
Under review as a conference paper at ICLR 2023

CONTEXTUALIZED GENERATIVE RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

The text retrieval task is mainly performed in two ways: the bi-encoder approach and the
generative approach. The bi-encoder approach maps the document and query embeddings
to common vector space and performs a nearest neighbor search. It stably shows high per-
formance and efficiency across different domains but has an embedding space bottleneck
as it interacts in L2 or inner product space. The generative retrieval model retrieves by gen-
erating a target sequence and overcomes the embedding space bottleneck by interacting in
the parametric space. However, it fails to retrieve the information it has not seen during
the training process as it depends solely on the information encoded in its own model
parameters. To leverage the advantages of both approaches, we propose Contextualized
Generative Retrieval model, which uses contextualized embeddings (output embeddings
of a language model encoder) as vocab embeddings at the decoding step of generative
retrieval. The model uses information encoded in both the non-parametric space of con-
textualized token embeddings and the parametric space of the generative retrieval model.
Our approach of generative retrieval with contextualized vocab embeddings shows higher
performance than generative retrieval with only vanilla vocab embeddings in the docu-
ment retrieval task, an average of 6% and 18% (25%) higher performance in KILT (NQ,
TQA) R-precision and NQ-320k Hits@1 (@10), respectively, suggesting the benefits of
using contextualized embedding in generative retrieval models.1

1 INTRODUCTION

Text retrieval is often formulated as finding the most relevant items from a large corpus given an input query.
The bi-encoder approach of using an encoder to map the documents and the query to a common vector space
and performing a nearest neighbor search has been a common practice in text retrieval tasks (Karpukhin et al.,
2020; Wu et al., 2020; Ni et al., 2021). Despite its high performance and popularity, it has an embedding
space bottleneck (Luan et al., 2021; Lee et al., 2022; Cao et al., 2021). The performance decreases as the
document length increases due to the limited expressiveness of fixed-size document embeddings. Also, it
misses the fine-grained interaction between the query and the document as they interact in L2 or inner
product space. The bi-encoder approach also requires large storage space to save all document embeddings.

A recently-proposed alternative to the bi-encoder approach is using a generative retrieval model (Cao et al.,
2021; Tay et al., 2022; Bevilacqua et al., 2022; Lee et al., 2022) which retrieves the most relevant sequence
by generating the item token-by-token, where the item is the identifier of the target sequence or the sequence
itself (e.g., title, passage, document ID). They show high performance while using a low storage footprint by
overcoming the embedding space bottleneck. These models interact in the parametric space of the language
model rather than just in the inner product space. However, as existing generative retrieval models rely solely
on the information encoded in their own parameters, the model cannot retrieve the correct target sequence if
it has not seen such information during the training process.

1We will make our code publicly available.

1

Under review as a conference paper at ICLR 2023

To this end, we propose contextualized generative retrieval model (CGR), a retrieval model that overcomes
the aforementioned limitations of existing generative retrieval models by leveraging contextualized vocab
embeddings (output embeddings of language model encoder) to make use of non-parametric information
from the context surrounding the vocab tokens. It uses not only the parametric space of the model as in
generative retrieval models but also the non-parametric space of contextualized target embeddings (exter-
nal memory) as in bi-encoder models. As in Figure 1, the model has two submodules: (1) an EMBedding
model (EMB), which is an encoder model that outputs contextualized embeddings, and (2) a RETrieval model
(RET), which is an encoder-decoder model that retrieves a target sequence when given an input query. The
model first constructs the contextualized embedding matrix with the output embeddings of EMB and uses
the matrix as the decoder vocab embeddings when training RET. By utilizing the contextualized embedding
matrix rather than the vanilla embedding matrix while generating a target sequence, RET uses both informa-
tion encoded in its own parameters as existing generative retrieval models and information encoded in the
contextualized embeddings. Also, as RET uses the contextualized embeddings during both the training and
inference step, RET is optimized to utilize the information encoded in the contextualized embeddings.

We show the importance of using external memory (non-parametric space) of contextualized target em-
bedding in generative retrieval models by comparing the performance between CGR and GENRE (Cao
et al., 2021), a generative retrieval model which only operates on the parametric space. CGR shows an av-
erage of 6% increment in Natural Questions (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017)
in KILT (Petroni et al., 2021) and 18% (25%) higher performance in Hit@1 (@10) of NQ-320k. We also
compare the results with different baselines for a comprehensive understanding of the model performance.

The main contributions of our paper are as follows:

• We present Contextualized Generative Retrieval (CGR), a generative retrieval model which uses the
contextualized embedding matrix while generating a target sequence. It shows an average of 6% and
18% (25%) higher performance in KILT (NQ, TQA) R-precision and NQ-320k Hits@1 (@10), respec-
tively, compared to GENRE in the same setting.

• We show that using contrastive learning as intermediate training further increases the performance of
the contextualized generative retrieval model by a large margin.

• We perform extensive ablation studies and analysis over several variants of contextualized generative
retrieval models for a comprehensive understanding of how to use contextualized embeddings and why
using contextualized embeddings is better than using vanilla vocab embeddings.

2 RELATED WORK

Generative Retrieval Existing generative retrieval models retrieve relevant items by generating either the
identifiers or entire sequences of the items. Cao et al. (2021) propose GENRE (Generative ENtity REtrieval),
which retrieves a document by generating the titles with constrained beam search. Tay et al. (2022) propose
DSI (Differentiable Search Index), which assigns a unique ID to each item in the corpus and trains the model
to encode all information of the document and the ID in the model parameters. During the inference step, DSI
generates the ID of the most relevant document. Wang et al. (2022) propose NCI (Neural Corpus Indexer),
which also retrieves by generating the document ID as in DSI, but improves performance by query gener-
ation and prefix-aware weight-adaptive decoder. Bevilacqua et al. (2022) propose SEAL (Search Engines
with Autoregressive LMs), which can retrieve any span from any position in the corpus by using the com-
pressed full-text substring index (FM-Index). In this work, we propose Contextualized Generative Retrieval
which generates the target sequence by utilizing the contextualized embedding matrix rather than the vanilla
vocab embedding matrix as in the aforementioned generative retrieval models. Therefore, the model utilizes
both the parametric space of the generative retrieval and the non-parametric space of contextualized token
embeddings. To the best of our knowledge, we are the first to utilize the contextualized token embeddings
on generative retrieval models.

2

Under review as a conference paper at ICLR 2023

Cape Town: Cape Town is one of
South Africa’s three capital cite is (…)

T5
EncClimate of South Africa: The climate

of South Africa is determined by (…)

0.2 0.7 1.3 … 0.6 0.1Cape(1):

1.7 0.6 0.5 … 1.6 0.4Cape(2):

…

1.1 0.1 0.1 … 0.3 2.1
of(1):

Contextualized Embedding Matrix
(shape: C x D)

…

(Iterate for all corpus)

Embedding Model (EMB) Retrieval Model (RET)

T5 Enc

T5 Dec

During which season does cape
town receive rainfall

Embedding

Linear

Softmax

: Trainable

: Frozen

Cape : A cape is a clothing accessory
or a sleeveless outer garment (…)

2.0 1.5 0.7 … 1.0 0.7

Climate(1):

1.7 0.6 0.6 … 0.8 0.5Town(1):

1.7 0.7 0.5 … 0.1 1.2South(1):

1.7 0.7 0.4 … 0.4 0.1Africa(2):

Climate of South Africa

…

0.2 0.1 1.5 … 2.5 0.1Climate:

Vanilla Embedding Matrix
(shape: V x D)

0.3 1.1 0.1 … 0.9 1.2Cape:

0.1 0.1 2.1 … 0.7 0.3South:

1.7 0.4 0.5 … 1.1 0.7Town:

0.1 1.5 1.2 … 0.2 0.6Africa:

1.1 1.5 0.1 … 0.3 2.1of:

Vanilla Embedding Space

Contextualized Embedding Space

.Cape(2) .Town(1)
.Cape(1)

.South(1).Africa(1)

.of(1)
.Climate(1)

.Cape

.Town.Climate
.of

.Africa
.South

Figure 1: The left side shows the model architecture of CGRBase, and the right side shows the difference between contex-
tualized embedding space and vanilla embedding space which is constructed with contextualized embedding matrix and
vanilla embedding matrix, respectively. Contextualized embedding matrix is constructed by the output embeddings from
EMB and is used as the decoder vocab embeddings in RET; existing generative retrieval utilizes the vanilla embedding
matrix when generating the target sequence, RET utilizes the contextualized embedding matrix. In the document retrieval
task with a title as the target sequence, the title of the document and its corresponding content from the document is given
as input to EMB and we only save the output embeddings of the title.

