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RMSPROP CONVERGES WITH PROPER HYPER-
PARAMETER

Naichen Shi ∗, Dawei Li †, Mingyi Hong‡, Ruoyu Sun §,

ABSTRACT

Despite the existence of divergence examples, RMSprop remains one of the most
popular algorithms in machine learning. Towards closing the gap between theory
and practice, we prove that RMSprop converges with proper choice of hyper-
parameters under certain conditions. More specifically, we prove that when the
hyper-parameter β2 is close enough to 1, RMSprop and its random shuffling version
converge to a bounded region in general, and to critical points in the interpolation
regime. It is worth mentioning that our results do not depend on “bounded gradient"
assumption, which is often the key assumption utilized by existing theoretical work
for Adam-type adaptive gradient method. Removing this assumption allows us to
establish a phase transition from divergence to non-divergence for RMSprop.
Finally, based on our theory, we conjecture that in practice there is a critical
threshold β∗2 , such that RMSprop generates reasonably good results only if 1 >
β2 ≥ β∗2 . We provide empirical evidence for such a phase transition in our
numerical experiments.

1 INTRODUCTION

RMSprop (Tieleman & Hinton, 2012) remains one of the most popular algorithms for machine
learning applications. As a non-momentum version of a more general algorithm Adam, RMSprop’s
good empirical performance has been well acknowledged by practitioners in generative adversarial
networks (GANs) (Seward et al., 2018; Yazıcı et al., 2019; Karnewar & Wang, 2020; Jolicoeur-
Martineau, 2019), reinforcement learning (Mnih et al., 2016), etc. In spite of its prevalence, however,
Reddi et al. (2018) discovered that RMSprop (as well as the more general version Adam) can diverge
even for simple convex functions. To fix the algorithm, the authors of Reddi et al. (2018) proposed a
new variant called AMSGrad, which is guaranteed to converge under certain conditions.

Since then, it has been an active area of research to design provably convergent variants of RMSprop.
These variants include AdaFom (Chen et al., 2019), Adabound (Luo et al., 2019), Nostalgic Adam
(Huang et al., 2019), Yogi (Zaheer et al., 2018), and many more. Despite the variants, the vanilla RM-
Sprop indeed works well in practice, and after proper hyper-parameter tuning, the non-convergence
issue has not been commonly observed. Why is there a large gap between theory and practice? Is this
because the real-world problems are likely to be “nice”, or is it because the theoretical analysis of
RMSprop does not match how it is used in practice?

With the above questions in mind, we revisited the counter-example of Reddi et al. (2018), and found
an interesting phenomenon. One counter-example of Reddi et al. (2018) is the following:

ft(x) =

{
Cx, for t mod C = 1
−x, otherwise (1)

where x ∈ [−1, 1]. They proved the divergence under the condition β2 ≤ min{C−
4

C−2 , 1−
(

9
2C

)2},
where β2 is the second order momentum coefficient in Algorithm 1 (the algorithm is presented later).
For instance, when C = 10, then the algorithm diverges if β2 < 0.3. Reddi et al. (2018) mentioned
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Figure 1: Phase diagram of the outcome of RMSprop on the counter example (1). Different marks represent
different outcome: we label a data point as convergence if the distance between x and −1 is smaller than 0.01
on average after 750000 iterations and as divergence otherwise. For each choice of β2, there exists a counter
example, but for each counter example in which Adam diverges, there exists a larger β2 that can make Adam
converge. We fix β1 = 0. Step size is set as ηt = 1√

t
.

that “this explains why large β2 is advisable while using Adam algorithm”, but they did not analyze
whether large β2 leads to convergence in their example. We ran simulation for problem (1) with
different β2 and found there is always a threshold of β2 above which RMSprop converges, see Figure
1. For instance, when C = 10, the transition point of β2 is roughly 0.955: the algorithm converges
if β2 > 0.956 but diverges if β2 < 0.955. In general, there is a curve of phase transition from
divergence to convergence, and such a curve slopes upward, which means the transition point is
closer to 1 if C becomes larger. Based on this observation, we make the following conjecture:

Conjecture: RMSprop converges if β2 is large enough.

