
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DECODING INTELLIGENCE: A FRAMEWORK FOR CER-
TIFYING KNOWLEDGE COMPREHENSION IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge comprehension capability is an important aspect of human intelli-
gence. As Large Language Models (LLMs) are being envisioned as superhuman
agents, it is crucial for them to be proficient at knowledge comprehension. How-
ever, existing benchmarking studies do not provide consistent, generalizable, and
formal guarantees on the knowledge comprehension capabilities of LLMs. In
this work, we propose the first framework to certify knowledge comprehension in
LLMs with formal probabilistic guarantees. Our certificates are quantitative —
they consist of high-confidence, tight bounds on the probability that a target LLM
gives the correct answer on any knowledge comprehension prompt sampled from
a distribution. We design and certify novel specifications that precisely represent
distributions of knowledge comprehension prompts leveraging knowledge graphs.
We certify SOTA LLMs for specifications over the Wikidata5m knowledge graph.
We find that knowledge comprehension improves with increasing model size.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated human-level performance for several real-world
tasks (Street et al., 2024; Yang et al., 2023b; Bommasani et al., 2022; Harrison, 2024). An impor-
tant use case for LLMs is knowledge comprehension (Lazaridou et al., 2022; Khattab et al., 2023),
that is, they are often used to summarize long texts and webpages (Perplexity, 2023; Nakano et al.,
2022), respond to user queries based on the context (Yang et al., 2018), and serve as adaptive task de-
composers for reasoning-based retrieval augmented generation tasks (Yao et al., 2023b). Knowledge
comprehension involves answering questions by extracting relevant information from large, unstruc-
tured texts and reasoning with it. Large context windows of millions of tokens in models like Gemini
v1.5 (Gemini Team, 2024) reduce reliance on large knowledge corpora of RAG systems and para-
metric knowledge held by LLMs. Users increasingly provide extensive references during inference
to guide responses. This makes analyzing the knowledge-comprehension and reasoning capabilities
of popular LLMs crucial. Moreover, knowledge comprehension is considered a basic evaluation
of language understanding in human learners, according to the Bloom’s taxonomy (Bloom, 1956).
Students are tested on knowledge comprehension tasks at all levels of school education (National
Center for Education Statistics, 2024). Standardized tests such as TOEFL (Educational Testing Ser-
vice, 2024) and IELTS (IDP IELTS, 2024) contain knowledge comprehension as entire assessments.
As LLMs are envisioned to become superhuman agents (Xi et al., 2023), it is imperative to formally
analyze them on tasks on which humans are extensively tested, like knowledge comprehension.

There are several benchmarking studies on the performance of LLMs for knowledge comprehen-
sion (Liang et al., 2023; Chen et al., 2021; Yang et al., 2018; Wang et al., 2023a; Trivedi et al.,
2022; Tang & Yang, 2024). Several of these studies use multi-hop question-answering datasets that
consist of questions requiring several sequential reasoning steps to obtain the final correct answer.
Thus, benchmarking knowledge comprehension often involves analyzing whether the target LLM
can combine multiple pieces of information in meaningful ways and reason its way to the correct
answer in the prompt, without deviating or hallucinating. However, the empirical nature of prior
studies results in inconsistency in their observations (Wei et al., 2023b; Olsson et al., 2022; Shi
et al., 2024). Moreover, while they can convey some high-level trends in the performance of popular
LLMs, the results are devoid of any formal guarantees on their applicability. Such guarantees are
crucial when deploying LLMs in large-scale knowledge-comprehension tasks in critical domains
such as medicine or finance, as they give more confidence about the trustworthiness of LLMs before

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

deployment. Our work aims to bridge this gap by introducing a novel formal certification method,
QuaCer-C1, for obtaining certified bounds on the knowledge comprehension capability of LLMs.

Key challenges. We face the following challenges when developing a formal certification frame-
work for knowledge comprehension in LLMs. (1) We need formal representations capturing the
knowledge comprehension property, amenable to certification. Such representations should pre-
cisely capture large, diverse sets of prompts (created by varying questions, supporting texts, etc.)
for knowledge comprehension and their correct responses. (2) Failure examples where the desirable
property does not hold are fairly easy to construct for LLMs by appropriate prompt tuning (Xu et al.,
2024; Vega et al., 2023), making binary certificates that indicate whether an LLM satisfies a speci-
fication trivially false. (3) Giving provable guarantees on LLMs is a hard, open problem, due to the
high number of model parameters and nonlinearities (Zhang et al., 2024), for which the traditional
certifiers (Singh et al., 2019; Shi et al., 2020; Bonaert et al., 2021) would lose significant precision
leading to inconclusive analysis. The number of prompts over which we desire the target LLMs to
reason correctly is also large, making enumeration-based methods for formal guarantees infeasible.

Our approach. We formalize knowledge comprehension as a novel specification using knowledge
graphs. Instead of specifying correctness of LLM responses for all prompts in any given set, we
specify a quantitative property, which is the probability of correct response for any knowledge com-
prehension prompt sampled from a distribution, developed using a given knowledge graph. We pro-
pose a black-box quantitative certification approach, QuaCer-C, which circumvents the issues that
traditional approaches have with the number of parameters in LLMs and can even work for closed-
source API-access LLMs. QuaCer-C generates high-confidence bounds on the quantitative property
using queries, leveraging binomial proportion confidence intervals (Clopper & Pearson, 1934). Es-
timating with bounds is beneficial as they also account for the uncertainty in the estimation. While
formal analysis has been conducted on individual generations of LLMs in prior work (Quach et al.,
2024), there is no analysis for the average-case risk of LLMs in knowledge comprehension. Our
certificates contain provable bounds on the probability of getting correct responses for any random
knowledge comprehension task sampled from the distributions given in the specifications.

Contributions. We make the following contributions:

1. We specify the knowledge comprehension property desirable from the LLM responses as
a formal specification. Our specifications use popular knowledge graphs such as Wiki-
data5m (Wang et al., 2021) that are augmented with supporting information about each of
their entities. The specifications represent a large set of knowledge comprehension prompts
with their respective correct answers expected from any target LLM.

2. We model certification in a target LLM as a probability estimation problem and lever-
age Clopper-Pearson confidence intervals to generate provable, high-confidence bounds
on the quantitative property of interest. Our implementation is provided at https:
//anonymous.4open.science/r/QuaCer_CAnon-4130.

3. We generate the proposed certificates for the popular LLMs: Llama-3, Mistral, Phi-3, GPT-
4o, and Gemini-1.5-Pro. We observe that as the number of model parameters increases, the
knowledge comprehension capability of the LLM improves. On comparing different model
classes, we see Phi-3 models performing the best among the smaller, open-source models.

Our work is the first step towards providing guarantees on the knowledge comprehension capabilities
of LLMs, to ameliorate the caution needed when using LLMs (Shanahan, 2023) in a systematic way.
We anticipate it to go a long way in making LLMs trustworthy for deployment in critical domains.

2 BACKGROUND

2.1 KNOWLEDGE GRAPH

A knowledge graph G = (N , E) is a collection of nodes N representing entities, intercon-
nected by directed edges E representing their relations (Peng et al., 2023; Ji et al., 2022). They
are commonly used in search engines to enhance the relevance of responses to user queries.

1Quantitative Certification of Knowledge Comprehension

2

https://anonymous.4open.science/r/QuaCer_CAnon-4130
https://anonymous.4open.science/r/QuaCer_CAnon-4130

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: A subgraph of Wikidata5m

Hence, major companies develop their own closed-source
knowledge graphs. Wikidata5m (Wang et al., 2021), a
popular open-source knowledge graph consisting of 5M
nodes, is a structured representation of Wikipedia pages.
Each Wikidata node corresponds to a Wikipedia page,
containing its abstract and a set of aliases that can synony-
mously refer to the node. Two nodes (v1, v2), v1, v2 ∈ N
are connected by a labeled edge if there is a link in the
supporting document for v1 to that for v2. Edge (v1, v2)
is labeled by a set of aliases for the relation between v1
and v2. Figure 1 shows a subgraph of Wikidata5m.

2.2 LARGE LANGUAGE MODELS

Large Language Models (LLMs) are autoregressive causal language models that operate on a vo-
cabulary V , a set of tokens. LLMs takes a sequence of tokens x1, ..., xn where xi ∈ V, n > 0
and outputs a probability distribution over V for the potential next token xn+1. These models are
typically pretrained on vast corpora of text data (Liu et al., 2024) and have shown remarkable capa-
bilities (Touvron et al., 2023; Gemini Team, 2024; OpenAI, 2024). Numerous benchmarks (Yang
et al., 2018; Rein et al., 2023; Hendrycks et al., 2021) have been developed to evaluate the perfor-
mance of LLMs on tasks related to multi-step reasoning, knowledge comprehension and question
answering. However, there remains a gap in our theoretical understanding of LLMs’ capabilities.

