Published as a conference paper at ICLR 2024

BTR: BINARY TOKEN REPRESENTATIONS FOR EFFI-
CIENT RETRIEVAL-AUGMENTED LANGUAGE MODELS

Qingqing Cao, Sewon Min, Yizhong Wang, Hannaneh Hajishirzi
Paul G. Allen School of Computer Science & Engineering
University of Washington

{qgicao, sewon, yizhongw, hannaneh}@cs.washington.edu

ABSTRACT

Retrieval augmentation addresses many critical problems in large language models
such as hallucination, staleness, and privacy leaks. However, running retrieval-
augmented language models (LMs) is slow and difficult to scale due to processing
large amounts of retrieved text. We introduce binary token representations (BTR),
which use 1-bit vectors to precompute every token in passages, significantly re-
ducing computation during inference. Despite the potential loss of accuracy, our
new calibration techniques and training objectives restore performance. Com-
bined with offline and runtime compression, this only requires 127GB of disk
space for encoding 3 billion tokens in Wikipedia. Our experiments show that on
five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art retrieval-
augmented language model inference by up to 4x and reduces storage by over 100x
while maintaining over 95% task performance. !

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020b; Touvron et al., 2023a), despite their widespread
success, still suffer from issues such as hallucinations (Mallen et al., 2023; Miindler et al., 2023),
staleness, and privacy leaks (Huang et al., 2022). Retrieval-augmented language models (e.g., (Lewis
et al., 2020; Izacard et al., 2022b)) alleviate such problems via a retrieve-and-read approach (Figure 1),
using a retrieval component to find passages relevant to the input query followed by a reader model
(e.g., an LLM) that generates output given the query concatenated with retrieved passages. However,
this approach is slow (e.g., only handles a few queries for a powerful server GPU) at inference time
mainly due to the reader model that needs to compute cross-attention between the input query and a
large number of passages. Existing solutions (Lee et al., 2021; Cao et al., 2020) improve the inference
computation by decomposing query and passage encoding and precomputing passage representations,
but they come with large storage costs (terabytes of storage; §4).

In this work, we improve the inference speed of the reader model in a retrieval-augmented LM with a
small storage footprint by introducing cacheable and calibrated Binary Token Representations (BTR).
BTR (Figure 1) precomputes token representations for the retrieved passages in the reader model. The
binary representations are 1-bit vectors for the tokens in a passage and are created from the hidden
states in the reader encoder layers via calibrated binarization which are effective for downstream
tasks such as question answering. BTR reduces the storage footprint and improves the runtime speed
since the representations are 1-bit vectors, and the reader uses the cached representations. To avoid
degradation of task accuracy caused by binary representations, we introduce two training objectives by
adding (i) a passage representation recovery objective that makes the binary representations preserve
the passage semantics before the binarization; and (ii) a query-aware passage token distillation
objective that compensates the information loss due to precompuation of passage representations
independent of the query.

Furthermore, we observe significant redundancies in precomputed token representations in retrieved
passages since they are relevant to the query and contain similar information. Removing such redun-
dancies only causes minimal task accuracy loss (<0.5% in our experiments), but shows significant

'Our code is publicly available at https://github.com/csarron/BTR

https://github.com/csarron/BTR

Published as a conference paper at ICLR 2024

Reader
Passagel | Query | Encoder &l
H | | [T
Query Retriever Passage2 | Query Encoder I Decoder Answers
Passage3 | Query | Encoder |11

Corpus Index .
Decomposition and

Calibrated Binarization

Figure 1: Retrieval-augmented models use a retrieve-and-read pipeline. The reader can be either an
encoder or an encoder-decoder model. BTR creates cacheable binary representations for the passages
via decomposition and calibrated binarization to speed up reader inference. BTR further reduces
storage by offline compression and improves inference speed by runtime compression.

benefits in storage and runtime inference. To address this, we further develop token compression over
BTR by merging similar precomputed token vectors after training and merging similar concatenated
query-passage representations during inference.

We evaluate BTR on five knowledge-rich NLP tasks, including three open-domain question-
answering tasks (NaturalQuestions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017),
and WebQA (Berant et al., 2013)), the FEVER (Thorne et al., 2018) fact-checking task, and the
MMLU (Hendrycks et al., 2020) reasoning benchmark. Compared to baseline systems, BTR reduces
disk storage by up to 101x and improves inference speed by 2—4x for the reader of two state-of-the-art
retrieval-augmented language models. BTR also retains 90-95% of the original models’ performance.
Our analysis experiments show that binary token representations are effective and contribute most
to improving the inference speed and reducing the storage costs of readers. The training regulariza-
tion objectives help mitigate the task accuracy loss and the offline and runtime token compression
techniques further bring down storage footprint and increase inference efficiency.

2 BACKGROUND AND RELATED WORK

We first describe the architecture of retrieval-augmented language models and then related efficiency
techniques designed for them. Next, we summarize relevant methods to improve model efficiency,
including quantization and binary representations.

Retrieval-Augmented Language Models. Retrieval-augmented language models have shown
strong performance in many tasks, including language modeling (Borgeaud et al., 2022; Min et al.,
2023), open-domain question answering, and fact checking (Izacard et al., 2022b; Lewis et al., 2020;
Guu et al., 2020; Shi et al., 2023).

As shown in Figure 1, a retrieval-augmented language model works by first using a retriever to retrieve
many passages relevant to the input query and then using a reader component to extract or generate
the answers. While the retriever is often fast enough, the reader causes a speed bottleneck in retrieval
augmentation because it requires computing cross-attention between the input query and many
passages. For example, Figure 1 illustrates a state-of-the-art encoder-decoder reader (Izacard et al.,
2022b) architecture called Fusion-in-Decoder (FiD) (Izacard & Grave, 2021). FiD first concatenates
each passage with the query and processes them in parallel (independently) in the encoder; then the
decoder fuses information across all the concatenated passage-query representations and produces
answers. In our experiments, we observe that the passage encoding takes over 60% of the reader’s
computation on commodity GPUs, and we save such computations by precomputing the passage
representations, leading to significant speedup in the inference with reduced storage costs.

Efficient methods for reader models. DensePhrase (Lee et al., 2021) builds contextualized phrase
representations for the passage corpus, completely removes the reader component, and uses phrase
retrieval to produce answers for the query. Despite its high inference throughput, the accuracy is
much lower than similar size BTR models. FiD-light (Hofstétter et al., 2022) and FiDO (de Jong et al.,
2022) focus on improving the inference latency for FiD models on customized hardware like TPUs,
they compress passage representations into fixed-size vectors to reduce the decoder computation.

Published as a conference paper at ICLR 2024

But on more popular hardware like GPUs, the passage encoder is the computation bottleneck, and
their decoder-oriented optimizations are likely to be less effective in improving inference speed.
LUMEN (de Jong et al., 2023) and DeFormer (Cao et al., 2020) precompute cacheable continuous
passage representations to speed up reader inference, but they take up 100x more storage than BTR.

