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Abstract

Reasoning about time is essential for Large Language Models (LLMs) to un-
derstand the world. Previous works focus on solving specific tasks, primar-
ily on time-sensitive question answering. While these methods have proven
effective, they cannot generalize to a wider spectrum of temporal reasoning
tasks. Therefore, we propose a crucial question: Can we build a universal
framework to handle a variety of temporal reasoning tasks? To that end, we
systematically study 38 temporal reasoning tasks. Based on the observation
that 19 tasks are directly related to mathematics, we first leverage the avail-
able mathematical dataset to set a solid foundation for temporal reasoning.
However, the in-depth study indicates that focusing solely on mathemati-
cal enhancement falls short of addressing pure temporal reasoning tasks.
To mitigate this limitation, we propose a simple but effective self-critic
temporal optimization method to enhance the model’s temporal reasoning
capabilities without sacrificing general task abilities. Finally, we develop
Timo, a model designed to excel in temporal reasoning at the 7B and 13B
scales. Notably, Timo outperforms the counterpart LLMs by 10.0 and 7.6 in
average accuracy scores and achieves the new state-of-the-art (SOTA) per-
formance of comparable size. Extensive experiments further validate our
framework’s effectiveness and its generalization across diverse temporal
tasks. The code is available at https://github.com/zhaochen0110/Timo.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success in various reasoning
tasks (Zhao et al., 2023; Chang et al., 2023; Su et al., 2024), such as mathematical, common-
sense, and symbolic reasoning. Despite these advances, LLMs face significant challenges
in temporal reasoning (Chen et al., 2021; Tan et al., 2023a), which is crucial in human per-
ception. Compared to other reasoning tasks that focus solely on one specific reasoning
ability, temporal reasoning is an integrated task that requires arithmetic (Zhu et al., 2023a),
logic (Mishra et al., 2022a) and world knowledge (Wei et al., 2022).

Prior efforts to improve the temporal reasoning capacity of LLMs focus mainly on time-
sensitive question-answering (Chen et al., 2021), and utilize methods such as step-by-step
reasoning (Zhu et al., 2023b; Li et al., 2023) and ruled-based supervised fine-tuning (SFT) (Tan
et al., 2023a; Yuan et al., 2023b). More recent studies expand the scope of temporal tasks to
include basic temporal concepts understanding (e.g., duration), intricate temporal interpre-
tations (e.g., relation) and computations (e.g., arithmetic) (Wang & Zhao, 2023). Due to their
task-specific nature, the aforementioned methods exhibit limited generalization across the
wider spectrum of temporal tasks.
∗Work was done during the internship at Shanghai AI lab.
†Juntao Li is the Corresponding Author.
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Figure 1: The detailed classification of 38
temporal reasoning tasks. 19 tasks are di-
rectly related to math (i.e., Math-time tasks).
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Figure 2: Timo outperforms LLaMA in all
temporal tasks and is the current state-of-
the-art (SOTA) model of comparable size.

To address these limitations, we explore a crucial question: Can we build a universal
framework to handle various temporal reasoning tasks? To tackle this, we face the following
challenges: (1) integrating different temporal reasoning tasks into a unified framework; (2)
generating and selecting the high-quality training dataset automatically; (3) improving the
comprehensive temporal reasoning abilities while maintaining its general performance.

In response to these challenges, we first systematically study 38 subtasks within the temporal
reasoning benchmark proposed by Wang & Zhao (2023). As shown in Figure 1, our analysis
reveals that 19 tasks are directly related to mathematical reasoning (i.e., mathematical time
tasks). For example, when “identifies the next leap year following 2024”, mathematical
skills are required to calculate the results. The rest are categorized as pure temporal rea-
soning tasks, focusing solely on temporal reasoning without using mathematical abilities.
Meanwhile, mathematical reasoning stands out with its diverse and rich instruction tuning
datasets compared to temporal reasoning (Cobbe et al., 2021; Mishra et al., 2022b; Yue
et al., 2023). Therefore, it is intuitive to build a generalist temporal reasoning framework
based on math-enhanced LLMs, setting a solid foundation for temporal reasoning skills.
However, our in-depth study indicates that focusing solely on mathematical enhancement
through supervised fine-tuning falls short of addressing pure-time tasks. To bridge this
gap, we further introduce a simple but effective method to obtain comprehensive temporal
reasoning abilities. Specifically, we propose a self-critic method to generate and select the
high-quality temporal preference pairs, which are then utilized for enhancing model tem-
poral capabilities through preference optimization. Finally, we propose a unified temporal
reasoning framework, namely Timo. With this framework, our model achieves superior
performance among 38 temporal tasks, as depicted in Figure 2.

In our experiments, we train LLaMA2 models at both 7B and 13B scales with our framework,
which results in Timo-7B and Timo-13B. These two models demonstrate a substantial
improvement of 10.0 and 7.6 in average accuracy scores over the base models, respectively.
Our comprehensive analysis indicates that our framework successfully integrates substantial
mathematical knowledge along with temporal information. Extensive experiments further
verify the effectiveness of our method in preserving general task capabilities and maintaining
robustness under different scenarios. To sum up, our contributions are shown below:

• We systematically study a variety of temporal reasoning tasks and discover the inner
correlation between time and mathematics, where temporal reasoning could benefit from
mathematics instructions;

• We make the first attempt to build a unified framework to address 38 temporal tasks.
Specifically, upon mastering mathematical reasoning capabilities, we propose a simple but
effective self-critic temporal optimization method to strengthen the temporal reasoning
capabilities comprehensively;

2



Published as a conference paper at COLM 2024
Fs. CoT MATH-CoT

Amb. 30.5 46.8 55.0 
Arith. 23.7 46.2 52.1 
Dur. 30.5 42.5 54.0 
Freq. 46.0 67.0 69.5 

Figure 3: Performance comparison with
Math-CoT and traditional prompting
methods in math-time tasks.

