

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DECo-DETR: DECOUPLED COGNITION DETR FOR EFFICIENT OPEN-VOCABULARY OBJECT DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Open-Vocabulary Object Detection (OVOD) plays a critical role in autonomous driving and human-computer interaction by enabling perception beyond closed-set categories. However, current approaches predominantly rely on multimodal fusion, facing dual limitations: multimodal fusion methods incur heavy computational overhead from text encoders, while task-coupled designs compromise between detection precision and open-world generalization. To address these challenges, we propose **Decoupled Cognition DETR**, a vision framework that features a three-stage cognitive distillation mechanism: Dynamic Hierarchical Concept Pool constructs self-evolving concept prototypes using LLaVA-generated region descriptions filtered by CLIP alignment, aiming to replace costly text encoders and reduce computational overhead; Hierarchical Knowledge Distillation decouples visual-semantic space mapping via prototype-centric projection, avoiding task coupling to enhance open-world generalization; Parametric Decoupling Training coordinates localization and cognition through dual-stream gradient isolation, further optimizing detection precision. Extensive experiments on the common OVOD evaluation protocol demonstrated that DeCo-DETR achieves state-of-the-art performance compared to existing OVOD methods. It provides a new paradigm for extending OVOD to more real-world applications.

1 INTRODUCTION

Open-vocabulary object detection (OVOD) transcends the category limitations of traditional object detectors by enabling the localization and classification of both seen and unseen object classes during inference (Minderer et al., 2023; Zareian et al., 2021a; Gu et al., 2021a). This capability for real-time novelty recognition is essential for a wide range of real-world applications, including autonomous driving (Cao et al., 2023), biometric security (Bansal et al., 2021), and human–computer interaction (Zou et al., 2023). Early OVOD approaches leverage CLIP-style vision–language alignment to extract textual cues for recognizing unseen categories (Radford et al., 2021a). **More recently, the emergence of large language models (LLMs) has significantly enhanced detector generalization by providing richer and more nuanced semantic supervision (Xu et al., 2023; Fu et al., 2025).** Despite their effectiveness, methods that rely on prompt engineering to harness LLM-derived supervision often encounter substantial efficiency bottlenecks. To address this challenge and support flexible deployment across diverse scenarios, knowledge distillation has gained traction as a viable alternative. By transferring knowledge from large-scale models into compact detectors, these approaches enable accurate recognition of a wide range of novel object classes while significantly reducing computational costs. Yet existing distillation methods remain coupled with textual encoders, leaving latency and generalization trade-offs unresolved.

Given their ability to effectively leverage the rapidly advancing capabilities of large language models, knowledge distillation methods have quickly emerged as a mainstream approach in open-vocabulary object detection (OVOD) to improve the inference speed of the model. ViLD (Gu et al., 2021a) established the foundational paradigm by first employing a vision–language model to extract text embeddings of category names as classifiers, and subsequently aligning these textual representations with visual embeddings from the image encoder via knowledge distillation. Building upon this framework, a series of follow-up studies (e.g., DK-DETR (Li et al., 2023), DetCLIP (Yao et al., 2022a)) have further refined the visual–textual alignment strategy to improve detection of novel

054 categories, despite their strong performance on standard benchmarks, these methods encounter two
 055 critical challenges in more complex scenarios.
 056

057 First, heavy computational overhead arises from the reliance on large text encoders or LLM-based
 058 prompt engineering during inference to generate textual cues for novel classes, hindering real-time
 059 deployment(Liu et al., 2023c). Second, a task compromise inherent in multimodal fusion designs of-
 060 ten forces a difficult balance between achieving high closed-set detection precision and robust open-
 061 world generalization capability Zareian et al. (2021b); Gu et al. (2021b). This trade-off stems from
 062 the optimization conflict where aggressively tuning features for seen categories can bias the model,
 063 thereby degrading the vision–language alignment required for recognizing unseen classes (Zhang
 064 et al., 2024; Fang et al., 2025). Consequently, existing methods often sacrifice performance on one
 065 front to optimize the other.

066 To address the first challenge of **computational bottlenecks** caused by online text encoders, we
 067 propose the *Dynamic Hierarchical Concept Pool (DHCP)*. Instead of repeatedly invoking heavy
 068 text encoders for each query, DHCP constructs a self-evolving library of visual-text prototypes that
 069 acts as a lightweight proxy for semantic knowledge. This process involves three stages: utilizing the
 070 Region Proposal Network (RPN) and LLaVA(Liu et al., 2024a; 2023a;b) to generate rich region-text
 071 pairs, filtering them via CLIP-based cross-modal alignment, and employing spectral clustering (K-
 072 Means(Ikotun et al., 2023) for coarse concepts and DBSCAN(Deng, 2020) for fine details) to build
 073 hierarchical anchors. Crucially, to ensure these cached prototypes remain robust to distribution
 074 shifts without costly re-encoding, we introduce momentum updates with attention weighting. This
 075 mechanism drives the online refinement of the concept pool, effectively decoupling the detector
 076 from the text encoder during inference and significantly reducing latency.

077 To tackle the second challenge of *task compromise* between closed-set precision and open-world
 078 generalization, we introduce a decoupled cognition framework consisting of two synergistic mech-
 079 anisms. First, the **Hierarchical Knowledge Distillation (Hi-Know DPA)** bridges the visual-
 080 semantic gap. It employs trainable projection networks to align detector features with CLIP’s em-
 081 bedding space, using cosine similarity to generate semantic-enhanced queries that preserve spatial
 082 structure. Second, to fundamentally resolve the optimization conflict between localization and
 083 alignment, we propose **Parametric Decoupling Training (PD-DuGi)**. This strategy enforces dual-
 084 stream gradient isolation via differentiable stop-gradient operators, which confine detection loss
 085 to localization parameters and semantic alignment loss to cognition networks. A cosine-annealed
 086 weighting strategy further coordinates these objectives, prioritizing detection stability in early train-
 087 ing before progressively enhancing semantic alignment, thus achieving both high precision and ro-
 088 bust generalization.)

089 The contributions can be summarized as follows:

- 090 • We reveal two critical flaws in existing open-vocabulary detection: 1) Heavy reliance on
 091 text encoders and LLM prompting causes high inference latency; 2) Multimodal fusion
 092 forces painful trade-offs between closed-set precision (e.g., 57.1% AP₅₀ for base classes
 093 on OV-COCO) and open-world generalization (29.4% AP₅₀ for novel classes).
- 094 • To address these issues, we propose the DeCo-DETR framework: It eliminates text encoder
 095 dependency via the **Dynamic Hierarchical Concept Pool (DHCP)**, solving computational
 096 bottlenecks in multimodal fusion during inference time; and enhances generalization in
 097 open scenarios through **Hierarchical Knowledge Distillation (Hi-Know DPA)** and **Para-
 098 metric Decoupling Training (PD-DuGi)**.
- 099 • We conduct extensive experiments on multiple open-vocabulary detection benchmarks in-
 100 cluding OV-COCO and OV-LVIS. DeCo-DETR achieves advanced performance on all
 101 benchmarks, delivering significant improvements of +3.1 to 5.8 points in novel class APs
 102 while maintaining efficient 135ms inference. These results demonstrate DeCo’s superior
 103 performance and generalization capabilities. Comprehensive ablation studies further vali-
 104 date the advantages of our novel design, providing transformative insights for the DETR-
 105 based detection paradigm and establishing a new foundation for future open-vocabulary
 106 research.