Model quantization and binarization. Another line of research focuses on model quantiza-
tion (Dettmers et al., 2022; Xiao et al., 2023; Yuan et al., 2023; Frantar et al., 2022) or binariza-
tion (Bai et al., 2021; Qin et al., 2022) for resource-constrained settings. It improves model efficiency
by compressing model weights to lower precision to reduce runtime memory usage. However,
quantization does not necessarily improve the inference speed of readers as we will empirically show
in §4. This is because quantized models still need to process large amounts of input passage data for
readers, which requires huge computation. Meanwhile, quantization methods are orthogonal to our
BTR and can help deploy BTR for platforms with low resources.

Binary representations. Previous work has used binary representations for text retrieval (Yamada
et al., 2021), semantic matching (Tissier et al., 2019; Shen et al., 2019), or image retrieval (Jain
et al., 2017; Huang et al., 2019; Liu et al., 2016). Motivated by this line of work, we build binary
token-level passage representations to improve reader efficiency which was unexplored before. The
key difference is that existing passage-level (or image-level) binary representations provide coarse-
grained semantic signals that work for retrieval or semantic matching. But token-level representations
require storing more fine-grained information, which we effectively address by introducing new
calibration techniques and training objectives.

3 METHOD

We present BTR, a fast and storage-efficient reader for retrieval-augmented language models. BTR
creates cacheable calibrated binary representations for the retrieved passages to speed up inference
and avoid large storage overhead. We describe BTR for encoder-decoder readers which are most
widely used in the state-of-the-art models (Izacard et al., 2022b; [zacard & Grave, 2021), and later
show how to apply BTR for the encoder-only model (§4). The encoder and encoder-decoder readers
both need to process many passages, which is the computation bottleneck. Previous solutions (Cao
et al., 2020; Lee et al., 2021) precompute the passage representations to avoid runtime computation
but come with large amounts of storage costs (e.g. terabytes of storage for Wikipedia scale corpus).
BTR tackles the challenge by building compact binary token representations for the passages.

Overview. Figure 2 summarizes the BTR reader architecture and how our techniques are applied to
each component. The key idea in BTR is to create cacheable binary token representations (§3.1)
of the retrieved passages such that the passage encoding can be precomputed offline and stored in a
compact format. We build on the previous technique (Cao et al., 2020) to decompose the passage
and query computation in the lower layers of the reader encoder and jointly process the query and
passage representations back in the upper layers. However, unlike them, we create calibrated binary
passage representations after the decomposition to drastically reduce storage. We further develop
offline compression to reduce the storage of these precomputed binary token representations. Such
binarization and decomposition incur task performance degradation, which we address by designing
two regularization techniques during training (§3.2). For inference, we develop runtime compression
techniques (§3.3) to further speed up the reader computation.

3.1 BINARY TOKEN REPRESENTATIONS FOR RETRIEVED PASSAGES

Our goal is to produce binary representations for the retrieved passages while maintaining downstream
task accuracy. We binarize passage representations at the token level. Specifically, given a continuous
passage token vector hy, = [hq, ho, - -, hg] (d is dimension) at the kth layer of the reader encoder,
we hash hy, via the sign function to obtain the binary representation vector by, = sign(hy,), where
b; is 1 if h; > 0 and —1 otherwise. We use a differentiable tanh function to approximate the
non-differentiable sign function (Cao et al., 2017).

Prior work (Yamada et al., 2021) binarized passage representations for retrieval tasks through an
annealing process, i.e., b = tanh(h), where (is a scaling factor that anneals to infinity to

Published as a conference paper at ICLR 2024

Output
Transformer Encoder Transformer Decoder
hyyq Layer n block e block T} .
|] 1 1
| { | 1
Transformer | compression) |
Add] encoder block RS ICT Transformer
block block
e
|]
FFN | |
)
LayertNorm L K+1 Transformer _'y U Transformer
e Elock i block T~ ___
e Runtime look-up [A
—_— 0101011010001 | :
Attention | T 5‘_ ________ ; Transformer — =
block
Binarization Laverk : : Precomputed
via hashing ‘ offline
i Transformer
LayerNorm | Mo
|
Layer 1 !
hk v | |

Calibrated binarization

) Key-value store of binary

1 -
Query Passages | compression] vectors and variance

Figure 2: BTR reader architecture, where light blue color indicates the model from prior work (based
on T5 (Raffel et al., 2020) and FiD (Izacard & Grave, 2021), and green indicates our methods. We
create cacheable calibrated binary token representations for retrieved passages in the reader encoder
to speed up inference. Additionally, we compress the precomputed binary token presentations offline
to reduce storage costs. We further reduce inference computation by runtime compression for the
encoder and decoder.

approximate the sign function. However, we find that directly converting the continuous float values
into discrete binary values with annealing decreases the representation quality. The problem is that
the float vector values often have large scales (e.g., ranging from -500 to +300) which causes the tanh
function to collapse into -1 and +1 quickly, this is partially due to the pre-layernorm (Xiong et al.,
2020) nature of the encoder-decoder architectures like T5. Most recent models like GPT-3 (Brown
et al., 2020a) and LLaMA (Touvron et al., 2023b;a) also use pre-layernorm. A naive fix is to introduce
a normalization layer (e.g. layernorm) before the binarization, but then the scale of normalized values
does not match the input passage presentations in the upper encoder layers and we empirically notice
a larger drop in performance.

Calibrated binarization. We introduce a calibration technique that makes two modifications to the
pre-layernorm architecture.? First, instead of applying the binarization after the Transformer encoder
layer as in the previous work (Shen et al., 2019; Yamada et al., 2021), we insert the binarization after
the layernorm layer (but before the multihead attention layer) inside the Transformer encoder layer as
shown in Figure 2. We also save the variance of all passage token representations which comes with
negligible storage costs®. Using the saved variance information along with the layernorm weights, we
could recover the passage representations to their original scales (by dividing the product of variance
and layernorm weights). Second, during training, instead of annealing the tanh function, we adopt a
straight-through estimatior (Bengio et al., 2013) for the binarization, the forward pass of encoding
still uses discrete binary values while the backward propagation uses the tanh function to provide the
gradients. These two key changes make the binarization procedure better calibrated and help retain
the representation quality after binarization.

Offline compression. The binary representations for the passage tokens are amenable to further
compression due to context redundancy. This redundancy originates from the passage corpus,
where each token can occur millions of times in different contexts even though many of them have
similar semantic information. This is especially the case for tokens that form stopwords. We design
offline token compression that aims to reduce such redundancy such that we do not need to store
its representations every time it appears in a different context (in our case, the context is a retrieved

Not necessarily needed for models with post-layernorm such as BERT.
31t requires 1 /d storage of the passage vector. d is usually several hundred or thousand like 768 or 1024.

