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ABSTRACT
Continual Relation Extraction (CRE) has found widespread web
applications (e.g., search engines) in recent times. One significant
challenge in this task is the phenomenon of catastrophic forget-
ting, where models tend to forget earlier information. Existing
approaches in this field predominantly rely on memory-based meth-
ods to alleviate catastrophic forgetting, which overlooks the inher-
ent challenge posed by the varying memory requirements of differ-
ent relations and the need for a suitable memory refreshing strategy.
Drawing inspiration from the mechanisms of Dynamic Random
Access Memory (DRAM), our study introduces a novel CRE archi-
tecture with an asynchronous refreshing strategy to tackle these
challenges. We first design a DRAM-like architecture, comprising
three key modules: perceptron, controller, and refresher. This archi-
tecture dynamically allocates memory, enabling the consolidation
of well-remembered relations while allocating additional memory
for revisiting poorly learned relations. Furthermore, we propose a
compromising asynchronous refreshing strategy to find the pivot
between over-memorization and overfitting, which focuses on the
current learning task and mixed-memory data asynchronously. Ad-
ditionally, we explain the existing refreshing strategies in CRE from
the DRAM perspective. Our proposed method has experimented
on two benchmarks and overall outperforms ConPL (the SOTA
method) by an average of 1.50% on accuracy, which demonstrates
the efficiency of the proposed architecture and refreshing strategy.

KEYWORDS
Continual Relation Extraction, Dynamic Random Access Memory,
Memory Allocation, Refreshing Strategy

1 INTRODUCTION
In pursuit of high-quality analysis of the exploding textual knowl-
edge and construction of web applications, such as web knowledge
graphs[1, 22], relation extraction attempts to automatically extract
relations between two entities in a text. For example, given the
text "On January 4, 1643, Isaac Newton was born in a small village
in England" and the entity pair ("Isaac Newton", "England"), the
relation extraction model should extract the relation "was born in",
and this underlying capability allows it to underpin a wide range
of downstream tasks [6, 31, 37].

Most of the traditional relation extraction methods focus on ex-
tracting a given set of predefined relations [10, 17, 24], and it plainly
limits the usage of these methods in practical applications, where
new relations keep emerging in the real world. The demands of real-
world drive predecessors to pioneer practical continual learning
settings [32, 33], which have been used in open learning scenar-
ios to form the paradigm of continual relation extraction (CRE)
[9, 34, 35]. CRE is considered as an adaptive algorithm for learning
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Figure 1: Differences between traditional continual relation
extraction methods and our approach. Top: traditional meth-
ods allocate equal memory samples for seen relations with
different performances and use either a centralized or dis-
tributed refreshing strategy. Bottom: Our approach dynami-
cally allocates memory for different relations according to
performance and applies asynchronous refreshing to learn
the current task while retaining the memory of learned
knowledge. The curves on the right show the performance
for all relations after learning a new relation (r4) and refresh-
ing, and it can be observed that the asynchronous refreshing
strategy is superior compared to the other two methods.

a series of tasks including different new relations and maintain-
ing memory of learned knowledge. Compared to conventional RE
tasks, CRE tends to obtain a more stable understanding on both
emerging and learned relations [4]. However, it suffers from the
generic problem of catastrophic forgetting of continual learning
[8, 20, 21, 28], in which knowledge learned from previous tasks is
abruptly forgotten when learning from new observations. A large
number of studies [4, 15, 36] have attempted to solve this problem
and the main approaches can be categorized into regularization
methods [38], dynamic structure methods [7], and memory-based
methods [13, 40]. In the field of CRE, memory-based approaches
are considered promising, which alleviate forgetting by storing
memory samples of seen relations and using a refreshing strategy
(also named a replay strategy). Recent studies [3, 27] have pivoted
towards adapting these methods to few-shot learning scenarios.

While memory-based approaches utilize memory refresh to par-
tially alleviate catastrophic forgetting, their memory processing
predominantly relies on static storage, which applies an average
allocation of memory samples. The allocation of the same sam-
ple size to all seen relations merely promotes the consolidation of
well-remembered relations but hinders the revisitation of poorly
remembered relations. Fig. 1 illustrates equal allocation for each
relation in the upper left part, which is contrast to the inherent
imbalance in learned relations, presenting a formidable challenge
in achieving the allocation of memory samples. Moreover, most of
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the extant methods use a monotonic refresh strategy. The approach
[34] refreshes full memory alone can potentially lead to the model’s
detachment from acquiring knowledge, referring to the phenom-
enon called over-memorization. Conversely, some other methods
[9] employ an excessive integration of memory refreshing with
training samples which may result in over-fitting. As shown in the
upper right part of Fig. 1, these monotonous refreshing strategies
make it difficult for the model to maintain the memory of learned
knowledge while observing new tasks.

To address the aforementioned challenges, we introduce an in-
novative solution involving Dynamic Random Access Memory
(DRAM) in the context of a CRE scenario. DRAM is a memory
hardware capable of dynamic random data access. However, its
physical characteristics give rise to the issue of leakage current,
which entails the gradual loss of charge over time. This phenome-
non can result in the abrupt loss of data in DRAM when a certain
threshold is exceeded. To mitigate this problem, DRAM employs
various refreshing mechanisms (e.g. asynchronous refreshing) to re-
plenish the charge and prevent data loss. Notably, the loss of charge
in DRAM parallels the gradual forgetting of previously learned
parameters in the CRE model. Both scenarios involve memory re-
freshing as a solution, making the incorporation of DRAM a natural
solution to the challenges previously discussed.

