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Abstract

Modeling boiling—an inherently chaotic, multiphase process central to energy
and thermal systems—remains a significant challenge for neural PDE surrogates.
Existing models require future input (e.g., bubble positions) during inference
because they fail to learn nucleation from past states, limiting their ability to
autonomously forecast boiling dynamics. They also fail to model flow boiling
velocity fields, where sharp interface–momentum coupling demands long-range
and directional inductive biases.
We introduce Bubbleformer, a transformer-based spatiotemporal model that fore-
casts stable and long-range boiling dynamics including nucleation, interface evo-
lution, and heat transfer without dependence on simulation data during inference.
Bubbleformer integrates factorized axial attention, frequency-aware scaling, and
conditions on thermophysical parameters to generalize across fluids, geometries,
and operating conditions. To evaluate physical fidelity in chaotic systems, we
propose interpretable physics-based metrics that evaluate heat flux consistency,
interface geometry, and mass conservation. We also release BubbleML 2.0, a
high-fidelity dataset that spans diverse working fluids (cryogens, refrigerants, di-
electrics), boiling configurations (pool and flow boiling), flow regimes (bubbly,
slug, annular), and boundary conditions. Bubbleformer sets new benchmark results
in both prediction and forecasting of two-phase boiling flows.

1 Introduction

Boiling is one of the most efficient modes of heat transfer due to the large latent heat of vaporization
at liquid-vapor interfaces, making it an attractive solution for ultra-high heat flux applications such
as nuclear reactors and next-generation computing infrastructure. Companies such as ZutaCore2

and LiquidStack3 are pioneering two-phase and immersion cooling technologies for data centers
supporting AI workloads. These industrial efforts reflect a broader trend toward harnessing phase-
change phenomena for thermal control in compact, high-density environments. Boiling also holds
promise for spacecraft thermal control, but without buoyancy to aid vapor removal, boiling in
microgravity faces severe challenges, limiting its current viability. Addressing these limitations
will require novel boiling architectures optimized for low gravity, guided by modeling, design
optimization, and experimental validation–an iterative process that is computationally intensive and
costly. More fundamentally, accurately modeling two-phase pool and flow boiling remains one of
the grand challenges in fluid dynamics. The underlying physics is inherently chaotic and multiscale:
bubbles nucleate stochastically on heated surfaces, liquid-vapor interfaces continuously deform,
coalesce, and break apart, and transitions between flow regimes (e.g., bubbly, slug, annular) occur
unpredictably under strong thermal-hydrodynamic coupling. As illustrated in Figure 1, boiling
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systems can span a vast range of spatial and temporal scales and are highly sensitive to boundary
conditions, fluid properties, and geometry.

Figure 1: (a) BubbleML 2.0 dataset: Visualizes temperature and phase fields across pool and flow
boiling configurations. Bubbles nucleate on heated surfaces, deform, coalesce, and transition between
regimes, with dynamics strongly coupled to boundary conditions, working fluid, and geometry.
(b) Bubbleformer downstream tasks: Autonomous forecasting of full-field dynamics including
nucleation and interface evolution, and prediction conditioned on future bubble interfaces.

Recent advances in high-fidelity multiphysics solvers such as Flash-X [15, 10] have enabled simu-
lations of boiling by solving incompressible Navier-Stokes equations in two phases with interface
tracking and nucleation models. Although physically accurate, these simulations are computationally
expensive, often requiring days on petascale supercomputers to simulate seconds of physical time
[11, 12]. This has motivated the development of machine learning (ML) surrogates that learn to
approximate spatiotemporal evolution of boiling directly from data. These models promise orders-
of-magnitude acceleration, enabling new capabilities in real-time forecasting, parametric studies,
and design-space exploration. However, current ML models for boiling [25, 32] exhibit three main
limitations: (1) They require future bubble positions as input to predict velocity and temperature
fields, making them unsuitable for forecasting, (2) They fail to learn bubble nucleation, a stochastic
discontinuous process central to long rollouts, and (3) They fail to predict velocity fields in flow
boiling, even when provided with future bubble positions.