108
109

2 RELATED WORK

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

Open-vocabulary Object Detection (OVOD). OVOD, formalized in (Zareian et al., 2021a), uses image–caption data and base-class annotations to detect arbitrary categories, outperforming both zero-shot and weakly supervised methods (Cai et al., 2022b; Yao et al., 2021). Advances in vision–language models (VLMs) pre-trained on web-scale data (Radford et al., 2021a; Jia et al., 2021) significantly improved OVOD. One approach leverages VLM knowledge to generate pseudo-labels for novel classes (Zhou et al., 2022b; Liu et al., 2024b), using external sources or existing datasets like LVIS (Gupta et al., 2019), VL-PLM (Zhao et al., 2022a). Another refines VLM interaction through learnable prompts (DetPro (Khattak et al., 2024), PromptDet (Feng et al., 2022b)), surpassing static CLIP templates. However, these strategies incur high computational costs and incomplete knowledge transfer (Zhu & Chen, 2024). Knowledge distillation has efficiently emerged to embed rich open-vocabulary semantics into lightweight detectors (Rasheed et al., 2022a; Ma et al., 2022a; Gu et al., 2022b).

129
130
131
132
133
134
135
136
137
138
139
140

Knowledge Distillation in VLMs. Knowledge distillation (KD) effectively transfers capabilities from large teacher models into compact student models (Xu et al., 2024), addressing the growing demand for efficient vision–language functionality on resource-constrained devices (Laroudie et al., 2023). For instance, TinyCLIP (Wu et al., 2023a) significantly boosts open-vocabulary performance through advanced affinity mimicking and weight inheritance derived from CLIP. Subsequent research further expands specialized KD strategies to lightweight detectors, enabling practical deployment of VLMs in real-world scenarios while preserving their generalization capabilities (Pei et al., 2023; Li et al., 2024b).

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Knowledge Distillation for OVOD. KD is highly effective beyond tasks like semantic segmentation (Ji et al., 2025) and visual reasoning (Aditya et al., 2019), showing significant impact in OVOD. ViLD (Gu et al., 2021a) successfully distills a classification-based VLM into a two-stage detector, enhancing generalization. DK-DETR (Li et al., 2023) further improves OVOD precision by distilling VLM knowledge into DETR which is a transformer-based architecture specifically designed for object detection (Carion et al., 2020). architectures. KD has thus become mainstream in OVOD (Wang et al., 2023b; Wu et al., 2023b; Rasheed et al., 2022b). However, reliance on textual cues from large models limits generalization and efficiency. CAKE (Ma et al., 2025a) mitigates textual dependence but struggles with fine-grained detection. Our proposed DeCo-DETR addresses these gaps by implementing a purely visual mechanism, which enhances the visual understanding without external multimodal dependencies.

141
142

3 METHOD

143
144

3.1 FRAMEWORK OVERVIEW

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Current multimodal fusion methods suffer from high computational overhead and task compromise. To mitigate this issue, we propose **DeCo-DETR**. DeCo-DETR aims to efficiently transfer open-set knowledge from LVLMs to a compact detector without text encoders at the test time. The overall framework is illustrated in Figure 1. DeCo-DETR mainly consists of the following modules: **Dynamic Hierarchical Concept Pool (DHCP)**: Constructs self-evolving concept prototypes using LLaVA-generated region descriptions filtered by CLIP alignment, replacing costly text encoders. Its two-level hierarchy simulates human cognition from coarse-grained (e.g., “vehicle”) to fine-grained (e.g., “hexagonal wheels”) granularity. **Hierarchical Knowledge Distillation (Hi-Know DPA)**: Decouples visual-semantic space mapping via prototype-centric projection, aligning CLIP visual prototypes while disentangling semantic spaces of similar categories. **Parametric Decoupling Training (PD-DuGi)**: Coordinates localization and cognition tasks through dual-stream gradient isolation. During inference, the dynamic prototype pool provides semantic knowledge while the dual-stream decoder processes spatial localization and semantic alignment in parallel.

158
159

3.2 DYNAMIC HIERARCHICAL CONCEPT POOL

160
161
To model hierarchical semantic spaces for open-vocabulary detection, we propose a **Self-Evolving Concept Pool** framework (DHCP), which dynamically constructs and refines vision-language joint spaces via cross-modal alignment and prototype distillation.

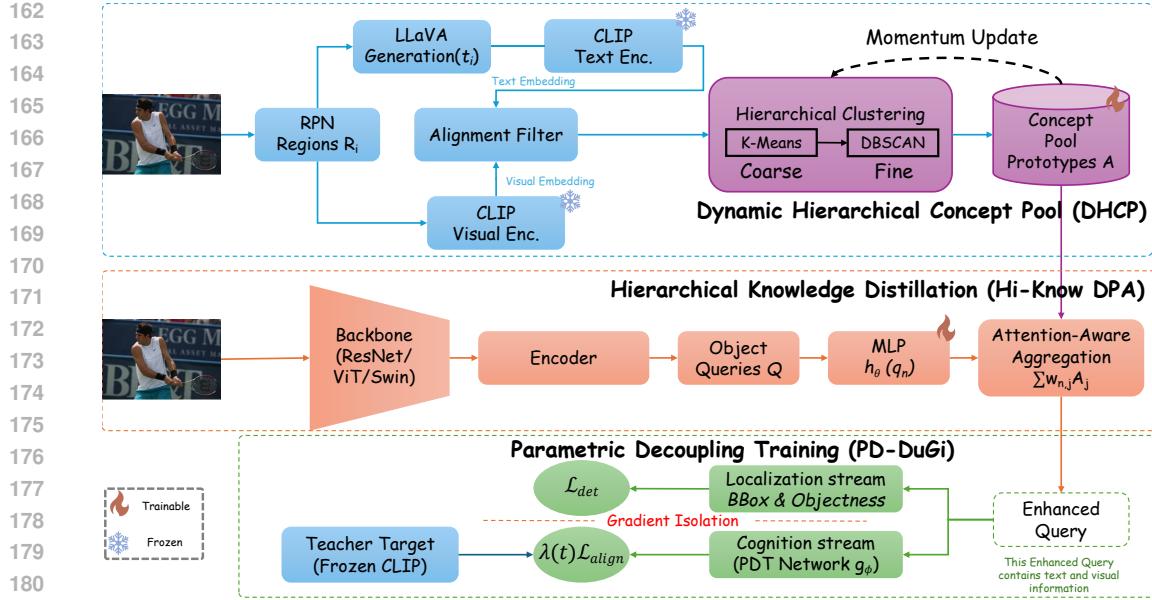


Figure 1: **Overview of the DeCo-DETR framework.** (a) **Dynamic Hierarchical Concept Pool (DHCP):** Constructs self-evolving concept prototypes (covering coarse-grained e.g., “vehicle” to fine-grained e.g., “hexagonal wheels”) using LLaVA-generated region descriptions filtered by CLIP feature alignment, aiming to replace costly text encoders. (b) **Hierarchical Knowledge Distillation (Hi-Know DPA):** Decouples visual-semantic space mapping via prototype-centric projection, aligning CLIP visual prototypes while disentangling semantic spaces of similar categories. (c) **Decoupling Training (PD-DuGi):** Coordinates localization and cognition tasks through dual-stream (Obj Layer/Reg Layer for localization, Feature Alignment for cognition) gradient isolation. During inference, the dynamic prototype pool provides semantic knowledge while the dual-stream decoder processes spatial localization (via BoxDelta and Objectness) and semantic alignment in parallel.