Incorporating DRAM into CRE scenarios, we propose a DRAM-
like Architecture with Asynchronous Refreshing (DAAR) to extract
relations in the continual few-shot learning setting. Our method
can be broken down into two key components: the DRAM-like ar-
chitecture and the asynchronous refreshing strategy. (1) DRAM-like
Architecture: To address the conflict between an inherent imbalance
in learned relation and the unbiased allocation of an equal number
of memory samples to seen relations, we devise a DRAM-like archi-
tecture consisting of three modules: the perceptron, controller, and
refresher. These modules serve to quantify and transform the intrin-
sic imbalance in relational memory into dynamic memory sample
storage, as depicted in the lower part of Fig. 1. (2) Dealing with the
diversity of refreshingmethods and the issues of over-memorization
and over-fitting in existing approaches is another challenge. Our
designed asynchronous refreshing strategy in CRE alleviates the
problem of over-memorization and over-fitting by focusing on cur-
rent task learning and asynchronously trainingmixed-memory data.
Asynchronous refreshing has also been proven in experiments to
be effective on several models. Meanwhile, we explain the exist-
ing refresh strategies in CRE DRAM, which are categorized into
centralized, distributed refresh, and hybrid refreshing.

In summary, the contributions of this work are as follows:

• We bridge the DRAM mechanism with CRE scenario. Our
innovative proposal introduces a DRAM-like architecture,
which effectively addresses the challenge of relational mem-
ory imbalance and dynamically allocates memory samples.

• Different from traditional memory refreshing, we devise an
asynchronous refresh strategy for guiding the refreshing of
dynamic memory samples and further provide a theory that
explains existing refresh strategies.

• Extensive experiments are carried out on two benchmarks,
i.e. FewRel [11] and TACRED [39], where ourmethod achieves
promising relation extraction results for each task.

2 RELATEDWORK
In this section, we summarize the literature reviews in three main
areas that are related to the study:

Continual Relation Extraction. Continual relation extrac-
tion is proposed to address the problem of growing relations in
the real world. Past research in this domain can be broadly de-
lineated into three primary strategies: (1) Regularization methods
([15, 18, 29, 38]), which constrain the updates to the neural weights
of preceding tasks. (2) Dynamic structural methods, introducing
structural modifications like module additions to learn new tasks
without compromising previously acquired knowledge. Notable ex-
amples include [7, 30, 36]. (3) Memory-based methods have proven
promising in the field of natural language processing [2, 4, 13, 40],
which prevents catastrophic forgetting by selectively archiving
and refreshing samples from earlier tasks. For instance, RP-CRE
[4] refines subsequent sample embeddings by the prototype of
all observed relations. EDRA [27] incorporates embedding space
regularization and data augmentation to handle the incompatibil-
ity. Notwithstanding their merits, a common limitation of these
methods is their reliance on static memory, leading to an arguably
inequitable consolidation of memories. In contrast, our proposal
towards a dynamic memory consolidation approach.

Refreshing Strategy. We offer a novel framework for classi-
fying memory-based models based on refreshing strategies, en-
capsulating existing models into three overarching paradigms: (1)
Centralized refreshing was used often in slightly earlier work [14]
to create an isolated memory batch designated for centralized re-
play. More contemporary studies, such as those by Wang et al.
[34], continue to harness this approach. (2) Distributed refresh-
ing integrates memory across the extents of individual training
data sets. Earlier GEM [19] dispersed the previous task to a new
task by constraining the gradient to learn a subset of correlations
common to a set of distributions. After this, AGEM [2] optimizes
it. In recent years, Qin et.al. [27] have similarly used distributed
refreshing to replay episode memories. (3) Hybrid refreshing is
generally a mix of centralized and distributed refreshing such as
asynchronous refresh, etc. Chen et al. [3] update the prototype
parameters by the centralized refreshing strategy and adept dis-
tributed refreshing strategy for encoder parameters. In contrast to
the over-memorization problem of centralized refreshing and the
overfitting of distributed refreshing, Experimental results substan-
tiate the capability of asynchronous refreshing strategy to bridge
the aforementioned refreshing paradigms effectively.

Analogical Modeling. Analogical modeling methods are a
slightly broader topic and are widely used in various disciplines.
Here, we describe only some analogical modeling methods related
to computers and artificial intelligence. Analogical modeling ap-
proaches draw on the laws and mechanisms of natural ecosystems
[23, 25], abstracting the problem to the interactions and effects of
the various elements of the ecosystem. Other approaches, grounded
in tangible physical and mathematical processes [12, 16], recast
problems to align with the underlying laws and models of these do-
mains. Cross-disciplinary analogical modeling merges insights and
techniques from varied fields. For example, [9] introduced episodic
memory activation and reconsolidation for CRE tasks inspired by
human long-term memory formation. In this paper, the structure
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built by analogy to DRAM can effectively perceive the forgetting
and thus dynamically allocate memory.

3 METHODS
3.1 Problem Definition and Background
This section includes the generic problem definition and external
information to provide background knowledge about Dynamic
Random Access Memory (DRAM).