We introduce Bubbleformer, a transformer-based spatiotemporal model that forecasts full-field
boiling dynamics that includes temperature, velocity, and signed distance fields representing interfaces,
setting a new benchmark for ML-based boiling physics. Bubbleformer makes the following core
contributions:

• Beyond prediction to forecasting. By operating directly on full 5D spatiotemporal tensors
and preserving temporal dependencies, Bubbleformer learns nucleation, key to forecasting
and predicting long-range dynamics. Unlike prior models that compress time or require
future bubble positions, our approach infers them end-to-end.

• Generalizing across fluids and flow regimes. We introduce BubbleML 2.0, the most
comprehensive boiling dataset to date, comprising over 160 high-fidelity simulations across
diverse fluids (e.g., cryogenics, refrigerants, dielectrics), boiling configurations (pool and
flow), heater geometries (single- or double-sided heating), and flow regimes (bubbly, slug,
and annular until dryout). Bubbleformer is conditioned on thermophysical parameters,
allowing a single model to generalize across these axes.

• Physics-based evaluation. We introduce new interpretable metrics to assess physical fidelity
beyond pixel-wise error. These include heat flux divergence, Eikonal equation loss for signed
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distance functions, and conservation of vapor mass. Together, these metrics provide a more
rigorous evaluation of physical correctness in chaotic boiling systems.

To our knowledge, Bubbleformer is the first model to demonstrate autonomous, physically plausible

forecasting of boiling dynamics. It sets new state-of-the-art benchmarks on both prediction and
forecasting tasks in BubbleML 2.0, representing a significant step toward practical, generalizable ML
surrogates for multiphase thermal transport.

2 Problem Statement

Boiling involves the phase change of a liquid into vapor at a heated surface, forming bubbles
that enhance turbulence and heat transfer. This phenomenon is highly chaotic: bubbles nucleate
unpredictably on the heated surface, then grow, merge, and eventually detach, all while interacting
with the surrounding liquid. The boiling system is governed by the incompressible Navier-Stokes
equations (for momentum conservation) coupled with an energy transport equation, solved in both
the liquid and vapor phases. These equations describe the evolution of the fluid’s velocity ωu and
pressure fields P along with the temperature field T that captures heat distribution. The liquid-gas

interface is represented by a level-set function ε (signed distance field) that tracks the moving phase
boundary. The interface ! is defined by ε = 0, with ε > 0 in the vapor region and ε < 0 in the liquid.
The governing equations are non-dimensionalized using characteristic scales defined in the liquid
phase (e.g., capillary length for length scale and the terminal velocity for velocity scale) and key
dimensionless numbers such as Reynolds, Prandtl, Froude, Peclet, and Stefan. To ensure consistency
across both phases, vapor properties (e.g., density, viscosity, thermal conductivity, and specific heat)
are specified relative to the liquid’s properties.

Interfacial physics is modeled by enforcing the conservation of mass and energy at !, accounting for
surface tension and latent heat. Jump conditions for velocity, pressure, and temperature across the
interface are implemented using the Ghost Fluid Method (GFM), a numerical scheme that handles
sharp discontinuities at the boundary without smearing them. The level-set interface ε is updated
via an advection (convection) equation, which moves the interface with the local fluid velocity.
Evaporation and condensation are governed by differences in interfacial heat flux between the two
phases, coupling flow dynamics with thermal effects. The two-phase numerical simulation framework
is implemented in Flash-X [15] and follows the formulation in [10]. For completeness, the governing
equations and numerical modeling assumptions are provided in Appendix A.

