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Abstract

When faced with novel situations, people can marshal relevant considerations from
a wide range of background knowledge and use these for inference and prediction.
How do we draw in globally relevant information and reason over it coherently?
We explore the hypothesis that people reason by constructing structured but small,
ad-hoc mental models on the fly, tailored to novel situations. We propose a
computational implementation of this idea — a “Model Synthesis Architecture”
(MSA) — using language models to parameterize global, relevance-based retrieval
of variables, and probabilistic programs to implement bespoke, coherent world
models. We evaluate our MSA, along with ablations and baselines, as a model
of human judgments across a sequence of experiments that requires progressively
more open-ended and open-world reasoning about situations described in natural
language. Across all experiments, the MSA captures human judgments, and
outperforms the base LM alone — suggesting that MSAs offer a path towards
capturing coherent human reasoning in open-ended domains.

1 Introduction

An influential idea in cognitive science holds that people reason and plan using mental models,
or structured internal representations that mirror aspects of the world [12} 31} [19]. In this view,
people draw on structured mental models to maintain consistent beliefs about current world states,
integrate new information into their beliefs, and evaluate the plausibility of alternative hypotheses
or possible futures. This idea also appears throughout classic and recent work in Al, in theoretical
proposals [28} |39, 2] and empirical investigations (e.g., [42]) predicated on the idea that intelligent
systems should reason and plan using structured internal representations of the causal systems and
environments they operate over.

In cognitive science, Bayesian modeling has found significant empirical support for a version of
the “mental modeling” hypothesis, showing that human judgments across a wide variety of tasks
are well-modeled by inference and decisions in causal, probabilistic models (e.g. about physical
predictions [4}26]], causal learning [23], and social reasoning [3}30], to name just a few). However,
while these models are predictive of human judgments and learning in each of these settings, they
remain importantly limited in that each model operates only in the limited scope for which it was
designed. Any given model can provide inferences over the variables it represents, but cannot handle
novel considerations that were not part of the initial model specification. People, by contrast, are
‘open-world’ reasoners. We regularly reason about novel questions that draw on a highly varied set
of things we know about the world, any of which are likely to be missing from any given mental
model. To date, Bayesian modeling has left it unclear how such modeling approaches could scale to
explain the simultaneous flexibility and coherence of human reasoning in general. This scalability
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Figure 1: (A) Idealized Bayesian reasoning about arbitrary tasks 7 given global background knowl-
edge K raises problems of computational tractability. (B) Model Synthesis Architectures use global
relevance functions to construct ad-hoc, structured mental models for locally coherent reasoning.
(C) We implement an MSA using LMs to parameterize global relevance functions and Probabilistic
Programs to construct ad-hoc probabilistic models.

challenge is also one of the most significant barriers to seeing structured Bayesian modeling as a
general approach to building Al systems that capture these hallmarks of human reasoning.

So, how do people reason in locally coherent ways in any given context, while drawing globally on
potentially relevant considerations across their background knowledge and beliefs? In this paper,
we explore the hypothesis that human minds implement “Model Synthesis Architectures” (MSAs,
IFigure 1)), or architectures that construct small, ad-hoc mental models on the fly in response to task
demands [7]]. By reasoning within small models, MSAs can deliver local coherence over the variables
they explicitly represent, while the ability to synthesize arbitrary models as needed allows the architec-
ture to reason and plan in open-ended environments, where the relevant considerations are not fixed in
advance. We implement a concrete instance of an MSA (Figure IIC) using Probabilistic Programming
Languages (PPLs) [21, 15,8l [14] to express individual models as probabilistic programs, and using a
neurally-guided program synthesis procedure, constituted by structured calls to a Language Model
(LM), to construct relevant mental models. Our goal in combining these is to build a system that, like
human cognition, can operate in the open-world setting while still delivering the natively coherent
reasoning of structured probabilistic models and addressing concerns about the fragility of internal,
“world model”-like representations in language models alone (e.g., [42,136]).