Problem definition. In the context of CRE, we consider a se-
quence of 𝑛 tasks, denoted as {T1,T2, ...,T𝑛}. Each task T𝑘 (𝑘 ∈
[1, 2, ..., 𝑛]) is a few-shot supervised learning task comprising train-
ing, validation, and testing datasets, symbolized asC (𝑘 )

train, C
(𝑘 )
valid, C

(𝑘 )
test ,

respectively. Each dataset contains relation set 𝑅 (𝑘 ) delineating the
relations within and labeled instances {𝑠𝑖 , 𝑦𝑖 }, where 𝑦𝑖 is a relation
label corresponding to the sentence 𝑠𝑖 . The aim is to architect a ver-
satile classification model, 𝑓 , capable of observing task T (𝑘 ) in step
𝑘 and adeptly handling the antecedent 𝑘 − 1 tasks. Performance of
this model 𝑓 is evaluated on the test sets {C (1)

test , ..., C
(𝑘−1)
test }, aiming

to capture the effect of model memorization on 𝑘 − 1 tasks.
Different from previous well-performing memory-based work

[3, 4, 27], we introduce a dynamic episodic memory framework, de-
noted as M = {M1,M2, . . .}, where each M𝑘 is constructed from
the corresponding task T𝑘 . Notably, the number of samples stored
for each relation withinM𝑘 is variable. This design is inspired by
the human cognitive process, where attention is selectively allo-
cated to different memories, thereby introducing a bias towards
relations that have historically poor-trained.

DRAM. As shown in Fig. 2, memory cells in a DRAM array
are arranged in a rectangle, and each memory cell stores 1 bit of
data. DRAM cell consists of a capacitor and an access transistor.
Due to the physical properties of the capacitor, leakage current is
generated and causes the charge on the capacitor to be lost over
time. When this charge dwindles below a critical threshold, the
DRAM’s ability to discern is compromised, ultimately resulting in
data corruption. The detection of leakage current of contemporary
DRAM cells involves a synergistic interplay between lasers and
detectors. Upon surpassing the established threshold, the leakage
current is transmitted to a controller, prompting a refresh command.
During the DRAM refresh process, the original data is first read, the
capacitor level is compared with the reference level to determine
the 1/0 value of the data, and then the original data is written back,
which is like a memory replay operation.

The working mode of DRAM is similar to CRE tasks in many
aspects, such as leakage current and catastrophic forgetting, same
refreshing strategies, etc. Drawing parallels from these observations,
we devised a DRAM-like structure using analogy modeling, as
elucidated in Fig. 2.

3.2 DRAM-like Architecture
Drawing inspiration from DRAM, we propose a novel architecture
endowed with the capability of dynamically replaying memory
while maintaining memorization of previous learned knowledge
in the domain of continual learning. This advancement augments
memory utility, fortifying the learning process as new tasks emerge.

Based Module. (1)Encoder. we use BERT [5] as the base model
which feeds a sentence 𝑠 with a head entity 𝑒ℎ and a tail entity 𝑒𝑡 . To
enhance the representation of input sentences, we adept the specific
input from [3], which is described as 𝑠input = { [CLS], 𝑒ℎ ,[MASK], 𝑒𝑡 ,
[SEP], 𝑠 , [SEP] }. We can obtain the contextualized representation
of input sentences. The [MASK] token can be considered as the
relational representation. (2)Prototype classifier with memory. pro-
totype is initialized by the aggregation of all current task samples
and updated in the subsequent training process. Specifically, the
current task C (𝑘 )

train = {𝐶𝑟1
𝑡 ,𝐶

𝑟2
𝑡 , ...,𝐶

𝑟𝑁
𝑡 } which describe the 𝑘𝑡ℎ task

train set with 𝑁 relations set 𝑅𝑘train = {𝑟1, 𝑟2, ..., 𝑟𝑁 }, is aggregated
to calculate the prototypical representation P𝑗 of each class.

P𝑖 =
1

|𝐶𝑖
𝑡 |

∑︁
𝑠𝑖 ∈𝐶𝑖

𝑡

Encoder(𝑠𝑖 ) (1)

where 𝐶𝑟𝑖
𝑡 ∈ C (𝑘 )

train is train data of the 𝑖𝑡ℎ relation in the 𝑘𝑡ℎ task
train set and 𝑠𝑖 is the instance in 𝐶

𝑟𝑖
𝑡 . We can obtain the current

prototype representation I𝑘 = {P1,P2, ...} corresponding the cur-
rent task C𝑘

train. Upon the arrival of a new task, prototypes I𝑘 are
initialized; subsequently, these prototypes I𝑘 are updated only in
the training process with new task data and through memory re-
play. Different from the approach delineated in [3], our approach
does not employ prototype memory, thus providing more room to
increase the number of samples memorized for each relation.

Perceptron. The perceptron module plays a pivotal role in our
setup, adept at evaluating the impact of each observed relation, and
further generating a perceptive message via linear transformation.
As we anticipate the arrival of a task T𝑘 , the perceptron takes
the initiative to procure a test dataset encompassing all previously
observed relations, denoted as 𝐶𝑘−1

past = {𝐶𝑟1
𝑝 ,𝐶

𝑟2
𝑝 , ...,𝐶

𝑟𝑁
𝑝 }. Within

this context, 𝑁 signifies the size of the historical relation set 𝑅𝑘−1past =

{𝑟1, 𝑟2, ..., 𝑟𝑁 }. For any relation 𝑟 ∈ 𝑅𝑘−1past , we obtain the prototype
P𝑟 as the relation representation, along with the sample set 𝐶𝑟

𝑝 .
Assuming the encoder 𝑓 (·) with parameter 𝜃 , the perceptual score
𝐹𝑟 for the selected relation 𝑟 can be calculated using the following
equation:

𝐹𝑟 =
1

|𝐶𝑟
𝑝 |

∑︁
(𝑠𝑖 ) ∈𝐶𝑟

𝑝

Sim (P𝑟 , 𝑓 (𝑠𝑖 )𝜃 ) (2)

where Sim(P𝑟 , 𝑓 (𝑠𝑖 )𝜃 ) is the vector dot product for relation repre-
sentation and instance feature. Then perform this operation on the
set of seen relations 𝑅𝑘−1past and concatenating all the results gives
F = [𝐹1, 𝐹2, ..., 𝐹𝑁 ], characterizing how well the set of historical
relations performs on the model. In order to scale up the numbers
for those relations that perform poorly, we employ the softmax
function, subsequently transforming F with a uniform vector, E.
The result perceptive message𝑀𝑒𝑠 will be sent to the controller for
assigning memory.

𝑀𝑒𝑠 = Softmax (E − F) (3)

Controller. Before the perceptive message𝑀𝑒𝑠 is sent, the con-
troller engages in crucial preparatory steps comprising memory
expansion and selecting informative samples. In the process of
memory expansion, given the conservation of 𝐸𝑁 samples for each
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Figure 2: Continual relation extraction model framework inspired by the DRAM structure. Left: Architecture of DRAM cell
leakage current and refresh circuits in DRAM arrays. Right: The model framework obtained through analogy modeling with
DRAM, in which the catastrophic forgetting is similar to the leakage current. The main workflow is: after sensing the model’s
learning performance on previous tasks using perceptrons, the controller receives the information and dynamically allocates
memories, issuing commands that cause the refresher to refresh the memories. The model learns the new task and reviews the
learned knowledge using mixed-memory data.

relation, the memory size |M| will be expanded to:

|M| = |M| + 𝐸𝑁 · |𝑅𝑘train | (4)

𝑅𝑘train represents the relation set of current training task. All sam-
ples relating to a given relation 𝑟 are systematically ranked in
descending order based on their proximity to the prototype repre-
sentation P𝑟 . This furnishes a set of informatively ranked samples:
𝐶sorted𝑟 = ˆ𝐶𝑟1 , ˆ𝐶𝑟2 , ..., ˆ𝐶𝑟𝑁 . Upon receipt of 𝑀𝑒𝑠 , the controller
promptly derives the requisite number of samples for memory
allocation for each relation:

Q = (𝐸𝑁 · |𝑅𝑘train |) ⊙ 𝑀𝑒𝑠 (5)

where Q = {𝑞1, 𝑞2, ...𝑞𝑁 } is the storage vector with 𝑞𝑖 symbolizing
the sample count allocated to the 𝑖𝑡ℎ relation. ⊙ represents the dot
product of vectors. Subsequently, the top 𝑞𝑖 samples from each set,
pertaining to relation 𝑟𝑖 , are denoted as𝐶𝑟𝑖𝑞𝑖 . The memory storage
relation for the current task is thus formulated as:

M𝐴 =

{
𝐶
𝑟𝑖
𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑁,∀𝑟 ∈ 𝑅𝑘train

}
(6)

M𝐴 represents the memory assignment in the current task T𝑘 ,
then the new memory is updated to M = M + M𝐴 . Afterward,
the controller has the additional task of setting the appropriate size
of the memory cells and the frequency of replays for subsequent
memory refreshing. The controller sends the refreshing strategies
stored internally to the refresher and waits for the next round of
tasks to be processed.

Refresher. When the 𝑘𝑡ℎ task arrives, the refresher is immedi-
ately activated, processing parameters relayed from the controller,
and then adopt the refreshing method according to the delineated
strategy. After that, the refresher starts the update module of the
prototype and performs the memory refresh. We have built in three
strategies of centralized, distributed, and asynchronous refreshing

in the refresher, but in order to ensure fairness, the total amount of
memory used by these three strategies is the same.

3.3 Refreshing strategy
This section introduces three refreshing strategies, which attempt
to expound existing memory-based methods and unify them within
this theoretical system. When the 𝑘𝑡ℎ task T𝑘 arrives at refresher,
the total memory M of the previous k-1 tasks has already been
acquired through the dynamic storage mechanism. The refresher
further extracts the training dataset, 𝐶𝑘

train, associated with T𝑘 .
Subsequent action involves model training with memory refreshing
in E epochs. Themixed-memory data for this purpose is represented
as Dmix. We define the three refresh strategies as follows:

Centralized refresh distinctly earmarks a specified duration
within the training phase exclusively for memory refreshing. When
centralized refreshing starts, the refresher acquires the predefined
number of memory refreshing epochs ℎ, and then divides the total
amount of memoryM to obtain the centralized refreshing memory
size |M𝑐 | = |M|/ℎ. Over time, if current epoch 𝑗 is smaller than the
total number of epochs E, the mixed-memory dataDmix, align with
𝐶𝑘
train. . Conversely, when the epoch 𝑗 surpasses E, thenDmix = M𝑖

𝑐

whereM𝑖
𝑐 represents the 𝑖𝑡ℎ block ofM with size |M𝑐 | memory.

