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ABSTRACT

Knowledge comprehension capability is an important aspect of human intelli-
gence. As Large Language Models (LLMs) are being envisioned as superhuman
agents, it is crucial for them to be proficient at knowledge comprehension. How-
ever, existing benchmarking studies do not provide consistent, generalizable, and
formal guarantees on the knowledge comprehension capabilities of LLMs. In
this work, we propose the first framework to certify knowledge comprehension in
LLMs with formal probabilistic guarantees. Our certificates are quantitative —
they consist of high-confidence, tight bounds on the probability that a target LLM
gives the correct answer on any knowledge comprehension prompt sampled from
a distribution. We design and certify novel specifications that precisely represent
distributions of knowledge comprehension prompts leveraging knowledge graphs.
We certify SOTA LLMs for specifications over the Wikidata5m knowledge graph.
We find that knowledge comprehension improves with increasing model size.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated human-level performance for several real-world
tasks (Street et al., 2024; Yang et al., 2023b; Bommasani et al., 2022; Harrison, 2024). An impor-
tant use case for LLMs is knowledge comprehension (Lazaridou et al., 2022; Khattab et al., 2023),
that is, they are often used to summarize long texts and webpages (Perplexity, 2023; Nakano et al.,
2022), respond to user queries based on the context (Yang et al., 2018), and serve as adaptive task de-
composers for reasoning-based retrieval augmented generation tasks (Yao et al., 2023b). Knowledge
comprehension involves answering questions by extracting relevant information from large, unstruc-
tured texts and reasoning with it. Large context windows of millions of tokens in models like Gemini
v1.5 (Gemini Team, 2024) reduce reliance on large knowledge corpora of RAG systems and para-
metric knowledge held by LLMs. Users increasingly provide extensive references during inference
to guide responses. This makes analyzing the knowledge-comprehension and reasoning capabilities
of popular LLMs crucial. Moreover, knowledge comprehension is considered a basic evaluation
of language understanding in human learners, according to the Bloom’s taxonomy (Bloom, 1956).
Students are tested on knowledge comprehension tasks at all levels of school education (National
Center for Education Statistics, 2024). Standardized tests such as TOEFL (Educational Testing Ser-
vice, 2024) and IELTS (IDP IELTS, 2024) contain knowledge comprehension as entire assessments.
As LLMs are envisioned to become superhuman agents (Xi et al., 2023), it is imperative to formally
analyze them on tasks on which humans are extensively tested, like knowledge comprehension.

There are several benchmarking studies on the performance of LLMs for knowledge comprehen-
sion (Liang et al., 2023; Chen et al., 2021; Yang et al., 2018; Wang et al., 2023a; Trivedi et al.,
2022; Tang & Yang, 2024). Several of these studies use multi-hop question-answering datasets that
consist of questions requiring several sequential reasoning steps to obtain the final correct answer.
Thus, benchmarking knowledge comprehension often involves analyzing whether the target LLM
can combine multiple pieces of information in meaningful ways and reason its way to the correct
answer in the prompt, without deviating or hallucinating. However, the empirical nature of prior
studies results in inconsistency in their observations (Wei et al., 2023b; Olsson et al., 2022; Shi
et al., 2024). Moreover, while they can convey some high-level trends in the performance of popular
LLMs, the results are devoid of any formal guarantees on their applicability. Such guarantees are
crucial when deploying LLMs in large-scale knowledge-comprehension tasks in critical domains
such as medicine or finance, as they give more confidence about the trustworthiness of LLMs before
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deployment. Our work aims to bridge this gap by introducing a novel formal certification method,
QuaCer-C1, for obtaining certified bounds on the knowledge comprehension capability of LLMs.

Key challenges. We face the following challenges when developing a formal certification frame-
work for knowledge comprehension in LLMs. (1) We need formal representations capturing the
knowledge comprehension property, amenable to certification. Such representations should pre-
cisely capture large, diverse sets of prompts (created by varying questions, supporting texts, etc.)
for knowledge comprehension and their correct responses. (2) Failure examples where the desirable
property does not hold are fairly easy to construct for LLMs by appropriate prompt tuning (Xu et al.,
2024; Vega et al., 2023), making binary certificates that indicate whether an LLM satisfies a speci-
fication trivially false. (3) Giving provable guarantees on LLMs is a hard, open problem, due to the
high number of model parameters and nonlinearities (Zhang et al., 2024), for which the traditional
certifiers (Singh et al., 2019; Shi et al., 2020; Bonaert et al., 2021) would lose significant precision
leading to inconclusive analysis. The number of prompts over which we desire the target LLMs to
reason correctly is also large, making enumeration-based methods for formal guarantees infeasible.

Our approach. We formalize knowledge comprehension as a novel specification using knowledge
graphs. Instead of specifying correctness of LLM responses for all prompts in any given set, we
specify a quantitative property, which is the probability of correct response for any knowledge com-
prehension prompt sampled from a distribution, developed using a given knowledge graph. We pro-
pose a black-box quantitative certification approach, QuaCer-C, which circumvents the issues that
traditional approaches have with the number of parameters in LLMs and can even work for closed-
source API-access LLMs. QuaCer-C generates high-confidence bounds on the quantitative property
using queries, leveraging binomial proportion confidence intervals (Clopper & Pearson, 1934). Es-
timating with bounds is beneficial as they also account for the uncertainty in the estimation. While
formal analysis has been conducted on individual generations of LLMs in prior work (Quach et al.,
2024), there is no analysis for the average-case risk of LLMs in knowledge comprehension. Our
certificates contain provable bounds on the probability of getting correct responses for any random
knowledge comprehension task sampled from the distributions given in the specifications.

Contributions. We make the following contributions:

1. We specify the knowledge comprehension property desirable from the LLM responses as
a formal specification. Our specifications use popular knowledge graphs such as Wiki-
data5m (Wang et al., 2021) that are augmented with supporting information about each of
their entities. The specifications represent a large set of knowledge comprehension prompts
with their respective correct answers expected from any target LLM.

2. We model certification in a target LLM as a probability estimation problem and lever-
age Clopper-Pearson confidence intervals to generate provable, high-confidence bounds
on the quantitative property of interest. Our implementation is provided at https:
//anonymous.4open.science/r/QuaCer_CAnon-4130.

3. We generate the proposed certificates for the popular LLMs: Llama-3, Mistral, Phi-3, GPT-
4o, and Gemini-1.5-Pro. We observe that as the number of model parameters increases, the
knowledge comprehension capability of the LLM improves. On comparing different model
classes, we see Phi-3 models performing the best among the smaller, open-source models.

Our work is the first step towards providing guarantees on the knowledge comprehension capabilities
of LLMs, to ameliorate the caution needed when using LLMs (Shanahan, 2023) in a systematic way.
We anticipate it to go a long way in making LLMs trustworthy for deployment in critical domains.

2 BACKGROUND

2.1 KNOWLEDGE GRAPH

A knowledge graph G = (N , E) is a collection of nodes N representing entities, intercon-
nected by directed edges E representing their relations (Peng et al., 2023; Ji et al., 2022). They
are commonly used in search engines to enhance the relevance of responses to user queries.