We study this MSA implementation empirically and compare it with human ad-hoc reasoning, as
well as pure LM and PPL baselines using a domain of natural language inference tasks designed to
test generalization and coherence. We design a sequence of experiments to test coherent open-world
reasoning. We first evaluate how people and models reason on a relatively controlled set of natural
language inference problems, then construct successive experiments that demand progressively more
generalization to novel variables while drawing on more distant background knowledge. Across all
experiments, we find that human reasoning is well-captured by our Model Synthesis Architecture,
which provides a better match to human judgments than LM-only baselines and model ablations. This
represents a proof of concept that neural language modeling and structured probabilistic modeling
can be interleaved to explain people’s ability to reason in ways that are globally relevant and locally
coherent in an open-world setting.

2 Model Synthesis Architectures

We consider the general problem of inferring answers A to an arbitrary inference or prediction
problem 7. In the idealized Bayesian inference setting top), drawing these inferences
involves conditioning on the information in the specific problem 7 in light of all of the reasoner’s
prior background knowledge K to produce answers:

P(A| 7, K). (1
Computing this will often be prohibitively costly, as probabilistic inference is intractable in the
general case, and wasteful, since on any one occasion, it’s likely that only a small portion of what

the reasoner actually knows will matter for the question at hand. Instead of computing this full
conditional, we propose that a reasoner “marshals” only a subset of their background knowledge (K")
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Figure 2: (Top) Schematic overview of the MSA implementation, which sequentially constructs
M,yg.noe from input natural language tasks 7 through interleaved LM-guided generation steps, and
scoring steps using intermediate scoring functions ®. (Bottom) Detailed overview of the MSA
implementation. Given a task 7 as a (potentially partial) background description B, observations O,
and questions ), we sequentially construct M4 o through parsing the current inputs, retrieval of
additional background knowledge in language, proposal of a conceptual dependency graph, and finally
synthesis of a formal probabilistic model in which we compute model-based Bayesian inferences.

that is relevant to the problem at hand, such that:
P(AlT,K")~ P(A| 1, K). )

In particular, to draw coherent inferences, we propose that reasoners use this reduced set of back-
ground knowledge to construct a context-specific mental model (Mayqg.noc) Which they use to perform
probabilistic inferences middle), assuming that:

P(A‘Mad—hoc) ~ P(A|T; Kl)- 3

We call any system that implements this overarching cognitive hypothesis a Model Synthesis Ar-
chitecture, as it decomposes reasoning about an arbitrary problem into two distinct computational
subproblems: (1) a problem-conditioned, ad-hoc model synthesis step to construct Mg poc, and then
(2) a step computing Bayesian model-based inferences to answer the question conditional on the
constructed model, i.e. computing P(A| Mag-noc)-

The formal nature of each of these subproblems differs. As in resource-rational framings [34], we pro-
pose that reasoners treat ad-hoc model synthesis as an optimization problem, selecting representations
that they believe will be useful for reasoning about a problem:

model (I)(M;d—hom T) (4)
based on various model evaluation functions ® (e.g., trading off between computational costs of
inference in the model with expected accuracy for a set of queries) over a set of k;;,oq4¢; Sampled
models. In contrast to model synthesis, reasoning and planning with a synthesized model might
look like optimization, inference, or deduction, depending on the problem and synthesized model.
We focus on probabilistic inference, where models represent structured priors or conceptions of the
relevant variables and dependencies for the problem at hand, cf. [20, [22]].

argmax; ¢,

In this paper, we consider a subset of 7, the space of natural language probabilistic reasoning problems
defined by a tuple (B, O, @), where B is a (potentially partial and underspecified) set of background
variable descriptions b1, ..., by about a situation at hand (e.g., someone trying to predict upcoming
sports tournaments in a bracket might mention factors like injuries or training that they believe should
be considered); O is a set of observations o1, ..., o providing evidence that bears on those variables
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(e.g., observations about which teams have previously won or lost in the tournament); and () is a set
of questions q1, ..., qn that single out particular queries to answer given the evidence (e.g., specific
prediction questions about which teams will win in an upcoming match).

2.1 Representing and synthesizing ad-hoc models

In this section, we describe a concrete MSA implementation in which ad-hoc models are represented
as task-specific probabilistic programs. Each probabilistic program represents models as a tuple
Magnoe = (I, 1o, Ig), in which IIp are set of stochastic function definitions that formalize a
causal prior over relevant background variables, by defining their distributional form and causal
dependencies; 11 are a set of observed constraints over defined variables which condition belief
under the prior; and Il are query expressions over the defined variables which define targets for
Bayesian inference under the conditioned probabilistic model.

