SAINT: Structure-Aware Interpolated Text Augmentation for Imbalanced
Node Classification on Text-Attributed Graphs

Anonymous ACL submission

Abstract

Imbalanced node classification on text-
attributed graphs (TAGs) presents unique
challenges due to the scarcity of minority-class
nodes and the underutilization of rich textual
semantics. While prior works focus on struc-
tural augmentation or shallow text features,
they often fail to capture deep contextual
correlations that Large Language Models
(LLMs) naturally encode. In this work, we
propose SAINT (Structure-Aware Interpolated
Textual augmentation), a novel framework
that leverages LLMs for semantic-preserving
minority node synthesis while maintaining
graph structural coherence via a dual-level aug-
mentation strategy. Specifically, we introduce
(1) a structure-aware textual prompt design
that injects neighborhood semantics into LLM
text generation, and (2) a contrastive training
scheme for a graph-aware link predictor that
better preserves topological properties for
synthetic nodes. Theoretically, we analyze
the semantic consistency and coverage
bounds of LLM-augmented nodes under our
prompt design. Empirically, our method
significantly outperforms prior data-centric
augmentation baselines on five real-world
TAG datasets under various imbalance ratios.
These results highlight the effectiveness of
structure-informed LLM augmentation in
long-tail graph learning.

1 Introduction

Graphs with rich textual node features, known as
Text-Attributed Graphs (TAGs)(Zhang et al., 2024),
are increasingly prevalent in real-world applica-
tions such as citation networks(Radicchi et al.,
2011), e-commerce systems(Hussien et al., 2021),
and social media platforms. In these domains, each
node (e.g., a product or paper) is described by nat-
ural language text, and the goal is to classify nodes
into semantic categories. However, a major chal-
lenge in node classification on TAGs is the severe

class imbalance: minority classes are underrepre-
sented in the labeled data, which often leads to
biased models that favor the majority class. This
imbalance can have significant real-world conse-
quences, such as missing fraudulent users or mis-
classifying rare medical conditions.

Existing efforts to address imbalanced node clas-
sification fall into two main categories: model-
centric and data-centric approaches. Model-centric
strategies typically adjust training dynamics, e.g.,
through reweighting, regularization, or curricu-
lum learning. Data-centric methods attempt to
alleviate imbalance by augmenting training sam-
ples—either by interpolation (e.g., Mixup(Wang
et al., 2021), SMOTE(Xu et al., 2022)) or generat-
ing new graph structures (e.g., GraphSMOTE(Zhao
et al., 2021), GraphENS(Park et al., 2021)). How-
ever, these methods are mostly designed for graphs
with shallow node features (e.g., bag-of-words, nu-
meric attributes) and overlook the semantic rich-
ness embedded in textual node attributes. More-
over, even when textual features are considered,
they are rarely utilized in the augmentation phase,
missing a key opportunity to generate meaningful,
label-consistent synthetic data.

In this work, we argue that Large Language Mod-
els (LLMs), such as LLaMA or GPT-style mod-
els, offer an underexplored opportunity for generat-
ing semantically-rich, label-consistent textual data
for minority nodes. Importantly, when combined
with pre-trained language encoders and graph neu-
ral networks (GNNs), LLMs enable augmentation
not just in feature space but in the semantic space.
Yet, naively generating texts without incorporating
graph structure can result in unrealistic or discon-
nected samples that harm downstream performance.
Furthermore, there is a lack of theoretical or em-
pirical understanding of how such LLM-based aug-
mentation impacts node representation quality and
classification fairness.

To address these gaps, we propose SAINT



(Structure-Aware Interpolated Textual augmenta-
tion), a novel framework that performs structure-
aware augmentation using LLMs for imbalanced
node classification on TAGs. SAINT consists of
two components: (1) a structure-informed prompt
design that conditions LLM generation on both
node-level text and neighborhood context to synthe-
size semantically and structurally aligned minority
nodes, and (2) a contrastively trained textual link
predictor that learns to connect generated nodes in
a way that preserves the original graph’s topologi-
cal semantics. The main contributions of this work
are:

* SAINT introduces a structure-aware augmen-
tation framework that improves minority-class
representation while remaining conceptually
simple and easy to implement.

Our method can be seamlessly plugged into
existing GNN pipelines without requiring
changes to model architecture or training ob-
jectives.

Extensive experiments on five real-world TAG
benchmarks show that SAINT consistently
outperforms strong data-centric baselines un-
der varying imbalance ratios.