1Quantitative Certification of Knowledge Comprehension

2

https://anonymous.4open.science/r/QuaCer_CAnon-4130
https://anonymous.4open.science/r/QuaCer_CAnon-4130


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: A subgraph of Wikidata5m

Hence, major companies develop their own closed-source
knowledge graphs. Wikidata5m (Wang et al., 2021), a
popular open-source knowledge graph consisting of 5M
nodes, is a structured representation of Wikipedia pages.
Each Wikidata node corresponds to a Wikipedia page,
containing its abstract and a set of aliases that can synony-
mously refer to the node. Two nodes (v1, v2), v1, v2 ∈ N
are connected by a labeled edge if there is a link in the
supporting document for v1 to that for v2. Edge (v1, v2)
is labeled by a set of aliases for the relation between v1
and v2. Figure 1 shows a subgraph of Wikidata5m.

2.2 LARGE LANGUAGE MODELS

Large Language Models (LLMs) are autoregressive causal language models that operate on a vo-
cabulary V , a set of tokens. LLMs takes a sequence of tokens x1, ..., xn where xi ∈ V, n > 0
and outputs a probability distribution over V for the potential next token xn+1. These models are
typically pretrained on vast corpora of text data (Liu et al., 2024) and have shown remarkable capa-
bilities (Touvron et al., 2023; Gemini Team, 2024; OpenAI, 2024). Numerous benchmarks (Yang
et al., 2018; Rein et al., 2023; Hendrycks et al., 2021) have been developed to evaluate the perfor-
mance of LLMs on tasks related to multi-step reasoning, knowledge comprehension and question
answering. However, there remains a gap in our theoretical understanding of LLMs’ capabilities.

2.3 INFORMATION EXTRACTION AND REASONING

Information extraction (IE) and reasoning are important research problems in natural language
processing. IE involves “extracting structured information from unstructured or semi-structured
data” (Chen et al., 2022) such as textual documents. Examples of IE are event extraction (Wadden
et al., 2019) and relationship extraction (Pawar et al., 2017). Reasoning is the ability of a model to
connect multiple facts using correct logical operations to arrive at a final answer (Huang & Chang,
2023). Typically, reasoning capabilities of LLMs are enhanced by using techniques such as Chain of
Thought reasoning and its variants (Wei et al., 2023a; Yao et al., 2023a; Wang et al., 2023b), using
world models (Hao et al., 2023), etc. It is evaluated in several tasks such as planning (Wang et al.,
2024), mathematical reasoning (Imani et al., 2023), commonsense reasoning (Zhao et al., 2023), etc.

3 CERTIFYING KNOWLEDGE COMPREHENSION

Knowledge comprehension is the ability of a model to accurately reason through a multi-hop ques-
tion (Yang et al., 2018) (combination of multiple simple information extraction questions that should
be answered sequentially to arrive at the final answer) and extract the answers to intermediate ques-
tions from information provided in its prompt to reach the correct final answer. Thus, knowledge
comprehension is a combination of reasoning and information extraction. Figure 2 gives an overview
of our certification framework, QuaCer-C. We formally define knowledge comprehension using a
knowledge graph G = (N , E) (Section 2.1) next. Our framework is agnostic to the internal structure
of the target model L which can be any text-to-text generating model.

3.1 SPECIFYING KNOWLEDGE COMPREHENSION

Knowledge Graph Grammar

1. γ := V+

2. η := V+

3. A := [η1, η2, . . . ]
4. v := (γ,A)
5. e := ((v1, v2),A)
6. N := [v1, v2, . . . ]
7. E := [e1, e2, . . . ]
8. G := (N , E)

The adjacent grammar defines a knowledge graph. Let V denote
the vocabulary of L’s tokens. V+ denotes the set of concatenation
of non-empty sequences of elements of V . Let each node v of G
(line 4) consist of a finite list of synonymous names (a.k.a. aliases,
A) that can be used to refer to the node, and a context γ that pro-
vides more information about the node and its relations with other
nodes. For example, in Wikidata5m (Wang et al., 2021), each node
has aliases consisting of the identifiers mentioned for the subject of
the corresponding Wikipedia page and context which is the abstract
of the page. Each edge e in G (line 5) is an ordered pair of related
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(Acitaminophen) Overdose can 
cause damages to the liver and 
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treat liver damage, especially 
when caused by 
acetaminophen toxicity.... .

Query: 
Paracetamol Overdose →
 (damages) → (treated by) →?

N-acetylcysteine
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(c) Prompt & correct answer
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2. Vomiting 
3. Liver damage
4. Nomogram 

LLM 
answer: 

Correct: 2. 
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Random path 
selection

...
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Overdose 

...

Other path samples

Figure 2: Overview of QuaCer-C. (a) A knowledge graph G pivoted on some node v1, in this case
on ‘Paracetamol Overdose’. (b) A randomly chosen path Π originating at v1 from the various other
possible paths from v1 in G. (c) A prompt created from Π having contexts of the nodes in Π, a
distractor context (highlighted in orange, as the node for ‘Vomiting’ is a distractor for Π), and a
query from Π. (d) The target LLM’s response to the prompt, validated using the correct answer. (e)
Certifier obtains bounds on the probability of correct response using n samples of LLM responses.

nodes where the relation is identified by a set of synonymous aliases A for the edge. Let (v1, v2)
denote any edge between nodes v1 and v2 in G. We define G (line 8) as a finite collection of nodes
N and edges E . A path in G (Definition 3.1) is a set of connected nodes in N .
Definition 3.1. (Path in a Knowledge Graph). A path Π = [v1, v2 . . . , vl] is an ordered collection
of nodes in a given knowledge graph G, where l > 1, such that ∀i ∈ [l− 1], vi ∈ N , (vi, vi+1) ∈ E ,
and ∀j ∈ [l], i ̸= j =⇒ vi ̸= vj . ΠH := v1 and ΠT := vl are the head and tail nodes respectively
of Π. Let the ith (i ∈ [1, l]) nodes of Π from ΠH and backwards from ΠT be Π[i] := vi and
Π[−i] := vl−i+1 respectively.

Definition 3.2 describes a multi-hop reasoning problem, derived from a given knowledge graph G.
As G naturally encodes several multi-hop problems, we use it to form the specification for a target
language model L, similar to prior works such as (Ho et al., 2020; Jiang et al., 2023b).
Definition 3.2. (Multi-hop reasoning problem from G). Consider any path Π (Definition 3.1) of
length l in G. A multi-hop reasoning problemQ for Π is identifying the tail node ΠT , given an alias
of its head node ΠH and aliases of all edges from ΠH to ΠT in Π. Let vA denote the corresponding
aliases of node v in G. Let D be a function that samples a random alias from the given set of aliases.

Q := D(ΠH,A)
D((ΠH ,Π[2])A)−−−−−−−−−−→ . . .

D((Π[−2],ΠT )A)−−−−−−−−−−−→?

Q thus involves l − 1 reasoning steps to get to the final answer, where each step requires correctly
identifying intermediate nodes of Π. Note, however, that correctness of intermediate reasoning steps
is generally not evaluated, and accuracy is defined for the final response (Rajpurkar et al., 2016).