Cross-Modal Feature Alignment: To build the concept pool, we extract multi-scale regions $\{R_i\}_{i=1}^N$ from the training images using a pretrained backbone (e.g., ResNet) and Region Proposal Network (RPN). Each region is then processed by LLaVA to generate free-form textual descriptions $t_i = \text{LLaVA}(R_i)$. To eliminate modality gaps, we project both the image regions and their corresponding text descriptions into a joint embedding space using CLIP’s dual encoders:

$$v_i = f_{\text{CLIP}}^{\text{img}}(R_i), \quad u_i = f_{\text{CLIP}}^{\text{txt}}(t_i), \quad (1)$$

with high-confidence aligned pairs selected via cosine similarity thresholding initialized to be 0.7:

$$\mathcal{T} = \{(R_i, t_i) \mid \cos(v_i, u_i) > \delta\}. \quad (2)$$

Hierarchical Prototype Distillation: For aligned text embeddings $\{e_j\}_{j=1}^K$, we design a spectral clustering-based hierarchical compression algorithm: **Coarse-grained Anchors:** Global K-Means(Ikotun et al., 2023) clustering (with $k = M_1 = 1203$) extracts base prototypes (e.g., “vehicle”, “texture pattern”) from the aligned text embeddings $\{e_j\}$, capturing broad semantic concepts and ensuring global connectivity. **Fine-grained Units:** Local DBSCAN(Deng, 2020) clustering (with $\epsilon = 0.5$ and $\text{min_samples} = 5$) is applied to the embeddings within each coarse cluster. This further partitions them into an average of ~ 4 fine-grained units per cluster (e.g., “sedan”, “horizontal stripes”), resulting in a total of $M_2 = 4800$ fine-grained prototypes. Together, they form a multi-scale prototype matrix $A \in \mathbb{R}^{d \times M}$ where $M = M_1 + M_2$ and d is the CLIP embedding dimension. Details regarding the shared nature of M and the mapping relationship can be found in the Appendix A.4.

216 **Algorithm 1** Dynamic Hierarchical Concept Pool (DHCP)

217 **Require:** Training images \mathcal{D} , Pretrained Backbone & RPN, LLaVA, CLIP (frozen).

218 **Require:** Hyperparameters: Similarity threshold δ , Momentum γ , Temperature τ .

219 **Ensure:** Hierarchical Prototype Matrix $A \in \mathbb{R}^{d \times M}$.

220 1: **Stage 1: Initialization (Offline)**

221 2: Initialize alignment set $\mathcal{T} \leftarrow \emptyset$

222 3: **for** each image $I \in \mathcal{D}$ **do**

223 4: Extract regions $\{R_i\}$ via Backbone and RPN

224 5: Generate descriptions: $t_i \leftarrow \text{LLaVA}(R_i)$

225 6: Extract embeddings: $v_i \leftarrow \text{CLIP}_{\text{img}}(R_i)$, $u_i \leftarrow \text{CLIP}_{\text{txt}}(t_i)$

226 7: Filter pairs: if $\cos(v_i, u_i) > \delta$ then $\mathcal{T} \leftarrow \mathcal{T} \cup \{u_i\}$

227 8: **end for**

228 9: // Hierarchical Clustering

229 10: $C_{\text{coarse}} \leftarrow \text{K-Means}(\mathcal{T}, k = M_1)$ {e.g., 1203 coarse concepts}

230 11: Initialize $A \leftarrow \emptyset$

231 12: **for** each cluster $c \in C_{\text{coarse}}$ **do**

232 13: $C_{\text{fine}} \leftarrow \text{DBSCAN}$ {Fine-grained discovery}

233 14: Append centroids of C_{fine} to A

234 15: **end for**

235 16: **Stage 2: Online Update (During Training)**

236 17: **while** training **do**

237 18: Receive batch aligned text embeddings $\{e_i\}$ from current iteration

238 19: Compute similarity matrix: $D_{ij} = \frac{\exp(\tau^{-1} \cos(e_i, A_j))}{\sum_k \exp(\tau^{-1} \cos(e_i, A_k))}$

239 20: Update prototypes with momentum:

240 21: $A \leftarrow \gamma A + (1 - \gamma) \text{LayerNorm}(\sum_i D_{ij} e_i)$

241 22: **end while**

242

243 Dynamic Memory Update: To adapt to semantic distribution shifts, we propose an attention-guided

244 momentum memory update:

245

246
$$D_{i,j} = \frac{\exp(\tau^{-1} \cos(e_i, A_j))}{\sum_{k=1}^M \exp(\tau^{-1} \cos(e_i, A_k))}, \quad (3)$$

247

248

249
$$A_j \leftarrow \gamma A_j + (1 - \gamma) \text{LayerNorm} \left(\sum_{i=1}^K D_{i,j} e_i \right), \quad (4)$$

250

251 where τ is a learnable temperature parameter, $\gamma \in [0, 1]$ controls memory decay rate, and Layer-

252 Norm ensures numerical stability. This mechanism enables continuous semantic evolution through

253 online adaptation, [the full details can be found in Algorithm 1](#).

254

3.3 HIERARCHICAL KNOWLEDGE DISTILLATION

255 DHCP provides a bank of visual prototypes. To bridge the gap between visual features and semantic

256 embeddings, we propose Hierarchical Knowledge Distillation (Hi-Know DPA), which decouples

257 visual-semantic mapping through trainable projection networks aligned with hierarchical concept

258 prototypes. This mechanism operates through two synergistic phases:

259 Phase I: Cross-Modal Feature Projection: Given a backbone feature map $\Phi(I) \in \mathbb{R}^{H \times W \times C}$, the

260 transformer decoder produces object queries $\mathcal{Q} = \{q_n\}_{n=1}^N$ via multi-head attention mechanisms.

261 To establish semantic grounding, we introduce a trainable projection network $h_\theta : \mathbb{R}^C \rightarrow \mathbb{R}^d$, which

262 aligns visual features to the CLIP embedding space:

263

264
$$\hat{q}_n = h_\theta(q_n), \quad \forall q_n \in \mathcal{Q}, \quad (5)$$

265

266 where d denotes the joint embedding dimension, and q_n denotes a decoder query token. This para-

267 metric mapping enables explicit modality alignment while preserving spatial-semantic relationships.

270 Phase II: Attention-Aware Prototype Aggregation: To exploit the hierarchical concept prototypes
 271 ($A \in \mathbb{R}^{d \times M}$) multi-granularity semantics, we compute prototype relevance using temperature-
 272 scaled cosine similarity:

$$w_{n,j} = \frac{\exp(\alpha^{-1} \cos(\hat{q}_n, A_j))}{\sum_{k=1}^M \exp(\alpha^{-1} \cos(\hat{q}_n, A_k))}, \quad (6)$$

277 where α is a learnable temperature parameter controlling distribution sharpness. The resultant
 278 semantic-enhanced query r_n is computed as:

$$r_n = \sum_{j=1}^M w_{n,j} A_j + \text{MLP}(\hat{q}_n), \quad (7)$$

281 where the residual connection with MLP-processed original features ensures stability during early
 282 training phases. This computational design emulates human perceptual mechanisms—first activating
 283 coarse semantic anchors, then refining through detailed visual evidence.

