss L̃. Moreover, during this stage, φt stays roughly equal
to ϱt, as shown in Figure 21b. In particular, their ratio φt/ϱt stays close to one, which is shown in Figure 21c.

• Phase II (Slowed Growth and Peak Formation). As φt and ϱt increase, their growth rate in time decreases, i.e., the
exponential growth in both φt and ϱt stops. Moreover, ϱt eventually reaches its maximum value Õ(d−1/2). Although the
parameters no longer grow exponentially, the loss decreases sharply until ϱt begins to decline. Moreover, the ratio φt/ϱt
does not grow much from one. This phase ends when ϱt attains its maximum value, which corresponds a critical of the
ODE in (D.4), under the condition that φt ≈ ϱt. As shown in Figure 21b, by the end of this phase, φt and ϱt part ways,
with φt keeping increasing while ϱt begins to decrease. Throughout this phase, the ratio φt/ϱt does not increase much
from one, as shown in Figure 21c. In addition to the sharp drop of the loss, the product φt · ϱt increases rapidly, as shown
in Figure 21d.

• Phase III (Convergence). After ϱt reaches its peak, it decreases to zero while φt continues increasing. Their ratio
φt/ϱt thus keeps increasing. In addition, the loss converges to the minimum value and the value of the product φt · ϱt
increases and converges. Moreover, the last phase exhibits an interesting phenomenon: the difference between φt and
φ∗(ϱt) gradually becomes negligible. This motivates us to use φ∗(ϱt) as a surrogate of φt for the analysis of the limiting
behavior of the ODE system.

In the following, we analyze the ODE system defined in (D.4) under the high-dimensional regime where d/L → ξ and
d, L→∞. Recall that we define λ = (1 + σ2)/L, and thus dλ → (1 + σ2) · ξ. Here we additionally assume that ξ is a
small constant such that the limit of dλ is less than one.

Phase I: Exponential and Synchronous Growth. At the beginning of gradient flow, both φt and ϱt quickly escape
from the starting point, maintaining an almost identical growth rate while keeping their magnitude small. During the
first stage, φt ≈ ϱt holds due to the same small initialization (see Figure 21b for an illustration). In this case, we have
exp(dϱ2t ) − exp(−dϱ2t ) = O(ϱ2t ) and exp(dϱ2t ) + exp(−dϱ2t ) ≈ 2. Ignoring the high-order terms of φt and ϱt, we can
approximate (D.4) by a much simpler system of differential equations:

∂tφt ≈ ϱt, ∂tϱt ≈ ϱt, (D.5)
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Figure 21. Gradient flow with respect to the approximated loss L̃/2 with L = 40, d = 5, H = 2 and σ2 = 0.1 under initialization in
Definition D.1 with initialization α = 0.001. Figure (a) shows the full evolution of the four-dimensional dynamic system in terms of µ
and ω along the gradient flow. Figure (b) provides a closer view of the dynamics during the early stage, with areas shaded in different
colors highlighting the three phases. Specifically, ϱt first reaches its maximum (∼ 0.57) which is on the order of O(

√
log d/d) (∼ 0.56)

and φt keeps increasing. Figure (c) and (d) present the evolution of loss L̃(θt), φt/ϱt, φtϱt, and φ∗(ϱt) to track the relative behavior of
parameters. Here φ∗(ϱt) is defined in (D.17).

whose solution is given by

ϱt ≈ α exp(t), φt ≈ α
∫ t

0

ϱsds ≈ α · exp(t). (D.6)

Thus, both φt and ϱt grows exponentially in t.

Moreover, despite the exponential growth, the ratio between φt and ϱt remains at the initial value, i.e., φ0/ϱ0 = 1 for a
pretty long time, resulting in a synchronous growth at the initial stage. To see this, note that we have

∂t log(φt/ϱt) = ∂t logφt − ∂t log ϱt = 1/φt · ∂tϱt − 1/ϱt · ∂tϱt

=

(
ϱt
φt
− φt

ϱt

)
− 2(ϱ2t − φ2

t )− λ ·
(
exp(dϱ2t )− exp(−dϱ2t )

)
+ dλφ2

t ·
(
exp(dϱ2t ) + exp(−dϱ2t )

)
≈ 2dλ · φ2

t > 0. (D.7)

Here the last approximation step is derived from the facts that φt ≈ ϱt and that exp(dϱ2t ) + exp(−dϱ2t ) ≈ 2. As a result,
the ratio φt/ϱt increases in t. Moreover, recall that we define λ = (1 + σ2)/L, which is small when L is large. As a result,
when t is small, the ratio φt/ϱt increases in t at a rather slow rate. More specifically, by solving the ODE above, φt/ϱt can
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(b) Early-stage dynamics.
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(d) Product and φ∗
t (ϱt).

Figure 22. Gradient flow with respect to the approximated loss L̃/2 with L = 40, d = 10, H = 2 and σ2 = 0.1 under initialization in
Definition D.1 with initialization α = 0.001. Figure (a) shows the full evolution of the four-dimensional dynamic system in terms of µ
and ω along the gradient flow. Figure (b) provides a closer view of the dynamics during the early stage, with areas shaded in different
colors highlighting the three phases. Specifically, ϱt first reaches its maximum (∼ 0.45) which is on the order of O(

√
log d/d) (∼ 0.47)

and φt keeps increasing. Figure (c) and (d) present the evolution of loss, φt/ϱt, φtϱt, and φ∗
t to track the relative behavior of parameters.

be approximately written as a function of ϱt, i.e.,

φt

ϱt
≈ exp

(
2dλ

∫ t

0

φ2
sds

)
≈ exp

(
2dλα2 ·

∫ t

0

exp(2s)ds

)
= exp

(
dλα2 · exp(2t)

)
≈ 1 + dλα2 · exp(2t) ≈ 1 + dλ · ϱ2t . (D.8)

Here, the second and the last approximation step uses (D.6), and the third approximation step uses the fact that t is small.
As shown in Figures 21b and 21c, in the first phase, while both φt and ϱt increase in t, their ratio remains substantially close
to one when ϱt.

In addition, Figure 21c also shows that in the first phase, the loss started to decrease alongside the rapid growth of parameters.
To show this rigorously, we compute the time-derivative of the loss function. Let Lt denote L(θt), which is given by

Lt := L(θt) = (1 + σ2)/2− 2φtϱt + 2φ2
tϱ

2
t + λφ2

t ·
(
exp(dϱ2t )− exp(−dϱ2t )

)
.

Then we have

∂tLt = −2(1− 2φtϱt) · (φt · ∂tϱt + ϱt · ∂tφt) + 2λφt · ∂tφt ·
(
exp(dϱ2t )− exp(−dϱ2t )

)
+ 4λdφ2

tϱt · ∂tϱt ·
(
exp(dϱ2t ) + exp(−dϱ2t )

)
(D.9)

≈ 4ϱ2t · (2φtϱt − 1) + 8λd · φ2
tϱ

2
t ≈ −4ϱ2t = −4α2 · exp(2t).

33



In-Context Linear Regression with Multi-Head Softmax Attention

Here, the first approximation is based on (D.5) and the facts that φt ≈ ϱt and that exp(dϱ2t ) + exp(−dϱ2t ) ≈ 2. In the
second approximation, we only keep the dominating term, −4ϱ2t , and remove the high-order terms that are negligible. In the
last equality, we plug in the closed-form of ρt in (D.6). Hence, solving this differential equation, we have

Lt ≈ L0 − 4

∫ t

0

α2 exp(2s)ds = L0 − 2ϱ2t ,

where L0 = L(θ0) is the initial value of the loss. That is, the loss decreases exponentially in t. However, since the magnitude
of ϱt remains small despite its exponential growth, the loss function does not decrease significantly during this phase.

In summary, during Phase I, φt and ϱt grow exponentially while keeping their ratio close to one. In addition, the change in
both the loss Lt and the ratio φt/ϱt is proportional to ϱ2t , indicating exponential changes in both quantities. The end of
Phase I is defined by

τ1 = max{t ∈ R+ : min{φt, ϱt} ≤ d−1/2/2}, (D.10)

when φt and ϱt is sufficiently large such that approximations for exp(dϱ2t ), exp(−dϱ2t ), and the high-order terms are no
longer valid. Hence, the loss has decreased at least by (2d)−1 and φt/ϱt is approximately bounded by 1 + λ/4 ≍ 1 + 1/L
during the first phase.

Phase II: Slowed Growth and Peak Formation. In the second phase, we focus on the evolution after time t ≥ τ1, which
is defined in (D.10). In this phase, we cannot ignore the high-order terms of φt and ϱt. In particular, we use the first-order
approximation exp(dϱ2t )− exp(−dϱ2t ) ≈ 2dϱ2t . Moreover, We still adopt the approximation that φt ≈ ϱt. To see this, note
that (D.7) now becomes

∂t log(φt/ϱt) ≈ −2dλ · ϱ2t + dλφ2
t · (2 + d2ϱ4t ) = dλ · φ6

t . (D.11)

Here we plug in ϱt ≈ φt and the second-order approximation that exp(dϱ2t ) + exp(−dϱ2t ) ≈ 2 + d2ϱ4t . Similar to (D.8),
we can solve (D.11) and conclude that the ratio φt/ϱt remains close to one, as long as φt and ϱt remains small.

Now we focus on the dynamics of φt and ϱt. By (D.4), the dynamics of φt can be simplified to

∂tφt ≈ ϱt − 2φtϱ
2
t − λφt · 2dϱ2t ≈ φt − 2(dλ+ 1) · φ3

t , (D.12)

where the approximations follow from exp(dϱ2t )− exp(−dϱ2t ) ≈ 2dϱ2t and φt ≈ ϱt. Solving this differential equation, for
all for all time t during this phase (t ≥ τ1) , we have

φt ≈ {2(dλ+ 1) + ζ(τ1) · exp(−2(t− τ1))}−1/2
, with ζ(t) = α−2 exp(−2t)− 2(dλ+ 1). (D.13)

Note that here we directly solve the differential equation ∂tφt = φt− 2(dλ+1) ·φ3
t with initialization φτ1 = α · exp(τ1) in

closed-form. Based on (D.13), we see that the growth rate of φt is decelerated compared with the exponential growth in Phase
I. But the increase in the magnitude of φt is much faster thanks to the much larger initial value α · exp(τ1) = d−1/2/2≫ α.

Note that ϱt shares a similar behavior since their ratio remains around one given its small growing rate. In particular, the
dynamics of ϱt can be approximately characterized by

∂tϱt ≈ φt − 2φ2
tϱt − dλφ2

tϱt ·
(
2 + d2ϱ4t

)
≈ ϱt − 2(dλ+ 1) · ϱ3t − d3λ · ϱ7t , (D.14)

where we use the second-order approximation exp(dϱ2t ) + exp(−dϱ2t ) ≈ 2 + d2ϱ4t and φt ≈ ϱt. Furthermore, to better
understand the relative behavior between φt and ϱt, we can calculate the time derivative of their difference φt − ϱt. In
particular, combining (D.12) and (D.14), we have

∂tφt − ∂tϱt ≈ d3λ · ϱ7t > 0, (D.15)

where we use the fact that φt ≈ ϱt. Hence, the gap between φt and ϱt increase in t and thus approximation φt ≈ ϱt would
be violated by the end of this phase. Note that with the increasing of ϱt, ∂tφt and ∂tϱt are quickly decreasing due to the
exponential growth of exp(dϱ2t ) in (D.4). Based on (D.15), we can see that ∂tϱt < ∂tφt such that ϱt will first reach the
critical point, i.e., ∂tϱt = 0, which marks the end of Phase II. Define

τ2 = max{t ∈ R+ : φtϱt · (dλ · exp(dϱ2t ) + dλ · exp(−dϱ2t ) + 2) ≤ 1}.
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To characterize the scale of ϱt by the end of the second phase, given ϱt ≈ φt, we have

1 ≈ ϱ2τ2 · (dλ · exp(dϱ
2
τ2) + dλ · exp(−dϱ2τ2) + 2) ≳ ϱ2τ2 · exp(dϱ

2
τ2), (D.16)

since we assume dλ = (1 + σ2) · ξ is of constant order. Moreover, note that τ2 characterizes the time when ϱt hit its peak
value since ϱt increases monotonically during the first two stages. And as we will show later, ϱt continues to decrease
thereafter. Thus, we conclude that

max
t∈R+

ϱt = ϱτ2 = O
(√

(log d− log log d)/d
)
= Õ(1/

√
d),

by solving the inequality in (D.16) given sufficiently large d. More specifically, we solve the equation dλ·ϱ2τ2 ·exp(dϱ
2
τ2) = 1

and use the expansion of Lambert-W function. Here Õ(·) omits logarithmic factors. Therefore, we prove that the value of
ϱt forms a peak, with magnitude of Õ(1/

√
d). This aligns with the observation in Figure 21b.

Phase III: Convergence Next, we provide a heuristic analysis of the last phase showing that ϱt decays to zero asymp-
totically. In particular, we employ a two-timescale analysis by first pushing φt to its limit, enabling us to eliminate φt by
treating it as a function of ϱt. Recall that

Lt = (1 + σ2)/2− 2φtϱt + 2φ2
tϱ

2
t + λφ2

t ·
(
exp(dϱ2t )− exp(−dϱ2t )

)
.

