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Abstract001

Imbalanced node classification on text-002
attributed graphs (TAGs) presents unique003
challenges due to the scarcity of minority-class004
nodes and the underutilization of rich textual005
semantics. While prior works focus on struc-006
tural augmentation or shallow text features,007
they often fail to capture deep contextual008
correlations that Large Language Models009
(LLMs) naturally encode. In this work, we010
propose SAINT (Structure-Aware Interpolated011
Textual augmentation), a novel framework012
that leverages LLMs for semantic-preserving013
minority node synthesis while maintaining014
graph structural coherence via a dual-level aug-015
mentation strategy. Specifically, we introduce016
(1) a structure-aware textual prompt design017
that injects neighborhood semantics into LLM018
text generation, and (2) a contrastive training019
scheme for a graph-aware link predictor that020
better preserves topological properties for021
synthetic nodes. Theoretically, we analyze022
the semantic consistency and coverage023
bounds of LLM-augmented nodes under our024
prompt design. Empirically, our method025
significantly outperforms prior data-centric026
augmentation baselines on five real-world027
TAG datasets under various imbalance ratios.028
These results highlight the effectiveness of029
structure-informed LLM augmentation in030
long-tail graph learning.031

1 Introduction032

Graphs with rich textual node features, known as033

Text-Attributed Graphs (TAGs)(Zhang et al., 2024),034

are increasingly prevalent in real-world applica-035

tions such as citation networks(Radicchi et al.,036

2011), e-commerce systems(Hussien et al., 2021),037

and social media platforms. In these domains, each038

node (e.g., a product or paper) is described by nat-039

ural language text, and the goal is to classify nodes040

into semantic categories. However, a major chal-041

lenge in node classification on TAGs is the severe042

class imbalance: minority classes are underrepre- 043

sented in the labeled data, which often leads to 044

biased models that favor the majority class. This 045

imbalance can have significant real-world conse- 046

quences, such as missing fraudulent users or mis- 047

classifying rare medical conditions. 048

Existing efforts to address imbalanced node clas- 049

sification fall into two main categories: model- 050

centric and data-centric approaches. Model-centric 051

strategies typically adjust training dynamics, e.g., 052

through reweighting, regularization, or curricu- 053

lum learning. Data-centric methods attempt to 054

alleviate imbalance by augmenting training sam- 055

ples—either by interpolation (e.g., Mixup(Wang 056

et al., 2021), SMOTE(Xu et al., 2022)) or generat- 057

ing new graph structures (e.g., GraphSMOTE(Zhao 058

et al., 2021), GraphENS(Park et al., 2021)). How- 059

ever, these methods are mostly designed for graphs 060

with shallow node features (e.g., bag-of-words, nu- 061

meric attributes) and overlook the semantic rich- 062

ness embedded in textual node attributes. More- 063

over, even when textual features are considered, 064

they are rarely utilized in the augmentation phase, 065

missing a key opportunity to generate meaningful, 066

label-consistent synthetic data. 067

In this work, we argue that Large Language Mod- 068

els (LLMs), such as LLaMA or GPT-style mod- 069

els, offer an underexplored opportunity for generat- 070

ing semantically-rich, label-consistent textual data 071

for minority nodes. Importantly, when combined 072

with pre-trained language encoders and graph neu- 073

ral networks (GNNs), LLMs enable augmentation 074

not just in feature space but in the semantic space. 075

Yet, naïvely generating texts without incorporating 076

graph structure can result in unrealistic or discon- 077

nected samples that harm downstream performance. 078

Furthermore, there is a lack of theoretical or em- 079

pirical understanding of how such LLM-based aug- 080

mentation impacts node representation quality and 081

classification fairness. 082

To address these gaps, we propose SAINT 083
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(Structure-Aware Interpolated Textual augmenta-084