2 Related Work

2.1 Imbalanced Node Classification

Class imbalance is a well-studied challenge in
graph learning, particularly for node classification.
Early model-centric methods tackle imbalance by
reweighting node losses (Menon et al., 2020), reg-
ularizing embeddings (Yi et al., 2023), or adopting
curriculum learning (Lin et al., 2023). Data-centric
approaches, such as GraphSMOTE (Zhao et al.,
2021) and MixupForGraph (Wang et al., 2021),
synthesize additional nodes or features through in-
terpolation or oversampling strategies. More re-
cently, GraphENS (Park et al., 2021) generates en-
tire ego-networks to better preserve local structures
for minority classes. However, these techniques are
mostly designed for graphs with low-dimensional
or non-textual features, and fail to leverage rich
semantic information available in text-attributed
graphs.

2.2 Text-Attributed Graphs and LL.Ms

Text-attributed graphs (TAGs) contain natural lan-
guage descriptions associated with each node, of-

fering a richer context for classification tasks. Tra-
ditional approaches utilize shallow text features
such as bag-of-words (BOW) or TF-IDF (McCal-
lum et al., 2000), while recent advances incorpo-
rate contextualized embeddings from pre-trained
language models (LMs) such as SBERT (Reimers
and Gurevych, 2019). Some works explore using
LLMs for text-enhanced graph learning, including
pseudo-labeling or explanation generation (Qian
et al., 2024), but they rarely consider data augmen-
tation. More importantly, most prior LLM-based
methods neglect the graph structure, resulting in se-
mantically plausible but structurally incompatible
synthetic nodes.

3 Method

We propose SAINT (Structure-Aware Interpolated
Textual augmentation), a structure-informed frame-
work designed to address imbalanced node classi-
fication on text-attributed graphs (TAGs). SAINT
consists of two key components: (1) structure-
aware textual augmentation using large language
models (LLMs), and (2) a graph-aware link pre-
dictor trained with contrastive learning to preserve
structural coherence.

3.1 Structure-Aware Textual Augmentation

Given a TAG G = (V,E,T,Y), where V is the
set of nodes, E the edges, T' = {T;} the textual
descriptions, and Y = {y;} the class labels, we
first identify the minority-class nodes V,,, C V. For
each node v; € V,,, we design a structure-aware
prompt to guide LLM-based augmentation.

Unlike prior methods that use only the node’s
own text 7, we construct a prompt P; that incorpo-
rates local graph context:

P; = Prompt e U U T}
v;EN (v3)

Here, Prompt,,;,. represents a label-specific in-
struction prompt template. For example, for a node
of class Computer, the prompt may be: ‘Generate a
detailed text about a Computer node whose neigh-
bors discuss: ... . The final prompt P, is formed by
concatenating this template with the textual content
T} of each neighbor node v; € N (v;).

The generated text is then encoded into a feature
vector via a pretrained encoder ¢ (e.g., SBERT):

hi = ¢(T5)

A new node v; with label y; and embedding Bz is
added to the graph as a synthetic training sample.



3.2 Graph-Aware Link Prediction via
Contrastive Learning

To properly integrate synthetic nodes into the graph,
we introduce a lightweight link predictor fy that
estimates connection probabilities between v; and
existing nodes. To enforce structural realism, we
train fy using a contrastive loss that distinguishes
true links from hard negatives:

exp(sim(h;, hj)/T)
kaGN’ eXp(Sim(hi, hk)/T)

where sim(+) denotes cosine similarity, 7 is a tem-
perature hyperparameter, h; is the embedding of
the synthetic node, h; is a positive (linked) node,
and N~ is a set of negative samples selected based
on class and degree dissimilarity.

Edges with predicted scores above a threshold
are retained to connect synthetic nodes to the origi-
nal graph, ensuring that augmentation respects both
semantic and topological constraints.

Liink = — log

3.3 Node Classification Training

After augmentation, we obtain a new graph G’ =
(V',E',T',Y') containing both original and syn-
thetic nodes. A standard graph neural network (e.g.,
GCN or GraphSAGE) is trained on G’ to minimize
the classification loss:

ﬁcls = CrOSSEntrOPY(fGNN(hU)7 yv)v Vv € V;;ain

The final objective jointly optimizes classifica-
tion and link consistency:

L = Les + A\Lliink

where A is a balancing coefficient. This joint loss
ensures that the learned representations reflect both
semantic fidelity and structural integrity, thereby
improving model robustness under class imbalance.

4 Experiment

4.1 Baselines

We compare our approach against the following
representative baselines:

* GraphSMOTE (Zhao et al., 2021): A graph
oversampling method that generates synthetic
minority nodes using interpolations in the fea-
ture space.

* MixupForGraph (Wang et al., 2021): Ap-
plies mixup techniques for graph node classi-
fication with imbalanced labels.

* GraphENS (Park et al., 2021): An ensemble-
based method that leverages diverse learners
to improve robustness against class imbal-
ance.

* SMOTE, Upsampling, Mixup: Traditional
data augmentation strategies applied directly
in the feature space without graph-specific
adaptation.

