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ABSTRACT

Open-Vocabulary Object Detection (OVOD) plays a critical role in autonomous
driving and human-computer interaction by enabling perception beyond closed-
set categories. However, current approaches predominantly rely on multimodal
fusion, facing dual limitations: multimodal fusion methods incur heavy computa-
tional overhead from text encoders, while task-coupled designs compromise be-
tween detection precision and open-world generalization. To address these chal-
lenges, we propose Decoupled Cognition DETR, a vision framework that fea-
tures a three-stage cognitive distillation mechanism: Dynamic Hierarchical Con-
cept Pool constructs self-evolving concept prototypes using LLaVA-generated re-
gion descriptions filtered by CLIP alignment, aiming to replace costly text en-
coders and reduce computational overhead; Hierarchical Knowledge Distillation
decouples visual-semantic space mapping via prototype-centric projection, avoid-
ing task coupling to enhance open-world generalization; Parametric Decoupling
Training coordinates localization and cognition through dual-stream gradient iso-
lation, further optimizing detection precision. Extensive experiments on the com-
mon OVOD evaluation protocol demonstrated that DeCo-DETR achieves state-
of-the-art performance compared to existing OVOD methods. It provides a new
paradigm for extending OVOD to more real-world applications.

1 INTRODUCTION

Open-vocabulary object detection (OVOD) transcends the category limitations of traditional object
detectors by enabling the localization and classification of both seen and unseen object classes during
inference (Minderer et al., 2023; Zareian et al., 2021a; Gu et al., 2021a). This capability for real-time
novelty recognition is essential for a wide range of real-world applications, including autonomous
driving (Cao et al., 2023), biometric security (Bansal et al., 2021), and human–computer interac-
tion (Zou et al., 2023). Early OVOD approaches leverage CLIP-style vision–language alignment to
extract textual cues for recognizing unseen categories (Radford et al., 2021a). More recently, the
emergence of large language models (LLMs) has significantly enhanced detector generalization by
providing richer and more nuanced semantic supervision (Xu et al., 2023; Fu et al., 2025). Despite
their effectiveness, methods that rely on prompt engineering to harness LLM-derived supervision
often encounter substantial efficiency bottlenecks. To address this challenge and support flexible de-
ployment across diverse scenarios, knowledge distillation has gained traction as a viable alternative.
By transferring knowledge from large-scale models into compact detectors, these approaches enable
accurate recognition of a wide range of novel object classes while significantly reducing computa-
tional costs. Yet existing distillation methods remain coupled with textual encoders, leaving latency
and generalization trade-offs unresolved.

Given their ability to effectively leverage the rapidly advancing capabilities of large language mod-
els, knowledge distillation methods have quickly emerged as a mainstream approach in open-
vocabulary object detection (OVOD) to improve the inference speed of the model. ViLD (Gu et al.,
2021a) established the foundational paradigm by first employing a vision–language model to extract
text embeddings of category names as classifiers, and subsequently aligning these textual represen-
tations with visual embeddings from the image encoder via knowledge distillation. Building upon
this framework, a series of follow-up studies (e.g., DK-DETR (Li et al., 2023), DetCLIP (Yao et al.,
2022a)) have further refined the visual–textual alignment strategy to improve detection of novel
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categories, despite their strong performance on standard benchmarks, these methods encounter two
critical challenges in more complex scenarios.

First, heavy computational overhead arises from the reliance on large text encoders or LLM-based
prompt engineering during inference to generate textual cues for novel classes, hindering real-time
deployment(Liu et al., 2023c). Second, a task compromise inherent in multimodal fusion designs of-
ten forces a difficult balance between achieving high closed-set detection precision and robust open-
world generalization capability Zareian et al. (2021b); Gu et al. (2021b). This trade-off stems from
the optimization conflict where aggressively tuning features for seen categories can bias the model,
thereby degrading the vision–language alignment required for recognizing unseen classes (Zhang
et al., 2024; Fang et al., 2025). Consequently, existing methods often sacrifice performance on one
front to optimize the other.

To address the first challenge of computational bottlenecks caused by online text encoders, we
propose the Dynamic Hierarchical Concept Pool (DHCP). Instead of repeatedly invoking heavy
text encoders for each query, DHCP constructs a self-evolving library of visual-text prototypes that
acts as a lightweight proxy for semantic knowledge. This process involves three stages: utilizing the
Region Proposal Network (RPN) and LLaVA(Liu et al., 2024a; 2023a;b) to generate rich region-text
pairs, filtering them via CLIP-based cross-modal alignment, and employing spectral clustering (K-
Means(Ikotun et al., 2023) for coarse concepts and DBSCAN(Deng, 2020) for fine details) to build
hierarchical anchors. Crucially, to ensure these cached prototypes remain robust to distribution
shifts without costly re-encoding, we introduce momentum updates with attention weighting. This
mechanism drives the online refinement of the concept pool, effectively decoupling the detector
from the text encoder during inference and significantly reducing latency.

To tackle the second challenge of task compromise between closed-set precision and open-world
generalization, we introduce a decoupled cognition framework consisting of two synergistic mech-
anisms. First, the Hierarchical Knowledge Distillation (Hi-Know DPA) bridges the visual-
semantic gap. It employs trainable projection networks to align detector features with CLIP’s em-
bedding space, using cosine similarity to generate semantic-enhanced queries that preserve spa-
tial structure. Second, to fundamentally resolve the optimization conflict between localization and
alignment, we propose Parametric Decoupling Training (PD-DuGi). This strategy enforces dual-
stream gradient isolation via differentiable stop-gradient operators, which confine detection loss
to localization parameters and semantic alignment loss to cognition networks. A cosine-annealed
weighting strategy further coordinates these objectives, prioritizing detection stability in early train-
ing before progressively enhancing semantic alignment, thus achieving both high precision and ro-
bust generalization.)

