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Abstract

When faced with novel situations, people can marshal relevant considerations from1

a wide range of background knowledge and use these for inference and prediction.2

How do we draw in globally relevant information and reason over it coherently?3

We explore the hypothesis that people reason by constructing structured but small,4

ad-hoc mental models on the fly, tailored to novel situations. We propose a5

computational implementation of this idea – a “Model Synthesis Architecture”6

(MSA) – using language models to parameterize global, relevance-based retrieval7

of variables, and probabilistic programs to implement bespoke, coherent world8

models. We evaluate our MSA, along with ablations and baselines, as a model9

of human judgments across a sequence of experiments that requires progressively10

more open-ended and open-world reasoning about situations described in natural11

language. Across all experiments, the MSA captures human judgments, and12

outperforms the base LM alone – suggesting that MSAs offer a path towards13

capturing coherent human reasoning in open-ended domains.14

1 Introduction15

An influential idea in cognitive science holds that people reason and plan using mental models,16

or structured internal representations that mirror aspects of the world [12, 31, 19]. In this view,17

people draw on structured mental models to maintain consistent beliefs about current world states,18

integrate new information into their beliefs, and evaluate the plausibility of alternative hypotheses19

or possible futures. This idea also appears throughout classic and recent work in AI, in theoretical20

proposals [28, 39, 2] and empirical investigations (e.g., [42]) predicated on the idea that intelligent21

systems should reason and plan using structured internal representations of the causal systems and22

environments they operate over.23

In cognitive science, Bayesian modeling has found significant empirical support for a version of24

the “mental modeling” hypothesis, showing that human judgments across a wide variety of tasks25

are well-modeled by inference and decisions in causal, probabilistic models (e.g. about physical26

predictions [4, 26], causal learning [23], and social reasoning [3, 30], to name just a few). However,27

while these models are predictive of human judgments and learning in each of these settings, they28

remain importantly limited in that each model operates only in the limited scope for which it was29

designed. Any given model can provide inferences over the variables it represents, but cannot handle30

novel considerations that were not part of the initial model specification. People, by contrast, are31

‘open-world’ reasoners. We regularly reason about novel questions that draw on a highly varied set32

of things we know about the world, any of which are likely to be missing from any given mental33

model. To date, Bayesian modeling has left it unclear how such modeling approaches could scale to34

explain the simultaneous flexibility and coherence of human reasoning in general. This scalability35
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Figure 1: (A) Idealized Bayesian reasoning about arbitrary tasks ω given global background knowl-
edge K raises problems of computational tractability. (B) Model Synthesis Architectures use global
relevance functions to construct ad-hoc, structured mental models for locally coherent reasoning.
(C) We implement an MSA using LMs to parameterize global relevance functions and Probabilistic
Programs to construct ad-hoc probabilistic models.

challenge is also one of the most significant barriers to seeing structured Bayesian modeling as a36

general approach to building AI systems that capture these hallmarks of human reasoning.37

So, how do people reason in locally coherent ways in any given context, while drawing globally on38

potentially relevant considerations across their background knowledge and beliefs? In this paper,39

we explore the hypothesis that human minds implement “Model Synthesis Architectures” (MSAs,40

Figure 1), or architectures that construct small, ad-hoc mental models on the fly in response to task41

demands [7]. By reasoning within small models, MSAs can deliver local coherence over the variables42

they explicitly represent, while the ability to synthesize arbitrary models as needed allows the architec-43

ture to reason and plan in open-ended environments, where the relevant considerations are not fixed in44

advance. We implement a concrete instance of an MSA (Figure 1C) using Probabilistic Programming45

Languages (PPLs) [21, 5, 8, 14] to express individual models as probabilistic programs, and using a46

neurally-guided program synthesis procedure, constituted by structured calls to a Language Model47

(LM), to construct relevant mental models. Our goal in combining these is to build a system that, like48

human cognition, can operate in the open-world setting while still delivering the natively coherent49

reasoning of structured probabilistic models and addressing concerns about the fragility of internal,50

