
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

DRAM-like Architecture with Asynchronous Refreshing for
Continual Relation Extraction

Anonymous authors
Paper under double-blind review

ABSTRACT
Continual Relation Extraction (CRE) has found widespread web
applications (e.g., search engines) in recent times. One significant
challenge in this task is the phenomenon of catastrophic forget-
ting, where models tend to forget earlier information. Existing
approaches in this field predominantly rely on memory-based meth-
ods to alleviate catastrophic forgetting, which overlooks the inher-
ent challenge posed by the varying memory requirements of differ-
ent relations and the need for a suitable memory refreshing strategy.
Drawing inspiration from the mechanisms of Dynamic Random
Access Memory (DRAM), our study introduces a novel CRE archi-
tecture with an asynchronous refreshing strategy to tackle these
challenges. We first design a DRAM-like architecture, comprising
three key modules: perceptron, controller, and refresher. This archi-
tecture dynamically allocates memory, enabling the consolidation
of well-remembered relations while allocating additional memory
for revisiting poorly learned relations. Furthermore, we propose a
compromising asynchronous refreshing strategy to find the pivot
between over-memorization and overfitting, which focuses on the
current learning task and mixed-memory data asynchronously. Ad-
ditionally, we explain the existing refreshing strategies in CRE from
the DRAM perspective. Our proposed method has experimented
on two benchmarks and overall outperforms ConPL (the SOTA
method) by an average of 1.50% on accuracy, which demonstrates
the efficiency of the proposed architecture and refreshing strategy.

KEYWORDS
Continual Relation Extraction, Dynamic Random Access Memory,
Memory Allocation, Refreshing Strategy

1 INTRODUCTION
In pursuit of high-quality analysis of the exploding textual knowl-
edge and construction of web applications, such as web knowledge
graphs[1, 22], relation extraction attempts to automatically extract
relations between two entities in a text. For example, given the
text "On January 4, 1643, Isaac Newton was born in a small village
in England" and the entity pair ("Isaac Newton", "England"), the
relation extraction model should extract the relation "was born in",
and this underlying capability allows it to underpin a wide range
of downstream tasks [6, 31, 37].

Most of the traditional relation extraction methods focus on ex-
tracting a given set of predefined relations [10, 17, 24], and it plainly
limits the usage of these methods in practical applications, where
new relations keep emerging in the real world. The demands of real-
world drive predecessors to pioneer practical continual learning
settings [32, 33], which have been used in open learning scenar-
ios to form the paradigm of continual relation extraction (CRE)
[9, 34, 35]. CRE is considered as an adaptive algorithm for learning

r1

r2
r3

Dynamic

Allocation

r1
r2
r3

Memory Allocation

r2
r3

r1

+ OR

Sampling

+ +

+ +

Learned relations
Asynchronous Sampling

Equal

Allocation

+ +

Full-memory

+

×

r1 r2 r3 r4

Training Data Stream

Learned relations

After Refreshing

New Task (r4)

Asynchronous
Sampling

×

×
×

×

Sample
Full-memory

×

Mixed-meory Data

Figure 1: Differences between traditional continual relation
extraction methods and our approach. Top: traditional meth-
ods allocate equal memory samples for seen relations with
different performances and use either a centralized or dis-
tributed refreshing strategy. Bottom: Our approach dynami-
cally allocates memory for different relations according to
performance and applies asynchronous refreshing to learn
the current task while retaining the memory of learned
knowledge. The curves on the right show the performance
for all relations after learning a new relation (r4) and refresh-
ing, and it can be observed that the asynchronous refreshing
strategy is superior compared to the other two methods.

a series of tasks including different new relations and maintain-
ing memory of learned knowledge. Compared to conventional RE
tasks, CRE tends to obtain a more stable understanding on both
emerging and learned relations [4]. However, it suffers from the
generic problem of catastrophic forgetting of continual learning
[8, 20, 21, 28], in which knowledge learned from previous tasks is
abruptly forgotten when learning from new observations. A large
number of studies [4, 15, 36] have attempted to solve this problem
and the main approaches can be categorized into regularization
methods [38], dynamic structure methods [7], and memory-based
methods [13, 40]. In the field of CRE, memory-based approaches
are considered promising, which alleviate forgetting by storing
memory samples of seen relations and using a refreshing strategy
(also named a replay strategy). Recent studies [3, 27] have pivoted
towards adapting these methods to few-shot learning scenarios.

While memory-based approaches utilize memory refresh to par-
tially alleviate catastrophic forgetting, their memory processing
predominantly relies on static storage, which applies an average
allocation of memory samples. The allocation of the same sam-
ple size to all seen relations merely promotes the consolidation of
well-remembered relations but hinders the revisitation of poorly
remembered relations. Fig. 1 illustrates equal allocation for each
relation in the upper left part, which is contrast to the inherent
imbalance in learned relations, presenting a formidable challenge
in achieving the allocation of memory samples. Moreover, most of

2023-10-13 12:27. Page 1 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’24, May 2024, Singapore Anonymous Author, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the extant methods use a monotonic refresh strategy. The approach
[34] refreshes full memory alone can potentially lead to the model’s
detachment from acquiring knowledge, referring to the phenom-
enon called over-memorization. Conversely, some other methods
[9] employ an excessive integration of memory refreshing with
training samples which may result in over-fitting. As shown in the
upper right part of Fig. 1, these monotonous refreshing strategies
make it difficult for the model to maintain the memory of learned
knowledge while observing new tasks.

To address the aforementioned challenges, we introduce an in-
novative solution involving Dynamic Random Access Memory
(DRAM) in the context of a CRE scenario. DRAM is a memory
hardware capable of dynamic random data access. However, its
physical characteristics give rise to the issue of leakage current,
which entails the gradual loss of charge over time. This phenome-
non can result in the abrupt loss of data in DRAM when a certain
threshold is exceeded. To mitigate this problem, DRAM employs
various refreshing mechanisms (e.g. asynchronous refreshing) to re-
plenish the charge and prevent data loss. Notably, the loss of charge
in DRAM parallels the gradual forgetting of previously learned
parameters in the CRE model. Both scenarios involve memory re-
freshing as a solution, making the incorporation of DRAM a natural
solution to the challenges previously discussed.