The contributions can be summarized as follows:

• We reveal two critical flaws in existing open-vocabulary detection: 1) Heavy reliance on
text encoders and LLM prompting causes high inference latency; 2) Multimodal fusion
forces painful trade-offs between closed-set precision (e.g., 57.1% AP50 for base classes
on OV-COCO) and open-world generalization (29.4% AP50 for novel classes).

• To address these issues, we propose the DeCo-DETR framework: It eliminates text encoder
dependency via the Dynamic Hierarchical Concept Pool (DHCP), solving computational
bottlenecks in multimodal fusion during inference time; and enhances generalization in
open scenarios through Hierarchical Knowledge Distillation (Hi-Know DPA) and Para-
metric Decoupling Training (PD-DuGi).

• We conduct extensive experiments on multiple open-vocabulary detection benchmarks in-
cluding OV-COCO and OV-LVIS. DeCo-DETR achieves advanced performance on all
benchmarks, delivering significant improvements of +3.1 to 5.8 points in novel class APs
while maintaining efficient 135ms inference. These results demonstrate DeCo’s superior
performance and generalization capabilities. Comprehensive ablation studies further vali-
date the advantages of our novel design, providing transformative insights for the DETR-
based detection paradigm and establishing a new foundation for future open-vocabulary
research.
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2 RELATED WORK

Open-vocabulary Object Detection (OVOD). OVOD, formalized in (Zareian et al., 2021a),
uses image–caption data and base-class annotations to detect arbitrary categories, outperforming
both zero-shot and weakly supervised methods (Cai et al., 2022b; Yao et al., 2021). Advances
in vision–language models (VLMs) pre-trained on web-scale data (Radford et al., 2021a; Jia
et al., 2021) significantly improved OVOD. One approach leverages VLM knowledge to generate
pseudo-labels for novel classes (Zhou et al., 2022b; Liu et al., 2024b), using external sources or
existing datasets like LVIS (Gupta et al., 2019), VL-PLM (Zhao et al., 2022a). Another refines
VLM interaction through learnable prompts (DetPro (Khattak et al., 2024), PromptDet (Feng et al.,
2022b)), surpassing static CLIP templates. However, these strategies incur high computational costs
and incomplete knowledge transfer (Zhu & Chen, 2024). Knowledge distillation has efficiently
emerged to embed rich open-vocabulary semantics into lightweight detectors (Rasheed et al.,
2022a; Ma et al., 2022a; Gu et al., 2022b).
Knowledge Distillation in VLMs. Knowledge distillation (KD) effectively transfers capabilities
from large teacher models into compact student models (Xu et al., 2024), addressing the growing
demand for efficient vision–language functionality on resource-constrained devices (Laroudie et al.,
2023). For instance, TinyCLIP (Wu et al., 2023a) significantly boosts open-vocabulary performance
through advanced affinity mimicking and weight inheritance derived from CLIP. Subsequent
research further expands specialized KD strategies to lightweight detectors, enabling practical
deployment of VLMs in real-world scenarios while preserving their generalization capabilities (Pei
et al., 2023; Li et al., 2024b).

Knowledge Distillation for OVOD. KD is highly effective beyond tasks like semantic segmenta-
tion (Ji et al., 2025) and visual reasoning (Aditya et al., 2019), showing significant impact in OVOD.
ViLD (Gu et al., 2021a) successfully distills a classification-based VLM into a two-stage detector,
enhancing generalization. DK-DETR (Li et al., 2023) further improves OVOD precision by distilling
VLM knowledge into DETR which is a transformer-based architecture specifically designed for ob-
ject detection (Carion et al., 2020). architectures. KD has thus become mainstream in OVOD (Wang
et al., 2023b; Wu et al., 2023b; Rasheed et al., 2022b). However, reliance on textual cues from large
models limits generalization and efficiency. CAKE (Ma et al., 2025a) mitigates textual dependence
but struggles with fine-grained detection. Our proposed DeCo-DETR addresses these gaps by im-
plementing a purely visual mechanism, which enhances the visual understanding without external
multimodal dependencies.

3 METHOD

3.1 FRAMEWORK OVERVIEW

Current multimodal fusion methods suffer from high computational overhead and task compromise.
To mitigate this issue, we propose DeCo-DETR. DeCo-DETR aims to efficiently transfer open-set
knowledge from LVLMs to a compact detector without text encoders at the test time. The over-
all framework is illustrated in Figure 1. DeCo-DETR mainly consists of the following modules:
Dynamic Hierarchical Concept Pool (DHCP): Constructs self-evolving concept prototypes using
LLaVA-generated region descriptions filtered by CLIP alignment, replacing costly text encoders. Its
two-level hierarchy simulates human cognition from coarse-grained (e.g., ”vehicle”) to fine-grained
(e.g., ”hexagonal wheels”) granularity. Hierarchical Knowledge Distillation (Hi-Know DPA): De-
couples visual-semantic space mapping via prototype-centric projection, aligning CLIP visual proto-
types while disentangling semantic spaces of similar categories. Parametric Decoupling Training
(PD-DuGi): Coordinates localization and cognition tasks through dual-stream gradient isolation.
During inference, the dynamic prototype pool provides semantic knowledge while the dual-stream
decoder processes spatial localization and semantic alignment in parallel.

3.2 DYNAMIC HIERARCHICAL CONCEPT POOL

To model hierarchical semantic spaces for open-vocabulary detection, we propose a Self-Evolving
Concept Pool framework (DHCP), which dynamically constructs and refines vision-language joint
spaces via cross-modal alignment and prototype distillation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

RPN
Regions Ri

LLaVA
Generation(ti)

CLIP
Text Enc.

Alignment Filter

CLIP
Visual Enc.

