
Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models

Anonymous Author(s)

Affiliation

Address

email

Abstract

When faced with novel situations, people can marshal relevant considerations from a wide range of background knowledge and use these for inference and prediction. How do we draw in globally relevant information and reason over it coherently? We explore the hypothesis that people reason by constructing structured but small, ad-hoc mental models on the fly, tailored to novel situations. We propose a computational implementation of this idea – a “Model Synthesis Architecture” (MSA) – using language models to parameterize global, relevance-based retrieval of variables, and probabilistic programs to implement bespoke, coherent world models. We evaluate our MSA, along with ablations and baselines, as a model of human judgments across a sequence of experiments that requires progressively more open-ended and open-world reasoning about situations described in natural language. Across all experiments, the MSA captures human judgments, and outperforms the base LM alone – suggesting that MSAs offer a path towards capturing coherent human reasoning in open-ended domains.

1 Introduction

An influential idea in cognitive science holds that people reason and plan using mental models, or structured internal representations that mirror aspects of the world [12] [31] [19]. In this view, people draw on structured mental models to maintain consistent beliefs about current world states, integrate new information into their beliefs, and evaluate the plausibility of alternative hypotheses or possible futures. This idea also appears throughout classic and recent work in AI, in theoretical proposals [28] [39] [2] and empirical investigations (e.g., [42]) predicated on the idea that intelligent systems should reason and plan using structured internal representations of the causal systems and environments they operate over.

In cognitive science, Bayesian modeling has found significant empirical support for a version of the “mental modeling” hypothesis, showing that human judgments across a wide variety of tasks are well-modeled by inference and decisions in causal, probabilistic models (e.g. about physical predictions [4] [26], causal learning [23], and social reasoning [3] [30], to name just a few). However, while these models are predictive of human judgments and learning in each of these settings, they remain importantly limited in that each model operates *only* in the limited scope for which it was designed. Any given model can provide inferences over the variables it represents, but cannot handle novel considerations that were not part of the initial model specification. People, by contrast, are ‘open-world’ reasoners. We regularly reason about novel questions that draw on a highly varied set of things we know about the world, any of which are likely to be missing from any given mental model. To date, Bayesian modeling has left it unclear how such modeling approaches could scale to explain the simultaneous flexibility and coherence of human reasoning in general. This scalability

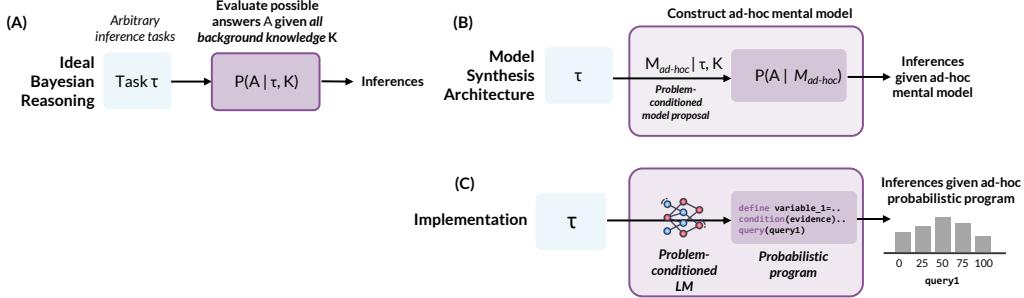


Figure 1: (A) Idealized Bayesian reasoning about arbitrary tasks τ given global background knowledge K raises problems of computational tractability. (B) *Model Synthesis Architectures* use global relevance functions to construct ad-hoc, structured mental models for locally coherent reasoning. (C) We implement an MSA using LMs to parameterize global relevance functions and Probabilistic Programs to construct ad-hoc probabilistic models.

challenge is also one of the most significant barriers to seeing structured Bayesian modeling as a general approach to building AI systems that capture these hallmarks of human reasoning.

So, how do people reason in *locally coherent* ways in any given context, while drawing *globally* on potentially relevant considerations across their background knowledge and beliefs? In this paper, we explore the hypothesis that human minds implement “Model Synthesis Architectures” (MSAs, Figure 1), or architectures that construct small, ad-hoc mental models on the fly in response to task demands [7]. By reasoning within small models, MSAs can deliver local coherence over the variables they explicitly represent, while the ability to synthesize arbitrary models as needed allows the architecture to reason and plan in open-ended environments, where the relevant considerations are not fixed in advance. We implement a concrete instance of an MSA (Figure 1C) using Probabilistic Programming Languages (PPLs) [21, 5, 8, 14] to express individual models as probabilistic programs, and using a neurally-guided program synthesis procedure, constituted by structured calls to a Language Model (LM), to construct relevant mental models. Our goal in combining these is to build a system that, like human cognition, can operate in the open-world setting while still delivering the natively coherent reasoning of structured probabilistic models and addressing concerns about the fragility of internal, “world model”-like representations in language models alone (e.g., [42, 36]).

We study this MSA implementation empirically and compare it with human ad-hoc reasoning, as well as pure LM and PPL baselines using a domain of natural language inference tasks designed to test generalization and coherence. We design a sequence of experiments to test coherent open-world reasoning. We first evaluate how people and models reason on a relatively controlled set of natural language inference problems, then construct successive experiments that demand progressively more generalization to novel variables while drawing on more distant background knowledge. Across all experiments, we find that human reasoning is well-captured by our Model Synthesis Architecture, which provides a better match to human judgments than LM-only baselines and model ablations. This represents a proof of concept that neural language modeling and structured probabilistic modeling can be interleaved to explain people’s ability to reason in ways that are globally relevant and locally coherent in an open-world setting.