Before further discussion, we introduce the following assumption.

Assumption 1.1. f(x) =
∑n−1
j=0 fj(x), and

n−1∑
j=0

‖∇fj (x)‖22 ≤ D1 ‖∇f (x)‖22 +D0. (2)

We divide optimization problems into 2 classes: realizable problems where D0 = 0 and
non-realizable problems where D0 > 0. When D0 = 0, the assumption (1.1) becomes∑n−1
j=0 ‖∇fj(x)‖22 ≤ D1 ‖∇f(x)‖22 , which is called “strong growth condition” (SGC) (Vaswani

et al., 2019). It requires the norm of the stochastic gradient to be proportional to the batch gradient
norm. When ‖∇f(x)‖ = 0, under SGC we have ‖∇fj(x)‖ = 0 for all j. For linear regres-
sion problems, SGC holds if the linear model can fit all data. More specifically, for the problem
minx ‖Ax‖2 =

∑n
j=1

(
aTj x

)2
where A is an n by n matrix and aTj is the j-th row vector of A, SGC

holds with D1 ≤ λmax

(∑n
i=1 aia

T
i aia

T
i

)
/λmin

(
ATA

)
(Raj & Bach, 2020). SGC can be viewed

as a simple condition that models overparameterized neural networks capable of interpolating all data
points (Vaswani et al., 2019). Therefore, in this work we use the terminology “realizable problems”
to refer to the problems that satisfy SGC.

1.1 MAIN CONTRIBUTIONS

In an attempt to resolve the conjecture, we delve into RMSprop’s convergence issues and obtain a
series of theoretical and empirical results. Our contributions are summarized below:
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• We find that RMSprop’s convergence is contingent on the choice of β2. For general
optimization problems, there are two types of hyper-parameters: problem-dependent hyper-
parameters such as step size in GD, and universal constants such as momentum coefficient
in heavy ball method 1. Our result reveals that β2 is closer to the first type.
• We prove that RMSprop converges to stationary point for realizable problems (interpolation

regime), and to some bounded region for non-realizable problems. Combining with the
divergence example of RMSprop, this indicates the existence of a phase transition from
divergence to convergence dependent on β2. Note that when we say “convergence”, in a
weak sense it means the sequence converges to a bounded region for non-realizable case;
and in a strong sense it means the sequence converges to stationary points for realizable
case.
• To our best knowledge, we are the first to prove the convergence of RMSprop and some of

Adam without any form of assumption about the boundedness of the gradient norm. This is
important for showing the transition: with added assumptions on bounded gradients, the
gradients cannot diverge, while the counter-example shows that the gradient can.

2 PRELIMINARIES

We consider a finite-sum problem:

min
x∈Rd

f(x) =

n−1∑
j=0

fj(x). (3)

In neural network training, fj usually represents the loss contributed by the j-th sample batch. We
present randomly shuffled Adam in Algorithm 1. RMSProp is the special case of Adam with β1 = 0.
In this work, we mainly focus on RMSprop; nevertheless, we will present a result for a special case
of Adam with small β1.

Algorithm 1 Randomly Shuffled Adam

Initialize m1,−1 = 1
1−β1
∇f(x0) and v1,−1 = 1

1−β2
maxj{∇fj(x0) ◦ ∇fj(x0)}.

for k = 1→∞ do
Sample {τk,0, τk,1, · · · , τk,n−1} as a random permutation of {0, 1, 2, · · · , n− 1}
for i = 0→ n− 1 do

mk,i = β1mk,i−1 + (1− β1)∇fτk,i
vk,i = β2vk,i−1 + (1− β2)∇fτk,i ◦ ∇fτk,i
xk,i+1 = xk,i − ηk∗n√

vk,i+ε
◦ml,k,i

end for
Break if certain stopping criterion is satisfied.
xk+1,0 = xk,n, vk+1,−1 = vk,n−1, mk+1,−1 = mk,n−1

end for
return x

In Algorithm 1, x denotes the optimization variable, m denotes the first order momentum and v
denotes the second order momentum. Specifically, we denote xk,i,mk,i, vk,i ∈ Rd as the value of
x,m, v at the k-th outer loop and i-th inner loop, respectively. We denote∇fj as the gradient of fj
and let ◦ be the component-wise multiplication. The division of two vectors is component-wise as
well. Moreover, we denote ηt as the step-size and β1, β2 as the hyper-parameters in the algorithm.
When n = 1, we obtain full batch Adam.