0k 50k 100k 150k 180k

Math-time tasks 56.4 63.3 64.6 64.8 64.4 

Pure-time tasks 68.8 69.8 70.7 70.1 70.5 
62.6 66.6 67.7 67.5 67.5 

0k 50k 100k 150k 180k

ambiguity 0.604 0.67 0.664 0.658 0.658

arithmetic 0.521111111 0.613333333 0.64111111 0.6233333 0.6

causality 0.935 0.945 0.945 0.95 0.955

duration 0.638571429 0.625714286 0.69 0.6914286 0.66

frequency 0.738333333 0.76 0.78 0.785 0.76333333

nli 0.44 0.5 0.52 0.43 0.52

ordering 0.42 0.4 0.45 0.455 0.425

relation 0.54 0.54 0.49 0.49 0.58

storytelling 0.66 0.72 0.72 0.69 0.76

typical_time 0.7275 0.765 0.765 0.7275 0.715

Figure 4: Comparisons on temporal tasks
with models trained on different numbers
of math instructions.

• The proposed framework outperforms 10.0 and 7.6 scores over the baselines, establishing
as the new SOTA model of comparable sizes. Besides, our models consistently enhance
the temporal reasoning capabilities without sacrificing general task performance.

2 Revealing the Correlation between Math and Temporal Reasoning

2.1 Analysis on Temporal Reasoning Benchmark

Wang & Zhao (2023) provides a comprehensive collection of 38 subtasks centered around
temporal reasoning tasks. It is widely observed that a substantial portion of these tasks relies
on mathematical skills for calculating and reasoning about time. For example, within the
Frequency category, the Computation subtask requires the calculation of event frequencies or
intervals. In the Ambiguity Resolution task, mathematics provides a standardized method
of time representation, such as the 24-hour format and date calculation formulas, enabling
different temporal expressions to be accurately understood and converted. Based on these
observations, we categorize temporal tasks into two categories. The specific subtasks under
each category are shown in Figure 1. Below is our classification:

• Mathematical Time Tasks (Math-time tasks): These are temporal reasoning tasks that
necessitate mathematical skills, such as calculating time frequencies, converting time
shifts, comparing time sequences, determining time intervals, estimating durations, and
so on. This category encompasses a total of 19 subtasks.

• Pure Time Tasks (Pure-time tasks): These tasks require only temporal reasoning abilities
for resolution and include reasoning about temporal commonsense, applications in real-
world scenarios, temporal natural language inference (NLI) and so on. This category also
contains 19 subtasks.

2.2 Bridging Mathematics and Temporal Tasks

Inspired by Wei et al. (2022), we construct Math-CoT for each temporal task to establish a
connection between mathematics and temporal tasks. We utilize the MathInstruct dataset
(Yue et al., 2023), which comprises a diversified collection of mathematical problems with
detailed rationales. From this dataset, we select five mathematical question-CoT pairs and
employ GPT-4 to generate Math-CoT rationales by mimicking mathematical reasoning.
Since pure-time questions lack mathematical rationales, Math-CoT is specifically designed
for math-time tasks. We compare Math-CoT with two prompting methods: (1) Few-shot,
which samples five question-answer pairs per task, and (2) CoT (Wei et al., 2022), where
GPT-4 is used to generate step-by-step rationales for each task. We conduct the experiments
using LLaMA2-7B under the 5-shot setting and report the accuracy for each task. As shown
in Figure 3, integrating mathematical reasoning into temporal tasks leads to a significant
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Wrong Set Temporal
Preference Pairs Timo
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Training

Select
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Figure 5: The pipeline of our self-critic temporal task optimization method. Based on
responses generated by mathematical models (MathLLM), we classify correct and wrong
sets using golden answers. From these, we further select high-quality pairs with our
proposed hierarchical scoring method. Finally, the chosen pairs are used for DPO training.

enhancement in model performance, with Math-CoT outperforming traditional prompting
methods in all math-time tasks.

2.3 Mathematical Reasoning as a Foundation for Temporal Understanding

Given the established correlation between mathematics and temporal reasoning, it is intu-
itive to instruct models in mastering mathematical reasoning to establish a solid foundation
for advanced temporal reasoning abilities. This connection motivates our investigation into
how varying degrees of mathematical instruction influence model performance. Specifically,
we select 180k mathematical CoT rationales from the MathInstruct and perform scaling
experiments by fine-tuning the LLaMA2-7B with different volumes of math instructions (i.e.,
0, 50k, 100k, 150k, and 180k). We evaluate the models on both math-time tasks and pure-
time tasks under the 5-shot setting. The results are shown in Figure 4. After supervised
fine-tuning on 50k math instruction tuning instances, the model exhibits a notable improve-
ment in performing math-time tasks, with accuracy increasing from 56.4 to 63.3. However,
It is worth noting that this enhancement in mathematical skills has a minimal impact on
pure-time tasks, with a maximum enhancement of 1.9. Additionally, our analysis indicates
a declining trend in performance across both task categories as the volume of math instruc-
tions increases. We believe this decline results from overfitting to mathematical tasks due
to excessive data, adversely impacting the model’s temporal reasoning capability (Mishra
et al., 2022a).

3 Self-critic Temporal Task Optimization

In the previous section, we discovered that focusing solely on mathematical enhancement
falls short of addressing pure-time tasks. To mitigate this limitation, we introduce a simple
but effective self-critic optimization framework to equip the model with comprehensive
temporal reasoning abilities. The pipeline of our proposed framework is detailed in Figure 5.