Incorporating DRAM into CRE scenarios, we propose a DRAM-
like Architecture with Asynchronous Refreshing (DAAR) to extract
relations in the continual few-shot learning setting. Our method
can be broken down into two key components: the DRAM-like ar-
chitecture and the asynchronous refreshing strategy. (1) DRAM-like
Architecture: To address the conflict between an inherent imbalance
in learned relation and the unbiased allocation of an equal number
of memory samples to seen relations, we devise a DRAM-like archi-
tecture consisting of three modules: the perceptron, controller, and
refresher. These modules serve to quantify and transform the intrin-
sic imbalance in relational memory into dynamic memory sample
storage, as depicted in the lower part of Fig. 1. (2) Dealing with the
diversity of refreshingmethods and the issues of over-memorization
and over-fitting in existing approaches is another challenge. Our
designed asynchronous refreshing strategy in CRE alleviates the
problem of over-memorization and over-fitting by focusing on cur-
rent task learning and asynchronously trainingmixed-memory data.
Asynchronous refreshing has also been proven in experiments to
be effective on several models. Meanwhile, we explain the exist-
ing refresh strategies in CRE DRAM, which are categorized into
centralized, distributed refresh, and hybrid refreshing.

In summary, the contributions of this work are as follows:

• We bridge the DRAM mechanism with CRE scenario. Our
innovative proposal introduces a DRAM-like architecture,
which effectively addresses the challenge of relational mem-
ory imbalance and dynamically allocates memory samples.

• Different from traditional memory refreshing, we devise an
asynchronous refresh strategy for guiding the refreshing of
dynamic memory samples and further provide a theory that
explains existing refresh strategies.

• Extensive experiments are carried out on two benchmarks,
i.e. FewRel [11] and TACRED [39], where ourmethod achieves
promising relation extraction results for each task.

2 RELATEDWORK
In this section, we summarize the literature reviews in three main
areas that are related to the study:

Continual Relation Extraction. Continual relation extrac-
tion is proposed to address the problem of growing relations in
the real world. Past research in this domain can be broadly de-
lineated into three primary strategies: (1) Regularization methods
([15, 18, 29, 38]), which constrain the updates to the neural weights
of preceding tasks. (2) Dynamic structural methods, introducing
structural modifications like module additions to learn new tasks
without compromising previously acquired knowledge. Notable ex-
amples include [7, 30, 36]. (3) Memory-based methods have proven
promising in the field of natural language processing [2, 4, 13, 40],
which prevents catastrophic forgetting by selectively archiving
and refreshing samples from earlier tasks. For instance, RP-CRE
[4] refines subsequent sample embeddings by the prototype of
all observed relations. EDRA [27] incorporates embedding space
regularization and data augmentation to handle the incompatibil-
ity. Notwithstanding their merits, a common limitation of these
methods is their reliance on static memory, leading to an arguably
inequitable consolidation of memories. In contrast, our proposal
towards a dynamic memory consolidation approach.

Refreshing Strategy. We offer a novel framework for classi-
fying memory-based models based on refreshing strategies, en-
capsulating existing models into three overarching paradigms: (1)
Centralized refreshing was used often in slightly earlier work [14]
to create an isolated memory batch designated for centralized re-
play. More contemporary studies, such as those by Wang et al.
[34], continue to harness this approach. (2) Distributed refresh-
ing integrates memory across the extents of individual training
data sets. Earlier GEM [19] dispersed the previous task to a new
task by constraining the gradient to learn a subset of correlations
common to a set of distributions. After this, AGEM [2] optimizes
it. In recent years, Qin et.al. [27] have similarly used distributed
refreshing to replay episode memories. (3) Hybrid refreshing is
generally a mix of centralized and distributed refreshing such as
asynchronous refresh, etc. Chen et al. [3] update the prototype
parameters by the centralized refreshing strategy and adept dis-
tributed refreshing strategy for encoder parameters. In contrast to
the over-memorization problem of centralized refreshing and the
overfitting of distributed refreshing, Experimental results substan-
tiate the capability of asynchronous refreshing strategy to bridge
the aforementioned refreshing paradigms effectively.

Analogical Modeling. Analogical modeling methods are a
slightly broader topic and are widely used in various disciplines.
Here, we describe only some analogical modeling methods related
to computers and artificial intelligence. Analogical modeling ap-
proaches draw on the laws and mechanisms of natural ecosystems
[23, 25], abstracting the problem to the interactions and effects of
the various elements of the ecosystem. Other approaches, grounded
in tangible physical and mathematical processes [12, 16], recast
problems to align with the underlying laws and models of these do-
mains. Cross-disciplinary analogical modeling merges insights and
techniques from varied fields. For example, [9] introduced episodic
memory activation and reconsolidation for CRE tasks inspired by
human long-term memory formation. In this paper, the structure

2023-10-13 12:27. Page 2 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction Conference’24, May 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

built by analogy to DRAM can effectively perceive the forgetting
and thus dynamically allocate memory.

3 METHODS
3.1 Problem Definition and Background
This section includes the generic problem definition and external
information to provide background knowledge about Dynamic
Random Access Memory (DRAM).

Problem definition. In the context of CRE, we consider a se-
quence of 𝑛 tasks, denoted as {T1,T2, ...,T𝑛}. Each task T𝑘 (𝑘 ∈
[1, 2, ..., 𝑛]) is a few-shot supervised learning task comprising train-
ing, validation, and testing datasets, symbolized asC (𝑘)

train, C
(𝑘)
valid, C

(𝑘)
test ,

respectively. Each dataset contains relation set 𝑅 (𝑘) delineating the
relations within and labeled instances {𝑠𝑖 , 𝑦𝑖 }, where 𝑦𝑖 is a relation
label corresponding to the sentence 𝑠𝑖 . The aim is to architect a ver-
satile classification model, 𝑓 , capable of observing task T (𝑘) in step
𝑘 and adeptly handling the antecedent 𝑘 − 1 tasks. Performance of
this model 𝑓 is evaluated on the test sets {C (1)

test , ..., C
(𝑘−1)
test }, aiming

to capture the effect of model memorization on 𝑘 − 1 tasks.
Different from previous well-performing memory-based work

[3, 4, 27], we introduce a dynamic episodic memory framework, de-
noted as M = {M1,M2, . . .}, where each M𝑘 is constructed from
the corresponding task T𝑘 . Notably, the number of samples stored
for each relation withinM𝑘 is variable. This design is inspired by
the human cognitive process, where attention is selectively allo-
cated to different memories, thereby introducing a bias towards
relations that have historically poor-trained.

DRAM. As shown in Fig. 2, memory cells in a DRAM array
are arranged in a rectangle, and each memory cell stores 1 bit of
data. DRAM cell consists of a capacitor and an access transistor.
Due to the physical properties of the capacitor, leakage current is
generated and causes the charge on the capacitor to be lost over
time. When this charge dwindles below a critical threshold, the
DRAM’s ability to discern is compromised, ultimately resulting in
data corruption. The detection of leakage current of contemporary
DRAM cells involves a synergistic interplay between lasers and
detectors. Upon surpassing the established threshold, the leakage
current is transmitted to a controller, prompting a refresh command.
During the DRAM refresh process, the original data is first read, the
capacitor level is compared with the reference level to determine
the 1/0 value of the data, and then the original data is written back,
which is like a memory replay operation.

