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Abstract
Decision-based evasion attacks repeatedly query
a black-box classifier to generate adversarial ex-
amples. Prior work measures the cost of such
attacks by the total number of queries made to the
classifier. We argue this metric is flawed. Most
security-critical machine learning systems aim
to weed out “bad” data (e.g., malware, harmful
content, etc). Queries to such systems carry a fun-
damentally asymmetric cost: queries detected as
“bad” come at a higher cost because they trigger
additional security filters, e.g., usage throttling
or account suspension. Yet, we find that exist-
ing decision-based attacks issue a large number
of “bad” queries, which likely renders them inef-
fective against security-critical systems. We then
design new attacks that reduce the number of bad
queries by 1.5–7.3×, but often at a significant in-
crease in total (non-bad) queries. We thus pose it
as an open problem to build black-box attacks that
are more effective under realistic cost metrics.

1. Introduction
Adversarial examples (Szegedy et al., 2014; Biggio et al.,
2013) are a security risk for machine learning (ML) models
that interact with malicious actors. For example, an attacker
could use adversarial examples to post undesired content to
the Web while bypassing ML filtering mechanisms (Tramèr
et al., 2019; Prokos et al., 2023; Rosenberg et al., 2021). In
such security-critical uses of ML, the attacker often only
has black-box access to the ML model’s decisions.

Decision-based attacks (Brendel et al., 2017) generate adver-
sarial examples in black-box settings by repeatedly querying
the model and observing only the output decision on per-
turbed inputs. The original BOUNDARY ATTACK of Brendel
et al. (2017) required over 105 model queries to reliably find
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Figure 1. Existing decision-based attacks (left) make many “bad”
queries, that get classified into the class that the attacker aims to
evade. In security-critical applications, such bad queries likely
trigger additional security mechanisms, thus raising the cost of the
attack. Our stealthy attacks (right) trade-off bad queries for good
ones, to find adversarial examples without raising security alerts.

small adversarial perturbations. Subsequent work (Cheng
et al., 2018; 2019; Chen et al., 2020a; Chen & Gu, 2020; Li
et al., 2020) optimized for this metric of “total number of
model queries”, and reduced it by 1–3 orders of magnitude.

We argue this metric fails to reflect the true cost of query-
ing a security-critical ML system. Such systems typically
aim to detect “bad” data, such as malware, harmful content
or malicious traffic. Queries with benign data (e.g., a selfie
uploaded to social media) carry little cost; in contrast, bad
data flagged by the system (e.g., offensive content) triggers
additional security measures that carry a high cost for the
attacker—up to account termination. Thus, we argue that
black-box attacks should strive to be stealthy, by minimizing
the number of “bad” queries flagged by the ML system.

We find that existing attacks are not stealthy: over 50% of
the queries they make are bad. We then show how to reduce
the number of bad queries for a class of attacks that measure
distances to the model’s boundary along random directions
(e.g., OPT (Cheng et al., 2018), SIGN-OPT (Cheng et al.,
2019) and RAYS (Chen & Gu, 2020)). Inspired by the
famous “egg-dropping problem” (Alves et al.), we modify
these attacks to trade-off bad queries for benign ones.

We evaluate our attacks on three classification tasks: Im-
ageNet, dog vs. not-dog in ImageNet, and NSFW con-
tent (Schuhmann et al., 2022). Our stealthy attacks reduce
the number of bad queries of the original attacks by 1.5–
7.3×. Notably, on ImageNet, our stealthy variant of the OPT
attack outperforms SIGN-OPT and HOPSKIPJUMP in terms
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of bad queries, despite the two latter attacks issuing fewer
queries in total. Yet, our most stealthy ℓ2 attacks incur a
large increase in good queries (350–1,400×). The tradeoff
is better for ℓ∞ attacks: our stealthy variant of the RAYS
attack reduces bad queries by 2.1–2.5× over RAYS and
6–17× over HOPSKIPJUMP, while making 2.1–3.4× more
benign queries than RAYS. We use the stealthy RAYS attack
to evade a commercial black-box NSFW image detector,
with 2.2× fewer bad queries than the original RAYS attack.

Overall, our results suggest that many decision-based at-
tacks are far from stealthy, and that stealthier attacks are
often only viable if the cost of bad queries far outweighs
that of good queries (especially for ℓ2 attacks). We thus
recommend that future decision-based attacks account for
asymmetric query costs, to better reflect the true cost of
deploying such attacks against real security-critical systems.

2. Decision-based Attacks
Given a classifier f : [0, 1]d → Y and input (x, y), an
(untargeted) adversarial example x̂ is an input close to x
that is misclassified, i.e., f(x̂) ̸= y and ∥x̂ − x∥p ≤ ϵ for
some ℓp norm and threshold ϵ.

A decision-based attack gets oracle access to the model
f . The attacker can query the model on arbitrary inputs
x ∈ [0, 1]d to obtain the class label y ← f(x). Existing
decision-based attacks aim to minimize the total number
of queries made to the model f before the attack succeeds.

We discuss related work about decision based attacks, their
detection, and stealthy attacks in Appendix A.

3. Asymmetric Query Costs
Existing decision-based attacks optimize for the total num-
ber of model queries. This is reasonable if the attacker’s
primary cost is incurred by queries to the model, and this
cost is uniform across queries (e.g., if the attacker has to pay
a fixed service fee for each query).

But we argue that query costs are rarely uniform in practical
security-critical systems. This is because, in such systems,
the goal of a ML model is usually to detect “bad” data (e.g.,
malware, harmful content, malicious traffic, etc). The costs
incurred by querying such a model are highly asymmetric.
Querying the model with “good” data is expected, comes
with no additional overhead, and is thus cheap. Whereas
querying the model with “bad” data is unexpected, triggers
additional security measures and filters, and thus places a
much higher cost on the attacker.

As an example, consider an attacker who tries to upload inap-
propriate content to a social media website. Every uploaded
image passes through a ML model that flags inappropriate

content. Benign content is very rarely flagged and thus car-
ries little cost. But if a query is flagged as inappropriate,
the system blocks the contents and may take further costly
actions (e.g., account throttling or suspension).