Our concrete implementation then frames model synthesis as LM-guided probabilistic program
synthesis, using LMs to parameterize a search procedure over programs conditioned on an input task,
and to parameterize a set of model evaluation functions ®. This implementation ultimately answers
queries in synthesized models as P(A|M,qnoc), using automatic Bayesian inference procedures
defined generally over the probabilistic programming language. We present an implementation that
approximates this optimization over models via a sequentially staged synthesis process, interleaving
structured steps of partial model generation and evaluation. Interleaving generation and evaluation
allows us to focus future generation stages on outputs that evaluate highly under components of ® so
far, providing efficiency gains. We briefly overview these stages here; additional details on each stage
can be found in the supplement:

Parse (Figure 2h): We first parse the current natural language inputs (7 = B, O, Q) into a set
of candidate probabilistic program condition and query expressions (I1p, Ilg) to be passed on to
future model synthesis stages. (We do not yet parse the background B, as we expand on that in the
future stages.) Specifically, we use an LM that has been prompted to parse each sentence of input
natural language observations into a corresponding formal expression (7o) intended to condition a
probabilistic model with observed constraints on latent variables, and questions into query expressions
() that define target variables for inference in that model. We sample proposed parses from an LM
conditioned on the input task (see Appendix for prompting details):

o, Il ~ Pm(Ilo, Ig|T) Q)
We then score each sampled parse according to an evaluation function ®,,,.s. (also defined using

an LM prompted with example parses). We generate k5. candidates and greedily select the best

conditioned on the input task:
0, 1) = argmax; ¢, D parse(I, ZQ|7’) 6)

This best parse (we use the * notation throughout to refer to the best scoring generations, from a set
of candidates, with respect to a utility function ®) is then passed on to the next stage.

parse

Relevant Natural Language Background Description ): Next, we retrieve candidates
for additional, relevant background knowledge details (B¥ = {b],b7,...b%,}). These will be
combined with the initial (potentially underspecified) input background B to yield an augmented
natural language description By, = B|J B that is intended to fully specify, in explicit detail, latent
relevant variables for reasoning about the task at hand. We sample these additional background details
from an LM prompted to name relevant variables and explicitly describe their causal relationship on
other variables, conditioned on the previous stages of generation:

Baug ~ P (b, b3, .08, 115, 115, 7). (7

Conceptual Dependency Graph (Figure 2): Jointly with generating By.4, We also generate a
conceptual dependency graph G which explicitly summarizes the dependencies between all variables
in Bgyg. We jointly score By, and G using an LM-parameterized evaluation function ®,.cicvance
(defined using an LM prompted with example retrieved variables and graphs). We generate £, cicvance
candidates and greedily select the best:

* * _
Boug G = argmax; .,

(I)relevance({BaugvG}i|H*Oa 57) (8)

relevance
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Exp. 1: Detailed backgrounds

Exp. 2: 0 ifi g

In this event, the athletes are competing in a series
of canoe races.

In this event, the athletes are competing in
a series of canoe races.

In each race, the team that wins depends on
the speed that athletes row based on
intrinsic strength and the amount of effort
they put into a given race.

An athlete’s intrinsic strength remains constant
throughout a tournament. An athlete neither gets
stronger nor weaker between races.

Athletes also vary in the effort that they put into any
given race. Most of the time, people row with a
moderately high amount of effort....

Excerpt

from

background B,
canoerace _|
How fast a team rows overall in any given race is

determined by the average rowing speed of cach
athlete. How fast an athlete rows in a given race is
determined by their intrinsic strength, modified by
how much effort they put in (a lower fraction of
their intrinsic strength if they don’t put in much
effort, or even more than their strength if they put
in more effort).

‘The team that rows the fastest (highest team speed)
in a given race wins.

Exp. 3: L ied backgrounds

Base underspecified background
from Exp. 2

+ Participant-generated commentary

Example: “Taylor is brand new to the
sport of canoe racing, and this is only his
2nd time competing."