Hierarchical Clustering

Object
Queries Q

MLP
h� (qn)

Attention-Aware
Aggregation

∑wn,jAj

Concept
Pool

Prototypes A

Enhanced
Query

Localization stream
BBox & Objectness

Cognition stream
(PDT Network g�)

ℒ���

�(�)ℒ�����

Backbone
(ResNet/
ViT/Swin)

Teacher Target
(Frozen CLIP)

Dynamic Hierarchical Concept Pool (DHCP)

Hierarchical Knowledge Distillation (Hi-Know DPA)

K-Means DBSCAN

Coarse Fine

Momentum Update

Encoder

Gradient Isolation

This Enhanced Query 
contains text and visual 

information

Visual Embedding

Text Embedding

Trainable

Frozen

Parametric Decoupling Training (PD-DuGi)

Figure 1: Overview of the DeCo-DETR framework. (a) Dynamic Hierarchical Concept Pool
(DHCP): Constructs self-evolving concept prototypes (covering coarse-grained e.g., “vehicle” to
fine-grained e.g., “hexagonal wheels”) using LLaVA-generated region descriptions filtered by CLIP
feature alignment, aiming to replace costly text encoders. (b) Hierarchical Knowledge Distilla-
tion (Hi-Know DPA): Decouples visual-semantic space mapping via prototype-centric projection,
aligning CLIP visual prototypes while disentangling semantic spaces of similar categories. (c) De-
coupling Training (PD-DuGi): Coordinates localization and cognition tasks through dual-stream
(Obj Layer/Reg Layer for localization, Feature Alignment for cognition) gradient isolation. During
inference, the dynamic prototype pool provides semantic knowledge while the dual-stream decoder
processes spatial localization (via BoxDelta and Objectness) and semantic alignment in parallel.

Cross-Modal Feature Alignment: To build the concept pool, we extract multi-scale regions {Ri}Ni=1
from the training images using a pretrained backbone (e.g., ResNet) and Region Proposal Network
(RPN). Each region is then processed by LLaVA to generate free-form textual descriptions ti =
LLaVA(Ri). To eliminate modality gaps, we project both the image regions and their corresponding
text descriptions into a joint embedding space using CLIP’s dual encoders:

vi = f img
CLIP(Ri), ui = f txt

CLIP(ti), (1)

with high-confidence aligned pairs selected via cosine similarity thresholding initialized to be 0.7:

T = {(Ri, ti) | cos(vi, ui) > δ}. (2)

Hierarchical Prototype Distillation: For aligned text embeddings {ej}Kj=1, we design a spec-
tral clustering-based hierarchical compression algorithm: Coarse-grained Anchors: Global K-
Means(Ikotun et al., 2023) clustering (with k = M1 = 1203) extracts base prototypes (e.g., “vehi-
cle”, “texture pattern”) from the aligned text embeddings {ej}, capturing broad semantic concepts
and ensuring global connectivity. Fine-grained Units: Local DBSCAN(Deng, 2020) clustering
(with ϵ = 0.5 and min samples = 5) is applied to the embeddings within each coarse cluster. This
further partitions them into an average of ∼ 4 fine-grained units per cluster (e.g., “sedan”, “hor-
izontal stripes”), resulting in a total of M2 = 4800 fine-grained prototypes. Together, they form
a multi-scale prototype matrix A ∈ Rd×M where M = M1 + M2 and d is the CLIP embedding
dimension. Details regarding the shared nature of M and the mapping relationship can be found in
the Appendix A.4.
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Algorithm 1 Dynamic Hierarchical Concept Pool (DHCP)
Require: Training images D, Pretrained Backbone & RPN, LLaVA, CLIP (frozen).
Require: Hyperparameters: Similarity threshold δ, Momentum γ, Temperature τ .
Ensure: Hierarchical Prototype Matrix A ∈ Rd×M .

1: Stage 1: Initialization (Offline)
2: Initialize alignment set T ← ∅
3: for each image I ∈ D do
4: Extract regions {Ri} via Backbone and RPN
5: Generate descriptions: ti ← LLaVA(Ri)
6: Extract embeddings: vi ← CLIPimg(Ri), ui ← CLIPtxt(ti)
7: Filter pairs: if cos(vi, ui) > δ then T ← T ∪ {ui}
8: end for
9: // Hierarchical Clustering

10: Ccoarse ← K-Means(T , k = M1) {e.g., 1203 coarse concepts}
11: Initialize A← ∅
12: for each cluster c ∈ Ccoarse do
13: Cfine ← DBSCAN {Fine-grained discovery}
14: Append centroids of Cfine to A
15: end for
16: Stage 2: Online Update (During Training)
17: while training do
18: Receive batch aligned text embeddings {ei} from current iteration
19: Compute similarity matrix: Dij =

exp(τ−1 cos(ei,Aj))∑
k exp(τ−1 cos(ei,Ak))

20: Update prototypes with momentum:
21: A← γA+ (1− γ)LayerNorm(

∑
i Dijei)

22: end while

Dynamic Memory Update: To adapt to semantic distribution shifts, we propose an attention-guided
momentum memory update:

Di,j =
exp(τ−1 cos(ei, Aj))∑M
k=1 exp(τ

−1 cos(ei, Ak))
, (3)

Aj ← γAj + (1− γ)LayerNorm

(
K∑
i=1

Di,jei

)
, (4)

where τ is a learnable temperature parameter, γ ∈ [0, 1] controls memory decay rate, and Layer-
Norm ensures numerical stability. This mechanism enables continuous semantic evolution through
online adaptation, the full details can be found in Algorithm 1.