We now formalize this asymmetry. Assume one or more of
the classifier’s output classes Y are “bad”, denoted as Ybad.
The attacker is given an input (x, y) where y ∈ Ybad (e.g., x
is a NSFW image) and wants to find an adversarial example
x̂ where f(x̂) /∈ Ybad. All queries to the model f carry a
base cost c0, due to data processing, network bandwidth, or
disk storage, or throttling if the attacker makes too many
queries. This base cost is typically very low: e.g., Facebook
users can upload 1,000 images at once in an album (Face-
book, 2023). However, for queries x that are flagged as
inappropriate (i.e., f(x) ∈ Ybad), the cost cbad incurred by
the attacker is much larger. Their account could be sus-
pended or banned, their IP blacklisted, etc. While these
restrictions can be circumvented (e.g., by buying multiple
accounts (Business Matters, 2020)), this places a signifi-
cantly higher cost on queries flagged as bad, i.e., cbad ≫ c0.

We thus argue that decision-based attacks should strive to
minimize the cost defined as: cost := Qtotal ·c0+Qbad ·cbad,
where Qbad is the number of bad model queries (f(x) ∈
Ybad), Qtotal is the total number of queries—including bad
ones—and cbad ≫ c0. We call attacks that minimize this
asymmetric cost stealthy.

Existing attacks are not stealthy. No existing black-box
attack considers such asymmetric query costs. As a result,
these attacks issue a large number of bad queries. We illus-
trate this with an untargeted attack on ImageNet.1 In Table 1
in the appendix, we show the number of total queries Qtotal
and bad queries Qbad made by various ℓ2 and ℓ∞ decision-
based attacks on a ResNet-50 classifier. In all cases, half or
more of the attacker’s queries are “bad” (i.e., they get the
class label that was to be evaded). Despite differences in
the fraction of bad queries for each attack, attacks that make
fewer total queries also make fewer bad queries. But this
begs the question of whether we could design attacks that
issue far fewer bad queries in total. The remainder of this
paper answers this question.

Selecting the values of c0 and cbad. The true cost of a
query (whether good or bad) may be hard to estimate, and
can vary between applications. As a result, we recommend
that black-box attack evaluations report both the value of
Qtotal and Qbad, so that the attack cost can be calculated for

1ImageNet is not a security-critical task, and thus most content
is not “bad”. We use ImageNet here because prior attacks were
designed to work well on it. To mimic a security-critical evasion
attempt, we set the class to be evaded as “bad” and all other classes
as “good”. That is, for an input (x, y) we set Ybad = {y} and
the attacker’s goal is to find an adversarial example x̂ such that
f(x̂) ̸= y, while avoiding making queries labeled as y.
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any domain-specific values of c0 and cbad.

In this paper, we often make the simplifying assumption
that c0 = 0, cbad = 1, a special case that approximates the
attack cost when cbad ≫ c0. In this special case, the attacker
solely aims to minimize bad queries, possibly at the expense
of a large increase in total queries. We will however also
consider less extreme trade-offs between these two values.

4. Designing Stealthy Decision-based Attacks
To begin, we explore the design space of stealthy decision-
based attacks, which minimize the total number of bad
queries made to the model. One possibility is simply to
design a better decision-based attack, that makes fewer total
queries. As we see from Table 1 in the appendix, this is
how prior work has implicitly minimized asymmetric attack
costs so far. We take a different approach, and design attacks
that explicitly trade-off bad queries for good ones.

4.1. How do Decision-based Attacks Work?

Most decision-based attacks follow the same blueprint (Fu
et al., 2022). For an input (x, y), the attacks first pick an
adversarial direction θ ∈ [0, 1]d and find the ℓp distance to
the model’s decision boundary from x along the direction
θ. They then iteratively perturb θ to minimize the boundary
distance along the new direction. In each iteration, the
attacks compute an update direction δ and step-size α and
make an update step θ′ ← θ + α · δ, and then compute the
new boundary distance from x along θ′.

Decision-based attacks use two fundamental subroutines:

• getDist(x, θ, p) → R+: this routine computes the
distance (in ℓp norm) from x to the decision boundary
along the direction θ. Most attacks do this by performing
a binary search between x and a misclassified point x̂ in
the direction θ, up to some numerical tolerance η.

• checkAdv(x, θ′,dist, y) → {−1, 1}: this routine
uses a single query to check if the point at distance
dist in direction θ′ is misclassified, i.e., it returns 1 if
f(x+ dist · θ′/∥θ′∥p) ̸= y.

Different attacks combine these two subroutines in different
ways, as we describe in Appendix C. As we will see, how
an attack balances these two routines largely impacts how
stealthy the attack can be made.

4.2. Maximizing Information per Bad Query

To design stealthy decision-based attacks, we first introduce
the entropy-per-bad-query metric. This is the information
(measured in bits) that the attacker learns for every bad
query made to the model.

Consider an attack that calls checkAdv(x, θ+ri,dist, y)

full line-search

k-stage line-search

early stopping
γ · dist

Figure 2. Line-search strategies to find the boundary (in gray) start-
ing from a benign point (green) towards the original bad input
(brown). Red crosses denote bad queries.

for many random ri. BOUNDARY ATTACK, HOPSKIPJUMP
and SIGN-OPT do this to estimate the shape of the decision
boundary. For a locally linear boundary, we expect 50% of
such queries to be bad. The attacker thus learns two bits
of information per bad query. To increase the entropy-per-
bad-query, we would need to sample the ri so that fewer
checkAdv queries are bad. But this requires a prior on the
boundary’s geometry, which is what these queries aim to
learn. It thus seems hard to make this procedure stealthier.

For calls to getDist, a standard binary search requires
log 1/η queries (half of which are bad) to estimate the bound-
ary distance up to tolerance η. A call to getDist thus
gives log 1/η bits of information. So the attacker also learns
an average of two bits per bad query. However, here there is
a simple way to trade-off bad queries for good ones, which
lets the attacker learn the same log 1/η bits of information
with as little as one bad query. All that is required is a tall
building, and some eggs!