Example: “Avery seems to have come
down with a stomach virus between
rounds, but has decided to compete

“Kay didn't get enough sleep
last night and can barely stay awake

x 3 sports with different causal variables

In this event, teams of players are
competing in matches of tug-of-war.
Outcomes depend on how hard athletes
collectively pull based on intrinsic
strength and effort.

In this event, teams of players are
competing in a series of canoe races.
Outcomes depend on the speed that
athletes row based on intrinsic strength
and effort.

In this event, teams of players are
competing in rounds of a biathlon.
Outcomes depend on a team’s combined
skiing speed based on intrinsic strength,
and shooting accuracy.

during the race..”
+ Varying patterns of observed evidence
In the first race, Robin and Taylor lost to Avery and Sam.

In the second race, Robin and Indiana lost to Avery and Ollie.
In the third race, Robin and Lane beat Avery and Casey.

In the first race, Val and Gale lost to Avery and Kay.
In the second race, Val and Harper lost to Avery and Ness.
In the third race, Val and Indiana lost to Avery and Casey.

Example
observations
o

Constant latent variables Temporally varying variables
Bxample | 6,11 o 100 other athletes, where do How much effort (on a 0-100% scale)

New match prediction
In a new round later this same day between
Robin and Taylor (T1) and Avery and Sam (T2),

questions
Q | you think Robin ranks in terms of do you think Avery put into the third
who would win and by how much?

intrinsic strength? race?

Figure 3: Experiment overview for the three natural language reasoning experiments.

Probabilistic Model (Figure 2[d): We now generate a full symbolic probabilistic model Mog.hoc-
We sample candidate models as probabilistic programs from an LM prompted with examples of the
preceding steps of generation and corresponding programs:

Mag noe ~ PLM(Mad-hoc|B* G*, *Oa H*Q’ 7)-

aug’

©))

We evaluate the sampled model for formal validity ®p04.1 (We use a simple Boolean function that just
returns executable models) and finally return the best model as:

Mognoc* = argmax; ¢, Pmodet (Mg noc)- (10)

program

Probabilistic Inference (Flgure Ze): Finally, we compute probabilistic inferences in M,q.poc Using
general Bayesian inference algorithms defined over the probabilistic programming language. We
return inferences in the queried and conditioned model.

P(A|Mad—hoc*)'
as a joint distribution over the set of answers A corresponding to input questions.

Y

3 Natural Language Reasoning Experiments

To evaluate flexible ad-hoc reasoning in people and models, we construct a domain of natural
language inference problems. We then design three experiments around this domain that require
people and models to bring to bear progressively more background information to reason about the
problem at hand. Here we briefly overview the domain and progression of experiments; additional
information on all stimuli and experiments can be found in our supplement.

3.1 Domain — Model Olympics vignettes

Our domain is a set of vignettes about three different sporting events — tug-of-war, canoe-racing,
and biathlon — each with distinct causal structures and variables. Each vignette includes a set of
observations about teams of athletes competing in a specific set of matches (e.g. In the first race,
Robin and Taylor beat Avery and Sam), and a palette of 8 different questions that require inferring
latent variables and new predictions. Of these 8 questions, 3 are always about a constant latent
variable (e.g the underlying strength of the athletes), 3 are about a temporally varying latent variable
(eg. the amount of effort an athlete puts into a given match), and 2 require making predictions about
future matches. We construct 7 underlying vignette templates designed to probe different patterns of
evidence (e.g. anomalous loss cases where an otherwise strong team happens to lose). In total, we
design 21 vignettes (7 templates x 3 sports).
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3.2 Human and model experiments

Experiment 1 (detailed background context) tests ad-hoc reasoning about arbitrary collections of
variables when they are described explicitly for a given situation. Vignettes are presented with detailed
linguistic background descriptions (Figure 3, left) based on the gold, hand-crafted probabilistic models
for each sport. These background descriptions spell out the functional form of relevant variable
distributions. Ng1 = 78 participants from Prolific judged a random sample of two vignettes from
each of the sports.

Experiment 2 (under-specified background context) tests ad-hoc reasoning when some relevant
variables are briefly described or implied in language, but most of the relevant intermediate details
must be filled in from a participants’ background knowledge. Vignettes are presented with brief
and under-specified background descriptions center) that name the key variables for each
sport, but do not explicitly spell out the functional form of their underlying distributions or how these
variables interact to produce observed outcomes. Ngo = 80 participants from Prolific judged the
same batches of vignettes as in Experiment 1.