2.3 INFORMATION EXTRACTION AND REASONING

Information extraction (IE) and reasoning are important research problems in natural language
processing. IE involves “extracting structured information from unstructured or semi-structured
data” (Chen et al., 2022) such as textual documents. Examples of IE are event extraction (Wadden
et al., 2019) and relationship extraction (Pawar et al., 2017). Reasoning is the ability of a model to
connect multiple facts using correct logical operations to arrive at a final answer (Huang & Chang,
2023). Typically, reasoning capabilities of LLMs are enhanced by using techniques such as Chain of
Thought reasoning and its variants (Wei et al., 2023a; Yao et al., 2023a; Wang et al., 2023b), using
world models (Hao et al., 2023), etc. It is evaluated in several tasks such as planning (Wang et al.,
2024), mathematical reasoning (Imani et al., 2023), commonsense reasoning (Zhao et al., 2023), etc.

3 CERTIFYING KNOWLEDGE COMPREHENSION

Knowledge comprehension is the ability of a model to accurately reason through a multi-hop ques-
tion (Yang et al., 2018) (combination of multiple simple information extraction questions that should
be answered sequentially to arrive at the final answer) and extract the answers to intermediate ques-
tions from information provided in its prompt to reach the correct final answer. Thus, knowledge
comprehension is a combination of reasoning and information extraction. Figure 2 gives an overview
of our certification framework, QuaCer-C. We formally define knowledge comprehension using a
knowledge graph G = (N , E) (Section 2.1) next. Our framework is agnostic to the internal structure
of the target model L which can be any text-to-text generating model.

3.1 SPECIFYING KNOWLEDGE COMPREHENSION

Knowledge Graph Grammar

1. γ := V+

2. η := V+

3. A := [η1, η2, . . .]
4. v := (γ,A)
5. e := ((v1, v2),A)
6. N := [v1, v2, . . .]
7. E := [e1, e2, . . .]
8. G := (N , E)

The adjacent grammar defines a knowledge graph. Let V denote
the vocabulary of L’s tokens. V+ denotes the set of concatenation
of non-empty sequences of elements of V . Let each node v of G
(line 4) consist of a finite list of synonymous names (a.k.a. aliases,
A) that can be used to refer to the node, and a context γ that pro-
vides more information about the node and its relations with other
nodes. For example, in Wikidata5m (Wang et al., 2021), each node
has aliases consisting of the identifiers mentioned for the subject of
the corresponding Wikipedia page and context which is the abstract
of the page. Each edge e in G (line 5) is an ordered pair of related

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prompt
construction

Paracetamol
Overdose

Damage
leads to

damages

acetaminophen
Liver Damage

N-acetylcysteine

acetylcysteine

(b) Path in 𝐺, Π

Treated by

Treatment

Prompt
 Few Shot Examples: ...
 Context: Paracetamol
(Acitaminophen) Overdose can
cause damages to the liver and
severe vomiting...
N-Acetylcystine is often used to
treat liver damage, especially
when caused by
acetaminophen toxicity.... .

Query:
Paracetamol Overdose →
 (damages) → (treated by) →?

N-acetylcysteine

acetylcysteine

(c) Prompt & correct answer

Options:
1. Acetylcysteine
2. Vomiting
3. Liver damage
4. Nomogram

LLM
answer:

Correct: 2.
Vomiting,
because ...

Prompt
LLM

(d) LLM answer

[0.4,0.5]
Certifier

(e) Correctness
probability

Acetaminophen blood
test

plasma acetaminophen
level

Paracetamol
Overdose

Damage leads
to

damages

Damage leads to

damages

Acetaminophen blood test

plasma acetaminophen
level

Interpreted
with

Nomogram

Vomiting expels things from
body..... usually does not help
paracetamol overdose...

Acetaminophen
blood test

plasma
acetaminophen

level

Diagnosed by

Diagnosis

acetaminophen
Liver Damage

Damage
leads to

damages

N-acetylcysteine

acetylcysteine

Treated by

Treatment

Nausea

Vomiting

Damage
leads to

damages

Nomogram

Interpreted
with

Paracetamol
Overdose

(a) Subgraph of knowledge graph, G

Random path
selection

...

...

Paracetamol
Overdose

...

Other path samples

Figure 2: Overview of QuaCer-C. (a) A knowledge graph G pivoted on some node v1, in this case
on ‘Paracetamol Overdose’. (b) A randomly chosen path Π originating at v1 from the various other
possible paths from v1 in G. (c) A prompt created from Π having contexts of the nodes in Π, a
distractor context (highlighted in orange, as the node for ‘Vomiting’ is a distractor for Π), and a
query from Π. (d) The target LLM’s response to the prompt, validated using the correct answer. (e)
Certifier obtains bounds on the probability of correct response using n samples of LLM responses.

nodes where the relation is identified by a set of synonymous aliases A for the edge. Let (v1, v2)
denote any edge between nodes v1 and v2 in G. We define G (line 8) as a finite collection of nodes
N and edges E . A path in G (Definition 3.1) is a set of connected nodes in N .
Definition 3.1. (Path in a Knowledge Graph). A path Π = [v1, v2 . . . , vl] is an ordered collection
of nodes in a given knowledge graph G, where l > 1, such that ∀i ∈ [l− 1], vi ∈ N , (vi, vi+1) ∈ E ,
and ∀j ∈ [l], i ̸= j =⇒ vi ̸= vj . ΠH := v1 and ΠT := vl are the head and tail nodes respectively
of Π. Let the ith (i ∈ [1, l]) nodes of Π from ΠH and backwards from ΠT be Π[i] := vi and
Π[−i] := vl−i+1 respectively.

Definition 3.2 describes a multi-hop reasoning problem, derived from a given knowledge graph G.
As G naturally encodes several multi-hop problems, we use it to form the specification for a target
language model L, similar to prior works such as (Ho et al., 2020; Jiang et al., 2023b).
Definition 3.2. (Multi-hop reasoning problem from G). Consider any path Π (Definition 3.1) of
length l in G. A multi-hop reasoning problemQ for Π is identifying the tail node ΠT , given an alias
of its head node ΠH and aliases of all edges from ΠH to ΠT in Π. Let vA denote the corresponding
aliases of node v in G. Let D be a function that samples a random alias from the given set of aliases.

Q := D(ΠH,A)
D((ΠH ,Π[2])A)−−−−−−−−−−→ . . .

D((Π[−2],ΠT)A)−−−−−−−−−−−→?

Q thus involves l − 1 reasoning steps to get to the final answer, where each step requires correctly
identifying intermediate nodes of Π. Note, however, that correctness of intermediate reasoning steps
is generally not evaluated, and accuracy is defined for the final response (Rajpurkar et al., 2016).

To aid L in correctly answering a multi-hop reasoning query Q and reduce hallucination (Dhuli-
awala et al., 2023), we provide relevant textual information needed to identify the intermediate and
final nodes in the prompt. Hence, the overall task of answeringQ involves information extraction for
identifying intermediate nodes and reasoning to connect the intermediate answers to reach the final
answer, which we collectively call knowledge comprehension. Our overall property quantifies the
probability of observing correct knowledge comprehension for a random multi-hop reasoning query

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Knowledge comprehension specification
Input: L,G, v1, ρ
Output: p

1: D := U | Ber | ...
2: Π := [v1, v2 := (D([v′ | (v1, v′) ∈ E])), . . . , vD({2,...,ρ}) := (D([v′ | (vk, v′) ∈ E]))]

3: Q := D(Π[0]A)
D(Π[0],Π[1])A−−−−−−−−−→ . . .

D(Π[−2],Π[−1])A−−−−−−−−−−−→ ?
4: Γ := shuffle([Π[0]γ , . . . ,Π[−1]γ , (D(N))γ , . . .])
5: P := Γ⊙Q
6: p := estimateProbability(any(L(P) == Π[−1]A))

developed from G. We formally define the property for L as a probabilistic program over G in Al-
gorithm 1. We follow the syntax of the imperative probabilistic programming language in (Sankara-
narayanan et al., 2013, Figure 3). The language has primitives for sampling from common distribu-
tions such as Uniform (U), Bernoulli (Ber), etc., and an estimateProbability(.) function
that outputs the probability of a random variable attaining a certain value. As all the random sam-
pling steps in Algorithm 1 can operate with any discrete distribution, we use a generic identifier D
(line 1) for samplers of discrete distributions (‘. . . ’ denotes samplers for other discrete distributions).
We use a primitive function any(.) to denote that at least 1 of its inputs evaluates to true.

As a real-world G like Wang et al. (2021) can consist of millions of nodes, specifications on the full G
would be impractical as it is hard to certify global specifications over large input spaces (Katz et al.,
2017; Geng et al., 2023). Hence, we scope our analyses to local specifications, defined on a subgraph
of G centered on a randomly selected pivot node v1 and consisting of all paths originating from v1.
Let Π be a path in G that has a randomly selected length l ∈ {2, . . . , ρ}, formed by random sampling
of connecting nodes, as described in line 2. From a practical standpoint, queries on longer paths can

become meaningless (e.g., Paul Sophus Epstein
place of death−−−−−−−→ administrative unit−−−−−−−−−→ country−−−−→ popular artist−−−−−−−→ genre−−−→ ?),

and thus shorter path lengths are considered in popular multi-hop question-answering datasets such
as (Yang et al., 2018; Trivedi et al., 2022). Thus, we upper-bound the lengths of paths (number
of nodes in the path) considered in the specification, by a hyperparameter ρ. We form a multi-hop
reasoning query Q from Π in line 3. The pivot node v1 and the relations are represented by their
randomly sampled aliases in Q.