“world model”-like representations in language models alone (e.g., [42, 36]).51

We study this MSA implementation empirically and compare it with human ad-hoc reasoning, as52

well as pure LM and PPL baselines using a domain of natural language inference tasks designed to53

test generalization and coherence. We design a sequence of experiments to test coherent open-world54

reasoning. We first evaluate how people and models reason on a relatively controlled set of natural55

language inference problems, then construct successive experiments that demand progressively more56

generalization to novel variables while drawing on more distant background knowledge. Across all57

experiments, we find that human reasoning is well-captured by our Model Synthesis Architecture,58

which provides a better match to human judgments than LM-only baselines and model ablations. This59

represents a proof of concept that neural language modeling and structured probabilistic modeling60

can be interleaved to explain people’s ability to reason in ways that are globally relevant and locally61

coherent in an open-world setting.62

2 Model Synthesis Architectures63

We consider the general problem of inferring answers A to an arbitrary inference or prediction64

problem ω . In the idealized Bayesian inference setting (Figure 1, top), drawing these inferences65

involves conditioning on the information in the specific problem ω in light of all of the reasoner’s66

prior background knowledge K to produce answers:67

P (A | ω,K). (1)
Computing this will often be prohibitively costly, as probabilistic inference is intractable in the68

general case, and wasteful, since on any one occasion, it’s likely that only a small portion of what69

the reasoner actually knows will matter for the question at hand. Instead of computing this full70

conditional, we propose that a reasoner “marshals” only a subset of their background knowledge (K →)71
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Figure 2: (Top) Schematic overview of the MSA implementation, which sequentially constructs
Mad-hoc from input natural language tasks ω through interleaved LM-guided generation steps, and
scoring steps using intermediate scoring functions !. (Bottom) Detailed overview of the MSA
implementation. Given a task ω as a (potentially partial) background description B, observations O,
and questions Q, we sequentially construct Mad-hoc through parsing the current inputs, retrieval of
additional background knowledge in language, proposal of a conceptual dependency graph, and finally
synthesis of a formal probabilistic model in which we compute model-based Bayesian inferences.

that is relevant to the problem at hand, such that:72

P (A|ω,K →) → P (A | ω,K). (2)
In particular, to draw coherent inferences, we propose that reasoners use this reduced set of back-73

ground knowledge to construct a context-specific mental model (Mad-hoc) which they use to perform74

probabilistic inferences (Figure 1, middle), assuming that:75

P (A|Mad-hoc) → P (A|ω,K →). (3)
We call any system that implements this overarching cognitive hypothesis a Model Synthesis Ar-76

chitecture, as it decomposes reasoning about an arbitrary problem into two distinct computational77

subproblems: (1) a problem-conditioned, ad-hoc model synthesis step to construct Mad-hoc, and then78

(2) a step computing Bayesian model-based inferences to answer the question conditional on the79

constructed model, i.e. computing P (A|Mad-hoc).80

The formal nature of each of these subproblems differs. As in resource-rational framings [34], we pro-81

pose that reasoners treat ad-hoc model synthesis as an optimization problem, selecting representations82

that they believe will be useful for reasoning about a problem:83

argmax
i↑kmodel

!(M i

ad-hoc, ω) (4)
based on various model evaluation functions ! (e.g., trading off between computational costs of84

inference in the model with expected accuracy for a set of queries) over a set of kmodel sampled85

models. In contrast to model synthesis, reasoning and planning with a synthesized model might86

look like optimization, inference, or deduction, depending on the problem and synthesized model.87

We focus on probabilistic inference, where models represent structured priors or conceptions of the88

relevant variables and dependencies for the problem at hand, cf. [20, 22].89

In this paper, we consider a subset of ω , the space of natural language probabilistic reasoning problems90

defined by a tuple (B,O,Q), where B is a (potentially partial and underspecified) set of background91

variable descriptions b1, ..., bN about a situation at hand (e.g., someone trying to predict upcoming92

sports tournaments in a bracket might mention factors like injuries or training that they believe should93

be considered); O is a set of observations o1, ..., oN providing evidence that bears on those variables94
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(e.g., observations about which teams have previously won or lost in the tournament); and Q is a set95

of questions q1, ..., qN that single out particular queries to answer given the evidence (e.g., specific96

prediction questions about which teams will win in an upcoming match).97

2.1 Representing and synthesizing ad-hoc models98

In this section, we describe a concrete MSA implementation in which ad-hoc models are represented99

as task-specific probabilistic programs. Each probabilistic program represents models as a tuple100

Mad-hoc = (”B ,”O,”Q), in which ”B are set of stochastic function definitions that formalize a101

causal prior over relevant background variables, by defining their distributional form and causal102

dependencies; ”O are a set of observed constraints over defined variables which condition belief103

under the prior; and ”Q are query expressions over the defined variables which define targets for104

