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Abstract
Commercial buildings contribute 17% to U.S. car-
bon emissions, with Heating, Ventilation, and
Air Conditioning (HVAC) systems accounting for
most energy consumption. We propose a novel
multi-stage learning framework for accurate and
scalable temperature prediction in smart buildings.
Our approach systematically scales from single-
zone, single-day forecasts to 123-zone, multi-
week predictions, achieving a mean absolute error
(MAE) of 0.195°F for single-zone tasks using XG-
Boost. Our framework advances energy-efficient
HVAC control, reducing carbon footprints in com-
mercial buildings.

1. Introduction
Buildings are responsible for 37% of U.S. carbon emissions,
with commercial buildings contributing 17% in 2023, as
reported by the U.S. Energy Information Administration.
Heating, Ventilation, and Air Conditioning (HVAC) systems
account for 40–60% of building energy use, making them a
critical target for sustainability efforts (Pérez-Lombard et al.,
2008). The Smart Buildings Control Suite (Goldfeder et al.,
2024) provides a comprehensive open-source benchmark,
including real-world data from 11 buildings over six years,
lightweight data-driven simulators, and Physically Informed
Neural Network (PINN) models. This benchmark addresses
the scalability challenges of prior HVAC optimization ef-
forts, which often rely on proprietary data or high-fidelity
simulators that are difficult to configure. By offering diverse,
real-world telemetric data and scalable modeling tools, the
suite enables robust evaluation of control policies across
varied climates, building sizes, and management systems.

Traditional HVAC control methods, such as fixed setpoint
configurations, are often suboptimal due to their inabil-
ity to adapt dynamically to varying conditions. Advanced
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approaches like Model Predictive Control (MPC) and Re-
inforcement Learning (RL) show promise but are limited
by computational complexity and lack of generalizability
across buildings (Taheri et al., 2022). Moreover, existing
benchmarks often focus on single-zone or short-term predic-
tions, failing to address the multi-zone, long-term forecast-
ing needed for real-world deployment (Luo et al., 2022).

We propose a multi-stage learning framework that systemati-
cally scales temperature prediction from single-zone, single-
day tasks to 123-zone, multi-week forecasts. Leveraging
the Smart Buildings dataset, our approach uses XGBoost
to achieve high accuracy (MAE=0.195°F for single-zone
predictions) while maintaining computational efficiency.

Contributions:

• A novel four-stage learning framework that scales pre-
diction tasks from single-zone to 123-zone scenarios
over extended temporal horizons, addressing scalabil-
ity challenges in HVAC control.

• A comprehensive evaluation of XGBoost with tailored
feature engineering, achieving superior accuracy and
efficiency for temperature forecasting.

• Scalability and robustness analysis using 2.5 years of
real-world data.

2. Related Work
HVAC control optimization has been extensively studied,
with approaches including rule-based systems, MPC, and
RL (Fong et al., 2006; Taheri et al., 2022). RL meth-
ods, such as Soft Actor-Critic (SAC), have shown promise
in optimizing control policies, achieving an 8% improve-
ment over baseline policies in the Smart Buildings Control
Suite (Goldfeder et al., 2024). However, RL often requires
significant computational resources and struggles to gener-
alize across diverse building configurations due to complex
state-action spaces (Yu et al., 2021).

Neural network models, such as Long Short-Term Mem-
ory (LSTM) networks, are commonly employed to capture
temporal dependencies in building dynamics. However,
in multi-zone scenarios, these models face challenges due
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to high computational costs and a propensity for overfit-
ting (Sendra-Arranz & Gutiérrez, 2020).

Physically Informed Neural Networks (PINNs) have
emerged as a promising approach that incorporates physi-
cal priors to enhance model generalization. In the context
of smart buildings, PINNs have shown improvements in
forecasting building energy consumption and system perfor-
mance (Jiang & Dong, 2024; Chen et al., 2023). However,
designing PINNs that strike an optimal balance between
model complexity and accuracy remains a significant chal-
lenge, particularly for real-time applications on edge de-
vices.

Gradient boosting methods like XGBoost offer a compu-
tationally efficient alternative, excelling in modeling non-
linear thermal dynamics with tabular data (Chen & Guestrin,
2016). Unlike LSTMs, XGBoost scales well to multi-zone
scenarios and requires less training time, making it suitable
for real-time applications. Prior studies, however, often fo-
cus on single-zone or short-term predictions, limiting their
applicability to large-scale commercial buildings (Zou et al.,
2020).

The Smart Buildings Control Suite (Goldfeder et al., 2024)
addresses the lack of public, diverse datasets by providing
real-world data from 11 buildings, lightweight simulators,
and PINN models. Unlike previous datasets focused on resi-
dential buildings or non-HVAC metrics (Murray et al., 2017;
Miller et al., 2020), this suite enables scalable, interactive
RL environments. Our framework builds on this benchmark,
introducing a multi-stage approach to systematically address
spatial and temporal scalability.