3.3 HIERARCHICAL KNOWLEDGE DISTILLATION

DHCP provides a bank of visual prototypes. To bridge the gap between visual features and semantic
embeddings, we propose Hierarchical Knowledge Distillation (Hi-Know DPA), which decouples
visual-semantic mapping through trainable projection networks aligned with hierarchical concept
prototypes. This mechanism operates through two synergistic phases:

Phase I: Cross-Modal Feature Projection: Given a backbone feature map Φ(I) ∈ RH×W×C , the
transformer decoder produces object queries Q = {qn}Nn=1 via multi-head attention mechanisms.
To establish semantic grounding, we introduce a trainable projection network hθ : RC → Rd, which
aligns visual features to the CLIP embedding space:

q̂n = hθ(qn), ∀qn ∈ Q, (5)

where d denotes the joint embedding dimension, and qn denotes a decoder query token. This para-
metric mapping enables explicit modality alignment while preserving spatial-semantic relationships.

5
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Phase II: Attention-Aware Prototype Aggregation: To exploit the hierarchical concept prototypes
(A ∈ Rd×M ) multi-granularity semantics, we compute prototype relevance using temperature-
scaled cosine similarity:

wn,j =
exp(α−1 cos(q̂n, Aj))∑M
k=1 exp(α

−1 cos(q̂n, Ak))
, (6)

where α is a learnable temperature parameter controlling distribution sharpness. The resultant
semantic-enhanced query rn is computed as:

rn =
∑M

j=1
wn,jAj + MLP(q̂n), (7)

where the residual connection with MLP-processed original features ensures stability during early
training phases. This computational design emulates human perceptual mechanisms—first activat-
ing coarse semantic anchors, then refining through detailed visual evidence.

Optimization Strategy: The entire framework is trained end-to-end using a composite loss:

L = Ldet + λKL

N∑
n=1

KL(wn∥w̃n) + λalignLalign, (8)

where Ldet denotes the standard DETR loss (Carion et al., 2020), w̃n denotes the target attention
distribution derived from the frozen CLIP teacher model’s cross-modal matching between image
features and text prototypes P , where P ∈ RM×d contains CLIP text embeddings of category names
and LLaVA-generated phrases. wn denotes the prototype assignment weight vector generated by
the student model (DeCo-DETR). The weighting coefficients λKL and λalign follow cosine annealing
schedules to prioritize detection stability initially and semantic alignment subsequently, the full
details can be found in Algorithm 2.

Algorithm 2 Hierarchical Knowledge Distillation (Hi-Know DPA)
Require: Training set D, image I
Require: Student: Backbone, proj. net hθ, prototypes A ∈ Rd×M

Require: Teacher: Pretrained CLIP (frozen), text prototypes P ∈ RM×d (from category names +
LLaVA phrases)

1: while not converged do
2: Sample batch B ⊂ D
3: for each I ∈ B do
4: Φ(I)← Backbone(I) {Feature extraction}
5: Q ← Decoder(Φ(I)) {Generate object queries}
6: {q̂n} ← hθ(Q) {Project features}
7: wn ← Softmax(α−1 cos(q̂n, A))
8: rn ←

∑
j wn,jAj + MLP(q̂n) {Semantic enhancement}

9: w̃n ← Softmax(τ−1 cos(q̂n, P )) {Target distribution from teacher}
10: L ← Ldet + λKL

∑
n KL(wn∥w̃n) + λalignLalign

11: end for
12: Update student parameters θ using L
13: Adjust λKL, λalign {Cosine annealing}
14: end while

3.4 PARAMETRIC DECOUPLING TRAINING

To resolve potential representation conflicts between base detection and open-vocabulary alignment,
we propose a Parametric Decoupling Transformer (PDT) framework based on structured feature
space orthogonalization.

Given the semantically enhanced query features rn ∈ Rd, the PDT network gϕ : Rd → R|Cbase∪Cnovel|

generates pseudo-semantic probability distributions through hierarchical mapping:

t̃n = Softmax(gϕ(rn)), (9)

6
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Algorithm 3 Parametric Decoupling Training (PD-DuGi)
Require: Image I , Ground Truth Y , Student Model (Backbone, Decoder, PDT), Teacher CLIP.
Require: Learning rate scheduler λalign(t).
Ensure: Optimized model parameters θ.

1: Forward Pass:
2: Φ(I)← Backbone(I)
3: Q = {qn} ← Decoder(Φ(I)) {Object queries}
4: Stream 1: Localization (Detection)
5: Ypred ← DetectionHead(qn)
6: Ldet ← LossHungarian(Ypred, Y )
7: // Gradients from Ldet update Backbone & Decoder
8: Stream 2: Cognition (Semantic Alignment)
9: q′n ← StopGradient(qn) {Isolate gradients from alignment loss}

10: q̂n ← hθ(q
′
n) {Project to CLIP space}

11: rn ← PrototypeAggregation(q̂n, A) {See Sec 3.3}
12: t̃n ← Softmax(PDT(rn)) {Parametric Decoupling Transformer}
13: Tteacher ← CLIPteacher(I, Prompts)
14: Lalign ← CrossEntropy(t̃n, Tteacher)
15: // Gradients from Lalign update only PDT & Projection hθ

16: Optimization:
17: Get current annealing weight: λ← λalign(t) {Cosine schedule}
18: Ltotal ← Ldet + λ · Lalign

19: Update parameters θ ← Optimizer(∇Ltotal)

where gϕ employs multi-layer cross-attention blocks to model prototype-category correlations. To
suppress inter-modal interference, the Dual-stream Gradient Isolation Mechanism is designed: The
detection loss Ldet propagates solely to the DETR encoder-decoder parameters, while the semantic
alignment loss

Lalign = −
∑
n

t̃⊤n log(LinearHead(q̂n)), (10)

updates only the PDT parameters ϕ and the classifier head parameters. We implement explicit gra-
dient stopping: gradients from Lalign are prevented from flowing to the detection backbone and
decoder, and vice versa for Ldet. This architecture ensures: Knowledge Preservation: Cartesian
product mapping V ⊕S → Y between visual (V) and semantic (S) manifolds Dynamic Adaptabil-
ity: Online prototype clustering enables extrapolation to unseen semantic spaces

The unified objective function combines both streams through curriculum learning:

Ltotal = Ldet + λalign(t)Lalign. (11)

where λalign(t) follows a cosine annealing schedule (increasing from 0 to 1) to prioritize detection
stability initially and strengthen semantic alignment as training progresses. Inference requires only
single-pass forward computation without post-processing, the full details can be found in Algorithm
3.