Bayesian inference under the conditioned probabilistic model.105

Our concrete implementation then frames model synthesis as LM-guided probabilistic program106

synthesis, using LMs to parameterize a search procedure over programs conditioned on an input task,107

and to parameterize a set of model evaluation functions !. This implementation ultimately answers108

queries in synthesized models as P (A|Mad-hoc), using automatic Bayesian inference procedures109

defined generally over the probabilistic programming language. We present an implementation that110

approximates this optimization over models via a sequentially staged synthesis process, interleaving111

structured steps of partial model generation and evaluation. Interleaving generation and evaluation112

allows us to focus future generation stages on outputs that evaluate highly under components of ! so113

far, providing efficiency gains. We briefly overview these stages here; additional details on each stage114

can be found in the supplement:115

Parse (Figure 2a): We first parse the current natural language inputs (ω = B,O,Q) into a set116

of candidate probabilistic program condition and query expressions (”O,”Q) to be passed on to117

future model synthesis stages. (We do not yet parse the background B, as we expand on that in the118

future stages.) Specifically, we use an LM that has been prompted to parse each sentence of input119

natural language observations into a corresponding formal expression (εO) intended to condition a120

probabilistic model with observed constraints on latent variables, and questions into query expressions121

(εQ) that define target variables for inference in that model. We sample proposed parses from an LM122

conditioned on the input task (see Appendix for prompting details):123

”O,”Q ↑ PLM(”O,”Q|ω) (5)
We then score each sampled parse according to an evaluation function !parse (also defined using124

an LM prompted with example parses). We generate kparse candidates and greedily select the best125

conditioned on the input task:126

”↓
O
,”↓

Q
= argmax

i↑kparse
!parse(”

i

O
,”i

Q
|ω) (6)

This best parse (we use the * notation throughout to refer to the best scoring generations, from a set127

of candidates, with respect to a utility function !) is then passed on to the next stage.128

Relevant Natural Language Background Description (Figure 2b): Next, we retrieve candidates129

for additional, relevant background knowledge details (B+ = {b+1 , b
+
2 , ...b

+
N →}). These will be130

combined with the initial (potentially underspecified) input background B to yield an augmented131

natural language description Baug = B
⋃
B

+ that is intended to fully specify, in explicit detail, latent132

relevant variables for reasoning about the task at hand. We sample these additional background details133

from an LM prompted to name relevant variables and explicitly describe their causal relationship on134

other variables, conditioned on the previous stages of generation:135

Baug ↑ PLM(b+1 , b
+
2 , ...b

+
N → |”↓

O
,”↓

Q
, ω). (7)

Conceptual Dependency Graph (Figure 2c): Jointly with generating Baug, we also generate a136

conceptual dependency graph G which explicitly summarizes the dependencies between all variables137

in Baug. We jointly score Baug and G using an LM-parameterized evaluation function !relevance138

(defined using an LM prompted with example retrieved variables and graphs). We generate krelevance139

candidates and greedily select the best:140

B
↓
aug

, G
↓ = argmax

i↑krelevance
!relevance({Baug, G}i|”↓

O
,”↓

Q
, ω) (8)
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Exp. 1:  Detailed backgrounds Exp. 2: Underspecified backgrounds

In this event, the athletes are competing in a series 
of canoe races. 

An athlete's intrinsic strength remains constant 
throughout a tournament. An athlete neither gets 
stronger nor weaker between races...

Athletes also vary in the effort that they put into any 
given race. Most of the time, people row with a 
moderately high amount of effort....

How fast a team rows overall in any given race is 
determined by the average rowing speed of each 
athlete. How fast an athlete rows in a given race is 
determined by their intrinsic strength, modified by 
how much effort they put in (a lower fraction of 
their intrinsic strength if they don’t put in much 
effort, or even more than their strength if they put 
in more effort).

The team that rows the fastest (highest team speed) 
in a given race wins.

In the first race, Robin and Taylor lost to Avery and Sam.
In the second race, Robin and Indiana lost to Avery and Ollie.
In the third race, Robin and Lane beat Avery and Casey.

+ Participant-generated commentary

Example: “Taylor is brand new to the 
sport of canoe racing, and this is only his 
2nd time competing."
Example: “Avery seems to have come 
down with a stomach virus between 
rounds, but has decided to compete 
anyway.”
Example: “Kay didn't get enough sleep 
last night and can barely stay awake 
during the race..”

x 3 sports with different causal variables

In this event, teams of players are 
competing in matches of tug-of-war. 
Outcomes depend on how hard athletes 
collectively pull based on intrinsic 
strength and effort.