We replaced the bias correction step in (Kingma & Ba, 2015) with a special initialization on m1,−1

and v1,−1. This initialization can also correct the bias, but has cleaner results. Since the effect
of initialization or bias correction becomes more and more negligible as the training progresses,
RMSprop with zero initialization or our initialization will have the same asymptotic behavior. We put
our results for the original version of RMSprop in the appendix.

1Rigorously speaking, for the best convergence rate, the momentum coefficient should also be problem-
dependent; but just for achieving convergence, it can be problem independent.
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As for hyper-parameters, we choose ηt = η1√
t

and fix β2 to be a constant that is independent of the
iteration count. We allow ε to be an arbitrary non-negative constant; in particular, our result holds
even for ε = 0. The constant ε is added in practice for numerical stability, and ε is typically chosen to
be 10−6 or even 10−8. It is much smaller than√vk,i (which is roughly the size of gradient norm).

2.1 RELATED WORK

As discussed earlier, one line of research focuses on variants of RMSprop and Adam that can be
proved to converge. These works usually modify the update rule of vt. For instance, AMSGrad
(Reddi et al., 2018), AdaFom (Chen et al., 2019) explicitly make vt non-decreasing. Nostalgic Adam
(Huang et al., 2019) and the algorithms analyzed in Zou et al. (2019) and Chen et al. (2019) use
iteration-dependent β2t (and/or β1t) to let vt weigh more on past gradients. Some works add new
modifications into RMSprop and Adam; for instance, Zhou et al. (2019) mitigate the bias in update
direction by using a different estimate of vt, Dozat (2016) combine Adam with Nesterov momentum,
and Liu et al. (2020a) employ a warm-up technique.

Besides modifying the algorithm, a few attempts have been made to address the non-convergence
issues of the original versions, but they often rely on extra assumptions. A number of works (Zaheer
et al., 2018; De et al., 2019; Défossez et al., 2020) prove the convergence of Adam under these
additional assumptions. One representative work along this line, Défossez et al. (2020), establishes a
clean convergence result and also provides some insights on the momentum mechanisms by improving
the dependence of the iteration complexity on 1− β1. However, these works assume ε to be relatively
large compared to √vk,i. The issue is that such a choice essentially transforms RMSprop back to
SGD since the effective step size is primarily controlled by ε, in lieu of √vk,i. This is in contrary
to the spirit of RMSprop, which is to use adaptive step size to accelerate convergence. A few other
works do not need the assumption of ε, but they have other assumptions. De et al. (2018) analyze
deterministic and stochastic RMSprop, but they utilize a rather unrealistic assumption that the sign of
all noisy gradients are the same, i.e., sign(∇fp(x)) = sign(∇fq(x)) for all p, q. Chen et al. (2019)
describe a few quantities based on the iterates, and prove that if they grow in a certain speed as the
iterates go, the algorithm converges. The drawback is that the condition cannot be checked a priori.
Besides the assumptions mentioned above, all the aforementioned works require the gradient to be
bounded.

In general, removing boundedness assumptions (of any kind, including bounded gradient, bounded
iterates, etc.) is not necessarily easy. Thus, such results are appreciated even for basic SGD. For
instance, Bertsekas & Tsitsiklis (2000) presents a nice discussion of various results on inexact GD
without involving conventional bounded assumptions, and claims “bounded-assumption-free” as one
of the main contributions of their work. Very recently, we notice another work (Liu et al., 2020b)
which removes the bounded gradient assumption for SGDM (SGD with momentum) and obtains
satisfactory rates. Nevertheless, we are not aware of an existing result on RMSprop that does not
require bounded gradient assumption. We will explain later why removing this bounded gradient
assumption is particularly important for our paper.