To aid L in correctly answering a multi-hop reasoning query Q and reduce hallucination (Dhuli-
awala et al., 2023), we provide relevant textual information needed to identify the intermediate and
final nodes in the prompt. Hence, the overall task of answeringQ involves information extraction for
identifying intermediate nodes and reasoning to connect the intermediate answers to reach the final
answer, which we collectively call knowledge comprehension. Our overall property quantifies the
probability of observing correct knowledge comprehension for a random multi-hop reasoning query
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Algorithm 1 Knowledge comprehension specification
Input: L,G, v1, ρ
Output: p

1: D := U | Ber | ...
2: Π := [v1, v2 := (D([v′ | (v1, v′) ∈ E ])), . . . , vD({2,...,ρ}) := (D([v′ | (vk, v′) ∈ E ]))]

3: Q := D(Π[0]A)
D(Π[0],Π[1])A−−−−−−−−−→ . . .

D(Π[−2],Π[−1])A−−−−−−−−−−−→ ?
4: Γ := shuffle([Π[0]γ , . . . ,Π[−1]γ , (D(N ))γ , . . . ])
5: P := Γ⊙Q
6: p := estimateProbability(any(L(P) == Π[−1]A))

developed from G. We formally define the property for L as a probabilistic program over G in Al-
gorithm 1. We follow the syntax of the imperative probabilistic programming language in (Sankara-
narayanan et al., 2013, Figure 3). The language has primitives for sampling from common distribu-
tions such as Uniform (U), Bernoulli (Ber), etc., and an estimateProbability(.) function
that outputs the probability of a random variable attaining a certain value. As all the random sam-
pling steps in Algorithm 1 can operate with any discrete distribution, we use a generic identifier D
(line 1) for samplers of discrete distributions (‘. . . ’ denotes samplers for other discrete distributions).
We use a primitive function any(.) to denote that at least 1 of its inputs evaluates to true.

As a real-world G like Wang et al. (2021) can consist of millions of nodes, specifications on the full G
would be impractical as it is hard to certify global specifications over large input spaces (Katz et al.,
2017; Geng et al., 2023). Hence, we scope our analyses to local specifications, defined on a subgraph
of G centered on a randomly selected pivot node v1 and consisting of all paths originating from v1.
Let Π be a path in G that has a randomly selected length l ∈ {2, . . . , ρ}, formed by random sampling
of connecting nodes, as described in line 2. From a practical standpoint, queries on longer paths can

become meaningless (e.g., Paul Sophus Epstein
place of death−−−−−−−→ administrative unit−−−−−−−−−→ country−−−−→ popular artist−−−−−−−→ genre−−−→ ?),

and thus shorter path lengths are considered in popular multi-hop question-answering datasets such
as (Yang et al., 2018; Trivedi et al., 2022). Thus, we upper-bound the lengths of paths (number
of nodes in the path) considered in the specification, by a hyperparameter ρ. We form a multi-hop
reasoning query Q from Π in line 3. The pivot node v1 and the relations are represented by their
randomly sampled aliases in Q.

A prompt for L consists of Q and a context Γ containing information relevant to answer Q. Γ
is formed by concatenating (⊙) the contexts for all nodes in Π. Let vγ denote the corresponding
context of node v in G. Prior works (Shi et al., 2023) on analyzing reasoning in LMs have shown
the negative influence of irrelevant information (distractor) in prompts on the performance of LMs,
which is not ideally expected. Hence, we include distractor texts in Γ and specify that the correct
response should not be based on the distractor information. The contexts of nodes ṽ adjacent to any
node Π[i] (i ∈ [1, l−2]) on Π, such that the relation of (Π[i], ṽ) is the same as that of (Π[i],Π[i+1]),
can serve as effective distractors for Q (Definition 3.3). This is because, at any intermediate step,
the model can pick ṽ as the response, which can deviate L’s reasoning from Π. Nodes adjacent
to Π[−1] and Π[−2] are not distractors. For the former, the model must have already reached the
final answer before getting to its adjacent nodes, hence, answering Q. In the latter, adjacent nodes
following same relation are valid correct answers and not distractors. We denote distractor text in Γ
as the context of randomly sampled nodes from a distribution D over all distractor nodes of Π inN .
We demonstrate the effects of using distractor text on the performance of SOTA LLMs in Section 4.

Definition 3.3. (Distractor node). A distractor node ṽ for a path Π = [v1, v2, . . . , vl] of G is such
that ∀i ∈ [1, l], ṽ ̸= vi, and ∃j ∈ [1, l − 2], [(vj , ṽ) ∈ E ] ∧ [(vj , ṽ)A = (vj , vj+1)A].

Prior works such as (Chen et al., 2024) have shown that LLM performance can vary with information
ordering. Hence, we shuffle the information in Γ (line 4) to specify that the model’s response should
be invariant to the ordering of information. Our final specification in line 6 is the probability that L
generates any alias of the last node of the path, which is the correct answer to Q. The specification
depends on the choices for the different distributions used at various sampling steps, G, v1, and ρ. It
leads to certificates for the behavior of L on a given subgraph of G and paths of length at most ρ.
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3.2 CERTIFICATION METHOD

Our algorithm certifies the target LLM L by computing an interval [pl, pu] containing the value
of the probability p (Algorithm 1, line 6) for a given pivot node v1 in G with high confi-
dence. We model p as the probability of setting the underlying boolean random variable R ≜
(any(L(P) == Π[−1]A)) to true (success). Thus, R ∼ Ber(p). Exactly determining p would
require enumerating over all possible P which can be developed from any path from a subgraph of
G with any random aliases, resulting in an infeasible number of possible prompts, as shown in Ap-
pendix B.6. Moreover, we want our method to generalize to closed-source LLMs as well, where the
internal structures of the models are unknown. Hence, we cannot use any symbolic methods (Mir-
man et al., 2020) to determine p. Thus, to scalably certify the black-box target LM L, we estimate
p with provably high-confidence (low error) bounds. Confidence is defined as the probability of the
true value p being within the bounds, i.e., Pr[p ∈ [pl, pu]]. To establish formal guarantees, we want
our estimation procedure to be such that the actual confidence is at least the user-specified confi-
dence level, 1 − δ (i.e., Pr[pl ≤ p ≤ pu] ≥ 1 − δ), where δ is a small positive constant. Hence
we use the conservative method of Clopper-Pearson confidence intervals (Clopper & Pearson, 1934;
Brown et al., 2001; Kurz et al., 2014), which is known to produce intervals that are guaranteed
to have high confidence. To compute high-confidence bounds on p, we make n independent and
identically distributed observations of R, in which we obtain k successes, k ∈ [0, n]. We generate
Clopper-Pearson confidence intervals with the n observations to bound p with 1− δ confidence.

4 EXPERIMENTS

We certify the following open-source, instruction finetuned (Wei et al., 2022a) models — Llama-3-
instruct 8B model (Dubey et al., 2024), Mistral 7B-Instruct-v0.2 (Jiang et al., 2023a), Phi-3 3B and
14B parameter models (Abdin et al., 2024). We also certify 4-bit and 8-bit quantized versions of the
open-source models to study the effects of quantization on a model’s knowledge comprehension ca-
pabilities. Among the closed-source models with API access, we certify Gemini-1.5 (Gemini Team,
2024) Flash-001 and Pro-002 models and GPT-4o-0827 (OpenAI, 2024).