Note that the loss is quadratic with respect to φt. By finding the critical point of Lt with respect to φt, we know that the
limiting value of φt for a fixed ϱt is given by

φ∗
t := φ∗(ϱt) =

ϱt
2ϱ2t + λ (exp(dϱ2t )− exp(−dϱ2t ))

. (D.17)

Moreover, as shown in Figure 21c, in this phase, the evolution of φ∗
t and φt are almost identical. Motivated by this

observation, to characterize the limiting behavior of ϱt, we replace φt by φ∗
t in the ODE in (D.4). This leads to an ODE

only involving ϱt:

∂tϱt = φ∗
t ·
{
1−

(
2 + dλ ·

(
exp(dϱ2t ) + exp(−dϱ2t )

))
· φ∗

t ϱt
}
. (D.18)

Using first-order approximations

exp(dϱ2t )− exp(−dϱ2t ) ≈ 2dϱ2t , and exp(dϱ2t ) + exp(−dϱ2t ) ≈ 2 + d2ϱ4t

in (D.17) and (D.18), we have φ∗
t ≈ (2(dλ+ 1) · ϱt)−1 and

∂tϱt ≈
1

2(dλ+ 1) · ϱt
·
{
1−

2 + dλ ·
(
2 + d2ϱ4t

)
2(dλ+ 1)

}
= − d3λ

4(dλ+ 1)2
· ϱ3t .

Solving this ODE in closed form, we can characterize the evolution of ϱt and φ∗
t = φ∗(ϱt) by

ϱt ≈
(

1

ϱ2τ2
+
d3λ · (t− τ2)
2(dλ+ 1)2

)−1/2

, φ∗
t ≈

1

2(dλ+ 1)
·
(

1

ϱ2τ2
+
d3λ · (t− τ2)
2(dλ+ 1)2

)1/2

, ∀t ∈ [τ2,∞).

As mentioned above, when t is sufficiently large, we regard that φ∗
t is almost equal to φt. Furthermore, we know that

ϱ2τ ≈ log d/d. Under the high-dimensional regime where d/L→ ξ, we know that dλ→ (1 + σ2) · ξ < 1, which can be
regarded as a constant. Thus, ϱt decreases and converges to 0+ at a rate of Θ((d

√
t)−1), i.e., ϱ∞ → 0+. While φt increases

at a rate of Θ(d
√
t) when t increases, and thus grows to infinity. Moreover, while t increases, the product 2φtϱt remains

almost constant and converges to 1/(1 + (1 + σ2) · ξ) during this phase.

In summary, through a heuristic two-timescale analysis, we prove that ϱt decreases to zero after reaching its peak. And φt

increases to infinity while maintaining φtϱt at a constant level.
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E. Implications of Learned Pattern of QK and OV Circuits
E.1. Transformer Model as a Sum of Kernel Regressors

Recall that we use smax(·) denote the softmax function and use Zebd ∈ R(d+1)×(L+1) denote
[
Z zq

]
, where Z contains

the first L demonstration samples and zq = (x⊤q , 0)
⊤ contains the test input. Here the L demonstration samples are

generated from a noisy linear model with parameter β, which itself is drawn from a distribution Pβ . The transformer output
TFθ(Zebd) is specified in (2.2), which is a (d+ 1)× (L+ 1)-dimensional matrix. Finally, the prediction head outputs the
(d+ 1, L+ 1)-th entry of TFθ(Zebd), denoted as ŷq, which is used to predict the desired response β⊤xq. Notice that the
(d+1, L+1)-th entry of Zebd is the (d+1)-th entry of zq , which is equal to zero. Due to causal masking, z does not attend
to itself and only attend to the previous tokens, namely Z. Thus, we can simplify the (L+ 1)-th column of TFθ(Zebd) to

H∑
h=1

O(h)V (h)Z · smax(Z⊤K(h)⊤Q(h)zq
)
∈ R(d+1). (E.1)

Compared with (2.2), we replace Zebd with Z in the value part of attention, because causal masking ensures that the output
of the softmax function is a probability distribution over [L]. Then, ŷq is the last entry of the vector in (E.1). Under the
simplified parametrization given in (3.1), we have

Z⊤K(h)⊤Q(h)zq = ω(h) ·Xxq ∈ RL, O(h)V (h)Z = µ(h)y ∈ RL, ∀h ∈ [H].

Thus, we can simplify ŷq to the following form:

ŷq =

H∑
h=1

µ(h) ·
〈
y, smax

(
ω(h) ·Xxq

)〉
:=

H∑
h=1

µ(h) · y⊤p(h), (E.2)

where we define p(h) = smax
(
ω(h) ·Xxq

)
for all h ∈ [H]. Here, p(h) and µ(h) · y are the attention score and value of the

h-th head at position (L+ 1), respectively.

Interpretation of (E.2) as a Sum of Kernel Regressors. Consider the h-th head, where p(h) is a probability distribution
over [L], and the probability assigned to each ℓ is proportional to exp(ω(h) · x⊤ℓ xq). Then, the output of the h-th head is
equal to

µ(h) ·
L∑

ℓ=1

yℓ · K(xq, xℓ;ω(h)), where K(xq, xℓ;ω) =
exp(ω · x⊤ℓ xq)∑L
i=1 exp(ω · x⊤i xq)

. (E.3)

Here K(xq, xℓ;ω) is a kernel function that captures the similarity of xq and xℓ and the parameter 1/ω plays the role of
bandwidth of the kernel. Notice that the kernel K in (E.3) is slightly different from the standard Gaussian radial basis
function (RBF) kernel, which is defined as exp(−ω · ∥xq − xℓ∥22), where ω is a parameter. These two kernels coincide when
when xq and xℓ are on the unit sphere. However, in our case, Px is supported on Rd and thus these two kernels are different.
Nevertheless, each term as in (E.3) is still a Nadaraya-Watson kernel regression predictor. Moreover, the intuition of such
an estimator is clear: the output in (E.3) is a weighted sum of the responses {yℓ}ℓ∈[L] in the demonstration data, and the
weights are determined by the similarity between the test input xq and the demonstration input xℓ. In summary, when the
parameters of the transformer are given by (3.1), the prediction ŷq is a sum of H kernel regressors.

Interpretation of Multi-Head Attention Predictor with (ω, µ) ⊆ Sγ . As shown in the empirical observations in §3 and
the solution manifold in §4.2, parameters {(ω(h), µ(h))}h∈[H] found by the transformer model are in the solution manifold
Sγ defined in (4.5) for some γ > 0. Thus, ŷq in (E.2) can be simplified as a sum of two kernel regressors:

ŷq =

L∑
ℓ=1

µγ · yi ·
(
K(xq, xℓ; γ)− K(xq, xℓ;−γ)

)
. (E.4)

The intuition behind such an estimator is as follows. The kernel K(xq, xℓ; γ) assigns a larger weight to xℓ when x⊤ℓ xq is
large, i.e., when xq and xℓ are similar. The kernel K(xq, xℓ;−γ) is large when x⊤ℓ xq is small, i.e., when xq and xℓ are
dissimilar. Thus, the predictor in (E.4) is a sum of two kernel regression predictors based on datasets {xℓ, yℓ}ℓ∈[L] and
{−xℓ,−yℓ}ℓ∈[L] respectively. It is also reasonable why both these two kernel regressors appear. Specifically, (xℓ, yℓ) and
(−xℓ,−yℓ) have the same distribution when xℓ ∼ N (0, Id) and yℓ is generated from a linear model. Thus, we can use both
{xℓ, yℓ}ℓ∈[L] and {−xℓ,−yℓ}ℓ∈[L] to learn the parameter β.
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Difference between Single-Head and Multi-Head Softmax Attention. As shown in Chen et al. (2024a), when H = 1,
the learned transformer implements a Nadaraya-Watson kernel regressor as in (E.3), with |ω(1)| ≍ 1/

√
d. Moreover, the

KQ and OV matrices of the trained single-head model exhibit a positive or negative only pattern. In contrast, when H ≥ 2,
the multi-head attention mechanism learns to behave as a sum of kernel regressors, achieving better performance due to
its greater expressive power. Furthermore,the trained multi-head model displays a coupled positive-negative pattern and
works in a regime with a significantly smaller magnitudes of KQ parameters. Therefore, despite the form of the sum of
kernel regressors, the multi-head attention indeed learns to approximate a variant of the debiased GD predictor, which better
captures the linear structure of the problem compared to the single-head case (see §4.3 for details).

E.2. Proof of Proposition 4.1: Loss Approximation

For better understanding the approximation and scaling conditions in Proposition E.1, we provide a more detailed discussion
alongside the simulation results in §C.4.
Proposition E.1 (Formal Statement of Proposition 4.1). Under the parametrization in (3.1), consider the H-head attention
model with dimension d ∈ Z+ and sample size L ∈ Z+. Suppose that the parameters (ω, µ) ⊆ R2H satisfy one of the
following conditions:

∥ω∥∞ ≤ 0.1
√
logL/max{d, logL}, max{∥µ∥∞, ∥µ∥2∞} ≲ L−λ/2+3/10,

where λ > 0 is an absolute constant defining the error level. Then, it holds that

L(ω, µ) = 1 + σ2 − 2µ⊤ω + µ⊤(ωω⊤ + (1 + σ2) · L−1 · exp(dωω⊤)
)
µ+O(dH2 · L−λ).

Here O(·) omits some universal constant.

The informal statement in Proposition 4.1 follows by assuming d > logL and setting λ = 1/5. A more refined trade-
off between the scales of ω and µ can be achieved by carefully selecting κ, the scaling factor for ω, i.e., ∥ω∥∞ ≤
κ
√
logL/max{d, logL}, where κ is now set to a constant 0.1.

Proof of Proposition E.1. We prove this proposition in three steps:

• In Part 1, we first expand the population loss L(ω, µ) into multiple terms, where each term involves expectations over
the randomness of both coefficient β ∼ Pβ and ICL samples Zebd.

• In Part 2, we simplify these terms by conditioning on xq and taking an expectation over the randomness of the rest
β and {(xℓ, yℓ)}ℓ∈[L] within the context sequence, which gives us a reformulation of the loss in terms of ∥xq∥22 and
moments of the attention probabilities.

• In Part 3, we isolate the high-order moments from the low-order moments in the reformulated loss. We show that low-
order terms can be well approximated by a polynomial of OV weights and exponential QK weights up to O(dH · L−λ)
error, and high-order terms can also be uniformly bounded by O(dH2 · L−λ) under appropriate scaling conditions.

STEP 1. EXPAND POPULATION LOSS INTO MULTIPLE TERMS.

Recall that under the simplified parametrization given in (3.1), the prediction of the transformer model, ŷq , is given by (E.2),
where we let p(h) = smax(ω(h) ·Xxq) be the attention score of the h-th head. Then, the population loss defined in (2.3)
can be expanded as follows:

L(ω, µ) = E
[(
β⊤xq −

H∑
h=1

µ(h) · (Xβ + ϵ)⊤p(h)
)2]

+ σ2

= E
[
(β⊤xq)

2
]

︸ ︷︷ ︸
(i)

−2E
[
β⊤xq ·

H∑
h=1

µ(h)(Xβ + ϵ)⊤p(h)
]

︸ ︷︷ ︸
(ii)

+ E
[ H∑
h=1

H∑
h′=1

µ(h)µ(h′) · (Xβ + ϵ)⊤p(h) · (Xβ + ϵ)⊤p(h
′)

]
︸ ︷︷ ︸

(iii)

+σ2. (E.5)

37



In-Context Linear Regression with Multi-Head Softmax Attention

We let ϵ = (ϵ1, . . . , ϵL) ∈ RL with ϵi
i.i.d.∼ N (0, σ2) be the noise terms in {yℓ}ℓ∈[L]. Notice that p(h) ∈ RL and X ∈ RL×d.

Recall that β ∼ N (0, Id/d) and xq ∼ N (0, Id), then we have

(i) = E
[
(β⊤xq)

2
]
= E

[
x⊤q ββ

⊤xq
]
= E∥xq∥22/d = 1. (E.6)

For the remaining two terms, we can simplify using a similar argument to marginalize β ∼ N (0, Id/d). Specifically, for
term (ii), we have

(ii) = E
[
β⊤xq

H∑
h=1

µ(h)β⊤X⊤p(h)
]

=

H∑
h=1

µ(h) · E
[
x⊤q ββ

⊤X⊤p(h)
]
=

H∑
h=1

µ(h)

d
· E
[
x⊤q X

⊤p(h)
]
. (E.7)

For term (iii), using the independence between ϵ and (X,xq, β), we have

(iii) =
H∑

h=1

H∑
h′=1

µ(h)µ(h′) · E
[
p(h

′)⊤(Xβ + ϵ)(Xβ + ϵ)⊤p(h)
]

=

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E
[
p(h

′)⊤Xββ⊤X⊤p(h)
]
+

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E
[
p(h

′)⊤ϵϵ⊤p(h)
]

=

H∑
h=1

H∑
h′=1

µ(h)µ(h′)

d
· E
[
p(h

′)⊤XX⊤p(h)
]
+ σ2 ·

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E
[
p(h

′)⊤p(h)
]
, (E.8)

where the last equality holds because E[ϵϵ⊤] = σ2 · IL and E[ββ⊤] = Id/d.

In the following, to further simplify the expectation terms in (E.7) and (E.8), we decouple the randomness of X ∈ RL×d

and xq ∈ Rd, where {xℓ}ℓ∈[L] and xq are i.i.d. random vectors sampled from N (0, Id). To this end, we take conditional
expectations with respect to X given xq .

STEP 2. TAKE CONDITIONAL EXPECTATIONS GIVEN xq .