The working mode of DRAM is similar to CRE tasks in many
aspects, such as leakage current and catastrophic forgetting, same
refreshing strategies, etc. Drawing parallels from these observations,
we devised a DRAM-like structure using analogy modeling, as
elucidated in Fig. 2.

3.2 DRAM-like Architecture
Drawing inspiration from DRAM, we propose a novel architecture
endowed with the capability of dynamically replaying memory
while maintaining memorization of previous learned knowledge
in the domain of continual learning. This advancement augments
memory utility, fortifying the learning process as new tasks emerge.

Based Module. (1)Encoder. we use BERT [5] as the base model
which feeds a sentence 𝑠 with a head entity 𝑒ℎ and a tail entity 𝑒𝑡 . To
enhance the representation of input sentences, we adept the specific
input from [3], which is described as 𝑠input = { [CLS], 𝑒ℎ ,[MASK], 𝑒𝑡 ,
[SEP], 𝑠 , [SEP] }. We can obtain the contextualized representation
of input sentences. The [MASK] token can be considered as the
relational representation. (2)Prototype classifier with memory. pro-
totype is initialized by the aggregation of all current task samples
and updated in the subsequent training process. Specifically, the
current task C (𝑘)

train = {𝐶𝑟1
𝑡 ,𝐶

𝑟2
𝑡 , ...,𝐶

𝑟𝑁
𝑡 } which describe the 𝑘𝑡ℎ task

train set with 𝑁 relations set 𝑅𝑘train = {𝑟1, 𝑟2, ..., 𝑟𝑁 }, is aggregated
to calculate the prototypical representation P𝑗 of each class.

P𝑖 =
1

|𝐶𝑖
𝑡 |

∑︁
𝑠𝑖 ∈𝐶𝑖

𝑡

Encoder(𝑠𝑖) (1)

where 𝐶𝑟𝑖
𝑡 ∈ C (𝑘)

train is train data of the 𝑖𝑡ℎ relation in the 𝑘𝑡ℎ task
train set and 𝑠𝑖 is the instance in 𝐶

𝑟𝑖
𝑡 . We can obtain the current

prototype representation I𝑘 = {P1,P2, ...} corresponding the cur-
rent task C𝑘

train. Upon the arrival of a new task, prototypes I𝑘 are
initialized; subsequently, these prototypes I𝑘 are updated only in
the training process with new task data and through memory re-
play. Different from the approach delineated in [3], our approach
does not employ prototype memory, thus providing more room to
increase the number of samples memorized for each relation.

Perceptron. The perceptron module plays a pivotal role in our
setup, adept at evaluating the impact of each observed relation, and
further generating a perceptive message via linear transformation.
As we anticipate the arrival of a task T𝑘 , the perceptron takes
the initiative to procure a test dataset encompassing all previously
observed relations, denoted as 𝐶𝑘−1

past = {𝐶𝑟1
𝑝 ,𝐶

𝑟2
𝑝 , ...,𝐶

𝑟𝑁
𝑝 }. Within

this context, 𝑁 signifies the size of the historical relation set 𝑅𝑘−1past =

{𝑟1, 𝑟2, ..., 𝑟𝑁 }. For any relation 𝑟 ∈ 𝑅𝑘−1past , we obtain the prototype
P𝑟 as the relation representation, along with the sample set 𝐶𝑟

𝑝 .
Assuming the encoder 𝑓 (·) with parameter 𝜃 , the perceptual score
𝐹𝑟 for the selected relation 𝑟 can be calculated using the following
equation:

𝐹𝑟 =
1

|𝐶𝑟
𝑝 |

∑︁
(𝑠𝑖) ∈𝐶𝑟

𝑝

Sim (P𝑟 , 𝑓 (𝑠𝑖)𝜃) (2)

where Sim(P𝑟 , 𝑓 (𝑠𝑖)𝜃) is the vector dot product for relation repre-
sentation and instance feature. Then perform this operation on the
set of seen relations 𝑅𝑘−1past and concatenating all the results gives
F = [𝐹1, 𝐹2, ..., 𝐹𝑁], characterizing how well the set of historical
relations performs on the model. In order to scale up the numbers
for those relations that perform poorly, we employ the softmax
function, subsequently transforming F with a uniform vector, E.
The result perceptive message𝑀𝑒𝑠 will be sent to the controller for
assigning memory.

𝑀𝑒𝑠 = Softmax (E − F) (3)

Controller. Before the perceptive message𝑀𝑒𝑠 is sent, the con-
troller engages in crucial preparatory steps comprising memory
expansion and selecting informative samples. In the process of
memory expansion, given the conservation of 𝐸𝑁 samples for each

2023-10-13 12:27. Page 3 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’24, May 2024, Singapore Anonymous Author, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

DRAM
Cell

DRAM Array

Controller

Detector
Laser Ampl.

Refresh

Commands

𝑒𝑒−𝑒𝑒−𝑒𝑒−𝑒𝑒− 𝑒𝑒−𝑒𝑒−
𝑒𝑒−𝑒𝑒−

Leakage
current

Previous
task

Analogical Modeling

Model

Perceptron Controller Refresher

Memory

New
task

Catastrophic
forgetting

Dynamic
Allocate

perceptive
information

Data
set

a b

Figure 2: Continual relation extraction model framework inspired by the DRAM structure. Left: Architecture of DRAM cell
leakage current and refresh circuits in DRAM arrays. Right: The model framework obtained through analogy modeling with
DRAM, in which the catastrophic forgetting is similar to the leakage current. The main workflow is: after sensing the model’s
learning performance on previous tasks using perceptrons, the controller receives the information and dynamically allocates
memories, issuing commands that cause the refresher to refresh the memories. The model learns the new task and reviews the
learned knowledge using mixed-memory data.

relation, the memory size |M| will be expanded to:

|M| = |M| + 𝐸𝑁 · |𝑅𝑘train | (4)

𝑅𝑘train represents the relation set of current training task. All sam-
ples relating to a given relation 𝑟 are systematically ranked in
descending order based on their proximity to the prototype repre-
sentation P𝑟 . This furnishes a set of informatively ranked samples:
𝐶sorted𝑟 = ˆ𝐶𝑟1 , ˆ𝐶𝑟2 , ..., ˆ𝐶𝑟𝑁 . Upon receipt of 𝑀𝑒𝑠 , the controller
promptly derives the requisite number of samples for memory
allocation for each relation:

Q = (𝐸𝑁 · |𝑅𝑘train |) ⊙ 𝑀𝑒𝑠 (5)

where Q = {𝑞1, 𝑞2, ...𝑞𝑁 } is the storage vector with 𝑞𝑖 symbolizing
the sample count allocated to the 𝑖𝑡ℎ relation. ⊙ represents the dot
product of vectors. Subsequently, the top 𝑞𝑖 samples from each set,
pertaining to relation 𝑟𝑖 , are denoted as𝐶𝑟𝑖𝑞𝑖 . The memory storage
relation for the current task is thus formulated as:

M𝐴 =

{
𝐶
𝑟𝑖
𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑁,∀𝑟 ∈ 𝑅𝑘train

}
(6)

M𝐴 represents the memory assignment in the current task T𝑘 ,
then the new memory is updated to M = M + M𝐴 . Afterward,
the controller has the additional task of setting the appropriate size
of the memory cells and the frequency of replays for subsequent
memory refreshing. The controller sends the refreshing strategies
stored internally to the refresher and waits for the next round of
tasks to be processed.

Refresher. When the 𝑘𝑡ℎ task arrives, the refresher is immedi-
ately activated, processing parameters relayed from the controller,
and then adopt the refreshing method according to the delineated
strategy. After that, the refresher starts the update module of the
prototype and performs the memory refresh. We have built in three
strategies of centralized, distributed, and asynchronous refreshing

in the refresher, but in order to ensure fairness, the total amount of
memory used by these three strategies is the same.

3.3 Refreshing strategy
This section introduces three refreshing strategies, which attempt
to expound existing memory-based methods and unify them within
this theoretical system. When the 𝑘𝑡ℎ task T𝑘 arrives at refresher,
the total memory M of the previous k-1 tasks has already been
acquired through the dynamic storage mechanism. The refresher
further extracts the training dataset, 𝐶𝑘

train, associated with T𝑘 .
Subsequent action involves model training with memory refreshing
in E epochs. Themixed-memory data for this purpose is represented
as Dmix. We define the three refresh strategies as follows:

Centralized refresh distinctly earmarks a specified duration
within the training phase exclusively for memory refreshing. When
centralized refreshing starts, the refresher acquires the predefined
number of memory refreshing epochs ℎ, and then divides the total
amount of memoryM to obtain the centralized refreshing memory
size |M𝑐 | = |M|/ℎ. Over time, if current epoch 𝑗 is smaller than the
total number of epochs E, the mixed-memory dataDmix, align with
𝐶𝑘
train. . Conversely, when the epoch 𝑗 surpasses E, thenDmix = M𝑖

𝑐

whereM𝑖
𝑐 represents the 𝑖𝑡ℎ block ofM with size |M𝑐 | memory.

Distributed refresh in DRAM is the process of putting the re-
plenishment of charge into the cycle after each read or write. This
is similar to how the distributed refreshing strategy mixes mem-
ories into each training data before training. When the refresher
captures distributed refreshing strategy, without setting additional
parameters but directly slices the total amount of memory M into
memory cells M𝑑 according to the total number of epochs E. The
mixed-memory data for epoch 𝑗 is denoted as D 𝑗

mix = 𝐶𝑘
train +M 𝑗

𝑑
,

subsequently serving as the direct input data for training the model.
2023-10-13 12:27. Page 4 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction Conference’24, May 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

The adoption of asynchronous refresh strategies has become
commonplace in the contemporary DRAM space. This strategy
strikes a balance between excessive refreshing and dedicating an
extensive block of time for refreshing. Our proposed asynchronous
refreshing requires the refresher to set an additional parameter I,
representing the interval for memory refreshing operations. Then
the refresher will give the mixed-memory data D𝑙

mix = 𝐶𝑘
train +

M𝑙
𝑎 for 𝑙 ∈ [I, 2I, ...]. M𝑙

𝑎 represents the 𝑙𝑡ℎ block ofM with size
|M |
⌊E/I⌋ memory. In epochs other than these specific intervals, the
mixed-memory dataset defaults toDmix = 𝐶𝑘

train. To the best of our
knowledge, asynchronous refresh is the first proposed in terms of
memory refreshing strategies for continual learning.

3.4 Learning Procedure
Before initiating the training of the 𝑘𝑡ℎ task, the perceptron mod-
ule evaluates the performance of previously seen relations on the
current model. Subsequently, it linearly transforms this evaluation
into a perceptive message that is communicated to the controller.
Once the controller completes preparatory tasks such as memory
expansion, it dynamically allocates memory based on the perceptive
message and generates a new memory set denoted asM. When the
𝑘𝑡ℎ task arrives and the prototype representation I𝑘 = P1,P2, . . .
is initialized, the refresher module combines memory cells to cre-
ate mixed-memory data 𝐶mix𝑘 = 𝐶train𝑘 + M according to the
selected refreshing strategy. The model is then trained using a cross-
entropy loss function to learn the consistency between the old and
new distributions. For any 𝑠 ∈ 𝐶𝑘

mix, P represents the relational
representation corresponding to 𝑠 in I𝑘 . Assuming 𝑃 represents
the true distribution of𝐶𝑘

mix, the loss function is defined as follows:

LC (𝜃) = E𝑠∼𝑃 [− log𝑄 (Sim(𝑓𝜃 (𝑠),P))] (7)

where 𝑄 (Sim(𝑓𝜃 (𝑠),P)) represents the relational distribution of
model output. To further distinguish similar prototype represen-
tations, we also designed the contrastive loss function. For any
P ∈ I𝑘 , assuming that Ω is the prototype representation con-
taining P and those similar to P, and Γ is the expected one-hot
distribution generated from Ω, the contrastive loss function can be
defined as:

LA (𝜃) = EP∼Γ [− logΩ (P)] (8)

Assuming that 𝜆1 and 𝜆2 are the weighting coefficients of the above
two loss functions, we can obtain the final loss function as:

L(𝜃) = 𝜆1 · LC (𝜃) + 𝜆2 · LA (𝜃) (9)

In the inference phase, we obtain the encoded representation of
the sentence and compute the distance matrix with the prototype
representation. From the distance matrix, we acquire the type of
relation to the model output, which is compared with the label, and
used to compute the final whole accuracy.

4 EXPERIMENTS
4.1 Benchmark and Evaluation Metric
In this section, we present the datasets used in our experiments
and the evaluation metrics.