We use Wikidata5m (Wang et al., 2021) as our knowledge graph after preprocessing (check Ap-
pendix B.1.1 for details). To generate challenging and diverse specifications, we sample 50 pivot
nodes from two populations: the top 2000 nodes by out-degree in the global graph, and nodes whose
subgraph within radius ρ contains at least 2000 vertices. This strategy ensures specifications rooted
around any of the pivot nodes have a large number of paths, making enumerative certification (where
all possibilities are tested for satisfaction of the specification) impractical. Note that QuaCer-C is
not limited to such subgraphs, and owing to their challenges in terms of prohibitively large number
of possibilities, we select them, only for illustration purposes. We set the maximum path length
parameter as ρ = 5, as we empirically observe that longer paths could result in queries that are very
unrelated to the head node of the path. As our certificates are over all paths with lengths at most ρ
in a given subgraph, we equally prioritize the different possible path lengths in [1, ρ], even though
paths with longer lengths can be fewer in number than those with shorter lengths. Hence, we define
our sampler from our distribution over paths (Algorithm 1, line 2) which first selects a path length
from the uniform distribution over the integers [1, ρ]. We then sample a path of the chosen length
from a uniform distribution over all paths of that length in the subgraph. This ensures that each
possible path length, and each path of a given length, has equal probability of selection, preventing
bias by prioritizing some elements of the underlying sample spaces. Note, however, the framework
is adaptable to other modified distributions as needed by specific certification usecases. (We analyze
the impact of varying path lengths on LLM performance in Appendix A.)

Given a path , we can construct a query by uniformly sampling any aliases for the nodes in the path
(Algorithm 1, line 3). For instance, for the path with the nodes [Chandler Bing, Matthew Perry,
19 August 2019], a query could be “Chandler Bing→(actor)→(birth date)→?”. This query tests
the LLM’s ability to correctly identify the terminal entity (‘?’) given the starting entity (‘Chandler
Bing’) and the specified relational path. Additional details and figures provided in Appendix B.2.2.

Following query selection, we construct prompts to evaluate LLM knowledge comprehension. Each
prompt includes a query and relevant context, presented as a multiple-choice question. This format
allows for straightforward evaluation of LLM responses using string matching (Appendix B.7). Fur-
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thermore, we include a fixed set of few-shot examples (Appendix B.5) in the prompt to ensure the
LLM understands the task structure. We investigate the impact of varying the number of few-shot
examples on LLM performance in Appendix A.

The context accompanying each query depends on kind of specification, which we elaborate on in
Section 4.1. Occasionally, we adjust the context to fit within model-specific context window con-
straints (See appendix B.4 for details). The distribution of generated prompts is primarily determined
by the query generation, answer option selection processes, and some context length adjustments.
Queries are derived from paths with uniformly distributed lengths, ensuring a balanced representa-
tion of reasoning complexity. Answer options are sampled non-uniformly. In our ’distractor setting,’
we prioritize distractors, followed by entities from the query path, and finally, randomly selected en-
tities related to nodes in the path. This approach strikes a balance between challenging the LLM
with complex queries and presenting diverse, potentially misleading answer choices. A detailed
description of the prompt construction process can be found in Appendix B.3. QuaCer-C generates
certificates with confidence 1 − δ = 95% and number of samples, n = 250 samples. We conduct
experiments for open-source LLMs on 2 A100 GPUs with 40GB VRAM each.

Baseline. We compare QuaCer-C’s results with a benchmarking baseline. This baseline consists of
the accuracy of the target LLM on a static dataset. We make this dataset with 50 randomly chosen
paths in each subgraph with which we also form the specifications, certified using QuaCer-C. The
queries are formed with the first-occurring aliases of the entities in their corresponding contexts.
The prompts are generated as in the vanilla setting from each query.

4.1 DIFFERENT KINDS OF SPECIFICATIONS

We study the certificates for 3 different kinds of specifications that arise from variations in the
construction of context in the prompts to LLMs (Algorithm 1, line 4) — with context shuffling
and distractor context (Shuffle Distractor), with context shuffling and without distractor context
(Shuffle), and without context shuffling and without distractor context (Vanilla). These settings
enable us to study the effects of these operations on the knowledge provided in LLM prompts. When
distractor context is provided, it is only for 1 distractor node, so as to fit the relevant context for the
nodes on the considered path within the context windows of the target LLMs. We hypothesize that
distractors to nodes later in the path, closer to the tail node which consists of the final answer, would
be more challenging for the LLM due to their proximity and similarity to the answer node. Our
distractor node sampler (Appendix B.3, Algorithm 4) thus employs a weighted sampling approach
to prioritize distractor nodes closer to the path’s tail. We provide an ablation study on the effects of
varying the distribution of distractor nodes in Appendix A.

4.2 CERTIFICATES

QuaCer-C generates certificates providing high-confidence, tight lower and upper bounds on the
probability of a correct LLM response to a random prompt sampled using the prompt constructor
from the given distribution of prompts in our specifications. We report the average value of the lower
and upper bounds, over our set of specifications that QuaCer-C certifies for each LLM, in Table 1.
We also report the average empirical probability (the ratio of correct responses to the total number
of prompts, n, for each certificate), averaged over the test set. We show further certification results
with chain-of-thought reasoning (Wei et al., 2023a) in Appendix A.4. Next, we summarize the key
observations from the certification results in Table 1, some of which follow trends from prior works.

Figure 5: Variation in certification
bounds with models (Vanilla, fp16)

Scaling of knowledge comprehension with model size.
We observe that the larger models such as Gemini and
GPT have significantly higher bounds than those for the
smaller models such as Phi-3, Mistral, Llama (Figure 5).
The lower bounds of the larger models are higher than
the upper bounds of the smaller models, suggesting a
paradigm shift in knowledge comprehension capabilities
(especially for Gemini-1.5-Pro and GPT-4o). However,
as the larger models are also closed-source, we are un-
aware whether the enhanced knowledge comprehension
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Table 1: Certification Results for Different LLMs

Model Precision Baseline Specification Kind Avg.
Lower Bound

Avg.
Upper Bound

Avg.
Accuracy

Gemini
-1.5-Pro

- Vanilla 0.72 ± 0.06 0.83 ± 0.05 0.78 ± 0.06
- 0.83 ± 0.06 Shuffle 0.71 ± 0.06 0.82 ± 0.05 0.77 ± 0.06
- Shuffle Distractor 0.64 ± 0.09 0.75 ± 0.08 0.70 ± 0.09

GPT-4o
- Vanilla 0.70 ± 0.06 0.81 ± 0.06 0.76 ± 0.06
- 0.84 ± 0.07 Shuffle 0.69 ± 0.06 0.80 ± 0.06 0.75 ± 0.06
- Shuffle Distractor 0.62 ± 0.09 0.74 ± 0.08 0.68 ± 0.09

Gemini
-1.5-Flash

- Vanilla 0.46 ± 0.06 0.58 ± 0.06 0.52 ± 0.06
- 0.72 ± 0.08 Shuffle 0.45 ± 0.06 0.57 ± 0.06 0.51 ± 0.06
- Shuffle Distractor 0.42 ± 0.10 0.55 ± 0.10 0.48 ± 0.10