A prompt for L consists of Q and a context Γ containing information relevant to answer Q. Γ
is formed by concatenating (⊙) the contexts for all nodes in Π. Let vγ denote the corresponding
context of node v in G. Prior works (Shi et al., 2023) on analyzing reasoning in LMs have shown
the negative influence of irrelevant information (distractor) in prompts on the performance of LMs,
which is not ideally expected. Hence, we include distractor texts in Γ and specify that the correct
response should not be based on the distractor information. The contexts of nodes ṽ adjacent to any
node Π[i] (i ∈ [1, l−2]) on Π, such that the relation of (Π[i], ṽ) is the same as that of (Π[i],Π[i+1]),
can serve as effective distractors for Q (Definition 3.3). This is because, at any intermediate step,
the model can pick ṽ as the response, which can deviate L’s reasoning from Π. Nodes adjacent
to Π[−1] and Π[−2] are not distractors. For the former, the model must have already reached the
final answer before getting to its adjacent nodes, hence, answering Q. In the latter, adjacent nodes
following same relation are valid correct answers and not distractors. We denote distractor text in Γ
as the context of randomly sampled nodes from a distribution D over all distractor nodes of Π inN .
We demonstrate the effects of using distractor text on the performance of SOTA LLMs in Section 4.

Definition 3.3. (Distractor node). A distractor node ṽ for a path Π = [v1, v2, . . . , vl] of G is such
that ∀i ∈ [1, l], ṽ ̸= vi, and ∃j ∈ [1, l − 2], [(vj , ṽ) ∈ E] ∧ [(vj , ṽ)A = (vj , vj+1)A].

Prior works such as (Chen et al., 2024) have shown that LLM performance can vary with information
ordering. Hence, we shuffle the information in Γ (line 4) to specify that the model’s response should
be invariant to the ordering of information. Our final specification in line 6 is the probability that L
generates any alias of the last node of the path, which is the correct answer to Q. The specification
depends on the choices for the different distributions used at various sampling steps, G, v1, and ρ. It
leads to certificates for the behavior of L on a given subgraph of G and paths of length at most ρ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 CERTIFICATION METHOD

Our algorithm certifies the target LLM L by computing an interval [pl, pu] containing the value
of the probability p (Algorithm 1, line 6) for a given pivot node v1 in G with high confi-
dence. We model p as the probability of setting the underlying boolean random variable R ≜
(any(L(P) == Π[−1]A)) to true (success). Thus, R ∼ Ber(p). Exactly determining p would
require enumerating over all possible P which can be developed from any path from a subgraph of
G with any random aliases, resulting in an infeasible number of possible prompts, as shown in Ap-
pendix B.6. Moreover, we want our method to generalize to closed-source LLMs as well, where the
internal structures of the models are unknown. Hence, we cannot use any symbolic methods (Mir-
man et al., 2020) to determine p. Thus, to scalably certify the black-box target LM L, we estimate
p with provably high-confidence (low error) bounds. Confidence is defined as the probability of the
true value p being within the bounds, i.e., Pr[p ∈ [pl, pu]]. To establish formal guarantees, we want
our estimation procedure to be such that the actual confidence is at least the user-specified confi-
dence level, 1 − δ (i.e., Pr[pl ≤ p ≤ pu] ≥ 1 − δ), where δ is a small positive constant. Hence
we use the conservative method of Clopper-Pearson confidence intervals (Clopper & Pearson, 1934;
Brown et al., 2001; Kurz et al., 2014), which is known to produce intervals that are guaranteed
to have high confidence. To compute high-confidence bounds on p, we make n independent and
identically distributed observations of R, in which we obtain k successes, k ∈ [0, n]. We generate
Clopper-Pearson confidence intervals with the n observations to bound p with 1− δ confidence.

4 EXPERIMENTS

We certify the following open-source, instruction finetuned (Wei et al., 2022a) models — Llama-3-
instruct 8B model (Dubey et al., 2024), Mistral 7B-Instruct-v0.2 (Jiang et al., 2023a), Phi-3 3B and
14B parameter models (Abdin et al., 2024). We also certify 4-bit and 8-bit quantized versions of the
open-source models to study the effects of quantization on a model’s knowledge comprehension ca-
pabilities. Among the closed-source models with API access, we certify Gemini-1.5 (Gemini Team,
2024) Flash-001 and Pro-002 models and GPT-4o-0827 (OpenAI, 2024).

We use Wikidata5m (Wang et al., 2021) as our knowledge graph after preprocessing (check Ap-
pendix B.1.1 for details). To generate challenging and diverse specifications, we sample 50 pivot
nodes from two populations: the top 2000 nodes by out-degree in the global graph, and nodes whose
subgraph within radius ρ contains at least 2000 vertices. This strategy ensures specifications rooted
around any of the pivot nodes have a large number of paths, making enumerative certification (where
all possibilities are tested for satisfaction of the specification) impractical. Note that QuaCer-C is
not limited to such subgraphs, and owing to their challenges in terms of prohibitively large number
of possibilities, we select them, only for illustration purposes. We set the maximum path length
parameter as ρ = 5, as we empirically observe that longer paths could result in queries that are very
unrelated to the head node of the path. As our certificates are over all paths with lengths at most ρ
in a given subgraph, we equally prioritize the different possible path lengths in [1, ρ], even though
paths with longer lengths can be fewer in number than those with shorter lengths. Hence, we define
our sampler from our distribution over paths (Algorithm 1, line 2) which first selects a path length
from the uniform distribution over the integers [1, ρ]. We then sample a path of the chosen length
from a uniform distribution over all paths of that length in the subgraph. This ensures that each
possible path length, and each path of a given length, has equal probability of selection, preventing
bias by prioritizing some elements of the underlying sample spaces. Note, however, the framework
is adaptable to other modified distributions as needed by specific certification usecases. (We analyze
the impact of varying path lengths on LLM performance in Appendix A.)

Given a path , we can construct a query by uniformly sampling any aliases for the nodes in the path
(Algorithm 1, line 3). For instance, for the path with the nodes [Chandler Bing, Matthew Perry,
19 August 2019], a query could be “Chandler Bing→(actor)→(birth date)→?”. This query tests
the LLM’s ability to correctly identify the terminal entity (‘?’) given the starting entity (‘Chandler
Bing’) and the specified relational path. Additional details and figures provided in Appendix B.2.2.

Following query selection, we construct prompts to evaluate LLM knowledge comprehension. Each
prompt includes a query and relevant context, presented as a multiple-choice question. This format
allows for straightforward evaluation of LLM responses using string matching (Appendix B.7). Fur-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

thermore, we include a fixed set of few-shot examples (Appendix B.5) in the prompt to ensure the
LLM understands the task structure. We investigate the impact of varying the number of few-shot
examples on LLM performance in Appendix A.

The context accompanying each query depends on kind of specification, which we elaborate on in
Section 4.1. Occasionally, we adjust the context to fit within model-specific context window con-
straints (See appendix B.4 for details). The distribution of generated prompts is primarily determined
by the query generation, answer option selection processes, and some context length adjustments.
Queries are derived from paths with uniformly distributed lengths, ensuring a balanced representa-
tion of reasoning complexity. Answer options are sampled non-uniformly. In our ’distractor setting,’
we prioritize distractors, followed by entities from the query path, and finally, randomly selected en-
tities related to nodes in the path. This approach strikes a balance between challenging the LLM
with complex queries and presenting diverse, potentially misleading answer choices. A detailed
description of the prompt construction process can be found in Appendix B.3. QuaCer-C generates
certificates with confidence 1 − δ = 95% and number of samples, n = 250 samples. We conduct
experiments for open-source LLMs on 2 A100 GPUs with 40GB VRAM each.

Baseline. We compare QuaCer-C’s results with a benchmarking baseline. This baseline consists of
the accuracy of the target LLM on a static dataset. We make this dataset with 50 randomly chosen
paths in each subgraph with which we also form the specifications, certified using QuaCer-C. The
queries are formed with the first-occurring aliases of the entities in their corresponding contexts.
The prompts are generated as in the vanilla setting from each query.