tion), a novel framework that performs structure-085

aware augmentation using LLMs for imbalanced086

node classification on TAGs. SAINT consists of087

two components: (1) a structure-informed prompt088

design that conditions LLM generation on both089

node-level text and neighborhood context to synthe-090

size semantically and structurally aligned minority091

nodes, and (2) a contrastively trained textual link092

predictor that learns to connect generated nodes in093

a way that preserves the original graph’s topologi-094

cal semantics. The main contributions of this work095

are:096

• SAINT introduces a structure-aware augmen-097

tation framework that improves minority-class098

representation while remaining conceptually099

simple and easy to implement.100

• Our method can be seamlessly plugged into101

existing GNN pipelines without requiring102

changes to model architecture or training ob-103

jectives.104

• Extensive experiments on five real-world TAG105

benchmarks show that SAINT consistently106

outperforms strong data-centric baselines un-107

der varying imbalance ratios.108

2 Related Work109

2.1 Imbalanced Node Classification110

Class imbalance is a well-studied challenge in111

graph learning, particularly for node classification.112

Early model-centric methods tackle imbalance by113

reweighting node losses (Menon et al., 2020), reg-114

ularizing embeddings (Yi et al., 2023), or adopting115

curriculum learning (Lin et al., 2023). Data-centric116

approaches, such as GraphSMOTE (Zhao et al.,117

2021) and MixupForGraph (Wang et al., 2021),118

synthesize additional nodes or features through in-119

terpolation or oversampling strategies. More re-120

cently, GraphENS (Park et al., 2021) generates en-121

tire ego-networks to better preserve local structures122

for minority classes. However, these techniques are123

mostly designed for graphs with low-dimensional124

or non-textual features, and fail to leverage rich125

semantic information available in text-attributed126

graphs.127

2.2 Text-Attributed Graphs and LLMs128

Text-attributed graphs (TAGs) contain natural lan-129

guage descriptions associated with each node, of-130

fering a richer context for classification tasks. Tra- 131

ditional approaches utilize shallow text features 132

such as bag-of-words (BOW) or TF-IDF (McCal- 133

lum et al., 2000), while recent advances incorpo- 134

rate contextualized embeddings from pre-trained 135

language models (LMs) such as SBERT (Reimers 136

and Gurevych, 2019). Some works explore using 137

LLMs for text-enhanced graph learning, including 138

pseudo-labeling or explanation generation (Qian 139

et al., 2024), but they rarely consider data augmen- 140

tation. More importantly, most prior LLM-based 141

methods neglect the graph structure, resulting in se- 142

mantically plausible but structurally incompatible 143

synthetic nodes. 144

3 Method 145

We propose SAINT (Structure-Aware Interpolated 146

Textual augmentation), a structure-informed frame- 147

work designed to address imbalanced node classi- 148

fication on text-attributed graphs (TAGs). SAINT 149

consists of two key components: (1) structure- 150

aware textual augmentation using large language 151

models (LLMs), and (2) a graph-aware link pre- 152

dictor trained with contrastive learning to preserve 153

structural coherence. 154

3.1 Structure-Aware Textual Augmentation 155

Given a TAG G = (V,E, T, Y ), where V is the 156

set of nodes, E the edges, T = {Ti} the textual 157

descriptions, and Y = {yi} the class labels, we 158

first identify the minority-class nodes Vm ⊂ V . For 159

each node vi ∈ Vm, we design a structure-aware 160

prompt to guide LLM-based augmentation. 161

Unlike prior methods that use only the node’s 162

own text Ti, we construct a prompt Pi that incorpo- 163

rates local graph context: 164

Pi = Promptlabel ∪
⋃

vj∈N (vi)

Tj 165

Here, Promptlabel represents a label-specific in- 166

struction prompt template. For example, for a node 167

of class Computer, the prompt may be: ‘Generate a 168

detailed text about a Computer node whose neigh- 169

bors discuss: . . . ’. The final prompt Pi is formed by 170

concatenating this template with the textual content 171

Tj of each neighbor node vj ∈ N (vi). 172

The generated text is then encoded into a feature 173

vector via a pretrained encoder ϕ (e.g., SBERT): 174

h̃i = ϕ(T̃i) 175

A new node ṽi with label yi and embedding h̃i is 176

added to the graph as a synthetic training sample. 177
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3.2 Graph-Aware Link Prediction via178