4 EXPERIMENT

4.1 DATASETS AND EVALUATION METRICS

Following standard protocols in the OVOD literature (Jin et al., 2024; Zhou et al., 2022b; Ma
et al., 2025a), we evaluate the effectiveness of DeCo-DETR on two widely adopted benchmarks:
OV-COCO (Bansal et al., 2018b) and OV-LVIS (Gu et al., 2021c). These benchmarks are open-
vocabulary variants derived from the popular MSCOCO (Lin et al., 2015) and LVIS datasets, re-
spectively. OV-COCO utilizes 118,000 images from MSCOCO, designating 48 common categories
as base classes and holding out 17 categories as novel classes for zero-shot generalization. OV-LVIS
reuses the same image set but applies LVIS annotations; among 1,203 categories, the 866 frequent
and common categories form the base set, while the 337 rare categories are treated as novel. This
long-tail distribution better reflects real-world category imbalance and presents a greater challenge

7
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for OVOD methods. For OV-COCO, we report AP 50novel—the mean Average Precision (mAP)
at an IoU threshold of 0.5 for novel categories—as the primary metric. Additionally, we provide
performance on base categories (AP 50base) and overall performance across all categories (AP 50).
For OV-LVIS, we report APr, APc, and APf—denoting mAP on rare, common, and frequent cat-
egories, respectively—along with the overall AP , all computed using standard box-based mAP.
About the V-OVD, G-OVD, C-OVD and WS-OVD, more details can be found in Appendix A.5.

Table 1: OV-COCO comparison (AP50) across a wide range of open-vocabulary object detection
(OVOD) methods.

Benchmark Method APnovel
50 APbase

50 AP50

V-OVD

ViLD (Gu et al., 2021a) 29.4 52.6 48.9
OADP (Wang et al., 2023c) 30.0 53.3 47.2
DK-DETR (Li et al., 2023) 32.3 61.1 53.6
BARON (Wu et al., 2023c) 33.1 54.8 49.1
LBP (Li et al., 2024a) 37.8 58.7 53.2
OC-OVD (Bangalath et al., 2022) 36.6 54.0 49.4
GOAT (Wang et al., 2023a) 36.4 53.0 48.6
CAKE (Ma et al., 2025b) 38.2 58.0 52.8
DeCo-DETR (Ours) 41.3 56.7 53.1

G-OVD

OV-DETR (Zang et al., 2022) 29.4 61.0 52.7
VL-PLM (Zhao et al., 2022a) 32.3 54.0 48.3
OADP (Wang et al., 2023c) 35.6 55.8 50.5
LP-OVOD (Pham, 2024) 40.5 60.5 55.2
CLIM (Wu et al., 2024) 25.7 42.5 -
CCKT-Det(Zhang et al., 2025) - - 53.2
RALF (Kim et al., 2024) 41.3 54.3 50.9
CAKE (Ma et al., 2025b) 39.1 58.1 53.1
DeCo-DETR (Ours) 47.1 60.2 55.0

C-OVD

RegionCLIP (Zhong et al., 2022) 26.8 54.8 47.5
CoDet (Ma et al., 2023) 30.6 52.3 46.6
BARON (Wu et al., 2023c) 35.8 58.2 52.3
BIRDet (Zeng et al., 2024) 46.2 63.0 58.6
CAKE (Ma et al., 2025b) 41.3 60.2 55.3
DeCo-DETR (Ours) 44.9 59.8 56.3

WS-OVD

Detic (Zhou et al., 2022a) 28.4 53.8 47.2
GOAT (Wang et al., 2023a) 36.4 53.0 48.6
OC-OVD (Bangalath et al., 2022) 36.6 54.0 49.4
CAKE (Ma et al., 2025b) 41.8 60.6 55.7
DeCo-DETR (Ours) 45.5 60.5 57.1

4.2 IMPLEMENTATION DETAILS

To validate the effectiveness of our method, we build the model upon DETR with ResNet-50, ViT-
B/16, and Swin-T backbones. The Dynamic Hierarchical Concept Pool (DHCP) comprises 1,203
coarse-grained and 4,800 fine-grained prototypes, which are iteratively updated via self-supervised
contrastive learning. The dual-stream decoder consists of six Transformer layers, each with eight
attention heads, and employs cosine-annealed fusion weights λ(t) to balance the classification and
regression objectives. We adopt the AdamW optimizer with an initial learning rate of 2 × 10−4,
training for 50 epochs with a 10% linear warm-up. Data augmentation combines RandAugment
(applying two random transformations with magnitude 5–10) and Large-Scale Jittering (LSJ) with
multi-scale inputs, where the short side is resized to 480 800 pixels. The batch size is fixed at 64 (8
samples per GPU across 8×NVIDIA A100). The composite loss is defined as L = Ldet +λ(t)λalign,
with λ(t) annealed from 0.5 to 0.1 over training. The Dynamic Hierarchical Concept Pool is updated
online with momentum γ = 0.99, and the temperature τ = 0.07 is used to sharpen similarity
distributions. Final detection boxes are produced directly from 2,000 decoder queries, avoiding
RPN-based proposal selection. During inference, all experiments are conducted on a single NVIDIA
RTX 4090 (24GB), achieving a throughput of 135 ms.