4.1 DIFFERENT KINDS OF SPECIFICATIONS

We study the certificates for 3 different kinds of specifications that arise from variations in the
construction of context in the prompts to LLMs (Algorithm 1, line 4) — with context shuffling
and distractor context (Shuffle Distractor), with context shuffling and without distractor context
(Shuffle), and without context shuffling and without distractor context (Vanilla). These settings
enable us to study the effects of these operations on the knowledge provided in LLM prompts. When
distractor context is provided, it is only for 1 distractor node, so as to fit the relevant context for the
nodes on the considered path within the context windows of the target LLMs. We hypothesize that
distractors to nodes later in the path, closer to the tail node which consists of the final answer, would
be more challenging for the LLM due to their proximity and similarity to the answer node. Our
distractor node sampler (Appendix B.3, Algorithm 4) thus employs a weighted sampling approach
to prioritize distractor nodes closer to the path’s tail. We provide an ablation study on the effects of
varying the distribution of distractor nodes in Appendix A.

4.2 CERTIFICATES

QuaCer-C generates certificates providing high-confidence, tight lower and upper bounds on the
probability of a correct LLM response to a random prompt sampled using the prompt constructor
from the given distribution of prompts in our specifications. We report the average value of the lower
and upper bounds, over our set of specifications that QuaCer-C certifies for each LLM, in Table 1.
We also report the average empirical probability (the ratio of correct responses to the total number
of prompts, n, for each certificate), averaged over the test set. We show further certification results
with chain-of-thought reasoning (Wei et al., 2023a) in Appendix A.4. Next, we summarize the key
observations from the certification results in Table 1, some of which follow trends from prior works.

Figure 5: Variation in certification
bounds with models (Vanilla, fp16)

Scaling of knowledge comprehension with model size.
We observe that the larger models such as Gemini and
GPT have significantly higher bounds than those for the
smaller models such as Phi-3, Mistral, Llama (Figure 5).
The lower bounds of the larger models are higher than
the upper bounds of the smaller models, suggesting a
paradigm shift in knowledge comprehension capabilities
(especially for Gemini-1.5-Pro and GPT-4o). However,
as the larger models are also closed-source, we are un-
aware whether the enhanced knowledge comprehension

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Certification Results for Different LLMs

Model Precision Baseline Specification Kind Avg.
Lower Bound

Avg.
Upper Bound

Avg.
Accuracy

Gemini
-1.5-Pro

- Vanilla 0.72 ± 0.06 0.83 ± 0.05 0.78 ± 0.06
- 0.83 ± 0.06 Shuffle 0.71 ± 0.06 0.82 ± 0.05 0.77 ± 0.06
- Shuffle Distractor 0.64 ± 0.09 0.75 ± 0.08 0.70 ± 0.09

GPT-4o
- Vanilla 0.70 ± 0.06 0.81 ± 0.06 0.76 ± 0.06
- 0.84 ± 0.07 Shuffle 0.69 ± 0.06 0.80 ± 0.06 0.75 ± 0.06
- Shuffle Distractor 0.62 ± 0.09 0.74 ± 0.08 0.68 ± 0.09

Gemini
-1.5-Flash

- Vanilla 0.46 ± 0.06 0.58 ± 0.06 0.52 ± 0.06
- 0.72 ± 0.08 Shuffle 0.45 ± 0.06 0.57 ± 0.06 0.51 ± 0.06
- Shuffle Distractor 0.42 ± 0.10 0.55 ± 0.10 0.48 ± 0.10

Llama
(8B)

fp16
Vanilla 0.31 ± 0.09 0.43 ± 0.10 0.36 ± 0.10

0.49 ± 0.09 Shuffle 0.31 ± 0.05 0.44 ± 0.06 0.37 ± 0.06
Shuffle Distractor 0.30 ± 0.10 0.42 ± 0.11 0.36 ± 0.11

8bit
Vanilla 0.30 ± 0.05 0.42 ± 0.06 0.36 ± 0.06

0.44 ± 0.09 Shuffle 0.31 ± 0.06 0.44 ± 0.06 0.37 ± 0.06
Shuffle Distractor 0.30 ± 0.06 0.42 ± 0.06 0.35 ± 0.06

4bit
Vanilla 0.27 ± 0.05 0.39 ± 0.05 0.33 ± 0.05

0.43 ± 0.09 Shuffle 0.28 ± 0.07 0.40 ± 0.07 0.34 ± 0.07
Shuffle Distractor 0.25 ± 0.09 0.36 ± 0.09 0.30 ± 0.09

Mistral
(7B)

fp16
Vanilla 0.33 ± 0.05 0.45 ± 0.05 0.39 ± 0.05

0.52 ± 0.08 Shuffle 0.34 ± 0.05 0.46 ± 0.06 0.40 ± 0.05
Shuffle Distractor 0.33 ± 0.05 0.45 ± 0.05 0.39 ± 0.05

8bit
Vanilla 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.05

0.52 ± 0.09 Shuffle 0.34 ± 0.06 0.46 ± 0.06 0.40 ± 0.06
Shuffle Distractor 0.33 ± 0.11 0.46 ± 0.12 0.39 ± 0.12

4bit
Vanilla 0.31 ± 0.06 0.43 ± 0.06 0.37 ± 0.06

0.49 ± 0.08 Shuffle 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.06
Shuffle Distractor 0.28 ± 0.11 0.39 ± 0.12 0.33 ± 0.11

Phi-3
(14B)

fp16
Vanilla 0.35 ± 0.05 0.47 ± 0.05 0.41 ± 0.05

0.58 ± 0.08 Shuffle 0.35 ± 0.04 0.48 ± 0.04 0.41 ± 0.04
Shuffle Distractor 0.33 ± 0.11 0.45 ± 0.11 0.38 ± 0.11

8bit
Vanilla 0.35 ± 0.05 0.47 ± 0.05 0.41 ± 0.05

0.46 ± 0.06 Shuffle 0.34 ± 0.06 0.47 ± 0.06 0.40 ± 0.06
Shuffle Distractor 0.31 ± 0.08 0.43 ± 0.09 0.37 ± 0.08

4bit
Vanilla 0.33 ± 0.04 0.45 ± 0.05 0.39 ± 0.05

0.43 ± 0.08 Shuffle 0.33 ± 0.04 0.46 ± 0.05 0.39 ± 0.05
Shuffle Distractor 0.30 ± 0.08 0.42 ± 0.09 0.36 ± 0.09

Phi-3
(3B)

fp16
Vanilla 0.34 ± 0.05 0.46 ± 0.06 0.40 ± 0.05

0.50 ± 0.09 Shuffle 0.34 ± 0.04 0.47 ± 0.05 0.40 ± 0.05
Shuffle Distractor 0.32 ± 0.10 0.45 ± 0.10 0.38 ± 0.10

8bit
Vanilla 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.06

0.44 ± 0.06 Shuffle 0.32 ± 0.04 0.44 ± 0.05 0.38 ± 0.05
Shuffle Distractor 0.31 ± 0.09 0.43 ± 0.10 0.37 ± 0.10

4bit
Vanilla 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.06

0.43 ± 0.08 Shuffle 0.32 ± 0.05 0.44 ± 0.05 0.38 ± 0.05
Shuffle Distractor 0.29 ± 0.10 0.41 ± 0.10 0.35 ± 0.10

capabilities could be due to specialized training or finetuning techniques applied on the models. We
see that the smaller models have similar certification bounds. Interestingly, Phi3-3B, which is the
smallest model we consider, is performing comparatively to its 14B counterparts and to larger Mis-
tral and Llama models. This contradicts works such as (Wei et al., 2022b; Qin et al., 2024) claiming
that reasoning capabilities emerge only when model parameters scale to tens or hundreds of billions.

Effects of model quantization. We see that higher quantization deteriorates model performance
on knowledge comprehension, contrary to prior works like Jin et al. (2024) that suggest that 4-bit
quantization can retain the model’s knowledge and reasoning capabilities.

Effects of different kinds of specifications. Our results for the different kinds of specifications —
Vanilla, Shuffle, and Shuffle Distractor, indicate that the Vanilla specifications are generally easier,
resulting in higher certification bounds. Shuffle Distractor specifications are challenging specifica-
tions for all models resulting in consistently lower certification bounds. However, the differences in
the bounds’ values are not high across the settings, potentially due to the challenge of identifying
relevant information from large and unstructured contexts in all cases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Qualitative analysis of samples used for certifying knowledge comprehension for Vanilla
specifications on the Wikidata5m subgraph pivoted at the node for ‘Batman Begins’ movie. The
context provided in the prompts is not shown for brevity. Wrong model responses are colored red
and correct ones are colored green. The samples are consistent with our results, wherein Phi-3 (3B)
has lower certification bounds than GPT-4o’s bounds, which are lower than those for Gemini-Pro.

Comparison with benchmarking baseline. Baseline scores of all models consistently approach or
surpass the average certification upper bounds, suggesting potential inflation of performance esti-
mates in benchmarking. Contrary to the certification bounds, Mistral-7B significantly outperformed
Phi3-3B across all quantizations. Phi3-14B’s performance had a substantial decline with 8-bit quan-
tization, far greater than the drop shown by certification. These findings emphasize the need for
more reliable and principled evaluation methods grounded with statistical guarantees.