2 Model Synthesis Architectures

We consider the general problem of inferring answers A to an arbitrary inference or prediction problem τ . In the idealized Bayesian inference setting (Figure 1, top), drawing these inferences involves conditioning on the information in the specific problem τ in light of *all of the reasoner’s prior background knowledge* K to produce answers:

$$P(A | \tau, K). \quad (1)$$

Computing this will often be prohibitively costly, as probabilistic inference is intractable in the general case, and wasteful, since on any one occasion, it’s likely that only a small portion of what the reasoner actually knows will matter for the question at hand. Instead of computing this full conditional, we propose that a reasoner “marshals” only a subset of their background knowledge (K')

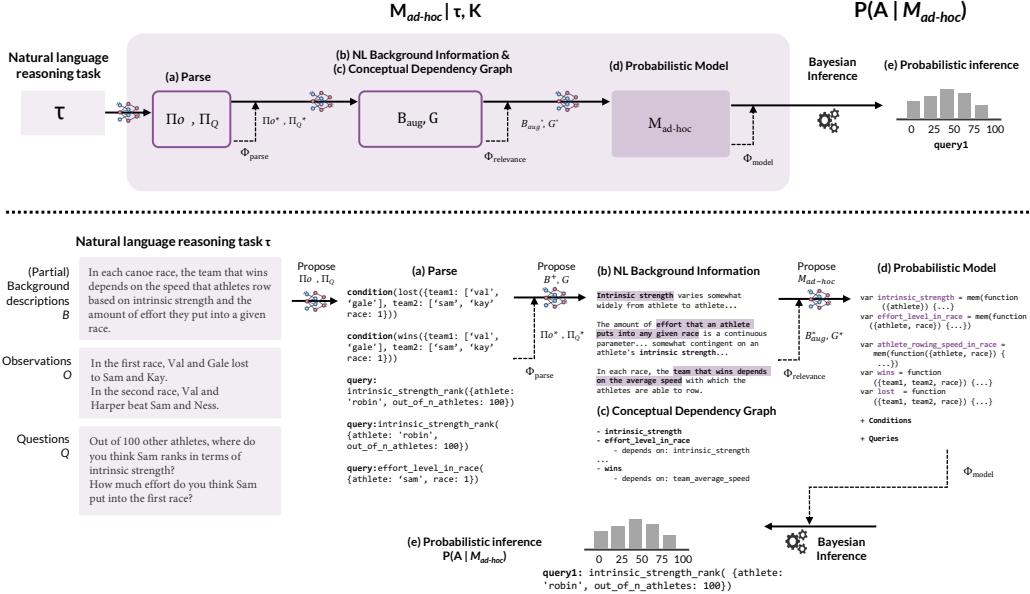


Figure 2: **(Top)** Schematic overview of the MSA implementation, which sequentially constructs $M_{\text{ad-hoc}}$ from input natural language tasks τ through interleaved LM-guided generation steps, and scoring steps using intermediate scoring functions Φ . **(Bottom)** Detailed overview of the MSA implementation. Given a task τ as a (potentially partial) background description B , observations O , and questions Q , we sequentially construct $M_{\text{ad-hoc}}$ through parsing the current inputs, retrieval of additional background knowledge in language, proposal of a conceptual dependency graph, and finally synthesis of a formal probabilistic model in which we compute *model-based Bayesian inferences*.

72 that is relevant to the problem at hand, such that:

$$P(A|\tau, K') \approx P(A | \tau, K). \quad (2)$$

73 In particular, to draw coherent inferences, we propose that reasoners use this reduced set of background knowledge to construct a *context-specific mental model* ($M_{\text{ad-hoc}}$) which they use to perform probabilistic inferences (Figure 1 middle), assuming that:

$$P(A|M_{\text{ad-hoc}}) \approx P(A|\tau, K'). \quad (3)$$

76 We call any system that implements this overarching cognitive hypothesis a *Model Synthesis Architecture*, as it decomposes reasoning about an arbitrary problem into two distinct computational 77 subproblems: (1) a problem-conditioned, *ad-hoc model synthesis* step to construct $M_{\text{ad-hoc}}$, and then 78 (2) a step computing *Bayesian model-based inferences* to answer the question conditional on the 80 constructed model, i.e. computing $P(A|M_{\text{ad-hoc}})$.

81 The formal nature of each of these subproblems differs. As in *resource-rational* framings [34], we propose 82 that reasoners treat ad-hoc model synthesis as an optimization problem, selecting representations 83 that they believe will be *useful* for reasoning about a problem:

$$\text{argmax}_{i \in k_{\text{model}}} \Phi(M_{\text{ad-hoc}}^i, \tau) \quad (4)$$

84 based on various model evaluation functions Φ (e.g., trading off between computational costs of 85 inference in the model with expected accuracy for a set of queries) over a set of k_{model} sampled 86 models. In contrast to model synthesis, reasoning and planning with a synthesized model might 87 look like optimization, inference, or deduction, depending on the problem and synthesized model. 88 We focus on probabilistic inference, where models represent structured priors or *conceptions* of the 89 relevant variables and dependencies for the problem at hand, cf. [20, 22].

90 In this paper, we consider a subset of τ , the space of natural language probabilistic reasoning problems 91 defined by a tuple (B, O, Q) , where B is a (potentially partial and underspecified) set of *background* 92 variable descriptions b_1, \dots, b_N about a situation at hand (e.g., someone trying to predict upcoming 93 sports tournaments in a bracket might mention factors like injuries or training that they believe should 94 be considered); O is a set of *observations* o_1, \dots, o_N providing evidence that bears on those variables

95 (e.g., observations about which teams have previously won or lost in the tournament); and Q is a set
 96 of *questions* q_1, \dots, q_N that single out particular queries to answer given the evidence (e.g., specific
 97 prediction questions about which teams will win in an upcoming match).

98 **2.1 Representing and synthesizing ad-hoc models**

99 In this section, we describe a concrete MSA implementation in which ad-hoc models are represented
 100 as task-specific *probabilistic programs*. Each probabilistic program represents models as a tuple
 101 $M_{\text{ad-hoc}} = (\Pi_B, \Pi_O, \Pi_Q)$, in which Π_B are set of stochastic function definitions that formalize a
 102 causal prior over relevant background variables, by defining their distributional form and causal
 103 dependencies; Π_O are a set of observed constraints over defined variables which condition belief
 104 under the prior; and Π_Q are query expressions over the defined variables which define targets for
 105 Bayesian inference under the conditioned probabilistic model.