Experiment 3 (participant-generated novel details) tests how people flexibly incorporate arbitrary
evidence into ad-hoc reasoning, by introducing uncontrolled new variables from outside the scope of
our original domain. To do this, we extend the under-specified vignettes from Experiment 2 with new
participant-generated details (“sports commentary”’, right), from naive participants prompted
to come up with new, relevant observations that would have changed their own predictions about
a particular future match (eg. to make a given outcome more or less likely).Participant-generated
details were collected from Ng3 , = 20 naive human subjects in a separate elicitation task. This
experiment used a smaller set of 9 total vignettes across two sports (tug-of-war and canoe racing). In
the main judgment task with the extended vignettes, N3 ; = 20 participants judged all 9 vignettes.

We instantiate our MSA architecture using L1ama-3.1-70B as our base LM for all parsing, code
synthesis, and LM-based evaluations; and WebPPL [1] as our probabilistic programming language.
Across all three experiments, we elicit simulated judgments from the MSA and alternatives in the
form of estimated posteriors for the palette of questions, conditioned on the vignettes. We compare
the MSA judgments to those of several alternative models:

* Gold symbolic models: For Exp. 1 and Exp. 2, we estimate posteriors using the hand-
designed, gold symbolic models constructed for each of the three sports

* Large language models (direct and CoT): We also compare to two LM-only alternatives
using the base LM model (Llama-3.1-70B): a“direct” response setting, where we prompt
the LM to directly answer all questions for each vignette via feedforward generation, and a
chain-of-thought (CoT) setting [43].

4 Results

We compare human judgments to all models using both correlational measures (12?) between people
and models, computed between the mean judgments across all participants (combining all participant
clicks for each query) and the mean judgments for each model (combining all simulated participant
samples for each query); and distributional measures, computed as the Wasserstein Distance
(WD) metric, to compare the similarity in probability distributions over inferred variables — lower
Wasserstein Distances between model judgments and human judgments mean that the distributions
are more similar to one another.

Key finding 1: People’s reasoning is generally consistent with Bayesian inference in ad-hoc
probabilistic models. [Figure 5|and [Figure 6/(A-C) shows that across all three experiments, infer-
ences in the probabilistic models synthesized by our MSA are generally well-correlated with human
judgments. This result is also borne out by our distributional analyses. [Figure 6/(D-F) shows that
the MSA captures not just the average human judgment, but often the distribution of predictions.
Under this metric, comparison to the human-human baseline again shows that the distribution of
MSA inferences is about as similar to human judgments (purple) as humans are to each other (blue).
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Corresponding excerpts from synthesized M g 1,0
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Exp. 1 [ Inthis event, the athletes are competing in matches of tug-of-war. var intrinsic_strength = mem(function ({athlete}) {
4 < intrinsi i .. return Math.max(gaussian(intrinsic_strength_average,
An athlete’s intrinsic strength remains constant... intrinsic strength variancey, 0)1)

var effort_level_in_match = mem(function({athlete, match}) {

Athletes also vary in the effort that they put into any given match... e reTun Mathomin(Hath max(gaussian(eFfort. average,

Excerpts effort_variance), ), 1)})
from detailed How hard each athlete pulls i . tch is determined b var athlete_pulling_strength_in_match = mem(function({athlete, match}) {
background B, ow hard each athlete pulls in a given match is determined by ...var pulling_strength_adjusted_for_effort_level_in_this_match =

tug-of-war their intrinsic strength, modified by how much effort they put in... effort_multiplier * base_pulling strength_in_action;
return pulling_strength_adjusted_for_effort_level_in_this_match;})
How hard a team pulls overall in any given match is determined by ~ var tean_pulling strength_in match = function({team, match}) {
h 1 hat all of the athl he 1in th return sum(map(function(athlete) {return
the total amount that all of the athletes on the team pull in that athlete_pulling_strength_in_match({athlete: athlete,
match. match: match}) }, team))}