Given the mathematical model L, we start by generating a set of N candidate responses
Yi = {y1

i , y2
i , . . . , yN

i } for each input prompt xi. Given the golden label gi for each prompt xi,
we divide Yi into the correct response set R+i and the incorrect response set R−i :

R+i = {y
n
i ∈ Yi ∣ align(yn

i , gi) = true}, R−i = Yi ∖R+i , (1)

where align(yn
i , gi) is a function that returns true if the response yn

i aligns with the golden
label gi, and false otherwise. Inspired by the LLM-as-a-Judge mechanism (Zheng et al.,
2023; Yuan et al., 2024; Qu et al., 2024b), we utilize mathematical model L directly as
a reward model to identify high-quality response pairs. Notably, we introduce a novel
hierarchical scoring method, which is specifically designed for evaluating responses to
temporal tasks and contains five key aspects: (1) relevance and basic temporal reasoning;
(2) understanding of temporal aspects; (3) application of internal temporal knowledge;
(4) direct and well-organized addressing of the question; (5) insightfulness and advanced
reasoning. To choose the higher quality pair from the correct set R+i and wrong set R−i , we
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prioritize the response that utilizes the model’s temporal reasoning to the fullest extent. The
criteria for our evaluation prompts are illustrated in Figure 10 and 11. For each criterion a
response meets, a point is awarded. We prompt the model L to assign a score rn

i ∈ [0, 5] to
each response yn

i , quantifying its quality across the above dimensions.

The temporal preference pair (y+i , y−i ) is formed by selecting the top-scoring response from
the correct set R+i as y+i and from the incorrect set R−i as y−i . We then utilize these pairs to
perform direct preference optimization (DPO) by optimizing the following loss function:

LDPO(πθ ; πref) = −E(x,y+i ,y−i )∼D
[log σ(β log

πθ(y+i ∣ x)
πref(y+i ∣ x)

− β log
πθ(y−i ∣ x)

πref(y−i ∣ x)
)] , (2)

where y+i is favored over y−i , and β is a hyperparameter.

4 Experiments

4.1 Experimental Setup

Training Setup We use LLaMA2 7B and 13B (Touvron et al., 2023) as our base pre-trained
model. For SFT, we select 100k instances from MathInstruct (Yue et al., 2023), the most
representative dataset for mathematical reasoning instruction tuning. For self-critic temporal
optimization, we focus on pure temporal reasoning tasks, which encompass 19 subtasks. We
reserve 100 instances for evaluation and utilize the remaining data for training. If a subtask
contains fewer than 5,000 samples, we maintain all of them. Otherwise, we randomly select
5,000 instances. In total, we use 35,655 instances for optimization.

Evaluation Setup We conduct a comprehensive evaluation across all temporal reasoning
tasks, encompassing a total of 38 tasks. Following Tan et al. (2023a), we assess the model
performance on 100 examples for each task, amounting to a total of 3,800 instances. Consis-
tent with prior work (Qu et al., 2024a; Xia et al., 2024), we evaluate the model’s temporal
abilities under the 5-shot setting and utilize greedy decoding (i.e., temperature = 0) for
generating model’s responses. We extract the prediction from the response and calculate the
accuracy of each subtask.

Implementation Details We utilize four/eight NVIDIA Tesla A100 GPUs to train models.
To facilitate parallel training, we employ DeepSpeed Zero-Stage 3 (Ren et al., 2021) and
FlashAttention2 (Dao, 2023). For SFT, we use a learning rate of 2e-5, a batch size of 128,
and a cosine scheduler with a 3% warm-up period for 2 epochs. For candidate response
generation, we sample N = 5 candidate responses with temperature T = 0.8, p = 0.95. When
evaluating candidate responses, as there is variance to these scores, in our experiments
we also use sampled decoding (with the same parameters) and generate these evaluations
multiple (3) times and take the average. For DPO, we follow the hyper-parameters from
Tunstall et al. (2023) with a batch size 32, learning rate 5e-7, a warm ratio of 0.1 using linear
warmup scheduler for 9 epochs.

4.2 Baselines

To ensure the fairness of the experiments, we select baseline models built upon the founda-
tional model LLaMA2. The baselines are selected based on the following dimensions:

• LLMs for Temporal Reasoning: TimeLLaMA (Yuan et al., 2023b) is currently the only
open-source model that is specifically designed for temporal reasoning. It is developed to
make temporal predictions and generate time-related explanations.

• LLMs for Mathematical Reasoning: Timo is trained through temporal optimization based
on mathematical models. Here, we compare the following mainstream mathematical
models: (1) MAmmoTH (Yue et al., 2023) is designed for general mathematics problem-
solving and is trained on the MathInstruct dataset. (2) WizardMath (Luo et al., 2023a)
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Model Amb. Ari. Dur. Fre. Cau. NLI Ord. Rel. Sto. Typ.

7B Parameter Model

LLaMA2 61.0 52.1 64.1 72.0 93.0 44.0 43.0 54.0 66.0 72.5
TimeLLaMA 56.2 42.7 37.0 40.8 42.5 15.0 7.5 48.0 5.0 32.0
WizardCoder 57.8 51.9 63.4 68.7 86.0 43.0 38.0 45.0 54.0 65.8
CodeLlama 50.2 55.2 58.7 71.0 86.0 55.0 44.0 45.0 55.0 68.3
WizardMath 65.2 52.9 53.3 72.0 94.0 49.0 39.0 36.0 63.0 64.3

ToRA 51.2 44.8 58.1 71.5 92.0 48.0 39.5 46.0 68.0 73.3
MAmmoTH 63.0 52.3 60.3 62.8 90.5 39.0 43.0 51.0 69.0 67.3