Measuring distances with one bad query. In the famous
“egg-dropping problem”, there is a building of N floors, and
you need to find the highest floor n ∈ [1, N ] from which an
egg can be dropped without breaking. The egg breaks iff
dropped from above some unknown floor n. In the simplest
version of the problem, you have a single egg and must
compute the value of n. The solution is to drop the egg from
each floor, starting from the first, until it breaks.

We note that finding the decision boundary between x and x̂,
while minimizing bad queries, is exactly the egg-dropping
problem! Assuming ∥x− x̂∥p = 1, a search tolerance of η
yields a “building” of N = 1/η “floors” of length η from x̂
to x. The first n floors (up to the boundary) are good queries,
i.e., no broken egg. All floors above n are bad queries on
the wrong boundary side, i.e., a broken egg.

While a binary search minimizes the total number of queries
for finding the boundary, a line-search—which moves from
x̂ to x until the boundary is hit—is optimal for minimizing
bad queries. Many attacks use a small search tolerance η
(on the order of 10−3), so a full line-search incurs a large
cost of good queries (1/η). We thus consider finer-grained
methods to trade-off bad and good queries.

Trading good and bad queries. In the general version
of the egg-dropping problem, you are given k ≥ 1 eggs
to find the safe height n with a minimal number of drops.
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Asymptotically, you need Θ(N
1/k) drops given k eggs, as

we now show for k = 2 eggs: first, divide the N floors
into
√
N groups of

√
N floors and do a coarse-grained line-

search by dropping from floors 1, 1 +
√
N, 1 + 2

√
N, . . .

until the first egg breaks. You now know the solution is in the
previous group of

√
N floors, so you do a fine-grained line-

search in this group one floor at a time. This requires at most
2
√
N drops. For our boundary finding problem, we can thus

divide the interval between x and x̂ into 1/η intervals, and
do two line searches with step-sizes respectively

√
η and η.

This will incur two bad queries, and 2
√

1/η total queries,
compared to one bad query and 1/η total queries as above.

A further optimization: early stopping. Greedy attacks
such as RAYS repeatedly check whether a new search di-
rection θ′ ← θ + δ improves upon the current adversarial
distance dist, and only if so issue a call to getDist to
compute the new distance dist′ < dist. For these at-
tacks to progress, it may be unnecessary to compute dist′

exactly. Instead, knowing that dist′ ≪ dist may be
enough to pick the new direction θ′ as it is “good”. We could
thus stop a line-search early when dist′ ≤ γ · dist—for
some γ < 1. In many cases, this lets us call getDist
while incurring no bad query at all, at the expense of a less
accurate distance computation.

4.3. Stealthy Variants of Decision-based Attacks

We now design stealthy variants of prior attacks, by applying
the toolkit of stealthy search procedures outlined above.

Stealthy distance computations. The most obvious way
to make existing attacks more stealthy is to instantiate every
call to getDist with a (k-stage) line-search instead of a
binary search. In contrast, calls to checkAdv on arbitrary
directions θ′ are hard to make more stealthy. This change
applies to the boundary distance computation in RAYS, to
the gradient-estimation queries in OPT, and to the step-
size searches and boundary projections in HOPSKIPJUMP,
SIGN-OPT and OPT. Since BOUNDARY ATTACK only calls
checkAdv, it cannot easily be made more stealthy.

Stealthy gradients. Attacks like OPT, SIGN-OPT and
HOPSKIPJUMP use most of their queries for estimating
gradients. The main difference is that instead of calling
checkAdv, OPT uses more expensive calls to getDist
to get a better estimation. Prior work shows that this tradeoff
is suboptimal in terms of total queries. However, the extra
precision comes for free when we consider the cost in bad
queries! Recall that checkAdv yields two bits of infor-
mation per bad query, while getDist with a line-search
yields log 1/η bits. Thus, OPT’s gradient estimator is strictly
better if we consider bad queries. In Appendix D, we for-
mally prove that (under mild conditions) OPT’s gradient
estimator gives quadratically better convergence rates (in
terms of bad queries) than the gradient estimators of SIGN-

OPT and HOPSKIPJUMP. We can leverage this to design
stealthy “hybrid” attacks that combine OPT’s stealthy gradi-
ent estimator with efficient components of newer attacks.

Stealthy hyper-parameters. Prior attacks were designed
with the goal of minimizing the total number of queries. As
a result, their hyper-parameters were also tuned for this met-
ric. When considering our asymmetric query cost, existing
hyper-parameters might thus no longer be optimal.

Our attacks. We combine the above principles to design
stealthy variants of existing attacks. We provide additional
implementation details for all attacks in Appendix B.2.

• STEALTHY RAYS: As in the original attack, in each it-
eration we first greedily check if a new search direction
improves the boundary distance and then replace the bi-
nary search for the new distance by a (k-stage) line-search,
optionally with early-stopping (see Section 4.2).

• STEALTHY OPT: The OPT attack is perfectly amenable
to stealth as it only calls getDist. We replace the
original binary search by a (k-stage) line-search in each
of these distance computations.

• STEALTHY HSJA: In each iteration, we use line
searches to compute the current boundary distance, and
the update step-size. We replace the original gradient esti-
mator (which calls checkAdv n times) with STEALTHY
OPT’s estimator (with n/20 getDist calls).

• STEALTHY SIGN-OPT: We make the same changes as
for STEALTHY HSJA, except that we retain the origi-
nal binary gradient estimator (otherwise this would be
the same as STEALTHY OPT). Further, we optimize the
hyper-parameters to make the attack stealthier.

5. Evaluation
We evaluate our stealthy decision-based attacks on a variety
of benchmarks, to show that our attacks can greatly reduce
the number of bad queries compared to the original attacks.

5.1. Setup

Datasets and models. We consider four benchmarks: un-
targeted attacks on ImageNet against a ResNet-50 classifier,
attacks against on a binary version of ImageNet, hereafter
ImageNet-Dogs, where positives are dog classes and nega-
tives are non-dog ones, attacks against a CLIP-based NSFW
detector using a subset of NSFW images in ImageNet2, and,
finally, attacks against a commercial NSFW detector, using
the same dataset as the previous benchmark. We provide

2We do not collect a new NSFW dataset due to the ethical
hazards that arise from curating such sensitive data. By using
a subset of ImageNet—the most popular image dataset in ML
research—we mitigate, but do not completely eliminate (Prabhu &
Birhane, 2020), the potential harms of building a NSFW dataset.
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more details about the setup in Appendix B.