284 Optimization Strategy: The entire framework is trained end-to-end using a composite loss:

$$\mathcal{L} = \mathcal{L}_{\text{det}} + \lambda_{\text{KL}} \sum_{n=1}^N \text{KL}(w_n \parallel \tilde{w}_n) + \lambda_{\text{align}} \mathcal{L}_{\text{align}}, \quad (8)$$

289 where \mathcal{L}_{det} denotes the standard DETR loss (Carion et al., 2020), \tilde{w}_n denotes the target attention
 290 distribution derived from the frozen CLIP teacher model’s cross-modal matching between image
 291 features and text prototypes P , where $P \in \mathbb{R}^{M \times d}$ contains CLIP text embeddings of category names
 292 and LLaVA-generated phrases. w_n denotes the prototype assignment weight vector generated by
 293 the student model (DeCo-DETR). The weighting coefficients λ_{KL} and λ_{align} follow cosine annealing
 294 schedules to prioritize detection stability initially and semantic alignment subsequently, [the full](#)
 295 [details can be found in Algorithm 2](#).

Algorithm 2 Hierarchical Knowledge Distillation (Hi-Know DPA)

297 **Require:** Training set \mathcal{D} , image I
 298 **Require:** Student: Backbone, proj. net h_θ , prototypes $A \in \mathbb{R}^{d \times M}$
 299 **Require:** Teacher: Pretrained CLIP (frozen), text prototypes $P \in \mathbb{R}^{M \times d}$ (from category names +
 300 LLaVA phrases)

301 1: **while** not converged **do**
 302 2: Sample batch $\mathcal{B} \subset \mathcal{D}$
 303 3: **for** each $I \in \mathcal{B}$ **do**
 304 4: $\Phi(I) \leftarrow \text{Backbone}(I)$ {Feature extraction}
 305 5: $\mathcal{Q} \leftarrow \text{Decoder}(\Phi(I))$ {Generate object queries}
 306 6: $\{\hat{q}_n\} \leftarrow h_\theta(\mathcal{Q})$ {Project features}
 307 7: $w_n \leftarrow \text{Softmax}(\alpha^{-1} \cos(\hat{q}_n, A))$
 308 8: $r_n \leftarrow \sum_j w_{n,j} A_j + \text{MLP}(\hat{q}_n)$ {Semantic enhancement}
 309 9: $\tilde{w}_n \leftarrow \text{Softmax}(\tau^{-1} \cos(\hat{q}_n, P))$ {Target distribution from teacher}
 310 10: $\mathcal{L} \leftarrow \mathcal{L}_{\text{det}} + \lambda_{\text{KL}} \sum_n \text{KL}(w_n \parallel \tilde{w}_n) + \lambda_{\text{align}} \mathcal{L}_{\text{align}}$
 311 11: **end for**
 312 12: Update student parameters θ using \mathcal{L}
 313 13: Adjust $\lambda_{\text{KL}}, \lambda_{\text{align}}$ {Cosine annealing}
 314 14: **end while**

 316 3.4 PARAMETRIC DECOUPLING TRAINING

318 To resolve potential representation conflicts between base detection and open-vocabulary alignment,
 319 we propose a Parametric Decoupling Transformer (PDT) framework based on structured feature
 320 space orthogonalization.

321 Given the semantically enhanced query features $r_n \in \mathbb{R}^d$, the PDT network $g_\phi : \mathbb{R}^d \rightarrow \mathbb{R}^{|C_{\text{base}} \cup C_{\text{novel}}|}$
 322 generates pseudo-semantic probability distributions through hierarchical mapping:

$$\tilde{t}_n = \text{Softmax}(g_\phi(r_n)), \quad (9)$$

324 **Algorithm 3** Parametric Decoupling Training (PD-DuGi)
325 **Require:** Image I , Ground Truth Y , Student Model (Backbone, Decoder, PDT), Teacher CLIP.
326 **Require:** Learning rate scheduler $\lambda_{align}(t)$.
327 **Ensure:** Optimized model parameters θ .
328 1: **Forward Pass:**
329 2: $\Phi(I) \leftarrow \text{Backbone}(I)$
330 3: $\mathcal{Q} = \{q_n\} \leftarrow \text{Decoder}(\Phi(I))$ {Object queries}
331 4: **Stream 1: Localization (Detection)**
332 5: $Y_{pred} \leftarrow \text{DetectionHead}(q_n)$
333 6: $\mathcal{L}_{det} \leftarrow \text{Loss}_{\text{Hungarian}}(Y_{pred}, Y)$
334 7: // Gradients from \mathcal{L}_{det} update Backbone & Decoder
335 8: **Stream 2: Cognition (Semantic Alignment)**
336 9: $q'_n \leftarrow \text{StopGradient}(q_n)$ {Isolate gradients from alignment loss}
337 10: $\hat{q}_n \leftarrow h_\theta(q'_n)$ {Project to CLIP space}
338 11: $r_n \leftarrow \text{PrototypeAggregation}(\hat{q}_n, A)$ {See Sec 3.3}
339 12: $\tilde{t}_n \leftarrow \text{Softmax}(\text{PDT}(r_n))$ {Parametric Decoupling Transformer}
340 13: $T_{teacher} \leftarrow \text{CLIP}_{\text{teacher}}(I, \text{Prompts})$
341 14: $\mathcal{L}_{align} \leftarrow \text{CrossEntropy}(\tilde{t}_n, T_{teacher})$
342 15: // Gradients from \mathcal{L}_{align} update only PDT & Projection h_θ
343 16: **Optimization:**
344 17: Get current annealing weight: $\lambda \leftarrow \lambda_{align}(t)$ {Cosine schedule}
345 18: $\mathcal{L}_{total} \leftarrow \mathcal{L}_{det} + \lambda \cdot \mathcal{L}_{align}$
346 19: Update parameters $\theta \leftarrow \text{Optimizer}(\nabla \mathcal{L}_{total})$

347 where g_ϕ employs multi-layer cross-attention blocks to model prototype-category correlations. To
348 suppress inter-modal interference, the Dual-stream Gradient Isolation Mechanism is designed: The
349 detection loss \mathcal{L}_{det} propagates solely to the DETR encoder-decoder parameters, while the semantic
350 alignment loss

$$\mathcal{L}_{align} = - \sum_n \tilde{t}_n^\top \log(\text{LinearHead}(\hat{q}_n)), \quad (10)$$

351 updates only the PDT parameters ϕ and the classifier head parameters. We implement explicit
352 gradient stopping: gradients from \mathcal{L}_{align} are prevented from flowing to the detection backbone and
353 decoder, and vice versa for \mathcal{L}_{det} . This architecture ensures: **Knowledge Preservation:** Cartesian
354 product mapping $\mathcal{V} \oplus \mathcal{S} \rightarrow \mathcal{Y}$ between visual (\mathcal{V}) and semantic (\mathcal{S}) manifolds **Dynamic Adaptability:** Online
355 prototype clustering enables extrapolation to unseen semantic spaces

356 The unified objective function combines both streams through curriculum learning:

$$\mathcal{L}_{total} = \mathcal{L}_{det} + \lambda_{align}(t) \mathcal{L}_{align}. \quad (11)$$

357 where $\lambda_{align}(t)$ follows a cosine annealing schedule (increasing from 0 to 1) to prioritize detection
358 stability initially and strengthen semantic alignment as training progresses. Inference requires only
359 single-pass forward computation without post-processing, the full details can be found in [Algorithm 3](#).