3 THE raison d’être FOR β2

Figure 1 clearly demonstrates the important role of β2 in the convergence of RMSprop. Specifically,
a sufficiently large β2 is critical for RMSprop’s convergence. Indeed, some recent works (Reddi et al.,
2018; Zhou et al., 2019) have also made similar arguments, but they focus on understanding one part
of the phenomenon, that is, small β2 leads to divergence. Our goal in this work is to complete the
other part of the story by showing that, sufficiently large β2 guarantees convergence. The formal
result will be provided in Sec. 4.

To understand the function of β2, we first discuss why RMSprop diverges. It is known that the
stochastic noise due to mini-batch will distort the gradient direction, leading to possible divergence,
but in standard SGD, the distortion in multiple iterations is eliminated since the stochastic gradient is
an unbiased estimate of the gradient. For RMSprop, at a given iteration the scaling constant 1/

√
v in

the update direction may cause larger gradient distortion than the standard SGD. The distortion can
be so significant that the average updating direction falls outside the dual cone of the true gradient.
To illustrate this, consider the extreme case that β2 = 0 and ε = 0 (i.e., signSGD) and the special
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example (1). When applying signSGD to solve (1), in each epoch which consists of C iterations, one
iteration will move x left followed by C − 1 iterations that move x right. Since all step sizes are the
same in one epoch, the accumulated effect of one epoch makes x move in the ascending direction,
instead of the descending direction.

Then why does large β2 help? Intuitively, a large β2 can control the distortion on update directions.
In the extreme case that β2 = 1 and ε = 0, RMSprop reduces to SGD where the distortion of multiple
iterations can be mitigated, leading to convergence. We suspect that β2 does not need to be exactly 1,
and a large β2 is enough to control the distortion. Our experiment in Figure 1 confirms that, at least
for the counter-example of Reddi et al. (2018), there is an interval β2 ∈ [c, 1] such that RMSprop
converges.

What was initially not clear is whether the counter-example of Reddi et al. (2018) is a very special
case or the convergence of large-β2-RMSprop holds for all problems. We found the real situation is
somewhat more tricky. For non-realizable problems, we discovered an example for which RMSprop
cannot converge to the minimum for a wide range of β2 < 1, but unlike the small-β2-case the iterates
converge to a small ball around the minimum. This motivates us to distinguish three convergent-
situations: divergence, convergence to a small region, convergence to critical points. What we can
prove for the general problem is (see Theorem 4.3): for small β2, RMSprop can diverge; for large β2,
RMSprop must converge to a small region whose size depends on β2.

Then why do we observe the convergence to a single point in the experiment for (1)? We suspect
this is because the problem (1) is realizable, and conjecture that the property of “convergence to
critical points” holds for all realizable problems. We indeed prove this conjecture (see Corollary 4.1):
large-β2-RMSprop converges to critical points if the problem satisfies SGC.

We summarize our findings about the convergence properties of RMSprop in Table 1.

Setting β2 close to 1 β2 close to 0
non-realizable converge to small region (Thm. 4.3) diverge

realizable converge to critical points (Coro. 4.1) diverge

Table 1: Outcome of shuffled RMSprop under different hyperparameter settings. On unconstrained problems, if
the gradient norm can decrease to zero after infinite iterations, we classify the result as “convergence to critical
points”. If the gradient norm keeps increasing to infinity during training, we classify the result as “divergence”.
We classify a result as “converge to small region” if the gradient norm falls below a certain level but not close to
0.

Note that our results do not conflict with Theorem 3 in Reddi et al. (2018) which claims that “for
any constant β1 and β2 there exists a divergent example” since here we choose β2 to be problem-
dependent, just like one chooses a step size < 2/L for GD where L is a problem dependent parameter.
Another remark is that though β2 could be close to 1, RMSprop still retains the ability to adapt v to
gradient square norm as long as β2 < 1, because new gradient signals are added for each iteration
and the impact of previous signals decays exponentially. It is the adaptive ability that distinguishes
RMSprop from SGD. Proving the theoretical advantage of RMSprop over SGD (i.e., choosing β2 < 1
is better than β2 = 1) is a very intriguing question; in general, the theoretical advantage of adaptive
gradient methods (including RMSprop and AdaGrad) over SGD is a long standing question. in this
work, we focus on the fundamental problem of convergence, instead of the more challenging question
of justifying the advantage of RMSprop.