Attacks. We evaluate BOUNDARY ATTACK, OPT, SIGN-
OPT and HOPSKIPJUMP for ℓ2 attacks, and HOPSKIPJUMP
and RAYS for ℓ∞ attacks. We adapt each attack’s official
code to enable counting of bad queries. We use each attack’s
default hyper-parameters, except for some optimizations by
Sitawarin et al. (2022) (see Appendix B).

We further evaluate our stealthy versions of OPT, SIGN-OPT,
HOPSKIPJUMP and RAYS. For former three, for efficiency
sake, we perform two-stage line-searches in all our exper-
iments and use the results to infer the number of queries
incurred by a full line-search. For STEALTHY SIGN-OPT,
we further trade-off the query budgets for computing gradi-
ents and step-sizes by reducing the attack’s default number
of gradient queries n by a factor k ∈ {1.5, 2.0, 2.5}. For
STEALTHY RAYS, we replace each binary search with a
line-search of step-size η = 10−3 (the default binary-search
tolerance for RAYS) and use early-stopping with γ = 0.9.

Metrics. As in prior work, we report the median ℓp norm
of adversarial examples after N queries (except we only
count bad ones). For each task, we run attacks on 500 sam-
ples from the corresponding test set (for ImageNet-Dogs,
we only attack dogs images). For the commercial NSFW
detector, we use 200 samples from ImageNet-NSFW.

Our motivation for counting bad queries is to assess whether
black-box attacks are viable for attacking real security sys-
tems. We thus focus on a “low” query regime: each attack
can make at most 1,000 bad queries per sample. Prior work
has considered much larger query budgets, which we dis-
regard here as such budgets are likely not viable against
systems that implement any query monitoring.

5.2. Results

The main results of our evaluation appear in Figure 3. We
also provide a full ablation over different attack variants and
optimizations in Table 4. For all benchmarks, our stealthy
attacks (with 1-stage line searches) issue significantly fewer
bad queries than the corresponding original attack.

ℓ2 attacks. Remarkably, while OPT is one of the earliest
and least efficient decision-based attacks, our STEALTHY
OPT variant is stealthier than the newer SIGN-OPT and HOP-
SKIPJUMP attacks. To reach a median ℓ2 perturbation of 10
on ImageNet, STEALTHY OPT needs 686 bad queries, a sav-
ing of 7.3× over the original OPT, and of 1.4× compared
to HOPSKIPJUMP. Our hybrid STEALTHY HSJA attack is
the stealthiest attack overall. On all three benchmarks, it
requires 1.47–1.82× fewer bad queries than HOPSKIPJUMP
to reach a median perturbation of 10. This shows that we
can even improve the stealthiness of attacks that do not
make use of many distance queries. Our techniques are thus
likely also applicable to other decision-based attacks that

follow HOPSKIPJUMP’s blueprint.

Figure 6 in the appendix shows the total number of queries
made by our stealthy attacks. As expected, our stealthy
attacks issue many more queries in total than attacks that
optimize for this quantity. To reach a median perturbation
of ϵ = 10, our attacks make 350–1420× more total queries
than the original non-stealthy attack. This large increase is
only warranted if benign queries are significantly cheaper
than bad queries. This may be the case in some applications,
e.g., uploading 1,000 benign images is permitted on plat-
forms like Facebook (Facebook, 2023), and thus likely less
suspicious than a single bad query. However, for less ex-
treme asymmetries in query costs (e.g., cbad = 10 ·c0), a less
strict tradeoff between bad and good queries is warranted.
We will explore this in Section 5.3. In Figure 11, we further
show the total cost of our attacks for various configurations
of the query costs c0 and cbad. A different attack variant is
optimal depending on the cost overhead of bad queries.

ℓ∞ attacks. The cost-effectiveness of stealthy ℓ∞ attacks
is better. Our STEALTHY RAYS attack reduces bad queries
compared to the original RAYS, which is itself more efficient
than HOPSKIPJUMP. To reach a median norm of ϵ = 8/255,
STEALTHY RAYS needs 103–181 bad queries for the three
benchmarks, 2.1–2.4× less than RAYS, and 7–17× less
than HOPSKIPJUMP. As STEALTHY RAYS issues only 2.1–
3.4× more queries than RAYS (see Figure 6), it is clearly
cost effective if cbad ≫ c0.

5.3. Trading off Good and Bad Queries

Our stealthy attacks in Figure 3 use full line-searches, which
use a single bad query (and many good queries). In Figures 4
and 7 we consider alternative tradeoffs. We provide a full
ablation over different attacks’ optimizations in Table 4.

For ℓ∞ attacks, STEALTHY RAYS with a two-stage line-
search and early stopping provides a nice tradeoff: for a
median perturbation of ϵ = 8/255, the attack makes 1.37×
more bad queries than a full line-search, but 3.7× fewer
total queries. This attack is actually strictly better than the
original RAYS (thanks to early stopping): our attack makes
1.77× fewer bad queries, and 8% fewer good queries!

For ℓ2 attacks, STEALTHY OPT with a two-stage line-search
shows a nice tradeoff over the original OPT: for a median
perturbation of ϵ = 10, our attack makes 4× fewer bad
queries, at the expense of 5× more good queries (see Fig-
ure 7). Unfortunately, none of our stealthy attacks with
two-stage line searches beat the original HOPSKIPJUMP in
terms of bad queries. Thus, attaining state-of-the-art stealthi-
ness with our techniques does appear to come at the expense
of a large overhead in good queries. As a result, improving
the total cost of existing ℓ2 decision-based attacks may be
hard, and thus attacking real security-critical systems with
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Figure 3. Our stealthy attacks find small adversarial perturbations with fewer bad queries. For each benchmark, we report the median
adversarial distance as a function of bad queries for various ℓ2 attacks (top) and ℓ∞ attacks (bottom). Our stealthy attack variants (full
lines) require fewer bad queries than the original attacks (dashed lines) to reach the same adversarial distance.
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Figure 4. Trade-offs between good and bad queries for various
search strategies in the RAYS attack on ImageNet.

these attacks may simply not be cost-effective.