Retrieval Models with Contextualized Token Embedding ME-BERT (Luan et al., 2021),Col-
BERT (Khattab & Zaharia, 2020) and COIL (Gao et al., 2021a) are retrieval models which retrieve the
target sequence by utilizing the multiple contextualized token embeddings. It has shown high performance
by leveraging the benefits of the cross-encoder architecture in bi-encoder architecture. CGR also utilizes the
contextualized token embeddings, but differs from the three models in that while they interact in the inner
product space, CGR has the benefit of interacting in the parametric space.

Semi-Parametric Models KNN-LM (Khandelwal et al., 2020), RAG (Lewis et al., 2020) and
RETRO (Borgeaud et al., 2022) are semi-parametric models which use both the parametric space of the
model and the non-parametric space. KNN-LM improves the LM performance by generating the next token
during the inference step by interpolating between the nearest neighbor distribution (distance in the contex-
tualized embedding space) and the model vocab distribution. RAG and RETRO are semi-parametric models
that first retrieve relevant texts with the retriever in a non-parametric manner and generate the output based
on the retrieved texts. CGR also utilizes both the parametric and non-parametric space as the three models
do. However, it differs from KNN-LM in that it is trainable and from RAG and RETRO in that CGR uses
the non-parametric space for the decoder vocab embeddings.

3 CONTEXTUALIZED GENERATIVE RETRIEVAL

Generative retrieval is the task of retrieving the most relevant retrieval target (e.g., title, passage, document
identifier) by generating the retrieval target token-by-token when given an input query. The training objective
of the generative retrieval model is to maximize

P ((t1, · · · , tn)|q) ∝
n∏

i=1

P (ti|q, t<i) (1)

where t∗ denote the tokens of the retrieval target. Such an approach has shown high performance while using
a low storage footprint (Cao et al., 2021; Tay et al., 2022; Bevilacqua et al., 2022; Lee et al., 2022). However,
it has limitations in that the model depends solely on the information encoded in its own parameters. Thus,

3

Under review as a conference paper at ICLR 2023

the model fails to retrieve the correct target sequence if it has not seen the information during the training
process.

To overcome the limitations, we propose Contextualized Generative Retrieval model (CGR), a generative
retrieval model which uses not only the parametric space of the model but also the non-parametric space
(external memory) of contextualized token embeddings2 to leverage the benefits of the bi-encoder model and
combine the advantages of the two models. CGR (Figure 1) utilizes the contextualized embeddings (output
embeddings of the language model encoder) rather than the vanilla vocab embeddings while generating the
retrieval target. Therefore, the model does not depend only on the information encoded in its own parameters,
but can also take advantage of non-parametric information during generation as CGR encodes the document
content into contextualized vocab embeddings. Also, by allowing a single token to have multiple token
embeddings, the model can learn about the different meanings of the token and the different contexts in
which it is used. Therefore, the embedding space constructed with multiple contextualized token embeddings
(contextualized embedding space) will become more expressive and fine-grained than the embedding space
constructed with model vocab embeddings (vanilla embedding space).

CGR differs from existing generative retrieval models by which token embedding matrix is used for the de-
coder model. Generative retrieval models such as GENRE (Cao et al., 2021) utilize the pre-trained language
model architecture as-is: both the encoder and the decoder model share the same vanilla vocab embedding
matrix of shape V ×D where V is the vocab size, and D is vocab embedding dimension. CGR whereas uses
different vocab embedding matrices for the encoder and decoder model: the encoder model uses the vanilla
vocab embedding matrix (V ×D) as in existing generative retrieval models, but the decoder model uses the
contextualized embedding matrix of shape C × D where C is the number of contextualized embeddings.
C is larger than V as a token is matched with multiple contextualized embeddings in most cases (e.g., in
Figure 1, same token “Cape” has two different contextualized embeddings which we name as Cape(1) and
Cape(2) to differentiate the two.), but C can be reduced with practical tactics (Section 4.4).

CGR is composed of two submodules: (1) an EMBedding model (EMB), which is an encoder model that
outputs meaningful contextualized embeddings, and (2) a RETrieval model (RET) which is an encoder-
decoder model that retrieves a target sequence by generating the sequence while utilizing the information
encoded in the contextualized embedding matrix. For example, when the retrieval target sequence is the title
of a document, we pass the concatenation of the title and its corresponding document content as the input to
EMB and save the pair of input tokens and their output embeddings. By passing not only the title but also its
corresponding document content to the model, the output embeddings contain both the information of the
title and the document content. In practice, for efficiency, we only sample a few embeddings that are deemed
to be the most informative and representative of the target sequence, or simply the first few embeddings.
The extracted contextualized embeddings are then used to form the contextualized embedding matrix, which
serves as the decoder vocab embeddings of RET. As the vocab embedding matrix of the encoder and decoder
model have different shapes, we assign different token IDs for the decoder; a unique token is paired with
multiple token IDs where each ID indicates different contextualized embedding in the decoder.

4 MODEL DETAILS

In Section 3, we show the overall architecture of CGR that can be applied to general tasks. In this section,
we present details of how we design CGR for practical usage in document retrieval tasks with the document
title as the retrieval target. The ideal design of CGR is to use the encoder of RET as EMB for every gra-
dient update during the training step to ensure the high coherency between the contextualized embeddings
and RET. However, such a method requires high computational cost as it needs to construct contextualized
embedding matrix at every step. Therefore, we present practical models; the base architecture of contextu-
alized generative retrieval (CGRBase), and two improvements, CGRAsync and CGRContra. Also, we show how

2In this paper, contextualized embeddings refer to the output of language model encoder, which can incorporate
information from the nearby context.

4

Under review as a conference paper at ICLR 2023

we reduce the number of contextualized embeddings. We add the figure of each model and more details in
Appendix A.

4.1 CGRBASE

Base CGR (CGRBase) in Figure 1 is the most basic contextualized generative retrieval model among the ones
we propose. It uses the pre-trained T5 encoder as EMB and the T5 encoder-decoder as RET. EMB is frozen
during the training step, and only RET is trainable.

4.2 CGRASYNC

Asynchronous CGR (CGRAsync) is a model where EMB is asynchronously replaced by the encoder of RET
for every N epochs. When the model parameters of EMB are replaced, we construct a new contextualized
embedding matrix with the replaced EMB and resume the training. As the decoder vocab embeddings of RET
are updated every N epoch, EMB and RET of CGRAsync would have more coherency between each other
compared to CGRBase. We keep N = 20 for all experiments. See Appendix C.1 for details on how N affects
the performance.

4.3 CGRCONTRA

Bi-encoder retrieval models with contrastive loss have shown high performance, as the model learns and
constructs well-structured global embedding space and regularizes the space to be uniform (Ni et al., 2021;
Gao et al., 2021b; Gao & Callan, 2022; Izacard et al., 2022). CGR with Contrastive Learning (CGRContra) is
designed to leverage such benefits of contrastive learning in a contextualized generative retrieval model; the
model is first trained with contrastive loss and then on the generative retrieval objective, i.e., retrieving the
most relevant sequence by generating the sequence token-by-token.

Step 1. Token-level Contrastive Learning We first train RET with token-level contrastive loss to allow
the model to learn the overall search space of token embeddings in the target corpus. Given a training dataset
of pairs {(q, t)} where q is the query text, and t is the retrieval target (title of the document to retrieve)
composed of multiple tokens ti (1 ≤ i ≤ k where k is the length of the target), we split the dataset into
k separate pairs {(q, ti)} where ti is a token of t to construct the training dataset of query-token. With the
query-token dataset, we train the first output token embedding from the decoder of RET to be close to all
token embeddings in T + when given query q as an input to RET. T + = {t+1 , · · · , t+k } (k = |T +|) is a
set of positive token embeddings (tokens that make up one title), and T − = {t−1 , · · · , t

−
|T −|} is the set of

negative token embeddings, which are all other token embeddings in contextualized embedding matrix. The
objective is to minimize the contrastive loss to make the query text embedding q be closer to all positive
token embeddings in T +:

L(q, t+1 , · · · , t
+
|T +|, t

−
1 , · · · , t

−
|T −|) = − log

∑
t+∈T + e<q,t+>∑

t+∈T + e<q,t+> +
∑

t−∈T − e<q,t−>
(2)

where ⟨ , ⟩ is the inner product value between the two embeddings. As we have the whole set of con-
textualized embeddings of the corpus (contextualized embedding matrix), it is possible to consider all other
embeddings as negative. See Section C.2 for more details and analysis of different contrastive loss and model
architecture.