Timo 68.8 60.8 72.1 78.0 95.0 74.0 71.5 70.0 87.0 83.8

13B Parameter Model

LLaMA2 66.2 63.9 72.0 83.2 95.5 55.0 44.0 44.0 71.0 82.0
WizardCoder 63.2 60.1 62.1 76.5 92.0 54.0 49.0 51.0 59.0 71.3
CodeLlama 62.6 60.6 67.0 75.2 90.5 54.0 46.5 53.0 58.0 69.5
WizardMath 63.2 58.3 72.9 78.3 95.0 58.0 43.0 54.0 82.0 77.3

ToRA 61.2 50.8 67.9 77.4 97.5 56.0 38.5 64.0 80.0 79.5
MAmmoTH 69.1 67.0 72.4 80.4 97.0 62.0 48.0 57.0 77.0 78.8

Timo 70.4 66.3 77.7 87.2 97.5 87.0 79.5 78.0 83.0 89.5

Table 1: Results on 38 temporal reasoning tasks. The abbreviations Amb., Ari., Dur., Fre.,
Cau., Ord., Rel., Sto., Typ. refer to ambiguity resolution, arithmetic, duration, frequency,
causality, order, relation, story, and typical time. All values are percentages. The best results
are in bold and the second results are in underlined.

utilizes the proposed Reinforcement Learning from Evol-Instruct Feedback (RLEIF) (Xu
et al., 2023) to enhance its mathematical reasoning capabilities. (3) ToRA (Gou et al.,
2024), a series of Tool-integrated Reasoning LLM Agents, is designed to solve challenging
mathematical reasoning problems.

• LLMs for Code Generation: Previous work indicates that the usage of code enhances the
model’s ability to solve reasoning tasks (Gao et al., 2023). We select the following popular
code models as our baselines: (1) CodeLLaMA (Roziere et al., 2023), a family of LLMs for
code generation and programming-related tasks. (2) WizardCoder (Luo et al., 2023b) is
similar to WizardMath and adapts the RLEIF method within the domain of coding.

4.3 Main Results

Table 1 presents the results of Timo across 38 temporal reasoning tasks. Results categorized
by Math-time and Pure-time tasks are shown in Appendix G in Table 9 and Table 10. From
the results, we observe: (1) Timo surpasses counterpart LLMs in average accuracy of 10.0
and 7.6 scores, and outperforms other competitive math-solving and code-solving models
with a clear margin, achieving the SOTA results on average. We also discover that Timo-7B
consistently outperforms all 13B models in average performance, achieving a maximum
performance gain of 7.1. (2) Mathematical models do not show significant advantages
in solving math-related tasks. This phenomenon is also observed in LLMs enhanced for
coding abilities and temporal prediction capabilities. It indicates that excessive training on
specific abilities leads the model to overfit in task-centric enhancements, diminishing its
performance in other areas (Jha et al., 2023). (3) It is worth noting that Timo underperforms
MAmmoTH in the Arithmetic task (i.e., scoring 66.3 vs 67.0) when evaluated under the 13B
model size parameter. The superior performance of MAmmoTH can be attributed to its
advanced general math-solving abilities, which facilitate more accurate computations in
time-related scenarios. However, other mathematical models like ToRA and WizardMath
do not achieve the same effectiveness in handling the Arithmetic task. A detailed case study
for illustration is in Appendix B.
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Figure 6: Performance of GPT series and our framework’s models. MathLLaMA is based on
mathematical instruction tuning and Timo is our final model. Math-time tasks are marked
with †, while others are pure-time tasks. We highlight our model’s achievements: a green
star (⋆) where Timo beats GPT-3.5, and a red star (⋆) for surpassing GPT-4.

5 Further Analysis on our Framework

In our framework, we initially train a mathematical model, i.e., MathLLaMA. Then, we
optimize its pure temporal reasoning abilities to derive the final Timo model. In this section,
we first compare the performance of these two stages. Then, we delve into these models
through the lens of token distribution shift and detailed case analysis.

Ablation Analysis of Framework We compare the model’s performance on both math-
time tasks and pure-time tasks. The results are shown in Figure 6. Compared to the
foundational model LLaMA, MathLLaMA demonstrates superior performance in math-
related tasks and surpasses the LLaMA in the majority of pure-time tasks, achieving higher
scores in 6 out of 9 tasks. This improvement is attributed to the advanced logical and
reasoning skills developed through mathematical instruction tuning (Mishra et al., 2022a).
When compared to Timo and MathLLaMA, our framework demonstrates strong generaliza-
tion capabilities, achieving significant improvement in pure-time tasks, with only minimal
performance degradation in the arithmetic task. Additionally, it is worth noting that Timo
outperforms MathLLaMA in various math-time tasks (i.e., Ambiguity Resolution, Dura-
tion and Frequency). This improvement is attributed to our framework’s ability to learn
generalized temporal features.

Token Distribution Shift Analysis To understand the learning process and the differences
between the different stages of our framework, we follow the methodology proposed
by Lin et al. (2024) to analyze through the lens of token distribution shift. We analyze
three pairs of models at the 7B scale: LLaMA vs MathLLaMA, MathLLaMA vs Timo, and
LLaMA vs Timo. The results are shown in Figure 7. Notably, we observe the largest token
distribution shift when transitioning from LLaMA to Timo. Furthermore, we investigate the
top 200 most frequently shifted tokens, labeling math-related tokens in red and time-related
tokens in green. The transition from LLaMA to MathLLaMA primarily features changes
in math-related tokens. Conversely, the switch from MathLLaMA to Timo is characterized
by the presence of time-related tokens. When compared to LLaMA, Timo exhibits shifts in
both math-related and time-related tokens, demonstrating a profound capacity to integrate
substantial mathematical knowledge along with the temporal information.