Published as a conference paper at ICLR 2024

passage). For a given token ¢ in the reader model’s vocabulary, we find all binary representations
T from the corpus. If the token ¢ is a stopword ¢, then we compute the mean vector values by for
all the tokens in 7'. Otherwise, we merge 7, %* of the binary token representations b, for the token
t, based on their semantic similarity. We use a bipartite merging (Bolya et al., 2022) algorithm and
measure the semantic similarity using the Hamming distance. We find this more efficient than a
clustering method as they require more iterations and do not easily scale to billions of tokens. Details
are provided in Algorithm 1 in Appendix A.1. Once we compress the binary token representations,
we save them in a key-value data store for fast runtime lookup.

3.2 BTR TRAINING

Binarization and decomposition provide efficiency benefits but come with performance degradation
for downstream tasks. We describe how we train BTR in three steps to mitigate accuracy drops.

* Step 1. We first train a reader model without any decomposition (precomputation) or binariza-
tion. The training objective is the task loss L,k using cross entropy between prediction logits
and task labels.

 Step 2. We then train a decomposed (no binarization) model with the reader model from step 1
as the teacher using query-aware passage token distillation loss Lz and the original task loss
L5k (described below).

* Step 3. Finally, we train a decomposed reader model by applying BTR binarization in the reader
encoder, where the model weights are initialized from the distilled decomposed reader model in
the second step. We add a passage representation recovery 108s Lyccovery to the original task
loss Lsk (described below).

Query-Aware passage token distillation. Decomposing passages encoding from the query in the
lower layers of the reader encoder often causes task performance degradation. Previous work (Cao
et al., 2020) distilled upper-layer passage representations in the decomposed reader encoder from the
original (not decomposed) model to reduce information loss due to decomposition. We empirically
find that the direct application of this distillation does not improve the task performance much for a
retrieval-augmented LM. This is likely because DeFormer-style distillation applies to single passage
scenarios where all passage tokens are important to the task, whereas in our setting the reader retrieves
many passages that may contain more redundant passage token information. Distilling all token
representations using Cao et al. (2020) from all retrieved passages distracts the reader encoder and
makes it fail to pass useful passage token information for the task.

To address this issue, we design a query-aware passage token distillation loss to improve the decom-
posed passage representation quality. We only distill the passage tokens that are semantically relevant
(salient) to the query from the original (non-decomposed) model. This is because query-relevant
passage tokens carry more fine-grained query-related information from the original (not decomposed)

passage representations. We obtain top-r> passage tokens using the query to passage attention scores.
Laigin = 2307 (hy — pdecomposedy2 “where hIO™P! i the decomposed passage representations.

The second step training loss is: Lysk + Laistill-

Passage representation recovery. The end-to-end training objectives do not explicitly encourage
the binary tokens representations to maintain semantic information in the continuous representations
before binarization. We add a representation recovery loss (Shen et al., 2019) to the second-stage
training task objective. This objective directly provides supervision signals for the binary repre-
sentations to retain the semantics of continuous representations. Specifically, we first add a linear
projection layer (parameterized by W,,,.,; and bias,,;.,;) on top of the binary passage representations
by; then we use the mean square error as the recovery loss between the projected representations
and original passage representations hy before the binarization (kth layer in the reader encoder):
Lyecovery = é Zle(hi — b2, where bP"7 = W ,,,.,;b + bias,,..;. As we will show in §4.4,
passage recovery loss helps improve the quality of binary representations and reduce the accuracy
gap. The third step training loss is Liask + Lrecovery-

*1,% is 100% for stopword token representation since stopwords are less contextual than other tokens.
SWe set 1 to 50% of total passage tokens by default.

Published as a conference paper at ICLR 2024

3.3 BTR INFERENCE

During inference, given an input query and retrieved passages, BTR reader first computes query
representations (continuous float-point vectors) on the fly in the encoder (layer 1 to k), then it looks
up the precomputed binary token representations (from layer k) for the retrieved passages from
the data store. Next, BTR reader converts the loaded binary token representations into continuous
float-point vectors® and concatenates them with query representations before layer k£ + 1. Then from
layer k£ + 1 to layer n in the reader encoder, BTR applies runtime compression (described below) over
the concatenated query-passage representations to reduce the number of tokens and further speed up
the encoder inference. Once the encoder finishes computation, the reader flattens and concatenates all
the query-passage representations, and then feeds them into the reader decoder. The reader decoder
applies similar runtime compression operations to shorten the concatenated text sequence with query
and all passage tokens.

Runtime compression. Runtime compression is possible because the retrieved passages are relevant
to the query and contain similar information for different passages. The runtime token compression
consists of intra-passage and cross-passage compression steps. At the upper layers (k + 1 to n) in the
reader encoder, the query representations are concatenated with representations of each passage, and
the query-passage representations are processed together. We compress the token representations
of each query-passage pair and call this process intra-passage token compression since the encoder
still computes each query-passage pair representation in parallel. After the encoder computation, all
the query-passage representations are flattened and concatenated. In the reader decoder, we further
compress the resulting representations across all passages (and the query) for every ¢ layer’ and call
this cross-passage token compression. We use a similar compression algorithm as in the offline token
compression, merging 7,% tokens based on their semantic similarity. The difference here is that
the representations are continuous vectors in the upper encoder and the decoder, so we change the
similarity metric to cosine distance accordingly. Details are in Algorithm 2 in Appendix A.1.

4 EVALUATION

We first describe BTR and baselines, followed by five knowledge-rich NLP tasks to evaluate them.
We then report the main results of BTR on task performance and efficiency gains. We also evaluate
the proposed techniques in BTR and their impacts on efficiency and performance trade-offs.

4.1 BASELINES

We apply BTR to Atlas (Izacard et al., 2022b) base and large variants and call them BTR-Atlas base
and BTR-Atlas large. Atlas is a recent state-of-the-art retrieval-augmented language model. The
Atlas reader uses the T5-based (Raffel et al., 2020) Fusion-in-Decoder (FiD) (Izacard & Grave, 2021)
architecture. We include more implementation details in Appendix A.2.

Baselines. To compare task performance and efficiency with BTR, we evaluate five representative
baselines (implementation details are in Appendix A.3):

(1) Atlas (Izacard et al., 2022b) is a state-of-the-art retrieval-augmented language model for
knowledge-rich NLP tasks. Due to computing budget constraints, we compare the base (with
220M parameters) and large (770M parameters) size variants.

(2) Atlas-Q is a quantized version of the Atlas base model. We use GTPQ (Frantar et al., 2023) to
quantize the fine-tuned Atlas baseline model in 4bit.

(3) DensePhrase (Lee et al., 2021) creates dense phrase representations of passages. It retrieves
answers from the phrase index without using the retrieve-and-read pipeline and achieves high query
processing throughput.

(4) DeFormer (Cao et al., 2020) speeds up the inference in encoder-only reader models by decompos-
ing the passage and query encoding and caching the continuous passage representations. We apply
DeFormer over Atlas-base and fine-tune the decomposed model.

Svalues are -1.0 and 1.0.)

"We set g to be 3 as default. We do not merge in every layer as in the upper part of the encoder because
the decoder has more layers, skipping compression for a few layers provides a balance between efficiency and
accuracy.