Step 2. Generative Retrieval We further train RET from step1 with a generative retrieval objective, which
is the same as in CGRBase. To be specific, we use the encoder of RET in step1 as EMB of step2 to extract the
contextualized embeddings, and use the RET in step1 as the initial parameter of RET in step2.

5

Under review as a conference paper at ICLR 2023

Training Dataset Single (≤ 3%) NQ+TQA (≤ 5%) All KILT (100%)

Model NQ TQA NQ TQA NQ TQA

GENRE 51.8* 65.0* 52.7* 64.8* 60.3 69.2
CGRBase 59.0 68.2 59.4 68.7 - -
CGRAsync 59.2 68.4 59.8 68.7 - -
CGRContra 59.8 68.6 60.3 68.9 - -

BM25 23.4† 25.2† 23.4† 25.2† 23.4† 25.2†

DPR 60.1† 63.9† 59.5† 62.9† 59.4 61.5
SEAL - - - - 63.2 68.4

Table 1: R-precision(%) for document retrieval task on NQ and TQA test dataset in KILT. Results except CGR are
from the KILT leaderboard. The column of the table is divided by how many training datasets are used. Numbers in the
bracket are the rate of the number of training datasets over the number of training datasets when using all KILT datasets.
Results with * in GENRE are from GENRE*. Underlined model is direct baseline of CGRBase. Results with † in BM25
and DPR are trained in same setting as CGR (Appendix B.2). Best in bold.

4.4 CLUSTERING

To construct the contextualized embedding matrix to be used as the vocab embedding matrix of the decoder
of RET, we first extract all contextualized embeddings of each target token with EMB. As it requires a large
storage footprint to save all the embeddings, we reduce the number of embeddings by using clustering and
saving only the representative embeddings of each cluster. To be specific, we perform k-means clustering
over the contextualized embeddings of the same token (which might have different surrounding contexts)
and leave only the k centroid embeddings3 as the decoder vocab embeddings of the token. We keep k = 5
for all experiments. When k = 5, it only requires 0.3% of storage footprint compared to when saving
all contextualized token embedding. Also, it requires 0.34GB more storage compared to the vanilla vocab
embeddings (k = 1) which is marginal compared to the storage footprint to save the model parameters
(3GB). See Appendix C.3 for examples, and how k affects the performance and the storage footprint.

5 EXPERIMENTS

In Section 5.1, we describe the baselines, datasets, and basic setup used in our experiment. In Section 5.2, we
show both qualitative and quantitative effectiveness of using contextualized embeddings by comparing CGR
with baseline models. We also compare the performance and characteristics among the variants of CGR.

5.1 SETUP

We compare CGR with six baselines widely used in document retrieval task: BM25, GENRE, DSI, NCI,
SEAL, and DPR. BM25 (Robertson & Zaragoza, 2009) is a term-matching model relying on an efficient
algorithm. DPR (Karpukhin et al., 2020) is a bi-encoder retrieval model which retrieves the most relevant
document by mapping a query and documents to a common vector space and performing a nearest neighbor
search. See Section 2 for descriptions of GENRE, DSI, NCI, and SEAL. We compare all models using a
document retrieval task, where the input is a query, and the output is a sequence related to relevant Wikipedia
documents (e.g., title, document ID). See Appendix B for more details.

KILT (NQ, TQA) We train CGR with two datasets, Natural Questions (NQ) (Kwiatkowski et al., 2019)
and TriviaQA (TQA) (Joshi et al., 2017) from the KILT dataset (Petroni et al., 2021), a benchmark for
knowledge-intensive language tasks with eleven different datasets spanning five different tasks (fact check-
ing, question answering, entity linking, dialogue, and slot filling). It gathers data in different formats into a

3When the number of extracted contextualized embeddings of a token is smaller than k, we do not perform k-means
clustering but use its own contextualized embedding. Also, we use a single non-contextualized embedding for special
tokens such as the EOS token or PAD token.

6

Under review as a conference paper at ICLR 2023

Table 2: Hits@1, Hits@10 in NQ-320k. Results of BM25&DSI are
from Tay et al. (2022) and NCI&NCI- are from Wang et al. (2022). NCI-
is NCI without query generation to match the number of training datasets
with other models. All models are based on T5-large. Underlined model
is direct baseline of CGRBase. Best in bold.

Training Dataset Model Hits@1 Hits@10

NQ-320k

BM25 11.6 34.4
DSI 35.6 62.6
NCI- 53.6 67.8

GENRE* 53.7 64.7
CGRBase 62.2 78.8

CGRContra 63.4 81.1

NQ-320k + additional datasets NCI 88.7 95.8

Table 3: R-precision(%) for the document re-
trieval task on NQ and TQA test dataset in KILT.
We compare the results of GENRE*, CGRBase-
title-only and CGRBase where the models are
trained with NQ+TQA (Section 5.2). The results
show the importance of extracting contextual-
ized embeddings with not only the title but also
the corresponding document content.

GENRE* CGRBase-title-only CGRBase

NQ 52.7 58.4 59.4
Trivia 64.8 68.2 68.7

common format, and the corresponding datasets share the same snapshot of Wikipedia as the corpus. DPR
and GENRE are trained with all nine datasets in KILT4. Contextualized embeddings of the target retrieval
sequence (title of the page) are the output embeddings from EMB when the title and its corresponding docu-
ment content are given as the input. We evaluate all results with R-precision, a metric widely used to evaluate
retrieval performance in KILT. It is calculated as r

R where R is the number of Wikipedia documents in each
provenance set, and r is the number of related documents among the top-R retrieved documents.

NQ-320k To compare with Tay et al. (2022), we experiment on NQ-320k, a restricted setting from the
official NQ dataset; it uses about 4% of Wikipedia corpus as the corpus set5. We construct the contextualized
embedding matrix with the title of the document and its corresponding content as the input to EMB. The
results are evaluated using Hits@N (N={1, 10}), which shows the proportion of the correct documents
ranked in the top N predictions.

5.2 RESULTS

KILT (NQ, TQA) Results in Table 1 show that CGRContra outperforms GENRE* by 6% which demon-
strates the effectiveness of contextualized embeddings. For both cases where the model is trained over a
single dataset and over NQ and TQA together (NQ+TQA), all CGR variants show higher performance over
GENRE*. All CGR variants trained jointly on NQ and TQA show higher performance than those trained
on a single dataset (NQ or TQA). Such results suggest that CGR tends to improve the performance when
trained with more datasets. Note that due to limited available resources, we did not train CGR with the full
KILT dataset (ALL KILT) as in GENRE6, DPR, or SEAL. However, CGRContra trained on less than 5% of
the training dataset from the full KILT dataset show higher or comparable performance to those models. See
Appendix C.7 for results in the KILT dev set.

NQ-320k We report the results on NQ320k in Table 2, which uses about 4% of Wikipedia corpus as
the corpus set, to compare CGR with DSI and NCI which only experiment over NQ-320k. We compare
the results between CGRBase, CGRContra, and baselines (BM25, DSI, NCI, GENRE*). CGRContra shows the
highest performance when trained on the same number of datasets; 18% and 25% higher performance to
GENRE* in Hits@1 and Hits@10, respectively. We also compare the result of CGRBase with DSI as a direct
baseline in Appendix C.8.

4Due to limited resources, we did not train CGR with full KILT datasets as in GENRE, which used 128 V100 GPUs
with 32GB of memory for about 33 hours. For a fair comparison with CGR, we train GENRE*, GENRE trained with
the same resource, same pre-trained model (T5), hyperparameter, and dataset as CGR.

5The corpus set is the union of train/dev/test target sequences. As exact splits, document ID, and preprocessing code
used by Tay et al. (2022) are not released, we tried to replicate the setting as closely as possible when constructing the
NQ-320k dataset to train CGRBase.

6GENRE uses 128 V100 GPUs with 32GB of memory for about 33 hours.

7

Under review as a conference paper at ICLR 2023

Table 4: R-precision(%) for the test sets of document retrieval tasks in KILT. Both GENRE* and CGRBase are trained
with NQ + TQA; other datasets are not seen during the training time. Best in Bold.