106 Our concrete implementation then frames model synthesis as *LM-guided probabilistic program*
 107 *synthesis*, using LMs to parameterize a search procedure over programs conditioned on an input task,
 108 and to parameterize a set of model evaluation functions Φ . This implementation ultimately answers
 109 queries in synthesized models as $P(A|M_{\text{ad-hoc}})$, using automatic Bayesian inference procedures
 110 defined generally over the probabilistic programming language. We present an implementation that
 111 approximates this optimization over models via a *sequentially staged* synthesis process, interleaving
 112 structured steps of partial model generation and evaluation. Interleaving generation and evaluation
 113 allows us to focus future generation stages on outputs that evaluate highly under components of Φ so
 114 far, providing efficiency gains. We briefly overview these stages here; additional details on each stage
 115 can be found in the supplement:

116 **Parse** (Figure 2a): We first parse the current natural language inputs ($\tau = B, O, Q$) into a set
 117 of candidate probabilistic program condition and query expressions (Π_O, Π_Q) to be passed on to
 118 future model synthesis stages. (We do not yet parse the background B , as we expand on that in the
 119 future stages.) Specifically, we use an LM that has been prompted to parse each sentence of input
 120 natural language observations into a corresponding formal expression (π_O) intended to condition a
 121 probabilistic model with observed constraints on latent variables, and questions into query expressions
 122 (π_Q) that define target variables for inference in that model. We sample proposed parses from an LM
 123 conditioned on the input task (see Appendix for prompting details):

$$\Pi_O, \Pi_Q \sim P_{\text{LM}}(\Pi_O, \Pi_Q | \tau) \quad (5)$$

124 We then score each sampled parse according to an evaluation function Φ_{parse} (also defined using
 125 an LM prompted with example parses). We generate k_{parse} candidates and greedily select the best
 126 conditioned on the input task:

$$\Pi_O^*, \Pi_Q^* = \text{argmax}_{i \in k_{\text{parse}}} \Phi_{\text{parse}}(\Pi_O^i, \Pi_Q^i | \tau) \quad (6)$$

127 This best parse (we use the * notation throughout to refer to the best scoring generations, from a set
 128 of candidates, with respect to a utility function Φ) is then passed on to the next stage.

129 **Relevant Natural Language Background Description** (Figure 2b): Next, we retrieve candidates
 130 for additional, relevant background knowledge details ($B^+ = \{b_1^+, b_2^+, \dots b_{N'}^+\}$). These will be
 131 combined with the initial (potentially underspecified) input background B to yield an augmented
 132 natural language description $B_{\text{aug}} = B \cup B^+$ that is intended to fully specify, in explicit detail, latent
 133 relevant variables for reasoning about the task at hand. We sample these additional background details
 134 from an LM prompted to name relevant variables and explicitly describe their causal relationship on
 135 other variables, conditioned on the previous stages of generation:

$$B_{\text{aug}} \sim P_{\text{LM}}(b_1^+, b_2^+, \dots b_{N'}^+ | \Pi_O^*, \Pi_Q^*, \tau). \quad (7)$$

136 **Conceptual Dependency Graph** (Figure 2c): Jointly with generating B_{aug} , we also generate a
 137 conceptual dependency graph G which explicitly summarizes the dependencies between all variables
 138 in B_{aug} . We jointly score B_{aug} and G using an LM-parameterized evaluation function $\Phi_{\text{relevance}}$
 139 (defined using an LM prompted with example retrieved variables and graphs). We generate $k_{\text{relevance}}$
 140 candidates and greedily select the best:

$$B_{\text{aug}}^*, G^* = \text{argmax}_{i \in k_{\text{relevance}}} \Phi_{\text{relevance}}(\{B_{\text{aug}}, G\}^i | \Pi_O^*, \Pi_Q^*, \tau) \quad (8)$$

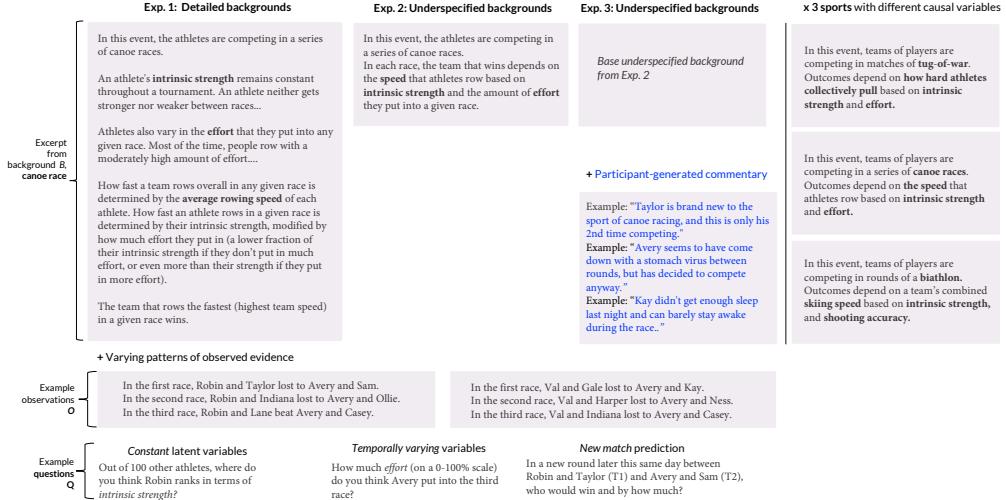


Figure 3: Experiment overview for the three natural language reasoning experiments.

141 **Probabilistic Model** (Figure 2d): We now generate a full symbolic probabilistic model $M_{\text{ad-hoc}}$.
 142 We sample candidate models as probabilistic programs from an LM prompted with examples of the
 143 preceding steps of generation and corresponding programs:

$$M_{\text{ad-hoc}} \sim P_{\text{LM}}(M_{\text{ad-hoc}} | B_{\text{aug}}^*, G^*, \Pi_O^*, \Pi_Q^*, \tau). \quad (9)$$

144 We evaluate the sampled model for formal validity Φ_{model} (we use a simple Boolean function that just
 145 returns executable models) and finally return the best model as:

$$M_{\text{ad-hoc}*} = \text{argmax}_{i \in k_{\text{program}}} \Phi_{\text{model}}(M_{\text{ad-hoc}}^i). \quad (10)$$

146 **Probabilistic Inference** (Figure 2e): Finally, we compute probabilistic inferences in $M_{\text{ad-hoc}}$ using
 147 general Bayesian inference algorithms defined over the probabilistic programming language. We
 148 return inferences in the queried and conditioned model.

$$P(A | M_{\text{ad-hoc}}*). \quad (11)$$

149 as a joint distribution over the set of answers A corresponding to input questions.