Published as a conference paper at ICLR 2024

Table 1: Task performance and inference efficiency comparison between the baseline models and
BTR-Atlas over five evaluation tasks. ‘Sp’ denotes the speed up over the Atlas base model, and the
subscript percentage numbers in brackets are relative performance compared to the Atlas base model.
The speed up and percentage for BTR-Atlas large is over the Atlas large model. BTR achieves 2-3x

inference speedup while maintaining > 95% of the original models’ performance.

NQ TQA WQ FEVER MMLU

EM Sp EM Sp EM Sp Acc Sp Acc Sp

Atlas base 52.1 1.0 693 1.0 46.4 1.0 729 1.0 386 1.0
Atlas—Q 51.8(99%) 1.2 68.5(99%) 1.3 45.1(97%) 1.1 70.4(97%) 1.1 37.8(98%> 1.2
DeFormer 51.41099%) 22 68.0(0s%) 2.0 448079 2.0 T1.8(0s%) 2.3 339(ssy) 1.8
DensePhrase 40.9(79%) 4.9 53.6(77%) 5.8 37-5(81%) 5.1 - - - -
LLAMA2—7B 478(92%) 0] 74-3(108‘0) 01 5]2(110%) 01 763(105%) 01 512(153%) 01

BTR-Atlas base 49.5(95%) 3.1 66.7(96%> 2.5 43.8(94%) 2.6 70-2(96%) 3.1 35.4(92%> 2.6
Atlas large 58.3 1.0 736 1.0 515 1.0 782 1.0 41.1 1.0
BTR-Atlas large 56.1(96%) 4.0 70.8(96%) 3.9 49.1(95%) 3.6 75.9(97%) 4.1 39.2(95%) 2.5
Atlas -~ 75 3 E \
% ‘i\sﬂas:b’“".‘ DeFormer /4 L\I_aMAZ = 50 L!.aMA2-7B
< 5 3 ©
5 I é
= '\\\BTR-AtIas base = ﬁ\ttllzss-(\j\v*‘.~ DeFormer & \’:48 \ Atlas
48 .LLaMA2-7B < “«_BTR-Atlas base < 4 DeFormer
z Paretnxgurve 365 3 Atlas-Q---__ B
% 46 | storage (GB) : 5 Storage (GB) \\\Pareto curve S Storage (GB) \"ETR-A‘IE{S base
< 44 o @ <60 o (U ™ L42 < 0 \\Fj:q\reto curve
o 127 \ o 127 N o 127
2 ® 320 ® 320 40 ® 320 .
() i DensePhrase ‘s % @ 12804 DensePhrase o % | @ 1284 DensePhrase "o

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Throughput (QPS) Throughput (QPS) Throughput (QPS)

(a) NaturalQuestions (b) TriviaQA (c) WebQuestions

Figure 3: Task performance and inference efficiency (throughput and storage) visualization across
the baselines and BTR fine-tuned models on three open-domain QA datasets. The area of the circle
denotes storage size (we scale the area size of BTR-base and DensePhrase by 10 for clear display). A
top-right smaller circle is better.

(5) LLaMAZ2 (Touvron et al., 2023b) consists of open-source large language models that achieve top
performance on many NLP benchmarks including the knowledge tasks we study. Since the few-shot
versions still lag behind fine-tuned models, we finetune the LLaMA2-7B model using the LoRA (Hu
et al., 2021) adapter and report its results on the evaluation tasks.

4.2 TASKS AND METRICS

We evaluate BTR and baselines on three open-domain QA tasks: NaturalQuestions (NQ, Kwiatkowski
et al. (2019), TriviaQA (TQA, Joshi et al. (2017)), WebQuestions (WQ, Berant et al. (2013)); one
fact-checking task: FEVER (Thorne et al., 2018), and one knowledge-intensive reasoning benchmark:
the mass-multitask language understanding (MMLU) dataset (Hendrycks et al., 2020). Dataset details
are in Appendix A.4. We use the same Wikipedia corpus (dumped from December 2018) for all tasks
and compared systems for consistency. The corpus contains 32.1 million passages, roughly over 3.2
billion tokens assuming 100 tokens per passage.

Evaluation metrics. We use the exact match score (EM) as the metric for the open-domain QA
tasks. We measure the accuracy of the fact checking task and the MMLU benchmark. For all tasks
and models, we choose the model checkpoint based on the development set and report the metrics on
the test set. All the numbers are average values across 5 different runs (with different random seeds).

Efficiency measurements. For each task and model, we randomly sample 100 queries from the
test dataset and measure the real inference throughput as the number of queries processed per second
(QPS) of the compared models on the A100 GPU hardware. Actual throughput reflects a more
realistic comparison of efficiency across different systems.

Published as a conference paper at ICLR 2024

Table 2: Inference throughput and accuracy for applying binary representations to BERT-base reader
model on three open QA datasets.

NQ TQA wQ
EM Sp EM Sp EM Sp
BERT base 429 1.0 57.1 1.0 43.1 1.0
BTR-BERT base 39.8 (93%) 34 54.1 (95%) 3.9 39.7 (92%) 3.2

Table 3: Ablation analysis for each component in BTR on the NaturalQuestions dataset.

Accuracy Throughput Storage
(%) T @QpPs)t (GB)|

Atlas base 52.1 10.2 0

BTR-Atlas base 49.5 31.5 127

w/o binary passage representations 50.8 (+1.3) 323 12,804

efficienc w/o offline compression 49.8 (+0.3) 31.5 159
y w/o runtime intra-passage compression 50.0 (+0.5) 28.1 127

w/0 runtime cross-passage compression 49.9 (+0.4) 24.6 127

w/0 passage representation recovery 474 (-2.1) 31.5 127

accuracy { w/o query-aware passage token distillation 48.2 (-1.3) 31.5 127

4.3 MAIN RESULTS

BTRachieves favorable accuracy and efficiency tradeoffs. Table 1 presents the accuracy, storage
versus inference throughput trade-offs for BTR, DeFormer, DensePhrase, Atlas-Q, and LLaMA2-7B
models on the evaluation datasets. We define the better efficiency trade offs under certain a accuracy
target (e.g, afford relatively 5% accuracy drop). A model has a better trade-off if the model is
more efficient (less storage and faster speed) when satisfying the accuracy budget. Atlas-Q and
LLaMA-7B provide high accuracy but with very low inference throughput. DensePhrase achieves
the highest throughput, but comes with much lower accuracy numbers (> 6% gap); DeFormer has
similar inference throughput and slightly higher accuracy than BTR but its storage overhead is two
orders of magnitude larger. Figure 3 visualizes the efficiency versus accuracy trade-offs for the
compared models on the three open QA datasets.

Furthermore, BTR is more scalable than DeFormer and DensePhrase. We estimate that using a much
larger corpus like CCNet (Wenzek et al., 2020) with over 350 million passages will take up 1389
GB using similar compression ratios for the Wikipedia corpus. However, for baseline models, the
DeFormer will spend over 100TB of storage and the DensePhrase will occupy over 3TB of storage.