3 Failure Modes of Neural Solvers for Boiling

Recent works [25, 32] have explored neural surrogates trained on Flash-X simulations [15, 10, 11]
to model boiling dynamics. These models aim to predict future velocity, temperature, and interface
evolution given past physical states. While promising, current architectures exhibit persistent failure
modes that limit their ability to forecast real-world systems.

3.1 Simulation Dependency and Failure to Learn Nucleation

Current boiling models are trained to predict velocity and temperature fields given both past
physical states and future bubble positions. A task in BubbleML [25] is to learn an operator:
G(εprev, ωuprev, Tprev,εnext) = [ωunext, Tnext]. Although this task is tractable during supervised
training, it introduces a serious limitation during inference: the model requires access to εnext, which
are not available without running the underlying simulation. This precludes autonomous rollouts and
the model is fundamentally unsuitable for forecasting.

To eliminate this dependency, one can attempt to jointly learn bubble evolution:
G(εprev, ωuprev, Tprev) = [εnext, ωunext, Tnext], requiring the model to predict future nucle-
ation events purely from historical data. However, this task proves challenging for current
architectures. Bubble nucleation is a discontinuous stochastic phenomena governed by microscale
surface physics, contact angles, and thermal boundary layers [23, 58, 11]. In Flash-X, nucleation
is modeled algorithmically: new bubbles reappear on the heater surface at nucleation sites with
seed radii after specified wait time (time before a new bubble forms after the prior bubble departs).
When these conditions are satisfied, re-nucleation is achieved through the union of the new signed
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Figure 2: Failure modes of current ML models in forecasting. Left: UNet models maintain smooth
evolution during autoregressive rollout but fail to nucleate. Right: FNO exhibits early instability.

distance field (due to the newly formed bubble) with the evolving phase field, introducing sharp
discontinuities and topological changes.

These reinitializations are non-differentiable and violate assumptions of spatial smoothness. As a
result, learning this behavior directly from data proves difficult. We train UNet and Fourier Neural
Operator (FNO) models from BubbleML [25] to learn this task. UNet-based models perform well in
single-step prediction but fail in autoregressive rollouts, as they do not learn to nucleate new bubbles
as shown in Figure 2. FNO models degrade more rapidly, often diverging after a single step. FNO
relies on global spectral filters and smooth continuous mappings between input and output Banach
spaces[34]. The sharp discontinuities associated with nucleation add "shocks" in the underlying
function space, making it difficult for the neural operator models leading to quick divergence during
rollout. This is consistent with theoretical analysis showing that neural operators are sensitive to
abrupt and high-frequency discontinuous topological changes[6][35].

3.2 Failure in Flow Boiling Velocity Prediction

Flow boiling introduces additional modeling challenges. Unlike pool boiling, which is largely
buoyancy-driven and symmetric, flow boiling features directional velocity, thin films, and shear-
induced instabilities. Accurate modeling of such flows requires resolving the tight coupling between
evolving interface dynamics and momentum transport (i.e., velocity fields). We observe that UNet
and FNO models fail to predict velocity in flow boiling datasets. This failure occurs despite training
on fine-resolution data and using future interface fields as supervision. We identify two primary
contributing factors:

Lack of directional inductive bias. Flow boiling geometries are typically long, narrow rectangular
domains (see Figure 1), with a higher resolution in the flow direction than in the cross-stream direction.
When FNO’s low-pass filters are applied isotropically in Fourier space, they disproportionately
suppress high-frequency modes along the flow-direction, resulting in directional aliasing. Similarly,
UNet models apply symmetric convolutions across both axes and lack the architectural bias to
prioritize dominant features, limiting their ability to resolve streamwise velocity gradients and
anisotropic flow patterns.

Insufficient spatiotemporal integration. Unlike pool boiling, flow boiling introduces additional
spatiotemporal gradients from the bulk liquid flow. Localized changes in interface topology (e.g., film
rupture, bubble coalescence) induce sharp and nonlocal responses in the velocity field [16]. Predicting
this behavior requires long-range spatial context and multiscale temporal integration. UNet models,
while effective for local pixelwise regression, lack sufficient temporal memory and spatial receptive
field to capture these dynamics. FNOs, on the other hand, suffer from spectral oversmoothing, which
makes it difficult to isolate sharp interface-driven effects.