In-Domain Datasets Out-of-Domain Datasets (Inference Only, Zero-Shot)

NQ TQA FEVER AY2 WnWi WnCw T-REX zsRE HoPo ELI5 WoW

GENRE* 52.7 64.8 64.2 9.1 2.8 3.4 53.9 76.1 34.3 11.2 48.9
CGRBase 59.4 68.7 67.0 10.3 5.4 7.8 59.1 79.2 37.5 12.5 51.7

GENRE* vs. CGRBase in Zero-Shot Setting Table 4 shows that CGRBase is stronger than GENRE* in
the zero-shot setting where the models are trained on NQ and TQA and are evaluated on the other 9 datasets
in KILT that are not used during the training step. CGRBase shows an average of 3% improvement from
GENRE*. CGRBase shows high performance on information unseen during the training step as it does not
solely rely on the information encoded in the parametric space (information that the model sees during the
training step) but also on the non-parametric space of the contextualized embeddings.

Differences among CGRBase, CGRAsync, and CGRContra In Table 1, we can see that CGRContra shows
consistently higher performance than CGRBase and CGRAsync. We hypothesize two factors for such improve-
ments. First, as the model is trained on contrastive learning before training on generative retrieval task,
CGRContra can leverage the benefits of contrastive learning where it learns and constructs well-structured
overall embedding space and regularizes the space to be uniform (Ni et al., 2021; Gao et al., 2021a;b; Izac-
ard et al., 2022). We check the quality of the embedding space with Luniformity proposed in Wang & Isola
(2020), where the numbers represent how uniform the embedding space is. CGRContra (-19.7) shows a lower
number than CGRBase (-18.2) where the lower the better. Second, as EMB is initialized with the encoder of
RET, there is high coherency between EMB and RET. The importance of having high coherency between EMB
and RET can also be seen from the performance gain from CGRBase to CGRAsync; CGRBase uses the initial
EMB without any replacement, but CGRAsync replaces EMB with the encoder of RET every N epochs and
shows higher performance as N decreases. i.e., the update is more frequent. More details in Appendix C.4.

Importance of Having Contextualized Embeddings with Document Content In Table 3, we compare
the results between CGRBase-title-only, a model trained with contextualized embeddings extracted with only
the title as the input to EMB, and CGRBase, a model trained with contextualized embeddings extracted with
both the title and corresponding document content as input to EMB. CGRBase-title-only can be considered as
an intermediate model between CGRBase and GENRE* as it uses the non-parametric space but is constructed
with limited information (only with the title, without the entire document content). CGRBase shows the
highest performance, GENRE* shows the lowest performance, and the performance of CGRBase-title-only
is in-between the two models, suggesting that there is a correlation between the performance and how much
contextual information is in the non-parametric space.

GENRE*, which uses vanilla vocab embedding as the target embedding, has to depend solely on the in-
formation encoded in its own parameters (the parametric space of the generative retrieval model). On the
other hand, CGRBase and CGRBase-title-only can depend on not only the parametric space of the generative
retrieval model as GENRE* does but also the non-parametric space of corpus information embedded in the
contextualized target embedding. By utilizing the contextualized target embedding, the model can know in
which context the token is used and discern documents with different contexts.

Although both CGRBase and CGRBase-title-only utilize contextualized target embeddings, the contextual-
ized target embedding of CGRBase-title-only contains constrained information compared to that of CGRBase.
Therefore, CGRBase-title-only fails on cases where the document content is necessary to retrieve the target
sequence successfully. Table 5 shows examples where there is no direct relationship between the query and
the target sequence such as lexical overlap or semantic similarity. It is difficult for the model to predict the
target without the help of the document content about what information is in the document or what relation-
ship exists between the query and the target sequence. We can see from the table (Table 5) that CGRBase
successfully retrieves as such information is embedded in the contextualized target embeddings whereas

8

Under review as a conference paper at ICLR 2023

Table 5: Top-3 prediction results of CGRBase, CGRBase-title-only, and GENRE* on NQ dev set in KILT. Highlights on
the correct target sequence.

Query Prediction Results

what do the 3 dots mean in math

CGRBase Therefore sign , Infinity symbol, Equation

CGRBase-title-only Slashed zero, Homo sapiens, Equation

GENRE Ellipsis, Infinity symbol, Homo sapiens

when did equus first appear in fossil record

CGRBase Evolution of the horse , Equis, Eurydice

CGRBase-title-only Equidae, Equis, Euclid

GENRE Equidae, Equis, Equinox

rizal finished all the chapters of the novel noli
me tangere in

CGRBase Noli Me Tángere (novel) , Noli Me Tangere (opera), Noli Me Tangere (Bernini)

CGRBase-title-only Noli me tangere, Noli Me Tángere (novel) , Noli Me Tangere (opera)

GENRE Noli me tangere, Non è l’inferno, Noli Me Tangere (opera)

CGRBase-title-only fails as it does not contain the information in its embeddings. See Appendix C.5 for more
details about the contextualized embeddings of CGRBase.

Lexical overlap between query and retrieval target To see whether the main performance improvement
of CGR over GENRE* comes from CGR leveraging the information contained in the contextualized token
embedding, we check the performance of CGRBase, CGRBase-title-only, and GENRE* on queries that need
document content to find the answer. We first run TF-IDF over all the queries of NQ dev set in KILT and
divide the queries into two sets: low-overlap and high-overlap. Low-overlap is a set of queries with TF-IDF
score lower than average, and high-overlap is the rest of the queries. For queries in the high-overlap set7, all
three models show high performance as it is easy to infer the correct retrieval target from the query alone
even if the model does not know the document content. On the other hand, while all models show rela-
tively lower performance for queries in the low-overlap sets8 as the context information is required to infer
the relationship between the query and the retrieval target9, CGRBase shows the most strong performance.
CGRBase shows about 7% higher performance on the low-overlap set and 5% higher performance on the
high-overlap than GENRE* by leveraging the contextualized information encoded in the token embedding
(Table 9 in Appendix). See Appendix C.6 to see more detailed examples of the prediction result of GENRE*
and CGRBase.

6 CONCLUSION

In this paper, we propose Contextualized Generative Retrieval (CGR), a generative retrieval model that uti-
lizes contextualized embeddings (output embeddings of the language model encoder) rather than vanilla
vocab embeddings while generating the target sequence. This way, the model does not rely only on the in-
formation encoded in its own model parameters but also on the information encoded in the contextualized
embeddings. Experimental results show that CGR achieves significantly higher performance than vanilla
generative retrieval, demonstrating the effectiveness of utilizing such non-parametric external memory dur-
ing decoding. We also perform extensive ablation studies and analysis on several variants of contextualized
generative retrieval models to better understand how they work.

7e.g., Q: where was the world economic forum held this year / Target Document: World Economic Forum
8e.g., Q: During which season does cape town receive rainfall / Target Document: Climate of South Africa
9Among the queries that all three models successfully retrieved the right retrieval target, 61% of queries are in the

high-overlap set. Also, among the queries that all three models failed, 74% of queries are in the low-overlap set. Such
rates show that queries in low-overlap are relatively difficult.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen-Tau Yih, Sebastian Riedel, and Fabio
Petroni. Autoregressive search engines: Generating substrings as document identifiers. arXiv preprint
arXiv:2204.10628, 2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Jacob Menick, Roman Ring, T. W. Hennigan, Saffron Huang, Lorenzo Maggiore, Chris
Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals, Simon Osindero,
Karen Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre. Improving language models by retrieving from
trillions of tokens. In ICML, 2022.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval. In
ICLR, 2021.

Luyu Gao and Jamie Callan. Unsupervised corpus aware language model pre-training for dense passage
retrieval. In ACL, 2022.

Luyu Gao, Zhuyun Dai, and Jamie Callan. Coil: Revisit exact lexical match in information retrieval with
contextualized inverted list. In NAACL, 2021a.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings.
In EMNLP, 2021b.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. Unsupervised dense information retrieval with contrastive learning. TMLR, 2022.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Transactions
on Big Data, 2021.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly super-
vised challenge dataset for reading comprehension. In ACL, 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization through
memorization: Nearest neighbor language models. In ICLR, 2020.

O. Khattab and Matei A. Zaharia. Colbert: Efficient and effective passage search via contextualized late
interaction over bert. 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le, and Slav Petrov. Natural ques-
tions: A benchmark for question answering research. TACL, 2019.