BTR remains effective for encoder-only models. We study binary passage token representations
for encoder-based models and validate their effectiveness and inference benefits. Specifically, we
apply the token-level binarization technique in §3.1 for the BERT-base model with DPR (Karpukhin
et al., 2020) as the passage retriever. We do not apply scale-aware modifications since the BERT
model is a post-layernorm architecture. Note that encoder models expect the answer predictions to
be exact spans from the retrieved passages, therefore, our runtime token compression techniques do
not apply since we cannot recover the original exact spans once the tokens are compressed. Offline
binary token compression remains applicable and reduces storage footprint. Implementation details
are in Appendix A.2. Table 2 shows the results of the BERT reader model on three open QA datasets,
applying binary representations also effectively improves the inference throughput by over 3x while
maintaining over 92% accuracy.

4.4 ABLATION STUDY

Each component in BTR provides either efficiency or accuracy gains. We study the effects
of each component in BTR on the inference efficiency and accuracy using the NaturalQuestions
dataset. BTR consists of four efficiency components that improve either inference throughput or
storage footprint and two training components that improve accuracy. The efficiency components
include (i) binary passage representations; (ii) offline token merging; (iii) runtime intra-passage token
compression; and (iv) runtime cross-passage token compression. The accuracy components are (v)
passage representation recovery and (vi) query-aware passage token distillation.

Published as a conference paper at ICLR 2024

50 BTR

\
\

)

|

\

)
/

Accuracy (%)
By o
o [6)]
Accuracy (%)
S B S
N » »

[}
[9)]
N
o

. 38 (]
80 100 120 140 28 30 32 34 36 38 40
Storage (GB) Throughput (QPS)
(a) Offline token compression (b) Runtime token compression

Figure 4: Accuracy, storage, and throughput comparisons for different two-stage token compression
ratios on the NaturalQuestions dataset. To achieve a good balance between accuracy, storage,
and throughput in BTR, we choose a compression ratio of 0.2 for both online and offline token
compression. Detailed numbers are in Table 9 in Appendix A.6.

Table 3 shows the efficiency techniques in BTR come with the price of task accuracy degradation,
however the two accuracy components during training effectively mitigate such accuracy drop.
Specifically, the binary passage representations dramatically reduce the storage by over 100x, and the
offline token compression further reduces the footprint by 20%. On the other hand, the two online
token compression techniques improve the inference throughput by over 30% without sacrificing too
much accuracy drop. Overall, the techniques in BTR collectively provide efficiency gains without
compromising task accuracy too much.

Effects of token compression ratios in BTR. Figure 4 shows the effects of the two-stage token
compression technique in BTR under different compression ratios. We choose the compression ratio
from 5% to 50%° with a gap of 5% and report the accuracy and storage or throughput numbers for
the NaturalQuestions dataset. For offline token compression, with bigger compression ratios, BTR
achieves linear storage cost reduction but the accuracy does not drop significantly until the ratio is
bigger than 0.2 (default for BTR). We also observe that for online token compression, the inference
throughput consistently improves with higher compression ratios, while the accuracy degradation
is relatively small until the ratio is larger than 0.2. By configuring different compression ratios,
BTR allows flexible inference throughput, storage, and accuracy trade-offs during inference without
additional training efforts.

5 CONCLUSION AND FUTURE WORK

Retrieval-augmented language models present viable solutions to address issues like hallucinations in
large language models, but their inference is slow because the reader component needs to process
many passages. We introduce BTR, a system that creates cacheable binary token representations
to improve the inference and storage efficiency for the reader in retrieval-augmented language
models. Together with training regularization techniques and token compression methods, BTR
effectively reduces the storage costs by 100x, improves inference throughput by 2~4x, and maintains
performance for a wide range of knowledge-intensive tasks.

We discuss directions for future work. 1) Extending BTR to decoder-only readers is non-trivia because
decoder models compute passage representations together with the query in a sequential manner,
making it challenging to break computational dependencies and cache passage representations.
Moreover, the KV-Caches in decoder models speed up the inference decoding, but storing their binary
representation causes much more storage than encoder models. 2) Improving BTR for extremely long
input queries remains challenging and requires other orthogonal efficient methods. BTR can speed
up the inference when queries are longer, but the speed-up is relatively smaller than shorter queries.
3) Scaling BTR for larger models with bigger representation sizes is another important research topic.
Potential solutions might include using autoencoders to compress the dimension of representations.
4) It will also be interesting to apply binary token representations to the retriever and incorporate
BTR into model pretraining for building better and faster retrieval-augmented language models.

8Compression ratios bigger than 50% cause significant accuracy drops.

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This research was supported partly by NSF I1S-2044660, an Allen Investigator Distinguished
award. We thank the members of the UW NLP group for their comments and feedback on this

paper.

REFERENCES

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael Lyu, and
Irwin King. BinaryBERT: Pushing the Limit of BERT Quantization. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4334-4348, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.334.
URL https://aclanthology.org/2021.acl-1long.334. (page 3)

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation, August 2013. URL http://arxiv.
org/abs/1308.3432. (page 4)

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1533-1544, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL https://aclanthology.org/D13-1160. (page 2, 7, 16)

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token Merging: Your ViT But Faster. In The Eleventh International Conference
on Learning Representations, September 2022. URL https://openreview.net/forum?id=
JroZRaRw7Eu. (page S)

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego De Las
Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore,
Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon
Osindero, Karen Simonyan, Jack Rae, Erich Elsen, and Laurent Sifre. Improving Language Models
by Retrieving from Trillions of Tokens. In Proceedings of the 39th International Conference on
Machine Learning, pp. 2206-2240. PMLR, June 2022. URL https://proceedings.mlr.press/
v162/borgeaud22a.html. (page 2)

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877—
1901. Curran Associates, Inc., 2020a. URL https://papers.nips.cc/paper/2020/hash/
1457c@d6bfcb4967418bfb8ac142f64a-Abstract.html. (page 4)

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs],
July 2020b. URL http://arxiv.org/abs/2005.14165. (page 1)

Qingqing Cao, Harsh Trivedi, Aruna Balasubramanian, and Niranjan Balasubramanian. DeFormer:
Decomposing Pre-trained Transformers for Faster Question Answering. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 4487-4497, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.411. URL
https://www.aclweb.org/anthology/2020.acl-main.411. (page 1, 3, 5, 6, 16)

10

https://aclanthology.org/2021.acl-long.334
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://aclanthology.org/D13-1160
https://openreview.net/forum?id=JroZRaRw7Eu
https://openreview.net/forum?id=JroZRaRw7Eu
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2005.14165
https://www.aclweb.org/anthology/2020.acl-main.411

Published as a conference paper at ICLR 2024

Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. HashNet: Deep Learning to
Hash by Continuation. In 2017 IEEE International Conference on Computer Vision (ICCV), pp.
5609-5618, October 2017. doi: 10.1109/ICCV.2017.598. (page 3)