In a new round later this same day between 
Robin and Taylor (T1) and Avery and Sam (T2), 
who would win and by how much?

In this event, teams of players are 
competing in a series of canoe races. 
Outcomes depend on the speed that 
athletes row based on intrinsic strength 
and effort.

In this event, the athletes are competing in 
a series of canoe races. 
In each race, the team that wins depends on 
the speed that athletes row based on 
intrinsic strength and the amount of effort 
they put into a given race.

How much effort (on a 0-100% scale) 
do you think Avery put into the third 
race?

Out of 100 other athletes, where do 
you think Robin ranks in terms of 
intrinsic strength?

Constant latent variables Temporally varying variables New match prediction

Excerpt 
from

background  B,
canoe race

Example 
observations

O

Example 
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Q

Exp. 3: Underspecified backgrounds

Base underspecified background 
from Exp. 2

+ Varying patterns of observed evidence

In the first race, Val and Gale lost to Avery and Kay.
In the second race, Val and Harper lost to Avery and Ness.
In the third race, Val and Indiana lost to Avery and Casey.

In this event, teams of players are 
competing in rounds of a biathlon. 
Outcomes depend on a team’s combined 
skiing speed based on intrinsic strength, 
and shooting accuracy.

Figure 3: Experiment overview for the three natural language reasoning experiments.

Probabilistic Model (Figure 2d): We now generate a full symbolic probabilistic model Mad-hoc.141

We sample candidate models as probabilistic programs from an LM prompted with examples of the142

preceding steps of generation and corresponding programs:143

Mad-hoc ↑ PLM(Mad-hoc|B↓
aug

, G
↓
,”↓

O
,”↓

Q
, ω). (9)

We evaluate the sampled model for formal validity !model (we use a simple Boolean function that just144

returns executable models) and finally return the best model as:145

Mad-hoc↓ = argmax
i↑kprogram

!model(M
i

ad-hoc). (10)

Probabilistic Inference (Figure 2e): Finally, we compute probabilistic inferences in Mad-hoc using146

general Bayesian inference algorithms defined over the probabilistic programming language. We147

return inferences in the queried and conditioned model.148

P (A|Mad-hoc↓). (11)
as a joint distribution over the set of answers A corresponding to input questions.149

3 Natural Language Reasoning Experiments150

To evaluate flexible ad-hoc reasoning in people and models, we construct a domain of natural151

language inference problems. We then design three experiments around this domain that require152

people and models to bring to bear progressively more background information to reason about the153

problem at hand. Here we briefly overview the domain and progression of experiments; additional154

information on all stimuli and experiments can be found in our supplement.155

3.1 Domain – Model Olympics vignettes156

Our domain is a set of vignettes about three different sporting events – tug-of-war, canoe-racing,157

and biathlon – each with distinct causal structures and variables. Each vignette includes a set of158

observations about teams of athletes competing in a specific set of matches (e.g. In the first race,159

Robin and Taylor beat Avery and Sam), and a palette of 8 different questions that require inferring160

latent variables and new predictions. Of these 8 questions, 3 are always about a constant latent161

variable (e.g the underlying strength of the athletes), 3 are about a temporally varying latent variable162

(eg. the amount of effort an athlete puts into a given match), and 2 require making predictions about163

future matches. We construct 7 underlying vignette templates designed to probe different patterns of164

evidence (e.g. anomalous loss cases where an otherwise strong team happens to lose). In total, we165

design 21 vignettes (7 templates x 3 sports).166
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3.2 Human and model experiments167