Hyunji Lee, Sohee Yang, Hanseok Oh, and Minjoon Seo. Generative multi-hop retrieval. arXiv preprint
arXiv:2204.13596, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In NeurIPS, 2020.

10

Under review as a conference paper at ICLR 2023

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse, dense, and attentional repre-
sentations for text retrieval. TACL, 2021.

Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen tau Yih, Barlas Oğuz, Veselin Stoyanov, and Gargi
Ghosh. Multi-task retrieval for knowledge-intensive tasks. In ACL, 2021.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei Yang.
Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. CoRR, 2021.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. KILT: a benchmark for knowledge intensive language tasks. In NAACL, 2021.

Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 3:333–389, 2009.

Yi Tay, Vinh Quang Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui,
Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and Donald Metzler. Transformer memory as a
differentiable search index. arXiv preprint arXiv:2202.06991, 2022.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and
uniformity on the hypersphere. In PMLR, 2020.

Yujing Wang, Ying Hou, Hong Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia, Chengmin
Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, and Mao Yang. A neural
corpus indexer for document retrieval. arXiv preprint arXiv:2206.02743, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Transformers: State-of-the-art natural
language processing. In EMNLP, 2020.

Ledell Yu Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable zero-shot
entity linking with dense entity retrieval. In EMNLP, 2020.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval. ICLR,
2021.

A MODEL DETAILS

See Figure 2a, Figure 1, Figure 2b, and Figure 2c for figures of generative retrieval model, CGRBase,
CGRAsync, and CGRContra, respectively.

A.1 INFERENCE STEP

We perform a constrained beam search with prefix tree (Cao et al., 2021; Lee et al., 2022) during the in-
ference step to assure that all generated sequences are in the corpus. The prefix tree is constructed with the
tokenization result of the corpus, and we perform a constrained beam search by masking out the tokens that
do not create a sub-string of the text in the corpus. We find the next tokens from the top-k of the unmasked
ones. While token ID was used as the node of the prefix tree in previous works since each token was mapped
to a unique token ID, we construct a prefix tree with the text of the token as the node, because CGR contains
multiple token IDs for a single token. Therefore, rather than unmasking only a single token ID, we unmask
all token IDs that correspond to the text in order to unmask a token. We keep the beam size to 10 for all
experiments following Cao et al. (2021).

11

Under review as a conference paper at ICLR 2023

AER

…

0.2 0.1 1.5 … 2.5 0.1Climate:

Vanilla Embedding Matrix
(shape: V x D)

0.3 1.1 0.1 … 0.9 1.2Cape:

0.1 0.1 2.1 … 0.7 0.3South:

1.7 0.4 0.5 … 1.1 0.7Town:

0.1 1.5 1.2 … 0.2 0.6Africa:

1.1 1.5 0.1 … 0.3 2.1of:

T5 Enc

T5 Dec

During which season does cape
town receive rainfall

Embedding

Linear

Softmax

Climate of South Africa

(a) Model architecture of Generative Retrieval Model. It uses the vanilla embedding matrix while generating the retrieval
target.

Cape Town: Cape Town is one of
South Africa’s three capital cite is (…)

T5
EncClimate of South Africa: The climate

of South Africa is determined by (…)

0.2 0.7 1.3 … 0.6 0.1Cape(1):

1.7 0.6 0.5 … 1.6 0.4Cape(2):

…

1.1 0.1 0.1 … 0.3 2.1
of(1):

Contextualized Embedding Matrix
(shape: C x D)

…

(Iterate for all corpus)

Embedding Model (EMB) Retrieval Model (RET)

T5 Enc

T5 Dec

During which season does cape
town receive rainfall

Embedding

Linear

Softmax

Cape : A cape is a clothing accessory
or a sleeveless outer garment (…)

2.0 1.5 0.7 … 1.0 0.7

Climate(1):

1.7 0.6 0.6 … 0.8 0.5Town(1):

1.7 0.7 0.5 … 0.1 1.2South(1):

1.7 0.7 0.4 … 0.4 0.1Africa(2):

Climate of South Africa

…

0.2 0.1 1.5 … 2.5 0.1Climate:

Vanilla Embedding Matrix
(shape: V x D)

0.3 1.1 0.1 … 0.9 1.2Cape:

0.1 0.1 2.1 … 0.7 0.3South:

1.7 0.4 0.5 … 1.1 0.7Town:

0.1 1.5 1.2 … 0.2 0.6Africa:

1.1 1.5 0.1 … 0.3 2.1of:

Replace model params for every N epoch

: Trainable

: Frozen

(b) Model architecture of CGRAsync. It differs from CGRBase in that EMB is replaced by the encoder of RET every N
epochs.

Cape Town: Cape Town is one of
South Africa’s three capital cite is (…)

T5
EncClimate of South Africa: The climate

of South Africa is determined by (…)

0.2 0.7 1.3 … 0.6 0.1Cape(1):

1.7 0.6 0.5 … 1.6 0.4Cape(2):

…

1.1 0.1 0.1 … 0.3 2.1
of(1):

Contextualized Embedding Matrix
(shape: C x D)

…

(Iterate for all corpus)

Embedding Model (EMB)

Cape : A cape is a clothing accessory
or a sleeveless outer garment (…)

2.0 1.5 0.7 … 1.0 0.7

Climate(1):

1.7 0.6 0.6 … 0.8 0.5Town(1):

1.7 0.7 0.5 … 0.1 1.2South(1):

1.7 0.7 0.4 … 0.4 0.1Africa(2):

T5 Enc

T5 Dec

Embedding

0.8
0.7

0.2
…

0.5
1.8

…

0.2 0.1 1.5 … 2.5 0.1Climate:

Vanilla Embedding Matrix
(shape: V x D)

0.3 1.1 0.1 … 0.9 1.2Cape:

0.1 0.1 2.1 … 0.7 0.3South:

1.7 0.4 0.5 … 1.1 0.7Town:

0.1 1.5 1.2 … 0.2 0.6Africa:

1.1 1.5 0.1 … 0.3 2.1of:

Retrieval Model (RET)

During which season does cape
town receive rainfall

Contrastive Loss

: Trainable

: Frozen

(c) Model architecture of CGRContra step1 (contrastive learning). The first output token embedding from the decoder of
RET is trained to be close to all contextualized token embeddings of the retrieval target (positive pairs) but far from
other contextualized token embeddings (negative pairs). Note that the model architecture of CGRContra step2 (generative
retrieval task) is the same as CGRBase (Figure 1).

12

Under review as a conference paper at ICLR 2023

Table 6: R-precision(%) for the document retrieval task on NQ and TQA test dataset in KILT. See Appendix C.2 for
details about how the loss term differs. The loss term is used while training CGRContra in contrastive learning (step 1 of
training CGRContra).

Positive Negative NQ TQA

Single Token Emb In-Batch Negatives 60.0 68.9
Single Token Emb Contextualized Embedding Matrix 58.9 68.4

Multiple Token Emb Contextualized Embedding Matrix 60.3 68.9

B EXPERIMENTAL SETUP

B.1 CGR & GENRE*

We train all models using a pre-trained T5-large checkpoint from Wolf et al. (2020) as the initial checkpoint.
GENRE* and CGR are trained with the same hyperparameter setting for a fair comparison. We experiment
over 8 32GB V100 GPUs or 2 48GB A6000 GPUs. We train using Adafactor with a learning rate 1e-4 with
a linear warm-up for the first 10% of training and then linear decay with batch size 512 till a maximum of
150 epochs.

B.2 BM25 & DPR

Unlike Maillard et al. (2021), which performs document retrieval tasks by training the model on passage-
level tasks and considers retrieval successful when it retrieves the document that contains the passage, to
match the setting (dataset) similar to CGR, we train the model in document retrieval task. We consider
the first five paragraphs as the content of the document and train the model so that the query embedding
gets close to not the paragraph embedding but the document embedding. The number of the corpus in the
document retrieval tasks are the same as the number of page in the KILT dataset.

For BM25, the corpus is the same as in DPR where each item in the corpus is the first five paragraphs of
individual documents in the KILT corpus.