These failures are not isolated. Across all flow boiling datasets in BubbleML, we observe that
FNO and UNet models fail to converge when learning to predict velocity. This highlights the need
for architectures that go beyond spectral operators and spatial attention to incorporate hierarchical,
directional, and temporally-aware representations.
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4 Bubbleformer

Bubbleformer is a spatiotemporal transformer designed to forecast boiling dynamics across fluids,
boiling configurations, geometries, and flow regimes. In contrast to prior surrogates that fail to
nucleate (Section 3.1) or generalize to flow boiling (Section 3.2), Bubbleformer integrates structural
innovations that enable long rollout, parameter generalization, and high-frequency prediction.

4.1 Model Architecture

Bubbleformer architecture illustrated in Figure 3 consists of four components: hierarchical patch em-
bedding, physics-based parameter conditioning, factorized space-time axial attention, and frequency-
aware feature modulation.

Figure 3: Bubbleformer architecture. Input fields are encoded into multiscale spatiotemporal
patches, conditioned with fluid-specific parameters, transformed by frequency-scaled temporal and
spatial axial attention, and decoded into future velocity, temperature, and interface fields.

Hierarchical Patch Embedding. Bubbleformer applies a hierarchical MLP (hMLP) stem inspired
by recent hybrid vision transformers [50] to embed input physical fields as spatiotemporal patches.
Each time slice is processed using a series of non-overlapping 2→2 convolutional layers with stride 2,
progressively reducing spatial resolution and increasing representational depth. This design differs
from prior hMLP implementations that fix resolution to 16→16 patches [50, 41]. Instead, we stack
repeated 2→2 kernels at each stage to support flexible generalization across multiple resolutions.
Compared to flat patch tokenization in ViT [14], this embedding builds a multiscale feature hierarchy
with a stronger inductive bias for boiling dynamics, especially in domains with high aspect-ratio and
varying discretizations.

FiLM-based Parameter Conditioning. To generalize across fluids (such as cryogens, refrigerants,
and dielectrics), Bubbleformer conditions embedded feature representations on physical parameters.
A feature-wise linear modulation (FiLM) layer [44] applies a learned affine transformation on each
channel of the patch embeddings using coefficients derived from a 9D fluid descriptor: Reynolds
number, Prandtl number, Stefan number, viscosity, density, thermal conductivity, specific heat
capacity, heater temperature and nucleation wait time. A small MLP maps this descriptor to channel-
wise scaling and bias terms (ϑc, ϖc), which are applied as: f ↑

c = ϑcfc + ϖc for each channel c. This
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conditioning allows the model to adapt its internal representations to fluid-specific thermophysical
properties, essential for generalization across working fluids. Without such conditioning, the model
cannot distinguish between fluids with drastically different boiling characteristics (see Figure 1)
resulting in mispredicted nucleation timing, incorrect interface velocities, and failure to preserve heat
flux scaling during inference.

Factorized Space-Time Axial Attention. To model long-range spatiotemporal dynamics in boiling
flows, Bubbleformer combines factorized space-time attention [3, 1] with axial attention [27, 28, 52].
In factorized space-time attention, temporal attention is applied first independently at each spatial
location followed by spatial attention. This preserves the spatial locality during temporal modeling
and has proven effective in video transformers [3, 1]. At each Bubbleformer block, temporal attention
operates across input timesteps to learn dynamics such as bubble growth, departure, and renucleation.
The resulting encoding from temporal attention is then passed to spatial attention. Instead of 2D self-
attention, axial attention further decomposes the temporally updated features into two 1D attentions
along the height and width axes. This decomposition reduces the overall computational complexity
from O(HWT )2 in joint space-time attention to O(H2+W

2+T
2), while still maintaining a global

receptive field. This design, successfully applied to PDE forecasting [41, 60] addresses limitations
in prior architectures. Direction-aware attention captures anisotropic structure–important for flow
boiling–where strong gradients develop in the flow direction. Unlike FNO, which mixes spatial
modes globally, axial attention preserves local structure and mitigates spectral oversmoothing. Each
axis learns shared query, key, and value projections, and we apply T5 relative position embeddings
[45] along both temporal and spatial attention blocks.