Case Analysis As shown in Table 2, we present a case analysis to provide a clear and intu-
itive demonstration of Timo’s superior performance. In math-time tasks, both MathLLaMA
and Timo effectively integrate temporal knowledge with computational capabilities to give
the correct CoT and answer. However, LLaMA produces an incorrect result due to the
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  Unshifted (68.87%)  Marginal (15.62%)  Shifted (15.51%)    

'The',  'answer',  'Therefore',  ‘So’,  
‘Original’,  'calculation',  'add',  
'subtract',  'frequency',  'days',  
'calculate',  'approximately',  'total',  
'count',  ‘×’,  'Added',  ‘match’,   
'convert',   ‘Sub’,  'Adding',  
‘equals’,  ’exceed’,  ‘*’,  ...

’The',  'answer',  'calculation',  add', 
'duration',  'frequency',  'day',  ‘days’,  
'year',  'total',  ‘Since’,  'hours',  
'subtract',  ‘×’,  ‘AM’, 'approximately', 
'weeks',  ‘months’,  'minutes',  ‘-’,  
‘equals’,  'adding',  ‘=’,  ‘convert’,  
'sum' ...

‘calculation',  'duration',  'frequency',  
'align',  ‘count’,  ‘total’,  'hours',  
‘once’,  'days',  ‘day’,  'time',  'years', 
'context',  'minutes',  ‘subtract’,  
'weeks',  'AM',  'july',  'months',  
‘Since’,  'next',  ‘President’,  'PM',  
‘following’,  ‘clock’...

      LLaMA           Timo
Unshifted (66.68%)  Marginal (16.22%)  Shifted (17.10%)    

   MathLLaMA          Timo
Unshifted (68.62%)  Marginal (15.32%)  Shifted (16.06%)    

   LLaMA         MathLLaMA

Figure 7: Token distribution shift on different stages of our proposed temporal task opti-
mization method. The ratios of unshifted, marginal, and shifted tokens are colored (%).
Frequently shifted tokens are shown below, where math-related tokens are labeled in red
and time-related tokens are highlighted in green.

error in time calculation, which indicates the importance of mathematical skills in solving
math-time tasks. We also In our provided case of the pure-time tasks, both MathLLaMA
and LLaMA fail to grasp the sequence of events, i.e., the timing of Amy’s laundry activities.
On the other hand, Timo demonstrates a strong understanding and application of temporal
reasoning, accurately tracking the sequence and timing of Amy’s activities and giving the
correct answer. Overall, these cases vividly demonstrate Timo’s comprehensive capabilities
in temporal reasoning across different temporal task types.

6 More Detailed Study

Performance Comparison between Timo and OpenAI GPT Models We compare Timo-
13B with the current most powerful LLMs, i.e., GPT-3.5 and GPT-4. Specifically, we use
the gpt-3.5-turbo-1106 and gpt-4-1106-preview and set the temperature to 0 for consistent
evaluation. The results are shown in Figure 6. Despite its relatively small size of 13B
parameters, Timo demonstrates impressive performance on pure-time tasks, outperforming
GPT-3.5 in 7 out of 9 tasks and surpassing GPT-4 in 5 out of 9 tasks. Notably, Timo exceeds
GPT-4 by a significant margin of 38 accuracy scores in the Relation task. Although there
has been a significant improvement in pure-time tasks, the performance on math-time
tasks suggests that there is still room for further enhancement. This is attributed to the
foundational model’s weaker mathematical reasoning capabilities. We leave it as future
work to further improve the model’s temporal reasoning abilities by better integrating
mathematics capabilities.

Math-time Pure-time

random 61.5 79.8
LLM-Judge 61.3 80.2
Timo 63.9 81.5

Table 3: Performance on different reward methods

Performance Comparison among Dif-
ferent Rewarding Strategies In our
framework, we design a series of crite-
ria to assess the standard of responses
and obtain high-quality temporal pref-
erence pairs. To verify the effective-
ness of our criteria, we compare our
prompting approach with the widely
adopted self-rewarding strategy (Yuan
et al., 2024) and the random selection strategy. As shown in Table 3, our strategy outperforms
others in both math-time and pure-time tasks, highlighting its superiority in evaluating the
quality of generated responses across different types of temporal challenges.

Robustness across Mathematical Models With Timo being derived from a mathematical
model trained with 100k math instructions, we validate the robustness and adaptability
of our framework across different mathematical models, which is achieved by implement-
ing self-critic temporal task optimization in models supervised fine-tuned with different
volumes of instruction dataset (i.e., 50k, 100k, 150k, 180k). The results are shown in Fig-
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Mathematical Time Tasks

Questions In which week of year 1652 does the date 10-27-1652 occur?
(A) Week 43; (B) Week 39; (C) Week 46; (D) Week 30

LLaMA

Calculating the weeks from January 1st to October 27th, it’s 27 days. Dividing
27 by 7 places October 27th in the 4th week.
However, depending on the week starting day and system used, it can be
considered as the 39th week. The answer is (B).%

MathLLaMA

We calculate the total days from January 1st to October 27th, which amounts to
31 (Jan.) + 28 (Feb.) + 31 (Mar.) + 30 (Apr.) + 31 (May.) + 30 (Jun.) + 31 (Jul.) +
31 (Aug.) + 30 (Sept.) + 27 (Oct.), which equals 300 days. Dividing 300 by 7, we
find that October 27th falls into the 43rd week of the year. The answer is (A).!

Timo

Calculating the weeks from January 1st to October 27th, the total days are
31 (Jan.) + 28 (Feb.) + 31 (Mar.) + 30 (Apr.) + 31 (May.) + 30 (Jun.) + 31 (Jul.) +
31 (Aug.) + 30 (Sept.) + 27 (Oct.), summing up to 300 days. Dividing 300 by 7
places October 27th in the 43rd week of the year. The answer is (A).!