Llama
(8B)

fp16
Vanilla 0.31 ± 0.09 0.43 ± 0.10 0.36 ± 0.10

0.49 ± 0.09 Shuffle 0.31 ± 0.05 0.44 ± 0.06 0.37 ± 0.06
Shuffle Distractor 0.30 ± 0.10 0.42 ± 0.11 0.36 ± 0.11

8bit
Vanilla 0.30 ± 0.05 0.42 ± 0.06 0.36 ± 0.06

0.44 ± 0.09 Shuffle 0.31 ± 0.06 0.44 ± 0.06 0.37 ± 0.06
Shuffle Distractor 0.30 ± 0.06 0.42 ± 0.06 0.35 ± 0.06

4bit
Vanilla 0.27 ± 0.05 0.39 ± 0.05 0.33 ± 0.05

0.43 ± 0.09 Shuffle 0.28 ± 0.07 0.40 ± 0.07 0.34 ± 0.07
Shuffle Distractor 0.25 ± 0.09 0.36 ± 0.09 0.30 ± 0.09

Mistral
(7B)

fp16
Vanilla 0.33 ± 0.05 0.45 ± 0.05 0.39 ± 0.05

0.52 ± 0.08 Shuffle 0.34 ± 0.05 0.46 ± 0.06 0.40 ± 0.05
Shuffle Distractor 0.33 ± 0.05 0.45 ± 0.05 0.39 ± 0.05

8bit
Vanilla 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.05

0.52 ± 0.09 Shuffle 0.34 ± 0.06 0.46 ± 0.06 0.40 ± 0.06
Shuffle Distractor 0.33 ± 0.11 0.46 ± 0.12 0.39 ± 0.12

4bit
Vanilla 0.31 ± 0.06 0.43 ± 0.06 0.37 ± 0.06

0.49 ± 0.08 Shuffle 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.06
Shuffle Distractor 0.28 ± 0.11 0.39 ± 0.12 0.33 ± 0.11

Phi-3
(14B)

fp16
Vanilla 0.35 ± 0.05 0.47 ± 0.05 0.41 ± 0.05

0.58 ± 0.08 Shuffle 0.35 ± 0.04 0.48 ± 0.04 0.41 ± 0.04
Shuffle Distractor 0.33 ± 0.11 0.45 ± 0.11 0.38 ± 0.11

8bit
Vanilla 0.35 ± 0.05 0.47 ± 0.05 0.41 ± 0.05

0.46 ± 0.06 Shuffle 0.34 ± 0.06 0.47 ± 0.06 0.40 ± 0.06
Shuffle Distractor 0.31 ± 0.08 0.43 ± 0.09 0.37 ± 0.08

4bit
Vanilla 0.33 ± 0.04 0.45 ± 0.05 0.39 ± 0.05

0.43 ± 0.08 Shuffle 0.33 ± 0.04 0.46 ± 0.05 0.39 ± 0.05
Shuffle Distractor 0.30 ± 0.08 0.42 ± 0.09 0.36 ± 0.09

Phi-3
(3B)

fp16
Vanilla 0.34 ± 0.05 0.46 ± 0.06 0.40 ± 0.05

0.50 ± 0.09 Shuffle 0.34 ± 0.04 0.47 ± 0.05 0.40 ± 0.05
Shuffle Distractor 0.32 ± 0.10 0.45 ± 0.10 0.38 ± 0.10

8bit
Vanilla 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.06

0.44 ± 0.06 Shuffle 0.32 ± 0.04 0.44 ± 0.05 0.38 ± 0.05
Shuffle Distractor 0.31 ± 0.09 0.43 ± 0.10 0.37 ± 0.10

4bit
Vanilla 0.32 ± 0.05 0.44 ± 0.06 0.38 ± 0.06

0.43 ± 0.08 Shuffle 0.32 ± 0.05 0.44 ± 0.05 0.38 ± 0.05
Shuffle Distractor 0.29 ± 0.10 0.41 ± 0.10 0.35 ± 0.10

capabilities could be due to specialized training or finetuning techniques applied on the models. We
see that the smaller models have similar certification bounds. Interestingly, Phi3-3B, which is the
smallest model we consider, is performing comparatively to its 14B counterparts and to larger Mis-
tral and Llama models. This contradicts works such as (Wei et al., 2022b; Qin et al., 2024) claiming
that reasoning capabilities emerge only when model parameters scale to tens or hundreds of billions.

Effects of model quantization. We see that higher quantization deteriorates model performance
on knowledge comprehension, contrary to prior works like Jin et al. (2024) that suggest that 4-bit
quantization can retain the model’s knowledge and reasoning capabilities.

Effects of different kinds of specifications. Our results for the different kinds of specifications —
Vanilla, Shuffle, and Shuffle Distractor, indicate that the Vanilla specifications are generally easier,
resulting in higher certification bounds. Shuffle Distractor specifications are challenging specifica-
tions for all models resulting in consistently lower certification bounds. However, the differences in
the bounds’ values are not high across the settings, potentially due to the challenge of identifying
relevant information from large and unstructured contexts in all cases.
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Figure 3: Qualitative analysis of samples used for certifying knowledge comprehension for Vanilla
specifications on the Wikidata5m subgraph pivoted at the node for ‘Batman Begins’ movie. The
context provided in the prompts is not shown for brevity. Wrong model responses are colored red
and correct ones are colored green. The samples are consistent with our results, wherein Phi-3 (3B)
has lower certification bounds than GPT-4o’s bounds, which are lower than those for Gemini-Pro.

Comparison with benchmarking baseline. Baseline scores of all models consistently approach or
surpass the average certification upper bounds, suggesting potential inflation of performance esti-
mates in benchmarking. Contrary to the certification bounds, Mistral-7B significantly outperformed
Phi3-3B across all quantizations. Phi3-14B’s performance had a substantial decline with 8-bit quan-
tization, far greater than the drop shown by certification. These findings emphasize the need for
more reliable and principled evaluation methods grounded with statistical guarantees.

Quality of bounding intervals. Table 1 presents average certification bounds over all specifications.
A desirable property for the intervals, alongside their high confidence, is that they should be tight,
i.e., their range should be small. Tighter intervals indicate precise analysis with less errors. We
observe that the average range of the confidence intervals in our experiments is less than 0.12.

4.3 CASE STUDIES

Next, we analyze the certification results, qualitatively. First, we show the responses of 3 models
in Figure 3 — Phi-3 (3B), GPT-4o, and Gemini, obtained when certifying them for the Vanilla
specification defined over a subgraph pivoted at the node for ‘Batman Begins’ movie. The samples
reflect the certificates. Next, we identify and categorize prominent kinds of model responses. We
frequently see the following failure modes — distracted and missed relation. In the former, the
model gets deviated from the query by following the distractor context in its prompt, resulting in
an incorrect answer. In the latter, the model skips some reasoning steps needed for the final correct
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Figure 4: GPT-4o responses showing good reasoning, failures due to distractors or skipped reasoning

answer. In cases of good reasoning, model accurately follows the query and gives the correct answer.
Figure 4 presents examples of the aforementioned kinds of model responses for GPT-4o.