C EXPERIMENTAL RESULTS

C.1 UPDATE FREQUENCY IN CGRASYNC-TITLE-ONLY

We analyzed how the performance changes according to how often the replacement of EMB by the encoder
of RET occurs (replacement for every N epoch) with CGRAsync-title-only. When comparing the performance
with N = {10, 20, 50}, CGRAsync-title-only shows the highest performance at N = 10, and the perfor-
mance tends to deteriorate as N becomes larger. Also, all CGRAsync-title-only show higher performance than
CGRBase-title-only (CGR-title-only without any replacement). Results show that although the model requires
high computation cost and longer training time as N gets smaller, it is important to have high coherency be-
tween the contextualized embeddings (output embeddings of EMB) and RET by frequent replacement.

C.2 DIFFERENT CONTRASTIVE LOSS IN CGRCONTRA

We experiment with three different types of contrastive loss when training CGRContra. In this section, we
show the losses and how the results differ by such methods.

13

Under review as a conference paper at ICLR 2023

Given a training dataset of pairs {(q, t)} where q is the query text, and t is the retrieval target (title of the
document to retrieve) composed of multiple tokens ti (1 ≤ i ≤ k where k is the length of the target), we
split all tokens into k separate pairs {(q, ti)} to construct the training dataset of query-token. The three loss
differs in what the model considers as a negative set and a positive set.

Loss 1: Neg: In-Batch Negatives / Pos: Single Token Embedding With the query-token dataset, we train
RET’s first output token representation from the decoder to be close to all t+ ∈ {t1, · · · , tk} (embedding
of any token in the retrieval target t) given the query q as an input to RET. The objective is to minimize the
contrastive loss to make the query text embedding q be closer to positive token embedding t+:

L(q, t+, t−1 , · · · , t
−
|T −|) = − log

e<q,t+>

e<q,t+> +
∑

t−∈T − e<q,t−>
(3)

where ⟨ , ⟩ is the inner product value between the two embeddings, and T − = {t−1 , · · · , t
−
|T −|} is the set of

negative token embeddings, which are other token embeddings in the training batch that are not paired with
q (in-batch negatives (Karpukhin et al., 2020)).

Loss 2: Neg: Contextualized Embedding Matrix / Pos: Single Token Embedding The loss differs from
the upper loss in that it considers all embeddings in contextualized embedding matrix except the single
positive embedding as negative rather than performing the in-batch negatives which consider the subset of
contextualized embedding matrix as negatives. The equation is same as Equation 3, but elements in T − are
all other token embeddings in contextualized embedding matrix.

Loss 3: Neg: Contextualized Embedding Matrix / Pos: Multiple Token Embedding The loss differs
from the upper loss in that it considers all token embeddings in the title as positive embeddings; for each
query q, there are more than one positive contextualized token embeddings.

With the query-token dataset, where T + = {t+1 , · · · , t+k }, set of positive token embeddings, we train RET’s
first output token representation from the decoder to be close to all token embeddings in T + given the query
q as an input to RET. The objective is to minimize the contrastive loss to make the query text embedding q
be closer to all positive token embedding in T +:

L(q, t+1 , · · · , t
+
|T +|, t

−
1 , · · · , t

−
|T −|) = − log

∑
t+∈T + e<q,t+>∑

t+∈T + e<q,t+> +
∑

t−∈T − e<q,t−>
(4)

where ⟨ , ⟩ is the inner product value between the two embeddings, and T − = {t−1 , · · · , t
−
|T −|} is the set

of negative token embeddings, which are all other token embeddings in contextualized embedding matrix.

Results Table 6 show the performance of CGRContra with different contrastive loss by what it considered as
the positive pair and the negative pair. Multiple Token Emb considers all token embeddings in the same target
sequence as positive pairs, and Single Token Emb considers all token embeddings separately thus only one
of the token embedding from the title token embeddings is considered as positive pair. In-Batch Negatives
considers all embeddings in a batch except for the positive embedding as negative pairs, and Contextualized
Embedding Matrix considers all embeddings in the contextualized embedding matrix (a matrix constructed
with the contextualized token embeddings) except for the positive embeddings as negative pairs.

The model trained on contrastive loss with multiple token embeddings as positive pairs, and all other em-
beddings in contextualized embedding matrix as negative pairs (Loss3) show the highest performance. The
model trained on the same negative but with a single token embedding as positive (Loss2) shows the lowest
performance. The model with single token embedding as positive and in-batch negatives as negative pairs
(Loss1) shows the performance in-between.

14

Under review as a conference paper at ICLR 2023

As in Xiong et al. (2021), the model with Loss2 and Loss3 has the benefits of looking at the global embedding
space by considering the contextualized embedding matrix as the negative pair, unlike Loss1 which only
considers embeddings in the same batch as negatives (in-batch negatives). However, Loss2 show lower
performance than Loss1 as in the case where the model considers a single token embedding as a positive
pair, the model considers the rest of the token embeddings in the same title as the negative pair. As the token
embeddings in the same title are matched with the same query, such a training method seems to make the
model confused and leads to bad performance. Thus when considering a single token embedding as positive
pair (Loss1 or Loss2), it is better to consider only the embeddings in the same batch as negatives (in-batch
negatives) rather than on all the token embeddings (Contextualized Embedding Matrix) as there is a low
possibility of the model to have two different token embeddings of the same title in a batch.

C.3 CLUSTERING

Example of Clustering When a token “the” appears in the corpus 100 times, 100 different contextualized
embeddings of “the” are extracted by the encoder model at first. Then, we perform k-means clustering on
the 100 contextualized embeddings to cluster them into at most k clusters and save all centroid embeddings.
We leave only the k centroid embeddings as the decoder vocab embeddings of the token “the” and assign
a new decoder token ID for each contextualized embedding by the cluster it belongs to. By repeating the
process over all the tokens, each token has a number of contextualized embeddings less or equal to k. As
there are multiple contextualized token embeddings for a single token, we replace the ground-truth target
token IDs with the newly constructed decoder token IDs to specify which contextualized token embedding
the ground-truth target token ID is referring to.

Performance by Number of Clusters and Storage Footprint As saving all contextualized token em-
beddings to use as the vocab embedding matrix requires a large storage footprint (≈ 148GB), we reduce
the number of token embeddings by clustering and saving only the k centroid embeddings for each token
(Section 4.4). Figure 5 shows the effect of the maximum number of clusters for each token (k) on the per-
formance. Models with a k = 5 (maximum of five different contextualized token embeddings for each
token) show the highest performance and having k smaller or larger than five decreases the performance.
We hypothesize that performance of models with k < 5 degrades because the number of the embeddings is
too small to contain all different contextual meanings of the token and thus will be closer to vanilla token
embedding. In contrast, the performance of models with k > 5 decreases because the search space of each
generation step is too large and the parametric space of the model becomes too fine-grained which might
distract the model. When k = 5, the number of embeddings is 980 times less than using all the contextual-
ized embeddings of KILT corpus as the vocab embeddings and 3.7 times larger than using the vanilla vocab
embeddings of T5 (k = 1). Therefore, when k = 5, it needs 0.47GB of storage footprint to save all the
vocab embeddings, whereas the vanilla vocab embeddings (k = 1) need 0.13GB. The increase in the storage
footprint of vocab embeddings (0.34GB) is marginal compared to the storage footprint to save the model
parameters (3GB).

C.4 CHARACTERISTICS OF CONTEXTUALIZED EMBEDDINGS IN VARIANTS OF CGR

We compare the contextualized token embeddings of CGRBase, CGRAsync, and CGRContra
10 For 1000 cluster

embeddings, we check the rate of the same token among the top-5 embeddings similar to the corresponding
embedding. CGRBase shows the lowest rate of 50%. CGRAsync and CGRContra show a similarly high rate
of 70%. The rate tends to increase as N increases in CGRAsync. Such results suggest that as same token
has similar lexical meaning, it is better to have a relatively similar meaning. However, as the performance
increases as a single token are matched to multiple token embeddings till k = 5 (Appendix C.3), it is also

10We analyze the EMB of step2 in CGRContra and last replace EMB for CGRAsync.

15

Under review as a conference paper at ICLR 2023

important to have slightly different meanings depending on the surrounding context. When checking which
corpus bundles are bound to the same cluster, all three tend to depend on which position of text the token is
placed on and the meaning of surrounding tokens. See Appendix C.5 for more details.

C.5 CLUSTERING OVER TOTAL EMBEDDINGS

To understand the spatial properties of the contextualized embeddings, we conducted a qualitative analysis
on the embeddings, by performing k-means clustering over the total contextualized token embeddings of
CGRBase (EMB is the encoder of T5-large). Specifically, we clustered 36 million token embeddings, obtained
from EMB, into 117,508 clusters11 using the FAISS k-means library (Johnson et al., 2021).