4 CONVERGENCE RESULTS

In this section, we present the formal theoretical results. We start from the results of full batch
RMSprop/Adam, and then present the results for the stochastic versions. Note that random shuffling
is not a key factor, and the proof works for other settings.
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4.1 FULL-BATCH VERSION

We first consider the full-batch version of RMSprop. The following theorem shows that if we use all
samples to evaluate the gradient, RMSProp with diminishing stepsize converges to critical points
regardless of the choice of β2. Here we consider one popular step size schedule that ηt = η1√

t
.

Theorem 4.1. (convergence of full-batch RMSprop) For problem (3) with n = 1, assume that f
is gradient Lipschitz continuous with constant L and lower bounded by f∗. Then, for full-batch
RMSprop (Alg. 1 with β1 = 0, ε = 0) with diminishing step size ηt = η1√

t
and any β2 ∈ (0, 1), we

have:

min
t∈(1,T ]

‖∇ft‖1 ≤ O
(

log T√
T

)
where T > 0 is the total iteration number.

De et al. (2019) also proves the convergence of full batch RMSprop, but they require the gradient norm
to be upper bounded; in contrast, we do not need this assumption, and only require lower-boundedness
and L-smoothness of f .

Our result suggests that the convergence property of batch-RMSprop is similar to signSGD, an
algorithm that only uses the sign of gradient to calculate its descent direction (Bernstein et al., 2018):
in the full-batch setting, signSGD (which can be called sign GD) has also been proved to converge
without bounded gradient assumption.

Below, we also derive an analogous result for full-batch Adam with only one additional constraint
β1 <

√
β2 < 1, which is often satisfied in practice:

Theorem 4.2. (convergence of full-batch Adam) For optimization problem (3) with n = 1, assume
that f is gradient Lipschitz continuous with constant L and lower bounded by f∗. Then, for full-batch
Adam with diminishing step size ηt = η1√

t
and any β1 <

√
β2 < 1, we have:

min
t∈(1,T ]

‖∇ft‖1 ≤ O
(

log T√
T

)
.

4.2 STOCHASTIC VERSIONS

As mentioned earlier, our simulation shows that RMSprop may not converge to critical points for
non-realizable problems (an example is provided in the appendix). Nevertheless, we can still show
randomly shuffled large-β2-RMSprop converges to a bounded region:
Theorem 4.3. (large-β2 RMSprop converge to a region) For problem (3), assume f is lower-bounded
by f∗ and all ∇fj is L-Lipschitz continuous. Furthermore, assume (2) holds, and β2 satisfies

T2 (β2) ,

√
10dn

βn2
dnD1

(1− β2)

(
4n2

βn2
− 1
)

2
+

(
1√
βn2
− 1

) ≤ √2− 1

2
√
2
, (4)

Then, for randomly shuffled RMSprop with ηt = η1√
t
, we have

min
t∈(1,T ]

min{‖∇fnt‖1 , ‖∇fnt‖
2
2

√
D1d

D0
} ≤ O

(
log T√
T

)
+O

(
Q3,3

√
D0

)
, ∀ T ≥ 4.

Here Q3,3 > 0 is a β2-dependent constant that goes to zero in the limit as β2 → 1.

Remark 1. This result and the result in Reddi et al. (2018) together distinguish large-β2-RMSprop
and small-β2-RMSprop: the former converges to a bounded region, while the latter can diverge. Note
that there is a gap between the lower bound of β2 and the upper bound of β2 in the counter-example.
We do not try to provide tight bounds on the threshold of β2 , as our main goal is to show a qualitative
difference between large-β2-RMSprop and small-β2-RMSprop.