Recall that p(h) = smax(ω(h) ·Xxq). In the following, for any ℓ ∈ [L], we let p(h)ℓ and [smax(ω(h) ·Xxq)]ℓ denote the

ℓ-th entry of the attention probability p(h). Also note that X = [x1, . . . , xL]
⊤ with xℓ

i.i.d.∼ N (0, Id). For any random vector
x ∼ N (0, Id) and any differentiable function g, Stein’s Lemma states that E[xg(x)] = E[∇g(x)]. By this lemma, for all
h ∈ [H], it holds that

E[X⊤p(h) | xq] =
L∑

ℓ=1

E
[
xℓ · [smax(ω(h) ·Xxq)]ℓ |xq

]
=

L∑
ℓ=1

E
[
∇xℓ

[smax(ω(h) ·Xxq)]ℓ |xq
]

=

L∑
ℓ=1

ω(h) · xq · E
[
p
(h)
ℓ − (p

(h)
ℓ )2 |xq

]
= ω(h) · xq − ω(h) · xq · E

[
∥p(h)∥22 |xq

]
. (E.9)

Here, the second equality follows from Stein’s Lemma, the third equality follows from the derivative of the softmax function,
and the last equality follows from the fact that

∑L
ℓ=1 p

(h)
ℓ = 1. Combining (E.9) and (E.7), conditioning on the value of xq ,

we can write the second term in (E.5) as

(ii) | xq
=

H∑
h=1

µ(h)ω(h)/d · ∥xq∥22 −
H∑

h=1

µ(h)ω(h) · ∥xq∥22/d · E[∥p(h)∥22 | xq], (E.10)

where we use (ii) | xq
to denote the counterpart of (ii) with xq fixed. It remains to simplify the third term in (E.5). In particular,

we need to handle terms of the form E[p(h′)⊤XX⊤p(h) | xq]. To this end, we introduce the following lemma.
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Lemma E.2. Consider random variable X = [x1, . . . , xL]
⊤ ∈ RL×d with xℓ

i.i.d.∼ N (0, Id) for all ℓ ∈ [L]. Let ω, ω̃ ∈ R
and υ ∈ Rd be fixed parameters. We define p = smax(ω ·Xυ) and p̃ = smax(ω̃ ·Xυ). Then, it holds

E[p̃⊤XX⊤p] = d · E[p⊤p̃] + ω · ω̃ · ∥υ∥22 · E[(1− ∥p∥22) · (1− ∥p̃∥22)]
+ 2ω2 · ∥υ∥22 · E[−p̃⊤p⊙2 + p̃⊤p · ∥p∥22] + 2ω̃2 · ∥υ∥22 · E[−p⊤p̃⊙2 + p⊤p̃ · ∥p̃∥22]
+ ω · ω̃ · ∥υ∥22 · E[p⊤p̃− p⊤p̃⊙2 − p̃⊤p⊙2 + (p⊤p̃)2].

Here p⊙2 = p⊙ p denotes the element-wise square of p ∈ RL.

Proof of Lemma E.2. See §G.1 for a detailed proof.

To compute E[p(h′)⊤XX⊤p(h) | xq], we apply Lemma E.2 with ω = ω(h), ω̃ = ω(h′), and υ = xq. Then, for any
h, h′ ∈ [H], we obtain that

E[p(h
′)⊤XX⊤p(h) | xq]

= d · E[p(h)
⊤
p(h

′) | xq] + ω(h)ω(h′) · ∥xq∥22 · E[(1− ∥p(h)∥22)(1− ∥p(h
′)∥22) | xq]

+ 2(ω(h))2 · ∥xq∥22 · E[−p(h
′)⊤p(h)

⊙2

+ p(h
′)⊤p(h) · ∥p(h)∥22 | xq]

+ 2(ω(h′))2 · ∥xq∥22 · E[−p(h)
⊤
p(h

′)⊙2

+ p(h)
⊤
p(h

′) · ∥p(h
′)∥22 | xq]

+ ω(h) · ω(h′) · ∥xq∥22 · E[p(h)
⊤
p(h

′) − p(h)
⊤
p(h

′)⊙2

− p(h
′)⊤p(h)

⊙2

+ (p(h)
⊤
p(h

′))2 | xq]

:= d · E[p(h)
⊤
p(h

′) | xq] + ω(h)ω(h′) · ∥xq∥22 + ∥xq∥22 · Th,h′(xq), (E.11)

where we use Th,h′(xq) to denote the high-order terms in (E.11). Here the high-order terms contain the product of ∥xq∥22
and expectations of polynomials of p(h) and p(h

′) with degrees at least two.

Combine (E.5), (E.6), (E.7) and (E.8) and the form of conditional expectations in (E.9), (E.10), and (E.11), we can write the
conditional expectation of the loss function given xq into a polynomial of {p(h)}h∈[H]. Specifically, we have

L|xq
(ω, µ) := E

[(
yq −

H∑
h=1

µ(h)y⊤p(h)
)2 ∣∣∣∣ xq]

= 1 + σ2 − 2∥xq∥22
d

·
H∑

h=1

µ(h)ω(h)

+
∥xq∥22
d
·

H∑
h=1

H∑
h′=1

µ(h)µ(h′)ω(h)ω(h′) + (1 + σ2) ·
H∑

h=1

H∑
h′=1

µ(h)µ(h′) · E[p(h)
⊤
p(h

′) | xq]

+
2∥xq∥22
d

·
H∑

h=1

µ(h)ω(h) · E[∥p(h)∥22 | xq] +
∥xq∥22
d
·

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · Th,h′(xq). (E.12)

Notice that L|xq
(ω, µ) above is a function of xq . In the following, we analyze the expected value of each term in (E.12).

STEP 3. MARGINALIZE xq AND ELIMINATIONS OF HIGH-ORDER TERMS.

Let µ = (µ(1), . . . , µ(H))⊤ ∈ RH and ω = (ω(1), . . . , ω(H))⊤ ∈ RH . Since xq ∼ N (0, Id), we have E[∥xq∥22] = d. By
direct calculation, we have

E

[
∥xq∥22
d
·

H∑
h=1

µ(h)ω(h)

]
= µ⊤ω, E

[
∥xq∥22
d
·

H∑
h=1

H∑
h′=1

µ(h)µ(h′)ω(h)ω(h′)

]
= (µ⊤ω)2. (E.13)

In the following, we show that E[p(h)⊤p(h′)] with large L can be approximated by exp(d · ω(h)ω(h′))/L (Step 3.1), and the
remaining terms are mostly high-order and thus can be ignored (Step 3.2).
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Step 3.1. Approximate E[p(h)⊤p(h′)] under Large L. Next, we approximate E[p(h)⊤p(h′)] by exp(d · ω(h)ω(h′))/L
under large L. This enables us to control the term

(1 + σ2) ·
H∑

h=1

H∑
h′=1

µ(h)µ(h′) · E[p(h)
⊤
p(h

′)],

of the loss L(ω, µ), as given in (E.12). Our derivation is based on the following insight. When ω(h) is small, for p(h), we
can approximate the denominator in the softmax function by L. Viewing p(h) as a function of ω(h), the first two terms in the
Taylor expansion is:

p
(h)
ℓ ≈ L−1 · (1 + ω(h) · x⊤ℓ xq), ∀ℓ ∈ [L].

Here, we approximate the denominator
∑L

ℓ=1 exp(ω
(h) · x⊤ℓ xq) in the softmax function by L. We can similarly write down

the Taylor expansion for p(h
′) in terms of ω(h′). Thus, we have

E[p(h)
⊤
p(h

′) |xq] ≈
1

L2
·

L∑
ℓ=1

E
[
(1 + ω(h) · x⊤ℓ xq) · (1 + ω(h′) · x⊤ℓ xq)

∣∣xq]
= L−1 · (1 + ω(h)ω(h′) · ∥xq∥22).

This implies the following approximation scheme:

E[p(h)
⊤
p(h

′) |xq] ≈ L−1 · (1 + ω(h)ω(h′) · x⊤q xq) ≈ L−1 · exp(ω(h)ω(h′) · x⊤q xq). (E.14)

Similarly, by taking expectation with respect to xq in (E.14), we have

E[p(h)
⊤
p(h

′)] ≈ L−1 ·
(
1 + ω(h)ω(h′) · E[x⊤q xq]

)
= L−1 · (1 + d · ω(h)ω(h′)) ≈ L−1 · exp(d · ω(h)ω(h′)).

In the following, we rigorously prove the above approximation. We prove by leveraging a lemma from Chen et al. (2024a)
to quantify the accuracy of the approximation in (E.14) and the large deviation of xq . We first present the lemma below.

Lemma E.3. Let xq ∈ Rd be any fixed vector that satisfies max{∥Wxq∥22, ∥W̃xq∥22} ≤ τ logL, where τ > 0 is a
constant and W ∈ Rd×d, W̃ ∈ Rd×d are two parameter matrices. Let p = smax(XWxq) and p̃ = smax(XW̃xq), where

X = [x1, . . . , xL]
⊤ ∈ RL×d with xℓ

i.i.d.∼ N (0, Id), it holds that

(i).
∣∣∣E[p⊤p̃ | xq]− L−1 · exp

(
x⊤q W̃

⊤Wxq
)∣∣∣ = O(L−2(1−ϵ));

(ii). max
{
E[p⊤p̃⊙2 | xq], E[∥p∥22 · p⊤p̃ | xq], E[(p⊤p̃)2 | xq]

}
= O(L−2(1−ϵ)),

where ϵ =
√
τ/2 + 3/(1 +

√
1 + 1/τ). When xq ∼ N (0, Id) and ∥ω∥∞ ≲ τ logL/max{d, logL}, we further have

(iii). E
[(
E[p⊤p̃ | xq]− L−1 · exp

(
x⊤q W̃

⊤Wxq
))2]

= O(L−(3−ϵ)).

Note all these three arguments are at population level and thus hold with probability one.

Proof of Lemma E.3. See Lemma B.2 and Lemma B.3 in Chen et al. (2024a) for detailed proofs. The first two items are in
Lemma B.2, and the third item is in Lemma B.3.

The first item in Lemma E.3 quantifies the error of the approximation in (E.14). The second item shows that the high-order
terms of p and p̃ are small. Additionally, the third item quantifies the squared error of the approximation given xq ∼ N (0, Id).
Furthermore, we note that the approximation errors in Lemma E.3 depends on ϵ, which depends on the parameter τ . To
make the approximation errors small, we need to choose a small τ such that the resulting ϵ is small.

40



In-Context Linear Regression with Multi-Head Softmax Attention

To apply this lemma to p(h) and p(h
′), we set W = ω(h) · Id and W̃ = ω(h′) · Id. To satisfies the requirement that xq is

bounded in the lemma, we control the tail behavior of ∥xq∥22 using the concentration results for χ2-distribution. By setting
t = logL in Lemma G.1, we have

P
(
∥xq∥22 > 5max{d, logL}

)
≤ P

(
∥xq∥22 > d+ 2

√
d logL+ 2 logL

)
≤ L−1. (E.15)

In the following, we assume that ω ∈ RH satisfies the following condition:

(C1) ∥ω∥∞ ≤ κ
√
logL/max{d, logL},

where κ denotes a parameter to be determined later. Based on any ω satisfying (C1), we define the following good event
where ∥ω(h)xq∥22 are all bounded:

Egood =
{
∀h ∈ [H], ∥ω(h) · xq∥22 ≤ 5κ2 · logL

}
. (E.16)

Then, when ω satisfies (C1), by (E.15) we have

P
(
Ecgood

)
≤ P

(
∥ω∥2∞ · ∥xq∥22 > 5κ2 logL

)
≤ P

(
∥xq∥22 > 5max{d, logL}

)
≤ L−1.

Besides, when Egood holds, the premise of Lemma E.3 holds with τ = 5κ2. Now we are ready to work on E[p(h)⊤p(h′)].
We decompose the E[p(h)⊤p(h′)] as follows:

E[p(h)
⊤
p(h

′)] = E
[
p(h)

⊤
p(h

′) · 1
(
Egood

)]
+ E

[
p(h)

⊤
p(h

′) · 1
(
Ecgood

)]
≤ E

[
p(h)

⊤
p(h

′) · 1
(
Egood

)]
+ L−1, (E.17)

where the last inequality follows from the fact that p(h)
⊤

and p(h
′) are probability distributions over [L], and thus

p(h)
⊤
p(h

′) ≤ 1. Furthermore, we decompose the first term on the RHS of (E.17) as

E
[
p(h)

⊤
p(h

′) · 1
(
Egood

)]
= E

[(
p(h)

⊤
p(h

′) − L−1 exp(ω(h)ω(h′) · ∥xq∥22|)
)
· 1
(
Egood

)]
︸ ︷︷ ︸

(iv)

+ L−1 ·
(
E
[
exp(ω(h)ω(h′) · ∥xq∥22) · 1

(
Egood

)]
− exp(d · ω(h)ω(h′))

)
︸ ︷︷ ︸

(v)

+ L−1 · exp(d · ω(h)ω(h′)) (E.18)

We control term (iv) by applying Lemma E.3-(i) with τ = 5κ2, which implies that there exists and absolute constant C > 0
such that

(iv) ≤
∣∣∣E [E [(p(h)⊤p(h′) − L−1 · exp(ω(h)ω(h′)∥xq∥22|)

)
· 1
(
Egood

) ∣∣∣ xq]]∣∣∣ ≤ C1 · L−2(1−ϵ). (E.19)

Moreover, here ϵ is a function of specified constant κ that controls the scaling of ∥ω∥∞, defined as

ϵ = κ
√
5/2 + 3/(1 +

√
1 + (5κ2)−1). (E.20)

To handle term (v), we write it as

(v) = L−1 · exp(d · ω(h)ω(h′)) ·
(
E
[
exp(ω(h)ω(h′) · (∥xq∥22 − d)) · 1

(
Egood

)]
− 1
)
.