Quality of bounding intervals. Table 1 presents average certification bounds over all specifications.
A desirable property for the intervals, alongside their high confidence, is that they should be tight,
i.e., their range should be small. Tighter intervals indicate precise analysis with less errors. We
observe that the average range of the confidence intervals in our experiments is less than 0.12.

4.3 CASE STUDIES

Next, we analyze the certification results, qualitatively. First, we show the responses of 3 models
in Figure 3 — Phi-3 (3B), GPT-4o, and Gemini, obtained when certifying them for the Vanilla
specification defined over a subgraph pivoted at the node for ‘Batman Begins’ movie. The samples
reflect the certificates. Next, we identify and categorize prominent kinds of model responses. We
frequently see the following failure modes — distracted and missed relation. In the former, the
model gets deviated from the query by following the distractor context in its prompt, resulting in
an incorrect answer. In the latter, the model skips some reasoning steps needed for the final correct

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: GPT-4o responses showing good reasoning, failures due to distractors or skipped reasoning

answer. In cases of good reasoning, model accurately follows the query and gives the correct answer.
Figure 4 presents examples of the aforementioned kinds of model responses for GPT-4o.

5 RELATED WORKS

In-context learning. As LLM context windows increase (Gemini Team, 2024; Chen et al., 2023;
Dubey et al., 2024), more information can be provided in the prompts like few-shot demonstra-
tions (Brown et al., 2020) and examples from related tasks (Qu et al., 2024). In-context learning is
the emergent behavior (Wei et al., 2022b; Lu et al., 2024) in which LLMs become proficient at a
task with demonstrations in prompts. We use in-context learning and few-shot examples to enhance
LLMs’ knowledge and reasoning capabilities.

Benchmarking LLM intelligence. Several benchmarks have been proposed to study the reason-
ing (Zhou et al., 2022; Huang & Chang, 2023; Plaat et al., 2024; He et al., 2024; Zha et al., 2021),
arithmetic (Yuan et al., 2023; Song et al., 2024; Yang et al., 2023a), planning (Pallagani et al.,
2023; Valmeekam et al., 2023; Huang et al., 2022), and question-answering (Yang et al., 2018; Ho
et al., 2020; Welbl et al., 2018) capabilities of LLMs, which are integral components of human in-
telligence. These benchmarks provide empirical insights and trends into the performance of LMs.
However, these insights are generally for static datasets and are not guaranteed to generalize. On
the other hand, certification methods provide guarantees on, for example, the scope (defined by
specifications) and confidence of its claims, as we illustrate in this work.

6 CONCLUSION AND FUTURE WORK

We present a novel framework to formally certify LLMs for knowledge comprehension. We develop
novel specifications that quantify the probability of correct responses over any random knowledge
comprehension prompts from distributions derived from knowledge graphs. Certificates consist of
high-confidence bounds on the probability of correct knowledge comprehension, thus providing a
method to compare different LLMs with formal guarantees. Our experiments show variations in
knowledge comprehension along the axes of model size, quantization, and task difficulty. Future
work can integrate our framework with knowledge graph construction methods (Ye et al., 2022), to
specify and certify LLMs for comprehension and reasoning over less structured/proprietary inputs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, and et al. Phi-3
technical report: A highly capable language model locally on your phone, 2024. URL https:
//arxiv.org/abs/2404.14219.

Benjamin S. Bloom. Taxonomy of Educational Objectives, Handbook: The Cognitive Domain.
David McKay, New York, 1956.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré,
Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the opportunities and risks of foundation models, 2022.

Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin Vechev. Fast and precise
certification of transformers. In Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2021, pp. 466–481, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383912. doi:
10.1145/3453483.3454056. URL https://doi.org/10.1145/3453483.3454056.

Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. Interval Estimation for a Binomial
Proportion. Statistical Science, 16(2):101 – 133, 2001. doi: 10.1214/ss/1009213286. URL
https://doi.org/10.1214/ss/1009213286.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Muhao Chen, Lifu Huang, Manling Li, Ben Zhou, Heng Ji, and Dan Roth. New frontiers of infor-
mation extraction. In Miguel Ballesteros, Yulia Tsvetkov, and Cecilia O. Alm (eds.), Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Tutorial Abstracts, pp. 14–25, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-tutorials.3.
URL https://aclanthology.org/2022.naacl-tutorials.3.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023. URL https://arxiv.org/
abs/2306.15595.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hybridqa:
A dataset of multi-hop question answering over tabular and textual data, 2021.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1214/ss/1009213286
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2022.naacl-tutorials.3
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinyun Chen, Ryan A. Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reasoning
with large language models, 2024. URL https://arxiv.org/abs/2402.08939.

C. J. Clopper and E. S. Pearson. The Use Of Confidence Or Fiducial Limits Illustrated In The Case
Of The Binomial. Biometrika, 26(4):404–413, 12 1934. ISSN 0006-3444. doi: 10.1093/biomet/
26.4.404. URL https://doi.org/10.1093/biomet/26.4.404.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models, 2023. URL
https://arxiv.org/abs/2309.11495.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, and et al. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Educational Testing Service. Toefl ibt reading section. https://www.ets.org/toefl/
test-takers/ibt/about/content/reading.html, 2024. Accessed: 2024-09-29.

Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context, 2024.

Chuqin Geng, Nham Le, Xiaojie Xu, Zhaoyue Wang, Arie Gurfinkel, and Xujie Si. Towards reliable
neural specifications, 2023. URL https://arxiv.org/abs/2210.16114.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023. URL https://arxiv.
org/abs/2305.14992.

Rachel M. Harrison. A comparison of large language model and human performance on random
number generation tasks, 2024. URL https://arxiv.org/abs/2408.09656.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann LeCun, Xavier Bres-
son, and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understand-
ing and question answering, 2024. URL https://arxiv.org/abs/2402.07630.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https:
//aclanthology.org/2020.coling-main.580.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey,
2023. URL https://arxiv.org/abs/2212.10403.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents, 2022. URL https://
arxiv.org/abs/2201.07207.

IDP IELTS. Ielts reading test. https://ielts.idp.com/uae/prepare/
article-ielts-reading-test, 2024. Accessed: 2024-09-29.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models, 2023. URL https://arxiv.org/abs/2303.05398.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks
and Learning Systems, 33(2):494–514, 2022. doi: 10.1109/TNNLS.2021.3070843.

12

https://arxiv.org/abs/2402.08939
https://doi.org/10.1093/biomet/26.4.404
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2407.21783
https://www.ets.org/toefl/test-takers/ibt/about/content/reading.html
https://www.ets.org/toefl/test-takers/ibt/about/content/reading.html
https://arxiv.org/abs/2210.16114
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2408.09656
https://arxiv.org/abs/2402.07630
https://aclanthology.org/2020.coling-main.580
https://aclanthology.org/2020.coling-main.580
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://ielts.idp.com/uae/prepare/article-ielts-reading-test
https://ielts.idp.com/uae/prepare/article-ielts-reading-test
https://arxiv.org/abs/2303.05398

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa: Unified retrieval and rea-
soning for solving multi-hop question answering over knowledge graph, 2023b. URL https:
//arxiv.org/abs/2212.00959.

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A
comprehensive evaluation of quantization strategies for large language models, 2024. URL
https://arxiv.org/abs/2402.16775.

Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An effi-
cient smt solver for verifying deep neural networks, 2017. URL https://arxiv.org/abs/
1702.01135.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp, 2023.

Daniel Kurz, Horst Lewitschnig, and Jürgen Pilz. Decision-theoretical model for failures which
are tackled by countermeasures. IEEE Transactions on Reliability, 63(2):583–592, 2014. doi:
10.1109/TR.2014.2315952.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
augmented language models through few-shot prompting for open-domain question answering,
2022.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana
Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuk-
sekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Hen-
derson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan
Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models, 2023.

Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. Datasets for large language
models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2402.18041.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning?, 2024. URL https:
//arxiv.org/abs/2309.01809.

Matthew Mirman, Timon Gehr, and Martin Vechev. Robustness certification of generative models,
2020. URL https://arxiv.org/abs/2004.14756.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022. URL https://arxiv.
org/abs/2112.09332.

National Center for Education Statistics. Reading — naep. Technical report, U.S. Department
of Education, 2024. URL https://nces.ed.gov/nationsreportcard/reading/.
Accessed: 2024-09-29.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,

13

https://arxiv.org/abs/2212.00959
https://arxiv.org/abs/2212.00959
https://arxiv.org/abs/2402.16775
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/1702.01135
https://arxiv.org/abs/2402.18041
https://arxiv.org/abs/2309.01809
https://arxiv.org/abs/2309.01809
https://arxiv.org/abs/2004.14756
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://nces.ed.gov/nationsreportcard/reading/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

OpenAI. Hello GPT-4o, May 2024. URL https://openai.com/index/hello-gpt-4o/.

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Biplav Srivastava,
Lior Horesh, Francesco Fabiano, and Andrea Loreggia. Understanding the capabilities of large
language models for automated planning, 2023. URL https://arxiv.org/abs/2305.
16151.