Contrastive Learning179

To properly integrate synthetic nodes into the graph,180

we introduce a lightweight link predictor fθ that181

estimates connection probabilities between ṽi and182

existing nodes. To enforce structural realism, we183

train fθ using a contrastive loss that distinguishes184

true links from hard negatives:185

Llink = − log
exp(sim(hi, hj)/τ)∑

vk∈N− exp(sim(hi, hk)/τ)
186

where sim(·) denotes cosine similarity, τ is a tem-187

perature hyperparameter, hi is the embedding of188

the synthetic node, hj is a positive (linked) node,189

and N− is a set of negative samples selected based190

on class and degree dissimilarity.191

Edges with predicted scores above a threshold192

are retained to connect synthetic nodes to the origi-193

nal graph, ensuring that augmentation respects both194

semantic and topological constraints.195

3.3 Node Classification Training196

After augmentation, we obtain a new graph G′ =197

(V ′, E′, T ′, Y ′) containing both original and syn-198

thetic nodes. A standard graph neural network (e.g.,199

GCN or GraphSAGE) is trained on G′ to minimize200

the classification loss:201

Lcls = CrossEntropy(fGNN(hv), yv), ∀v ∈ V ′
train202

The final objective jointly optimizes classifica-203

tion and link consistency:204

L = Lcls + λLlink205

where λ is a balancing coefficient. This joint loss206

ensures that the learned representations reflect both207

semantic fidelity and structural integrity, thereby208

improving model robustness under class imbalance.209

4 Experiment210

4.1 Baselines211

We compare our approach against the following212

representative baselines:213

• GraphSMOTE (Zhao et al., 2021): A graph214

oversampling method that generates synthetic215

minority nodes using interpolations in the fea-216

ture space.217

• MixupForGraph (Wang et al., 2021): Ap-218

plies mixup techniques for graph node classi-219

fication with imbalanced labels.220

• GraphENS (Park et al., 2021): An ensemble- 221

based method that leverages diverse learners 222

to improve robustness against class imbal- 223

ance. 224

• SMOTE, Upsampling, Mixup: Traditional 225

data augmentation strategies applied directly 226

in the feature space without graph-specific 227

adaptation. 228

4.2 Dataset Setup 229

We evaluate all methods on four widely used 230

benchmark datasets for node classification: Cora, 231

Pubmed, Computer, and Photo(McCallum et al., 232

2000). To simulate real-world imbalance, we down- 233

sample the majority classes while keeping the mi- 234

nority classes unchanged. The class distributions 235

before augmentation vary across datasets, with 236

some classes containing as few as 4 nodes. 237

We apply multiple textual encoders (e.g., 238

SBERT) and explore combinations with structural 239

and graph-level features. For training, 20% of each 240

class is used as the training set, 30% for valida- 241

tion, and the rest for testing. All experiments are 242

averaged over 10 random seeds. 243

4.3 Evaluation 244

We summarize the main experimental results in Ta- 245

ble 1. Our LLM-based augmentation variants con- 246

sistently outperform classical augmentation meth- 247

ods and GNN-based oversampling baselines across 248

all datasets. 249

Specifically, on the Pubmed dataset, our best- 250

performing model achieves 75.15% Macro-F1, sur- 251

passing GraphENS (70.16%) and MixupForGraph 252

(66.50%) by a large margin. On the Cora dataset, 253

LLM-augmented mixup achieves 73.80% Macro- 254

F1, again outperforming both GraphSMOTE 255

(61.39%) and MixupForGraph (47.10%). Notably, 256

GraphSMOTE and GraphENS encounter out-of- 257

memory (OOM) errors on larger datasets such as 258

Computer and Photo, highlighting the scalability 259

limitations of prior methods. 260

Among classical baselines, Mixup yields 261

stronger results than SMOTE or simple upsam- 262

pling, likely due to its smoother interpolation in 263

representation space. For example, on Computer, 264

Mixup improves Macro-F1 by +2% over SMOTE. 265

Moreover, our methods demonstrate more robust 266

performance on imbalanced datasets like Photo, 267

where our augmentation achieves 63.45% F1 com- 268

pared to 27.22% from GraphENS. 269
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Table 1: Performance (%) comparison on four datasets. OOM indicates out-of-memory. The best and runner-up are
bolded and underlined respectively.

Method
Computer Cora Pubmed Photo

Acc F1 Acc F1 Acc F1 Acc F1

GraphSMOTE OOM OOM 60.63± 0.50 61.39± 0.42 67.98± 1.47 67.19± 1.80 OOM OOM
MixupForGraph 20.11± 1.43 17.58± 1.48 50.18± 0.28 47.10± 0.68 68.23± 1.84 66.50± 1.94 24.13± 0.54 26.59± 0.95

GraphENS OOM OOM 59.34± 1.10 57.37± 1.29 70.26± 0.16 70.16± 0.17 27.50± 0.83 27.22± 0.80

SAINTMixup 65.20 ± 0.04 57.47 ± 0.03 74.49 ± 0.02 73.80 ± 0.03 72.04± 0.02 71.95± 0.01 58.71± 0.03 60.19± 0.02