Let Υ denote the random variable exp(ω(h)ω(h′) · (∥xq∥22− d)) ·1
(
Egood

)
, which depends on xq only. Motivated by (E.15),

we consider the cases where 1(∥xq∥22 − d ≤ 2
√
d logL+ 2 logL) is true or not separately. Note that when this event is

true, we have

Υ ≤ exp(|ω(h)ω(h′)| · (2
√
d logL+ 2 logL)). (E.21)
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When this event does not hold, we have

exp(d · ω(h)ω(h′)) ·Υ = exp(ω(h)ω(h′) · ∥xq∥22) · 1
(
Egood

)
≤ exp(5κ2 logL), (E.22)

thanks to the event Egood(ω) defined in (E.16). Therefore, we conclude that

(v) = L−1 · exp(d · ω(h)ω(h′)) · E[Υ− 1]

= L−1 · exp(d · ω(h)ω(h′)) · E[Υ · 1(∥xq∥22 − d ≤ 2
√
d logL+ 2 logL)− 1]

+ L−1 · exp(d · ω(h)ω(h′)) · E[Υ · 1(∥xq∥22 − d > 2
√
d logL+ 2 logL)]

≤ L−1 · exp(d · ω(h)ω(h′)) ·
(
exp
(
|ω(h)ω(h′)| · (2

√
d logL+ 2 logL)

)
− 1
)

+ L−2 · exp
(
5κ2 · logL

)
. (E.23)

Here, the last inequality follows from (E.21) and (E.22). Note that when (C1) is true, we have

|ω(h)ω(h′)| · (2
√
d logL+ 2 logL) ≤ κ2 · logL/max{d, logL} · (2

√
d logL+ 2 logL) ≤ 4κ2 · logL,

exp(d · ω(h)ω(h′)) ≤ exp
(
κ2 · logL/max{d, logL} · d

)
≤ Lκ2

.

Thus, in this case, we have By substituting the arguments above back into (E.23), we obtain that

(v) ≤ L−1+5κ2

+ L−2+5κ2

≤ 2L−1+5κ2

. (E.24)

Combining (E.17), (E.18), (E.19) and (E.24), we have

E[p(h)
⊤
p(h

′)] = L−1 · exp(d · ω(h)ω(h′)) + C1 · L−2(1−ϵ) + 2L−1+5κ2

+ L−1

= L−1 · exp(d · ω(h)ω(h′)) + C1 · L−2(1−ϵ) + 3L−1+5κ2

,

where we define ϵ as ϵ = κ
√
5/2 + 3/(1 +

√
1 + 1/(5κ2)), which is a function of the specified constant κ, and C1 is an

absolute constant coming from (E.19). Thus, we conclude that

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E[p(h)
⊤
p(h

′)]

≤ 1

L

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · exp(d · ω(h)ω(h′)) + ∥µ∥2∞ ·H2 ·
(
C1 · L−2(1−ϵ) + 3L−1+5κ2)

. (E.25)

This enables us to bound the corresponding term in the loss function L(ω, µ), as given in (E.12).

Step 3.2. Bound E
[
∥xq∥22 · E[∥p(h)∥22 | xq]

]
under Large L. Next, we bound the term

E
[
2∥xq∥22
d

·
H∑

h=1

µ(h)ω(h) · E[∥p(h)∥22 | xq]
]
,

in the decomposition of the loss L̃(ω, µ). Recall that ∥xq∥22 ∼ χ2
d. Thus, using the second moment of χ2

d, we have
E∥xq∥42 = d · (d+ 2). Now, applying the Cauchy-Schwartz inequality, we have

H∑
h=1

µ(h)ω(h) · E
[
∥xq∥22 · E[∥p(h)∥22 | xq]

]
≤

H∑
h=1

µ(h)ω(h) ·
√
E
[
∥xq∥42

]
·E
[(
E[∥p(h)∥22 | xq]

)2]
≲ d ·

H∑
h=1

µ(h)ω(h) ·
(√

E
[ (

E[∥p(h)∥22 | xq]− L−1 · exp
(
dω(h),2

))2 ]
+ L−1 · exp

(
dω(h),2

))
.
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Here, in the last inequality, we use
√
E[X2] ≤

√
E[(X − a)2] + |a|, where X is any random variable and a is a constant.

Recall that we use a ≲ b to denote that a ≤ C · b for some absolute constant C > 0. By applying Lemma E.3-(iii) with
τ = 5κ2, we obtain the following inequality:

E
[(
E[∥p(h)∥22 | xq]− L−1 · exp

(
dω(h),2

))2] ≤ C2 · L−3(1−ϵ),

where C2 is an absolute constant and ϵ is defined in (E.20). In addition, under the scaling condition (C1), for all h ∈ [H],
we have exp(dω(h)2) ≤ Lκ2

. Therefore, we conclude that

H∑
h=1

µ(h)ω(h) · E
[
∥xq∥22 · E[∥p(h)∥22 | xq]

]
≲ ∥µ∥∞ · ∥ω∥∞ · dH ·

(
L−(3−ϵ)/2 + L−1+κ2)

≤ ∥µ∥∞ · dH ·
(
L−(3−ϵ)/2 + L−1+κ2)

, (E.26)

where the last inequality follows from the fact that κ ≤ 1.

Step 3.3. Bound High-order Terms E[∥xq∥22 ·Th,h′(xq)] under large L. Recall that we define high-order terms Th,h′(xq)

as in (E.11), which comes from the decomposition of E[p(h′)⊤XX⊤p(h) | xq]. As shown in (E.11), Th,h′(xq) is composed
of terms such as

E[p⊤p̃⊙2 | xq], E[∥p∥22 · p⊤p̃ | xq], and E[(p⊤p̃)2 | xq],

where we denote {p, p̃} = {p(h), p(h′)}. Also notice that, by (E.11), each term in Th,h′(xq) involves has multiplicative
factors (ω(h))2, or (ω(h′))2, or ω(h)ω(h′). Following a similar argument as in Step 3.2, we apply Cauchy-Schwartz inequality
to bound the high-order terms as

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E[∥xq∥22 · Th,h′(xq)] ≲ d ·
H∑

h=1

µ(h)µ(h′)

√
E
[(
[E[Th,h′(xq) | xq]

)2]
. (E.27)

Then we apply Lemma E.3-(ii) with τ = 5κ2 to the terms in (E.27), which implies that

[E[Th,h′(xq) | xq] ≤ C3 · ∥ω∥2∞ · L−2(1−ϵ) ≲ L−2(1−ϵ),

where ϵ is defined in (E.20). By (E.27), we have

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E[∥xq∥22 · Th,h′(xq)] ≲ ∥µ∥2∞ · dH2 · L−2(1−ϵ). (E.28)

This inequality establishes an upper bound on the last term in (E.12).

STEP 4. COMBINE EVERYTHING AND CONCLUDE THE PROOF.

Now we take the expectation with respect to xq in (E.12) and get

L(ω, µ) = 1 + σ2 − 2E[∥xq∥22]
d

·
H∑

h=1

µ(h)ω(h)

︸ ︷︷ ︸
(E.13)

+
E[∥xq∥22]

d
·

H∑
h=1

H∑
h′=1

µ(h)µ(h′)ω(h)ω(h′)

︸ ︷︷ ︸
(E.13)

+ (1 + σ2) ·
H∑

h=1

H∑
h′=1

µ(h)µ(h′) · E[p(h)
⊤
p(h

′)]︸ ︷︷ ︸
(E.25)

+

H∑
h=1

µ(h)ω(h) · E
[
2∥xq∥22
d

· E[∥p(h)∥22 | xq]
]

︸ ︷︷ ︸
(E.26)

+

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · E
[
∥xq∥22
d
· Th,h′(xq)

]
︸ ︷︷ ︸

(E.28)

.
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Here we list the number of inequalities that bound each term. Combining (E.13), (E.25), (E.26) and (E.28), we have

L(ω, µ) = 1 + σ2 − 2µ⊤ω + (µ⊤ω2) +
1

L

H∑
h=1

H∑
h′=1

µ(h)µ(h′) · exp(d · ω(h)ω(h′)) + Errκ

= 1 + σ2 − 2µ⊤ω + µ⊤
(
ωω⊤ + (1 + σ2) · L−1 · exp(dωω⊤)

)
µ+ Errκ,

where we error term Errκ is bounded via

Errκ ≤ ∥µ∥2∞ ·H2 ·
(
L−2(1−ϵ) + L−1+5κ2)

+ ∥µ∥∞ · dH ·
(
L−(3−ϵ)/2 + L−1+κ2)

+ ∥µ∥2∞ · dH2 · L−2(1−ϵ)

≲ max{∥µ∥∞, ∥µ∥2∞} · dH2 ·max
{
L−2(1−ϵ), L−(3−ϵ)/2, L−(1−5κ2)

}
. (E.29)

Here ϵ is defined in (E.20) and κ is a small constant. By taking κ = 0.1 such that ϵ ≈ 0.69 ≤ 0.7, the approximation error
can be further simplified as Errκ ≲ max{∥µ∥∞, ∥µ∥2∞} · dH2 · L−2(1−ϵ) ≤ max{∥µ∥∞, ∥µ∥2∞} · dH2 · L−3/5. Hence,
for a given error levelλ > 0, if we assume µ ∈ RH satisfies

(C2) max{∥µ∥∞, ∥µ∥2∞} ≲ L−λ/2+3/10,

then we can control the error by Errκ = O(dH2 · L−λ). This completes the proof.

F. Proof of Theorem 4.2
In this section, we prove Theorem 4.2, the main result of this paper. We present separate proofs for each part of the theorem
in the following subsections. Recall that we use θ = (ω, µ) ∈ R2H to parameterize the multi-head attention model with H
heads, where the weight matrices satisfy (3.1). Furthermore, recall that we define the parameter spaces S ∗ and S̄ in (4.5)
and (4.6), respectively, with S ∗ ⊆ S̄ . We define

∑
h∈H+

µ(h) = µ+ and
∑

h∈H−
µ(h) = µ− to simplify the notation.

Also recall that we define the debiased GD predictor with learning η as

ŷgdq (η) =
η

L
·

L∑
ℓ=1

yℓ · x̄⊤ℓ xq, with x̄ℓ = xℓ −
1

L

L∑
ℓ=1

xℓ. (F.1)

Note that here we use x̄ℓ to denote the centered covariate.

In the following, we present a proof of Theorem 4.2. In §F.1, we show that the multi-head attention model can approximate
the debiased GD predictor with a small error. In §F.2, we show that minimizing the approximate loss in (4.1) over the
parameter space S̄ leads to a multi-head attention model that converges to the debiased GD predictor. In §F.3, we show that
the debiased GD predictor is asymptotically Bayes optimal up to a proportionality factor.

F.1. Proof of Theorem 4.2-(i): Approximation

Proof of Theorem 4.2-(i). In this proof, we regard the learning rate η as a constant. Let γ > 0 be a scaling parameter and
let µ̆ be defined such that 2µ̆γ = η. Since we assumed that µ+ = −µ− = µ̆ with µ̆ > 0 and (ω, µ) ∈ S̄ , the multi-head
attention estimator takes the form

ŷq(θ) = µ̆ ·
L∑

ℓ=1

yℓ · exp(γ · x⊤ℓ xq)∑L
ℓ=1 exp(γ · x⊤ℓ xq)

− µ̆ ·
L∑

ℓ=1

yℓ · exp(−γ · x⊤ℓ xq)∑L
ℓ=1 exp(−γ · x⊤ℓ xq)

, (F.2)

and the debiased GD predictor is defined in (F.1) with η = 2γµ̆. Following this, we the decompose difference between
transformer ŷq(θ) and debiased GD ŷgdq (η) as

µ̆−1 · {ŷq(θ)− ŷgdq (η)}

=
1

L
·

L∑
ℓ=1

(
exp(γ · x⊤ℓ xq)− exp(−γ · x⊤ℓ xq)− 2γ · x⊤ℓ xq

)
· yℓ
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+
L−

∑L
ℓ=1 exp(γ · x⊤ℓ xq)

L ·
∑L

ℓ=1 exp(γ · x⊤ℓ xq)
·

L∑
ℓ=1

exp(γ · x⊤ℓ xq) · yℓ +
γ

L
·

L∑
ℓ=1

x̄⊤xq · yℓ

+

∑L
ℓ=1 exp(−γ · x⊤ℓ xq)− L

L ·
∑L

ℓ=1 exp(−γ · x⊤ℓ xq)
·

L∑
ℓ=1

exp(−γ · x⊤ℓ xq) · yℓ +
γ

L
·

L∑
ℓ=1

x̄⊤xq · yℓ

= (i) + (ii) + (iii). (F.3)

Here we define the three terms as (i), (ii) and (iii) to simplify the notation. Before delving into details, we first define three
auxiliary functions over (γ, x) ∈ R2 as below:

ϕ1(γ, x) = exp(γx)− exp(−γx)− 2γx, ϕ2(γ, x) = exp(γx)− 1− γx, ψ(γ, x) = exp(γx)− 1.