Sachin Pawar, Girish K. Palshikar, and Pushpak Bhattacharyya. Relation extraction : A survey,
2017. URL https://arxiv.org/abs/1712.05191.

Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and Francesco Osborne. Knowledge graphs: Opportu-
nities and challenges, 2023. URL https://arxiv.org/abs/2303.13948.

Perplexity. Perplexity ai. AI Chatbot, 2023. URL https://www.perplexity.ai/.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Rea-
soning with large language models, a survey, 2024. URL https://arxiv.org/abs/2407.
11511.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li,
Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2024. URL
https://arxiv.org/abs/2304.08354.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-sql
generation, 2024. URL https://arxiv.org/abs/2405.15307.

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi Jaakkola, and Regina
Barzilay. Conformal language modeling. 2024. URL https://arxiv.org/abs/2306.
10193.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. Static analysis for prob-
abilistic programs: inferring whole program properties from finitely many paths. SIGPLAN
Not., 48(6):447–458, jun 2013. ISSN 0362-1340. doi: 10.1145/2499370.2462179. URL
https://doi.org/10.1145/2499370.2462179.

Murray Shanahan. Talking about large language models, 2023.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context, 2023.
URL https://arxiv.org/abs/2302.00093.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently?, 2024. URL https://arxiv.org/abs/2405.19592.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh. Robustness verifi-
cation for transformers, 2020.

14

https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2305.16151
https://arxiv.org/abs/2305.16151
https://arxiv.org/abs/1712.05191
https://arxiv.org/abs/2303.13948
https://www.perplexity.ai/
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2306.10193
https://arxiv.org/abs/2306.10193
https://aclanthology.org/D16-1264
https://arxiv.org/abs/2311.12022
https://doi.org/10.1145/2499370.2462179
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2405.19592

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
fying neural networks. Proc. ACM Program. Lang., 3(POPL), jan 2019. doi: 10.1145/3290354.
URL https://doi.org/10.1145/3290354.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots
for theorem proving in lean, 2024. URL https://arxiv.org/abs/2404.12534.

Winnie Street, John Oliver Siy, Geoff Keeling, Adrien Baranes, Benjamin Barnett, Michael McK-
ibben, Tatenda Kanyere, Alison Lentz, Blaise Aguera y Arcas, and Robin I. M. Dunbar. Llms
achieve adult human performance on higher-order theory of mind tasks, 2024. URL https:
//arxiv.org/abs/2405.18870.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
hop queries, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Compu-
tational Linguistics, 2022.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kamb-
hampati. On the planning abilities of large language models (a critical investigation with a pro-
posed benchmark), 2023. URL https://arxiv.org/abs/2302.06706.

Jason Vega, Isha Chaudhary, Changming Xu, and Gagandeep Singh. Bypassing the safety training
of open-source llms with priming attacks, 2023.

David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. Entity, relation, and event
extraction with contextualized span representations. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 5784–5789, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1585. URL https://aclanthology.org/
D19-1585.

Jinyuan Wang, Junlong Li, and Hai Zhao. Self-prompted chain-of-thought on large language models
for open-domain multi-hop reasoning, 2023a.

Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang, Ying Nian Wu, Song-Chun Zhu, and Hangxin
Liu. Llm3:large language model-based task and motion planning with motion failure reasoning,
2024. URL https://arxiv.org/abs/2403.11552.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian
Tang. Kepler: A unified model for knowledge embedding and pre-trained language representation.
Transactions of the Association for Computational Linguistics, 9:176–194, 2021.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022a. URL
https://arxiv.org/abs/2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022b. URL https://arxiv.org/abs/2206.07682.

15

https://doi.org/10.1145/3290354
https://arxiv.org/abs/2404.12534
https://arxiv.org/abs/2405.18870
https://arxiv.org/abs/2405.18870
https://arxiv.org/abs/2302.06706
https://aclanthology.org/D19-1585
https://aclanthology.org/D19-1585
https://arxiv.org/abs/2403.11552
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2206.07682

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023a. URL https://arxiv.org/abs/2201.11903.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, 2023b. URL https://arxiv.org/abs/2303.03846.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop
reading comprehension across documents, 2018. URL https://arxiv.org/abs/1710.
06481.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey,
2023. URL https://arxiv.org/abs/2309.07864.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang, Jingfeng Zhang, and Mohan Kankanhalli.
An LLM can fool itself: A prompt-based adversarial attack. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
VVgGbB9TNV.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models, 2023a. URL https://arxiv.org/abs/2306.15626.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. Exploring the limits of chatgpt
for query or aspect-based text summarization, 2023b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b.

Hongbin Ye, Ningyu Zhang, Hui Chen, and Huajun Chen. Generative knowledge graph con-
struction: A review. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 1–17,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.1. URL https://aclanthology.org/2022.
emnlp-main.1.

Zheng Yuan, Hongyi Jiang, Zhe Zhu, Chuanqi Gao, Yue Xia, Yufei Jiang, Yuxuan Dong, Jing Zhao,
and Weizhu Zhu. How well do large language models perform in arithmetic tasks? arXiv preprint
arXiv:2304.02015, 2023.

Hanwen Zha, Zhiyu Chen, and Xifeng Yan. Inductive relation prediction by bert, 2021. URL
https://arxiv.org/abs/2103.07102.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang Song,
Zhiyuan Liu, Zeyu Mi, and Maosong Sun. Relu2 wins: Discovering efficient activation functions
for sparse llms, 2024. URL https://arxiv.org/abs/2402.03804.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning, 2023. URL https://arxiv.org/abs/2305.14078.

16

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/1710.06481
https://arxiv.org/abs/1710.06481
https://arxiv.org/abs/2309.07864
https://openreview.net/forum?id=VVgGbB9TNV
https://openreview.net/forum?id=VVgGbB9TNV
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2305.10601
https://aclanthology.org/2022.emnlp-main.1
https://aclanthology.org/2022.emnlp-main.1
https://arxiv.org/abs/2103.07102
https://arxiv.org/abs/2402.03804
https://arxiv.org/abs/2305.14078

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Yizhe Zhou, Zhaowei Jiang, Jingbo Ren, Jiawei Wang, Hanie Sedghi, Pavel Sountsov, Jonathon
Shlens, and Ekin D Cubuk. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A ABLATIONS

A.1 FEW SHOT PROMPTS

We conduct an ablation study to examine the impact of varying the number of few-shot examples
on Gemini-Flash’s performance in the vanilla task setting. While our default configuration uses two
few-shot examples, we extend this analysis to include up to five examples. Interestingly, we observe
no significant variation in performance across these different few-shot configurations. The results
are presented below in 2.

Table 2: Certification results for LLMs in vanilla setting with different number of few-shot examples
Model Avg. lower bound Avg. upper bound Avg. accuracy

Gemini-1.5-Flash 2Shot (Default) 0.46± 0.06 0.58± 0.06 0.52± 0.06
Gemini-1.5-Flash 3Shot 0.46± 0.06 0.58± 0.06 0.52± 0.06
Gemini-1.5-Flash 4Shot 0.46± 0.07 0.58± 0.07 0.52± 0.07
Gemini-1.5-Flash 5Shot 0.46± 0.07 0.58± 0.07 0.52± 0.07

A.2 DISTRACTOR DISTRIBUTIONS

To assess the impact of distractor distribution on model performance, we implement three distinct
distractor distribution strategies:

1. Tail-weighted: Linearly increasing weights towards the tail end of the path, prioritizing
distractors near the answer node. This serves as our default setting.

2. Head-weighted: Linearly increasing weights towards the head of the path, emphasizing
distractors near the query’s starting point.

3. Uniform: Equal probability of selecting distractors from any position along the path.

We observe no significant differences in either of the settings. The results are presented in 3 below.

Table 3: Certification results for Gemini-Flash with different distractor distributions
Model Avg. lower bound Avg. upper bound Avg. accuracy

Gemini-1.5-Flash Setting 1 (Default) 0.42± 0.10 0.55± 0.10 0.48± 0.10
Gemini-1.5-Flash Setting 2 0.42± 0.11 0.55± 0.11 0.48± 0.11
Gemini-1.5-Flash Setting 3 0.42± 0.11 0.55± 0.11 0.48± 0.11

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 MODEL PERFORMANCES WITH VARYING PATH LENGTH

Among our certificates, we have queries of various lengths. Here we study the effects on models
behavior on queries with varying length by considering the number of hops they require to reason to
answer the query(which is 1 less than the path length). To do so, we refer to the number of hops to
answer a query as k where 1 ≤ k < ρ.

Varying Setting: In figure 6 we show plots for various specifications for the GPT4o model.

Figure 6: Variations in the bounds against the path lengths across various specifications.

Varying Quantization: In figure 7 we show plots when the quantization is varied with the Llama3-
8B model on the shuffle specification and their effects on performance.

Figure 7: Variations in the bounds against the path lengths across various quantizations.