Benchmark.Our experiments are conducted on twowell-established
benchmarks, in accordancewith prior researchwork [3]: (1) FewRel
[11] is a large-scale dataset that contains 100 relations, each of
which has 700 instances. Following NK-CRE [3], we use the pub-
licly accessible 80 relations in the training and validation sets into
8 tasks containing 10 relations (10-way). In order to align the SOTA
method [3], we carried out the experiment 10-way-5-shot on the
FewRel Benchmark. (2) In addition to demonstrating the generaliz-
ability of our paradigm, we also conduct experiments on TACRED,
which is a RE dataset proposed by [39]. Different from FewRel, it
contains 42 relations and over 100,000 instances. In NK-CRE, it
remains 41 relation classes and 68,438 instances after filtering out
the relation "n/a". In this paper, we also conduct the experiment
5-way-5-shot on the TACRED to illustrate the applicability of our
methodology.
Evaluation metric. At time step 𝑘 , we first acquire the test sets
𝐶𝑘
test =

⋃𝑘
𝑖=1𝐶

𝑖
test of all seen tasks {T 𝑖 }𝑘

𝑖=1. Then evaluate the
model performance on 𝐶𝑘

test with the whole accuracy. It can be
defined as:

𝐴𝐶𝐶𝑤ℎ𝑜𝑙𝑒 = 𝑎𝑐𝑐
𝑓 ,𝐶𝑘

test
(10)

Owing to the whole test set of all tasks used to calculate the accu-
racy, it actually reflects the model’s ability to alleviate catastrophic
forgetting while effectively assimilating novel knowledge.

4.2 Baselines
DRAM-like architecture with an asynchronous refreshing strategy
is to extract relation with continual learning. Given that recent
models have not employed the centralized refresh mechanism, our
experiments also revealed its inadequacy in this context. Conse-
quently, we opted not to include the centralized refresh baseline
for comparison. The compared baselines are set as follows:

EMAR: Episodicmemory activation and reconsolidation (EMAR)
is a pioneering method [9] to alleviate the problem of catastrophic
forgetting in continual relation learning. EMAR uses relation pro-
totypes for memory reconsolidation exercise to maintain a stable
understanding of old relations while learning new ones.

ERDA: ERDA [27] is an innovative method that defines the for-
mulation of the challenging problem of continual few-shot relation
learning (CFRL). They propose a novel method that incorporates
embedding space regularization and data augmentation to han-
dle the incompatibility between feature distributions of new and
previous tasks.

ConPL: A current SOTA method [3] for N-way-K-shot Contin-
ual Relation Extraction (NK-CRE) task. ConPL consists of three
modules: prototype-based classification, a memory-enhanced mod-
ule for vital sample selection, and a consistent learning module to
alleviate catastrophic forgetting.

The method proposed in this paper can regulate memory storage
by changing the 𝐸𝑁 parameter in Eq. 4. In order to investigate the
effect of memory size on forgetting, we conducted memory expan-
sion experiments on both ERDA and ConPL. For EMAR, we cannot
extend the investigation due to data limitations. The performance
of EMAR in the table is derived from [3].

2023-10-13 12:27. Page 5 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’24, May 2024, Singapore Anonymous Author, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4.3 Implementation Details.
Our experimental setup was conducted on a single NVIDIA 3090
GPU utilizing the PyTorch framework [26]. Our DRAM-like ar-
chitecture leverages BERTBASE [5] as the backbone encoder, with
the base prompt template being e1 [MASK] e2. Due to hardware
constraints, we employed a batch size of 4. Gradient updates were
facilitated using the Adam optimizer, initialized with a learning
rate of 2𝑒−5.

In addition, the number of samples 𝐸𝑁 that are kept in memory
of Eq. 4 is set to 2. The loss weights, denoted as 𝜆1 and 𝜆2, are both
set to 1.0. As part of our refreshing strategy, we conduct a total of
E = 6 epochs, with an asynchronous refreshing interval denoted
as I = 2. Notably, we re-performed the experiments for ERDA and
ConPL with memory samples of 1 and 2 for each relation under the
equal memory samples for eight tasks for a fair comparison.

4.4 Main Results
The whole accuracy (%) across different methods, along with their
extended experiments on the two benchmarks is presented in Tab.
1. We can observe that:

(1)With equal memory samples, DAAR outperforms on both
benchmarks. DAAR approaches the first task as a standard relation
extraction task; hence, the number of retained relation samples
does not impinge on its performance of the first task. For the eighth
task, our method achieves 86.07% and 87.71% when storing 1 and 2
samples on FewRel, and 75.59% and 77.89% when storing 1 and 2
samples on TACRED. It can be observed that DAAR still maintains
higher performance than ConPL, especially when the storage rela-
tion sample is 2. Although the performance of DAAR on the first
task of TACRED 95.17% is slightly lower than the performance of
97.89% achieved by ConPL when the storage relation sample is 2.
DAAR’s dynamic memory and asynchronous refresh quickly play
a role in making forgetting speed significantly slowed down, and
the second task can still lead the performance by 2.28% when the
performance of the first task lags 2.72%. Besides, our method con-
tinues to maintain superior and smooth performance in subsequent
tasks. As shown in Figure 3, DAAR maintains the advantage of slow
forgetting compared to other methods on most tasks.

(a) All methods in FewRel (b) All methods in TACRED

Figure 3: Whole accuracy (%) of the different methods after
training on a series tasks of FewRel benchmark and TACRED
benchmark.

(2) Increasing the number of memory samples corresponding
to each relation helps reduce forgetting of the model. For ERDA,
the performance improvement is not obvious when increasing the

number of relational memory samples on the first two tasks. Never-
theless, when the model learns more tasks, larger memory samples
significantly improve the performance of subsequent tasks. ConPL
has also been improved by increasing the number of memory sam-
ples. On FewRel, from a slight improvement in the first task to a
1.25% performance improvement in the last task. However, the im-
pact is more obvious on DAAR. On the eighth task of TACRED, the
performance increased by 2.3%. On FewRel, there was also a 1.74%
performance improvement. For DAAR, the reason for this result
is more relational memory samples increase the allocation space
for dynamically allocated memory operations performed by the
perceptron and controller working together, i.e. for those relations
with poor performance, more memory samples can be allocated
for consolidation. In Figure 3, it’s evident that the method with
more memory samples markedly outperforms the one with fewer
samples.

4.5 Ablation Study
We conducted two ablation experiments on FewRel, includingmixed
multi-style module experiments and cross-model refreshing experi-
ments to verify the effectiveness of each module in our proposed
DRAM-like architecture and the generalizability of the asynchro-
nous refresh strategy.