Experiment 1 (detailed background context) tests ad-hoc reasoning about arbitrary collections of168

variables when they are described explicitly for a given situation. Vignettes are presented with detailed169

linguistic background descriptions (Figure 3, left) based on the gold, hand-crafted probabilistic models170

for each sport. These background descriptions spell out the functional form of relevant variable171

distributions. NE1 = 78 participants from Prolific judged a random sample of two vignettes from172

each of the sports.173

Experiment 2 (under-specified background context) tests ad-hoc reasoning when some relevant174

variables are briefly described or implied in language, but most of the relevant intermediate details175

must be filled in from a participants’ background knowledge. Vignettes are presented with brief176

and under-specified background descriptions (Figure 3, center) that name the key variables for each177

sport, but do not explicitly spell out the functional form of their underlying distributions or how these178

variables interact to produce observed outcomes. NE2 = 80 participants from Prolific judged the179

same batches of vignettes as in Experiment 1.180

Experiment 3 (participant-generated novel details) tests how people flexibly incorporate arbitrary181

evidence into ad-hoc reasoning, by introducing uncontrolled new variables from outside the scope of182

our original domain. To do this, we extend the under-specified vignettes from Experiment 2 with new183

participant-generated details (“sports commentary”, Figure 3, right), from naive participants prompted184

to come up with new, relevant observations that would have changed their own predictions about185

a particular future match (eg. to make a given outcome more or less likely).Participant-generated186

details were collected from NE3,a = 20 naive human subjects in a separate elicitation task. This187

experiment used a smaller set of 9 total vignettes across two sports (tug-of-war and canoe racing). In188

the main judgment task with the extended vignettes, NE3,b = 20 participants judged all 9 vignettes.189

We instantiate our MSA architecture using Llama-3.1-70B as our base LM for all parsing, code190

synthesis, and LM-based evaluations; and WebPPL [1] as our probabilistic programming language.191

Across all three experiments, we elicit simulated judgments from the MSA and alternatives in the192

form of estimated posteriors for the palette of questions, conditioned on the vignettes. We compare193

the MSA judgments to those of several alternative models:194

• Gold symbolic models: For Exp. 1 and Exp. 2, we estimate posteriors using the hand-195

designed, gold symbolic models constructed for each of the three sports196

• Large language models (direct and CoT): We also compare to two LM-only alternatives197

using the base LM model (Llama-3.1-70B): a“direct” response setting, where we prompt198

the LM to directly answer all questions for each vignette via feedforward generation, and a199

chain-of-thought (CoT) setting [45].200

4 Results201

We compare human judgments to all models using both correlational measures (R2) between people202

and models, computed between the mean judgments across all participants (combining all participant203

clicks for each query) and the mean judgments for each model (combining all simulated participant204

samples for each query); and distributional measures, computed as the Wasserstein Distance205

(WD) metric, to compare the similarity in probability distributions over inferred variables – lower206

Wasserstein Distances between model judgments and human judgments mean that the distributions207

are more similar to one another.208

Key finding 1: People’s reasoning is generally consistent with Bayesian inference in ad-hoc209

probabilistic models. Figure 5 and Figure 6 (A-C) shows that across all three experiments, infer-210

ences in the probabilistic models synthesized by our MSA are generally well-correlated with human211

judgments. This result is also borne out by our distributional analyses. Figure 6 (D-F) shows that212

the MSA captures not just the average human judgment, but often the distribution of predictions.213

Under this metric, comparison to the human-human baseline again shows that the distribution of214

MSA inferences is about as similar to human judgments (purple) as humans are to each other (blue).215
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In this event, the athletes are competing in matches of tug-of-war. 
An athlete’s intrinsic strength remains constant...

Athletes also vary in the effort that they put into any given match...

How hard each athlete pulls in a given match is determined by
their intrinsic strength, modified by how much effort they put in...

How hard a team pulls overall in any given match is determined by 
the total amount that all of the athletes on the team pull in that 
match. 

Exp. 1 var intrinsic_strength = mem(function ({athlete}) {
... return Math.max(gaussian(intrinsic_strength_average,    
intrinsic_strength_variance), 0)})

var effort_level_in_match = mem(function({athlete, match}) {
...return Math.min(Math.max(gaussian(effort_average,
effort_variance), 0), 1)})

var athlete_pulling_strength_in_match = mem(function({athlete, match}) {
...var pulling_strength_adjusted_for_effort_level_in_this_match =
effort_multiplier * base_pulling_strength_in_action;
return pulling_strength_adjusted_for_effort_level_in_this_match;})

var team_pulling_strength_in_match = function({team, match}) {
return sum(map(function(athlete) {return 
athlete_pulling_strength_in_match({athlete: athlete, 
match: match}) }, team))}

Exp. 2

In this event, the athletes are competing in a series of canoe races. 
In each race, the team that wins depends on the average speed with 
which the athletes are able to row, based on their intrinsic strength 
modulated by other factors including how much effort they put in 
to that race.