First, we randomly sampled 100 tokens, and for each token, we calculated the portion of the contextualized
embeddings that belong to the top 10% of the clusters which contain the most embeddings of the token.
As a result, on average 67.6% of the embeddings of a token are contained in the 10% of the clusters which
contain the token, with a standard deviation of 22.7. This indicates that most of the tokens are concentrated
in a few spatial regions, while the others are spread over many different areas.

To get a deeper insight into the spatial properties of the embeddings, we picked two tokens, “Lincoln”
and “Squad” and visualized some of the clusters that contain the tokens(Table 7). For each cluster, the
tokens belonging to the cluster and their corresponding document names are shown. In (Table 7), at most
20 documents are shown for each token and only 4 tokens are shown in cluster 3 and 4 for simplicity. The
first and second examples show the case that a cluster is composed of only a single token, as mentioned
above. Interestingly, all of the corresponding documents of the first cluster are related to Lincolnshire, a
county of England. Similarly, the tokens in the second cluster are related to the documents about sports
(usually football) squads. On the other hand, the third and fourth examples show the other case that a cluster
contains only a few tokens that we are interested in. The members of the third cluster are related to the
middle names, and a few embeddings of the token “Lincoln” is contained in this cluster since there are some
Wikipedia documents of the people whose middle name is Lincoln. Likewise, the fourth cluster consists of
the embeddings which are related to the name of music albums(usually hip-hop and rock), where some of
them are produced by the group named “Blazin’ squad”, for example. These examples show how expressive
can the contextualized embeddings be compared to the vanilla token embeddings; in this case, it is hard to
expect that these various context-dependent information of a token can be sufficiently encoded into a single
token embedding.

In summary, the results show that the contextualized embeddings corresponding to the same token are
mapped to many different regions of the embedding space, depending on its context. This implies that the
contextualized embeddings successfully acquired the contextual information of the corresponding docu-
ments, highlighting the effectiveness of utilizing contextualized embeddings for generative retrieval.

C.6 LEXICAL OVERLAP BETWEEN QUERY AND ANSWER

CGR show especially strong performance on queries in the low-overlap set; queries that in most cases need
the context information unless the model saw the information during the training step (Section 5.2). We
check four sets:
1. GENRE+/CGR +: queries where both CGR and GENRE* successfully retrieved
2. GENRE+/CGR-: queries where GENRE* successfully retrieved and CGR failed
3. GENRE-/CGR +: queries where GENRE* failed and CGR succeed
4. GENRE-/CGR-: queries where GENRE* and CGR both failed.

11The number of the clusters is same as the number of the tokens in contextualized embedding matrix, hence same as
the number of the clusters we used in 4.4.

16

Under review as a conference paper at ICLR 2023

70 50 30 10 0 10 30 50 70

GENRE+
CGR+

GENRE-
CGR+

GENRE+
CGR-

GENRE-
CGR-

Low-Overlap (NQ)
High-Overlap (NQ)

Figure 3: Red bar indicates the high-rate and the blue bar indicates the low-rate. The rate is measured by NQ
dev set in KILT. Details about high-rate and low-rate is in Appendix C.6.

70 50 30 10 0 10 30 50 70

GENRE+
CGR+

GENRE-
CGR+

GENRE+
CGR-

GENRE-
CGR-

Low-Overlap (TQA)
High-Overlap (TQA)

Figure 4: Red bar indicates the high-rate and the blue bar indicates the low-rate. The rate is measured by
TQA dev set in KILT. Details about high-rate and low-rate is in Appendix C.6.

0 5 10 15 20 25 30
of cluster

58

60

62

64

66

68

70

R-
pr

ec
isi

on

NQ TQA

Figure 5: Effect of number of cluster in Base CGR. Results of zero number of clusters are from GENRE*.

17

Under review as a conference paper at ICLR 2023

Table 7: Examples of clusters when clustering over total contextualized token embeddings when EMB is the encoder of
T5-large.

Cluster Token Documents

1 Lincoln

Moulton, Lincolnshire / Belton, North Lincolnshire / Walcott, Lincolnshire / Wrangle, Lincolnshire /
Swineshead, Lincolnshire / Leverton, Lincolnshire / Kirton, Lincolnshire / Benington, Lincolnshire /
Bicker, Lincolnshire / Dyke, Lincolnshire / Hilldyke, Lincolnshire / Waltham, Lincolnshire / Reepham,
Lincolnshire / Bradley, Lincolnshire / Allington, Lincolnshire / Donington, Lincolnshire ettleton, Lin-
colnshire / Panton, Lincolnshire / Beckingham, Lincolnshire / Bigby, Lincolnshire / ...

2 Squad

Field hockey at the 2000 Summer Olympics – Men’s team squads / Field hockey at the 2004 Summer
Olympics – Men’s team squads / Field hockey at the 1996 Summer Olympics – Men’s team squads /
Football at the 2000 Summer Olympics – Men’s team squads / Football at the 1996 Summer Olympics
– Men’s team squads / List of Queensland rugby league team squads / Football at the 2006 Lusophony
Games – Men’s team squads / List of current AFL team squads / Football at the 1912 Summer Olympics
– Men’s team squads / List of New South Wales rugby league team squads / Football at the 1996 Summer
Olympics – Women’s team squads / Football at the 1988 Summer Olympics – Men’s team squads /
Football at the 1984 Summer Olympics – Men’s team squads / Football at the 1976 Summer Olympics –
Men’s team squads / Football at the 1900 Summer Olympics – Men’s team squads / Football at the 1904
Summer Olympics – Men’s team squads / Football at the 1908 Summer Olympics – Men’s team squads
/ Football at the 1992 Summer Olympics – Men’s team squads / Football at the 1980 Summer Olympics
– Men’s team squads / Football at the 1972 Summer Olympics – Men’s team squads / ...

3

Lincoln

William Lincoln Garver / Albert Lincoln Washburn / Charles Lincoln Edwards / Thomas Lincoln Casey
Sr. / James Lincoln Collier / Abraham Lincoln Lewis / Earl Lincoln Poole / George Lincoln Goodale /
George Lincoln Burr / Abraham Lincoln Keister / Elmer Lincoln Irey / Walter Lincoln Hawkins / Abram
Lincoln Harris / Abraham Lincoln DeMond / Thomas Lincoln Tally / Abraham Lincoln Filene / Mary
Lincoln Beckwith / Frederick Lincoln Emory / Howard Lincoln Hodgkins / Oliver Lincoln Lundquist / ...

Levi
John Levi Marti / John Levi Sheppard / Moses Levi Ehrenreich / Nathaniel Levi Gaines / Harry Levi
Hollingworth / Thomas Levi Whittle / Austin Levi Fraser / George Levi Crane / Olin Levi Warner

Luke
Milledge Luke Bonham / Henry Luke Orombi / Henry Luke White / Vincent Luke Palmisano / George
Luke Smith / Henry Luke Bolley / Mary Luke Tobin / James Luke Prendergast / John Luke Lowther /
Jerry Luke LeBlanc / Thomas Luke Msusa / Robert Luke Deakin / Joseph Luke Cecchini

Lane Carroll Lane Fenton

...

4

Squad True Story (Terror Squad album) / The Album (Terror Squad album)

Angel
Covenant (Morbid Angel album) / Domination (Morbid Angel album) / The Art of Dying (Death Angel
album) / Act III (Death Angel album) / Heretic (Morbid Angel album)

Butterfly Heavy (Iron Butterfly album) / Metamorphosis (Iron Butterfly album) / Ball (Iron Butterfly album)

Flip
Flip-flop (electronics) / Flipper (anatomy) / Respect Me (Lil’ Flip album) / The Leprechaun (Lil’ Flip
album)

...

Note that CGR is CGRBase in this section. Figure 3 and Figure 4 show the low-rate (blue) and high-rate
(red). Low-rate of each case is calculated as {Q∩L}

Q , where Q is a set of queries in each case and L is a set

of queries in a low-overlap set. High-rate of each case is calculated as {Q∩H}
Q , where H is a set of queries

in a high-overlap set.