3. Method
3.1. Problem Formulation

We frame building temperature prediction as a component
of a Markov Decision Process (MDP), defined by the tuple
(S,A, p,R). The state St at time t is a vector of sensor
measurements (e.g., zone air temperatures, occupancy), the
action At comprises HVAC setpoints (e.g., supply air tem-
perature), p is the transition probability, and R is the reward
function. For prediction, we focus on estimating future
states T̂t,z for zone z:

T̂t,z = f(Xt−τ :t, Ut,Wt, θ), ∀z ∈ {1, . . . , Z} (1)

where Xt−τ :t includes historical data (lagged temperatures,
occupancy), Ut are control inputs (HVAC setpoints), Wt

are exogenous variables (weather conditions), and θ are
model parameters. This formulation supports both offline
prediction and integration with RL-based control policies.

Table 1. Multi-stage learning framework for scalable temperature
prediction, detailing zones and prediction horizons.

Stage #Zones Horizon Description

Stage 1 1 24 hours Single zone, 1 day to establish baseline
accuracy with minimal complexity

Stage 2 1 7 days Single zone, 1 week to evaluate temporal
scalability under extended horizons

Stage 3 123 7 days 123 zones, 1 week to assess spatial scala-
bility across multiple zones

Stage 4 123 ≥ 28 days 123 zones, 4+ weeks to simulate real-
world, long-term deployment scenarios

3.2. Multi-Stage Learning Framework

We present a four-stage learning framework that progres-
sively increases prediction complexity:

Sk = (Zk, Hk), k ∈ {1, 2, 3, 4} (2)

where Zk is the number of zones and Hk is the prediction
horizon. The stages are illustrated in Table 1.

3.3. Model and Feature Engineering

We employ XGBoost (Chen & Guestrin, 2016) due to its
efficiency in handling tabular data and non-linear relation-
ships. Hyperparameters (learning rate=0.1, max depth=6,
nestimators=100) are optimized via grid search to balance
accuracy and computational cost, ensuring suitability for
real-time HVAC applications.

Feature engineering is pivotal for modeling building thermal
dynamics using the Smart Buildings dataset. By incorpo-
rating lagged temperatures, we capture thermal inertia, re-
flecting the delayed response of building materials to HVAC
actions. Moving averages mitigate short-term sensor noise,
enhancing prediction stability. Weather forecasts, including
external temperature, humidity, and solar radiation, account
for environmental influences critical for accurate modeling.

4. Experimental Setup
4.1. Dataset

The Smart Buildings dataset (SB1) spans January 2022
to June 2024, covering 911 days (261,852 timesteps at 5-
minute intervals) across 123 zones in a 93,858 ft² building
with 173 HVAC devices (Goldfeder et al., 2024). Table 2
details the dataset partitions, and Table 3 summarizes the
sensor network, which includes temperature, setpoint, and
flow measurements critical for comprehensive HVAC mod-
eling.

4.2. Evaluation Metrics

We adopt the Temporal Spatial Mean Absolute Error (TS-
MAE) from (Goldfeder et al., 2024):
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Table 2. Smart Buildings Dataset (SB1) partitions, detailing tem-
poral coverage and data volume for scalable prediction.

Partition Period Days Timesteps Size (MB)

2022 a Jan-Jun 180 51,852 1,768.3
2022 b Jul-Dec 183 53,292 1,844.3
2023 a Jan-Jun 180 51,852 1,768.3
2023 b Jul-Dec 183 52,716 1,797.8
2024 a Jan-Jun 181 52,140 1,778.2

Total 2.5 Years 911 261,852 8,956.9

Table 3. Sensor distribution in SB1, enabling robust HVAC model-
ing with diverse measurements.

Sensor Type Count Description

Temperature 123 Zone air temperature sensors
Setpoint 528 HVAC setpoint controls
Command 241 Device command signals
Status 4 Equipment operational status
Other 302 Flow, pressure, frequency sen-

sors

Total 1,198 Complete sensor network

ϵ =
1

N

N∑
t=1

[
1

Z

Z∑
z=1

|Treal,t,z − Tpred,t,z|

]
(3)

where Treal,t,z and Tpred,t,z are the actual and predicted
temperatures for zone z at time t. The coefficient of deter-
mination, R², measures explained variance to assess model
fit. Training time is used to assess computational efficiency,
which is critical for real-time HVAC applications.