Michiel de Jong, Yury Zemlyanskiy, Joshua Ainslie, Nicholas FitzGerald, Sumit Sanghai, Fei Sha,
and William Cohen. FiDO: Fusion-in-Decoder optimized for stronger performance and faster
inference, December 2022. URL http://arxiv.org/abs/2212.08153. (page 2)

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Joshua Ainslie, Sumit Sanghai, Fei Sha,
and William Cohen. Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval
augmentation makes the most of your compute, January 2023. URL http://arxiv.org/abs/
2301.10448. (page 3)

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit Matrix
Multiplication for Transformers at Scale, August 2022. URL http://arxiv.org/abs/2208.
07339. (page 3)

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetuning
of Quantized LLMs, May 2023. URL http://arxiv.org/abs/2305.14314. (page 16)

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transformers, October 2022. URL http://arxiv.org/
abs/2210.17323. (page 3)

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transformers, March 2023. URL http://arxiv.org/
abs/2210.17323. (page 6, 16)

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval Augmented
Language Model Pre-Training. In Proceedings of the 37th International Conference on Machine
Learning, pp. 3929-3938. PMLR, November 2020. URL https://proceedings.mlr.press/
v119/guu20a.html. (page 2)

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. In International Confer-
ence on Learning Representations, October 2020. URL https://openreview.net/forum?id=
d7KBjmI3GmQ. (page 2,7, 17)

Sebastian Hofstétter, Jiecao Chen, Karthik Raman, and Hamed Zamani. FiD-Light: Efficient and
Effective Retrieval-Augmented Text Generation, September 2022. URL http://arxiv.org/abs/
2209.14290. (page 2)

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In International
Conference on Learning Representations, October 2021. URL https://openreview.net/forum?
id=nZeVKeeFYf9. (page 7)

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are Large Pre-Trained Language Models
Leaking Your Personal Information?, October 2022. URL http://arxiv.org/abs/2205.12628.

(page 1)

Long-Kai Huang, Jianda Chen, and Sinno Pan. Accelerate Learning of Deep Hashing With Gradient
Attention. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5270-
5279, October 2019. doi: 10.1109/ICCV.2019.00537. (page 3)

Gautier Izacard and Edouard Grave. Leveraging Passage Retrieval with Generative Models for Open
Domain Question Answering. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 874-880, Online, April
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.74. URL
https://aclanthology.org/2021.eacl-main.74. (page 2, 3, 4, 6)

11

http://arxiv.org/abs/2212.08153
http://arxiv.org/abs/2301.10448
http://arxiv.org/abs/2301.10448
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/2209.14290
http://arxiv.org/abs/2209.14290
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2205.12628
https://aclanthology.org/2021.eacl-main.74

Published as a conference paper at ICLR 2024

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised Dense Information Retrieval with Contrastive Learning.
Transactions on Machine Learning Research, May 2022a. ISSN 2835-8856. URL https://
openreview.net/forum?id=jKN1pXi7b@. (page 15)

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot Learning with
Retrieval Augmented Language Models, November 2022b. URL http://arxiv.org/abs/2208.
03299. (page 1,2,3,6, 15)

Himalaya Jain, Joaquin Zepeda, Patrick Perez, and Remi Gribonval. SUBIC: A Supervised, Structured
Binary Code for Image Search. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 833-842, 2017. URL https://openaccess.thecvf.com/content_iccv_
2017/html/Jain_SUBIC_A_Supervised_ICCV_2017_paper.html. (page 3)

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A Large Scale Distantly
Supervised Challenge Dataset for Reading Comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601-1611,
Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/
P17-1147. URL https://aclanthology.org/P17-1147. (page 2,7, 16)

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769-6781, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main.550.
(page 8, 15)

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural Questions: A Benchmark for Question Answering Research. Transactions of the
Association for Computational Linguistics, 7:453-466, August 2019. doi: 10.1162/tacl_a_00276.
URL https://doi.org/10.1162/tacl_a_00276. (page 2, 7, 16)

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi Chen. Learning Dense Representations of
Phrases at Scale. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 6634—-6647, Online, August 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.518. URL https://aclanthology.org/2021.acl-1long.518.
(page 1, 2, 3, 6, 16)

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktédschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
In Advances in Neural Information Processing Systems, volume 33, pp. 9459-9474. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html. (page 1, 2)

Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep Supervised Hashing for
Fast Image Retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2064-2072, 2016. URL https://openaccess. thecvf.com/content_
cvpr_2016/html/Liu_Deep_Supervised_Hashing_CVPR_2016_paper.html. (page 3)

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Ha-
jishirzi. When Not to Trust Language Models: Investigating Effectiveness of Parametric and
Non-Parametric Memories, May 2023. URL http://arxiv.org/abs/2212.10511. (page 1)

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul. Peft:

State-of-the-art parameter-efficient fine-tuning methods. Hugging Face, September 2022. URL
https://github.com/huggingface/peft. (page 16)

12

https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
https://openaccess.thecvf.com/content_iccv_2017/html/Jain_SUBIC_A_Supervised_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Jain_SUBIC_A_Supervised_ICCV_2017_paper.html
https://aclanthology.org/P17-1147
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://aclanthology.org/2021.acl-long.518
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Liu_Deep_Supervised_Hashing_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Liu_Deep_Supervised_Hashing_CVPR_2016_paper.html
http://arxiv.org/abs/2212.10511
https://github.com/huggingface/peft

Published as a conference paper at ICLR 2024

Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen-tau Yih, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Nonparametric Masked Language Modeling, May 2023. URL http://arxiv.org/
abs/2212.01349. (page 2)

Niels Miindler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory Hallucinations
of Large Language Models: Evaluation, Detection and Mitigation, May 2023. URL http:
//arxiv.org/abs/2305.15852. (page 1)

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing Dang, Ziwei Liu,
and Xianglong Liu. BiBERT: Accurate Fully Binarized BERT. In International Conference on
Learning Representations, March 2022. URL https://openreview.net/forum?id=5xEgrl_
5FAJ. (page 3)

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. ISSN 1533-7928.
URL http://jmlr.org/papers/v21/20-074.html. (page 4, 6)

Dinghan Shen, Pengyu Cheng, Dhanasekar Sundararaman, Xinyuan Zhang, Qian Yang, Meng Tang,
Asli Celikyilmaz, and Lawrence Carin. Learning Compressed Sentence Representations for
On-Device Text Processing. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 107-116, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1011. URL https://aclanthology.org/P19-1011. (page 3,
4,5)

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. REPLUG: Retrieval-Augmented Black-Box Language Models, May
2023. URL http://arxiv.org/abs/2301.12652. (page 2)

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a
Large-scale Dataset for Fact Extraction and VERification. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pp. 809—819, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1074. URL
https://aclanthology.org/N18-1074. (page 2, 7, 16)