Intrinsic strength is an underlying attribute of a given athlete 
that varies somewhat widely from athlete to athlete... We'll 
imagine that players tend to be weak, average, or strong, and 
uniformly around that.

The amount of effort that an athlete puts into any given race is a 
continuous parameter...This effort is somewhat contingent on an 
athlete's intrinsic strength, because stronger athletes probably 
tend to be more likely to put in extra effort...

The speed of an individual athlete is determined by their 
intrinsic strength and effort level.

In each race, the team that wins depends on the average speed with 
which the athletes are able to row.

var intrinsic_strength = mem(function ({athlete}) {
var intrinsic_strength_average = categorical({ps: [weak_prior,         
average_prior, strong_prior], vs: [weak_mean, 
average_mean,strong_mean]});...)}

var effort_level_in_race = mem(function({athlete, race}) {
var parameter_low_effort_prior = 

intrinsic_strength(athlete) > strong_threshold ? 0.05 :
intrinsic_strength(athlete) < weak_threshold ?  0.8 : 0.2; ...})

var athlete_rowing_speed_in_race = mem(function({athlete, race}) {
var strength_modulated_for_effort_level = (effort_level_in_race({athlete:
athlete, race: race}) / average_effort) * intrinsic_strength({athlete :  
athlete}); return strength_modulated_for_effort_level; })

var team_rowing_speed_in_race = function({team, race}) {
var average_team_speed = mean(map(function(athlete) { return
athlete_rowing_speed_in_race({athlete: athlete, race: race}) }, team));
return average_team_speed;}

“Quinn is a newcomer to canoe races and this is his first 
competition.  He doesn't have nearly the hours on the water any 
single other person in the water today does”

A canoe racer who is inexperienced with canoe racing puts 
less effort and is probably less strong.

var inexperienced_canoe_racer = function({athlete}) {
return effort_level({athlete}) < effort_threshold && 
intrinsic_strength({athlete}) < strength_threshold;}

Taking an energy drink is an event that affects the 
match in which the energy drink was taken.

var pulling_strength_adjusted_for_taking_energy_drink =       
took_energy_drink ({athlete}) 
? pulling_strength* 1.3 : pulling_strength;

Reduced if they pulled a muscle in their shoulder in any 
PREVIOUS match. 

var pulling_strength_adjusted_for_pulled_muscle =   
any_previous_time_inclusive(function(prev_match) {
return pulled_muscle_in_shoulder_in_match({athlete,
prev_match)}, match) ? base_pulling_strength_in_match * 0.7 : 
base_pulling_strength_in_match;

Excerpts 
from detailed 

background B,
tug-of-war

Corresponding excerpts from synthesized Mad-hoc

Excerpts 
from 

underspecified
background B,

canoe racing

Excerpts 
from informal 

retrieved  
background 

knowledge B+

Corresponding excerpts from synthesized Mad-hoc

Exp. 3

Participant-
generated 

commentaries

Retrieved
B+

“Ness took an energy drink and it just kicked in to give them extra 
energy for their matchs”

“In the first match of tug-of-war Kay pulled a muscle in their 
shoulder that limited their pulling output going forward.”

Corresponding excerpts from synthesized Mad-hoc

Figure 4: Excerpts showing key parts of the natural language inputs, retrieved additional informal
background knowledge B

+ as natural language describing proposed relevant latent variables, and
resulting formal ad-hoc models Mad-hoc as synthesized probabilistic programs. Exp. 1 (top) shows
how detailed natural language descriptions (left) are grounded into stochastic function definitions
(right). Exp. 2 (center) shows how our pipeline also retrieves relevant variables in natural language
(left, bottom) that are formalized into resulting synthesized programs (right). Exp. 3 (bottom) shows
how additional participant-provided free-form natural language can also formalized into ad-hoc
model definitions (excerpted on the left).