Varying Models: In fig 8 we show plots for the shuffle specification and performance across the
models(the open-source models use fp16 precision).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Variations in the bounds against the path lengths across various models in the shuffle
setting.

In Figure 6, we observe that the performance across settings converges as k increases and the
distractor setting is most impactful on the performance for k = 2.

In Figure 7, we infer that as k increases the performance of the models’ on the task converges across
the different quantizations. We hypothesize this is due to the increasing complexity of the reasoning
task.

In Figure 8, we see that larger models (GPT-4o, Gemini-Pro) show less severe drop in performance
compared to their smaller models. The figure shows that large models may have learnt to better
apply 1-step reasoning for multiple steps when compared to their smaller counterparts.

A.4 CHAIN OF THOUGHT PROMPTING

We also conduct an ablation on how Chain-of-Thought(COT) prompting can affect the performance
of language models on the knowledge comprehension task. Specifically, we investigate the Phi-3 3B
model (precision: float16) in the vanilla setting with COT prompting strategy. We augmented our
standard few-shot examples (B.5) with COT steps and added structured reasoning guidance to the
prompt template (B.3):

COT additions to prompt template

Answer in the following the below format:
Let’s solve this step by step: 1) Let’s identify the starting point and path: - Start: [identify
starting entity] - Path to follow: [break down the path components]
2) Let’s follow the path: Starting from [entity] → [first relationship] → [next entity] → [next
relationship] → [next entity] ... [continue as needed]
3) Verify our final destination reaches one of the given options
Therefore, the correct answer is: <option number>. <option text>

In the vanilla setting, adding COT prompting improved Phi-3 3B’s performance, with the bounds
increasing by 0.11 summarized in Table 4. While we acknowledge the potential benefits of COT,
earlier experiments were limited due to the significantly increased computational cost (generating
5-8 times more tokens) and the expenses of COT, particularly with closed-source models as output
tokens are much more expensive.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Certification results for Phi-3 3B with and without COT
Prompting Strategy Avg. lower bound Avg. upper bound Avg. accuracy

No COT (Default) 0.34± 0.05 0.46± 0.06 0.40± 0.05
COT 0.45± 0.08 0.57± 0.08 0.51± 0.08

B KNOWLEDGE GRAPH AND QUERY GENERATION

This section details our experimental setup for generating multi-hop reasoning queries using the
Wikidata5m knowledge graph. We describe the structure of the knowledge graph, the process of
generating random paths, formulating queries, and creating answer options including distractors.

B.1 KNOWLEDGE GRAPH STRUCTURE

Our experiments are based on the Wikidata5m knowledge graph (KG). The KG has the following
key characteristics:

• Nodes: Each node represents an entity and is associated with a text paragraph from Wiki-
data5m.

• Edges: Edges represent relationships between entities.
• Text Paragraphs: The text associated with each node may contain information relevant to

its connected edges.
• Node and Edge Aliases: Each node and each edge has a set of aliases associated with them

which are just different names for them.

This structure allows us to generate queries that require reasoning across multiple hops in the graph.

B.1.1 PREPROCESSING THE WIKIDATA5M KNOWLEDGE GRAPH

To ensure the generation of unambiguous queries and support the certification process, we prepro-
cess the wikidata5m dataset.

1. Relation Filtering: We remove relations such as ’instance of’, ’subclass of’, and ’part of’
due to their inherent potential for ambiguity in query formulation.

2. Relevant Information Extraction for edges: To ensure the relevance of relationships in
the knowledge graph, we require textual evidence for each edge. When entity A is related to
entity B, we identify specific sentences in the descriptive text of either entity that explicitly
mention any alias of the other entity. We assume these sentences support the relationship’s
existence. These sentences are then linked to the edge, providing context that can be used
to answer queries about the relationship. This approach ensures that the knowledge graph
contains valid relationships and the specific text that justifies them, enhancing the available
context for further analysis. If we find no supporting text for an edge, we drop that edge
from the knowledge graph.

3. Unicode to ASCII:For consistency within our experiments, we convert all text containing
Unicode characters into their respective ASCII approximations.

B.2 QUERY GENERATION

We utilize the Wikidata5m knowledge graph for multi-hop query generation. The query generation
process involves the following steps:

B.2.1 RANDOM PATH GENERATION

We begin by selecting a pivot node v0 in the knowledge graph G. From this pivot, we construct
a local subgraph G(v0) consisting of all paths Πv0 originating from v. This local subgraph serves

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

as the domain for our path generation process. As arbitrary long paths can lose their semantic
meaningfulness, we use a constraint ρ to restrict the length of paths from the pivot node in the
subgraph to be maximum ρ.

Within G(v0), we generate a path Π using a randomized depth-first search algorithm. The length
of this path, denoted as kchoice, is sampled randomly from the set 1, 2, ..., ρ according to a discrete
uniform distribution.

This randomized depth-first search traverses the neighbors of each node in G(v0) in a random order,
which directly corresponds to the sampling process described in line 10 of Algorithm 1. Specifically,
at each step, we sample the next node in the path from a discrete uniform distribution over the current
node’s neighbors within the local subgraph, expressed as ∼ (D([v′ | (vi, v′) ∈ E ∧ v′ ∈ G(v0)])),
where vi is the current node in the path.

To ensure well-defined queries with unique answers, we introduce an additional constraint on path
generation. This constraint requires that each generated path be unique in terms of its sequence
of relationships. Specifically, traversing the path from the initial node using the specified relations
must lead to a single, unambiguous answer node. This approach prevents queries with multiple
valid answers, which would complicate the evaluation of the language model’s performance. It’s
important to note that this uniqueness constraint applies only to the specific path being generated.
Nodes within the path may still have multiple edges with the same relation type to other entities
not on the path. This allowance maintains the natural complexity of the knowledge graph structure,
where entities can have multiple relationships of the same type with different entities.

The pseudocode for the path generation algorithm is specified in 2

Algorithm 2 Random Path Generation
1: Input: Graph G, Integer k, Vertex source
2: Output: path
3: path len← RandomInteger(1, k)
4: path← None
5: while path is None do
6: path← DFSPath(G, source, path len)
7: if not IsUnique(path) then
8: path← None
9: end if

10: end while
11: return path

B.2.2 QUERY FORMULATION

Once a valid path Π is generated, we convert it into a query string. This process aligns with line
11 in Algorithm 1. The query is constructed by sampling aliases for each node and relation in the
path. For example, a path Π = [A,B,C] might be converted to a query ”sampled alias(A) →
sampled alias((A, B)) → sampled alias(B) → sampled alias((B, C)) → ?”. Here the tuple of two
nodes represents their edge. The aliases are sampled randomly from a discrete uniform distribution
over the available aliases for a node or an edge.

B.2.3 EXAMPLE QUERY GENERATION

To illustrate our query generation process, consider the scenario of a path in our subgraph as shown
in 9.

Our algorithm would construct the following query from the path presented in 9:

“Chandler Bing→(actor)→(birth date)→?”

This query requires the LLM to reason through two hops in the knowledge graph:

1. Identify the actor who played Chandler Bing (Matthew Perry)
2. Find the birth date of Matthew Perry (19 August 1969)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 9: Potential Path in a Subgraph where Pivot is Chandler Bing

This example demonstrates how our query generation process creates questions that require multi-
hop reasoning, leveraging the structure and relationships within the knowledge graph.

B.3 PROMPT CONSTRUCTION

The final prompt is constructed using a template applied to the query. This process involves several
steps, each addressing specific requirements:

• Query Formulation: Convert the generated path into a query string as described earlier.
• Context: This is the supporting text we provide the LLM to answer the query correctly. We

additionally trim the context to fit within the LLM’s context length limits.
• Few-shot Examples: Include examples to guide the LLM in understanding the query format

and expected answer structure.
• Answer Options Generation: Create a set of possible answers, including the correct one.

The LLM has to choose one of these options as the correct one.
• Distractors: In the distractor setting, we need to find distractors for the query which need

to be included in the prompt.

These inclusions ensure that the prompt is comprehensive, fits within model constraints, and pro-
vides sufficient guidance for the LLM to generate accurate responses. We also provide information
on the aliases used and the entities they correspond to in the prompt, to ensure that the LLM knows
about the alias.

B.3.1 DISTRACTOR SELECTION

Distractors are crucial in assessing an LLM’s comprehension and reasoning abilities. We hypoth-
esize that distractors to nodes later in the path closer to the answer would provide more difficulty
for the LLM due to their proximity to the answer node. Our distractor selection process, imple-
mented in Algorithm 4, employs a weighted sampling approach to prioritize distractors associated
with entities closer to the path’s end. The algorithm first identifies all potential distractors for each
node in the path, then assigns weights inversely proportional to their distance from the final answer
node. This weighting scheme favors distractors linked to nodes near the path’s end, but still allows
for the selection of distractors related to any node in the path. This refers to the sampling procedure
in the line 12 of the probabilistic progam specification 1. By performing weighted sampling from
this pool, we ensure a balance between highly relevant distractors and a diverse selection across the
entire path.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.3.2 ANSWER OPTIONS

After formulating the query, we generate a set of answer options. This set includes:

• The correct answer: The last entity in the generated path.