4.2 Dataset Setup

We evaluate all methods on four widely used
benchmark datasets for node classification: Cora,
Pubmed, Computer, and Photo(McCallum et al.,
2000). To simulate real-world imbalance, we down-
sample the majority classes while keeping the mi-
nority classes unchanged. The class distributions
before augmentation vary across datasets, with
some classes containing as few as 4 nodes.

We apply multiple textual encoders (e.g.,
SBERT) and explore combinations with structural
and graph-level features. For training, 20% of each
class is used as the training set, 30% for valida-
tion, and the rest for testing. All experiments are
averaged over 10 random seeds.

4.3 Evaluation

We summarize the main experimental results in Ta-
ble 1. Our LLM-based augmentation variants con-
sistently outperform classical augmentation meth-
ods and GNN-based oversampling baselines across
all datasets.

Specifically, on the Pubmed dataset, our best-
performing model achieves 75.15% Macro-F1, sur-
passing GraphENS (70.16%) and MixupForGraph
(66.50%) by a large margin. On the Cora dataset,
LLM-augmented mixup achieves 73.80% Macro-
F1, again outperforming both GraphSMOTE
(61.39%) and MixupForGraph (47.10%). Notably,
GraphSMOTE and GraphENS encounter out-of-
memory (OOM) errors on larger datasets such as
Computer and Photo, highlighting the scalability
limitations of prior methods.

Among classical baselines, Mixup yields
stronger results than SMOTE or simple upsam-
pling, likely due to its smoother interpolation in
representation space. For example, on Computer,
Mixup improves Macro-F1 by +2% over SMOTE.
Moreover, our methods demonstrate more robust
performance on imbalanced datasets like Photo,
where our augmentation achieves 63.45% F1 com-
pared to 27.22% from GraphENS.



Table 1: Performance (%) comparison on four datasets. OOM indicates out-of-memory. The best and runner-up are

bolded and underlined respectively.

Method Computer Cora Pubmed Photo

Acc F1 Acc F1 Acc F1 Acc F1
GraphSMOTE OOM OOM 60.63 £0.50 61.39+0.42 67.98+1.47 67.19+1.80 OOM OOM
MixupForGraph  20.11+1.43  17.58+1.48  50.18 £0.28  47.10+£0.68 68.23+1.84 66.50+1.94 24.13+0.54  26.59 +£0.95
GraphENS OOM OOM 59.34 £1.10  57.37+1.29 70.26+0.16 70.16+0.17 27.50+£0.83  27.22+£0.80
SAINTMixup 65.20 + 0.04 57.47 £0.03 74.49 £0.02 73.80 +0.03 72.044+0.02 71.95+0.01 58.71+£0.03  60.19 4 0.02
SAINTsmoTE 62.56 £0.03  55454+0.056 73.544+0.02 72.59+0.04 69.93+0.03 69.91+£0.02 57.23+0.04 58.27+0.03
SAINTUpsampling ~ 96.81 £0.02  49.54 +£0.03  69.39+0.04  68.53+0.05 74.89+0.02 75.15+0.02 66.10 = 0.03 63.45 £+ 0.04

Table 2: Ablation study: Macro-F1 (%) on four datasets. LLM-baseddata augmentation(L), and pre-trained link
predictor(G) using three strategies: upsampling(up), Mixup (mx), and SMOTE(st)

Method Computer Cora Pubmed Photo

Sbert 44.93£0.06 70.40+0.03 44.78 £0.05 54.75£0.04
Sbert-st 51.85£0.04 73.44+0.06 71.14+0.03 58.37+0.05
Sbert-Lst 51.85+0.05 72.23+£0.04 71.144+0.06 58.37£0.03
Sbert-LGst ~ 55.45+£0.06 72.59£0.05 71.95+0.04 60.19 £ 0.06
Sbert-up 52.39£0.05 72.40+0.06 71.03+0.05 58.90+0.04
Sbert-Lup 52.39£0.03 72.40£0.03 71.03+£0.03 58.90+0.03
Sbert-LGup  50.45 £ 0.06 68.53 £0.04 69.91£0.06 58.27 £0.05
Sbert-mp 94.19£0.05 73.00£0.04 71.50%£0.05 59.23 £0.03
Sbert-Lmp  54.19+£0.06 73.00£0.03 71.50£0.04 59.23 +0.06
Sbert-LGmp 57.45+£0.05 73.80£0.06 75.15£0.05 63.45+0.04

These findings confirm that LLM-enhanced rep-
resentations—when combined with mixup or struc-
tural augmentation—offer significantly better gen-
eralization and robustness across a wide range of
graph learning tasks.

4.4 Ablation Studies

To understand the contribution of different augmen-
tation components, we conduct a detailed ablation
study summarized in Table 2. We evaluate mul-
tiple variants of the SBERT-based framework by
incrementally adding structure-aware prompting
(st), local balancing (L), and global graph-level
augmentation (G).