Julien Tissier, Christophe Gravier, and Amaury Habrard. Near-lossless binarization of word embed-
dings. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-
First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, AAAT’ 19/IAAT’ 19/EAAT’ 19, pp. 7104-7111,
Honolulu, Hawaii, USA, January 2019. AAAI Press. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.
v33i01.33017104. URL https://dl.acm.org/doi/10.1609/aaai.v33i01.33017104. (page 3)

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models, February 2023a. URL http://arxiv.org/abs/2302.13971. (page 1, 4, 16)

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
July 2023b. URL http://arxiv.org/abs/2307.09288. (page 4, 7, 16)

13

http://arxiv.org/abs/2212.01349
http://arxiv.org/abs/2212.01349
http://arxiv.org/abs/2305.15852
http://arxiv.org/abs/2305.15852
https://openreview.net/forum?id=5xEgrl_5FAJ
https://openreview.net/forum?id=5xEgrl_5FAJ
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/P19-1011
http://arxiv.org/abs/2301.12652
https://aclanthology.org/N18-1074
https://dl.acm.org/doi/10.1609/aaai.v33i01.33017104
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288

Published as a conference paper at ICLR 2024

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmaén,
Armand Joulin, and Edouard Grave. CCNet: Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Language Resources and Evaluation Conference,
pp- 4003—-4012, Marseille, France, May 2020. European Language Resources Association. ISBN
979-10-95546-34-4. URL https://aclanthology.org/2020.1rec-1.494. (page 8)

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38—45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos. 6.
(page 15)

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and Efficient Post-Training Quantization for Large Language Models, February 2023.
URL http://arxiv.org/abs/2211.10438. (page 3)

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On Layer Normalization in the Transformer Architec-
ture. In Proceedings of the 37th International Conference on Machine Learning, pp. 10524—
10533. PMLR, November 2020. URL https://proceedings.mlr.press/v119/xiong20b.
html. (page 4)

Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. Efficient Passage Retrieval with Hash-
ing for Open-domain Question Answering. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pp. 979-986, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.123. URL
https://aclanthology.org/2021.acl-short.123. (page 3, 4)

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. RPTQ: Reorder-based Post-training Quantization for
Large Language Models, April 2023. URL http://arxiv.org/abs/2304.01089. (page 3)

14

https://aclanthology.org/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2211.10438
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html
https://aclanthology.org/2021.acl-short.123
http://arxiv.org/abs/2304.01089

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 TOKEN COMPRESSION ALGORITHM

Algorithm 1 Offline Compression for Binary Token Representations
Input: precomputed binary passage token representations 5B over a corpus C, compression ratio 7,
the vocabulary of reader model VV
Output: compressed binary passage token vectors 3,
1: for each stopword token ¢ in)V, do
2 collect all binary representations By in corpus C
3 compute the average across all binary representations: b, = sign(ﬁ > Bs)
4: end for k
5: for each token ¢, in V that is non-stopword, do
6.
7
8

collect all binary representations B,, in corpus C
merge B, using hamming distance H: B, = sign(bipartite_merge(B,,, r,, H));

: end for

9:
10: function BIPARTITE_MERGE(input tokens: B, merge ratio: r, distance metric M)
11: divide tokens B into two sets of tokens B; and B; based on even and odd order
12: for each token in B;, do
13: create an token edge e to its most similar token in B; using M
14: store token edge e into B

15: end for > this is implemented as a fast parallel operation
16: Keep top-r’ edges E,., where 7’ = r|X]
17: for each token edge in E,., merge connected tokens in B; and B; into B, by computing

the average of token vectors, gather the rest unmerged tokens Birest and B;est return merged
tokens B,,, = gather(B., B;*s*, B';est)
18: end function

Algorithm 2 Runtime Compression

Input: query-passage token representations hy,, compression ratio 7,
Output: merged text token representations h,,

1: for each layer ¢ from layer k + 1 to n in the reader encoder, do

2 merge hy using cosine distance D: h,; = bipartite_merge(he, rp, D);

3: end for > intra-passage token compression
4: for each layer d from layer 1 to n in the reader decoder, do

5 if d % g == 0 then continue end if > skip merging for g layers
6 merge hy using cosine distance D: h,y; = bipartite_merge(hg, rp, D);

7: end for > cross-passage token compression return H,,

A.2 IMPLEMENTATION DETAILS

BTR Details. We develop BTR based on the Atlas codebase using PyTorch 1.13.1 and HuggingFace
Transformers v4.18.0 (Wolf et al., 2020). We conducted training using 4 to 8 A40 or A100 GPUs
(depending on their availability on our cluster) with BF16 mixed precision. We list the training
hyperparameters in Table 4. The decomposition layer k is 9 for the BTR-Atlas base model, k is 20 for
the BTR-Atlas large model, and % is 9 BTR-BERT. We implemented BTR-BERT using the original
DPR (Karpukhin et al., 2020) codebase.

A.3 BASELINE DETAILS.

Atlas (Izacard et al., 2022b) models obtain state-of-the-art performance on a wide range of knowledge-
rich NLP tasks. Atlas model retrieves passages from the corpus using a Contriever (Izacard et al.,
2022a)-based retriever, which is a BERT-like architecture with 110 million parameters shared between
the query and the passage encoder. Since our focus is on the reader component, we use the retriever
in the Atlas 11B model to obtain query-relevant passages and fine-tune Atlas reader models with
these retrieved passages. Due to computing budget constraints, we compare the base (with 220M

15

Published as a conference paper at ICLR 2024

Table 4: Training hyperparameters for BTR-Atlas.

NQ TQA wQ Fever MMLU
Hyperparameters base large base large base large base large base large
batch size 8 4 8 4 8 4 8 4 4 2
learning rate 6e-5 6e-5 4e-5 4e-5 8e-5 8e-5 6e-5 6e-5 S5e-5 Se-6
training steps 20000 20000 20000 20000 3000 3000 10000 10000 2000 2000
warmup steps 200 200 200 200 200 200 200 200 50 50
weight decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
number of passages 40 40 40 40 40 40 40 40 30 30
max query length 40 40 64 64 40 40 40 40 256 256
max passage length 320 320 320 320 320 320 320 320 320 320
max answer length 32 32 32 32 32 32 32 32 32 32

parameters) and large (770M parameters) size variants. We use the original hyperparameters to
finetune Atlas.

Atlas-Q is a quantized version of Atlas. We use GTPQ (Frantar et al., 2023) to quantize the fine-
tuned Atlas baseline model in 4bit. We do not directly use quantization-aware training such as
QLoRA (Dettmers et al., 2023) since the quantized model’s inference is much slower.

DensePhrase (Lee et al., 2021) creates dense representations of phrases from the passages. It retrieves
answers from the phrase index without using the retrieve-and-read pipeline and achieves high query
processing throughput. We run the official DensePhrase implementation on an A100 GPU and report
the throughput numbers.