• Other entities in the path.

• Related entities: Entities that share some edge with nodes in the path but are not part of the
path.

• Distractors: A distractor is a node in the knowledge graph G that shares a relation with a
node in the path, mirroring the relation that continues the path, but the distractor is not itself
part of the path. For a formal definition, refer to Definition 3.3. These are only included in
the options in the distractor setting.

The process of generating answer options is detailed in Algorithm 3. In the algorithm, we sample
answer options from the set described above so we are basically sampling from the nodes as in the
probabilistic program specifiction line 12 1. The answer option algorithm assumes that distractors
are input in a list according to the order of preference.

Algorithm 3 Generate Answer Options
1: Input: correct ans, distractors, path entities, random entities, Graph,

min num options
2: Output: options
3: options← [(correct ans] ∪ distractors
4: Add path entities to options
5: Add random entities from random entities to options
6: return Shuffle(options[: min num options])

Algorithm 4 Get Best Distractor
1: Input: Graph G, Path Π
2: Output: best distractor
3: D ← [] {List of distractors}
4: W ← [] {Weights for distractors}
5: for i← 0 to len(Π) −2 do
6: v ← Π[i]
7: N ← GetNeighbors(G, v)
8: N distractors← FilterDistractors(N , v, Π)
9: Extend D with N distractors

10: Extend W with [i+ 1] ∗ len(N distractors)
11: end for
12: if D is not empty then
13: return WeightedRandomChoice(D, W)
14: else
15: return None
16: end if

B.4 CONTEXT TRIMMING

To address the input length limitations of various LLMs, we implement a context trimming proce-
dure. Including all text associated with each node in a reasoning path can result in excessively long
contexts. Our procedure aims to preserve the most relevant information from the knowledge graph
and supporting texts while respecting each model’s maximum input length. This involves identify-
ing relevant sentences per edge in the graph and then trimming the context for each query based on
this information.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.4.1 FINDING RELEVANT SENTENCES PER EDGE

Each node in the Wikidata5m knowledge graph has associated textual support for its relations. We
utilize this textual information to provide query-relevant context. We need to determine the relevant
information from the textual supports for each edge as this would help us trim the contexts accord-
ingly. For each edge (u, v) in the knowledge graph used in the query or answer options generation,
we perform the following steps:

1. Collect Aliases and Text: We gather aliases and the associated text paragraphs for both
nodes u and v.

2. Split into Sentences: We split the text paragraphs of u and v into individual sentences
using NLTK.

3. Identify Relevant Sentences: We identify sentences that explicitly link the two nodes. A
sentence from u’s text is considered relevant if it contains an alias of v, and vice versa.

4. Discard Edges without Relevant Sentences: If no relevant sentences are found for an
edge, it is deemed unsupported and is discarded from the graph.

5. Prepend First Sentence: To ensure the entity’s primary name or common alias is included,
we prepend the first sentence of each node’s text to its list of relevant sentences.

B.4.2 TRIMMING TO FIT CONTEXT LENGTH

When constructing the final prompt for the LLM, we prioritize including the most relevant informa-
tion within the model’s context length limit. Therefore we need to trim the context according to the
LLM’s context limit. We use the following procedure (detailed in Algorithm B.4.2):

1. Create Sentence Lists: We create three lists of sentences:

• Sall: Contains all sentences from the text paragraphs of nodes involved in the query
and answer options.

• Squery: Contains all relevant sentences for the edges that constitute the query path.
• Soptions: Contains all relevant sentences for the edges used to generate the answer

options.

2. Construct the Final Context:
(a) We prioritize including all sentences from Squery as they are directly related to the

query.
(b) Next, we add as many sentences from Soptions as possible, given the remaining con-

text length limit.
(c) Finally, we fill the remaining space with sentences from Sall that have not been in-

cluded yet, ensuring no sentence is repeated.

Algorithm 5 Context Construction
1: Input: Sall, Squery, Soptions, Lmax

2: Output: Ctrimmed

3: C ← Squery

4: ASSERT TokenizedLength(C) ≤ Lmax

5: Sseen ← UniqueSet(C)
6: for each s in Soption+Sall do
7: if s /∈ Sseen and TokenizedLength(C + s) ≤ Lmax then
8: C ← C + s
9: Add s to Sseen

10: end if
11: end for
12: return C as Ctrimmed

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.5 FEW-SHOT EXAMPLES

To guide the LLM towards the desired response format and demonstrate the reasoning process, we
include 2 few-shot examples in the prompt. These examples provide a clear illustration of how to
approach the multi-hop reasoning task.

We use the following few-shot examples:

Few Shot Examples

Common Context: entity B is the son of entity A. entity E is the sister of entity A. entity B
leads entity C. Entity D is a member of Entity C. Entity D is a friend of entity E. entity E
has mother entity F who likes the services of entity C.

Question 1: entity A→ (father of)→ (leader of)→ ?
Options: 1. entity F, 2. entity C, 3. entity D, 4. entity E, 5. entity B
Answer: 2. entity C
Explanation: entity A→ (father of) entity B→ (leader of) entity C
How to get answer: Find who entity A is father of to get entity B, then find what B is the
leader of to get entity C.

Question 2: entity B → (chief of) → (constitutes) → (companion of)
→ ?
Options: 1. entity F, 2. entity C, 3. entity D, 4. entity E, 5. entity A
Answer: 4. entity E
Explanation: entity B → (chief of) entity C → (constitutes) entity D →
(companion of) entity E
How to get answer: Find what entity B is the chief of to get entity C, find what entity C
constitutes to get entity D, then find the companion of entity D to get entity E.

B.6 FINAL PROMPT

The final prompt presented to the LLM is constructed using a template that incorporates several key
elements:

Trimmed Context [B.4]: The relevant context extracted and trimmed.

Query [B.2]: The multi-hop query.

Answer Options [B.3.2]: The generated answer options, including the correct answer and distrac-
tors.

Few-Shot Examples [B.5]: A set of examples demonstrating the desired response format.

The prompt template is structured as follows:

Prompt Template

{few shot examples}
Actual Query: Given Context: {context}
Answer the question: {query}
answer the question by selecting the correct answer from the following options:
{options}
The format for beginning your response is:
correct answer: < option number > . < answer >, because < succinct reason >
follow this exact format and only choose from the given options

Estimating the number of unique prompts: We estimate a lower bound on the number of unique
prompts that can be generated from the Wikidata5m Knowledge Graph (KG) by quantifying the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

potential unique queries within the graph. Each query can be formulated into multiple prompts
through variations in answer presentation, thus making query count a conservative estimate. We
analyzed the 50 subgraphs employed in our experiments. For each subgraph, we calculated the
number of unique paths(upto the maximum path length hyperparameter, ρ = 4) and calculated the
number of possible queries for each path using the number of aliases for each each entity and relation
within a path. This analysis provides an estimate of the unique query generation capacity inherent
in subgraphs in our KG.

The mean number of unique queries was 3.04× 1015 with a median of 1.24× 1015. The minimum
and maximum observed values were 1.36× 1012 and 1.46× 1016, respectively.

Importantly, these figures conservatively estimate the number of unique prompts, as they only con-
sider query variations and not the diversity introduced by different answer options. The actual num-
ber of unique prompts is likely significantly larger, making exhaustive enumeration of all possible
generated prompts infeasible.

B.7 RESPONSE CHECKER FUNCTION

We implement a simple response checker function to evaluate the correctness of the model’s an-
swers. The function is defined in Algorithm B.7. We write a regular expression to account for trivial
formatting errors like extra spaces, brackets, incorrect punctuation, etc.

Algorithm 6 Response Checker
1: Input: model answer, correct answer num
2: Output: is correct
3: model answer ← LowerCase(model answer)
4: correct answer num← LowerCase(ToString(correct answer num))
5: pattern← SpecializedRegularExpression(”correct answer: ” + correct answer num)
6: if RegexMatch(pattern, model answer) then
7: is correct← 1
8: else
9: is correct← 0

10: end if
11: return is correct

27

	Introduction
	Background
	Knowledge graph
	Large Language Models
	Information extraction and reasoning

	Certifying knowledge comprehension
	Specifying knowledge comprehension
	Certification method

	Experiments
	Different kinds of specifications
	Certificates
	Case studies

	Related works
	Conclusion and future work
	Ablations
	Few Shot Prompts
	Distractor Distributions
	Model Performances with varying Path Length
	Chain of Thought Prompting

	Knowledge Graph and Query Generation
	Knowledge Graph Structure
	Preprocessing the wikidata5m knowledge graph

	Query Generation
	Random Path Generation
	Query Formulation
	Example Query Generation

	Prompt Construction
	Distractor Selection
	Answer Options

	Context Trimming
	Finding Relevant Sentences per Edge
	Trimming to Fit Context Length

	Few-Shot Examples
	Final Prompt
	Response Checker function