Attention and Frequency Scaling. To prevent loss of detail in deeper layers, Bubbleformer incor-
porates frequency-aware attention and feature scaling [53]. Deep transformers often suffer from
attention collapse, where repeated application of softmax attention suppresses high-frequency signals,
effectively acting as a low-pass filter. This degradation is particularly detrimental in boiling with
high-frequency features such as sharp interfaces and condensation vortices. Attention scaling helps
mitigate this by modifying attention to act more like an all-pass filter, by separately scaling the low-
and high-frequency components of the attention scores. In addition, we also add a feature scaling
layer [53] to each spatiotemporal block that explicitly separates the output feature map into low- and
high-frequency components, reweights them with separate learnable parameters before recombining
them. This acts as an adaptive sharpening filter that helps preserve fine-grained structures essential for
modeling phase interfaces and turbulence. Similar high-frequency feature scaling has been applied
successfully to improve temperature field prediction in BubbleML datasets using ResUNet and
diffusion models [32].

Patch Reconstruction. The patch reconstruction mirrors hierarchical patch embedding in reverse.
The spatiotemporal output embeddings are progressively upsampled through k transposed convolution
layers to recover the original spatial resolution. This reconstruction produces future predictions of all
physical fields–temperature, velocity, and signed distance–at each output timestep.

4.2 Metrics

We adopt and extend the metrics introduced in BubbleML [25] to evaluate both short-term predictive
accuracy and long-term physical fidelity. BubbleML includes field-based metrics, such as root
mean squared error (RMSE), maximum squared error, relative L2 error, boundary RMSE (BRMSE),
RMSE along bubble interfaces (IRMSE), and low/mid/high Fourier mode errors. These metrics
provide a comprehensive view of spatial and frequency-domain accuracy, particularly useful for
evaluating sharp gradients (e.g., temperature discontinuities across liquid-vapor boundaries) that may
be masked by global averaging. To evaluate Bubbleformer’s long-horizon forecasting, we introduce
three additional physically interpretable system-level metrics.

Heat Flux Consistency. Boiling is inherently chaotic, and Flash-X simulations represent one possible
trajectory of bubble dynamics under given boundary conditions among many. Small deviations in
predicted bubble dynamics may lead to increasingly dissimilar fields, yet still preserve physically
plausible behavior. To assess system-level consistency, we measure the heat flux distribution across
the heater surface over time.

In thermal science, heat flux is a system-level indicator of boiling efficiency and its peak value–critical

heat flux (CHF)–marks the transition to boiling crisis due to the formation of a vapor barrier (see
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Figure 1). Accurate prediction of heat flux is essential for safe and efficient design of heat transfer
systems [39, 46, 61, 49]. We compute heat flux normal to the heater surface using Fourier’s law [30]:

q
j = kω

ϱT
j

ϱn

∣∣∣∣
wall

, j ↑ {t, . . . , t+ k}

where kl is the thermal conductivity of the liquid and T is the temperature field. We accumulate
heat flux over time, estimate its empirical distribution (PGT(q) and PML(q)) using kernel density
estimation, and report mean, standard deviation, and Kullback-Leibler (KL) divergence [4] between
simulation and model distributions:

DKL(PGT ↓PML) =

∫
PGT(q) log

PGT(q)