5.4. Attacking a Black-box NSFW Detector

We now turn to a much more realistic attack scenario where
we target a commercial black-box detector of NSFW images.
The few attacks that have been evaluated against commercial
systems (e.g., the BOUNDARY ATTACK, or QEBA (Li et al.,
2020)) used a limited number of attack samples (3 to 5) due
to the high query cost—and thus monetary cost—of eval-
uating these attacks against a commercial API. To enable
a more rigorous evaluation, we focus here on RAYS—the
only attack we evaluated that reliably finds small adversarial
perturbations on a limited query budget (<500 queries).

Since real black-box systems expect 8-bit RGB images as
input, we set RAYS’s threshold η for a binary search or
line-search to 1/255, the smallest distance between two dis-
tinct RGB images. This is much coarser than the default
threshold of η = 10−3, and the attack thus finds larger
perturbations. Other decision-based attacks face similar
quantization issues when applied to real black-box systems.

Figure 5 shows the results. Evading this commercial de-
tector is much harder than the prior models we attacked,
presumably due to the discretization constraint described
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Figure 5. Attack on a commercial black-box NSFW detector. We
run RAYS and STEALTHY RAYS on 200 samples from our
ImageNet-NSFW dataset. We denote a query as bad if it is flagged
as “likely” to be NSFW. The stealthy attack needs 2.2× fewer bad
queries to find adversarial perturbations of size ϵ = 32/355.

above. Our STEALTHY RAYS attack outperforms RAYS
by 2.2× (we reach a median distance of 32/255 with 79 bad
queries, while RAYS needs 172). These perturbations are
noticeable, but preserve the images’ NSFW nature.

6. Conclusion
Our paper initiates the study of stealthy decision-based at-
tacks, which minimize costly bad queries that are flagged
by a ML system. Our “first-order” exploration of the design
space for stealthy attacks shows how to equip existing at-
tacks with stealthy search procedures, at a cost of a larger
number of benign queries. Decision-based attacks may be
made even stealthier by designing them from scratch with
stealth as a primary criterion. We leave this is an open
problem we hope future work can address.

We hope our paper will pave the way towards more refined
analyses of the cost of evasion attacks against real ML sys-
tems. In particular, our paper suggests a new possible metric
for defenses designed to resist black-box attacks: the num-
ber of bad queries before an attack is effective.
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A. Related Work
Threat models for ML evasion attacks. Modeling realistic ML evasion attacks is challenging (Gilmer et al., 2018;
Apruzzese et al., 2022). Our work contributes to this goal by introducing the more realistic asymmetric query cost metric, and
evaluating the feasibility of stealthy decision-based attacks. Prior work has attacked real security-critical ML systems such
as malware detectors (Biggio et al., 2013), copyright systems (Saadatpanah et al., 2020), or online content blockers (Tramèr
et al., 2019; Yuan et al., 2019). These works either assume white-box model access, or use black-box transfer attacks. The
latter are perfectly stealthy (they make no bad queries) but have limited success rates.

Detecting decision-based attacks. Chen et al. (2020b) and Li et al. (2022) detect decision-based attacks by monitoring
sequences of user queries. We aim to evade a more fundamental form of monitoring that any security-critical system likely
uses: flagging and banning users who issue many “bad” queries.

Stealthy score-based attacks. Score-based attacks, which query a model’s confidence scores (Chen et al., 2017), also
issue many bad queries. Designing stealthy score-based attacks is similar to the problem of “safe black-box optimization” in
reinforcement learning (Usmanova et al., 2020).

B. Details on Experimental Setup
B.1. Datasets and Models

ImageNet. We run the attacks against a ResNet-50 (He et al., 2016) classifier trained on ImageNet (Deng et al., 2009).
We use the model weights provided as part of the torchvision library (Paszke et al., 2019), which reach 76.13% validation
accuracy. When running the attacks, we use ImageNet’s validation set and we skip the samples that are already classified
incorrectly by the model. We mark a query as bad if it is classified into the class of the original input.

ImageNet-Dogs. To capture more realistic security-critical scenarios, we consider a variety of binary classification tasks
that aim to separate “good” from “bad” data. As a toy benchmark, we create a binary classification task from ImageNet
by considering as “bad” the images belonging to classes of dog breeds (i.e., the classes with indices included in the range
[151, 268]) and as “good” the images belonging to all the other classes. We create training and validation sets in this way
from the respective splits of ImageNet. Then, we take the ResNet-50 provided by torchvision, change the last linear layer
to a layer with one output, and fine-tune this model for one epoch on the training set, using Adam (Kingma & Ba, 2014)
with learning rate 10−3. Training the model takes around 1 hour using an Nvidia RTX A6000. The final model has 96.96%
accuracy, 87.14% precision, and 87.10% recall on the validation set. Since we are interested in creating adversarial examples
for the “bad” images, we only attack the images in the validation set that are correctly classified as “bad” (i.e., as dogs) by
the fine-tuned model.

ImageNet-NSFW. As mentioned in Section 5.2, we also evaluate the attacks on the NSFW content detector shared by
Schuhmann et al. (2022). This classifier takes as input CLIP (Radford et al., 2021) embeddings of images and outputs a
confidence in [0, 1]. We use the CLIP implementation provided by the HuggingFace Transformers library (Wolf et al., 2020)
to extract the CLIP embeddings from the input images. To create an evaluation set of NSFW images, we select the subset of
1,000 images in the ImageNet validation set that the NSFW content detector classifies as NSFW with highest confidence (it
is well known that ImageNet contains NSFW content (Prabhu & Birhane, 2020)). When attacking the model, we consider
an attack to be successful if the confidence of the detector drops below 0.5. Finally, we evaluate a black-box commercial
NSFW detector, using our ImageNet-NSFW dataset. The detector returns a score from 1 to 5, denoting that the input is
“highly unlikely” to “highly likely” to contain NSFW content. We consider a query bad if scored with 4 or 5.