DeFormer (Cao et al., 2020) speeds up the inference in encoder-only reader models by decom-
posing the passage and query encoding and caching the continuous passage representations. We
apply DeFormer over Atlas and fine-tune the adapted model. In fact, we can view DeFormer as a
simplified system from BTR without binary representations and the offline and runtime compression
components.

LLaMAZ2 (Touvron et al., 2023a;b) consists of open-source large language models that achieve
top performance on many NLP benchmarks including the knowledge tasks we study. Since the
few-shot versions still lag behind fine-tuned models, we finetune the LLaMA2-7B model using the
LoRA adapter and report its results on the evaluation tasks. Due to memory constraints, we limit
the retrieved passages to 5. We implemented this baseline using the PEFT library (Mangrulkar et al.,
2022), the LoRA config is as follows: r=8, alpha=32, dropout=0.05, task_type="CAUSAL_LM",
target_modules=.*(qlklvlolgateldownlup)_proj.*, bias="none".

A.4 DATASETS DETAILS

Table 5: Statistics of the number of examples for the evaluation datasets.

NQ TQA WQ Fever MMLU

Train 79168 78785 3400 145449 95127
Validation 8757 8837 378 19998 1531
Test 3610 11313 2032 19998 14042

Open-domain QA. We use the original open-domain variants of NaturalQuestions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), WebQuestions (Berant et al., 2013). The NaturalQuestions
(NQ) dataset consists of natural Google search questions that have answers from Wikipedia articles.
The open-domain variant contains 91,535 question-answer pairs (79168 for training, 8757 for
development, and 3610 for testing). TriviaQA (TQA) has 98,935 quiz-style trivia questions (78785
for training, 8837 for validation, 11313 for testing), its unfiltered version is used for open-domain QA.
The questions from WebQuestions (WQ) are constructed from Freebase KB and Google Suggest API
and their answers are labeled by Amazon Mechanical Turk. It has 3,778 examples for training and
2,032 for testing. We reserve 10% of the training set for development and use the rest for training.

Fact Checking. We use the original FEVER (Thorne et al., 2018) dataset for the fact-checking task.
FEVER contains 145k training examples, and both development and testing tests have 20k examples.

16

Published as a conference paper at ICLR 2024

Each example has a claim sentence and a 3-class (supported, refuted, or not enough info) label. The
task requires retrieving evidence from the Wikipedia corpus and making a judgment.

Table 6: Inference throughput numbers for the baselines and BTR-Atlas.

NQ TQA WQ FEVER MMLU

DeFormer 224 167 188 24.6 9.6
DensePhrase 504 485 48.1 - -
Atlas-Quant 125 132 112 118 6.4
LLaMA-7B 1.2 08 1.3 1.2 0.5
Atlas base 102 84 9.5 10.5 5.2
BTR-Atlas base 31.5 21.4 25.1 32.1 134
Atlas large 38 21 22 35 33

BTR-Atlas large 153 82 79 143 8.1

Knowledge-Intensive Reasoning. We use the mass-multitask language understanding (MMLU)
benchmark (Hendrycks et al., 2020) to evaluate the knowledge reasoning ability of RaLMs. MMLU
is a multiple-choice question-answering dataset that has 57 subdatasets covering various domains like
history, math, law, etc. The benchmark tests models’ world knowledge and problem-solving ability.
The training set has 95127 examples, the development set has 1531 examples, and the test set has
14042 examples.

Table 5 summarizes the number of examples for each split in the datasets.

A.5 BASELINE RESULTS

Table 6 contains the inference throughput numbers of the baselines and BTR-Atlas models. Table 7
presents the same inference and accuracy numbers as in Table 1 but with added standard deviation
numbers.

A.6 ABLATION RESULTS

Table 8 presents the accuracy and speedup results of Atlas base and BTR-Atlas base models using
different numbers of passages on the NQ dataset.

Table 9 includes the detailed numbers of the compression ratio ablation experiments.

17

Published as a conference paper at ICLR 2024

Table 7: Task performance and inference efficiency comparison between the baseline models and
BTR-Atlas over five evaluation tasks. ‘+’ denotes the standard deviation of accuracy or em scores
across five runs with different random seeds. The speedup (Sp) deviations are quite small (<0.5%)
which we omit here.

NQ TQA wQ FEVER MMLU

EM Sp EM Sp EM Sp Acc Sp Acc Sp
Atlas base 521403 1.0 693104 1.0 464104 1.0 729402 1.0 38.610.5 1.0
Atlas-Q 51.8401 1.2 685403 1.3 451402 1.1 704103 1.1 37.840.3 1.2
DeFormer 5].4i0,2 2.2 68.0i0,4 2.0 44.8i0,5 2.0 7].8i0,5 2.3 33.9i0,4 1.8
DensePhrase 409102 4.9 53.640.4 5.8 37.5405 5.1 - - - -
LLAMAZ2-7B 47.840.2 0.1 7434103 0.1 51.240.3 0.1 76.310.2 0.1 51.240.4 0.1
BTR-Atlas base 495103 3.1 66.7102 2.5 438104 26 702105 3.1 354,04 2.6
Atlas large 583403 1.0 73.6402 1.0 515405 1.0 782404 1.0 41.11406 1.0

BTR-Atlas large 56.140.4 40 70.8+03 3.9 491405 3.6 759+04 41 392406 2.5

#of passages Atlas base EM BTR-Atlas base EM Speedup

5 41.1 38.9 29
10 43.5 41.9 32
20 46.1 43.8 34
30 47.2 45.4 33
40 52.1 49.5 3.1

Table 8: Accuracy and speedup comparison between Atlas base and BTR-Atlas base for different
numbers of retrieved passages on the NQ dataset.

Compression Ratio Storage (GB) Accuracy (%) Compression Ratio Accuracy (%) Throughput (QPS)

0.05 151 50.2 0.05 50.1 28.5
0.1 143 49.8 0.1 49.8 292
0.15 135 49.6 0.15 49.6 30.4
0.2 127 49.5 0.2 49.5 31.5
0.25 119 48.2 0.25 48.7 322
0.3 111 471 0.3 47.6 344
0.35 103 46.2 0.35 45.2 35.6
0.4 95 43.5 0.4 43.2 37.5
0.45 87 384 0.45 40.6 38.9
0.5 80 32.1 0.5 38.1 41.2

(a) Accuracy and storage effects for different offline (b) Accuracy and throughput effects for different intra-
token compression ratios. and cross- passage token compression ratios.

Table 9: Accuracy, storage and throughput comparisons for different two-stage token compression
ratios on the NaturalQuestions dataset. To achieve a good balance between accuracy, storage and
throughput in BTR, we choose compression ratio 0.2 for both online and offline token compression.

18

	Introduction
	Background and Related work
	Method
	Binary Token Representations for Retrieved Passages
	BTR Training
	BTR Inference

	Evaluation
	Baselines
	Tasks and Metrics
	Main Results
	Ablation Study

	Conclusion and Future Work
	Appendix
	Token compression algorithm
	Implementation Details
	Baseline Details.
	Datasets Details
	Baseline Results
	Ablation Results