360 4 EXPERIMENT

361 4.1 DATASETS AND EVALUATION METRICS

362 Following standard protocols in the OVOD literature (Jin et al., 2024; Zhou et al., 2022b; Ma
363 et al., 2025a), we evaluate the effectiveness of DeCo-DETR on two widely adopted benchmarks:
364 OV-COCO (Bansal et al., 2018b) and OV-LVIS (Gu et al., 2021c). These benchmarks are open-
365 vocabulary variants derived from the popular MSCOCO (Lin et al., 2015) and LVIS datasets, re-
366 spectively. OV-COCO utilizes 118,000 images from MSCOCO, designating 48 common categories
367 as base classes and holding out 17 categories as novel classes for zero-shot generalization. OV-LVIS
368 reuses the same image set but applies LVIS annotations; among 1,203 categories, the 866 frequent
369 and common categories form the base set, while the 337 rare categories are treated as novel. This
370 long-tail distribution better reflects real-world category imbalance and presents a greater challenge

for OVOD methods. For OV-COCO, we report AP^{50}_{novel} —the mean Average Precision (mAP) at an IoU threshold of 0.5 for novel categories—as the primary metric. Additionally, we provide performance on base categories (AP^{50}_{base}) and overall performance across all categories (AP^{50}). For OV-LVIS, we report AP_r , AP_c , and AP_f —denoting mAP on rare, common, and frequent categories, respectively—along with the overall AP , all computed using standard box-based mAP. [About the V-OVD, G-OVD, C-OVD and WS-OVD, more details can be found in Appendix A.5.](#)

Table 1: OV-COCO comparison (AP_{50}) across a wide range of open-vocabulary object detection (OVOD) methods.

Benchmark	Method	AP^{novel}_{50}	AP^{base}_{50}	AP_{50}
V-OVD	ViLD (Gu et al., 2021a)	29.4	52.6	48.9
	OADP (Wang et al., 2023c)	30.0	53.3	47.2
	DK-DETR (Li et al., 2023)	32.3	61.1	53.6
	BARON (Wu et al., 2023c)	33.1	54.8	49.1
	LBP (Li et al., 2024a)	37.8	58.7	53.2
	OC-OVD (Bangalath et al., 2022)	36.6	54.0	49.4
	GOAT (Wang et al., 2023a)	36.4	53.0	48.6
	CAKE (Ma et al., 2025b)	38.2	58.0	52.8
G-OVD	DeCo-DETR (Ours)	41.3	56.7	53.1
	OV-DETR (Zang et al., 2022)	29.4	61.0	52.7
	VL-PLM (Zhao et al., 2022a)	32.3	54.0	48.3
	OADP (Wang et al., 2023c)	35.6	55.8	50.5
	LP-OVOD (Pham, 2024)	40.5	60.5	55.2
	CLIM (Wu et al., 2024)	25.7	42.5	-
	CCKT-Det(Zhang et al., 2025)	-	-	53.2
	RALF (Kim et al., 2024)	41.3	54.3	50.9
C-OVD	CAKE (Ma et al., 2025b)	39.1	58.1	53.1
	DeCo-DETR (Ours)	47.1	60.2	55.0
	RegionCLIP (Zhong et al., 2022)	26.8	54.8	47.5
	CoDet (Ma et al., 2023)	30.6	52.3	46.6
	BARON (Wu et al., 2023c)	35.8	58.2	52.3
WS-OVD	BIRDet (Zeng et al., 2024)	46.2	63.0	58.6
	CAKE (Ma et al., 2025b)	41.3	60.2	55.3
	DeCo-DETR (Ours)	44.9	59.8	56.3
	Detic (Zhou et al., 2022a)	28.4	53.8	47.2
	GOAT (Wang et al., 2023a)	36.4	53.0	48.6
	OC-OVD (Bangalath et al., 2022)	36.6	54.0	49.4
	CAKE (Ma et al., 2025b)	41.8	60.6	55.7
	DeCo-DETR (Ours)	45.5	60.5	57.1

4.2 IMPLEMENTATION DETAILS

To validate the effectiveness of our method, we build the model upon DETR with ResNet-50, ViT-B/16, and Swin-T backbones. The Dynamic Hierarchical Concept Pool (DHCP) comprises 1,203 coarse-grained and 4,800 fine-grained prototypes, which are iteratively updated via self-supervised contrastive learning. The dual-stream decoder consists of six Transformer layers, each with eight attention heads, and employs cosine-annealed fusion weights $\lambda(t)$ to balance the classification and regression objectives. We adopt the AdamW optimizer with an initial learning rate of 2×10^{-4} , training for 50 epochs with a 10% linear warm-up. Data augmentation combines RandAugment (applying two random transformations with magnitude 5–10) and Large-Scale Jittering (LSJ) with multi-scale inputs, where the short side is resized to 480/800 pixels. The batch size is fixed at 64 (8 samples per GPU across 8×NVIDIA A100). The composite loss is defined as $\mathcal{L} = \mathcal{L}_{det} + \lambda(t)\mathcal{L}_{align}$, with $\lambda(t)$ annealed from 0.5 to 0.1 over training. The Dynamic Hierarchical Concept Pool is updated online with momentum $\gamma = 0.99$, and the temperature $\tau = 0.07$ is used to sharpen similarity distributions. Final detection boxes are produced directly from 2,000 decoder queries, avoiding RPN-based proposal selection. During inference, all experiments are conducted on a single NVIDIA RTX 4090 (24GB), achieving a throughput of 135 ms.

4.3 MAIN RESULTS

Benchmark. DeCo-DETR achieves advanced zero-shot detection performance on both OV-COCO and OV-LVIS benchmarks. As shown in Table 1, DeCo-DETR attains **41.3%** AP_{50}^{novel} on **OV-COCO**, surpassing the strongest baseline LBP (37.8%) by **+3.5 points**, while the overall AP_{50} (56.7%) outperforms all competitors (e.g., 53.6% for DK-DETR). On the challenging long-tailed **OV-LVIS** dataset (Table 2), DeCo-DETR achieves **29.4%** AP_r for rare classes, and sets a new

432
 433 Table 2: OV-LVIS comparison (AP) across multiple open-vocabulary object detection (OVOD)
 434 methods. Our DeCo-DETR surpasses all baselines by a significant margin in rare, common, and
 435 frequent categories.

Method	AP_r	AP_c	AP_f	AP
DetPro (Du et al., 2022)	20.8	27.8	32.4	28.4
VLDet (Lin et al., 2022)	21.7	29.8	34.3	30.1
OC-OVD (Bangalath et al., 2022)	21.1	25.0	29.1	25.9
OADP (Wang et al., 2023c)	21.9	28.4	32.0	28.7
CORA (Wu et al., 2023d)	22.2	32.0	40.2	33.5
BARON (Wu et al., 2023c)	23.2	29.3	32.5	29.5
CoDet (Ma et al., 2023)	23.4	30.0	34.6	30.7
LBP (Li et al., 2024a)	24.1	29.5	32.8	29.9
LP-OVOD (Pham, 2024)	19.3	26.1	29.4	26.2
Mamba (Wang et al., 2025)	29.3	34.2	36.8	35.0
BIRDet (Zeng et al., 2024)	26.0	21.7	29.5	25.5
RALF (Kim et al., 2024)	21.9	26.2	29.1	26.6
DeCo-DETR (Ours)	29.4	33.1	38.9	35.2

446
 447
 448 Table 3: Inference latency, GFLOPs, and parameter size across three backbone architectures
 449 (ResNet-50, ViT, and Swin). Our proposed DeCo-DETR achieves competitive efficiency while
 450 maintaining compact model size.