B.2. Attack Hyper-parameters and implementation details

BOUNDARY ATTACK. We use the official implementation3, which is part of Foolbox (Rauber et al., 2017), with default
hyper-parameters on all tasks.

HOPSKIPJUMP. We use the official implementation.4 Following Sitawarin et al. (2022), we set gamma = 10,000 (this
hyper-parameter is used to determine the binary search threshold), as this gives better results.

3https://github.com/bethgelab/foolbox/blob/1c55ee/foolbox/attacks/boundary_attack.py
4https://github.com/Jianbo-Lab/HSJA/blob/daecd5/hsja.py

https://github.com/bethgelab/foolbox/blob/1c55ee/foolbox/attacks/boundary_attack.py
https://github.com/Jianbo-Lab/HSJA/blob/daecd5/hsja.py
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RAYS and STEALTHY RAYS. We use the official implementation.5 The attack has no hyper-parameters. The default
binary search tolerance is η = 10−3. For the line-search in STEALTHY RAYS we use the same step-size of 10−3 and
perform either a full line-search, or a two-stage search by first dividing the N search intervals into coarse groups of size√
N . For attacking the commercial black-box NSFW classifier in Section 5.4, we set the binary search tolerance and

line-search step-size to η = 1/255 and perform a full line-search. For the early-stopping optimization, we end a line search if
dist′ < 0.9 · dist.

In Figure 3, Figure 5 and Figure 6, the STEALTHY RAYS attack is the version with a full line-search and early-stopping.

OPT and STEALTHY OPT. We use the official implementation.6 Following Sitawarin et al. (2022), we set β = 10−2

(this hyper-parameter is used to determine the binary search threshold).

For STEALTHY OPT, when computing distances in random directions for estimating gradients, we need to select a safe
starting point for the line search. If the current boundary distance is dist, we start the search at the point at distance
(1 + γ) · dist along θ′, for γ > 0. If this point is not misclassified (i.e., the query is bad), we return (1 + 2 · γ) · dist
as an approximate distance. If the point is misclassified (i.e., safe), we perform a line-search with tolerance 1/η. We
split this interval into N = 10,000 sub-intervals and perform a 2-stage line-search with 100 coarse-grained steps and 100
fine-grained steps. For efficiency sake, we batch the line-search by calling the model on two batches of size 100, one for all
coarse-grained steps, and one for all fine-grained steps. To count the number of bad queries and total queries, we assume
that the line-search queries were performed one-by-one. If the first query in a line-search is not safe (i.e., the boundary
distance is larger than 1.01 · dist, we approximate the distance by dist′ ≈ 2 · dist.

In Figure 3 and Figure 6, the STEALTHY OPT attack is the version with a full line-search.

SIGN-OPT and STEALTHY SIGN-OPT. We use the official implementation.7 Following Sitawarin et al. (2022), we set
β = 10−2 (this hyper-parameter is used to determine the binary search threshold).

For STEALTHY SIGN-OPT, we do the same line-search procedure as STEALTHY OPT for computing step-sizes. We
change the default number of gradient estimation queries per iteration from n = 200 to n/k for k ∈ {1.5, 2, 2.5, 3}, i.e.,
n ∈ {67, 80, 100, 133}.

In Figure 3 and Figure 6, the STEALTHY SIGN-OPT attack is the version with a full line-search, and k = 2.5.

B.3. Compute and code

We run every attack on one Nvidia RTX 3090, and the time to run the attacks on 500 samples ranges from twelve hours,
for the attacks ran with binary search, to more than three days for the slowest attacks (e.g. OPT) ran with line search.
We wrap all the attack implementations in a common set-up for which we use PyTorch (Paszke et al., 2019). The code
can be found at the following URL: https://github.com/ethz-spylab/realistic-adv-examples. The
checkpoints of the model we trained, the NSFW classifier we ported from Keras to PyTorch, and the outputs of this model
on the ImageNet train and validation datasets can be found at the following URL: https://github.com/ethz-
spylab/realistic-adv-examples/releases/tag/v0.1.

C. Details on Decision-based Attacks
In this section, we provide some additional detail on how existing decision-based attacks work, and how they spend their
bad queries.

As explained in Section 4.1, existing decision-based attacks optimize over some adversarial direction θ ∈ [0, 1]d by
repeatedly: (1) computing the boundary distance dist from x along θ; (2) computing an update direction δ; and (3) picking
a step-size α, in order to perform an update step θ ← θ + α · δ.

We can thus split each attack iteration into three phases:

• projBoundary: given the original input (x, y) and a search direction θ, this phase finds a point xb that lies on
the model’s decision boundary along the line x + α · θ/∥θ∥., and returns the ℓp distance between x and xb, i.e.,

5https://github.com/uclaml/RayS/blob/29bc17/RayS.py
6https://github.com/cmhcbb/attackbox/blob/65a82f/attack/OPT_attack.py
7https://github.com/cmhcbb/attackbox/blob/65a82f/attack/Sign_OPT.py

https://github.com/ethz-spylab/realistic-adv-examples
https://github.com/ethz-spylab/realistic-adv-examples/releases/tag/v0.1
https://github.com/ethz-spylab/realistic-adv-examples/releases/tag/v0.1
https://github.com/uclaml/RayS/blob/29bc17/RayS.py
https://github.com/cmhcbb/attackbox/blob/65a82f/attack/OPT_attack.py
https://github.com/cmhcbb/attackbox/blob/65a82f/attack/Sign_OPT.py
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Table 1. Median number of queries for each attack to reach a median ℓ2 distance of 10 and median ℓ∞ distance of 8/255 on untargeted
ImageNet. We report the total number of attack queries Qtotal, and of “bad” queries Qbad (queries that get classified as the class that the
attacker wants to evade).