Exp. 2

Excer| q N .
cef pts In this event, the athletes are competing in a series of canoe races.
_r(?m In each race, the team that wins depends on the average speed with
underspecified < hich the athletes are able to row, based on their intrinsic strength
background B, modulated by other factors including how much effort they put in C di ts f thesized M
canoe racing o that race! orresponding excerpts Irom synthesized M4 poc
L r \
[~ Intrinsic strength is an underlying attribute of a given athlete var intrinsic_strength = mem(function ({athlete}) {
that varies somewhat widely from athlete to athlete... We'll var intrinsic_strength_average = categorical({ps: [weak_prior,
imagine that players tend to be weak, average, or strong, and average_prior, strong_prior], vs: [weak_mean,
uniformly around that. average_mean, strong_mean]});...)}
Excerpts The amount of effort that an athlete puts into any given race is a var effort_level_in_race = mem(function({athlete, race}) {
f inf | continuous parameter...This effort is somewhat contingent on an var parameter_low_effort_prior =
rom informa athlete's intrinsic strength, because stronger athletes probably intrinsic_strength(athlete) > strong_threshold ? 6.05 :
retrieved tend to be more likely to put in extra effort... intrinsic_strength(athlete) < weak_threshold ? 0.8 : 0.2; ...})
background
knowledge B* The speed of an individual athlete is determined by their var athlete_rowing_speed_in_race = mem(function({athlete, race}) {
intrinsic strength and effort level. var strength_modulated_for_effort_level = (effort_level_in_race({athlete:
athlete, race: race}) / average_effort) * intrinsic_strength({athlete :
athlete}); return strength_modulated_for_effort_level; })
In each race, the team that wins depends on the average speed with var tean_rowing_speed_in_race = function({team, race}) {
which the athletes are able to row. var average_team_speed = mean(map(function(athlete) { return
athlete_rowing_speed_in_race({athlete: athlete, race: race}) }, team));

return average_team_speed;}

Exp. 3

Participant- “Quinn is a newcomer to canoe races and this is his first
generated competition. He doesn't have nearly the hours on the water any Corresponding excerpts from synthesized M_q 1o
commentaries single other person in the water today does” I
I \
Retrieved . . . . var inexperienced_canoe_racer = function({athlete}) {
etrieve A canoe racer who is inexperienced with canoe racing puts return effort_level({athlete}) < effort_threshold &
B* less effort and is probably less strong. intrinsic_strength({athlete}) < strength_threshold;}

“Ness took an energy drink and it just kicked in to give them extra
energy for their matchs”

Taking an energy drink is an event that affects the var pulling_strength_adjusted_for_taking_energy_drink =
took_energy_drink ({athlete})

match in which the energy drink was taken. ? pulling strength® 1.3 : pulling strength;

“In the first match of tug-of-war Kay pulled a muscle in their
shoulder that limited their pulling output going forward.”

Reduced if they pulled a muscle in their shoulder in any var pulling_strength_adjusted_for_pulled muscle =
PREVIOUS match. any_previous_time_inclusive(function(prev_match) {

return pulled_muscle_in_shoulder_in_match({athlete,
prev_match)}, match) ? base_pulling_strength_in_match * .7 :
base_pulling_strength_in_match;

Figure 4: Excerpts showing key parts of the natural language inputs, retrieved additional informal
background knowledge B™ as natural language describing proposed relevant latent variables, and
resulting formal ad-hoc models M4 1. as synthesized probabilistic programs. Exp. 1 (top) shows
how detailed natural language descriptions (left) are grounded into stochastic function definitions
(right). Exp. 2 (center) shows how our pipeline also retrieves relevant variables in natural language
(left, bottom) that are formalized into resulting synthesized programs (right). Exp. 3 (bottom) shows
how additional participant-provided free-form natural language can also formalized into ad-hoc
model definitions (excerpted on the left).

Together these results suggest that in each of these experimental settings people reason in ways that
are consistent with normative Bayesian inferences over some structured set of relevant variables —
and that these variables can be retrieved automatically using our approach.