Mixed multi-style module experiments. In order to investi-
gate the effectiveness of eachmodule in the DRAM-like architecture,
we add the perceptron, controller, and refresher to the architecture
one by one, while loading each of the three refreshing strategies
with the refresher to validate their effects, as shown in Tab. 2. In
order to remove certain modules while the remaining modules
still work, we use some methods from ConPL[3] on each auxiliary
task to complement the removed modules. Pro− uses the basic pro-
totype learning module with memory replay from ConPL, while
Pro(C) represents our prototype learning module with a central-
ized refreshing strategy and D, A denotes distributed refreshing
and asynchronous refreshing, respectively. The difference between
Pro−+P and Pro−+PC is that the former perceives the information
and then proceeds to distribute the relational memory samples
equally, whereas the latter utilizes the perceived information to dy-
namically distribute the memory samples. From the first three rows
of Tab. 2, it is evident that dynamic memory allocation, facilitated
by the cooperative functioning of the perceptron and the controller,
yields the highest overall accuracy. Examining the last three rows
of 2, it can be argued that the asynchronous refresh strategy further
enhances performance within the same DRAM-like architecture. A
comparative analysis between the first three rows and the last three
reveals that the DRAM-like architecture holds a distinct advantage
over the decentralized modules, a superiority further elucidated in
Fig. 4.

Cross-model refreshing experiments. To verify the gener-
alizability of the asynchronous refreshing strategy, we extend 2
relational memory samples for ConPL and EDRA and asynchronous
refreshing experiments on FewRel and TACRED. The symbols in
Tab. 3 represent the same meaning as in Tab. 1, with "asyn" rep-
resenting the addition of an asynchronous refresh mechanism. In
the FewRel benchmark, when the seed is set to 100, the first three
rows of the table are the expansion experiments corresponding

2023-10-13 12:27. Page 6 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction Conference’24, May 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Whole accuracy (%) of the different methods after training on a series tasks of 10-way-5-shot of FewRel benchmark
and 5-way-5-shot of TACRED benchmark. The unmarked methods are directly from [3] and we reproduce results in publicly
available codebases of ConPL and ERDA. * represents experiments that initially store onememory sample for each seen relation
and † represents initially storing two memory samples for each seen relation. The best values on each task under the same
setting are denoted in bold.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5shot of FewRel

EMAR[9] 92.03 78.87 72.81 69.19 68.05 66.23 63.68 61.77
ERDA[27] 96.38 88.91 83.10 79.73 74.83 72.84 70.28 68.07
ConPL[3] 95.72 93.53 91.31 89.95 88.93 88.39 87.43 85.77

ERDA*[27] 92.17 79.59 70.85 63.82 60.50 57.97 54.77 53.26
ConPL*[3] 95.65 93.45 91.36 89.83 89.00 88.19 87.52 85.21
DAAR*(Ours) 98.50 96.50 95.17 91.40 89.92 88.85 87.51 86.07
ERDA†[27] 91.82 79.52 72.84 65.48 62.85 60.08 58.18 55.79
ConPL†[3] 95.87 93.23 91.58 90.18 89.40 88.76 87.96 86.46
DAAR†(Ours) 98.50 97.60 95.70 92.60 91.10 90.32 88.66 87.81

5-way-5-shot of TACRED

EMAR[9] 68.71 51.53 43.86 38.54 34.08 32.06 29.90 27.87
ERDA*[27] 69.79 47.11 39.13 35.01 31.71 27.94 22.97 22.77
ConPL*[3] 97.03 87.70 85.60 81.25 80.32 78.70 77.32 75.14
DAAR*(Ours) 95.17 91.93 87.48 83.91 83.34 81.76 78.78 75.59
ERDA†[27] 71.46 50.41 41.49 35.58 32.19 28.11 23.02 22.82
ConPL†[3] 97.89 89.79 87.43 84.20 82.39 79.96 79.12 76.93
DAAR†(Ours) 95.17 92.07 88.41 85.92 82.68 79.49 79.73 77.89

Table 2: Ablation experiments on the FewRel benchmark
are used to validate the effectiveness of each module. Pro−

represents basic prototype learning under the hybrid refresh
method used in [3]. P, C and R stand for perceptron, con-
troller and refresher respectively. C, D, A are abbreviations
for centralized, distributed and asynchronous refreshing.

Method T1 T2 T3 T4 T5 T6 T7 T8

Pro− 95.38 92.82 90.51 88.42 87.22 86.68 85.56 83.80
Pro−+P 95.87 93.23 91.58 90.18 88.94 87.49 86.88 85.05
Pro−+PC 96.63 94.27 91.98 90.20 89.39 88.79 87.98 86.49

Pro(C)+PCR 98.50 97.15 95.50 92.00 91.04 90.12 88.59 87.05
Pro(D)+PCR 98.50 97.35 95.43 92.20 90.66 90.03 88.90 87.81
Pro(A)+PCR 98.50 97.60 95.70 92.60 91.10 90.32 88.66 87.98

to EDRA, and the last three rows are the expansion experiments
corresponding to ConPL, we can observe that applying the asyn-
chronous refresh strategy on the ConPL and ERDA models still
allows both models to obtain some performance improvement, and
also aids in verifying that multiple samples are useful for modeling
to alleviate forgetting.

4.6 Forgetting Analysis
To further analyze the degree of forgetting of our model in continual
relation extraction, we introduce an enhanced measure of prototype
forgetting. This measure quantifies the forgetting of the prototype

100.0

(

芩)
A
3

芒
n
3
3

V

I I I I I : : : : : :
I I I I I

1 1 1 , ：
I I I I : : : : :
I I

－－－于－－－－－－－－－－－－T－－-－＋－-－--+－-－一一，＿＿＿＿＿＿＿＿＿＿＿＿＿

I I I I : : : :
I I I : : : :
1

: ：
'

95.0,"--:�:�.:.-+-－－－－-－-－-－-�--－+－－－－+-－-－－－-－－－－－+－一一一一一一一一一－斗－－－－－－－－－－－－

1 : ： ： : : :
I I

92.S+ －－一平令令寸一一一一一一一一、尺－－4－－－－4--－-－+－－－－

I
:
I

I

90.0+ －－－－}－一气、--－－平�.-;;:立----－一一一上＿＿＿
:

1 、 l -
.、陶 ，.
、

．寸－．一·一·－ 宁·
＿

I __＿＿：-－三二七－－三 于
一、

Pro- +PC _－-－-－斗－－－－－－＋－－－斗－－一一一二士之：
Pro(C)＋PCR : ： ： ： : : : :
Pro(D)＋PCR +

I I I -－--－-－－－- -－___＿-－-－-＋------_＿＿_-+-－－--－－-－-－-+－－-＿＿_---－-
I I I I

Pro(A) +PCR ! ! ! !
I I I :
I I I I

87.5

85.0

82.5

-+-

．

—自—

一令一

．

＊＇

Pro­

Pro- +P

80.0
1 2 3 4 5

Task index

6 7 8

Figure 4: The analysis result of the importance of the mod-
ules in DRAM-like structure with asynchronous refreshing
strategy.

for the 𝑖𝑡ℎ task after training the 𝑗𝑡ℎ task the as follows:

𝐹𝑖, 𝑗 =
1

|𝑅𝑖 | · 𝑗

𝑗∑︁
𝑘=𝑖

𝑅𝑖∑︁
𝑟

max(0, 𝑎𝑘,𝑟 − 𝑎 𝑗,𝑟) (11)

2023-10-13 12:27. Page 7 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’24, May 2024, Singapore Anonymous Author, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Ablation experiments on the FewRel benchmark and the TACRED benchmark(in appendix A.1) are used to validate
the effectiveness of increasing the memory sample size and the asynchronous refreshing mechanism, The individual symbols
represent the same meaning as in Tab. 1 and asyn denotes the asynchronous refreshing added to the method.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

ERDA[27] 92.80 76.90 67.83 62.70 58.70 55.78 51.11 51.39
ERDA†[27] 92.20 76.50 71.00 61.30 63.30 57.00 53.99 54.13
EDRA†[27] + asyn 93.80 78.55 69.03 66.40 65.42 61.55 57.36 56.55
ConPL[3] 94.30 93.60 92.03 88.63 88.32 86.70 86.33 84.93
ConPL†[3] 95.90 93.70 92.20 88.70 88.34 87.33 87.60 86.74
ConPL†[3] + asyn 96.40 94.85 92.90 90.05 89.26 88.37 88.75 87.23

(a) t-SNE visualization(task-1) (b) t-SNE visualization(task-2) (c) t-SNE visualization(task-3) (d) t-SNE visualization(task-4) (e) t-SNE visualization(task-5)

25

64

17

6 21

65

14
49

78

12

25

64

17

6

21

65

14

78

12

49 25

64
17

6

21

65

14
49

78

12

25

64

17

6

21

65

14

49
78

12

25

64

17

6

21

65
14

49

78

12

64

Figure 5: t-SNE visualization of first task features learned by DAAR at training Task-1 to Task-5 on FewRel. The first task
contains a total of ten relations, and we characterize the different classes of relations with different colors.

Table 4: ConPL and DAAR methods of forgetting Task-1 for-
getting(%) after learning Task-1 to Task-5. † represents ini-
tially storing two memory samples for each seen relation.

Method
Task index

T1 T2 T3 T4 T5

ConPL†[3] 0.00 3.25 3.63 6.20 6.50
DAAR† 0.00 0.95 3.57 3.18 5.22

where 𝑎𝑘,𝑟 represents the accuracy on relation 𝑟 for the set of
relations 𝑅𝑖 belonging to task 𝑖 after the 𝑘𝑡ℎ task training. The
max(0, 𝑎𝑘,𝑟 − 𝑎 𝑗,𝑟) is expressed in the relation 𝑟 , the degree of
forgetting at training prior 𝑘𝑡ℎ task versus subsequent 𝑗𝑡ℎ task.
We provide the degree of forgetting for the first task when trained
sequentially on the subsequent four tasks with ConPL and DAAR,
as shown in Tab. 4. We can observe that DAAR forgets a little less
compared to ConPL for the same measure of forgetting level, which
explains the higher accuracy of DAAR after the first task.

To better observe how DAAR learns the features of the first task
when subsequent tasks are learned continuously, we used t-SNE to
visualize the ten relation categories of the first task and plotted the
change in features of Task-1 when learning Task-1 to Task-5, as
depicted in Fig. 5. A slightly larger change that appears in Fig. 5(c) is
the feature of Task-1 when the DAAR has finished learning Task-3,
although only by flipping the top and bottom features. After this,

the feature of Task-1 is corrected again after learning Task-4. This
phenomenon is consistent with Tab. 4, which shows an increase
followed by a decrease in the DAAR’s forgetting of Task-1 after
learning Task-3 and Task-4.

5 CONCLUSION
In this paper, we introduce the DRAM-like architecture with an
asynchronous refreshing strategy to effectively extract relations.
The DRAM-like architecture is composed of a perceptron, a con-
troller, and a refresher, and dynamic memory sample allocation
is achieved through the cooperation of all three, which solves the
conflict between relational memory imbalance and unbiased allo-
cation of memory samples in previous work. We also propose a
compromise asynchronous refresh strategy to find a pivot between
over-memorization and overfitting, which concentrates on current
tasks and asynchronously training mixed-memory data. Addition-
ally, we provide a theory to explain existing refresh strategies and
categorize them into centralized, distributed, and hybrid refreshing.
The experimental results demonstrate the promise of our approach
in CRE scenarios for effectively alleviating catastrophic forgetting.
In future work, we will explore the effects of asynchronous refresh
mechanisms and DRAM-like architectures in other memory-based
continual learning tasks.

2023-10-13 12:27. Page 8 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction Conference’24, May 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel Polleres,

and Katja Hose. 2021. WiseKG: Balanced access to web knowledge graphs. In
Proceedings of the Web Conference 2021. 1422–1434.

[2] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elho-
seiny. 2018. Efficient lifelong learning with a-gem. ICLR (2018).

[3] Xiudi Chen, Hui Wu, and Xiaodong Shi. 2023. Consistent Prototype Learning
for Few-Shot Continual Relation Extraction. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
7409–7422.

[4] Li Cui, Deqing Yang, Jiaxin Yu, Chengwei Hu, Jiayang Cheng, Jingjie Yi, and
Yanghua Xiao. 2021. Refining sample embeddings with relation prototypes to
enhance continual relation extraction. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). 232–243.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[6] Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over
freebase with multi-column convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 260–269.

[7] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. 2017. Pathnet: Evolution
channels gradient descent in super neural networks. CoRR (2017).

[8] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128–135.

[9] Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun,
and Jie Zhou. 2020. Continual relation learning via episodic memory activation
and reconsolidation. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. 6429–6440.

[10] Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng Li. 2018. Hierarchical
relation extraction with coarse-to-fine grained attention. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. 2236–2245.

[11] Xu Han, Hao Zhu, Pengfei Yu, ZiyunWang, Yuan Yao, Zhiyuan Liu, and Maosong
Sun. 2018. Fewrel: A large-scale supervised few-shot relation classification dataset
with state-of-the-art evaluation. arXiv preprint arXiv:1810.10147 (2018).