18

Under review as a conference paper at ICLR 2023

Table 8: Top-3 prediction result of CGRBase, and GENRE*

Query Prediction Result

what do the 3 dots mean in math
CGRBase Therefore sign , Infinity symbol, Equation

GENRE Ellipsis, Infinity symbol, Homo sapiens

what does the pearl symbolize in the bible CGRBase Parable of the Pearl , Mitzvah, Pearl of Wisdom

GENRE Pearl of Great Price, Perlin, Promised Land

does archie end up with betty or veronica in
riverdale

CGRBase Archie Marries Veronica/Archies Marries Betty , List of Riverdale characters,
Archie Buchanan

GENRE Riverdale (2017 TV series), List of Riverdale characters, Archie Mitchell

actor who plays dr avery on grey’s anatomy CGRBase Jesse Williams (actor) , Jesse Williams, Jesse Spencer

GENRE Marc Alaimo, Patrick Warburton, Jeffrey Dean Morgan

when did equus first appear in fossil record
CGRBase Evolution of the horse , Equis, Eurydice

GENRE Equidae, Equis, Equinox

who decides the number of judges in the high
court

CGRBase Indian High Courts Act 1861 , High Court of Australia, Supreme Court of India

GENRE Supreme Court of the United Kingdom, Supreme Court of India, High Court of
Australia

when’s the last time the philadelphia eagles
played the new england patriots

CGRBase Super Bowl XXXIX , New England Patriots, Super Bowl XXXVIII

GENRE New England Patriots, Philadelphia Eagles, History of the Philadelphia Eagles

rizal finished all the chapters of the novel noli
me tangere in

CGRBase Noli Me Tángere (novel) , Noli Me Tangere (opera), Noli Me Tangere (Bernini)

GENRE Noli me tangere, Non è l’inferno, Noli Me Tangere (opera)

during which season does cape town receive
rainfall

CGRBase Climate of South Africa , City of Cape Town, Cape Town water crisis

GENRE Cape Town, City of Cape Town, Cape Town water crisis

Table 9: R-precision(%) for the document retrieval task on NQ dev dataset in KILT. See details about Low and High
Overlap in Section 5.2.

GENRE* CGRBase-title-only CGRBase

Low-Overlap 45.8 51.6 52.7
High-Overlap 71.3 75.3 75.8

Total 58.3 63.2 64.0

For both figures, GENRE-/CGR + shows a higher number in low-rate, which indicates that CGR tend to suc-
cessfully predict queries in the low-overlap set compared to GENRE*. Also, for both figures, GENRE+/CGR
+ shows a high number in low-rate and GENRE-/ours- shows a high number of high-rate, which indicates
that queries in the high-overlap set tend to be easy questions for both GENRE and CGR whereas queries in
the low-overlap set are difficult for both models.

Also, Table 8 shows samples of the top-5 prediction results of CGRBase and GENRE* where CGRBase suc-
cessfully retrieved the correct item and GENRE* failed. Such queries tend to be in the low-overlap set. Such
results suggest that CGR (CGRBase) is robust on queries in the low-overlap set compared to GENRE*.

19

Under review as a conference paper at ICLR 2023

No Training Single (≤ 3%) All KILT (100%)

Dataset BM25 DPR GENRE* CGRBase CGRAsync CGRContra DPR GENRE SEALs SEALi

NQ 25.8 63.2 59.9 63.4 63.7 63.9 62.3 64.3 64.2
TQA 29.4 65.1 64.2 67.5 67.9 68.7 62.0 71.1 68.3 68.3

Table 10: R-precision(%) for document retrieval task on NQ and TQA dev dataset in KILT. Results of BM25 and
DPR are from Maillard et al. (2021), results of SEAL are provided by the authors of Bevilacqua et al. (2022), and
results of GENRE are from the released pre-trained models. SEALs is SEAL (LM+FM) and SEALi is SEAL (LM+FM,
intersective) in Bevilacqua et al. (2022). Underlined model is the direct baseline of CGR. Best of each section (same
training dataset) in bold.

Table 11: Hits@1 and Hits@10 in NQ-320k. Results of BM25, DSI-Naive, and DSI-Semantic are from Tay et al.
(2022). CGRBase-Naive is CGRBase with document ID as a retrieval target, and CGRBase-Title is CGRBase with a title of
the document as a retrieval target. Underlined model is direct baseline of CGRBase-Naive. Best from document ID as a
target sequence in bold.

BM25 DSI-Naive DSI-Semantic CGRBase-Naive CGRBase-Title

Hits@1 11.6 13.3 35.6 58.7 62.2
Hits@10 34.4 33.6 62.6 73.1 78.8

C.7 KILT DEV RESULTS

Table 10 shows the result of five models (BM25, GENRE, DPR, SEAL, and CGR) in the NQ and TQA
of the KILT dev set. Note that the DPR and BM25 models in the single setup12 are different from Table 1
(Section B.2). As in results with KILT test datasets (Table 1), results with KILT dev datasets (Table 10)
show similar trends. CGR shows an average of 7% higher performance compared to its direct baseline
model, GENRE*. CGRContra shows the highest performance over three variants of CGR. When comparing
the results with other retrieval models, CGR shows the highest performance in the single setup and shows
comparable performance to models trained with all KILT datasets although CGR is trained with only 3% of
the training dataset.

C.8 CONTEXTUALIZED EMBEDDINGS WITH DOCUMENT ID AS RETRIEVAL TARGET

To show that CGR is not restricted to the title but is generalizable to various retrieval targets, we experiment
CGR (CGRBase-Naive) when the retrieval target is random document ID (Naively Structured String Identi-
fiers in DSI (Tay et al., 2022)) in NQ-320k. In the case, direct baseline model to CGRBase-Naive is DSI-Naive
(DSI with Naively Structured String Indentifiers as the document ID) not GENRE*13. From Table 11, we can
see that CGRBase-Naive shows more than four times higher performance in Hits@1 compared to DSI-Naive.

Also, CGRBase-Naive shows higher performance than DSI-Semantic where the document ID of DSI-
Semantic is built by the hierarchical semantic meaning inside the document content. The results show the
importance of using the contextualized embeddings as the decoder vocab embeddings; rather than building
the document ID using the document content, using a random document ID but with the document content
inside the token embedding of each document ID shows higher performance.

12Single setup is a setup where the models are trained with a single dataset; NQ only or TQA only.
13Note that the document ID of CGRBase-Naive and DSI-Naive are not exactly the same as the document ID of DSI is

not released. However, both the document ID of CGRBase-Naive and DSI-Naive are the same in that they are constructed
randomly. We plan to update the numbers when the official repo is open

20

Under review as a conference paper at ICLR 2023

Moreover, from the results between CGRBase-Naive and CGRBase-Title, we can see that the retrieval target
affects the performance. We assume the difference comes from whether the retrieval target is a natural
language text or not; CGR can leverage the benefits of pre-training step more when the target sequence
is natural language (CGRBase-Title). However, the difference between CGRBase-Naive and CGRBase-Title is
marginal compared to the performance difference between DSI and GENERE where the two models both
used vanilla model embeddings, which suggests that CGR is generalizable to various retrieval targets. We
leave other target sequences apart from the title and the document ID as future work.

When compared to the performance of DSI T5-XXL with Semantic String Docid (the best performing model
in Tay et al. (2022)) (40.4), CGRBase (58.7) shows about 1.5× higher performance in NQ-320k Hits@1. Note
that the model has 14 times more parameters than CGRBase.

D LIMITATIONS & FUTURE WORKS

As CGR uses k-means clustering to reduce the number of contextualized embeddings, the performance
may change by how the contextualized embeddings are clustered. Generative retrieval models show low
performance to unseen cases due to their dependency on the parametric space of the model (Lee et al.,
2022); the model is likely to retrieve sequences it has seen during the training step better as the information
is saved in the parameters. Therefore, as CGR also leverages the benefit of the parametric space, we leave
the direction of adapting the model to new corpus as future work.

21

	Introduction
	Related Work
	Contextualized Generative Retrieval
	Model Details
	CGRBase
	CGRAsync
	CGRContra
	Clustering

	Experiments
	Setup
	Results

	Conclusion
	Model Details
	Inference Step

	Experimental Setup
	CGR & GENRE*
	BM25 & DPR

	Experimental Results
	Update Frequency in CGRAsync-title-only
	Different Contrastive Loss in CGRContra
	Clustering
	Characteristics of Contextualized Embeddings in Variants of CGR
	Clustering over total embeddings
	Lexical Overlap Between Query and Answer
	KILT Dev Results
	Contextualized Embeddings with document ID as retrieval target

	Limitations & Future Works