PML(q)
dq

Eikonal Loss. Phase interfaces (i.e., bubble positions) are represented via a signed distance field
ε(x, y), which must satisfy the Eikonal equation: |↔ε| = 1 throughout the domain. To assess
geometric correctness of the predicted interfaces, we compute the pointwise Eikonal residual [57]
and report its average across all N grid points:

Leik(ε) =
1

k

t+k∑

j=t

1

N

N∑

i=1

∣∣|↔ε
j
ML(xi)|↗ 1

∣∣ (1)

A low Eikonal loss indicates that predicted interfaces preserve the level set property of the signed
distance field and conform to physically valid bubble geometries. In practice, we find that losses
below 0.1 threshold are sufficient to ensure stable interface evolution under autoregressive rollout.

Mass Conservation. In boiling systems with fixed heater temperature, fluid properties, and surface
geometry, the total vapor volume should remain approximately conserved, up to fluctuations from
nucleation and condensation. We assess this, we compute the deviation in vapor volume between
model predictions and ground truth simulations across the rollout window [T, T + k]. We define the
relative vapor volume error as:

Lvol(ε) =
1

k

t+k∑

j=t

∣∣∑N
i=1 1{εj

ML(xi)>0} ↗
∑N

i=1 1{εj
GT(xi)>0}

∣∣
∑N

i=1 1{εj
GT(xi)>0}

where 1{ε(x)>0} is an indicator function for the vapor region, inferred from the signed distance field
ε(x) at each timestep. A low Lvol(ε) indicates that the model conserves global vapor volume in the
domain.

5 BubbleML 2.0 Dataset

BubbleML 2.0 expands the original BubbleML dataset [25] with new fluids, boiling configurations,
and flow regimes, enabling the study of generalization across thermophysical conditions and geome-
tries. It adds over 160 new high-resolution 2D simulations spanning pool boiling and flow boiling,
with diverse physics including saturated, subcooled, and single-bubble nucleation across three fluid
types: FC-72 (dielectric), R-515B (refrigerant), and LN2 (cryogen). In addition to fluid diversity,
BubbleML 2.0 introduces new constant heat flux boundary conditions with double-sided heaters to
simulate different boiling regimes, including bubbly, slug, and annular until dryout. Simulating these
phenomena required advances in numerical methods in Flash-X. Appendix A provides a detailed
description of the simulations and validates against experimental data.

Table 1 summarizes the dataset. All simulations are performed using Flash-X and stored in HDF5
format. Spatial and temporal resolution vary across fluids based on differences in characteristic scales,
and adaptive mesh refinement (AMR) is used where needed for computational efficiency. Simulations
performed on AMR grids are interpolated to regular grids with the same discretization as the other
datasets. We first apply linear interpolation, followed by nearest-neighbor interpolation to resolve
boundary NaN values. Additional details, including boundary conditions and data access instructions,
are provided in Appendix B.
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Table 1: Summary of BubbleML 2.0 datasets and their parameters. ”t is the temporal resolution
in non-dimensional time which depends on the characteristic length and velocity for each fluid, as
calculated in Table 3. PB: pool boiling. FB: flow boiling.

Type - Physics - Fluid Sims Domain Resolution Time Size
(mm

d) Spatial ”t steps (GB)

PB - Single Bubble - FC72 11 4.38→ 6.57 192→ 288 0.2 2000 50
PB - Single Bubble - R515B 11 6.48→ 9.72 192→ 288 0.2 2000 50
PB - Saturated - FC72 20 11.68→ 11.68 512→ 512 0.1 2000 320
PB - Saturated - R515B 20 17.28→ 17.28 512→ 512 0.1 2000 320
PB - Saturated - LN2 20 16.96→ 16.96 512→ 512 0.1 2000 320
PB - Subcooled - FC72 20 11.68→ 11.68 512→ 512 0.1 2000 320
PB - Subcooled - R515B 20 17.28→ 17.28 512→ 512 0.1 2000 320
PB - Subcooled - LN2 20 16.96→ 16.96 512→ 512 0.1 2000 320
FB - Inlet Velocity - FC72 15 30.66→ 3.65 1344→ 160 0.1 2000 320
FB - Constant Heat Flux - FC72 6 117.5→ 5.1 5152→ 224 0.1 1000 420