Distributed refresh in DRAM is the process of putting the re-
plenishment of charge into the cycle after each read or write. This
is similar to how the distributed refreshing strategy mixes mem-
ories into each training data before training. When the refresher
captures distributed refreshing strategy, without setting additional
parameters but directly slices the total amount of memory M into
memory cells M𝑑 according to the total number of epochs E. The
mixed-memory data for epoch 𝑗 is denoted as D 𝑗

mix = 𝐶𝑘
train +M 𝑗

𝑑
,

subsequently serving as the direct input data for training the model.
2023-10-13 12:27. Page 4 of 1–10.
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The adoption of asynchronous refresh strategies has become
commonplace in the contemporary DRAM space. This strategy
strikes a balance between excessive refreshing and dedicating an
extensive block of time for refreshing. Our proposed asynchronous
refreshing requires the refresher to set an additional parameter I,
representing the interval for memory refreshing operations. Then
the refresher will give the mixed-memory data D𝑙

mix = 𝐶𝑘
train +

M𝑙
𝑎 for 𝑙 ∈ [I, 2I, ...]. M𝑙

𝑎 represents the 𝑙𝑡ℎ block ofM with size
|M |
⌊E/I⌋ memory. In epochs other than these specific intervals, the
mixed-memory dataset defaults toDmix = 𝐶𝑘

train. To the best of our
knowledge, asynchronous refresh is the first proposed in terms of
memory refreshing strategies for continual learning.

3.4 Learning Procedure
Before initiating the training of the 𝑘𝑡ℎ task, the perceptron mod-
ule evaluates the performance of previously seen relations on the
current model. Subsequently, it linearly transforms this evaluation
into a perceptive message that is communicated to the controller.
Once the controller completes preparatory tasks such as memory
expansion, it dynamically allocates memory based on the perceptive
message and generates a new memory set denoted asM. When the
𝑘𝑡ℎ task arrives and the prototype representation I𝑘 = P1,P2, . . .
is initialized, the refresher module combines memory cells to cre-
ate mixed-memory data 𝐶mix𝑘 = 𝐶train𝑘 + M according to the
selected refreshing strategy. The model is then trained using a cross-
entropy loss function to learn the consistency between the old and
new distributions. For any 𝑠 ∈ 𝐶𝑘

mix, P represents the relational
representation corresponding to 𝑠 in I𝑘 . Assuming 𝑃 represents
the true distribution of𝐶𝑘

mix, the loss function is defined as follows:

LC (𝜃 ) = E𝑠∼𝑃 [− log𝑄 (Sim(𝑓𝜃 (𝑠),P))] (7)

where 𝑄 (Sim(𝑓𝜃 (𝑠),P)) represents the relational distribution of
model output. To further distinguish similar prototype represen-
tations, we also designed the contrastive loss function. For any
P ∈ I𝑘 , assuming that Ω is the prototype representation con-
taining P and those similar to P, and Γ is the expected one-hot
distribution generated from Ω, the contrastive loss function can be
defined as:

LA (𝜃 ) = EP∼Γ [− logΩ (P)] (8)

Assuming that 𝜆1 and 𝜆2 are the weighting coefficients of the above
two loss functions, we can obtain the final loss function as:

L(𝜃 ) = 𝜆1 · LC (𝜃 ) + 𝜆2 · LA (𝜃 ) (9)

In the inference phase, we obtain the encoded representation of
the sentence and compute the distance matrix with the prototype
representation. From the distance matrix, we acquire the type of
relation to the model output, which is compared with the label, and
used to compute the final whole accuracy.

4 EXPERIMENTS
4.1 Benchmark and Evaluation Metric
In this section, we present the datasets used in our experiments
and the evaluation metrics.

Benchmark.Our experiments are conducted on twowell-established
benchmarks, in accordancewith prior researchwork [3]: (1) FewRel
[11] is a large-scale dataset that contains 100 relations, each of
which has 700 instances. Following NK-CRE [3], we use the pub-
licly accessible 80 relations in the training and validation sets into
8 tasks containing 10 relations (10-way). In order to align the SOTA
method [3], we carried out the experiment 10-way-5-shot on the
FewRel Benchmark. (2) In addition to demonstrating the generaliz-
ability of our paradigm, we also conduct experiments on TACRED,
which is a RE dataset proposed by [39]. Different from FewRel, it
contains 42 relations and over 100,000 instances. In NK-CRE, it
remains 41 relation classes and 68,438 instances after filtering out
the relation "n/a". In this paper, we also conduct the experiment
5-way-5-shot on the TACRED to illustrate the applicability of our
methodology.
Evaluation metric. At time step 𝑘 , we first acquire the test sets
𝐶𝑘
test =

⋃𝑘
𝑖=1𝐶

𝑖
test of all seen tasks {T 𝑖 }𝑘

𝑖=1. Then evaluate the
model performance on 𝐶𝑘

test with the whole accuracy. It can be
defined as:

𝐴𝐶𝐶𝑤ℎ𝑜𝑙𝑒 = 𝑎𝑐𝑐
𝑓 ,𝐶𝑘

test
(10)

Owing to the whole test set of all tasks used to calculate the accu-
racy, it actually reflects the model’s ability to alleviate catastrophic
forgetting while effectively assimilating novel knowledge.

4.2 Baselines
DRAM-like architecture with an asynchronous refreshing strategy
is to extract relation with continual learning. Given that recent
models have not employed the centralized refresh mechanism, our
experiments also revealed its inadequacy in this context. Conse-
quently, we opted not to include the centralized refresh baseline
for comparison. The compared baselines are set as follows:

EMAR: Episodicmemory activation and reconsolidation (EMAR)
is a pioneering method [9] to alleviate the problem of catastrophic
forgetting in continual relation learning. EMAR uses relation pro-
totypes for memory reconsolidation exercise to maintain a stable
understanding of old relations while learning new ones.