4.3 MAIN RESULTS

Benchmark. DeCo-DETR achieves advanced zero-shot detection performance on both OV-COCO
and OV-LVIS benchmarks. As shown in Table 1, DeCo-DETR attains 41.3% AP50

novel on OV-
COCO, surpassing the strongest baseline LBP (37.8%) by +3.5 points, while the overall AP50
(56.7%) outperforms all competitors (e.g., 53.6% for DK-DETR). On the challenging long-tailed
OV-LVIS dataset (Table 2), DeCo-DETR achieves 29.4% APr for rare classes, and sets a new
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Table 2: OV-LVIS comparison (AP ) across multiple open-vocabulary object detection (OVOD)
methods. Our DeCo-DETR surpasses all baselines by a significant margin in rare, common, and
frequent categories.

Method APr APc APf AP
DetPro (Du et al., 2022) 20.8 27.8 32.4 28.4
VLDet (Lin et al., 2022) 21.7 29.8 34.3 30.1
OC-OVD (Bangalath et al., 2022) 21.1 25.0 29.1 25.9
OADP (Wang et al., 2023c) 21.9 28.4 32.0 28.7
CORA (Wu et al., 2023d) 22.2 32.0 40.2 33.5
BARON (Wu et al., 2023c) 23.2 29.3 32.5 29.5
CoDet (Ma et al., 2023) 23.4 30.0 34.6 30.7
LBP (Li et al., 2024a) 24.1 29.5 32.8 29.9
LP-OVOD (Pham, 2024) 19.3 26.1 29.4 26.2
Mamba (Wang et al., 2025) 29.3 34.2 36.8 35.0
BIRDet (Zeng et al., 2024) 26.0 21.7 29.5 25.5
RALF (Kim et al., 2024) 21.9 26.2 29.1 26.6
DeCo-DETR (Ours) 29.4 33.1 38.9 35.2

Table 3: Inference latency, GFLOPs, and parameter size across three backbone architectures
(ResNet-50, ViT, and Swin). Our proposed DeCo-DETR achieves competitive efficiency while
maintaining compact model size.

Method Latency (ms/img) GFLOPs Params (M)
R50 ViT Swin R50 ViT Swin R50 ViT Swin

Deformable DETR (Zhu et al., 2020b) 120 210 220 220 320 325 41 87 95
DetPro (Du et al., 2022) 140 250 260 240 340 345 45 91 100
UP-DETR (Dai et al., 2021) 115 205 215 215 315 320 40 85 92
DeCo-DETR (Ours) 135 240 250 235 335 340 44 90 97

record with an overall AP of 35.2%. These results demonstrate DeCo-DETR’s capability to mitigate
classification bias in long-tailed distributions while maintaining high accuracy for common and
frequent classes.

DeCo-DETR balances accuracy and efficiency. With ResNet-50 backbone (Table 3), inference la-
tency increases by only 5-15ms, computation (GFLOPs) by 5%, and parameters by 3% (44M
vs. 41M). Compared to ViLD (140ms/img) and DetPro (250ms/img), DeCo-DETR (135ms/img)
achieves accuracy-efficiency trade-offs.

4.4 ABLATION STUDY

In this section, we adopt DETR as the base model. Table 4 presents an ablation study validating
the contribution of each component: Dynamic Hierarchical Concept Pool. Incorporating multi-
granular prototypes (1,203 coarse + 4,800 fine) improves AP50

novel by 2.5% compared to using a
single-level prototype pool. This result underscores the effectiveness of hierarchical semantic ab-
straction: coarse-level prototypes capture broad inter-class distinctions, while fine-level prototypes
model subtle intra-class variations. By jointly leveraging these multiscale semantic features, the
model is better positioned to generalize to novel categories under limited supervision, leading to a
notable performance gain.

PD-DuGi. The integration of the PD-DuGi mechanism yields a comprehensive improvement across
all metrics, validating the necessity of resolving task conflicts in open-vocabulary detection. The
introduction of dual-stream gradient isolation boosts APnovel

50 from 36.6% to 37.5% (+0.9%) and,
notably, increases AP base

50 from 54.0% to 55.1% (+1.1%). This simultaneous gain suggests that shar-
ing a unified feature space for both localization and semantic alignment often leads to optimization
interference, where the gradients for semantic adaptation may degrade the spatial features required
for precise bounding box regression. PD-DuGi effectively mitigates this issue by explicitly isolating
the optimization paths; it allows the cognition branch to learn robust semantic representations for
novel categories without distorting the structural features essential for base category localization,
thereby achieving a superior trade-off between open-world generalization and closed-set precision.

Cosine Annealing Weights. Dynamically balancing detection and alignment losses using a cosine
annealing schedule improves AP50 by an additional 1.6%. The time-dependent coefficient λ(t)
initially emphasizes the alignment loss to encourage robust feature embedding early in training, and
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gradually shifts focus toward the detection loss to refine localization and classification boundaries.
This smooth transition alleviates potential conflicts between the two objectives, promoting more
stable convergence and improved detection accuracy on novel categories.

Table 4: Extended Ablation Study.
Configuration APnovel APbase AP50

1. Baseline only 30.4 52.6 46.8
2. + Hierarchical DHCP 36.6 54.0 49.4
3. + PD-DuGi (Gradient Isolation) 37.5 55.1 50.5
4. + Cosine λ(t) (Full Model) 38.2 55.5 51.0

Efficiency Analysis. Table 6 presents a comprehensive comparison of inference latency and de-
tection performance. Compared to fusion-based methods like Grounding DINO, which rely on
computationally heavy text encoders (e.g., BERT-Base) and suffer from high latency (∼280ms), our
DeCo-DETR eliminates the text encoder dependency during inference. This architectural advantage
results in a significant speedup of approximately 2× (135ms vs. 280ms) while maintaining compet-
itive accuracy (41.3% vs. 42.1% APnovel). Furthermore, among distillation-based and decoupled
methods, DeCo-DETR has good performance, by increasing APnovel to +41.3 points while reduc-
ing latency to 135ms (7.4 FPS). These results demonstrate that DeCo-DETR establishes a superior
efficiency-accuracy trade-off, making it highly suitable for real-time open-vocabulary applications.

