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Abstract

Bayesian Neural Networks represent a fascinating confluence of deep learning
techniques and probabilistic reasoning, offering a compelling framework for un-
derstanding uncertainty in complex predictive models. In this paper, we consider
Bayesian Neural Networks with Gaussian initialization and we investigate the use
of the preconditioned Crank-Nicolson algorithm to sample from the reparametrized
posterior distribution of the weights as the width of the network grows. In addition
to being robust in the infinite-dimensional setting, we prove that the acceptance
probability of the preconditioned Crank-Nicolson sampler approaches 1 as the
width of the network goes to infinity, independently of any stepsize tuning. We
then compare how the efficiency of the Langevin Monte Carlo, the preconditioned
Crank-Nicolson and the preconditioned Crank-Nicolson Langevin samplers are
influenced by changes in the network width in some real-world cases. In partic-
ular, we demonstrate that in wide Bayesian Neural Networks configurations, the
proposed method allows for more efficient sampling, as evidenced by a higher
effective sample size and improved diagnostic results compared with the Langevin
Monte Carlo algorithm.

1 Introduction

Bayesian Neural Networks (BNNs) have emerged as a powerful framework for combining deep
learning with probabilistic reasoning, offering a principled approach to understanding uncertainty
in complex predictive models (1; 2; 3; 4; 5; 6; 7). Despite their potential advantages, BNNs face
significant challenges, particularly in sampling from high-dimensional posterior distributions of
network weights. As the width of neural networks increases, standard Markov Chain Monte Carlo
(MCMC) methods often struggle with efficiency and scalability. In this paper, we give theoretical and
empirical guarantees to address these challenges by leveraging function-space MCMC techniques,
specifically the preconditioned Crank-Nicolson (pCN) algorithm (8), for sampling from the posterior
distributions of wide BNNs. Our method exploits recent theoretical advances in the understanding of
wide neural networks and offers a robust sampling procedure that remains effective as network width
increases.
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2 Background and Related Works

BNNs extend traditional neural networks by treating weights as random variables, allowing for the
quantification of uncertainty in predictions. However, BNNs have reached far less popularity than
their deterministic counterparts due to the high computational requirements and limited theoretical
understanding. One of the major theoretical challenges concerns the comprehension of the parameter-
space behavior of BNNs, in spite of the function one. Specifically, while it is established that under
Gaussian initializations, the function distributions of wide BNNs converge to the Neural Network
Gaussian Process (NNGP) limit (9; 10; 11; 12; 13; 14; 15), the dynamics of the posterior distribution
remains less understood, with few exceptions (16; 17). We contribute to this literature by exploring
sampling from the posterior distribution of wide BNNs, focusing on understanding its behavior and
properties from a parameter-space perspective.

3 Proposed Method: pCN for Wide BNNs

Our approach leverages the pCN algorithm to sample from the posterior distribution of weights in
wide BNNs. The key insight is to exploit the reparametrization proposed in (17) of the BNN weights
that brings the posterior distribution closer to a standard Gaussian as the network width increases.
Specifically, if we consider a BNN with L hidden layers and let dl be the width of the l − th layer,
the reparametrization is defined as:

ϕ(l) =

{
Σ− 1

2 θ(L+1) − µ l = L+ 1

θ(l) else
(1)

where θ = [θ(l)]l=0,...,L ∼ N (0, ID) is the collection of flattened weights of the BNN and Σ and µ
are data-dependent terms defined as:

Σ = (IdL + σ−2ΨTΨ)−1 µ = σ−2ΣΨT y (2)

Here, Ψ represents the scaled output of the penultimate layer, and σ2 is the observation variance.
The convergence in the KL-divergence of the reparametrized posterior distribution to a standard
Gaussian N (0, ID) as the width goes to infinity suggests potential improvements in the mixing speed
of MCMC procedures, compared to sampling from the notably arduous BNN posterior. Nevertheless,
standard MCMC algorithms are notoriously ill-suited for the infinite-dimensional setting and must
be carefully re-tuned as the dimension increases to avoid degeneracy in the acceptance probability
(18; 19). To address these challenges, we focus on the robust pCN method, specifically designed to
perform reliably in infinite-dimensional spaces.

The pCN algorithm (8) for sampling from the reparametrized posterior uses the following proposal:

ϕ∗ =
√
1− β2ϕ+ βw, w ∼ N (0, ID) (3)

where β ∈ [0, 1) is a stepsize parameter. The acceptance probability for this proposal is given by:

a(ϕ∗|ϕ) = min{1, exp(−ℓ(ϕ) + ℓ(ϕ∗))} (4)

where ℓ is the log-likelihood.