Table 2: A case study for math-time tasks to intuitively show the effectiveness of Timo with
temporal direct preference optimization. The right and wrong steps are colored by blue and
red, respectively. An example of pure-time tasks is shown in Table 11.

ure 8. The experimental results indicate that the trained models consistently outperform
in handling time-related tasks compared to their corresponding mathematical models,
highlighting our method’s capability to enhance temporal reasoning across different mathe-
matical training backgrounds.

General Tasks Capability Assessment To verify the model’s ability to retain its original
capabilities, we utilize the lm-evaluation-harness (Gao et al., 2021) to evaluate its perfor-
mance on six typical downstream tasks: 5-shot MMLU (Hendrycks et al., 2020), 25-shot ARC
Challenge (Clark et al., 2018), 5-shot GSM8K (Cobbe et al., 2021), 10-shot HellaSwag (Zellers
et al., 2019), 5-shot Winogrande (Sakaguchi et al., 2021) and 0-shot TruthfulQA (Lin et al.,
2022). In addition to comparing with LLaMA and MathLLaMA, we introduce Timo-SFT,
which mirrors our framework in all aspects except for its training methodology. Specifically,
Timo-SFT is supervised fine-tuned with the chosen responses in the selected preference
pairs. The results are shown in Figure 9. We surprisingly discover that Timo outperforms
other baselines in the reasoning and general knowledge ability tasks. Error analysis shows
that our model aligns with the base model for 97% of the correct responses. This consis-
tency indicates that our Timo effectively preserves general task knowledge, demonstrating
remarkable generalization capabilities.

7 Related Work

Temporal Reasoning in LLMs Time is a crucial dimension in our physical world (Lazari-
dou et al., 2021; Su et al., 2022; 2023; Zhao et al., 2024). Despite the advanced capabilities of
LLMs in various tasks, their reasoning abilities are still underdeveloped (Su et al., 2024; Qiao
et al., 2023; Huang & Chang, 2023; Sun et al.; Chu et al., 2023). Temporal reasoning, which
is fundamental for humans to understand the world, is an important task in reasoning
and has gained substantial research focus (Pustejovsky, 2003; UzZaman et al., 2012; Huang
et al., 2024). However, existing works often specialize in limited aspects of temporal rea-
soning, such as frequency (Zhou et al., 2019), duration (Zhang & Choi, 2021), or event-time
relations (Chen et al., 2021; Tan et al., 2023a). In our work, we address a comprehensive
scope of temporal reasoning, including various levels and dimensions of understanding
about time (Wang & Zhao, 2023). Differing from prior approaches that rely on external
knowledge (Yuan et al., 2023a; Tan et al., 2023b; Xiong et al., 2024) or impose temporal
constraints (Li et al., 2023; Zhu et al., 2023b) within a narrow sub-scope of tasks, we propose
a unified framework designed to generalize across different temporal reasoning scenarios.
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50k 66.6 70.7
100k 67.7 72.7
150k 67.4 72.5
180k 67.5 72.3
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Figure 8: Results of Timo trained on the
mathematics dataset of different sizes,
demonstrating consistent improvements
across models.
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Figure 9: Reasoning and general knowl-
edge performance comparison under cur-
rent mainstream benchmarks.

Preference Optimization for LLMs Preference optimization approaches typically involve
training a fixed reward model based on preference data, and then utilizing the reward
model to train via reinforcement learning (RL) (Schulman et al., 2017; Ziegler et al., 2019;
Stiennon et al., 2020; Bai et al., 2022). To simplify this process, Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) is introduced to avoid training the reward model entirely,
and instead directly train the LLM using preference pairs. Building on this approach, re-
cent works explore automatic optimization and self-correction in LLMs (Pan et al., 2023; Ji
et al., 2024). This involves two key steps: instructing LLMs to self-generate their training
dataset (Wang et al., 2023; Taori et al., 2023; Tunstall et al., 2023) and serving LLMs as reward
models (Fernandes et al., 2023; Saha et al., 2023; Dubois et al., 2024) to select high-quality
data. The self-generated data optimization enables models to iteratively improve their
performance through a self-rewarding mechanism (Yuan et al., 2024). Inspired by the above
works, we introduce a self-critic temporal optimization method that leverages the inherent
capabilities of the model itself to achieve significant improvements in all temporal tasks.

8 Conclusion

In this paper, we consider the problem of building a universal framework to strengthen the
temporal reasoning capabilities of LLMs. Through systematic investigation, we discover
a close relationship between mathematics and temporal reasoning. Building upon this
insight, we introduce a self-critic temporal optimization method to equip the model with
comprehensive temporal reasoning abilities. The Timo model, trained within our proposed
framework, indicates significant generalizability across 38 temporal tasks, establishing as
the new SOTA model of comparable sizes. Extensive experiments further demonstrate the
effectiveness of our framework in maintaining general task abilities.
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A Prompt

Our rewarding prompts are shown in Figure 10 and 11. The prompts for different temporal
tasks can be found in our GitHub repository: https://github.com/zhaochen0110/Timo.

B Comparative Analysis of Mathematical Models on Arithmetic Tasks

We observe that task-specific fine-tuning approaches compromise the LLMs’ original abili-
ties. We conduct a case study to delve deeper into this phenomenon. As shown in Table 4,
ToRA and WizardMath have difficulty grasping basic concepts of time. Specifically, these
models demonstrate challenges in accurately converting between the 12-hour and 24-hour
time formats, a fundamental aspect of temporal understanding. This case study serves as a
clear illustration of how specialized fine-tuning can compromise the LLMs’ inherent ability
to perform fundamental reasoning, underscoring the need for a balanced approach in model
training.

Questions What is 02:45 PM + 10:44?
(A) 2:39 AM (B) 3:41 AM (C) 1:29 AM (D) 11:20 PM

Timo The calculation is 14 ∶ 45+ 10 ∶ 44 = 25 ∶ 29, which is 1:29 AM. The answer is (C).