Norm Attack Total Queries Qtotal Bad Queries Qbad

ℓ2

OPT 9,731 4,975 (51%)
BOUNDARY 4,555 3,843 (84%)
SIGN-OPT 2,873 1,528 (53%)
HOPSKIPJUMP 1,752 953 (54%)

ℓ∞
HOPSKIPJUMP 3,591 1,789 (50%)
RAYS 328 244 (74%)

Table 2. Where do decision-based attacks spend their queries? We run untargeted attacks against a ResNet-50 on ImageNet (see Section 5.1
for details). For each attack, we report the fraction of queries used in checkAdv or getDist routines, and the fraction of bad queries
in each routine.

checkAdv getDist

Norm Attack all frac. bad all frac. bad

ℓ2

BOUNDARY 100% 84% 0% –
OPT 2% 50% 98% 52%
SIGN-OPT 77% 52% 23% 57%
HOPSKIPJUMP 93% 55% 7% 43%

ℓ∞
HOPSKIPJUMP 92% 50% 8% 50%
RAYS 36% 67% 64% 78%

dist← ∥x− xb∥p.

• updateDir: This phase searches for an update direction δ to be applied to the search direction θ.

• stepSize: This phase selects a step-size α for an update to the search direction θ.

We now describe how different attacks instantiate these generic phases and how they use the checkAdv and getDist
routines in each phase.

BOUNDARY ATTACK. The original decision-based attack of Brendel et al. (2017) is a greedy attack. In contrast to other
attacks, it only performs a heuristic, approximate projection to the model’s boundary in each step.

projBoundary: Given a misclassified point xb along the direction θ (originally a natural sample from a different class
than x), the attack samples random points around xb and checks on which side of the boundary they fall. From this, the
attack estimates a step-size to project xb onto the boundary, and then computes the distance dist between xb and x. This
requires n calls to checkAdv.

updateDir: The attack is greedy and simply picks a small update direction δ at random.

stepSize: The attack checks whether the distance to the boundary along the new direction θ + δ is smaller than the
current distance, dist. If not, the update is discarded. Note that this test can be performed with a single query to the model,
with a call to checkAdv.

RAYS. This is a greedy attack similar to BOUNDARY ATTACK, tailored to the ℓ∞ norm. Its search direction θ ∈ {−1,+1}d
is always a signed vector.

projBoundary: RAYS find the current distance to the decision boundary using a binary search, by calling getDist.

updateDir: The attack picks a new search direction by flipping the signs of a all pixels in a rectangular region of θ.

stepSize: The attack greedily checks whether the new direction improves the current distance to the boundary, by issuing
a call to checkAdv. If the distance is not reduced, the update is discarded.

OPT. This attack first proposed a gradient-estimation approach to decision-based attacks.

projBoundary: The attack starts by measuring the distance to the boundary, with a call to getDist. Specifically, it
performs a binary search between x and some point x̂ of a different class along the direction θ.

updateDir: The attack estimates the gradient of the distance to the boundary along the search direction θ. To this end, it
samples random directions r1, . . . , rn and computes the distance to the boundary along θ + ri, denoted as di ∈ R+, for
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Table 3. Queries issued by different decision-based attacks in a single attack iteration. We distinguish between checkAdv queries that
check whether some arbitrary direction yields a misclassification, and getDist queries that issue multiple calls to the model to measure
the distance to the model boundary along some direction. The hyper-parameter n is the number of times a routine is called for estimating
the geometry of the model’s decision boundary. The variable m is the average number of step-size searches conducted in one iteration of
OPT and SIGN-OPT.

Attack Phase

Attack projBoundary updateDir stepSize Total
BOUNDARY checkAdv · n – checkAdv checkAdv · (n+ 1)
OPT getDist getDist · n getDist ·m getDist · (n+m+ 1)
SIGN-OPT getDist checkAdv · n getDist ·m checkAdv · n + getDist · (m+ 1)
HOPSKIPJUMP getDist checkAdv · n getDist checkAdv · n + getDist · 2
RAYS getDist – checkAdv checkAdv + getDist

each. The estimated gradient is then:

δ ← 1

n

n∑
i=1

(dist− di) · ri . (1)

The attack uses n calls to getDist to compute the boundary distance along each random direction.

stepSize: OPT computes the step-size α with a geometric search: starting from a small step size, double it as long as this
decreases the distance to the decision boundary along the new direction θ + α · δ. Thus, each step of the geometric search
involves a call to getDist

SIGN-OPT and HOPSKIPJUMP. These attacks are very similar, and improve over OPT by using a more query-efficient
gradient-estimation procedure.

projBoundary: In HOPSKIPJUMP, this step is viewed as a boundary “projection” step which returns the point xb on
the boundary, while SIGN-OPT computes the distance from x to the boundary along θ. But the two views, and their
implementations, are equivalent. Both attacks use a binary-search to find a point xb on the boundary, as in OPT, with a call
to getDist.

updateDir: Both attacks also sample n random search directions r1, . . . , rn. But instead of computing the distance to
the boundary along each updated direction as in OPT, SIGN-OPT and HOPSKIPJUMP simply check whether each update
decreases the current distance dist to the decision boundary or not. The update direction is computed as

δ ← 1

n

n∑
i=1

zi · ri , (2)

where zi ∈ {−1,+1} is one if and only if the point at distance dist along the direction θ + ri is misclassified. HOP-
SKIPJUMP differs slightly in that the random directions ri are applied to the current point on the boundary xb, and we check
whether xb + ri is misclassified or not. Compared to OPT, these attacks thus only issue n calls to checkAdv (instead of n
calls to getDist), but the gradient estimate they compute has higher variance.

stepSize: SIGN-OPT uses the exact same geometric step-size search as OPT. HOPSKIPJUMP is slightly different from
the generic algorithm described above, in that it applies the update δ to the current point on the boundary xb. The attack
starts from a large step size and halves it until xb+α ·δ is misclassified. This amounts to finding the distance to the boundary
from xb along the direction δ, albeit with a geometric backtracking search instead of a binary search.

Summary of attacks. In Table 2, we show how many bad queries and total queries are used for both routines in an untar-
geted attack for a standard ResNet-50 on ImageNet (where we view the class to be evaded as “bad”). In Table 3 summarizes
how different attacks implement the three generic attack phases projBoundary, updateDir and stepSize in each
attack iteration. We distinguish here between the two routines called by the attacks, checkAdv and getDist defined in
Appendix C.