Our main theoretical contribution is the following theorem:

Theorem 3.1 Consider the BNN model with the reparametrization 1. The acceptance probability of
the pCN algorithm to sample from the reparametrized weight posterior, for any β ∈ [0, 1), converges
to 1 as the width of the network increases.

This result has profound implications for sampling from wide BNNs. It guarantees that as the network
becomes wider, the pCN algorithm becomes increasingly efficient, with nearly all proposals being
accepted. This contrasts sharply with traditional MCMC methods, which often require careful tuning
of step sizes to maintain reasonable acceptance rates in high dimensions. The proof Theorem 3.1
relies on the convergence of the empirical Neural Network Gaussian Process (NNGP) kernel to a
constant independent of the weights as the network width increases and is reported in Appendix A.
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Figure 1: Comparison at different stepsizes (β = 0.2, 0.1, 0.01) of the acceptance probability obtained
using: i. the underdamped LMC algorithm (or Metropolis Adjusted Langevin Algorithm: MALA); ii.
the pCN algorithm; iii. the pCNL method. The neural network architecture used is a fully-connected
with one hidden layer, and layer width that varies among the following values: 512, 1024, 2048, 4096.
The CIFAR-10 dataset is used, with the sample size fixed at n = 256. The acceptance rate of
the pCN increases steadily as the width of the BNN grows at every stepsize, suggesting improved
performance in wide BNNs and empirically confirming our theoretical analysis. The pCNL algorithm
shows a similar trend in its acceptance rate, outperforming the other samples. In contrast, the LMC
initially shows generally a deterioration in its acceptance rate as the width of the BNN increases,
reflecting the sampler’s non-robustness in high-dimensional settings.

4 Empirical Results

To validate our theoretical findings and demonstrate the effectiveness of the pCN sampler for wide
BNNs, we conducted a series of experiments on the CIFAR-10 dataset. We replicate the setting in
(17) using a fully-connected neural network with one hidden layer and varying the width from 512 to
4096 neurons. The code is available at github.com/lucia-pezzetti/Function-Space-MCMC-for-Wide-
BNNs.

4.1 Acceptance Rate Convergence

Figure 1 shows the acceptance rates for pCN, underdamped Langevin Monte Carlo (LMC), and
preconditioned Crank-Nicolson Langevin (pCNL) (8) samplers as a function of network width. The
results clearly demonstrate that the pCN acceptance rate steadily increases as the network width
grows, approaching 1 for very wide networks. This empirically confirms our theoretical prediction in
Theorem 3.1. In contrast, the LMC sampler shows a decline in acceptance rate for wider networks,
highlighting the advantage of pCN in high-dimensional settings. The empirical results also showcase
that the pCNL, leveraging both the dimensional-robustness of the pCN and the gradient-informed
proposal of the LMC, reaches the most desirable performances. This suggests the possibility to adapt
Theorem 3.1 also to the Langevin version of the pCN sampler.

4.2 Effective Sample Size Analysis

Figure 2 presents the per-step Effective Sample Size (ESS) (20) for different samplers across various
network widths. Both the pCN and pCNL samplers show a consistent increase in ESS as the network
width grows, indicating improved sampling efficiency. This is particularly evident for larger step
sizes (β = 0.2 and β = 0.1), where they outperform the LMC for wider networks. The increasing
ESS demonstrates that the samplers not only maintains a high acceptance rate but also produces
less correlated samples in high-dimensional spaces. The results for the smallest stepsize confirm
the necessity of avoiding degeneracy in the stepsize, as this introduces autocorrelation among the
collected samples and leads to a deterioration in their quality.

5 Discussion and Conclusion

In this paper, we investigated the effectiveness of the pCN sampler in sampling the posterior distribu-
tion of wide BNNs. Our method leverages recent theoretical insights into the behavior of wide neural
networks and addresses the challenges of sampling in high-dimensional spaces. The key contributions
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Figure 2: ESS analysis of the LMC, pCN and pCNL algorithms as a function of the 1-layer FCN’s
width for stepsizes β = 0.2 (above), β = 0.1 (middle) and β = 0.01 (below). The solid lines
represent the average per-step ESS, whereas the shaded areas indicate the variability of the per-step
ESS delineated by its minimum and maximum values. The setting used in the experiments is the
same as the setting of Figure 1: the layer width of the BNN varies among the following values:
{128, 512, 1024, 2096, 4192}. The CIFAR-10 dataset is used, with sample size fixed at n = 256.
The poor LMC performance reflects the fact that standard MCMC procedures are ill-posed in high-
dimensional settings. In contrast, the pCN and pCNL samplers demonstrate constant growth in ESS
as the network width increases, indicating that enhancements in acceptance rate contribute positively
to efficiency and performance. Finally, the smallest stepsize, β = 0.01, heavily affects the behavior
of both algorithms, introducing high autocorrelation among the samples and affecting their quality.