Impact of Different VLMs: We further investigate the impact of varying scales of vision-language
models (VLMs) on detection performance (see Table 7). Experimental results indicate that when
using smaller models (e.g., LLaVA-1.5 7B), there is a noticeable limitation on the detection perfor-
mance for novel classes (APnovel

50 ), which is only 30.1%. However, when the model scale increases to
13B or larger (e.g., LLaVA-1.5 13B, LLaVA-NEXT 13B, Qwen2.5-VL 32B), APnovel

50 stabilizes be-
tween 38.2%–38.9%, showing significant improvement over the 7B model. This suggests that once
the model parameter count exceeds a certain threshold (around 13B), further increases in parameters
have a negligible impact on detection accuracy. Therefore, in practical deployment, a moderately
sized VLM can be selected to balance performance and computational cost.

Ablation on Queries and Prototypes. Table 8 investigates the impact of decoder query quantity
(N ) and prototype granularity (M2). Regarding the number of queries, increasing N from 300 to
2000 yields a substantial performance gain of +4.8 APnovel. Thanks to the parallel nature of the
Transformer decoder, this improvement incurs only a marginal latency overhead (∼10ms). Notably,
even with a reduced set of N = 300, our method achieves 36.5% APnovel, significantly outper-
forming previous state-of-the-art methods like ViLD (29.4%). Regarding prototype scale, the fine-
grained units (M2) prove critical for open-vocabulary generalization. Removing them (M2 = 0)
causes a sharp drop of 10.5 points in APnovel, validating the effectiveness of our Dynamic Hierar-
chical Concept Pool (DHCP). Conversely, doubling the fine-grained units to 9600 yields diminishing
returns (+0.2% APnovel) while increasing memory usage and latency, confirming that M2 = 4800
is the optimal configuration.

5 CONCLUSION

In this work, we present DeCo-DETR, a novel open-vocabulary object detection framework. Our
approach introduces DHCP (Dynamic Hierarchical Concept Prototypes) to mine visual prototypes
from DETR’s attention mechanisms, enabling seamless alignment between image features and se-
mantic concepts. A decoupled two-stage training strategy effectively separates detection objec-
tives from semantic learning, minimizing task interference while preserving detection performance.
Experiments demonstrate state-of-the-art zero-shot detection results on LVIS and COCO bench-
marks. Notably, our framework eliminates dependency on text encoders during inference, sig-
nificantly accelerating deployment speed. The proposed architecture establishes a versatile plug-
and-play foundation for open-environment perception. Its modular design readily supports self-
supervised alternatives to CLIP embeddings and enables effortless extension of the DHCP frame-
work to video analysis or 3D perception tasks. By advancing autonomous semantic understanding
in vision systems, DeCo-DETR provides a scalable pathway for next-generation adaptive perception
in real-world applications.
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A APPENDIX

A.1 USE OF LLM

We use LLM to aid or polish writing. Details are described in the paper.

A.2 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
sonal or sensitive data. All datasets used in this paper (e.g., COCO, LVIS) are publicly available and
widely adopted in the research community, and we strictly follow their licenses and intended usage.
The proposed DeCo-DETR framework is designed for academic exploration of open-vocabulary ob-
ject detection. Potential misuse of the model in safety-critical or surveillance scenarios is outside the
scope of this research, and we strongly encourage responsible and ethical use in line with research
integrity principles.

A.3 REPRODUCIBILITY STATEMENT

We make every effort to ensure the reproducibility of our results. Full training details, including
model architectures, hyperparameters, and optimization schedules, are provided in the main paper
and appendix. The experimental settings cover key modules such as Dynamic Hierarchical Con-
cept Pool construction, Hierarchical Knowledge Distillation, and Parametric Decoupling Training,
with clear descriptions of dataset preprocessing and evaluation protocols. Our implementation is
based on PyTorch and standard detection frameworks. To facilitate replication, we will release the
source code, configuration files, and pre-trained models upon publication. All reported results can
be reproduced using the provided settings and supplementary material.

A.4 METHODOLOGY DETAILS

The student prototypes A and teacher prototypes P share the same index dimension M because
they are derived from the same set of multi-modal clusters in the joint CLIP embedding space. This
correspondence is established as follows:

1. Joint Clustering: We perform clustering on the aligned pairs of region visual features and
text embeddings (filtered by CLIP). This partitions the data into M clusters, where each
cluster j ∈ {1, . . . ,M} represents a specific shared semantic concept.

2. Definition of Prototypes: For each cluster j, the Teacher Prototype Pj is defined as the
centroid of the text embeddings in that cluster, while the Student Prototype Aj is initialized
as the centroid of the visual embeddings in the same cluster.

3. Alignment Mechanism: Since Pj and Aj originate from the same multi-modal cluster j,
they are naturally paired. The distillation loss aligns the student’s distribution (calculated
via A) with the teacher’s distribution (calculated via P ), ensuring the student learns the
corresponding semantic structure.

A.5 OVD BENCHMARKS

According to the training data, existing Open-Vocabulary Object Detection (OVD) methods are
summarized into four types of benchmarks: Vanilla OVD (V-OVD), Caption-based OVD (C-OVD),
Generalized OVD (G-OVD), and Weakly Supervised OVD (WS-OVD). All benchmarks rely on
instance-level annotations and large-scale image-text pairs to learn OVD.