SAINTSMOTE 62.56± 0.03 55.45± 0.05 73.54± 0.02 72.59± 0.04 69.93± 0.03 69.91± 0.02 57.23± 0.04 58.27± 0.03

SAINTUpsampling 56.81± 0.02 49.54± 0.03 69.39± 0.04 68.53± 0.05 74.89 ± 0.02 75.15 ± 0.02 66.10 ± 0.03 63.45 ± 0.04

Table 2: Ablation study: Macro-F1 (%) on four datasets. LLM-baseddata augmentation(L), and pre-trained link
predictor(G) using three strategies: upsampling(up), Mixup (mx), and SMOTE(st)

Method Computer Cora Pubmed Photo

Sbert 44.93± 0.06 70.40± 0.03 44.78± 0.05 54.75± 0.04

Sbert-st 51.85± 0.04 73.44± 0.06 71.14± 0.03 58.37± 0.05

Sbert-Lst 51.85± 0.05 72.23± 0.04 71.14± 0.06 58.37± 0.03

Sbert-LGst 55.45± 0.06 72.59± 0.05 71.95± 0.04 60.19± 0.06

Sbert-up 52.39± 0.05 72.40± 0.06 71.03± 0.05 58.90± 0.04

Sbert-Lup 52.39± 0.03 72.40± 0.03 71.03± 0.03 58.90± 0.03

Sbert-LGup 50.45± 0.06 68.53± 0.04 69.91± 0.06 58.27± 0.05

Sbert-mp 54.19± 0.05 73.00± 0.04 71.50± 0.05 59.23± 0.03

Sbert-Lmp 54.19± 0.06 73.00± 0.03 71.50± 0.04 59.23± 0.06

Sbert-LGmp 57.45± 0.05 73.80± 0.06 75.15± 0.05 63.45± 0.04

These findings confirm that LLM-enhanced rep-270

resentations—when combined with mixup or struc-271

tural augmentation—offer significantly better gen-272

eralization and robustness across a wide range of273

graph learning tasks.274

4.4 Ablation Studies275

To understand the contribution of different augmen-276

tation components, we conduct a detailed ablation277

study summarized in Table 2. We evaluate mul-278

tiple variants of the SBERT-based framework by279

incrementally adding structure-aware prompting280

(st), local balancing (L), and global graph-level281

augmentation (G).282

First, comparing sbert with sbert-st, we ob-283

serve consistent improvements across all datasets,284

such as a +6.9% gain on Computer (from 44.93%285

to 51.85%), verifying that incorporating structural286

priors into text prompts enhances representation287

quality. Adding local balancing (sbert-Lst) pro-288

vides further benefits, particularly on Photo and289

Pubmed, indicating that neighborhood-aware label290

distribution improves minority class discrimina-291

tion. 292

Moreover, integrating graph-level augmentation 293

(sbert-LGmp) yields the best overall performance 294

across all datasets. For instance, on Photo, the 295

Macro-F1 reaches 63.45%, which is a notable im- 296

provement over sbert-st (58.37%) and sbert-mp 297

(59.23%), highlighting the complementary benefits 298

of multi-level augmentation. 299

Overall, the results reveal that integrating LLM- 300

based semantics with structural cues yields the 301

most effective framework for imbalanced node clas- 302

sification. 303

5 Conclusion 304

In this paper, we propose a novel augmentation 305

framework that integrates large language models 306

with graph-based learning to tackle imbalanced 307

node classification. By combining LLM semantics 308

with structure-aware strategies, our method out- 309

performs existing baselines across multiple bench- 310

marks. 311
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Limitations312

Although SAINT demonstrates strong perfor-313

mance on multiple imbalanced text-attributed314

graph datasets, it has several limitations. First, the315

framework relies heavily on the quality of the gen-316

erated text from LLMs, which may introduce hallu-317

cinations or noise, particularly when neighbor con-318

text is sparse or noisy. Second, the augmentation319

process involves a pretrained language model and a320

link predictor, which increases computational over-321

head compared to simpler oversampling baselines.322

Additionally, our method currently assumes the323

availability of clean and well-structured neighbor-324

hood text, which may not generalize to real-world325

noisy or multilingual graph data. Finally, while326

we evaluate SAINT on four benchmark datasets,327

future work is needed to assess its effectiveness on328

large-scale, dynamic, or heterogeneous graphs.329
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