of our work include theoretical guarantees for the convergence of the pCN acceptance probability
to 1 as network width increases, and their empirical validation through extensive experiments on
real-world datasets.

Our findings have significant implications for Bayesian deep learning, offering a scalable and robust
approach to uncertainty quantification in large neural networks and contributing to the broader goal of
combining the expressiveness of deep learning with the rigorous uncertainty quantification of Bayesian
methods. Future directions for this work include extending the approach to more complex network
architectures, such as convolutional and recurrent neural networks, and investigating theoretical
guarantees for the pCNL sampler.
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A Proof of Theorem 2.1

Let the assumptions of Theorem 3.1 hold. We start by analysing the general expression of the MCMC
acceptance probability:

a = min

{
1,

p(ϕ∗|D)q(ϕ|ϕ∗)

p(ϕ|D)q(ϕ∗|ϕ)

}
.

We have already shown that q(ϕ∗|ϕ) = N (
√

1− β2ϕ, β2ID). Regarding the reparamatrized weight
posterior of the network, we observe that (17)

p(ϕ|D) = p(ϕ(L+1)|ϕ(≤L),D)p(ϕ(≤L)|D)

∝ p(ϕ(L+1)|ϕ(≤L),D)
√
det(Σ)exp

(
1

2
yT (σ2In +ΨΨT )−1y

)
where p(ϕ(L+1)|ϕ(≤L),D) ∼ N (0, Id(L)) is assured by the reparametrisation. It is then crucial to
recognize the empirical NNGP kernel K̂σ2 = σ2In+ΨΨT (21) and observe that det(Σ) ∝ det(K̂σ2).

Inserting everything in the expression of the acceptance probability we have:

p(ϕ∗|D)q(ϕ|ϕ∗)

p(ϕ|D)q(ϕ∗|ϕ)
=

p(ϕ∗(≤L)|D)p(ϕ∗(L+1)|ϕ∗(≤L),D)q(ϕ|ϕ∗)

p(ϕ(≤L)|D)p(ϕ(L+1)|ϕ(≤L),D)q(ϕ∗|ϕ)

=
p(ϕ∗(≤L))

√
det(Σ∗)exp

(
1
2y

T (σ2In +Ψ∗Ψ∗T )−1y
)
p(ϕ∗(L+1)|ϕ∗(≤L),D)q(ϕ|ϕ∗)

p(ϕ(≤L))
√
det(Σ)exp

(
1
2y

T (σ2In +ΨΨT )−1y
)
p(ϕ(L+1)|ϕ(≤L),D)q(ϕ∗|ϕ)

Where we denote with Σ∗ and Ψ∗ the covariance matrix and scaled input matrix of the redout layer
in equation 2, but for a network with weights ϕ∗ . Now:

q(ϕ|ϕ∗) ∝ exp

(
− 1

2β2
||ϕ−

√
1− β2ϕ∗||2

)
= exp

(
− 1

2β2
||ϕ||2 − (1− β2)

2β2
||ϕ∗||2 +

√
1− β2

β2
ϕTϕ∗

)

= exp

(
− 1

2β2
||ϕ||2 − 1

2β2
||ϕ∗||2 + 1

2
||ϕ∗||2 +

√
1− β2

β2
ϕTϕ∗

)

From which
q(ϕ|ϕ∗)

q(ϕ∗|ϕ)
= exp

(
1

2
||ϕ∗||2 − 1

2
||ϕ||2

)
and since

p(ϕ∗(≤L))p(ϕ∗(L+1)|ϕ∗(≤L),D) ∝ exp

(
−1

2
||ϕ∗(≤L)||2

)
exp

(
−1

2
||ϕ∗(L+1)||2

)
= exp

(
−1

2
||ϕ∗||2

)
we obtain

p(ϕ∗|D)q(ϕ|ϕ∗)

p(ϕ|D)q(ϕ∗|ϕ)
=

exp
(
− 1

2 ||ϕ
∗||2
)
exp

(
1
2 ||ϕ

∗||2
)√

det(Σ∗)exp
(
1
2y

T (σ2In +Ψ∗Ψ∗T )−1y
)

exp
(
− 1

2 ||ϕ||2
)
exp

(
1
2 ||ϕ||2

)√
det(Σ)exp

(
1
2y

T (σ2In +ΨΨT )−1y
)