MammoTH The calculation is 14 ∶ 45+ 10 ∶ 44 = 25 ∶ 29, which is 1:29 AM. The answer is (C).

WizardMath The calculation is 15 ∶ 45+ 10 ∶ 44 = 26 ∶ 29, which is 3:41 AM. The answer is (B).

ToRA The calculation is 14 ∶ 45+ 10 ∶ 44 = 25 ∶ 29, which is 3:41 AM. The answer is (B).

Table 4: The case chosen from the Hour Adjustment (12h) task. ToRA and WizardMath fall
short in time calculation and converting between 12-hour and 24-hour formats.

C Iterative Optimization Study

Recent work (Touvron et al., 2023; Yuan et al., 2024) suggests that updating preference data
through multiple iterative rounds enhances the performance of preference optimization.
Therefore, we explore Iterative DPO to refine alignments across temporal reasoning tasks.
The results are shown in Table 5. However, we do not observe a significant improvement
from iterative training. The reason might be due to the efficiency of our method, where
a single iteration is sufficient for robust learning, and excessive training could instead
diminish performance in temporal reasoning tasks.

Math-time Pure-time

1 iter. 63.9 81.5
2 iters 62.1 80.9
3 iters 57.8 80.1

Table 5: Comparison on different iteration settings

D Validating Timo on LLaMA3-8B

To further validate the effectiveness of Timo in enhancing temporal reasoning across different
LLMs, we conducted additional experiments using the LLaMA3-8B model. The results are
shown in Table 6. Compared to vanilla LLaMA3-8B, Timo shows an average improvement
of 5.1 scores, with 1.2 scores in math-related tasks and 9 scores in time-related tasks. These
consistent improvements across both the LLaMA2 and LLaMA3 series demonstrate Timo’s
strong generalization capabilities across different model series, enhancing its applicability
and effectiveness in diverse settings.
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Math-time Pure-time Average

LLaMA3-8B 81.4 79.6 80.5
+Timo 82.6 88.6 85.6

Table 6: Performance Comparison of LLaMA3-8B with and without Timo enhancement

E Evaluating the Impact of Math LLM on Temporal Reasoning

Existing work on weak-to-strong generalization suggests that distilling data from a weaker
or equivalent LLM benefits a stronger LLM (Burns et al., 2023). To address concerns
regarding the influence of the LLM-as-Judge framework compared to the use of a specialized
math LLM, we conducted experiments using vanilla LLaMA2-7B and LLaMA2-7B-chat,
representing general SFT LLaMA models. As presented in Table 7, our results demonstrate
that incorporating a math LLM yields significant improvements in temporal reasoning
tasks. Specifically, the math LLM outperforms the vanilla LLaMA2-7B and LLaMA2-7B-chat
models by an average of 3.6 and 7 scores, respectively. The performance gains are especially
notable in math-related tasks, where the math LLM achieves scores 5.5 and 10.5 scores higher
than those of the other two models. These results indicate that the math LLM component is
crucial for enhancing temporal reasoning capabilities, outperforming the self-critic temporal
optimization (i.e., LLM-as-Judge) framework alone. The results indicate that math-specific
training plays a pivotal role in reasoning over time, confirming the value of specialized
LLMs in complex reasoning tasks.

Math-time Pure-time Average

Timo (LLaMA2-7B) 58.4 79.7 69.1
Timo (LLaMA2-7B-chat) 53.4 78.1 65.7
Timo (MathLLaMA-7B) 63.9 81.5 72.7

Table 7: Comparison of temporal reasoning performance across different based LLM,
with Timo applied for temporal optimization on LLaMA2-7B, LLaMA2-7B-chat, and
MathLLaMA-7B.

F Further Evaluation of Timo on Temporal Reasoning Datasets

To further assess Timo’s improvements in temporal reasoning, we extended our evaluation
to additional temporal reasoning datasets, i.e., MCTACO (Zhou et al., 2019) and TempRea-
son (Tan et al., 2023a). These datasets were selected to validate Timo’s effectiveness across a
broader range of temporal reasoning tasks.

• MCTACO: This dataset evaluates a wide range of commonsense knowledge related to
events, including the duration, order, stationary nature, and typical timing of events.

• TempReason: This dataset emphasizes implicit temporal reasoning in structured facts,
focusing on both event-time reasoning and event-event reasoning.

The results are shown in Table 8. Timo achieves scores 6.2 and 15.5 points higher than
LLaMA2-7B and WizardMath-7B on the TempReason task. Additionally, Timo surpasses
MAmmoTH-7B by 19.3 points on the MCTACO task. These results indicate that Timo excels
across various temporal reasoning datasets, demonstrating its robust general temporal
reasoning abilities. In future work, We will further explore the generalization of Timo
across more reasoning tasks, such as commonsense reasoning (Sakaguchi et al., 2021), and
composition relations reasoning (Zhao & Zhang, 2024).
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MCTACO TempReason

LLaMA2-7B 50.3 46.6
MAmmoTH-7B 37.0 52.8
WizardMath-7B 12.7 37.3
Timo-7B 56.3 52.8

Table 8: Results on the MCTACO and TempReason datasets. Timo-7B outperforms its
counterparts, demonstrating superior general temporal reasoning abilities.

G Results for Math-time and Pure-time Tasks

In this section, we present the detailed results by task category. Results for math-related
tasks are presented in Table 9. Results for pure-time tasks are presented in Table 10.

Model Amb. Ari. Dur. Fre.