Key finding 2: People’s reasoning is more similar to inference in structured probabilistic models
than LM-only alternatives, especially when generalizing to arbitrary new details. We next
compare people’s inferences to alternate models and compare models to one another to probe the
structural cross-similarity in probabilistic judgments across model classes. The blocks of correlations
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Figure 5: Correlations between human judgments and MSA predictions across Experiment 1 (A),
Experiment 2 (B), and Experiment 3 (C). Each plot shows correlations within a specific sport and
query type. Points on each plot are between mean predictions for each query, for each scenario, over
all participant answers and over all simulated participant model posteriors for that query.

visible on the heatmaps in (A-C) show that in many cases, humans are better correlated
with themselves and symbolic models (MSAs and the hand-crafted probabilistic models) than with
LMs, which are instead better correlated with each other. This finding parallels cross-model results
from the distributional metric (D-F), which also shows that humans, MSA, and hand-crafted
models distributions (blue, purple, and silver) are generally closer to the human distribution than the
LM distribution (pink and orange).

In Experiment 3, which targeted the open-world setting, MSA judgments were substantially better
aligned with people’s than were those of LM-only alternatives. That these differences were greatest
in this setting is suggestive in two ways. First, LM baselines may face particular challenges in fitting
human judgments as the distribution shifts further from familiar settings. Second, the open-world
Experiment 3 represents the most significant a priori challenge to existing, hand-crafted symbolic
models of cognition. That the MSA continues to outperform LM baselines in this case suggests
that probabilistic modeling can continue to best capture human judgments, even in the open-world
setting. Globally, these findings suggest an asymmetry in LMs abilities — LM’s may be relatively
better equipped to retrieve relevant world knowledge in human-like ways, but relatively less able to
integrate that evidence into a locally coherent world model the way that people do.

Key finding 3: MSA can retrieve and represent relevant information about arbitrary situations
as structured probabilistic models. Both correlational and distributional analyses suggest that
the implemented MSA can synthesize models that quantitatively capture human inferences. But
what do these ad-hoc probabilistic models actually look like? The qualitative examples in
show that the LM-guided synthesis approach is generally able to retrieve reasonable descriptions of
variables and causal dependencies; and that it can parse natural language descriptions from both the

original inputs (Figure 4, Exp. 1) and retrieved background knowledge Exp. 2, 3) into
corresponding probabilistic programs.

At the same time, manual inspection of the underlying code also reveals places where the MSA
implementation generates imperfect parses. These range from somewhat minor (e.g., the retrieved
additional natural language B™ suggests that the winning team depends on a team’s average speed,
but the synthesized model sometimes does not encode this with a mean); to relatively more drastic
omissions (for instance, the synthesized models in Exp. 3 often did not correctly interpret modal
temporal logics, like that a pulled shoulder limits pulling strength in future matches, until we allowed
the synthesis procedure to access a library of modal logic functions). We discuss both these limitations
and opportunities for further work in Supplement Section[AZ]
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Figure 6: Correlational and distributional comparisons of MSA, hand-crafted symbolic, and LM-
only alternative models to human judgments. (A)-(C) Cross-model and model-human R? for each
experiment, where R? are computed over mean judgments per scenario per query. Reasoners are
abbreviated (Hu=human, M=MSA, HC=hand-crafted symbolic probabilistic program, LMd=LM-
Direct, LMc=LM-CoT); (D)-(F) Wasserstein Distances from models and baselines to distribution of
human judgments (individual Wasserstein Distances (WDs) computed between judgments per query
per scenario, then aggregated as the mean over query types, and mean across query types for each
depicted sport and experiment; lower distances indicate closer similarity to the distribution of human
judgments. Error bars show 95% CI over 1000 bootstrapped samples, with replacement.

5 Discussion

In this work, we investigated how people are able to reason in ways that deliver global relevance
and local coherence — that is, how human reasoning is able to show both a sensitivity to relevant
considerations from across people’s background knowledge and coherent integration of evidence
over those considerations. In our experiments, we found that an MSA can synthesize ad-hoc models
that fit human judgments in the first instance, and fit those judgments better than LM baselines. This
suggests that MSAs offer a promising avenue towards capturing the computations underlying human
reasoning, especially in open-world settings. We include an expanded discussion of limitations and
future work in Supplement[A2] The problem of open-world cognition is the challenge of being
able to reason well-enough in the vast space of problems we encounter. We have taken a small step
in that direction by showing that reasonable mental models can be automatically synthesized for
new problem instances in a novel family of tasks. Much more is needed to determine whether this
approach can scale to the level of generality and flexibility seen in human cognition.
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