By Taylor expansion, we can obtain that ϕ1(γ, x) and ϕ2(γ, x) are both O(γ2x2) when γ ·x is small, and ψ(γ, x) = O(γx).
We use ϕ1 to bound term (i) in (F.3) as follows:

∣∣(i)∣∣ = ∣∣∣∣ 1L ·
L∑

ℓ=1

ϕ1(γ, x
⊤
ℓ xq) · yℓ

∣∣∣∣ ≤ max
ℓ∈[L]

|ϕ1(γ, x⊤ℓ xq)| ·
∥y∥2√
L

= ϕ1

(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
· ∥y∥2√

L
. (F.4)

Here the inequality results from the Cauchy-Schwartz inequality and the last equality follows from the fact that ϕ1(γ, ·) is
an even function and monotonically increasing for γ > 0. Next we consider the term (ii). To simplify the notation, we define
Sexp =

∑L
ℓ=1 exp(γ · x⊤ℓ xq) and then we have

L∑
ℓ=1

−ϕ2(γ, x⊤ℓ xq) =
L∑

ℓ=1

(
1 + γ · x⊤ℓ xq − exp(γ · x⊤ℓ xq)

)
= L+ γ ·

L∑
ℓ=1

x⊤ℓ xq − Sexp. (F.5)

Based on the definition of term (ii) in (F.3), we have

(ii) =
L− Sexp

L · Sexp
·
( L∑

ℓ=1

exp(γ · x⊤ℓ xq) · yℓ
)
+
γ

L
·

L∑
ℓ=1

x̄⊤xq · yℓ

=
1

L · Sexp
·
( L∑

ℓ=1

−ϕ2(γ, x⊤ℓ xq)− γ ·
L∑

ℓ=1

x⊤ℓ xq

)
·
( L∑

ℓ=1

exp(γ · x⊤ℓ xq) · yℓ
)
+
γ

L
·

L∑
ℓ=1

x̄⊤xq · yℓ

=
1

L · Sexp
·
( L∑

ℓ=1

−ϕ2(γ, x⊤ℓ xq)
)
·
( L∑

ℓ=1

exp(γ · x⊤ℓ xq) · yℓ
)

− γ

L · Sexp
·
( L∑

ℓ=1

x⊤ℓ xq

)
·
( L∑

ℓ=1

exp(γ · x⊤ℓ xq) · yℓ
)
+
γ

L
·

L∑
ℓ=1

x̄⊤xq · yℓ. (F.6)

Here, the first equality follows from (F.5). To simplify the notation, we define

(ii.a) =
(
1

L

L∑
ℓ=1

−ϕ2(γ, x⊤ℓ xq)
)
·
(
1

L

L∑
ℓ=1

exp(γ · x⊤ℓ xq) · yℓ
)
, (ii.b) =

1

L

L∑
ℓ=1

ψ(γ, x⊤ℓ xq) · yℓ.

Then, the first term in (F.6) corresponds to L/Sexp · (ii.a). Furthermore, to handle the last two terms in (F.6), we denote
x̄ = 1/L ·

∑L
ℓ=1 xℓ and ȳ = 1/L ·

∑L
ℓ=1 yℓ. Then, we have

γ

L · Sexp
·
( L∑

ℓ=1

x⊤ℓ xq

)
·
( L∑

ℓ=1

exp(γ · x⊤ℓ xq) · yℓ
)
− γ

L
·

L∑
ℓ=1

x̄⊤xq · yℓ

= γ · x̄⊤xq ·
(
L/Sexp · (ii.b) + (1− L/Sexp) · ȳ

)
, (F.7)

Combining (F.6) and (F.7), we can upper bound term (ii) as follows:∣∣(ii)∣∣ ≤ L/Sexp·(|(ii.a)|+ γ · |x̄⊤xq| ·
∣∣(ii.b)

∣∣+ γ · |x̄⊤xq| · (Sexp/L− 1) · |ȳ|
)
.
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Furthermore, we can easily see that exp(γ ·x⊤ℓ xq) ≥ 1(x⊤ℓ xq > 0) for all ℓ, x̄⊤xq ≤ maxℓ∈[L] |x⊤ℓ xq| and |ȳ| ≤ ∥y∥2/
√
L.

Thus, we can upper bound (ii) as

∣∣(ii)∣∣ ≤ ( 1

L

L∑
ℓ=1

1(x⊤ℓ xq > 0)

)−1

·
(
|(ii.a)|+ γ ·max

ℓ∈[L]
|x⊤ℓ xq| ·

{∣∣(ii.b)
∣∣+ ∣∣(ii.c)

∣∣ · ∥y∥2√
L

})
. (F.8)

We first consider (ii.a). Note the ϕ2 satisfies |ϕ2(γ, x)| ≤ ϕ2(γ, |x|), and for any fixed γ > 0, ϕ2(γ, ·) is monotonically
increasing in x on [0,∞). Following a similar argument as in (F.4), we have∣∣(ii.a)

∣∣ ≤ ϕ2(γ,max
ℓ∈[L]

|x⊤ℓ xq|
)
· exp

(
γ ·max

ℓ∈[L]
|x⊤ℓ xq|

)
· ∥y∥2√

L
. (F.9)

Similarly, for term (ii.b) and Sexp/L− 1, using the facts that |ψ(γ, ·)| ≤ ψ(γ, | · |) and ψ(γ, ·) > 0 monotone increasing on
[0,∞) for γ > 0, we have∣∣(ii.b)

∣∣ ≤ ψ(γ,max
ℓ∈[L]

|x⊤ℓ xq|
)
· ∥y∥2√

L
,
∣∣Sexp/L− 1

∣∣ = 1/L · |Sexp − L| ≤ ψ
(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
. (F.10)

Therefore, combining (F.8), (F.9) and (F.10), we obtain

∣∣(ii)∣∣ ≤ ( 1

L

L∑
ℓ=1

1(x⊤ℓ xq > 0)

)−1

·
{
ϕ2

(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
· exp

(
γ ·max

ℓ∈[L]
|x⊤ℓ xq|

)
· ∥y∥2√

L

+ 2γ · ψ
(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
·max
ℓ∈[L]

|x⊤ℓ xq| ·
∥y∥2√
L

}
. (F.11)

For term (iii) in (F.3), by symmetry, we can derive a similar bound as in (F.11) by changing the parameter γ to −γ. Note
that |ϕ2(−γ, ·)| ≤ ϕ2(γ, | · |) and |ψ(−γ, ·)| ≤ ψ(γ, | · |) given γ > 0. In addition, exp(−γ · x⊤ℓ xq) ≥ 1(x⊤ℓ xq < 0) for
all ℓ ∈ [L]. Thus, similar to (F.11), we have

(iii) ≤
(
1

L

L∑
ℓ=1

1(x⊤ℓ xq ≤ 0)

)−1

·
{
ϕ2

(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
· exp

(
γ ·max

ℓ∈[L]
|x⊤ℓ xq|

)
· ∥y∥2√

L

+ 2γ · ψ
(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
·max
ℓ∈[L]

|x⊤ℓ xq| ·
∥y∥2√
L

}
, (F.12)

Combining (F.3), (F.4), (F.11) and (F.12), we establish an upper bound on ŷq(θ)− ŷgdq (η) using µ̆ ≍ γ−1. To simplify the
expression, we apply the concentration concentration results, stated in Lemma G.3. With probability at least 1− δ, these
three inequalities hold simultaneously:

max
ℓ∈[L]

|x⊤ℓ xq| ≤
√
12d · log(8L/δ), 1

L

L∑
ℓ=1

y2ℓ ≤ 1 + σ2 + poly(d−1/2, L−1/2, log(1/δ)),∣∣∣∣∣ 1L
L∑

ℓ=1

1(x⊤ℓ xq > 0)− 1

2

∣∣∣∣∣ ≤ min
{√

log(8/δ)/L, 1/2
}
.

(F.13)

When L ≥ 16 · log(8/δ), we have 1/L ·
∑L

ℓ=1 1(x
⊤
ℓ xq ≤ 0) ∈ [0.25, 0.75], with high probability. When this is the case,

1/L ·
∑L

ℓ=1 1(x
⊤
ℓ xq > 0) also lies in [0.25, 0.75]. Following (F.13) and the upper bound on (i) in (F.4), we have

γ−1 ·
∣∣(i)∣∣ ≲√1 + σ2 · γ−1 · ϕ1

(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
≍
√

1 + σ2 · γ ·max
ℓ∈[L]

|x⊤ℓ xq|2 = O
(√

1 + σ2 · γ · d · log2(8L/δ)
)
, (F.14)

where O(·) hides constant terms that are independent of d, L, and δ. Now, we consider the case where γ is a sufficiently
small constant such that γ ≤ C1 · (

√
d · log(L/δ))−1 and thus exp

(
γ ·maxℓ∈[L] |x⊤ℓ xq|

)
≲ 1. Similarly, using the upper

bound on (ii) given in (F.11), we have

γ−1 ·
∣∣(ii)∣∣ ≲√1 + σ2 · γ−1 · ϕ2

(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
· exp

(
γ ·max

ℓ∈[L]
|x⊤ℓ xq|

)
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+
√
1 + σ2 · 2ψ

(
γ,max

ℓ∈[L]
|x⊤ℓ xq|

)
·max
ℓ∈[L]

|x⊤ℓ xq|

≍
√

1 + σ2 · γ ·max
ℓ∈[L]

|x⊤ℓ xq|2 = O
(√

1 + σ2 · γ · d · log2(8L/δ)
)
. (F.15)

We can also get the same upper bound for (iii), using (F.12). Recall that we let θ = (ω, µ) be the transformer parameter with
ω = (γ,−γ) and µ = (µ̆,−µ̆), where γ, µ̆ > 0 with η = 2γ · µ̆, which is a constant. Combining (F.3), (F.14) and (F.15),
we conclude that

|ŷq(θ)− ŷgdq (η)| ≲ γ−1 ·
(∣∣(i)∣∣+ ∣∣(ii)∣∣+ ∣∣(iii)∣∣) = Õ

(√
1 + σ2 · γ · d

)
, (F.16)

where Õ(·) omits logarithmic terms. Therefore, we complete the proof.

Remark F.1. Here, we also provide a heuristic but simpler derivation of the debiased GD predictor using first-order Taylor
expansion expansion. Note that

L∑
ℓ=1

yℓ · exp(γ · x⊤ℓ xq)∑L
ℓ=1 exp(γ · x⊤ℓ xq)

≈
L∑

ℓ=1

yℓ · (1 + γ · x⊤ℓ xq)
L+

∑L
ℓ=1 γ · x⊤ℓ xq

≈
L∑

ℓ=1

yℓ
L
·

(
1 + γ · x⊤ℓ xq −

γ

L

L∑
ℓ=1

x⊤ℓ xq

)
,

where the second approximation results from the first-order approximation of reciprocal and ignoring the higher-order
O(γ2) terms. Similarly, we can show that

L∑
ℓ=1

yℓ · exp(−γ · x⊤ℓ xq)∑L
ℓ=1 exp(−γ · x⊤ℓ xq)

≈
L∑

ℓ=1

yℓ
L
·

(
1− γ · x⊤ℓ xq +

γ

L

L∑
ℓ=1

x⊤ℓ xq

)
.

By subtracting the two terms above, we can get the desired form of approximation, i.e., ŷq(θ) ≈ ŷgdq (η), where η = 2µ̆γ and
ŷq(θ) is given in (F.2).

F.2. Proof of Theorem 4.2-(ii): Optimality

Proof of Theorem 4.2-(ii). Recall that for fixed γ > 0, we consider the parameter space defined as

S̄ ={(ω, µ) : ∀γ > 0, ω(h) = γ · sign(ω(h)) for all h ∈ [H], min{|H+|, |H−|} > 1}.

For notational simplicity, we denote µ+ =
∑

h∈H+ µ(h), µ− =
∑

h∈H− µ(h) and µd =
∑

h∈[H]\H+∪H−
µ(h), respectively

as the sum of OV parameters for the positive, negative and dummy heads. With this parameterization, the transformer
estimator takes the form

ŷq(θ) = µ+ ·
L∑

ℓ=1

yℓ · exp(γ · x⊤ℓ xq)∑L
ℓ=1 exp(γ · x⊤ℓ xq)

+ µ− ·
L∑

ℓ=1

yℓ · exp(−γ · x⊤ℓ xq)∑L
ℓ=1 exp(−γ · x⊤ℓ xq)

+ µd · ȳ,

and thus it suffices to consider three-head attention with ω = (γ,−γ, 0) and µ = (µ+, µ−, µd). Recall that we introduce
the approximate loss L̃(ω, µ) in (4.1), which takes the following form:

L̃(ω, µ) = 1− 2µ⊤ω + µ⊤(ωω⊤ + (1 + σ2) · L−1 · exp(dωω⊤)
)
µ

= (1− µ⊤ω)2 + (1 + σ2) · L−1 · µ⊤ exp(dωω⊤)µ.