ERDA: ERDA [27] is an innovative method that defines the for-
mulation of the challenging problem of continual few-shot relation
learning (CFRL). They propose a novel method that incorporates
embedding space regularization and data augmentation to han-
dle the incompatibility between feature distributions of new and
previous tasks.

ConPL: A current SOTA method [3] for N-way-K-shot Contin-
ual Relation Extraction (NK-CRE) task. ConPL consists of three
modules: prototype-based classification, a memory-enhanced mod-
ule for vital sample selection, and a consistent learning module to
alleviate catastrophic forgetting.

The method proposed in this paper can regulate memory storage
by changing the 𝐸𝑁 parameter in Eq. 4. In order to investigate the
effect of memory size on forgetting, we conducted memory expan-
sion experiments on both ERDA and ConPL. For EMAR, we cannot
extend the investigation due to data limitations. The performance
of EMAR in the table is derived from [3].

2023-10-13 12:27. Page 5 of 1–10.
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4.3 Implementation Details.
Our experimental setup was conducted on a single NVIDIA 3090
GPU utilizing the PyTorch framework [26]. Our DRAM-like ar-
chitecture leverages BERTBASE [5] as the backbone encoder, with
the base prompt template being e1 [MASK] e2. Due to hardware
constraints, we employed a batch size of 4. Gradient updates were
facilitated using the Adam optimizer, initialized with a learning
rate of 2𝑒−5.

In addition, the number of samples 𝐸𝑁 that are kept in memory
of Eq. 4 is set to 2. The loss weights, denoted as 𝜆1 and 𝜆2, are both
set to 1.0. As part of our refreshing strategy, we conduct a total of
E = 6 epochs, with an asynchronous refreshing interval denoted
as I = 2. Notably, we re-performed the experiments for ERDA and
ConPL with memory samples of 1 and 2 for each relation under the
equal memory samples for eight tasks for a fair comparison.

4.4 Main Results
The whole accuracy (%) across different methods, along with their
extended experiments on the two benchmarks is presented in Tab.
1. We can observe that:

(1)With equal memory samples, DAAR outperforms on both
benchmarks. DAAR approaches the first task as a standard relation
extraction task; hence, the number of retained relation samples
does not impinge on its performance of the first task. For the eighth
task, our method achieves 86.07% and 87.71% when storing 1 and 2
samples on FewRel, and 75.59% and 77.89% when storing 1 and 2
samples on TACRED. It can be observed that DAAR still maintains
higher performance than ConPL, especially when the storage rela-
tion sample is 2. Although the performance of DAAR on the first
task of TACRED 95.17% is slightly lower than the performance of
97.89% achieved by ConPL when the storage relation sample is 2.
DAAR’s dynamic memory and asynchronous refresh quickly play
a role in making forgetting speed significantly slowed down, and
the second task can still lead the performance by 2.28% when the
performance of the first task lags 2.72%. Besides, our method con-
tinues to maintain superior and smooth performance in subsequent
tasks. As shown in Figure 3, DAAR maintains the advantage of slow
forgetting compared to other methods on most tasks.

(a) All methods in FewRel (b) All methods in TACRED

Figure 3: Whole accuracy (%) of the different methods after
training on a series tasks of FewRel benchmark and TACRED
benchmark.

(2) Increasing the number of memory samples corresponding
to each relation helps reduce forgetting of the model. For ERDA,
the performance improvement is not obvious when increasing the

number of relational memory samples on the first two tasks. Never-
theless, when the model learns more tasks, larger memory samples
significantly improve the performance of subsequent tasks. ConPL
has also been improved by increasing the number of memory sam-
ples. On FewRel, from a slight improvement in the first task to a
1.25% performance improvement in the last task. However, the im-
pact is more obvious on DAAR. On the eighth task of TACRED, the
performance increased by 2.3%. On FewRel, there was also a 1.74%
performance improvement. For DAAR, the reason for this result
is more relational memory samples increase the allocation space
for dynamically allocated memory operations performed by the
perceptron and controller working together, i.e. for those relations
with poor performance, more memory samples can be allocated
for consolidation. In Figure 3, it’s evident that the method with
more memory samples markedly outperforms the one with fewer
samples.

4.5 Ablation Study
We conducted two ablation experiments on FewRel, includingmixed
multi-style module experiments and cross-model refreshing experi-
ments to verify the effectiveness of each module in our proposed
DRAM-like architecture and the generalizability of the asynchro-
nous refresh strategy.

Mixed multi-style module experiments. In order to investi-
gate the effectiveness of eachmodule in the DRAM-like architecture,
we add the perceptron, controller, and refresher to the architecture
one by one, while loading each of the three refreshing strategies
with the refresher to validate their effects, as shown in Tab. 2. In
order to remove certain modules while the remaining modules
still work, we use some methods from ConPL[3] on each auxiliary
task to complement the removed modules. Pro− uses the basic pro-
totype learning module with memory replay from ConPL, while
Pro(C) represents our prototype learning module with a central-
ized refreshing strategy and D, A denotes distributed refreshing
and asynchronous refreshing, respectively. The difference between
Pro−+P and Pro−+PC is that the former perceives the information
and then proceeds to distribute the relational memory samples
equally, whereas the latter utilizes the perceived information to dy-
namically distribute the memory samples. From the first three rows
of Tab. 2, it is evident that dynamic memory allocation, facilitated
by the cooperative functioning of the perceptron and the controller,
yields the highest overall accuracy. Examining the last three rows
of 2, it can be argued that the asynchronous refresh strategy further
enhances performance within the same DRAM-like architecture. A
comparative analysis between the first three rows and the last three
reveals that the DRAM-like architecture holds a distinct advantage
over the decentralized modules, a superiority further elucidated in
Fig. 4.