D. Convergence Rates of Stealthy Attacks
Prior work has analyzed the convergence rate of SGD with the zero-order gradient estimation schemes used in SIGN-OPT
and OPT (Liu et al., 2018; Cheng et al., 2019). We can use these results to prove that the gradient estimation of our
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STEALTHY OPT attack is asymptotically more efficient (in terms of bad queries) than the non-stealthy gradient estimation
used by sign and HOPSKIPJUMP.

Let g(θ) be the distance to the boundary along the direction θ, starting from some example x (this is the function that OPT
and SIGN-OPT explicitly minimize). Suppose we optimize g with black-box gradient descent, using the following two
gradient estimators:

• OPT: 1
Q

∑Q
i=1 (g(θ + ri)− g(θ)) · ri for Q random Gaussian directions ri.

• SIGN-OPT: 1
Q′

∑Q′

i=1 sign(g(θ + ri)− g(θ)) · ri for Q′ random Gaussian directions ri.

We can then show the following results:

Theorem 1 (Adapted from Liu et al. (2018) (Theorem 2)). Assume g has gradients that are L-Lipshitz and bounded by C
(assume L and C are constants for simplicity). Let d be the data dimensionality. Optimizing g with T iterations of gradient
descent, using OPT’s gradient estimator, yields a convergence rate of E[∥∇g(x)∥22] = O(d/T ), with O(T 2/d) bad queries.

Theorem 2 (Adapted from Cheng et al. (2019) (Theorem 3.1)). Assume g is L-Lipschitz and has gradients bounded by C
(assume L and C are constants for simplicity). Let d be the data dimensionality. Optimizing g with T iterations of gradient
descent, using SIGN-OPT’s gradient estimator, yields a convergence rate of E[∥∇g(x)∥2] = O(

√
d/T ), with O(T 2d) bad

queries.

The convergence rate of OPT is thus at least as good as that of SIGN-OPT,8 but OPT’s gradient estimator with line searches
requires a factor d2 fewer bad queries. The same asymptotic result as for SIGN-OPT holds for the similar estimator used by
HOPSKIPJUMP.

Proof of Theorem 1. Liu et al. (2018) show that OPT’s gradient estimator yields a convergence rate of E[∥∇g(x)∥22] =
O(d/T) +O(1/Q) (see Theorem 2 in (Liu et al., 2018)). To balance the two convergence terms, we set Q = T/d. To perform
Q evaluations of g(θ + ri)− g(θ), we need Q+ 1 calls to getDist. Each call makes multiple queries to the model f , but
only one bad query if we use a line search. This yields the number of bad queries in the theorem (T iterations with T

d bad
queries per iteration).

Proof of Theorem 2. Cheng et al. (2019) show that SIGN-OPT’s gradient estimator yields a convergence rate of
E[∥∇g(x)∥2] = O(

√
d/T) + O (d/

√
Q′) (see Theorem 3.1 in (Cheng et al., 2019)). To balance the two convergence

terms, we set Q′ = Td. To perform Q′ evaluations of sign(g(θ + ri) − g(θ)), one call to getDist and Q′ calls to
checkDir are required. Each checkDir call makes a single query to the model f , i.e., 1/2 bad queries on average. This
yields the number of bad queries in the theorem (T iterations with Td

2 bad queries per iteration).

8Note that Cheng et al. (2019) provide a bound on the gradient norm, while Liu et al. (2018) provide a bound on the squared gradient
norm. Applying Jensen’s inequality to the result of Theorem 2, we know that for SIGN-OPT we have E[∥∇g(x)∥22] ≥ (E[∥∇g(x)∥2])2 =
O(d/T ).
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E. Additional Figures and Tables

Table 4. Ablation on stealthy attack components. For attacks on ImageNet, we show the relative number of bad queries and good queries
(lower is better) compared to the original non-stealthy attack, to achieve a median ℓ2 perturbation of 10, or ℓ∞ perturbation of 8/255.

Attack Ablation
Bad queries reduction

(higher is better)
Good queries increase

(lower is better)

HOPSKIPJUMP
with OPT gradient estimation 1.56× 1418.72×
with OPT gradient estimation + 2-stage line search 0.78× 30.05×

OPT
with line search 7.25× 351.96×
with 2-stage line search 4.09× 4.62×

SIGN-OPT

with optimal k 1.06× 0.93×
with line search 1.26× 393.60×
with line search + optimal k 1.81× 386.60×
with 2-stage line search + optimal k 1.77× 4.79×

RAYS
with line search 1.98× 3.42×
with line search + early stopping 2.37× 3.42×
with 2-stage line search + early stopping 1.77× 0.92×
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(b) ImageNet-Dogs (ℓ2)
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(d) ImageNet (ℓ∞)
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(e) ImageNet-Dogs (ℓ∞)
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Figure 6. Trade-offs between total queries and bad queries made by different attacks. Our stealthy attacks (full lines) issue many more
queries than their original counterparts (dashed lines).
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Figure 7. Trade-offs between good and bad queries for different search strategies in the STEALTHY OPT attack. A full line-search makes
one bad query and up to 10,000 good queries. The version with two searches makes two bad queries and up to 2 · 100 good queries.
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Figure 8. Influence of the hyper-parameter k in the STEALTHY SIGN-OPT attack (the reduction in number of gradient estimation queries
per iteration). The best results are obtained with k = 2.5.
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Figure 9. Influence of the number of directions computed for the gradient estimation in the STEALTHY OPT attack. The best results are
obtained with q = 10, which is the original value from Cheng et al. (2018).
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Figure 10. Influence of the number of directions tested for the initialization in the STEALTHY OPT attack. The best results are obtained
with n = 100, when considering a larger number of queries, even though the difference between the different values is small.
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Figure 11. Costs trade-offs of various decision-based attacks on ImageNet, for different asymmetric costs of good and bad queries. We
show how the attack cost varies for different values of the base query cost c0, at a fixed cost cbad = 1 for bad queries. The advantage given
by the stealthy attacks is reduced when the relative cost of good queries increases.