150 3 Natural Language Reasoning Experiments

151 To evaluate flexible ad-hoc reasoning in people and models, we construct a domain of *natural*
 152 *language inference problems*. We then design three experiments around this domain that require
 153 people and models to bring to bear progressively more background information to reason about the
 154 problem at hand. Here we briefly overview the domain and progression of experiments; additional
 155 information on all stimuli and experiments can be found in our supplement.

156 3.1 Domain – Model Olympics vignettes

157 Our domain is a set of vignettes about three different sporting events – tug-of-war, canoe-racing,
 158 and biathlon – each with distinct causal structures and variables. Each vignette includes a set of
 159 observations about teams of athletes competing in a specific set of matches (e.g. *In the first race,*
 160 *Robin and Taylor beat Avery and Sam*), and a palette of 8 different questions that require inferring
 161 latent variables and new predictions. Of these 8 questions, 3 are always about a *constant* latent
 162 variable (e.g. the underlying *strength* of the athletes), 3 are about a *temporally varying* latent variable
 163 (e.g. the amount of effort an athlete puts into a given match), and 2 require making predictions about
 164 future matches. We construct 7 underlying vignette templates designed to probe different patterns of
 165 evidence (e.g. *anomalous loss* cases where an otherwise strong team happens to lose). In total, we
 166 design 21 vignettes (7 templates x 3 sports).

167 **3.2 Human and model experiments**

168 **Experiment 1 (detailed background context)** tests ad-hoc reasoning about arbitrary collections of
169 variables when they are described explicitly for a given situation. Vignettes are presented with detailed
170 linguistic background descriptions (Figure 3 left) based on the gold, hand-crafted probabilistic models
171 for each sport. These background descriptions spell out the functional form of relevant variable
172 distributions. $N_{E1} = 78$ participants from Prolific judged a random sample of two vignettes from
173 each of the sports.

174 **Experiment 2 (under-specified background context)** tests ad-hoc reasoning when some relevant
175 variables are briefly described or implied in language, but most of the relevant intermediate details
176 must be filled in from a participants’ background knowledge. Vignettes are presented with brief
177 and under-specified background descriptions (Figure 3 center) that name the key variables for each
178 sport, but do not explicitly spell out the functional form of their underlying distributions or how these
179 variables interact to produce observed outcomes. $N_{E2} = 80$ participants from Prolific judged the
180 same batches of vignettes as in Experiment 1.

181 **Experiment 3 (participant-generated novel details)** tests how people flexibly incorporate arbitrary
182 evidence into ad-hoc reasoning, by introducing uncontrolled new variables from outside the scope of
183 our original domain. To do this, we extend the under-specified vignettes from Experiment 2 with new
184 participant-generated details (“sports commentary”, Figure 3 right), from naive participants prompted
185 to come up with new, relevant observations that would have changed their own predictions about
186 a particular future match (eg. to make a given outcome more or less likely). Participant-generated
187 details were collected from $N_{E3,a} = 20$ naive human subjects in a separate elicitation task. This
188 experiment used a smaller set of 9 total vignettes across two sports (tug-of-war and canoe racing). In
189 the main judgment task with the extended vignettes, $N_{E3,b} = 20$ participants judged all 9 vignettes.

190 We instantiate our MSA architecture using Llama-3.1-70B as our base LM for all parsing, code
191 synthesis, and LM-based evaluations; and WebPPL as our probabilistic programming language.
192 Across all three experiments, we elicit simulated judgments from the MSA and alternatives in the
193 form of estimated posteriors for the palette of questions, conditioned on the vignettes. We compare
194 the MSA judgments to those of several alternative models:

- 195 • **Gold symbolic models:** For Exp. 1 and Exp. 2, we estimate posteriors using the hand-
196 designed, gold symbolic models constructed for each of the three sports
- 197 • **Large language models (direct and CoT):** We also compare to two LM-only alternatives
198 using the base LM model (Llama-3.1-70B): a “direct” response setting, where we prompt
199 the LM to directly answer all questions for each vignette via feedforward generation, and a
200 chain-of-thought (CoT) setting .

201 **4 Results**

202 We compare human judgments to all models using both **correlational measures** (R^2) between people
203 and models, computed between the mean judgments across all participants (combining all participant
204 clicks for each query) and the mean judgments for each model (combining all simulated participant
205 samples for each query); and **distributional measures**, computed as the Wasserstein Distance
206 (WD) metric, to compare the similarity in probability distributions over inferred variables – **lower**
207 Wasserstein Distances between model judgments and human judgments mean that the distributions
208 are *more similar* to one another.

209 **Key finding 1: People’s reasoning is generally consistent with Bayesian inference in ad-hoc
210 probabilistic models.** Figure 5 and Figure 6 (A-C) shows that across all three experiments, inferences
211 in the probabilistic models synthesized by our MSA are generally well-correlated with human
212 judgments. This result is also borne out by our distributional analyses. Figure 6 (D-F) shows that
213 the MSA captures not just the average human judgment, but often the distribution of predictions.
214 Under this metric, comparison to the human-human baseline again shows that the distribution of
215 MSA inferences is about as similar to human judgments (*purple*) as humans are to each other (*blue*).