7B Parameter Model

LLaMA2 55.0 52.1 54.0 69.5
TimeLLaMA 52.5 42.7 42.5 55.5
WizardCoder 53.8 51.9 40.5 66.0
CodeLlama 44.5 55.2 50.5 68.0
WizardMath 63.3 52.9 45.0 74.0

ToRA 45.5 44.8 44.0 69.8
MAmmoTH 62.0 52.3 54.5 59.5

Timo 65.3 60.8 59.5 72.0

13B Parameter Model

LLaMA2 61.3 63.9 58.5 81.0
WizardCoder 58.5 60.1 55.5 72.3
CodeLlama 57.8 60.6 61.0 74.8
WizardMath 58.8 58.3 62.0 75.5

ToRA 56.8 50.8 48.0 75.8
MAmmoTH 64.9 67.0 71.0 79.8

Timo 65.0 66.3 76.5 85.5

Table 9: Results on Math-time tasks. Best results are in bold and the second results are
underlined.
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Model Amb. Dur. Fre. Cau. NLI Ord. Rel. Sto. Typ.

7B Parameter Model

LLaMA2 85.0 68.2 77.0 93.0 44.0 43.0 54.0 66.0 72.5
TimeLLaMA 71.0 34.8 11.5 42.5 15.0 7.5 48.0 5.0 32.0
WizardCoder 74.0 58.6 74.0 86.0 43.0 38.0 45.0 54.0 65.8
CodeLlama 73.0 62.0 77.0 86.0 55.0 44.0 45.0 55.0 68.3
WizardMath 73.0 56.6 68.0 94.0 49.0 39.0 36.0 63.0 64.3

ToRA 74.0 63.8 75.0 92.0 48.0 39.5 46.0 68.0 73.3
MAmmoTH 67.0 62.6 69.5 90.5 39.0 43.0 51.0 69.0 67.3

Timo 83.0 77.2 90.0 95.0 74.0 71.5 70.0 87.0 83.8

13B Parameter Model

LLaMA2 86.0 77.4 87.5 95.5 55.0 44.0 44.0 71.0 82.0
WizardCoder 82.0 69.0 85.0 92.0 54.0 49.0 51.0 59.0 71.3
CodeLlama 82.0 69.4 76.0 90.5 54.0 46.5 53.0 58.0 69.5
WizardMath 81.0 77.2 84.0 95.0 58.0 43.0 54.0 82.0 77.3

ToRA 79.0 75.8 80.5 97.5 56.0 38.5 64.0 80.0 79.5
MAmmoTH 86.0 73.0 81.5 97.0 62.0 48.0 57.0 77.0 78.8

Timo 92.0 78.2 90.5 97.5 87.0 79.5 78.0 83.0 89.5

Table 10: Results on Pure-time tasks. All values are percentages. Best results are in bold and
second best are underlined.

Pure Time Tasks

Questions

According to the Premise: Amy started doing her laundry early in the morning
every weekend. answer the question: What’s the more plausible CAUSE?
(A) It allowed her to have the washing machines to herself as most people do
laundry later in the day.
(B) Amy found more lost socks in the laundry room.

LLaMA

The more plausible cause is that she found more lost socks in the laundry room.
This explanation aligns with the purpose of laundry, which is to clean
and organize clothes, and is a logical response to Amy’s need to find lost socks.
The answer is (B).%

MathLLaMA

The more plausible cause is that she found more lost socks in the laundry room.
This explanation aligns with the purpose of laundry, which is to clean and
organize clothes, and the additional socks found in the laundry room would be
a logical outcome. The answer is (B).%

Timo

The reason is it allowed her to have the washing machines to herself as most
people do laundry later in the day. This explanation aligns with the practicality
of early morning laundry, as it minimizes the likelihood of encountering other
people using the laundry facilities. The answer is (A).!

Table 11: A case study for pure-time tasks to intuitively show the effectiveness of Timo with
temporal direct preference optimization. The right and wrong steps are colored by blue and
red, respectively.
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Use the following 5-point scoring system to review the user's question and the corresponding 
correct answer:

- Add 1 point if the response is relevant to the user's inquiry and shows some temporal 
reasoning ability, even if it is incomplete or contains irrelevant content.
- Add another point if the response correctly understands the temporal aspects of the user's 
question but doesn't fully resolve the query or provide a direct answer.
- Award a third point if the response accurately uses internal temporal knowledge to 
effectively answer the basic elements of the user's question.
- Grant a fourth point if the response not only effectively uses temporal reasoning but is also 
clearly written from an AI Assistant’s perspective, addressing the user's question directly 
and comprehensively, and is well-organized.
- Bestow a fifth point for a response that excellently applies temporal reasoning, reflecting 
expert knowledge in time-based queries, and demonstrates a high-quality, engaging, and 
insightful answer.

User: { prompt }
<response> { response } </response>

After examining the user’s instruction and the response:
- Conclude with the score using the format: “Score: <total points>”.

Figure 10: The prompt for our LLM to act as a chosen reward model

Use the following 5-point scoring system to review the user's question and the corresponding 
incorrect answer that attempts to use temporal knowledge but fails to correctly solve the 
problem:

- Add 1 point if the response attempts to be relevant to the user’s inquiry and shows an 
attempt at temporal reasoning, even if the information is incorrect.
- Add another point if the response partially correctly attempts to handle the temporal 
aspects of the user's question but includes errors or misconceptions.
- Award a third point if the response clearly tries to use temporal knowledge but fails to 
accurately address the basic elements of the user’s question.
- Grant a fourth point if the response, while attempting to reason temporally from an AI 
Assistant’s perspective, shows some logic but contains errors or misses key information.
- Bestow a fifth point for those answers that make an effort in temporal reasoning but are 
incorrect, potentially misleading the user but not completely deviating from the topic of the 
question.

User: { prompt }
<response> { response } </response>

After examining the user’s instruction and the response:
- Conclude with the score using the format: “Score: <total points>”.

Figure 11: The prompt for our LLM to act as a rejected reward model
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