Method	Latency (ms/img)			GFLOPs			Params (M)		
	R50	ViT	Swin	R50	ViT	Swin	R50	ViT	Swin
Deformable DETR (Zhu et al., 2020b)	120	210	220	220	320	325	41	87	95
DetPro (Du et al., 2022)	140	250	260	240	340	345	45	91	100
UP-DETR (Dai et al., 2021)	115	205	215	215	315	320	40	85	92
DeCo-DETR (Ours)	135	240	250	235	335	340	44	90	97

451
 452 record with an overall AP of **35.2%**. These results demonstrate DeCo-DETR’s capability to mitigate
 453 classification bias in long-tailed distributions while maintaining high accuracy for common and
 454 frequent classes.

455
 456 DeCo-DETR balances accuracy and efficiency. With ResNet-50 backbone (Table 3), inference
 457 latency increases by only **5-15ms**, computation (GFLOPs) by **5%**, and parameters by **3%** (44M
 458 vs. 41M). Compared to ViLD (140ms/img) and DetPro (250ms/img), DeCo-DETR (135ms/img)
 459 achieves accuracy-efficiency trade-offs.

4.4 ABLATION STUDY

460
 461 In this section, we adopt DETR as the base model. Table 4 presents an ablation study validating
 462 the contribution of each component: **Dynamic Hierarchical Concept Pool**. Incorporating multi-
 463 granular prototypes (1,203 coarse + 4,800 fine) improves AP_{50}^{novel} by **2.5%** compared to using a
 464 single-level prototype pool. This result underscores the effectiveness of hierarchical semantic
 465 abstraction: coarse-level prototypes capture broad inter-class distinctions, while fine-level prototypes
 466 model subtle intra-class variations. By jointly leveraging these multiscale semantic features, the
 467 model is better positioned to generalize to novel categories under limited supervision, leading to a
 468 notable performance gain.

469
 470 **PD-DuGi.** The integration of the PD-DuGi mechanism yields a comprehensive improvement across
 471 all metrics, validating the necessity of resolving task conflicts in open-vocabulary detection. The
 472 introduction of dual-stream gradient isolation boosts AP_{50}^{novel} from 36.6% to 37.5% (+0.9%) and,
 473 notably, increases AP_{50}^{base} from 54.0% to 55.1% (+1.1%). This simultaneous gain suggests that shar-
 474 ing a unified feature space for both localization and semantic alignment often leads to optimization
 475 interference, where the gradients for semantic adaptation may degrade the spatial features required
 476 for precise bounding box regression. PD-DuGi effectively mitigates this issue by explicitly isolating
 477 the optimization paths; it allows the cognition branch to learn robust semantic representations for
 478 novel categories without distorting the structural features essential for base category localization,
 479 thereby achieving a superior trade-off between open-world generalization and closed-set precision.

480
 481 **Cosine Annealing Weights.** Dynamically balancing detection and alignment losses using a cosine
 482 annealing schedule improves AP_{50} by an additional **1.6%**. The time-dependent coefficient $\lambda(t)$
 483 initially emphasizes the alignment loss to encourage robust feature embedding early in training, and

486 gradually shifts focus toward the detection loss to refine localization and classification boundaries.
 487 This smooth transition alleviates potential conflicts between the two objectives, promoting more
 488 stable convergence and improved detection accuracy on novel categories.
 489

490
491 Table 4: Extended Ablation Study.
492

493 Configuration	494 AP _{novel}	495 AP _{base}	496 AP ₅₀
1. Baseline only	30.4	52.6	46.8
2. + Hierarchical DHCP	36.6	54.0	49.4
3. + PD-DuGi (Gradient Isolation)	37.5	55.1	50.5
4. + Cosine $\lambda(t)$ (Full Model)	38.2	55.5	51.0

497 **Efficiency Analysis.** Table 6 presents a comprehensive comparison of inference latency and de-
 498 tection performance. Compared to fusion-based methods like Grounding DINO, which rely on
 499 computationally heavy text encoders (e.g., BERT-Base) and suffer from high latency (~ 280 ms), our
 500 DeCo-DETR eliminates the text encoder dependency during inference. This architectural advantage
 501 results in a significant speedup of approximately $2\times$ (135ms vs. 280ms) while maintaining compet-
 502 itive accuracy (41.3% vs. 42.1% AP_{novel}). Furthermore, among distillation-based and decoupled
 503 methods, DeCo-DETR has good performance, by increasing AP_{novel} to +41.3 points while reduc-
 504 ing latency to 135ms (7.4 FPS). These results demonstrate that DeCo-DETR establishes a superior
 505 efficiency-accuracy trade-off, making it highly suitable for real-time open-vocabulary applications.
 506

507 **Impact of Different VLMs:** We further investigate the impact of varying scales of vision-language
 508 models (VLMs) on detection performance (see Table 7). Experimental results indicate that when
 509 using smaller models (e.g., LLaVA-1.5 7B), there is a noticeable limitation on the detection perfor-
 510 mance for novel classes (AP_{50}^{novel}), which is only 30.1%. However, when the model scale increases to
 511 13B or larger (e.g., LLaVA-1.5 13B, LLaVA-NEXT 13B, Qwen2.5-VL 32B), AP_{50}^{novel} stabilizes be-
 512 tween 38.2%–38.9%, showing significant improvement over the 7B model. This suggests that once
 513 the model parameter count exceeds a certain threshold (around 13B), further increases in parameters
 514 have a negligible impact on detection accuracy. Therefore, in practical deployment, a moderately
 515 sized VLM can be selected to balance performance and computational cost.

516 **Ablation on Queries and Prototypes.** Table 8 investigates the impact of decoder query quantity
 517 (N) and prototype granularity (M_2). Regarding the number of queries, increasing N from 300 to
 518 2000 yields a substantial performance gain of +4.8 AP_{novel} . Thanks to the parallel nature of the
 519 Transformer decoder, this improvement incurs only a marginal latency overhead (~ 10 ms). Notably,
 520 even with a reduced set of $N = 300$, our method achieves 36.5% AP_{novel} , significantly outper-
 521 forming previous state-of-the-art methods like ViLD (29.4%). Regarding prototype scale, the fine-
 522 grained units (M_2) prove critical for open-vocabulary generalization. Removing them ($M_2 = 0$)
 523 causes a sharp drop of 10.5 points in AP_{novel} , validating the effectiveness of our Dynamic Hierar-
 524 chical Concept Pool (DHCP). Conversely, doubling the fine-grained units to 9600 yields diminishing
 525 returns (+0.2% AP_{novel}) while increasing memory usage and latency, confirming that $M_2 = 4800$
 526 is the optimal configuration.