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[13] Chengwei Hu, Deqing Yang, Haoliang Jin, Zhen Chen, and Yanghua Xiao. 2022.
Improving continual relation extraction through prototypical contrastive learning.
arXiv preprint arXiv:2210.04513 (2022).

[14] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. 2016. Less-forgetting
learning in deep neural networks. arXiv preprint arXiv:1607.00122 (2016).

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[16] Na Lei, Yang Guo, Dongsheng An, Xin Qi, Zhongxuan Luo, Shing-Tung Yau, and
Xianfeng Gu. 2019. Mode collapse and regularity of optimal transportation maps.
arXiv preprint arXiv:1902.02934 (2019).

[17] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016.
Neural relation extraction with selective attention over instances. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 2124–2133.

[18] Xialei Liu, MarcMasana, Luis Herranz, Joost Van deWeijer, AntonioM Lopez, and
Andrew D Bagdanov. 2018. Rotate your networks: Better weight consolidation
and less catastrophic forgetting. In 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2262–2268.

[19] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for
continual learning. Advances in neural information processing systems 30 (2017).

[20] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. 1995. Why
there are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of learning and
memory. Psychological review 102, 3 (1995), 419.

[21] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[22] FranckMichel, Fabien Gandon, Valentin Ah-Kane, Anna Bobasheva, Elena Cabrio,
Olivier Corby, Raphaël Gazzotti, Alain Giboin, Santiago Marro, Tobias Mayer,
et al. 2020. Covid-on-the-Web: Knowledge graph and services to advance COVID-
19 research. In The Semantic Web–ISWC 2020: 19th International Semantic Web
Conference, Athens, Greece, November 2–6, 2020, Proceedings, Part II 19. Springer,
294–310.

[23] Seyedali Mirjalili and Seyedali Mirjalili. 2019. Genetic algorithm. Evolutionary
Algorithms and Neural Networks: Theory and Applications (2019), 43–55.

[24] Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using
lstms on sequences and tree structures. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (2016),
1105–1116.

[25] Mohsen Paniri, Mohammad Bagher Dowlatshahi, and Hossein Nezamabadi-Pour.
2020. MLACO: A multi-label feature selection algorithm based on ant colony
optimization. Knowledge-Based Systems 192 (2020), 105285.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[27] Chengwei Qin and Shafiq Joty. 2022. Continual few-shot relation learning
via embedding space regularization and data augmentation. arXiv preprint
arXiv:2203.02135 (2022).

[28] Roger Ratcliff. 1990. Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychological review 97, 2 (1990),
285.

[29] Hippolyt Ritter, Aleksandar Botev, and David Barber. 2018. Online structured
laplace approximations for overcoming catastrophic forgetting. Advances in
Neural Information Processing Systems 31 (2018).

[30] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. CoRR (2016).

[31] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[32] Sebastian Thrun. 1998. Lifelong learning algorithms. In Learning to learn. Springer,
181–209.

[33] Sebastian Thrun and Lorien Pratt. 2012. Learning to learn. Springer Science &
Business Media.

[34] Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, and
William Yang Wang. 2019. Sentence embedding alignment for lifelong relation
extraction. arXiv preprint arXiv:1903.02588 (2019).

[35] TongtongWu, Xuekai Li, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi, Yujin Zhu,
and Guoqiang Xu. 2021. Curriculum-meta learning for order-robust continual
relation extraction. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 10363–10369.

[36] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang. 2014.
Error-driven incremental learning in deep convolutional neural network for
large-scale image classification. In Proceedings of the 22nd ACM international
conference on Multimedia. 177–186.

[37] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking
for academic search via knowledge graph embedding. In Proceedings of the 26th
international conference on world wide web. 1271–1279.

[38] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning
through synaptic intelligence. In International conference on machine learning.
PMLR, 3987–3995.

[39] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D
Manning. 2017. Position-aware attention and supervised data improve slot filling.
In Conference on Empirical Methods in Natural Language Processing.

[40] Kang Zhao, Hua Xu, Jiangong Yang, and Kai Gao. 2022. Consistent representation
learning for continual relation extraction. arXiv preprint arXiv:2203.02721 (2022).

A EXTERNAL RESULTS
A.1 Ablation Study
The extended experiments of EDRA and ConPL on the TACRED
dataset are supplemented here, as shown in Tab. 5, which is consis-
tent with the results in the main text.

2023-10-13 12:27. Page 9 of 1–10.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’24, May 2024, Singapore Anonymous Author, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 5: Ablation experiments on the FewRel benchmark and the TACRED benchmark are used to validate the effectiveness of
increasing the memory sample size and the asynchronous refreshing mechanism, The individual symbols represent the same
meaning as in Tab. 1 and asyn denotes the asynchronous refreshing added to the method.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

ERDA[27] 92.80 76.90 67.83 62.70 58.70 55.78 51.11 51.39
ERDA†[27] 92.20 76.50 71.00 61.30 63.30 57.00 53.99 54.13
EDRA†[27] + asyn 93.80 78.55 69.03 66.40 65.42 61.55 57.36 56.55
ConPL[3] 94.30 93.60 92.03 88.63 88.32 86.70 86.33 84.93
ConPL†[3] 95.90 93.70 92.20 88.70 88.34 87.33 87.60 86.74
ConPL†[3] + asyn 96.40 94.85 92.90 90.05 89.26 88.37 88.75 87.23

5-way-5-shot of TACRED

ERDA[27] 70.08 41.30 39.40 37.58 29.18 23.08 20.97 21.21
ERDA†[27] 71.43 45.73 42.53 43.37 33.66 28.40 22.12 22.01
ERDA†[27] + asyn 75.10 49.53 44.38 39.33 36.04 29.10 24.12 23.66
ConPL[3] 97.37 84.68 81.54 79.77 81.21 76.96 74.49 73.23
ConPL†[3] 98.25 84.46 80.92 80.68 80.93 76.17 76.33 75.12
ConPL†[3] + asyn 97.37 85.78 81.64 81.59 81.98 79.27 76.60 74.93

2023-10-13 12:27. Page 10 of 1–10.

	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Problem Definition and Background
	3.2 DRAM-like Architecture
	3.3 Refreshing strategy
	3.4 Learning Procedure

	4 Experiments
	4.1 Benchmark and Evaluation Metric
	4.2 Baselines
	4.3 Implementation Details.
	4.4 Main Results
	4.5 Ablation Study
	4.6 Forgetting Analysis

	5 Conclusion
	References
	A External Results
	A.1 Ablation Study