5 RELATED WORKS

In-context learning. As LLM context windows increase (Gemini Team, 2024; Chen et al., 2023;
Dubey et al., 2024), more information can be provided in the prompts like few-shot demonstra-
tions (Brown et al., 2020) and examples from related tasks (Qu et al., 2024). In-context learning is
the emergent behavior (Wei et al., 2022b; Lu et al., 2024) in which LLMs become proficient at a
task with demonstrations in prompts. We use in-context learning and few-shot examples to enhance
LLMs’ knowledge and reasoning capabilities.

Benchmarking LLM intelligence. Several benchmarks have been proposed to study the reason-
ing (Zhou et al., 2022; Huang & Chang, 2023; Plaat et al., 2024; He et al., 2024; Zha et al., 2021),
arithmetic (Yuan et al., 2023; Song et al., 2024; Yang et al., 2023a), planning (Pallagani et al.,
2023; Valmeekam et al., 2023; Huang et al., 2022), and question-answering (Yang et al., 2018; Ho
et al., 2020; Welbl et al., 2018) capabilities of LLMs, which are integral components of human in-
telligence. These benchmarks provide empirical insights and trends into the performance of LMs.
However, these insights are generally for static datasets and are not guaranteed to generalize. On
the other hand, certification methods provide guarantees on, for example, the scope (defined by
specifications) and confidence of its claims, as we illustrate in this work.

6 CONCLUSION AND FUTURE WORK

We present a novel framework to formally certify LLMs for knowledge comprehension. We develop
novel specifications that quantify the probability of correct responses over any random knowledge
comprehension prompts from distributions derived from knowledge graphs. Certificates consist of
high-confidence bounds on the probability of correct knowledge comprehension, thus providing a
method to compare different LLMs with formal guarantees. Our experiments show variations in
knowledge comprehension along the axes of model size, quantization, and task difficulty. Future
work can integrate our framework with knowledge graph construction methods (Ye et al., 2022), to
specify and certify LLMs for comprehension and reasoning over less structured/proprietary inputs.
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A ABLATIONS

A.1 FEW SHOT PROMPTS

We conduct an ablation study to examine the impact of varying the number of few-shot examples
on Gemini-Flash’s performance in the vanilla task setting. While our default configuration uses two
few-shot examples, we extend this analysis to include up to five examples. Interestingly, we observe
no significant variation in performance across these different few-shot configurations. The results
are presented below in 2.

Table 2: Certification results for LLMs in vanilla setting with different number of few-shot examples
Model Avg. lower bound Avg. upper bound Avg. accuracy

Gemini-1.5-Flash 2Shot (Default) 0.46± 0.06 0.58± 0.06 0.52± 0.06
Gemini-1.5-Flash 3Shot 0.46± 0.06 0.58± 0.06 0.52± 0.06
Gemini-1.5-Flash 4Shot 0.46± 0.07 0.58± 0.07 0.52± 0.07
Gemini-1.5-Flash 5Shot 0.46± 0.07 0.58± 0.07 0.52± 0.07

A.2 DISTRACTOR DISTRIBUTIONS

To assess the impact of distractor distribution on model performance, we implement three distinct
distractor distribution strategies:

1. Tail-weighted: Linearly increasing weights towards the tail end of the path, prioritizing
distractors near the answer node. This serves as our default setting.

2. Head-weighted: Linearly increasing weights towards the head of the path, emphasizing
distractors near the query’s starting point.

3. Uniform: Equal probability of selecting distractors from any position along the path.

We observe no significant differences in either of the settings. The results are presented in 3 below.

Table 3: Certification results for Gemini-Flash with different distractor distributions
Model Avg. lower bound Avg. upper bound Avg. accuracy

Gemini-1.5-Flash Setting 1 (Default) 0.42± 0.10 0.55± 0.10 0.48± 0.10
Gemini-1.5-Flash Setting 2 0.42± 0.11 0.55± 0.11 0.48± 0.11
Gemini-1.5-Flash Setting 3 0.42± 0.11 0.55± 0.11 0.48± 0.11
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A.3 MODEL PERFORMANCES WITH VARYING PATH LENGTH

Among our certificates, we have queries of various lengths. Here we study the effects on models
behavior on queries with varying length by considering the number of hops they require to reason to
answer the query(which is 1 less than the path length). To do so, we refer to the number of hops to
answer a query as k where 1 ≤ k < ρ.

Varying Setting: In figure 6 we show plots for various specifications for the GPT4o model.

Figure 6: Variations in the bounds against the path lengths across various specifications.

Varying Quantization: In figure 7 we show plots when the quantization is varied with the Llama3-
8B model on the shuffle specification and their effects on performance.

Figure 7: Variations in the bounds against the path lengths across various quantizations.

Varying Models: In fig 8 we show plots for the shuffle specification and performance across the
models(the open-source models use fp16 precision).
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Figure 8: Variations in the bounds against the path lengths across various models in the shuffle
setting.

In Figure 6, we observe that the performance across settings converges as k increases and the
distractor setting is most impactful on the performance for k = 2.

In Figure 7, we infer that as k increases the performance of the models’ on the task converges across
the different quantizations. We hypothesize this is due to the increasing complexity of the reasoning
task.

In Figure 8, we see that larger models (GPT-4o, Gemini-Pro) show less severe drop in performance
compared to their smaller models. The figure shows that large models may have learnt to better
apply 1-step reasoning for multiple steps when compared to their smaller counterparts.

A.4 CHAIN OF THOUGHT PROMPTING

We also conduct an ablation on how Chain-of-Thought(COT) prompting can affect the performance
of language models on the knowledge comprehension task. Specifically, we investigate the Phi-3 3B
model (precision: float16) in the vanilla setting with COT prompting strategy. We augmented our
standard few-shot examples (B.5) with COT steps and added structured reasoning guidance to the
prompt template (B.3):

COT additions to prompt template

Answer in the following the below format:
Let’s solve this step by step: 1) Let’s identify the starting point and path: - Start: [identify
starting entity] - Path to follow: [break down the path components]
2) Let’s follow the path: Starting from [entity] → [first relationship] → [next entity] → [next
relationship] → [next entity] ... [continue as needed]
3) Verify our final destination reaches one of the given options
Therefore, the correct answer is: <option number>. <option text>

In the vanilla setting, adding COT prompting improved Phi-3 3B’s performance, with the bounds
increasing by 0.11 summarized in Table 4. While we acknowledge the potential benefits of COT,
earlier experiments were limited due to the significantly increased computational cost (generating
5-8 times more tokens) and the expenses of COT, particularly with closed-source models as output
tokens are much more expensive.
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Table 4: Certification results for Phi-3 3B with and without COT
Prompting Strategy Avg. lower bound Avg. upper bound Avg. accuracy

No COT (Default) 0.34± 0.05 0.46± 0.06 0.40± 0.05
COT 0.45± 0.08 0.57± 0.08 0.51± 0.08

B KNOWLEDGE GRAPH AND QUERY GENERATION

This section details our experimental setup for generating multi-hop reasoning queries using the
Wikidata5m knowledge graph. We describe the structure of the knowledge graph, the process of
generating random paths, formulating queries, and creating answer options including distractors.

B.1 KNOWLEDGE GRAPH STRUCTURE

Our experiments are based on the Wikidata5m knowledge graph (KG). The KG has the following
key characteristics:

• Nodes: Each node represents an entity and is associated with a text paragraph from Wiki-
data5m.