527
528

5 CONCLUSION

529 In this work, we present **DeCo-DETR**, a novel open-vocabulary object detection framework. Our
 530 approach introduces **DHCP** (Dynamic Hierarchical Concept Prototypes) to mine visual prototypes
 531 from DETR’s attention mechanisms, enabling seamless alignment between image features and se-
 532 mantic concepts. A decoupled **two-stage training strategy** effectively separates detection objec-
 533 tives from semantic learning, minimizing task interference while preserving detection performance.
 534 Experiments demonstrate state-of-the-art zero-shot detection results on LVIS and COCO bench-
 535 marks. Notably, our framework eliminates dependency on text encoders during inference, sig-
 536 nificantly accelerating deployment speed. The proposed architecture establishes a versatile plug-
 537 and-play foundation for open-environment perception. Its modular design readily supports self-
 538 supervised alternatives to CLIP embeddings and enables effortless extension of the DHCP frame-
 539 work to video analysis or 3D perception tasks. By advancing autonomous semantic understanding
 in vision systems, DeCo-DETR provides a scalable pathway for next-generation adaptive perception
 in real-world applications.

540 REFERENCES

542 Somak Aditya, Rudra Saha, Yezhou Yang, and Chitta Baral. Spatial knowledge distillation to aid
543 visual reasoning. In *2019 IEEE Winter Conference on Applications of Computer Vision (WACV)*, pp.
544 227–235. IEEE, 2019.

545 Hanoona Bangalath, Muhammad Maaz, Muhammad Uzair Khattak, Salman H Khan, and Fahad
546 Shahbaz Khan. Bridging the gap between object and image-level representations for open-
547 vocabulary detection. *Advances in Neural Information Processing Systems*, 35:33781–33794,
548 2022.

549 Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Divakaran. Zero-shot
550 object detection. In *ECCV*, 2018a.

552 Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Divakaran. Zero-shot
553 object detection. In *Proceedings of the European conference on computer vision (ECCV)*, pp.
554 384–400, 2018b.

556 Monika Bansal, Munish Kumar, and Manish Kumar. 2d object recognition techniques: state-of-the-
557 art work. *Archives of Computational Methods in Engineering*, 28(3):1147–1161, 2021.

558 Hakan Bilen and Andrea Vedaldi. Weakly supervised deep detection networks. In *CVPR*, 2016.

560 Maria A Bravo, Sudhanshu Mittal, and Thomas Brox. Localized vision-language matching for
561 open-vocabulary object detection. In *GCPR*, 2022.

563 Zhaowei Cai, Gukyeong Kwon, Avinash Ravichandran, Erhan Bas, Zhuowen Tu, Rahul Bhotika,
564 and Stefano Soatto. X-detr: A versatile architecture for instance-wise vision-language tasks. In
565 *ECCV*, 2022a.

566 Zhaowei Cai, Gukyeong Kwon, Avinash Ravichandran, Erhan Bas, Zhuowen Tu, Rahul Bhotika,
567 and Stefano Soatto. X-detr: A versatile architecture for instance-wise vision-language tasks,
568 2022b. URL <https://arxiv.org/abs/2204.05626>.

570 Weipeng Cao, Yuhao Wu, Chinmay Chakraborty, Dachuan Li, Liang Zhao, and Soumya Kanti
571 Ghosh. Sustainable and transferable traffic sign recognition for intelligent transportation
572 systems. *IEEE Transactions on Intelligent Transportation Systems*, 24(12):15784–15794, 2023. doi:
573 10.1109/TITS.2022.3215572.

574 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
575 Sergey Zagoruyko. End-to-end object detection with transformers, 2020. URL <https://arxiv.org/abs/2005.12872>.

578 Xinlei Chen, Hao Fang, Tsung-yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
579 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv
580 preprint arXiv:1504.00325*, 2015.

581 Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-detr: Unsupervised pre-training for
582 object detection with transformers. In *Proceedings of the IEEE/CVF conference on computer
583 vision and pattern recognition*, pp. 1601–1610, 2021.

585 Dingsheng Deng. Dbscan clustering algorithm based on density. In *2020 7th International Forum on
586 Electrical Engineering and Automation (IFEEA)*, pp. 949–953, 2020. doi: 10.1109/IFEEA51475.
587 2020.00199.

588 Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for
589 open-vocabulary object detection with vision-language model. In *Proceedings of the IEEE/CVF
590 conference on computer vision and pattern recognition*, pp. 14084–14093, 2022.

592 Kai Fang, Anqi Zhang, Guangyu Gao, Jianbo Jiao, Chiharold Liu, and yunchao Wei. Combo:
593 Conflict mitigation via branched optimization. In *Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition*, 2025.

594 Chengjian Feng, Yujie Zhong, Zequn Jie, Xiangxiang Chu, Haibing Ren, Xiaolin Wei, Weidi Xie,
 595 and Lin Ma. Promptdet: Expand your detector vocabulary with uncurated images. In *ECCV*,
 596 2022a.

597 Chengjian Feng, Yujie Zhong, Zequn Jie, Xiangxiang Chu, Haibing Ren, Xiaolin Wei, Weidi Xie,
 598 and Lin Ma. Promptdet: Towards open-vocabulary detection using uncurated images, 2022b.
 599 URL <https://arxiv.org/abs/2203.16513>.

600 Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, and Wei-
 601 Shi Zheng. Llmdet: Learning strong open-vocabulary object detectors under the supervision of
 602 large language models. *arXiv preprint arXiv:2501.18954*, 2025.

603 Mingfei Gao, Chen Xing, Juan Carlos Niebles, Junnan Li, Ran Xu, Wenhao Liu, and Caiming
 604 Xiong. Open vocabulary object detection with pseudo bounding-box labels. In *ECCV*, 2022.

605 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
 606 and language knowledge distillation. *arXiv preprint arXiv:2104.13921*, 2021a.

607 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary detection via vision and
 608 language knowledge distillation. *arXiv preprint arXiv:2104.13921*, 2021b.

609 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
 610 and language knowledge distillation. *arXiv preprint arXiv:2104.13921*, 2021c.

611 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
 612 and language knowledge distillation. In *ICLR*, 2022a.

613 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vi-
 614 sion and language knowledge distillation, 2022b. URL <https://arxiv.org/abs/2104.13921>.

615 Agrim Gupta, Piotr Dollár, and Ross Girshick. Lvis: A dataset for large vocabulary instance seg-
 616 mentation, 2019. URL <https://arxiv.org/abs/1908.03195>.

617 Abiodun M. Ikotun, Absalom E. Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. K-
 618 means clustering algorithms: A comprehensive review, variants analysis, and advances in the
 619 era of big data. *Information Sciences*, 622:178–210, 2023. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2022.11.139>. URL <https://www.sciencedirect.com/science/article/pii/S0020025522014633>.

620 Deyi Ji, Haoran Wang, Mingyuan Tao, Jianqiang Huang, Xian-Sheng Hua, and Hongtao Lu.
 621 Structural and statistical texture knowledge distillation for semantic segmentation, 2025. URL
 622 <https://arxiv.org/abs/2305.03944>.

623 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
 624 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 625 with noisy text supervision, 2021. URL <https://arxiv.org/abs/2102.05918>.

626 Sheng Jin, Xueying Jiang, Jiaxing Huang, Lewei Lu, and Shijian Lu. Llms meet vlms: Boost
 627 open vocabulary object detection with fine-grained descriptors. *arXiv preprint arXiv:2402.04630*,
 628 2024.

629 Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas Car-
 630 ion. Mdetr - modulated detection for end-to-end multi-modal understanding. In *ICCV*, 2021.

631 Muhammad Uzair Khattak, Muhammad Ferjad Naeem, Muzammal Naseer, Luc Van Gool, and
 632 Federico Tombari. Learning to prompt with text only supervision for vision-language models,
 633 2024. URL <https://arxiv.org/abs/2401.02418>.