Consider the problem of minimizing this loss function minω,µ L̃(ω, µ). For notational simplicity, we let ωa = (γ,−γ) and
µa = (µ+, µ−) denote the parameters of active heads and let µd denote the OV parameters of dummy heads with ωd = 0.
Then, we can write the loss as

L̃(ωa, µa, µd) = (1− µ⊤
a ωa)

2 + (1 + σ2) · L−1 ·
(
µ⊤
a exp(dωaω

⊤
a )µa + µ2

d + 2µd · µ⊤
a 1
)
, (F.17)

where the last term 2µd · µ⊤
a 1 is due to the interaction between the OV of dummy heads and the OV of active heads. In the

following, we find the minimizer of L̃(ωa, µa, µd). We first optimize µd ∈ R with ωa and µa fixed. Note that L̃ is quadratic
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with respect to µd. By direct calculation, we obtain that the optimal value of µd is µ∗
d = −µ⊤

a 1. Plugging µ∗
d in to the loss

L̃ in (F.17), we have

L̃(ωa, µa, µ
∗
d) = (1− µ⊤

a ωa)
2 + (1 + σ2) · L−1 ·

(
µ⊤
a exp(dωaω

⊤
a )µa − (µ⊤

a 1)
2
)
. (F.18)

With slight abuse of notation, we write L̃(ωa, µa, µ
∗
d) as L̃(ωa, µa) in the sequel. By rearranging the terms, we can rewrite

the above loss as a function of ωa and µa:

L̃(ωa, µa) = 1− 2ω⊤
a µa + µ⊤

a

(
ωaω

⊤
a + (1 + σ2) · L−1 ·

(
exp
(
dωaω

⊤
a

)
− 11⊤))µa. (F.19)

We note that the two-dimensional vector ωa is orthogonal to 1 = (1, 1). Moreover, ωa and 1 form an unnormalized
orthogonal basis of R2. To simplify the notation, we define A(ωa) = ωaω

⊤
a + (1 + σ2) · L−1 · (exp(dωaω

⊤
a )− 11⊤). Let

us decompose exp(dωaω
⊤
a ) into

exp(dωaω
⊤
a ) =

exp(dγ2) + exp(−dγ2)
2

· 11⊤ +
exp(dγ2)− exp(−dγ2)

2γ2
· ωaω

⊤
a

= cosh(dγ2) · 11⊤ + sinh(dγ2) · ωaω
⊤
a

γ2
.

Thus, A(ωa) allows the following rank-one decomposition:

A(ωa) = ωaω
⊤
a + (1 + σ2) · L−1 ·

(
cosh(dγ2) · 11⊤ + sinh(dγ2) · ωaω

⊤
a

γ2
− 11⊤)

=
(
1 + (1 + σ2) · L−1 · sinh(dγ2) · 1

γ2

)
· ωaω

⊤
a + (1 + σ2) · L−1 ·

(
cosh(dγ2)− 1

)
· 11⊤.

In other words, ωa and 1 are just the (unnormalized) eigenvectors of A(ωa). In particular, since sinh(x) ≥ 0 and
cosh(x)− 1 ≥ 0 for all x ≥ 0, the matrix A(ωa) is positive semi-definite. Thus, minimizing the objective in (F.19) is just a
convex optimization problem. Optimizing this quadratic function over µa with ωa fixed, the optimal value of µa, denoted by
µ∗
a(ωa), is given by

µ∗
a(ωa) = A(ωa)

−1ωa. (F.20)

Plugging µ∗
a(ωa) in (F.20) into L̃, we obtain the a closed-form expression of the optimal loss with respect to ωa:

L̃(ωa) = L̃
(
ωa, µ

∗
a(ωa), µ

∗
d

)
= 1− ω⊤

a A(ωa)
−1 ωa. (F.21)

Here we abuse the notation slightly by writing the loss function as a function of ωa only.

From the discussion above, we see that the inverse of A(ωa) is given by

A(ωa)
−1 =

(
1 + (1 + σ2) · L−1 · sinh(dγ2) · 1

γ2

)−1

· ωaω
⊤
a

∥ωa∥42
+ C · 11⊤, (F.22)

where Cγ > 0 is a number depending γ. Noting that ωa is orthogonal to the all-one vector 1, combining (F.22), we can
simplify (F.21) as

L̃(ωa) = 1−
(
1 + (1 + σ2) · L−1 · sinh(dγ2) · 1

γ2

)−1

.

Consequently, minimizing the loss L̃(ωa) is equivalent to finding the minimal value of sinh(dγ2) · (dγ2)−1. By simple
calculus, we can show that sinh(x)/x is monotonically increasing on R+, and thus the minimum value of sinh(dγ2)·(dγ2)−1

is achieved at γ∗ = 0+. Then we observe that the loss L̃(ωa) is a monotonically increasing function of γ, and the optimal
value of ωa is ω∗

a = (−γ∗, γ∗). Therefore, the optimal value of the loss is given by

L̃∗ = 1− 1

1 + (1 + σ2) · d/L
=

(1 + σ2) · d
(1 + σ2) · d+ L

. (F.23)
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In addition, the optimal choice of µa and µd under the limit γ → 0+ satisfy

lim
γ→0+

⟨µ∗
a(ω

∗
a), ω

∗
a⟩ = lim

γ→0+
(ω∗

a)
⊤A(ω∗

a)
−1ω∗

a

= lim
γ→0+

(
1 + (1 + σ2) · L−1 · sinh(dγ2) · 1

γ2

)−1

· ((ω
∗
a)

⊤ω∗
a)

2

∥ω∗
a∥42

=
(
1 + (1 + σ2) · L−1 · d

)−1
, (F.24)

lim
γ→0+

µ∗
d(µ

∗
a) = lim

γ→0+
⟨µ∗

a,1⟩ =
(
1 + (1 + σ2) · L−1 · d

)−1 · ⟨ω
∗
a,1⟩
∥ω∗

a∥42
= 0,

where µ∗
a = A(ω∗

a)
−1ω∗

a is parallel to (−1, 1). Recall that we let θγ denote any element in Sγ . That is, for any h ∈ H+∪H−,
|ω(h)| = γ, µ+ = −µ− = µγ , where µγ is defined in (??). Moreover, for any dummy head with h /∈ H+ ∪H−, µ(h) = 0.
Moreover, by the definition of µγ , we have

2γ · µγ =
γ2

γ2 + (1 + σ2) · L−1 · cosh(dγ2)
→ 1

1 + (1 + σ2) · L−1 · d

as γ → 0+. Therefore, by the construction of µ∗
a and (F.24) we have shown that the global minimizer of L̃ over S̄ is

attained in Sγ with γ → γ∗ = 0+. In other words, the attention model with parameter (ω∗
a, µ

∗
a, µ

∗
d) is exactly the model

with parameter θγ∗ .

Furthermore, recall that we have established an upper bound on the difference between transformer predictor and debiased
GD predictor in the proof of Theorem 4.2-(i). Let η∗ denote (1 + (1 + σ2) · L−1 · d

)−1
and let ηγ = 2γ · µγ . Given a fixed

input {(xℓ, yℓ)}ℓ∈[L] ∪ {xq}, as shown in (F.16), for any sufficiently small γ > 0, we have

|ŷq(θγ)− ŷgdq (ηγ)| ≤ Õ
(√

1 + σ2 · γ · d
)
.

Taking the limit γ → γ∗ = 0+, we prove that the predictor that minimizes the approximate loss L̃ over Sγ , ŷq(θγ∗),
coincides with the debiased GD predictor ŷgdq (η∗γ). This completes the proof.

F.3. Proof of Theorem 4.2-(iii): Bayes Risk

In Theorem 4.2-(i), we have shown that the difference between the transformer predictor and debiased GD predictor are
close when θ = (ω, µ) ∈ S̄ and γ is small. In the following, we show that the risk of the debiased GD predictor ŷgdq (η∗) is
comparable to the Bayes optimal predictor, where η∗ denotes the optimal learning rate. This implies that the transformer
model approximately learns the Bayes optimal predictor.

Proof of Theorem 4.2-(iii). To prove this theorem, we use the vanilla gradient descent predictor as the bridge. In the first
step, we characterize the risk of the vanilla GD predictor. Then, in the second step, we prove that the risk of debiased GD
predictor is close to that of the vanilla GD predictor. Finally, in the last step, we establish the risk of the Bayes optimal
predictor.

Step 1: Risk of Vanilla Gradient Descent Predictor. We define the predictor given by the vanilla gradient descent as
follows:

ŷvgdq (η) =
η

L
· y⊤Xxq =

η

L
·

L∑
ℓ=1

yℓ · x⊤ℓ xq,

where η > 0 is the learning rate. We characterize E(ŷvgdq (η)), the ℓ2-risk of vanilla GD predictor as follows. By direct
calculation, we have

E
[(
ŷvgdq (η)− yq

)2]
= E

[( η
L
· y⊤Xxq − β⊤xq

)2]
+ σ2 = E

[ ∥∥∥ η
L
·X⊤(Xβ + ϵ)− β

∥∥∥2
2

]
+ σ2

= E
[ ∥∥∥( η

L
·X⊤X − Id

)
β
∥∥∥2
2

]
︸ ︷︷ ︸

(i)

+
η2

L2
· E
[ ∥∥X⊤ϵ

∥∥2
2

]
︸ ︷︷ ︸

(ii)

+σ2, (F.25)
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where in the second equality, we take expectation over xq ∼ N (0, Id). Furthermore, we have

(i) = E
[
∥β∥22

]
− 2η

L
· E
[∥∥Xβ∥∥2

2

]
+
η2

L2
· E
[∥∥X⊤Xβ

∥∥2
2

]
= 1− 2η

L
·

L∑
ℓ=1

E[(x⊤ℓ β)2] +
η2

L2
·

L∑
ℓ=1

E
[
∥xℓ∥22 · (x⊤ℓ β)2

]
+

2η2

L2
·
∑

1≤ℓ̸=j≤L

E
[
x⊤ℓ xj · β⊤xjx

⊤
ℓ β
]
,

where we use β ∼ N (0, Id/d). By moment calculations, we have E[(x⊤ℓ β)2] = E[∥β∥22] = 1 and

E
[
∥xℓ∥22 · (x⊤ℓ β)2

]
=

1

d
· E
[
∥xℓ∥22 · tr(xℓx⊤ℓ )

]
=

1

d
· E
[
∥xℓ∥42

]
= d+ 2,

E
[
x⊤ℓ xj · β⊤xjx

⊤
ℓ β
]
=

1

d
· E
[
x⊤ℓ xj · tr(xjx⊤ℓ )

]
=

1

d
· E
[
(x⊤ℓ xj)

2
]
= 1,

for all 1 ≤ j ̸= ℓ ≤ L. Combining the results above, we have

(i) = 1− 2η +
η2

L2
· L(d+ 2) +

2η2

L2
· L(L− 1)

2
= 1− 2η +

η2

L
· (d+ L+ 1). (F.26)

Moreover, based on the i.i.d assumption of the demonstration examples, we have

(ii) =
L∑

ℓ=1

E
[
∥ϵℓ · xℓ∥22

]
= L · E[∥xℓ∥22] · E[ϵ2ℓ ] = dL · σ2. (F.27)

Combine (F.25), (F.26) and (F.27), the ℓ2-risk of the vanilla GD predictor is given by

E
[(
ŷvgdq (η)− yq

)2]
= 1 + σ2 − 2η + η2/L · (d(1 + σ2) + L+ 1).

This is a quadratic function of η, and the optimal learning rate that minimizes this risk is given by

ηvgd,∗ = L/(d(1 + σ2) + L+ 1). (F.28)

The optimal ℓ2-risk is given by

E
(
ŷgdq (ηvgd,∗)

)
= 1 + σ2 − L

d(1 + σ2) + L+ 1
. (F.29)

Step 2: Risk of Debiased Gradient Descent Predictor. Now we compare ŷgdq (η) and ŷvgdq (η) in terms of the ℓ2-risk. By
direct calculation, we have

E
[(
ŷgdq (η)− yq

)2]− E
[(
ŷvgdq (η)− yq

)2]
= E

[(
ŷvgdq (η)− y⊤1L · 1⊤

LXxq/L
2 − yq

)2]− E
[(
ŷvgdq (η)− yq

)2]
=

1

L4
· E
[(
y⊤1L · 1⊤

LXxq
)2]− 2

L2
· E
[( η
L
· y⊤Xxq − β⊤xq

) (
y⊤1L · 1⊤

LXxq
)]

=
1

L4
· E
[∥∥X⊤1L · 1⊤

Ly
∥∥2
2

]
︸ ︷︷ ︸

(iii)

− 2η

L3
· E
[
y⊤1L · 1⊤

LXX
⊤y
]︸ ︷︷ ︸

(iv)

+
2

L2
· E
[
y⊤1L · 1⊤

LXβ
]︸ ︷︷ ︸

(v)

.

In the sequel, we define x̄L = X⊤1L. Then, x̄L ∼ N (0, L · Id). By direct calculation, we have

(iii) = E
[∥∥X⊤1L · 1⊤

L (Xβ + ϵ)
∥∥2
2

]
= E

[∥∥X⊤1L · 1⊤
LXβ

∥∥2
2

]
+ E

[∥∥X⊤1L · 1⊤
L ϵ
∥∥2
2

]
= E

[∥∥x̄L · x̄⊤Lβ∥∥22]+ E
[
(ϵ⊤1L)

2
]
· E ∥x̄L∥22
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=
1

d
· E
[
∥x̄L∥42

]
+ dL2σ2 = L2 · (d(1 + σ2) + 2). (F.30)

Moreover, for term (iv), we have

(iv) = E
[
(Xβ + ϵ)⊤1L · 1⊤

LXX
⊤(Xβ + ϵ)

]
= E

[
β⊤X⊤1L · 1⊤

LXX
⊤Xβ

]
+ E

[
ϵ⊤1L · 1⊤

LXX
⊤ϵ
]

=
1

d
· E
[∥∥XX⊤1L

∥∥2
2

]
+ σ2 · E

[∥∥X⊤1L

∥∥2
2

]
=

1

d
·

L∑
ℓ=1

E
[
(x⊤ℓ x̄L)

2
]
+ σ2 · E

[
∥x̄L∥22

]
,

where the last equality results from XX⊤1L = Xx̄L. Furthermore, by direct calculation, we have

E[(x⊤ℓ x̄L)2] = E∥xℓ∥42 +
∑

1≤j ̸=ℓ≤L

E
[
(x⊤ℓ xj)

2
]
+

∑
1≤k ̸=j≤L

E[∥xℓ∥22 · x⊤k xj ] = d · (d+ L+ 1).