• Edges: Edges represent relationships between entities.
• Text Paragraphs: The text associated with each node may contain information relevant to

its connected edges.
• Node and Edge Aliases: Each node and each edge has a set of aliases associated with them

which are just different names for them.

This structure allows us to generate queries that require reasoning across multiple hops in the graph.

B.1.1 PREPROCESSING THE WIKIDATA5M KNOWLEDGE GRAPH

To ensure the generation of unambiguous queries and support the certification process, we prepro-
cess the wikidata5m dataset.

1. Relation Filtering: We remove relations such as ’instance of’, ’subclass of’, and ’part of’
due to their inherent potential for ambiguity in query formulation.

2. Relevant Information Extraction for edges: To ensure the relevance of relationships in
the knowledge graph, we require textual evidence for each edge. When entity A is related to
entity B, we identify specific sentences in the descriptive text of either entity that explicitly
mention any alias of the other entity. We assume these sentences support the relationship’s
existence. These sentences are then linked to the edge, providing context that can be used
to answer queries about the relationship. This approach ensures that the knowledge graph
contains valid relationships and the specific text that justifies them, enhancing the available
context for further analysis. If we find no supporting text for an edge, we drop that edge
from the knowledge graph.

3. Unicode to ASCII:For consistency within our experiments, we convert all text containing
Unicode characters into their respective ASCII approximations.

B.2 QUERY GENERATION

We utilize the Wikidata5m knowledge graph for multi-hop query generation. The query generation
process involves the following steps:

B.2.1 RANDOM PATH GENERATION

We begin by selecting a pivot node v0 in the knowledge graph G. From this pivot, we construct
a local subgraph G(v0) consisting of all paths Πv0 originating from v. This local subgraph serves
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as the domain for our path generation process. As arbitrary long paths can lose their semantic
meaningfulness, we use a constraint ρ to restrict the length of paths from the pivot node in the
subgraph to be maximum ρ.

Within G(v0), we generate a path Π using a randomized depth-first search algorithm. The length
of this path, denoted as kchoice, is sampled randomly from the set 1, 2, ..., ρ according to a discrete
uniform distribution.

This randomized depth-first search traverses the neighbors of each node in G(v0) in a random order,
which directly corresponds to the sampling process described in line 10 of Algorithm 1. Specifically,
at each step, we sample the next node in the path from a discrete uniform distribution over the current
node’s neighbors within the local subgraph, expressed as ∼ (D([v′ | (vi, v′) ∈ E ∧ v′ ∈ G(v0)])),
where vi is the current node in the path.

To ensure well-defined queries with unique answers, we introduce an additional constraint on path
generation. This constraint requires that each generated path be unique in terms of its sequence
of relationships. Specifically, traversing the path from the initial node using the specified relations
must lead to a single, unambiguous answer node. This approach prevents queries with multiple
valid answers, which would complicate the evaluation of the language model’s performance. It’s
important to note that this uniqueness constraint applies only to the specific path being generated.
Nodes within the path may still have multiple edges with the same relation type to other entities
not on the path. This allowance maintains the natural complexity of the knowledge graph structure,
where entities can have multiple relationships of the same type with different entities.

The pseudocode for the path generation algorithm is specified in 2

Algorithm 2 Random Path Generation
1: Input: Graph G, Integer k, Vertex source
2: Output: path
3: path len← RandomInteger(1, k)
4: path← None
5: while path is None do
6: path← DFSPath(G, source, path len)
7: if not IsUnique(path) then
8: path← None
9: end if

10: end while
11: return path

B.2.2 QUERY FORMULATION

Once a valid path Π is generated, we convert it into a query string. This process aligns with line
11 in Algorithm 1. The query is constructed by sampling aliases for each node and relation in the
path. For example, a path Π = [A,B,C] might be converted to a query ”sampled alias(A) →
sampled alias((A, B)) → sampled alias(B) → sampled alias((B, C)) → ?”. Here the tuple of two
nodes represents their edge. The aliases are sampled randomly from a discrete uniform distribution
over the available aliases for a node or an edge.

B.2.3 EXAMPLE QUERY GENERATION

To illustrate our query generation process, consider the scenario of a path in our subgraph as shown
in 9.

Our algorithm would construct the following query from the path presented in 9:

“Chandler Bing→(actor)→(birth date)→?”

This query requires the LLM to reason through two hops in the knowledge graph:

1. Identify the actor who played Chandler Bing (Matthew Perry)
2. Find the birth date of Matthew Perry (19 August 1969)
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Figure 9: Potential Path in a Subgraph where Pivot is Chandler Bing

This example demonstrates how our query generation process creates questions that require multi-
hop reasoning, leveraging the structure and relationships within the knowledge graph.

B.3 PROMPT CONSTRUCTION

The final prompt is constructed using a template applied to the query. This process involves several
steps, each addressing specific requirements:

• Query Formulation: Convert the generated path into a query string as described earlier.
• Context: This is the supporting text we provide the LLM to answer the query correctly. We

additionally trim the context to fit within the LLM’s context length limits.
• Few-shot Examples: Include examples to guide the LLM in understanding the query format

and expected answer structure.
• Answer Options Generation: Create a set of possible answers, including the correct one.

The LLM has to choose one of these options as the correct one.
• Distractors: In the distractor setting, we need to find distractors for the query which need

to be included in the prompt.

These inclusions ensure that the prompt is comprehensive, fits within model constraints, and pro-
vides sufficient guidance for the LLM to generate accurate responses. We also provide information
on the aliases used and the entities they correspond to in the prompt, to ensure that the LLM knows
about the alias.

B.3.1 DISTRACTOR SELECTION

Distractors are crucial in assessing an LLM’s comprehension and reasoning abilities. We hypoth-
esize that distractors to nodes later in the path closer to the answer would provide more difficulty
for the LLM due to their proximity to the answer node. Our distractor selection process, imple-
mented in Algorithm 4, employs a weighted sampling approach to prioritize distractors associated
with entities closer to the path’s end. The algorithm first identifies all potential distractors for each
node in the path, then assigns weights inversely proportional to their distance from the final answer
node. This weighting scheme favors distractors linked to nodes near the path’s end, but still allows
for the selection of distractors related to any node in the path. This refers to the sampling procedure
in the line 12 of the probabilistic progam specification 1. By performing weighted sampling from
this pool, we ensure a balance between highly relevant distractors and a diverse selection across the
entire path.
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B.3.2 ANSWER OPTIONS

After formulating the query, we generate a set of answer options. This set includes:

• The correct answer: The last entity in the generated path.

• Other entities in the path.

• Related entities: Entities that share some edge with nodes in the path but are not part of the
path.

• Distractors: A distractor is a node in the knowledge graph G that shares a relation with a
node in the path, mirroring the relation that continues the path, but the distractor is not itself
part of the path. For a formal definition, refer to Definition 3.3. These are only included in
the options in the distractor setting.

The process of generating answer options is detailed in Algorithm 3. In the algorithm, we sample
answer options from the set described above so we are basically sampling from the nodes as in the
probabilistic program specifiction line 12 1. The answer option algorithm assumes that distractors
are input in a list according to the order of preference.