5. Results and Discussion
Table 4 summarizes XGBoost performance across the four
stages. In Stages 1 and 2 (single-zone, 1 day and 1 week),
the model achieves excellent accuracy (MAE=0.195°F,
R²=0.957, training time less than 0.4s), demonstrating ro-
bust short-term forecasting. Stage 3 (123 zones, 1 week)
maintains strong performance (MAE=0.523°F), indicating
effective spatial scaling. However, Stage 4 (123 zones,
4+ weeks) shows degraded accuracy (MAE=1.795°F), re-
flecting challenges in long-term forecasting due to seasonal
variability and complex inter-zone dynamics. The MAE
distribution across 123 zones in Stage 3 highlights that the
zones with stable thermal dynamics (e.g., interior offices)
achieve near-perfect predictions (MAE less than 0.3°F),
while perimeter zones exposed to external weather show
higher variability (MAE up to 0.8°F).

Table 5 compares XGBoost with baseline methods. XG-
Boost achieves the lowest MAE (0.195°F), scales effec-
tively to 123 zones, and trains in 0.37–93.6s, outperforming
linear regression (MAE=1.8°F), and LSTMs (MAE=1.2°F,
training time=120s). LSTMs struggle with multi-zone scal-
ability due to high computational complexity, while linear

Table 4. XGBoost performance across stages, showing trade-offs
between accuracy and prediction horizon. Z=Zone(s), D=Day,
W=Week(s).

Stage MAE (°F) R² Time (s)

1Z 1D 0.195 0.957 0.37
1Z 1W 0.195 0.957 0.24
123Z 1W 0.523 0.415 34.5
123Z 4W 1.795 0.400 93.6

Table 5. Method comparison, highlighting XGBoost’s superior ac-
curacy, scalability, and efficiency for multi-zone prediction.

Method MAE Scalability Training Multi-Zone
(°F) Time (s)

Linear Regression 1.8 Good 0.5 Yes
LSTM 1.2 Fair 120 Limited
XGBoost (Ours) 0.195 Excellent 0.37–93.6 Yes

regression fails to capture non-linear thermal dynamics.

Scalability Analysis. The multi-stage framework demon-
strates robust scalability up to Stage 3, with Stage 3’s MAE
of 0.523°F and training time of 34.5s indicating feasibility
for real-time HVAC control. Stage 4’s performance degrada-
tion (MAE=1.795°F) suggests diminishing returns beyond
1.5 years of training data, likely due to seasonal variability
and unmodeled factors like radiative heat transfer, as noted
in the Smart Buildings Suite’s limitations (Goldfeder et al.,
2024). Increasing feature dimensionality improves robust-
ness but introduces computational overhead, highlighting a
trade-off between accuracy and efficiency.

Discussion. Our multi-stage framework, systematically ad-
dresses the scalability challenges of HVAC control, achiev-
ing high accuracy in single-zone (MAE=0.195°F) and multi-
zone (MAE=0.523°F) scenarios. The use of XGBoost with
emphasis on lightweight, data-driven models, offering sig-
nificant advantages over computationally intensive meth-
ods. The framework’s fast training times (0.37–93.6s) make
it suitable for real-time applications, potentially reducing
HVAC energy consumption by optimizing setpoint adjust-
ments based on accurate temperature predictions. Zone-
level variability reveals that interior zones benefit from
stable thermal dynamics, while perimeter zones are more
sensitive to external conditions, consistent with the suite’s
findings on heat exchange rates (Goldfeder et al., 2024).
This informs targeted improvements, such as incorporating
radiative heat models to enhance perimeter zone predictions.

Limitations and Future Work. The proposed frame-
work, while effective for temperature prediction, is limited
by its focus on forecasting rather than direct HVAC con-
trol optimization. The absence of a radiative heat model,
contributes to performance degradation in Stage 4. Ad-
ditionally, generalization across diverse buildings remains
untested, as evaluations are confined to SB1. Future work
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includes integrating predictions with reinforcement learning
or model predictive control for closed-loop optimization,
evaluating performance across multiple buildings to ensure
generalizability, exploring hybrid XGBoost-LSTM or PINN
models to enhance long-term forecasting, and incorporating
radiative heat transfer to improve perimeter zone predic-
tions. Furthermore, the computational and storage demands
of deep learning models for edge deployment can be alle-
viated by applying model compression techniques such as
pruning (Han et al., 2015b; Shinde, 2025b) and quantiza-
tion (Han et al., 2015a; Shinde, 2024; 2025a).

6. Conclusion
We present a multi-stage learning framework for scalable
building temperature prediction, achieving high accuracy
(MAE=0.195°F for single-zone tasks) using XGBoost and
the Smart Buildings Control Suite dataset. By scaling from
single-zone to 123-zone predictions over extended horizons.
This work advances energy-efficient HVAC systems, reduc-
ing the carbon footprint of commercial buildings. By foster-
ing cross-disciplinary collaboration, the framework paves
the way for sustainable building management, supporting
global climate goals.
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