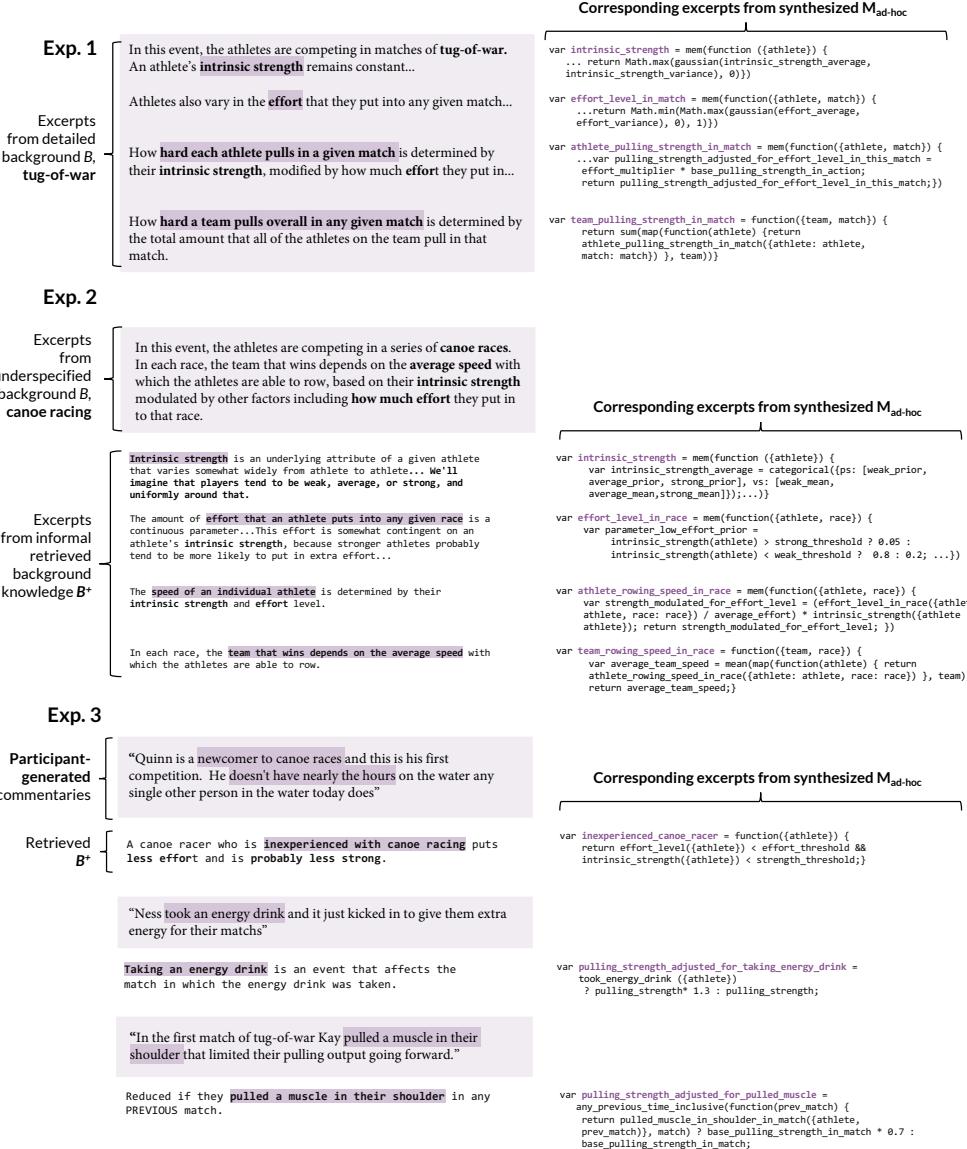


Figure 4: Excerpts showing key parts of the **natural language inputs**, retrieved additional **informal background knowledge B^+** as natural language describing proposed relevant latent variables, and resulting **formal ad-hoc models $M_{\text{ad-hoc}}$** as synthesized probabilistic programs. **Exp. 1** (top) shows how detailed natural language descriptions (left) are grounded into stochastic function definitions (right). **Exp. 2** (center) shows how our pipeline also retrieves relevant variables in natural language (left, bottom) that are formalized into resulting synthesized programs (right). **Exp. 3** (bottom) shows how *additional participant-provided free-form natural language* can also formalized into ad-hoc model definitions (excerpted on the left).

216 Together these results suggest that in each of these experimental settings people reason in ways that
217 are consistent with normative Bayesian inferences over some structured set of relevant variables –
218 and that these variables can be retrieved automatically using our approach.

219 **Key finding 2: People's reasoning is more similar to inference in structured probabilistic models**
220 **than LM-only alternatives, especially when generalizing to arbitrary new details.** We next
221 compare people's inferences to alternate models and compare models to one another to probe the
222 structural cross-similarity in probabilistic judgments across model classes. The blocks of correlations

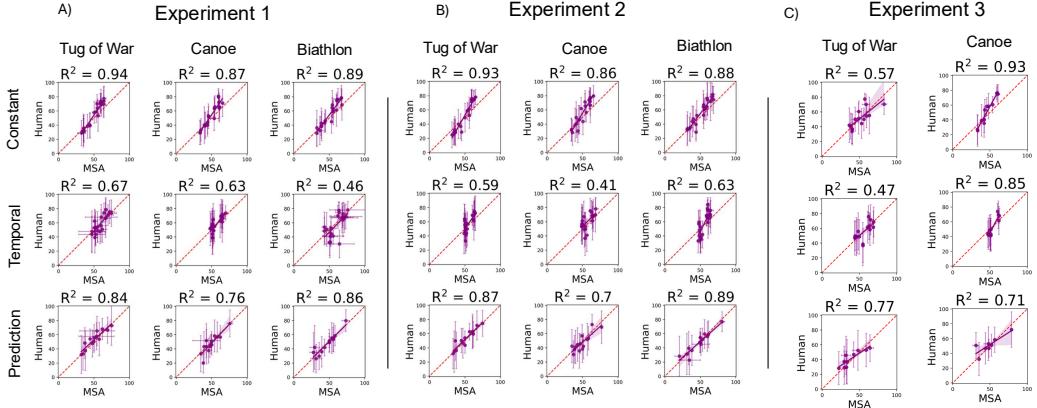


Figure 5: Correlations between human judgments and MSA predictions across Experiment 1 (**A**), Experiment 2 (**B**), and Experiment 3 (**C**). Each plot shows correlations within a specific sport and query type. Points on each plot are between *mean* predictions for each query, for each scenario, over all participant answers and over all simulated participant model posteriors for that query.

223 visible on the heatmaps in Figure 6(A-C) show that in many cases, humans are better correlated
 224 with themselves and symbolic models (MSAs and the hand-crafted probabilistic models) than with
 225 LMs, which are instead better correlated with each other. This finding parallels cross-model results
 226 from the distributional metric Figure 6(D-F), which also shows that humans, MSA, and hand-crafted
 227 models distributions (blue, purple, and silver) are generally closer to the human distribution than the
 228 LM distribution (pink and orange).