BubbleML 2.0 follows FAIR data principles [54] and includes metadata and physical parameters for
every simulation as outlined in Appendix B.2. The dataset enables benchmarking of generalization
across fluids, boundary conditions, flow regimes, and supports training long-horizon forecasting
models such as Bubbleformer.

6 Results and Discussion

6.1 Training

We train Bubbleformer to forecast future physical fields in boiling systems, including bubble positions
(signed distance field ε), temperature field (T ), and velocity vector field (ωu). Given k past frames
[ε, T, ωu]t↓k : t↓1, the model predicts the next k frames [ε, T, ωu]t : t+k↓1 in a bundled fashion [5].
Models are trained in a supervised manner by minimizing the sum of relative L2 norms across the
predicted physical fields, [ε→

, ωu
→
, T

→]t : t+k↓1. The single-step loss is given by:

L =
1

k

t+k↓1∑

i=t

(
||εi ↗ ε

→
i ||2

||εi||2
+

||Ti ↗ T
→
i ||2

||εi||2
+

||ωui ↗ ωu
→
i ||2

||ωui||2

)

We train two Bubbleformer models, small (29M parameters) and large (115M parameters). using
a prediction window of k = 5 steps and train for 250 epochs using the Lion optimizer [7] and a
warm-up cosine scheduler. Additional architectural and training details, including hyperparameter
settings, are provided in Appendix C.

6.2 Re-nucleation and Forecasting

In autoregressive forecasting, a basic requirement for all models is the nucleation of new bubbles
on the heater surface when old ones depart. While prior models fail to renucleate, Bubbleformer
successfully learns this behavior, capturing the temporal dynamics required for periodic bubble
formation and maintaining stable rollouts over extended horizons.

We observe that the re-nucleation process learned by Bubbleformer is stochastic: predictions initially
align closely with simulations, but diverge gradually over time due to the chaotic nature of the
system. Despite this divergence, the model’s forecasts continue to respect physical laws. As shown
in Figure 4, over a 200-step rollout on an unseen flow boiling trajectory, Bubbleformer predicted
fields remain physically well-behaved. The system level quantities are conserved: the predicted heat
flux distribution remain close to that of the simulation, the bubble positions are valid signed distance
fields, and mass conservation is closely followed. These results show that Bubbleformer does not
merely replicate a simulation trajectory, but learns to generate valid realizations of the underlying
boiling process.
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Figure 4: Flow Boiling Forecasting. (a) Rollout for a Bubbleformer-S model on an unseen flow
boiling trajectory (FC-72, input flow scale = 2.2). (b) Comparison of predicted vs. ground-truth
heat flux PDFs. (c) Per-frame Eikonal loss of forecasted signed distance fields representing bubble
positions. (d) Vapor volume in the boiling domain over time for both model and simulation.

Additional discussion of all forecasting models are provided in Appendix C. We also validate our
proposed metrics on a deterministic single-bubble simulation study in Appendix C.3.

6.3 Prediction of Velocity and Temperature

We evaluate Bubbleformer on the supervised prediction task introduced in BubbleML [25], modeling
temperature and velocity fields in subcooled pool boiling. As shown in Figure 5, Bubbleformer
outperforms the best-performing models in BubbleML– UNetmod and Factorized Fourier Neural
Operator (FFNO)–achieving state-of-the-art accuracy across all reported metrics, including relative
L2 error. To assess long-horizon prediction stability, we extend the autoregressive rollout from 400
to 800 timesteps–doubling the original evaluation setting in BubbleML. Bubbleformer maintains
accurate predictions over this extended horizon, while baseline models exhibit growing instability.