Together these results suggest that in each of these experimental settings people reason in ways that216

are consistent with normative Bayesian inferences over some structured set of relevant variables –217

and that these variables can be retrieved automatically using our approach.218

Key finding 2: People’s reasoning is more similar to inference in structured probabilistic models219

than LM-only alternatives, especially when generalizing to arbitrary new details. We next220

compare people’s inferences to alternate models and compare models to one another to probe the221

structural cross-similarity in probabilistic judgments across model classes. The blocks of correlations222
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Figure 5: Correlations between human judgments and MSA predictions across Experiment 1 (A),
Experiment 2 (B), and Experiment 3 (C). Each plot shows correlations within a specific sport and
query type. Points on each plot are between mean predictions for each query, for each scenario, over
all participant answers and over all simulated participant model posteriors for that query.

visible on the heatmaps in Figure 6 (A-C) show that in many cases, humans are better correlated223

with themselves and symbolic models (MSAs and the hand-crafted probabilistic models) than with224

LMs, which are instead better correlated with each other. This finding parallels cross-model results225

from the distributional metric Figure 6 (D-F), which also shows that humans, MSA, and hand-crafted226

models distributions (blue, purple, and silver) are generally closer to the human distribution than the227

LM distribution (pink and orange).228

In Experiment 3, which targeted the open-world setting, MSA judgments were substantially better229

aligned with people’s than were those of LM-only alternatives. That these differences were greatest230

in this setting is suggestive in two ways. First, LM baselines may face particular challenges in fitting231

human judgments as the distribution shifts further from familiar settings. Second, the open-world232

Experiment 3 represents the most significant a priori challenge to existing, hand-crafted symbolic233

models of cognition. That the MSA continues to outperform LM baselines in this case suggests234

that probabilistic modeling can continue to best capture human judgments, even in the open-world235

setting. Globally, these findings suggest an asymmetry in LMs abilities — LM’s may be relatively236

better equipped to retrieve relevant world knowledge in human-like ways, but relatively less able to237

integrate that evidence into a locally coherent world model the way that people do.238

Key finding 3: MSA can retrieve and represent relevant information about arbitrary situations239

as structured probabilistic models. Both correlational and distributional analyses suggest that240

the implemented MSA can synthesize models that quantitatively capture human inferences. But241

what do these ad-hoc probabilistic models actually look like? The qualitative examples in Figure 4242

show that the LM-guided synthesis approach is generally able to retrieve reasonable descriptions of243

variables and causal dependencies; and that it can parse natural language descriptions from both the244

original inputs (Figure 4, Exp. 1) and retrieved background knowledge (Figure 4, Exp. 2, 3) into245

corresponding probabilistic programs.246

At the same time, manual inspection of the underlying code also reveals places where the MSA247

implementation generates imperfect parses. These range from somewhat minor (e.g., the retrieved248

additional natural language B
+ suggests that the winning team depends on a team’s average speed,249

but the synthesized model sometimes does not encode this with a mean); to relatively more drastic250

omissions (for instance, the synthesized models in Exp. 3 often did not correctly interpret modal251

temporal logics, like that a pulled shoulder limits pulling strength in future matches, until we allowed252

the synthesis procedure to access a library of modal logic functions). We discuss both these limitations253

and opportunities for further work in Supplement Section A2.254
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Hand-crafted

LM-Direct
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Wasserstein Distances

Figure 6: Correlational and distributional comparisons of MSA, hand-crafted symbolic, and LM-
only alternative models to human judgments. (A)-(C) Cross-model and model-human R

2 for each
experiment, where R

2 are computed over mean judgments per scenario per query. Reasoners are
abbreviated (Hu=human, M=MSA, HC=hand-crafted symbolic probabilistic program, LMd=LM-
Direct, LMc=LM-CoT); (D)-(F) Wasserstein Distances from models and baselines to distribution of
human judgments (individual Wasserstein Distances (WDs) computed between judgments per query
per scenario, then aggregated as the mean over query types, and mean across query types for each
depicted sport and experiment; lower distances indicate closer similarity to the distribution of human
judgments. Error bars show 95% CI over 1000 bootstrapped samples, with replacement.

5 Discussion255

In this work, we investigated how people are able to reason in ways that deliver global relevance256

and local coherence – that is, how human reasoning is able to show both a sensitivity to relevant257

considerations from across people’s background knowledge and coherent integration of evidence258

over those considerations. In our experiments, we found that an MSA can synthesize ad-hoc models259

that fit human judgments in the first instance, and fit those judgments better than LM baselines. This260

suggests that MSAs offer a promising avenue towards capturing the computations underlying human261

reasoning, especially in open-world settings. We include an expanded discussion of limitations and262

future work in Supplement A2. The problem of open-world cognition is the challenge of being263

able to reason well-enough in the vast space of problems we encounter. We have taken a small step264

in that direction by showing that reasonable mental models can be automatically synthesized for265

new problem instances in a novel family of tasks. Much more is needed to determine whether this266

approach can scale to the level of generality and flexibility seen in human cognition.267
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