Algorithm 3 Generate Answer Options
1: Input: correct ans, distractors, path entities, random entities, Graph,

min num options
2: Output: options
3: options← [(correct ans] ∪ distractors
4: Add path entities to options
5: Add random entities from random entities to options
6: return Shuffle(options[: min num options])

Algorithm 4 Get Best Distractor
1: Input: Graph G, Path Π
2: Output: best distractor
3: D ← [] {List of distractors}
4: W ← [] {Weights for distractors}
5: for i← 0 to len(Π) −2 do
6: v ← Π[i]
7: N ← GetNeighbors(G, v)
8: N distractors← FilterDistractors(N , v, Π)
9: Extend D with N distractors

10: Extend W with [i+ 1] ∗ len(N distractors)
11: end for
12: if D is not empty then
13: return WeightedRandomChoice(D, W )
14: else
15: return None
16: end if

B.4 CONTEXT TRIMMING

To address the input length limitations of various LLMs, we implement a context trimming proce-
dure. Including all text associated with each node in a reasoning path can result in excessively long
contexts. Our procedure aims to preserve the most relevant information from the knowledge graph
and supporting texts while respecting each model’s maximum input length. This involves identify-
ing relevant sentences per edge in the graph and then trimming the context for each query based on
this information.
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B.4.1 FINDING RELEVANT SENTENCES PER EDGE

Each node in the Wikidata5m knowledge graph has associated textual support for its relations. We
utilize this textual information to provide query-relevant context. We need to determine the relevant
information from the textual supports for each edge as this would help us trim the contexts accord-
ingly. For each edge (u, v) in the knowledge graph used in the query or answer options generation,
we perform the following steps:

1. Collect Aliases and Text: We gather aliases and the associated text paragraphs for both
nodes u and v.

2. Split into Sentences: We split the text paragraphs of u and v into individual sentences
using NLTK.

3. Identify Relevant Sentences: We identify sentences that explicitly link the two nodes. A
sentence from u’s text is considered relevant if it contains an alias of v, and vice versa.

4. Discard Edges without Relevant Sentences: If no relevant sentences are found for an
edge, it is deemed unsupported and is discarded from the graph.

5. Prepend First Sentence: To ensure the entity’s primary name or common alias is included,
we prepend the first sentence of each node’s text to its list of relevant sentences.

B.4.2 TRIMMING TO FIT CONTEXT LENGTH

When constructing the final prompt for the LLM, we prioritize including the most relevant informa-
tion within the model’s context length limit. Therefore we need to trim the context according to the
LLM’s context limit. We use the following procedure (detailed in Algorithm B.4.2):

1. Create Sentence Lists: We create three lists of sentences:

• Sall: Contains all sentences from the text paragraphs of nodes involved in the query
and answer options.

• Squery: Contains all relevant sentences for the edges that constitute the query path.
• Soptions: Contains all relevant sentences for the edges used to generate the answer

options.

2. Construct the Final Context:
(a) We prioritize including all sentences from Squery as they are directly related to the

query.
(b) Next, we add as many sentences from Soptions as possible, given the remaining con-

text length limit.
(c) Finally, we fill the remaining space with sentences from Sall that have not been in-

cluded yet, ensuring no sentence is repeated.

Algorithm 5 Context Construction
1: Input: Sall, Squery, Soptions, Lmax

2: Output: Ctrimmed

3: C ← Squery

4: ASSERT TokenizedLength(C) ≤ Lmax

5: Sseen ← UniqueSet(C)
6: for each s in Soption+Sall do
7: if s /∈ Sseen and TokenizedLength(C + s) ≤ Lmax then
8: C ← C + s
9: Add s to Sseen

10: end if
11: end for
12: return C as Ctrimmed
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B.5 FEW-SHOT EXAMPLES

To guide the LLM towards the desired response format and demonstrate the reasoning process, we
include 2 few-shot examples in the prompt. These examples provide a clear illustration of how to
approach the multi-hop reasoning task.

We use the following few-shot examples:

Few Shot Examples

Common Context: entity B is the son of entity A. entity E is the sister of entity A. entity B
leads entity C. Entity D is a member of Entity C. Entity D is a friend of entity E. entity E
has mother entity F who likes the services of entity C.

Question 1: entity A→ (father of)→ (leader of)→ ?
Options: 1. entity F, 2. entity C, 3. entity D, 4. entity E, 5. entity B
Answer: 2. entity C
Explanation: entity A→ (father of) entity B→ (leader of) entity C
How to get answer: Find who entity A is father of to get entity B, then find what B is the
leader of to get entity C.

Question 2: entity B → (chief of) → (constitutes) → (companion of)
→ ?
Options: 1. entity F, 2. entity C, 3. entity D, 4. entity E, 5. entity A
Answer: 4. entity E
Explanation: entity B → (chief of) entity C → (constitutes) entity D →
(companion of) entity E
How to get answer: Find what entity B is the chief of to get entity C, find what entity C
constitutes to get entity D, then find the companion of entity D to get entity E.

B.6 FINAL PROMPT

The final prompt presented to the LLM is constructed using a template that incorporates several key
elements:

Trimmed Context [B.4]: The relevant context extracted and trimmed.

Query [B.2]: The multi-hop query.

Answer Options [B.3.2]: The generated answer options, including the correct answer and distrac-
tors.

Few-Shot Examples [B.5]: A set of examples demonstrating the desired response format.

The prompt template is structured as follows:

Prompt Template

{few shot examples}
Actual Query: Given Context: {context}
Answer the question: {query}
answer the question by selecting the correct answer from the following options:
{options}
The format for beginning your response is:
correct answer: < option number > . < answer >, because < succinct reason >
follow this exact format and only choose from the given options

Estimating the number of unique prompts: We estimate a lower bound on the number of unique
prompts that can be generated from the Wikidata5m Knowledge Graph (KG) by quantifying the
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potential unique queries within the graph. Each query can be formulated into multiple prompts
through variations in answer presentation, thus making query count a conservative estimate. We
analyzed the 50 subgraphs employed in our experiments. For each subgraph, we calculated the
number of unique paths(upto the maximum path length hyperparameter, ρ = 4) and calculated the
number of possible queries for each path using the number of aliases for each each entity and relation
within a path. This analysis provides an estimate of the unique query generation capacity inherent
in subgraphs in our KG.

The mean number of unique queries was 3.04× 1015 with a median of 1.24× 1015. The minimum
and maximum observed values were 1.36× 1012 and 1.46× 1016, respectively.

Importantly, these figures conservatively estimate the number of unique prompts, as they only con-
sider query variations and not the diversity introduced by different answer options. The actual num-
ber of unique prompts is likely significantly larger, making exhaustive enumeration of all possible
generated prompts infeasible.

B.7 RESPONSE CHECKER FUNCTION

We implement a simple response checker function to evaluate the correctness of the model’s an-
swers. The function is defined in Algorithm B.7. We write a regular expression to account for trivial
formatting errors like extra spaces, brackets, incorrect punctuation, etc.

Algorithm 6 Response Checker
1: Input: model answer, correct answer num
2: Output: is correct
3: model answer ← LowerCase(model answer)
4: correct answer num← LowerCase(ToString(correct answer num))
5: pattern← SpecializedRegularExpression(”correct answer: ” + correct answer num)
6: if RegexMatch(pattern, model answer) then
7: is correct← 1
8: else
9: is correct← 0

10: end if
11: return is correct
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