229 In Experiment 3, which targeted the open-world setting, MSA judgments were substantially better
 230 aligned with people’s than were those of LM-only alternatives. That these differences were greatest
 231 in this setting is suggestive in two ways. First, LM baselines may face particular challenges in fitting
 232 human judgments as the distribution shifts further from familiar settings. Second, the open-world
 233 Experiment 3 represents the most significant a priori challenge to existing, hand-crafted symbolic
 234 models of cognition. That the MSA continues to outperform LM baselines in this case suggests
 235 that probabilistic modeling can continue to best capture human judgments, even in the open-world
 236 setting. Globally, these findings suggest an asymmetry in LMs abilities — LM’s may be relatively
 237 better equipped to retrieve relevant world knowledge in human-like ways, but relatively less able to
 238 integrate that evidence into a locally coherent world model the way that people do.

239 **Key finding 3: MSA can retrieve and represent relevant information about arbitrary situations**
 240 **as structured probabilistic models.** Both correlational and distributional analyses suggest that
 241 the implemented MSA can synthesize models that quantitatively capture human inferences. But
 242 what do these ad-hoc probabilistic models actually look like? The qualitative examples in Figure 4
 243 show that the LM-guided synthesis approach is generally able to retrieve reasonable descriptions of
 244 variables and causal dependencies; and that it can parse natural language descriptions from both the
 245 original inputs (Figure 4, Exp. 1) and retrieved background knowledge (Figure 4, Exp. 2, 3) into
 246 corresponding probabilistic programs.

247 At the same time, manual inspection of the underlying code also reveals places where the MSA
 248 implementation generates imperfect parses. These range from somewhat minor (e.g., the retrieved
 249 additional natural language B^+ suggests that the winning team depends on a team’s *average* speed,
 250 but the synthesized model sometimes does not encode this with a *mean*); to relatively more drastic
 251 omissions (for instance, the synthesized models in Exp. 3 often did not correctly interpret modal
 252 temporal logics, like that a pulled shoulder limits pulling strength in *future matches*, until we allowed
 253 the synthesis procedure to access a library of modal logic functions). We discuss both these limitations
 254 and opportunities for further work in Supplement Section A2.

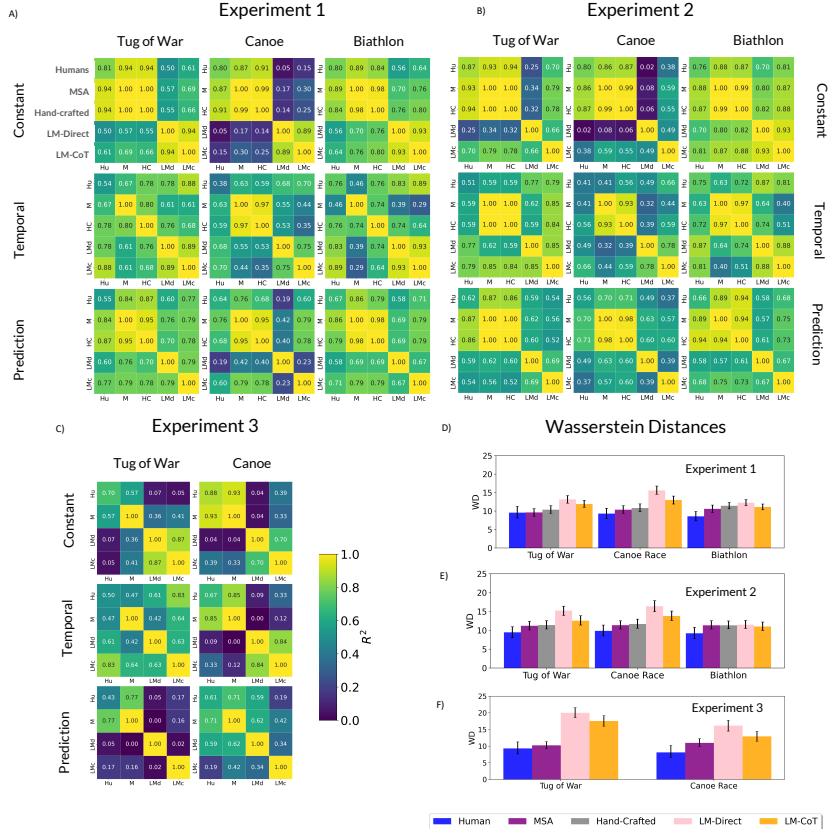


Figure 6: Correlational and distributional comparisons of MSA, hand-crafted symbolic, and LM-only alternative models to human judgments. (A)-(C) Cross-model and model-human R^2 for each experiment, where R^2 are computed over mean judgments per scenario per query. Reasoners are abbreviated (Hu=human, M=MSA, HC=hand-crafted symbolic probabilistic program, LMd=LM-Direct, LMc=LM-CoT); (D)-(F) Wasserstein Distances from models and baselines to distribution of human judgments (individual Wasserstein Distances (WDs) computed between judgments per query per scenario, then aggregated as the mean over query types, and mean across query types for each depicted sport and experiment; *lower* distances indicate closer similarity to the distribution of human judgments. Error bars show 95% CI over 1000 bootstrapped samples, with replacement.

255 5 Discussion

256 In this work, we investigated how people are able to reason in ways that deliver *global relevance*
 257 and *local coherence* – that is, how human reasoning is able to show both a sensitivity to relevant
 258 considerations from across people’s background knowledge and coherent integration of evidence
 259 over those considerations. In our experiments, we found that an MSA can synthesize ad-hoc models
 260 that fit human judgments in the first instance, and fit those judgments better than LM baselines. This
 261 suggests that MSAs offer a promising avenue towards capturing the computations underlying human
 262 reasoning, especially in open-world settings. We include an expanded discussion of limitations and
 263 future work in Supplement A2. The problem of open-world cognition is the challenge of being
 264 able to reason well-enough in the vast space of problems we encounter. We have taken a small step
 265 in that direction by showing that reasonable mental models can be automatically synthesized for
 266 new problem instances in a novel family of tasks. Much more is needed to determine whether this
 267 approach can scale to the level of generality and flexibility seen in human cognition.