For clarity, base categories are defined as those included in the instance-level annotations, while
novel categories are the others.

A.5.1 VANILLA OVD (V-OVD)

V-OVD Cai et al. (2022a); Du et al. (2022); Gu et al. (2022a); Kamath et al. (2021); Li et al. (2022);
Minderer et al. (2022); Yao et al. (2022b); Zhong et al. (2022) is a pure OVD benchmark setting.
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It requires the detector to train only on an object detection dataset with a fixed set of categories.
Information about novel categories is unavailable, but unannotated data is allowed. A common
practice for this benchmark is to learn open vocabulary knowledge from image-text pairs and transfer
the knowledge to detectors through transfer learning or knowledge distillation. V-OVD is similar
to Zero-Shot Detection (ZSD) Bansal et al. (2018a); Rahman et al. (2019); Yan et al. (2022); Zhu
et al. (2020a), except that V-OVD relies on large-scale image-text pairs to acquire open-vocabulary
knowledge.

A.5.2 CAPTION-BASED OVD (C-OVD)

C-OVD Bravo et al. (2022); Gao et al. (2022); Ma et al. (2022b); Zareian et al. (2021c) adds addi-
tional image caption annotations to the V-OVD benchmark. This refers to in-domain captions of the
instance-level annotations (e.g., COCO-Captions Chen et al. (2015)) rather than large-scale image-
text pairs like CC3M Sharma et al. (2018) or CLIP400M Radford et al. (2021b). In-domain captions
enrich annotations and imply a distribution of potential novel categories. C-OVD is expected to
perform better than V-OVD due to slightly more annotations.

A.5.3 GENERALIZED OVD (G-OVD)

G-OVD Feng et al. (2022a); Zang et al. (2022); Zhao et al. (2022b) introduces human priors on novel
categories to the V-OVD benchmark. It assumes that if specific novel categories are likely to appear
during inference, it is beneficial to prepare for them during training. Most existing methods assume
all dataset category names (including novel ones) are known during training. A typical solution
involves generating instance-level pseudo annotations.

A.5.4 WEAKLY SUPERVISED OVD (WS-OVD)

WS-OVD Zhou et al. (2022a) utilizes image-level category labels beyond G-OVD. Similar to
Weakly Supervised Detection (WSD) Bilen & Vedaldi (2016); Ye et al. (2019), image-level labels
reflect the presence of base and novel categories. The annotation cost is significantly higher than the
benchmarks mentioned above, giving WS-OVD methods the greatest potential to push the limits of
OVD.

Table 5: Summary of OVD benchmarks. “Caption”: in-domain captions like COCO-Captions.
“Category Prior”: human priors on novel categories. “Image Label”: image-level category labels.

Benchmark Caption Category Prior Image Label
V-OVD
C-OVD ✓
G-OVD ✓
WS-OVD ✓ ✓ ✓

A.6 ABLATION STUDY

This section contains some tables of ablation experiments.

A.7 LIMITATIONS

Although DeCo-DETR achieves state-of-the-art performance in open-vocabulary object detection,
several limitations remain. First, the construction of the Dynamic Hierarchical Concept Pool
(DHCP) relies on large vision-language models such as LLaVA and CLIP, which may hinder de-
ployment in resource-constrained environments. Second, despite mitigating task conflicts via para-
metric decoupling training, the model’s generalization ability on extreme long-tailed distributions
or fine-grained categories with high similarity still requires further improvement. Additionally, the
current method is primarily designed for static image detection and has not yet been extended to
real-time open-vocabulary detection in video sequences or dynamic scenarios.
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Table 6: Comparison of inference efficiency and open-vocabulary detection performance on COCO.
DeCo-DETR achieves the best trade-off between accuracy and speed.

Method Backbone APnovel Text Enc. Latency (ms) FPS
Fusion-based:
Grounding DINO-T Swin-T 42.1 BERT-Base ∼280 3.5
VL-PLM ResNet-50 32.3 RoBERTa ∼210 4.7

Distillation/Decoupled:
DetPro ResNet-50 29.4 - 250 4.0
CAKE ResNet-50 38.2 - 145 6.9
DeCo-DETR (Ours) ResNet-50 41.3 - 135 7.4

Table 7: Comparison of performance of different models on the OV-COCO dataset

Model APnovel
50 APbase

50

LLaVA-1.5 7B 30.1 52.1
LLaVA-1.5 13B(Ours) 38.2 55.5
LLaVA-NEXT 7B 32.1 53.3
LLaVA-NEXT 13B 38.6 55.8
Qwen2.5-VL 7B 33.1 53.9
Qwen2.5-VL 32B 38.9 55.9

A.8 SOCIAL IMPACT

DeCo-DETR has broad application potential in autonomous driving, human-computer interaction,
and intelligent security systems. By enhancing the model’s ability to recognize unseen categories,
it can improve the adaptability and safety of intelligent systems in open-world environments. How-
ever, we also recognize that efficient object detection technology could be misused for privacy in-
fringement or large-scale surveillance. Therefore, we encourage the research community to adhere
to ethical guidelines, ensure that applications align with social responsibility and legal standards,
and promote the development of transparent, trustworthy, and controllable AI systems.
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Table 8: Ablation study on the number of Decoder Queries (N ) and Fine-grained Prototypes (M2).
The default setting is highlighted in bold.

Configuration Queries (N ) Fine Units (M2) APnovel APbase Latency (ms)
DeCo-DETR 300 4800 36.5 53.8 125
DeCo-DETR 1000 4800 39.1 54.5 130
DeCo-DETR 2000 4800 41.3 55.5 135
DeCo-DETR 2000 0 (Coarse only) 30.8 54.1 131
DeCo-DETR 2000 9600 (Double) 41.5 55.6 142
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