Cross-model refreshing experiments. To verify the gener-
alizability of the asynchronous refreshing strategy, we extend 2
relational memory samples for ConPL and EDRA and asynchronous
refreshing experiments on FewRel and TACRED. The symbols in
Tab. 3 represent the same meaning as in Tab. 1, with "asyn" rep-
resenting the addition of an asynchronous refresh mechanism. In
the FewRel benchmark, when the seed is set to 100, the first three
rows of the table are the expansion experiments corresponding

2023-10-13 12:27. Page 6 of 1–10.
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Table 1: Whole accuracy (%) of the different methods after training on a series tasks of 10-way-5-shot of FewRel benchmark
and 5-way-5-shot of TACRED benchmark. The unmarked methods are directly from [3] and we reproduce results in publicly
available codebases of ConPL and ERDA. * represents experiments that initially store onememory sample for each seen relation
and † represents initially storing two memory samples for each seen relation. The best values on each task under the same
setting are denoted in bold.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5shot of FewRel

EMAR[9] 92.03 78.87 72.81 69.19 68.05 66.23 63.68 61.77
ERDA[27] 96.38 88.91 83.10 79.73 74.83 72.84 70.28 68.07
ConPL[3] 95.72 93.53 91.31 89.95 88.93 88.39 87.43 85.77

ERDA*[27] 92.17 79.59 70.85 63.82 60.50 57.97 54.77 53.26
ConPL*[3] 95.65 93.45 91.36 89.83 89.00 88.19 87.52 85.21
DAAR*(Ours) 98.50 96.50 95.17 91.40 89.92 88.85 87.51 86.07
ERDA†[27] 91.82 79.52 72.84 65.48 62.85 60.08 58.18 55.79
ConPL†[3] 95.87 93.23 91.58 90.18 89.40 88.76 87.96 86.46
DAAR†(Ours) 98.50 97.60 95.70 92.60 91.10 90.32 88.66 87.81

5-way-5-shot of TACRED

EMAR[9] 68.71 51.53 43.86 38.54 34.08 32.06 29.90 27.87
ERDA*[27] 69.79 47.11 39.13 35.01 31.71 27.94 22.97 22.77
ConPL*[3] 97.03 87.70 85.60 81.25 80.32 78.70 77.32 75.14
DAAR*(Ours) 95.17 91.93 87.48 83.91 83.34 81.76 78.78 75.59
ERDA†[27] 71.46 50.41 41.49 35.58 32.19 28.11 23.02 22.82
ConPL†[3] 97.89 89.79 87.43 84.20 82.39 79.96 79.12 76.93
DAAR†(Ours) 95.17 92.07 88.41 85.92 82.68 79.49 79.73 77.89

Table 2: Ablation experiments on the FewRel benchmark
are used to validate the effectiveness of each module. Pro−

represents basic prototype learning under the hybrid refresh
method used in [3]. P, C and R stand for perceptron, con-
troller and refresher respectively. C, D, A are abbreviations
for centralized, distributed and asynchronous refreshing.

Method T1 T2 T3 T4 T5 T6 T7 T8

Pro− 95.38 92.82 90.51 88.42 87.22 86.68 85.56 83.80
Pro−+P 95.87 93.23 91.58 90.18 88.94 87.49 86.88 85.05
Pro−+PC 96.63 94.27 91.98 90.20 89.39 88.79 87.98 86.49

Pro(C)+PCR 98.50 97.15 95.50 92.00 91.04 90.12 88.59 87.05
Pro(D)+PCR 98.50 97.35 95.43 92.20 90.66 90.03 88.90 87.81
Pro(A)+PCR 98.50 97.60 95.70 92.60 91.10 90.32 88.66 87.98

to EDRA, and the last three rows are the expansion experiments
corresponding to ConPL, we can observe that applying the asyn-
chronous refresh strategy on the ConPL and ERDA models still
allows both models to obtain some performance improvement, and
also aids in verifying that multiple samples are useful for modeling
to alleviate forgetting.

4.6 Forgetting Analysis
To further analyze the degree of forgetting of our model in continual
relation extraction, we introduce an enhanced measure of prototype
forgetting. This measure quantifies the forgetting of the prototype
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Figure 4: The analysis result of the importance of the mod-
ules in DRAM-like structure with asynchronous refreshing
strategy.

for the 𝑖𝑡ℎ task after training the 𝑗𝑡ℎ task the as follows:

𝐹𝑖, 𝑗 =
1

|𝑅𝑖 | · 𝑗

𝑗∑︁
𝑘=𝑖

𝑅𝑖∑︁
𝑟

max(0, 𝑎𝑘,𝑟 − 𝑎 𝑗,𝑟 ) (11)
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Table 3: Ablation experiments on the FewRel benchmark and the TACRED benchmark(in appendix A.1) are used to validate
the effectiveness of increasing the memory sample size and the asynchronous refreshing mechanism, The individual symbols
represent the same meaning as in Tab. 1 and asyn denotes the asynchronous refreshing added to the method.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