First, comparing sbert with sbert-st, we ob-
serve consistent improvements across all datasets,
such as a +6.9% gain on Computer (from 44.93%
to 51.85%), verifying that incorporating structural
priors into text prompts enhances representation
quality. Adding local balancing (sbert-Lst) pro-
vides further benefits, particularly on Photo and
Pubmed, indicating that neighborhood-aware label
distribution improves minority class discrimina-

tion.

Moreover, integrating graph-level augmentation
(sbert-LGmp) yields the best overall performance
across all datasets. For instance, on Photo, the
Macro-F1 reaches 63.45%, which is a notable im-
provement over sbert-st (58.37%) and sbert-mp
(59.23%), highlighting the complementary benefits
of multi-level augmentation.

Overall, the results reveal that integrating LLM-
based semantics with structural cues yields the
most effective framework for imbalanced node clas-
sification.

5 Conclusion

In this paper, we propose a novel augmentation
framework that integrates large language models
with graph-based learning to tackle imbalanced
node classification. By combining LLM semantics
with structure-aware strategies, our method out-
performs existing baselines across multiple bench-
marks.



Limitations

Although SAINT demonstrates strong perfor-
mance on multiple imbalanced text-attributed
graph datasets, it has several limitations. First, the
framework relies heavily on the quality of the gen-
erated text from LLMs, which may introduce hallu-
cinations or noise, particularly when neighbor con-
text is sparse or noisy. Second, the augmentation
process involves a pretrained language model and a
link predictor, which increases computational over-
head compared to simpler oversampling baselines.
Additionally, our method currently assumes the
availability of clean and well-structured neighbor-
hood text, which may not generalize to real-world
noisy or multilingual graph data. Finally, while
we evaluate SAINT on four benchmark datasets,
future work is needed to assess its effectiveness on
large-scale, dynamic, or heterogeneous graphs.

References

Farah Tawfiq Abdul Hussien, Abdul Monem S Rahma,
and Hala Bahjat Abdul Wahab. 2021. Recommenda-
tion systems for e-commerce systems an overview.
1897(1):012024.

Junchao Lin, Yuan Wan, Jingwen Xu, and Xingchen Qi.
2023. Long-tailed graph neural networks via graph
structure learning for node classification. Applied
Intelligence, 53(17):20206-20222.

Andrew Kachites McCallum, Kamal Nigam, Jason Ren-
nie, and Kristie Seymore. 2000. Automating the con-
struction of internet portals with machine learning.
Information Retrieval, 3(2):127-163.

Aditya Krishna Menon, Sadeep Jayasumana,
Ankit Singh Rawat, Himanshu Jain, Andreas
Veit, and Sanjiv Kumar. 2020. Long-tail learning via
logit adjustment. arXiv preprint arXiv:2007.07314.

Joonhyung Park, Jaeyun Song, and Eunho Yang. 2021.
Graphens: Neighbor-aware ego network synthesis
for class-imbalanced node classification.

Zhenyu Qian, Yiming Qian, Yuting Song, Fei Gao, Hai
Jin, Chen Yu, and Xia Xie. 2024. Harnessing the
power of large language model for uncertainty aware
graph processing. pages 8035-8049.

Filippo Radicchi, Santo Fortunato, and Alessandro
Vespignani. 2011. Citation networks. Models of
science dynamics: Encounters between complexity
theory and information sciences, pages 233-257.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai,
and Bryan Hooi. 2021. Mixup for node and graph
classification. pages 3663-3674.

Zhaozhao Xu, Derong Shen, Yue Kou, and Tiezheng
Nie. 2022. A synthetic minority oversampling tech-
nique based on gaussian mixture model filtering for
imbalanced data classification. IEEE Transactions on
Neural Networks and Learning Systems, 35(3):3740-
3753.

Si-Yu Yi, Zhengyang Mao, Wei Ju, Yong-Dao Zhou,
Luchen Liu, Xiao Luo, and Ming Zhang. 2023. To-
wards long-tailed recognition for graph classification
via collaborative experts. IEEE Transactions on Big
Data, 9(6):1683-1696.

Delvin Ce Zhang, Menglin Yang, Rex Ying, and
Hady W Lauw. 2024. Text-attributed graph repre-
sentation learning: Methods, applications, and chal-
lenges. pages 1298-1301.

Tianxiang Zhao, Xiang Zhang, and Suhang Wang.
2021. Graphsmote: Imbalanced node classification
on graphs with graph neural networks. pages 833—
841.



	Introduction
	Related Work
	Imbalanced Node Classification
	Text-Attributed Graphs and LLMs

	Method
	Structure-Aware Textual Augmentation
	Graph-Aware Link Prediction via Contrastive Learning
	Node Classification Training

	Experiment
	Baselines
	Dataset Setup
	Evaluation
	Ablation Studies

	Conclusion