Based on the arguments above, we obtain a closed-form expression of (iv):

(iv) = (d+ L+ 1) · L+ dL · σ2. (F.31)

Following a similar argument, for term (v), we have

(v) = E
[
(Xβ + ϵ)⊤1L · 1⊤

LXβ
]
= E

[
(β⊤X⊤1L)

2
]
=

1

d
· E∥x̄L∥22 = L. (F.32)

Combining (F.30), (F.31) and (F.32), we have

E
[(
ŷgdq (η)− yq

)2]− E
[(
ŷvgdq (η)− yq

)2]
=
d(1 + σ2) + 2 + 2L

L2
− 2η

L2

(
d(1 + σ2) + L+ 1

)
.

When η is bounded by a constant, given L→∞ and d/L→ ξ, we know that

E
[(
ŷgdq (η)− yq

)2]− E
[(
ŷvgdq (η)− yq

)2]→ 0 as L→∞ with d/L→ ξ.

Hence, we have E(ŷgdq (η))→ E(ŷvgdq (η)) uniformly for all bounded η. Thus, under the proportional regime, the optimal
learning rate of ŷgd(η) coincides with that of ŷvgd(η), which is given by (F.28). Furthermore, the asymptotically optimal
learning rate and the limiting ℓ2 risk are given by

η∗ = lim
d/L→ξ
L→∞

L

d(1 + σ2) + L+ 1
=

1

ξ · (1 + σ2) + 1
,

lim
d/L→ξ
L→∞

E(ŷgdq (η∗)) = σ2 +
ξ · (1 + σ2)

ξ · (1 + σ2) + 1
. (F.33)

Here we take the limit with L→∞ and d/L→ ξ in (F.28) and (F.29) respectively.

Step 3: Risk of Bayes Optimal Predictor. As a comparison, we also consider the Bayes risk under this setup. Note that
under the Gaussian prior over β, it is a classical result that the Bayesian optimal estimator of yq given {(xℓ, yℓ)}ℓ∈[L] ∪ xq
is given by ridge regression, which takes the form of ŷridgeq = β̂ridgexq . Here, we let β̂ridge,⊤ denote the ridge estimator of β,
and let BayesRiskξ,σ2 denote the Bayes risk of ŷridgeq , where subscripts ξ and σ2 are used to indicate the dependence on ξ in
the limiting regime and the noise level σ2. The ridge estimator and the Bayes risk are given by

β̂ridge = (X⊤X + λId)
−1X⊤y, BayesRiskξ,σ2 = E

[
|ŷridgeq − yq|22

]
.

The connection between the ridge estimator and the Bayes optimal estimator is as follows. With the Gaussian prior
N (0, τ2 · Id) for some parameter τ , using the Gaussian likelihood of the linear model, we can calculate the posterior
distribution of β. The Bayes optimal estimator of β is given by the posterior mean, which takes the form of β̂ridge with
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λ = σ2/τ2. Thus, in our case where β ∼ N (0, Id/d), the Bayes optimal estimator coincides with the ridge estimator with
λ = dσ2.

In the following, we derive the Bayes risk which largely follows the main proof in Dobriban & Wager (2018). We set
λ = dσ2 hereafter. Conditioning on X , the risk of ŷrigdeq is given by

E[(ŷrigdeq − yq)2 | X] = E[(β̂rigde,⊤xq − β⊤xq)
2 | X] + σ2 = E[∥β̂rigde − β∥22 | X] + σ2,

where the expectation is with respect to the randomness of xq , ϵ, and β. By direct calculation, we simplify E[(ŷrigdeq − yq)2 |
X] as follows:

E[∥β̂rigde − β∥22 | X] = E[∥(X⊤X + dσ2 · Id)−1X⊤(Xβ + ϵ)− β∥22 | X]

= E
[∥∥((X⊤X + dσ2 · Id)−1X⊤X − Id

)
β
∥∥2
2
| X
]

+ E[∥(X⊤X + dσ2 · Id)−1X⊤ϵ∥22 | X]

= dσ4 · tr
(
(X⊤X + dσ2 · Id)−2

)
+ σ2 · tr

(
(X⊤X + dσ2 · Id)−1X⊤X(X⊤X + dσ2 · Id)−1

)
= σ2 · tr

(
(X⊤X + dσ2 · Id)−1

)
,

where the third equality follows from the fact that (X⊤X + dσ2Id)
−1X⊤X − Id = dσ2 · (X⊤X + dσ2Id)

−1, and the last
equality is obtained by plugging in X⊤X = (X⊤X + dσ2 · Id)− dσ2 · Id. By denoting ξd,L = d/L and Σ̂ = X⊤X/L,
we can rewrite the equation above as

σ−2 · E[∥β̂rigde − β∥22 | X] = 1 +
ξd,L
d
· tr
(
(Σ̂ + σ2ξd,L · Id)−1

)
. (F.34)

The asymptotic behavior of the trace above can be tracked using random matrix theory (e.g., Ledoit & Péché, 2011; Wang
et al., 2024). Let mF denote the Stieltjes transform of F (Marchenko & Pastur, 1967), where F is the limiting spectral
distribution F̂ (t) = 1

d

∑d
j=1 1{λj(Σ̂) ≤ t}. Then,

ξd,L
d
· tr
(
(Σ̂ + ξd,L · Id)−1

) a.s.−→ ξ ·mF (−σ2ξ) with ξd,L → ξ. (F.35)

Under the isotropic case where xℓ
i.i.d.∼ N (0, Id), mF has an explicit expression

mF (t) = (1− ξ − t−
√

(1− ξ − t)2 − 4ξt)/2ξt

for all t ∈ C\R+. Based on (F.34) and (F.35), we have

BayesRiskξ,σ2
a.s.−→ 1

2

(
σ2 + 1− ξ−1 +

√
4σ2 + (σ2 + ξ−1 − 1)

2
)
. (F.36)

Combining (F.33) and (F.36), the excess risk of ŷgdq (η∗) compared to the Bayes risk satisfies that

E(ŷgdq (η∗))− BayesRiskξ,σ2

= σ2 + 1− 1

ξ(1 + σ2) + 1
− 1

2

(
σ2 + 1− ξ−1

)
− 1

2

√
4σ2 + (σ2 + ξ−1 − 1)2

=
1

2

(
σ2 + 1 + ξ−1 −

√
4σ2 + (σ2 + ξ−1 − 1)2

)
− (ξ(1 + σ2) + 1)−1

= 2ξ−1 ·
(
σ2 + ξ−1 + 1 +

√
4σ2 + (σ2 + ξ−1 − 1)2

)−1 − (ξ(1 + σ2) + 1)−1

≤ ξ−1 · {(1 + ξσ2) · (1 + σ2 + ξ−1)}−1

where the inequality results from
√
4σ2 + (σ2 + ξ−1 − 1)2 ≥ σ2 + ξ−1 − 1 since we assume σ2 + ξ−1 ≥ 1. Furthermore,

since BayesRiskξ,σ2 ≥ σ2 and we assume σ2 > 0, then it holds that

E(ŷgdq (η∗))

BayesRiskξ,σ2

≤ 1 + 2σ−2 · {(1 + ξσ2) · (1 + σ2 + ξ−1)}−1,

which gives that ŷgdq (η∗) is near optimal when ξ or σ2 is large and then we complete the proof.
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G. Proof of Technical Lemmas
G.1. Proof of Lemma E.2

Proof of Lemma E.2. We prove this lemma by applying the Stein’s Lemma, which states that E[x · g(x)] = E[∇g(x)] holds
for x ∼ N (0, Id) and any differentiable g.

STEP 1: DECOMPOSITION USING STEIN’S LEMMA.

To apply Stein’s Lemma, we rewrite the E[p̃⊤XX⊤p] into the summation of a sequence of functions of Gaussian random
variables:

E[p̃⊤XX⊤p] = E
[〈
X⊤p,X⊤p̃

〉]
= E

[〈 L∑
ℓ=1

pℓ · xℓ,
L∑

ℓ=1

p̃ℓ · xℓ
〉]

=

L∑
ℓ=1

E[∥xℓ∥22 · pℓp̃ℓ] +
∑

1≤ℓ̸=k≤L

E[⟨xℓ, xk⟩ · pℓp̃k]. (G.1)

Here we let pℓ and p̃ℓ denote the ℓ-th entry of softmax vectors p and p̃, respectively. In the sequel, for any j ∈ [d] and any
ℓ ∈ [L], we let xℓ,j denote the j-th entry of xℓ. For notational simplicity, we let ∂ℓ,j denote as the partial derivative of
function with respect to xℓ,j . By applying the Stein’s Lemma twice, we can show that

E[∥xℓ∥22 · pℓp̃ℓ] =
d∑

j=1

E[pℓp̃ℓ] +
d∑

j=1

E[xℓ,j · pℓ · ∂ℓ,j p̃ℓ] +
d∑

j=1

E[xℓ,j · p̃ℓ · ∂ℓ,jpℓ]

= d · E[pℓp̃ℓ] + 2

d∑
j=1

E[∂ℓ,jpℓ · ∂ℓ,j p̃ℓ] +
d∑

j=1

E[pℓ · ∂2ℓ,j p̃ℓ] +
d∑

j=1

E[p̃ℓ · ∂2ℓ,jpℓ]. (G.2)

Here the first equality is obtained by applying Stein’s lemma with g(xℓ,j) = xℓ,j · pℓ · p̃ℓ. Similarly, for any k ̸= ℓ, by
applying Stein’s Lemma twice, we have

E[⟨xℓ, xk⟩ · pℓp̃k] =
d∑

j=1

E[xk,j · pℓ · ∂ℓ,j p̃k] +
d∑

j=1

E[xk,j · p̃k · ∂ℓ,jpℓ]

=

d∑
j=1

E[pℓ · ∂k,j∂ℓ,j p̃k] +
d∑

j=1

E[p̃k · ∂k,j∂ℓ,jpℓ]

+

d∑
j=1

E[∂k,jpℓ · ∂ℓ,j p̃k] +
d∑

j=1

E[∂k,j p̃k · ∂ℓ,jpℓ]. (G.3)

STEP 2: DERIVATIVES CALCULATIONS AND SIMPLIFICATIONS.

By (G.2) and (G.3), we write (G.1) as a sum of expectations involving p, p̃, and first- and second-order their derivatives. By
direct calculations, the first-order derivatives of p are given by

∂ℓ,jpℓ = ω · υj · (pℓ − p2ℓ), ∂k,jpℓ = −ω · υj · pℓpk. (G.4)

The second-order derivatives of p are given by

∂2ℓ,jpℓ = ω · υj · (1− 2pℓ) · ∂ℓ,jpℓ = ω2 · υ2j · (1− 2pℓ) · (pℓ − p2ℓ), (G.5)

∂k,j∂ℓ,jpℓ = ∂ℓ,j∂k,jpℓ = ω · υj · (1− 2pℓ) · ∂k,jpℓ = −ω2 · υ2j · (1− 2pℓ) · pℓpk. (G.6)

We can similarly derive the first- and second-order derivatives of p̃.

In the following, we conclude the proof of this lemma by substituting the calculations above back into (G.2) and (G.3),
and simplifing the expression. First, note that, if we view E[p̃⊤XX⊤p] as a bivariate function of (ω, ω̃), it is a quadratic
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function. The constant term is given by

d ·
L∑

ℓ=1

E[pℓp̃ℓ] = d · E[p⊤p̃]. (G.7)

Thus, we can write E[p̃⊤XX⊤p] as

E[p̃⊤XX⊤p] = A0 · ω2 +A1 · ω · ω̃ +A2 · ω̃2 + d · E[p⊤p̃] (G.8)

for some constants A0, A1, A2 to be determined. By examining the derivatives of p and p̃, we notice that these coefficients
are given respectively by

A0 =

L∑
ℓ=1

d∑
j=1

E[p̃ℓ · ∂2ℓ,jpℓ] +
∑

1≤ℓ ̸=k≤L

d∑
j=1

E[p̃ℓ · ∂k,j∂ℓ,jpk], (G.9)

A1 = 2

L∑
ℓ=1

d∑
j=1

E[∂ℓ,jpℓ · ∂ℓ,j p̃ℓ] +
∑

1≤ℓ ̸=k≤L

d∑
j=1

{
E[∂k,jpℓ · ∂ℓ,j p̃k] + E[∂k,j p̃k · ∂ℓ,jpℓ]

}
, (G.10)

A2 =
L∑

ℓ=1

d∑
j=1

E[pℓ · ∂2ℓ,j p̃ℓ] +
∑

1≤ℓ̸=k≤L

d∑
j=1

E[pℓ · ∂k,j∂ℓ,j p̃k]. (G.11)

For A2, combining (G.5), (G.6), and (G.11), we have

A2 = ω̃2 · ∥υ∥22 ·
(
E[p⊤p̃]− 2 · E[p⊤p̃⊙2]

)
− ω̃2 · ∥υ∥22 ·

{ L∑
ℓ=1

E[pℓp̃ℓ · p̃ℓ] +
∑

1≤ℓ ̸=k≤L

E[pℓp̃ℓ · p̃k]
}

+ 2ω̃2 · ∥υ∥22 ·
{ L∑

ℓ=1

E[pℓp̃ℓ · p̃2ℓ ] +
∑

1≤ℓ ̸=k≤L

E[pℓp̃ℓ · p̃2k]
}
.