ERDA[27] 92.80 76.90 67.83 62.70 58.70 55.78 51.11 51.39
ERDA†[27] 92.20 76.50 71.00 61.30 63.30 57.00 53.99 54.13
EDRA†[27] + asyn 93.80 78.55 69.03 66.40 65.42 61.55 57.36 56.55
ConPL[3] 94.30 93.60 92.03 88.63 88.32 86.70 86.33 84.93
ConPL†[3] 95.90 93.70 92.20 88.70 88.34 87.33 87.60 86.74
ConPL†[3] + asyn 96.40 94.85 92.90 90.05 89.26 88.37 88.75 87.23

(a) t-SNE visualization(task-1) (b) t-SNE visualization(task-2) (c) t-SNE visualization(task-3) (d) t-SNE visualization(task-4) (e) t-SNE visualization(task-5)
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Figure 5: t-SNE visualization of first task features learned by DAAR at training Task-1 to Task-5 on FewRel. The first task
contains a total of ten relations, and we characterize the different classes of relations with different colors.

Table 4: ConPL and DAAR methods of forgetting Task-1 for-
getting(%) after learning Task-1 to Task-5. † represents ini-
tially storing two memory samples for each seen relation.

Method
Task index

T1 T2 T3 T4 T5

ConPL†[3] 0.00 3.25 3.63 6.20 6.50
DAAR† 0.00 0.95 3.57 3.18 5.22

where 𝑎𝑘,𝑟 represents the accuracy on relation 𝑟 for the set of
relations 𝑅𝑖 belonging to task 𝑖 after the 𝑘𝑡ℎ task training. The
max(0, 𝑎𝑘,𝑟 − 𝑎 𝑗,𝑟 ) is expressed in the relation 𝑟 , the degree of
forgetting at training prior 𝑘𝑡ℎ task versus subsequent 𝑗𝑡ℎ task.
We provide the degree of forgetting for the first task when trained
sequentially on the subsequent four tasks with ConPL and DAAR,
as shown in Tab. 4. We can observe that DAAR forgets a little less
compared to ConPL for the same measure of forgetting level, which
explains the higher accuracy of DAAR after the first task.

To better observe how DAAR learns the features of the first task
when subsequent tasks are learned continuously, we used t-SNE to
visualize the ten relation categories of the first task and plotted the
change in features of Task-1 when learning Task-1 to Task-5, as
depicted in Fig. 5. A slightly larger change that appears in Fig. 5(c) is
the feature of Task-1 when the DAAR has finished learning Task-3,
although only by flipping the top and bottom features. After this,

the feature of Task-1 is corrected again after learning Task-4. This
phenomenon is consistent with Tab. 4, which shows an increase
followed by a decrease in the DAAR’s forgetting of Task-1 after
learning Task-3 and Task-4.

5 CONCLUSION
In this paper, we introduce the DRAM-like architecture with an
asynchronous refreshing strategy to effectively extract relations.
The DRAM-like architecture is composed of a perceptron, a con-
troller, and a refresher, and dynamic memory sample allocation
is achieved through the cooperation of all three, which solves the
conflict between relational memory imbalance and unbiased allo-
cation of memory samples in previous work. We also propose a
compromise asynchronous refresh strategy to find a pivot between
over-memorization and overfitting, which concentrates on current
tasks and asynchronously training mixed-memory data. Addition-
ally, we provide a theory to explain existing refresh strategies and
categorize them into centralized, distributed, and hybrid refreshing.
The experimental results demonstrate the promise of our approach
in CRE scenarios for effectively alleviating catastrophic forgetting.
In future work, we will explore the effects of asynchronous refresh
mechanisms and DRAM-like architectures in other memory-based
continual learning tasks.
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A EXTERNAL RESULTS
A.1 Ablation Study
The extended experiments of EDRA and ConPL on the TACRED
dataset are supplemented here, as shown in Tab. 5, which is consis-
tent with the results in the main text.
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Table 5: Ablation experiments on the FewRel benchmark and the TACRED benchmark are used to validate the effectiveness of
increasing the memory sample size and the asynchronous refreshing mechanism, The individual symbols represent the same
meaning as in Tab. 1 and asyn denotes the asynchronous refreshing added to the method.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

ERDA[27] 92.80 76.90 67.83 62.70 58.70 55.78 51.11 51.39
ERDA†[27] 92.20 76.50 71.00 61.30 63.30 57.00 53.99 54.13
EDRA†[27] + asyn 93.80 78.55 69.03 66.40 65.42 61.55 57.36 56.55
ConPL[3] 94.30 93.60 92.03 88.63 88.32 86.70 86.33 84.93
ConPL†[3] 95.90 93.70 92.20 88.70 88.34 87.33 87.60 86.74
ConPL†[3] + asyn 96.40 94.85 92.90 90.05 89.26 88.37 88.75 87.23

5-way-5-shot of TACRED

ERDA[27] 70.08 41.30 39.40 37.58 29.18 23.08 20.97 21.21
ERDA†[27] 71.43 45.73 42.53 43.37 33.66 28.40 22.12 22.01
ERDA†[27] + asyn 75.10 49.53 44.38 39.33 36.04 29.10 24.12 23.66
ConPL[3] 97.37 84.68 81.54 79.77 81.21 76.96 74.49 73.23
ConPL†[3] 98.25 84.46 80.92 80.68 80.93 76.17 76.33 75.12
ConPL†[3] + asyn 97.37 85.78 81.64 81.59 81.98 79.27 76.60 74.93
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