=

√
det(Σ∗)exp

(
1
2y

T (σ2In +Ψ∗Ψ∗T )−1y
)√

det(Σ)exp
(
1
2y

T (σ2In +ΨΨT )−1y
)

∝

√
det(K̂∗

σ2)exp
(

1
2y

T (K̂∗
σ2)−1y

)
√
det(K̂σ2)exp

(
1
2y

T (K̂σ2)−1y
)
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To conclude, we exploit the known convergence of the empirical NNGP kernel to a constant indepen-
dent of ϕ≤L = θ≤L

K̂σ2 → Kσ2 as dmin → ∞

This proves that the numerator and the denominator converge to the same quantity and, consequently,
that their ratio converges to 1.

Implying the thesis

a = 1 ∧ p(ϕ∗|D)q(ϕ|ϕ∗)

p(ϕ|D)q(ϕ∗|ϕ)
→ 1 ∧ 1 = 1 for dmin → ∞

B Marginal-Conditional Decomposition

An alternative approach to Theorem 3.1 involves marginalizing the weights of the network’s final
layer and perform the sampling procedure only on the weights of the network’s inner layers. This
idea is effective since it acknowledges that exact sampling can be performed from the posterior
distribution of the reparametrized weights of the last layer, once the weights from all preceding layers
are known, i.e.,

p(ϕ|D) = p(ϕ(L+1)|ϕ(≤L),D)p(ϕ(≤L)|D)

= p(ϕ(L+1)|θ(≤L),D)p(θ(≤L)|D)

where the last equality follows directly from the reparametrisation definition and from the fact that
p(ϕ(L+1)|θ(≤L),D) ∼ N (0, Id(L)) for any fixed value of θ(≤L). The idea is then to simply perform
pCN sampling on the posterior distribution over the inner-layers weights π(θ≤L|D). Then, once the
samples [

θ
(≤L)
i

]
i=1,...,n

have been collected, we draw, ∀i, ϕ(L+1)
i ∼ N (0, Id(L)), to obtain a sample of the full posterior

distribution of the reparametrised weights. On the pCN algorithm, the next theorem is a counterpart
of Theorem 3.1:

Theorem B.1 Consider the BNN model with the reparametrisation 1, and set p(θ|D) =
p(ϕ(L+1)|θ(≤L),D)p(θ(≤L)|D) and θ(≤L) = W . Then, the acceptance probability of the pCN
algorithm, for any β ∈ [0, 1), applied to p(θ(≤L)|D) converges to 1 as the width of the network
increases. If dmin is the smallest among the network’s layer widths, then

a(ϕ∗|ϕ) = min

{
1,

p(W ∗|D)q(W |W ∗)

p(ϕ|D)q(W ∗|W )

}
→ 1 as dmin → ∞

B.1 Proof of Theorem B.1

Since we are sampling only from the inner-weights θ(≤L) = W of the BNN, the acceptance
probability becomes

a = 1 ∧ p(W |D)q(W |W ∗)

p(W |D)q(W ∗|W )

By definition 1, p(W |D) = p(ϕ(≤L)|D) and thus we can exploit the known expressions from
Appendix A:

p(W |D) = p(W )
√

det(Σ)exp

(
1

2
yT (σ2In +ΨΨT )−1y

)
∝ exp

(
−1

2
||W ||2

)√
det(Σ)exp

(
1

2
yT (σ2In +ΨΨT )−1y

)
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Moreover

q(W |W ∗) ∝ exp

(
− 1

2β2
||W −

√
1− β2W ∗||2

)
=⇒ q(W |W ∗)

q(W ∗|W )
= exp

(
1

2
||W ∗||2 − 1

2
||W ||2

)
Putting all together and simplifying we get:

a = 1 ∧ π(W ∗|D)q(W |W ∗)

π(W |D)q(W ∗|W )

= 1 ∧
√

det(Σ∗)exp
(
1
2y

T (σ2In +Ψ∗Ψ∗T )−1y
)√

det(Σ)exp
(
1
2y

T (σ2In +ΨΨT )−1y
)

That corresponds to the same exact expression found in Appendix A and hence convergence to 1 as
the layers width increases is granted by the same arguments.
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