We attribute Bubbleformer’s performance to its spatiotemporal attention, which enables it to resolve
both sharp, non-smooth interfaces characteristic of boiling flows and long-range dependencies. While
FFNO and UNetmod suffer large error spikes during violent bubble detachment events and exhibit a
steadily growing error thereafter, Bubbleformer maintains a uniformly low error across the entire
800-step rollout. Notably, it remains stable even up to 2000 rollout steps, this domenstrates that our
spatialtemporal attention architecture is robust to localized topological changes and yields stable
long-horizon predictions. A complete listing of error metrics for each model and dataset pairing can
be found in Appendix D.

7 Conclusions and Limitations

We introduce Bubbleformer, a spatiotemporal transformer for forecasting boiling dynamics across
fluids, geometries, and regimes. Bubbleformer integrates axial attention, frequency-aware scaling,
and fluid-conditioned FiLM layers to jointly predict and forecast velocity, temperature, and interface
fields. Our results show that Bubbleformer outperforms prior models in both short-term accuracy and
long-horizon stability, while preserving physical consistency as measured by system-level metrics
such as heat flux, Eikonal loss, and vapor mass conservation. To support generalization, we introduce
BubbleML 2.0–a diverse, high-resolution dataset from over 160 simulations.

Limitations. The current Bubbleformer architecture cannot natively operate on AMR grids, necessary
for simulating fluids such as water or large real-world domains. Interpolation to uniform grids can
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Figure 5: Subcooled Pool Boiling Prediction. (a) and (b) Predicted temperature and velocity fields
from the Bubbleformer-S model on an unseen subcooled pool boiling trajectory for FC-72. (c) and
(d) Relative L2 error over 800 rollout timesteps for temperature and velocity magnitude (combined x
and y components), comparing Bubbleformer-S, FFNO, and UNetmod.

introduce numerical errors that can make model training unstable. Extending the model to directly
support AMR inputs–via hierarchical encoding or point-based attention–is an important direction.

Current models are specialized for one type of physics. Combining datasets from different physics
(e.g., subcooled and saturated pool boiling) remains challenging. Incorporating patch-level routing
via mixture-of-experts models may improve scalability and generalization.

Training on high-resolution datasets requires a large amount of GPU memory, primarily due to the
storage of activations during backpropagation. While activation checkpointing can alleviate memory
usage, it increases computation time. Neural operators, with their resolution-invariant properties, offer
a potential solution by enabling training at lower resolutions. However, their current formulations
struggle to capture the sharp discontinuities associated with nucleation events. Advancing neural
operators to handle such features is a promising direction for future research in forecasting boiling
dynamics.
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paper’s contributions and scope?
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Justification: Our claims are backed by extensive failure mode analysis of current neural
solvers for boiling2 and extensive physics-based evaluation of our model4.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Current limitations of our work is discussed in 7
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our results and claims are based on our experimental observations. We do not
make any theoretical claims.

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have a well documented GitHub repository with code to load our dataset,
and run our models to reproduce the results reported in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We also release our code under the MIT License and our dataset under the
Creative Commons Attribution 4.0 International License to ensure free and fair use. Our
code can be found at our Github page. The dataset is hosted at Huggingface.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Train-test splits, hyperparameters and data generation configurations are
discussed in Appendix sections B, C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to computational limitations, multiple runs could not be performed before
the submission deadline
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is discussed in Appendix sections C, D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We foresee no immediate negative societal impact. Positive societal impact is
a promising future research direction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We foresee no possible misuse of our models, dataset or code.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We release our code using MIT License and dataset using Crreative Commons
Attribution 4.0 International License.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide well documented code that shows how our dataset can be used.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: Our research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Apart from simple writing and coding assistance, LLMs are not used in this
work. We do not think that the use of LLMs for coding assistance impacted the core
methodology, scientific rigorousness or originality of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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