By direct calculation, we have

L∑
ℓ=1

E[pℓp̃ℓ · p̃ℓ] +
∑

1≤ℓ ̸=k≤L

E[pℓp̃ℓ · p̃k] = E
[( L∑

ℓ=1

pℓp̃ℓ

)
·
( L∑

k=1

p̃k

)]
= E[p⊤p̃],

L∑
ℓ=1

E[pℓp̃ℓ · p̃2ℓ ] +
∑

1≤ℓ ̸=k≤L

E[pℓp̃ℓ · p̃2k] = E
[( L∑

ℓ=1

pℓp̃ℓ

)
·
( L∑

k=1

p̃2k

)]
= E[p⊤p̃ · ∥p̃∥22],

where in the first equality, we use the fact that p̃ is a prabability distribution. Combining the above three equalities, we can
simplify A2 as

A2 = ω̃2 · ∥υ∥22 ·
(
E[p⊤p̃]− 2 · E[p⊤p̃⊙2]

)
− ω̃2 · ∥υ∥22 · E[p⊤p̃ · p̃⊤1L] + 2ω2 · ∥υ∥22 · E[p⊤p̃ · ∥p̃∥22]

= 2ω̃2 · ∥υ∥22 · E[−p⊤p̃⊙2 + p⊤p̃ · ∥p̃∥22]. (G.12)

Following the same argument, we can show that A0 defined in (G.9) can be simplified as

A0 = 2ω2 · ∥υ∥22 · E[−p̃⊤p⊙2 + p⊤p̃ · ∥p∥22]. (G.13)

Then, it remains to consider A1. Note that by the first equality in (G.4), we have

L∑
ℓ=1

d∑
j=1

E[∂ℓ,jpℓ · ∂ℓ,j p̃ℓ] = ωω̃ ·
L∑

ℓ=1

d∑
j=1

υ2j · E[pℓ · p̃ℓ − p2ℓ · p̃ℓ − pℓ · p̃2ℓ + p2ℓ · p̃2ℓ ]
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= ωω̃ · ∥υ∥22 · E[p⊤p̃− p⊤p̃⊙2 − p̃⊤p⊙2] + ωω̃ · ∥υ∥22 ·
L∑

ℓ=1

E
[
p2ℓ p̃

2
ℓ

]
.

By the second equality in (G.4), for any k ̸= ℓ, we have

E[∂k,j p̃k · ∂ℓ,jpℓ] = ωω̃ · v2j · E[pℓpk · p̃ℓp̃k]
E[∂k,j p̃k · ∂ℓ,jpℓ] = ωω̃ · v2j · E[pℓ · p̃ℓ − p2ℓ · p̃ℓ − pℓ · p̃2ℓ + p2ℓ · p̃2ℓ ].

Thus, combining (G.10) with the above three equalities, we can simplify the first part of A1 as

L∑
ℓ=1

d∑
j=1

E[∂ℓ,jpℓ · ∂ℓ,j p̃ℓ] +
∑

1≤ℓ ̸=k≤L

d∑
j=1

E[∂k,jpℓ · ∂ℓ,j p̃k]

= ωω̃ · ∥υ∥22 · E[p⊤p̃− p⊤p̃⊙2 − p̃⊤p⊙2]

+ ωω̃ · ∥υ∥22 ·
{ L∑

ℓ=1

E
[
(pℓp̃ℓ)

2
]
+

∑
1≤ℓ̸=k≤L

E[pℓp̃ℓ · pkp̃k]
}

= ωω̃ · ∥υ∥22 · E[p⊤p̃− p⊤p̃⊙2 − p̃⊤p⊙2 + (p⊤p̃)2]. (G.14)

Similarly, the second part of A1 can be written as

L∑
ℓ=1

d∑
j=1

E[∂ℓ,jpℓ · ∂ℓ,j p̃ℓ] +
∑

1≤ℓ ̸=k≤L

d∑
j=1

E[∂k,j p̃k · ∂ℓ,jpℓ]

= ωω̃ · ∥υ∥22 ·
L∑

ℓ=1

E[pℓ · p̃ℓ − p2ℓ · p̃ℓ − pℓ · p̃2ℓ + p2ℓ · p̃2ℓ ]

+ ωω̃ · ∥υ∥22 ·
∑

1≤ℓ̸=k≤L

E[pℓ · p̃k − p2ℓ · p̃k − pℓ · p̃2k + p2ℓ · p̃2k]

= ωω̃ · ∥υ∥22 · E[p⊤1L · p̃⊤1L − ∥p∥22 · p̃⊤1L − ∥p̃∥22 · p⊤1L + ∥p∥22 · ∥p̃∥22]
= ωω̃ · ∥υ∥22 · E[(1− ∥p∥22) · (1− ∥p̃∥22)]. (G.15)

Thus, combining (G.14) and (G.15), we can write A1 as

A1 = ωω̃ · ∥υ∥22 · E
[
p⊤p̃− p⊤p̃⊙2 − p̃⊤p⊙2 + (p⊤p̃)2 + (1− ∥p∥22) · (1− ∥p̃∥22)

]
. (G.16)

Finally, by combining (G.7), (G.8), (G.12), (G.13), and (G.16), we complete the proof.

G.2. Proof of Concentration Arguments

Lemma G.1 (χ2-concentration). Consider a random vector x = (x1, . . . , xd) ∈ Rd with each entry i.i.d. sampled from
N (0, 1). For any positive t > 0, the following inequality holds:

P(∥x∥22 ≥ d+ 2
√
dt+ 2t) ≤ exp(−t), P(∥x∥22 ≤ d− 2

√
dt) ≤ exp(−t).

Also, it holds that P(∥x∥22 ≥ d · (1 + t)2) ≤ exp(−dt2/2).

Proof of Lemma G.1. See Lemma 1 in Laurent & Massart (2000) and Lemma A.1 in Bai et al. (2024) for detailed proofs.

Lemma G.2 (Binomial concentration). Consider Binomial random variable X ∼ Binom(n, p) with n ∈ N and p ∈ (0, 1),
then for any t ∈ (0, 1), it holds that

P(X ≥ (1 + t) · np) ≤ exp(−t2np/3), P(X ≥ (1− t) · np) ≤ exp(−t2np/2).

Proof of Lemma G.2. The result follows a direct implementation of Chernoff’s bound.
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Lemma G.3. Consider xℓ
i.i.d.∼ N (0, Id), β

i.i.d.∼ N (0, Id/d) and yℓ = β⊤xℓ + ϵℓ, where ϵℓ
i.i.d.∼ N (0, σ2) with L ∈ N. For

any δ ∈ (0, 1), with probability at least 1− δ, the following events hold simultaneously:

(i). maxℓ∈[L] |x⊤ℓ xq| ≤
√
12d · log(8L/δ);

(ii). 1
L

∑L
ℓ=1 y

2
ℓ ≤ 1 + σ2 + poly(d−1/2, L−1/2, log(1/δ));

(iii).
∣∣ 1
L

∑L
ℓ=1 1(x

⊤
ℓ xq > 0)− 1

2

∣∣ ≤ min{
√
log(8/δ)/L, 1/2}.

Proof of Lemma G.3. We first consider the following good events hold:

E1 =
{
∥xq∥2 ≤

√
6d log(4/δ), ∥β∥2 ≤ 1 +

√
2d−1 · log(4/δ)

}
,

and we can upper bound P(E1) ≤ δ/4 using Lemma G.1. Note that for fixed xq , we have x⊤ℓ xq
i.i.d.∼ N (0, ∥xq∥22) and hence

by applying a Gaussian tail bound, we have

P
(
∃ℓ ∈ [L] : |x⊤ℓ xq| ≥ t | xq

)
≤

L∑
ℓ=1

P
(
|x⊤ℓ xq| ≥ t | xq

)
≤ 2L · exp

(
−t2/2∥xq∥22

)
.

Hence, maxℓ∈[L] |x⊤ℓ xq| ≤
√
12d · log(8L/δ) with probability greater than 1 − δ/4 under good event E1. Similarly, we

have yℓ = β⊤xℓ + ϵ
i.i.d.∼ N (0, ∥β∥22 + σ2). Based on Lemma G.1, it holds that

P
(
∥y∥22 > L · (∥β∥22 + σ2) · (1 + t)2 | β

)
≤ exp(−Lt2/2),

Following this, under good event E1, with probability greater than 1− δ/4, we have

1

L

L∑
ℓ=1

y2ℓ ≤
(
1 + σ2 + 5d−1/2 · log(4/δ)

)
·
(
1 + 5L−1/2 · log(4/δ)

)
= 1 + σ2 + poly(d−1/2, L−1/2, log(1/δ)).

Furthermore, since x⊤ℓ xq
i.i.d.∼ N (0, ∥xq∥22) and P(x⊤ℓ xq > 0 | xq) = 1/2 for all xq, then using the binomial tail bound in

Lemma G.2, we can show that

P
(∣∣∣ 1
L

L∑
ℓ=1

1(x⊤ℓ xq > 0)− 1

2

∣∣∣ < t/2 | xq
)
≤ 2 exp(−t2L/4),

and hence | 1L
∑L

ℓ=1 1(x
⊤
ℓ xq > 0)− 1

2 | ≤ min{L− 1
2

√
log(8/δ), 1/2} with probability at least 1− 4δ. Combining all the

arguments above, we can complete the proof.

G.3. Proof of Anisotropic Pre-Conditioned GD Estimator

For simplicity, we consider a symmetric pre-conditioning matrix Γ which proved to be the global optimal parametrization
for pre-conditioned GD, which can be extended to the general case with more careful arguments (e.g., Ahn et al., 2023a).

Lemma G.4. Suppose β ∼ N (0, Id/d), X = [x1, . . . , xL]
⊤ ∈ RL×d with xℓ

i.i.d.∼ N (0,Σ) and yℓ = β⊤xℓ + ϵℓ with

ϵℓ
i.i.d.∼ N (0, σ2). For any Γ ∈ Rd×d, define ŷvgdq := ŷvgdq (Γ) = L−1 · (Xβ + ϵ)⊤XΓ−1xq. Consider the ICL prediction

risk E[(ŷvgdq − ŷq)2] as a function of Γ. Then, the minimizer of E[(ŷvgdq − ŷq)2] is given by

Γ∗ = (L+ 1) /L · Σ+ (tr(Σ) + dσ2)/L · Id.

Proof of Lemma G.4. For any matrix Γ ∈ Rd×d, and the risk of corresponding estimator follows

E[(ŷvgdq − ŷq)2] = E

[(
1

L
(Xβ + ϵ)⊤XΓ−1xq − β⊤xq

)2
]
+ σ2
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=
1

d
· E
[
tr
(
(X⊤XΓ−1/L− Id)⊤(X⊤XΓ−1/L− Id)Σ

)]︸ ︷︷ ︸
(i)

+
σ2

L2
· E[tr(Γ−1X⊤XΓ−1Σ)]︸ ︷︷ ︸

(ii)

+σ2. (G.17)

Following the decomposition above, by simple calculations, the second term follows

(ii) = E[tr(X⊤XΓ−1ΣΓ−1)] = L · tr
(
(ΣΓ−1)2

)
. (G.18)

Furthermore, note that the first term takes the form

(i) = tr(Σ)− 2

L
· E[tr(X⊤XΓ−1Σ)] +

1

L2
· E[tr(Γ−1(X⊤X)2Γ−1Σ)]

= tr(Σ)− 2 · tr(ΣΓ−1Σ) +
1

L2
· E[tr((X⊤X)2Γ−1ΣΓ−1)], (G.19)

where the second equation follows X⊤X =
∑L

ℓ=1 xℓx
⊤
ℓ and we can show that

E[(X⊤X)2] =

L∑
ℓ=1

E[(xℓx⊤ℓ )2] +
∑

1≤ℓ ̸=j≤L

E[xℓx⊤ℓ · xjx⊤j ] = L · E[(xℓx⊤ℓ )2] + L(L− 1) · Σ2.

Specifically, for all (i, j) ∈ [d]× [d], the (i, j)-th entry of the first matrix satisfies that

E[(xℓx⊤ℓ )2i,j ] =
d∑

k=1

E[xℓ,ixℓ,j ] · E[x2ℓ,k] + 2 ·
d∑

k=1

E[xℓ,ixℓ,k] · E[xℓ,jxℓ,k] = Σij · tr(Σ) + Σ⊤
:,iΣ:,j ,

where the first inequality uses the Isserlis’ theorem and thus we have E[(xℓx⊤ℓ )2] = tr(Σ)Σ+2Σ2. For notational simplicity,
denote Γ̃ = Σ−1Γ. Combining (G.17), (G.18) and (G.19), it holds that

E[(ŷvgdq − ŷq)2] = σ2 +
tr
(
Σ
)

d
− 2

d
· tr(ΣΓ̃−1) +

tr(Σ) + dσ2

dL
· tr
(
Γ̃−2

)
+
L+ 1

dL
· tr
(
ΣΓ̃−2

)
= σ2 +

tr(Σ)

d
− 2

d
· tr
(
ΣΓ̃−1

)
+

1

dL
· tr
( {

(tr(Σ) + dσ2) · Id + (L+ 1) · Σ
}
Γ̃−2

)
.

Since (tr(Σ) + dσ2) · Id + (L+ 1) · Σ is symmetric and invertible, the minimizer is given by

Γ̃∗,−1 = L ·
{
(tr(Σ) + dσ2) · Id + (L+ 1) · Σ

}−1
Σ, s.t. Γ∗ =

(
1 +

1

L

)
Σ+

tr(Σ) + dσ2

L
· Id,

due to the quadratic form and then we complete the proof .
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