268 **References**

269 [1] Webppl probabilistic programming language. URL <https://github.com/probmods/webppl>

270

271 [2] J. Andreas. Language models, world models, and human model-building. *Language & Intelligence@ MIT*, 2024.

272

273 [3] C. L. Baker, J. Jara-Ettinger, R. Saxe, and J. B. Tenenbaum. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. *Nature Human Behaviour*, 1(4):0064, 2017.

274

275 [4] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simulation as an engine of physical scene understanding. *Proceedings of the National Academy of Sciences*, 110(45):18327–18332, 2013.
276 doi: 10.1073/pnas.1306572110. URL <https://www.pnas.org/doi/pdf/10.1073/pnas.1306572110>

277

278

279 [5] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic programming. *Journal of machine learning research*, 20(28):1–6, 2019.

280

281

282 [6] M. Binz, E. Akata, M. Bethge, F. Brändle, F. Callaway, J. Coda-Forno, P. Dayan, C. Demircan, M. K. Eckstein, N. Éltető, et al. Centaur: a foundation model of human cognition. *arXiv preprint arXiv:2410.20268*, 2024.

283

284

285 [7] T. Brooke-Wilson. *Bounded Rationality as a Strategy for Cognitive Science*. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2023. URL https://philosophy.mit.edu/wp-content/uploads/brookewilson_dissertation.pdf

286

287

288 [8] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming language. *Journal of statistical software*, 76:1–32, 2017.

289

290

291 [9] P. S. Castro, N. Tomasev, A. Anand, N. Sharma, R. Mohanta, A. Dev, K. Perlin, S. Jain, K. Levin, N. Éltető, et al. Discovering symbolic cognitive models from human and animal behavior. *bioRxiv*, pages 2025–02, 2025.

292

293

294 [10] K. Chandra, J. Ragan-Kelley, and J. Tenenbaum. Theories of mind as languages of thought for thought about thought. 2025.

295

296 [11] K. M. Collins, I. Sucholutsky, U. Bhatt, K. Chandra, L. Wong, M. Lee, C. E. Zhang, T. Zhi-Xuan, M. Ho, V. Mansinghka, et al. Building machines that learn and think with people. *Nature Human Behavior*, 2024.

297

298

299 [12] K. J. W. Craik. *The nature of explanation*, volume 445. CUP Archive, 1943.

300

301 [13] L. Cross, V. Xiang, A. Bhatia, D. L. Yamins, and N. Haber. Hypothetical minds: Scaffolding theory of mind for multi-agent tasks with large language models. *arXiv preprint arXiv:2407.07086*, 2024.

302

303 [14] M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mansinghka. Gen: a general-purpose probabilistic programming system with programmable inference. In *Proceedings of the 40th acm sigplan conference on programming language design and implementation*, pages 221–236, 2019.

304

305

306

307 [15] D. Dohan, W. Xu, A. Lewkowycz, J. Austin, D. Bieber, R. G. Lopes, Y. Wu, H. Michalewski, R. A. Saurous, J. Sohl-Dickstein, et al. Language model cascades. *arXiv preprint arXiv:2207.10342*, 2022.

308

309

310 [16] J. Domke. Large language bayes. *arXiv preprint arXiv:2504.14025*, 2025.

311

312 [17] K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, and J. B. Tenenbaum. Dreamcoder: Bootstrapping inductive program synthesis with wake-sleep library learning. In *Proceedings of the 42nd acm sigplan international conference on programming language design and implementation*, pages 835–850, 2021.

313

314

315 [18] Y. Feng, B. Zhou, W. Lin, and D. Roth. Bird: A trustworthy bayesian inference framework for
 316 large language models. *arXiv preprint arXiv:2404.12494*, 2024.

317 [19] D. Gentner and D. R. Gentner. Flowing waters or teeming crowds: Mental models of electricity.
 318 In D. Gentner and A. L. Stevens, editors, *Mental Models*, pages 99–129. Lawrence Erlbaum
 319 Associates, Hillsdale, NJ, 1983.

320 [20] T. Gerstenberg and J. B. Tenenbaum. Intuitive theories. In *Oxford handbook of causal reasoning*,
 321 pages 515–548. 2017.

322 [21] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a
 323 language for generative models. *arXiv preprint arXiv:1206.3255*, 2012.

324 [22] N. D. Goodman, J. B. Tenenbaum, and T. Gerstenberg. Concepts in a probabilistic language of
 325 thought. In E. Margolis and S. Laurence, editors, *The conceptual mind: New directions in the
 326 study of concepts*, pages 59–109. MIT Press, Cambridge, MA, 2014.

327 [23] A. Gopnik, C. Glymour, D. M. Sobel, L. E. Schulz, T. Kushnir, and D. Danks. A theory of
 328 causal learning in children: causal maps and bayes nets. *Psychological review*, 111(1):3, 2004.

329 [24] G. Grand, L. Wong, M. Bowers, T. X. Olausson, M. Liu, J. B. Tenenbaum, and J. Andreas.
 330 Lilo: Learning interpretable libraries by compressing and documenting code. In *The Twelfth
 331 International Conference on Learning Representations*, 2024.

332 [25] G. Grand, J. B. Tenenbaum, V. K. Mansinghka, A. K. Lew, and J. Andreas. Self-steering
 333 language models. *arXiv preprint arXiv:2504.07081*, 2025.

334 [26] J. B. Hamrick, K. A. Smith, T. L. Griffiths, and E. Vul. Think again? the amount of mental
 335 simulation tracks uncertainty in the outcome. In *Proceedings of the annual meeting of the
 336 cognitive science society*, volume 37, 2015.

337 [27] M. K. Ho, D. Abel, C. G. Correa, M. L. Littman, J. D. Cohen, and T. L. Griffiths. People
 338 construct simplified mental representations to plan. *Nature*, 606(7912):129–136, 2022.

339 [28] Z. Hu and T. Shu. Language models, agent models, and world models: The law for machine
 340 reasoning and planning. *arXiv preprint arXiv:2312.05230*, 2023.

341 [29] T. Icard and N. D. Goodman. A resource-rational approach to the causal frame problem. In
 342 *CogSci*, 2015.