Remark 2:

Condition (4) in Theorem 4.3 implies that 1− β2 ≤ O
(
n−3.5

)
. In the appendix we introduce three

problem-dependent parameters ρ1 ∈ [1,
√
n], ρ2 ∈ [0, n], and ρ3 ∈ [1,

√
n] in equations(14), (15)
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and (16), and improve the sufficient condition (4) to 1− β2 ≥ O (1/ (nρ1ρ2ρ3)). For the worst case,
the bound is O

(
n−3.5

)
, just like condition (4) in Theorem 4.3. In actual training process, ρ1, ρ2, and

ρ3 may not reach their upper bounds, thus the threshold of β2 can be lower in practice (see Appendix
A.5 for some empirical estimate of ρi’s). The dependence on the number of batches n suggests that
as n increases, the required hyper-parameter β2 should be larger. This is understandable since more
minibatches means larger noise in the stochastic gradient, and thus larger β2 is required. There is a
gap between our theoretical bound of β2 and the empirical transition point, and it is an interesting
future question to close this gap.

Remark 3. We point out three possible algorithm behaviors: divergence to infinity (or divergence for
short), convergence to a bounded region (or non-divergence for short) and convergence to critical
points. We distinguish the three cases, making it easier to explain the qualitative difference of
small-β2 and large-β2 regime. For non-realizable cases, the phase transition is from divergence
to non-divergence. Therefore, it is important to discard the bounded-gradient assumption: this
assumption eliminates the possibility of divergence of gradients a priori. To be clear, there are
actually two sub-cases of non-divergence: iterates can stay in a bounded but huge region (bad
case), or iterates stay in a bounded region dependent on some parameters (good case). Indeed,
the “convergence” of constant-stepsize SGD is in the sense of “converging to a region with size
proportional to the noise variance”. Our result of “converging to bounded region” is also meaningful
as the size of the region goes to zero as the noise variance goes to 0 or D0 goes to 0 (realizable case).

Note that “divergence” can be also interpreted as “not converging to critical points” which is the
notion used in Reddi et al. (2018), instead of “diverging to infinity”. We use the latter concept of
“diverging to infinity” for the term “divergence”, because “not converging to critical points” can
include the good case of converging to a small region around critical points (like constant-stepsize
SGD). In the example of Reddi et al. (2018), a constrained problem is considered (bound constraint
[-1,1]), thus divergence to infinity cannot happen. We add an example where the iterates and the
gradients can diverge to infinity for small β2; see Appendix A.2.

As a corollary of Theorem 4.3, if the optimization problem satisfies SGC (i.e. D0 = 0), RMSprop
converges to critical points.
Corollary 4.1. Suppose the assumptions of Theorem 4.3 holds. Further, assume (2) holds with
D0 = 0, i.e.,

∑n−1
j=0 ‖∇fj (x)‖22 ≤ D1 ‖∇f (x)‖22 for all x. we have:

min
t∈(1,T ]

‖∇fnt‖1 ≤ O
(

log T√
T

)
, ∀ T ≥ 4.

With the above corollary, the numerical result in Figure 1 should not be surprising: problem (1)
satisfies the strong growth condition, and thus there is always a range of β2 inside which RMSprop
converges. We just need to tune β2 larger.

We can prove similar convergence results for Adam with small β1 and large β2.
Theorem 4.4. For optimization problem (3), assume that f is lower-bounded by f∗ and fj is
gradient Lipschitz continuous with constant L for all j. Furthermore, assume that fj satisfies (2) for
all x. Then, for randomly shuffled Adam with diminishing step size ηt = η1√

t
and β1, β2 satisfying

T1 (β1, β2)+T2 (β2) < 1− 1√
2

, we have mint∈[1,T ] ‖∇fnt‖1 ≤ O
(

log T√
T

)
+O

(
Q3,5

√
D0

)
∀ T ≥

4, where Q3,5 is a constant that approaches 0 in the limit T1 + T2 → 0, T2 is defined in (4), and T1

is defined as T1 (β1, β2) =
√

5dn
βn2
dn2D1

β1

βn2

(
1−β1

1−βn1
+ 1
)

.

Remark: This result shows that controlling β2 and β1 together can ensure convergence of Adam. We
conjecture that the same convergence can be proved for a large range of β1, but we are not able to
prove that for now (which is why we focus on RMSprop in this work) and leave it to future work.