343 [30] J. Jara-Ettinger, H. Gweon, L. E. Schulz, and J. B. Tenenbaum. The naïve utility calculus:
 344 Computational principles underlying commonsense psychology. *Trends in Cognitive Sciences*,
 345 20(8):589–604, 2016. doi: 10.1016/j.tics.2016.05.011. URL <https://www.sciencedirect.com/science/article/pii/S1364661316300535>.

347 [31] P. N. Johnson-Laird. Mental models in cognitive science. *Cognitive science*, 4(1):71–115, 1980.

348 [32] A. K. Lew, M. H. Tessler, V. K. Mansinghka, and J. B. Tenenbaum. Leveraging unstructured
 349 statistical knowledge in aprobabilistic language of thought. In *Proceedings of the Annual
 350 Meeting of the Cognitive Science Society*, volume 42, 2020.

351 [33] M. Y. Li, E. B. Fox, and N. D. Goodman. Automated statistical model discovery with language
 352 models. *arXiv preprint arXiv:2402.17879*, 2024.

353 [34] F. Lieder and T. L. Griffiths. Resource-rational analysis: Understanding human cognition as the
 354 optimal use of limited computational resources. *Behavioral and Brain Sciences*, 43:e1, 2020.

355 [35] J. Loula, B. LeBrun, L. Du, B. Lipkin, C. Pasti, G. Grand, T. Liu, Y. Emara, M. Freedman,
 356 J. Eisner, et al. Syntactic and semantic control of large language models via sequential monte
 357 carlo. *arXiv preprint arXiv:2504.13139*, 2025.

358 [36] R. T. McCoy, S. Yao, D. Friedman, M. Hardy, and T. L. Griffiths. Embers of autoregression:
 359 Understanding large language models through the problem they are trained to solve. *arXiv
 360 preprint arXiv:2309.13638*, 2023.

361 [37] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and M. Farajtabar. Gsm-symbolic:
 362 Understanding the limitations of mathematical reasoning in large language models. *arXiv preprint arXiv:2410.05229*, 2024.

364 [38] W. T. Piriayakulkij, Y. Liang, H. Tang, A. Weller, M. Kryven, and K. Ellis. Poe-world: Compositional world modeling with products of programmatic experts. *arXiv preprint arXiv:2505.10819*,
 366 2025.

367 [39] J. Richens, D. Abel, A. Bellot, and T. Everitt. General agents need world models. *arXiv preprint arXiv:2506.01622*, 2025.

369 [40] M. Rmus, A. K. Jagadish, M. Mathony, T. Ludwig, and E. Schulz. Generating computational
 370 cognitive models using large language models, 2025. URL <https://arxiv.org/abs/2502.00879>.

372 [41] H. Tang, D. Key, and K. Ellis. Worldcoder, a model-based llm agent: Building world models by
 373 writing code and interacting with the environment. *Advances in Neural Information Processing Systems*, 37:70148–70212, 2024.

375 [42] K. Vafa, J. Y. Chen, J. Kleinberg, S. Mullainathan, and A. Rambachan. Evaluating the world
 376 model implicit in a generative model. *arXiv preprint arXiv:2406.03689*, 2024. URL <https://arxiv.org/abs/2406.03689>.

378 [43] K. Valmeekam, M. Marquez, A. Olmo, S. Sreedharan, and S. Kambhampati. Planbench: An
 379 extensible benchmark for evaluating large language models on planning and reasoning about
 380 change. *Advances in Neural Information Processing Systems*, 36:38975–38987, 2023.

381 [44] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager:
 382 An open-ended embodied agent with large language models. *arXiv preprint arXiv:2305.16291*,
 383 2023.

384 [45] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
 385 thought prompting elicits reasoning in large language models. *Advances in neural information
 386 processing systems*, 35:24824–24837, 2022.

387 [46] L. Wong, G. Grand, A. K. Lew, N. D. Goodman, V. K. Mansinghka, J. Andreas, and J. B.
 388 Tenenbaum. From word models to world models: Translating from natural language to the
 389 probabilistic language of thought. *arXiv preprint arXiv:2306.12672*, 2023.

390 [47] L. Wong, J. Mao, P. Sharma, Z. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J. Andreas.
 391 Learning adaptive planning representations with natural language guidance. *International
 392 Conference on Learning Representations*, 2024.

393 [48] S. Xia, B. Lu, and J. Eisner. Let's think var-by-var: Large language models enable ad hoc
 394 probabilistic reasoning. *arXiv preprint arXiv:2412.02081*, 2024.

395 [49] L. Ying, K. M. Collins, M. Wei, C. E. Zhang, T. Zhi-Xuan, A. Weller, J. B. Tenenbaum, and
 396 L. Wong. The neuro-symbolic inverse planning engine (nipe): Modeling probabilistic social
 397 inferences from linguistic inputs. *arXiv preprint arXiv:2306.14325*, 2023.

398 [50] L. Ying, R. Truong, K. M. Collins, C. E. Zhang, M. Wei, T. Brooke-Wilson, T. Zhi-Xuan,
 399 L. Wong, and J. B. Tenenbaum. Language-informed synthesis of rational agent models for
 400 grounded theory-of-mind reasoning on-the-fly, 2025. URL <https://arxiv.org/abs/2506.16755>.

402 [51] L. Ying, T. Zhi-Xuan, L. Wong, V. Mansinghka, and J. B. Tenenbaum. Understanding epistemic
 403 language with a language-augmented bayesian theory of mind. *Transactions of the Association
 404 for Computational Linguistics*, 2025.

405 [52] C. E. Zhang, L. Wong, G. Grand, and J. B. Tenenbaum. Grounded physical language understand-
 406 ing with probabilistic programs and simulated worlds. In *Proceedings of the Annual Meeting of
 407 the Cognitive Science Society*, volume 45, 2023.

408 [53] Z. Zhang, C. Jin, M. Y. Jia, and T. Shu. Autotom: Automated bayesian inverse planning and
409 model discovery for open-ended theory of mind. *arXiv e-prints*, pages arXiv–2502, 2025.

410 [54] T. Zhi-Xuan. *Pddl.jl: An extensible interpreter and compiler interface for fast and flexible ai*
411 *planning*. PhD thesis, Massachusetts Institute of Technology, 2022.