5 EXPERIMENTS

We conduct experiments of image classification and GAN on MNIST and CIFAR-10 to support our
theoretical findings. The details of GAN experiments are in the appendix, and in this section we
focus on image classification results.
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Figure 2: Trajectories of RMSprop with large or small β2 on the loss surface. Two trajectories start from the
same initialization and are trained on the same dataset MNIST, but have very different behavior. We calculate the
hyper-plane spanned by the starting point of two trajectories and their respective ending points, and then project
two trajectories onto this plane. The large-β2-trajectory converges to minima, while the small-β2-trajectory
diverges. The difference between these two trajectories suggests a phase transition for β2 in (0.8, 0.99).

We visualize the optimization trajectory when training on MNIST for small β2 = 0.8 and large
β2 = 0.99 in Figure 2. We observe different behaviors: while the trajectory of β2 = 0.8 moves away
from the bottom of the basin, for larger β2 the trajectory stays in the level set and has decreasing loss
values.

In the CIFAR experiments, we use ResNet-18. We choose β2 = 0.8, 0.9, 0.95, 0.99 respectively. With
different batch sizes 8, 16, 32, we run each algorithm for 100 epochs without explicit regularization.
Table 2 shows two phenomena: first, for fixed batch size, there is a transition point of β2 above
which the accuracy suddenly jumps; second, the transition point is closer to 1 as the batch size
decreases. More specifically, for batch size 8, the transition point lies in [0.95, 0.99]: the average
training accuracy is 44.53% for β2 = 0.95, but jumps to 99.74% for for β2 = 0.99. For batch size
16, the transition point lies in [0.9, 0.95]: the average training accuracy is 67.27% for β2 = 0.9, but
jumps to 96.38% for β2 = 0.95. For batch size 16, the transition point lies in [0.8, 0.9]. As batch size
increases from 8 to 16 and then 32, then transition point decreases from 0.99 to 0.95 and then to 0.9.

These two phenomena are consistent with our theory. The first phenomenon can be explained by
Theorem 4.3 and Corollary 4.1 which state that for large enough β2, RMSprop converges. The second
phenomenon can be explained by Theorem 4.3 as well: as explained in Remark 2, the required β2

decreases as the number of mini-batches n decreases, i.e., the batch size increases.

Table 2: Performance of Adam with different β2 with ResNet-18 on CIFAR-10 (100 epochs)

batch size measure β2=0.8 β2=0.9 β2=0.95 β2=0.99 SGD
8 train acc. 10.00±0.00 10.00±0.00 44.53±32.09 99.74±0.06 100.00±0.00

test acc. 10.00±0.00 10.00±0.00 42.02±29.59 70.23±0.26 70.37±0.45
16 train acc. 28.70±32.39 67.27± 8.98 96.38±1.35 99.75±0.05 99.98±0.02

test acc. 27.64±30.55 62.71±7.71 70.11±0.90 70.43±0.15 69.45±0.38
32 train acc. 66.93±3.07 96.72±1.36 99.17±0.42 99.80±0.14 81.50±1.57

test acc. 62.99±2.13 70.05±1.40 71.92±0.50 71.34±0.60 68.92±1.12

Next, we demonstrate that the convergence speed of SGD is much slower than Adam under the same
experiment setting as Table 2. We compare the average training and test accuracy at the 10-th epoch.
As Table 3 shows, the accuracy of Adam is much higher than SGD at the 10-th epoch.

All codes generating experimental results are available on the Github repository https://github.
com/soundsinteresting/RMSprop
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Table 3: Training and test accuracy at the 10-th epoch

batch size measure β2=0.99 SGD
16 train acc. 95.41±0.81 65.89±1.28

test acc. 70.02±0.17 62.62±1.26
32 train acc. 97.92±0.23 57.87±0.70

test acc. 70.44±0.19 56.18±0.86

6 CONCLUSION

In this work, we study the convergence behavior of RMSprop by taking a closer look at the hyper-
parameters. Specifically, for realizable problems, we provide a data-dependent threshold of β2

above which we prove the convergence of randomly shuffled RMSprop and small β1 Adam without
bounded gradient assumption. We also show that RMSprop converge into a bounded region under
non-realizable settings. These findings reveal that there is a critical threshold of β2 regarding the
convergence behavior of RMSprop, and the phase transition is supported by the numerical experiments.
Our results provide basic guidelines for tuning hyper-parameters in practice.
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