634 Jooyeon Kim, Eulrang Cho, Sehyung Kim, and Hyunwoo J Kim. Retrieval-augmented open-
 635 vocabulary object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 636 and Pattern Recognition*, pp. 17427–17436, 2024.

648 Clement Laroudie, Andrei Bursuc, Mai Lan Ha, and Gianni Franchi. Improving clip robustness with
 649 knowledge distillation and self-training. *arXiv preprint arXiv:2309.10361*, 2023.
 650

651 Jiaming Li, Jiacheng Zhang, Jichang Li, Ge Li, Si Liu, Liang Lin, and Guanbin Li. Learning back-
 652 ground prompts to discover implicit knowledge for open vocabulary object detection. In *Pro-
 653 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16678–
 654 16687, 2024a.

655 Liangqi Li, Jiaxu Miao, Dahu Shi, Wenming Tan, Ye Ren, Yi Yang, and Shiliang Pu. Distilling
 656 detr with visual-linguistic knowledge for open-vocabulary object detection. In *Proceedings of the
 657 IEEE/CVF International Conference on Computer Vision*, pp. 6501–6510, 2023.

658

659 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
 660 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
 661 training. In *CVPR*, 2022.

662 Zheng Li, Xiang Li, Xinyi Fu, Xin Zhang, Weiqiang Wang, Shuo Chen, and Jian Yang. Promptkd:
 663 Unsupervised prompt distillation for vision-language models. In *Proceedings of the IEEE/CVF
 664 Conference on Computer Vision and Pattern Recognition*, pp. 26617–26626, 2024b.

665

666 Chuang Lin, Peize Sun, Yi Jiang, Ping Luo, Lizhen Qu, Gholamreza Haffari, Zehuan Yuan, and
 667 Jianfei Cai. Learning object-language alignments for open-vocabulary object detection. *arXiv
 668 preprint arXiv:2211.14843*, 2022.

669

670 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 671 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 672 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

673

674 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 675 tuning, 2023a.

676

677 Haotian Liu, Chunyuan Li, Qingsong Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

678

679 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 680 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://1lava-vl.github.io/blog/2024-01-30-1lava-next/>.

681

682 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 683 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 684 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023c.

685

686 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
 687 Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded
 688 pre-training for open-set object detection, 2024b. URL <https://arxiv.org/abs/2303.05499>.

689

690 Chuofan Ma, Yi Jiang, Xin Wen, Zehuan Yuan, and Xiaojuan Qi. Codet: Co-occurrence guided
 691 region-word alignment for open-vocabulary object detection. *Advances in neural information
 692 processing systems*, 36:71078–71094, 2023.

693

694 Shiyuan Ma, Donglin Qian, Kai Ye, and Shengchuan Zhang. Cake: Category aware knowledge ex-
 695 traction for open-vocabulary object detection. In *Proceedings of the AAAI Conference on Artificial
 696 Intelligence*, volume 39, pp. 5982–5990, 2025a.

697

698 Shiyuan Ma, Donglin Qian, Kai Ye, and Shengchuan Zhang. Cake: Category aware knowledge ex-
 699 traction for open-vocabulary object detection. In *Proceedings of the AAAI Conference on Artificial
 700 Intelligence*, volume 39, pp. 5982–5990, 2025b.

701

Zongyang Ma, Guan Luo, Jin Gao, Liang Li, Yuxin Chen, Shaoru Wang, Congxuan Zhang, and
 Weiming Hu. Open-vocabulary one-stage detection with hierarchical visual-language knowledge
 distillation, 2022a. URL <https://arxiv.org/abs/2203.10593>.

702 Zongyang Ma, Guan Luo, Jin Gao, Liang Li, Yuxin Chen, Shaoru Wang, Congxuan Zhang, and
 703 Weiming Hu. Open-vocabulary one-stage detection with hierarchical visual-language knowledge
 704 distillation. In *CVPR*, 2022b.

705

706 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
 707 Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
 708 ple open-vocabulary object detection with vision transformers. In *ECCV*, 2022.

709

710 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
 711 *Advances in Neural Information Processing Systems*, 36:72983–73007, 2023.

712

713 Renjing Pei, Jianzhuang Liu, Weimian Li, Bin Shao, Songcen Xu, Peng Dai, Juwei Lu, and Youliang
 714 Yan. Clipping: Distilling clip-based models with a student base for video-language retrieval.
 715 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 18983–18992, 2023.

716

717 Pham. Lp-ovod: Open-vocabulary object detection by linear probing. In *Proceedings of the
 718 IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 779–788, 2024.

719

720 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 721 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 722 Sutskever. Learning transferable visual models from natural language supervision, 2021a. URL
<https://arxiv.org/abs/2103.00020>.

723

724 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 725 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 726 models from natural language supervision. In *ICML*, volume 139, 2021b.

727

728 Shafin Rahman, Salman Khan, and Nick Barnes. Transductive learning for zero-shot object detec-
 729 tion. In *ICCV*, 2019.

730

731 Hanoona Rasheed, Muhammad Maaz, Muhammad Uzair Khattak, Salman Khan, and Fahad Shah-
 732 baz Khan. Bridging the gap between object and image-level representations for open-vocabulary
 733 detection, 2022a. URL <https://arxiv.org/abs/2207.03482>.

734

735 Hanoona Rasheed, Muhammad Maaz, Muhammad Uzair Khattak, Salman Khan, and Fahad Shah-
 736 baz Khan. Bridging the gap between object and image-level representations for open-vocabulary
 737 detection, 2022b. URL <https://arxiv.org/abs/2207.03482>.

738

739 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 740 hypernymed, image alt-text dataset for automatic image captioning. In *ACL*, 2018.

741

742 Haoxuan Wang, Qingdong He, Jinlong Peng, Hao Yang, Mingmin Chi, and Yabiao Wang. Mamba-
 743 yolo-world: marrying yolo-world with mamba for open-vocabulary detection. In *ICASSP 2025-
 744 2025 IEEE international conference on acoustics, speech and signal processing (ICASSP)*, pp.
 745 1–5. IEEE, 2025.

746

747 Jiong Wang, Huiming Zhang, Haiwen Hong, Xuan Jin, Yuan He, Hui Xue, and Zhou Zhao. Open-
 748 vocabulary object detection with an open corpus. In *Proceedings of the IEEE/CVF international
 749 conference on computer vision*, pp. 6759–6769, 2023a.

750

751 Luting Wang, Yi Liu, Penghui Du, Zihan Ding, Yue Liao, Qiaosong Qi, Biaolong Chen, and Si Liu.
 752 Object-aware distillation pyramid for open-vocabulary object detection, 2023b. URL <https://arxiv.org/abs/2303.05892>.

753

754 Luting Wang, Yi Liu, Penghui Du, Zihan Ding, Yue Liao, Qiaosong Qi, Biaolong Chen, and Si Liu.
 755 Object-aware distillation pyramid for open-vocabulary object detection. In *Proceedings of the
 756 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11186–11196, 2023c.

757

758 Kan Wu, Houwen Peng, Zhenghong Zhou, Bin Xiao, Mengchen Liu, Lu Yuan, Hong Xuan, Michael
 759 Valenzuela, Xi Stephen Chen, Xinggang Wang, et al. Tinyclip: Clip distillation via affinity mim-
 760 icking and weight inheritance. In *Proceedings of the IEEE/CVF International Conference on
 761 Computer Vision*, pp. 21970–21980, 2023a.

756 Size Wu, Wenwei Zhang, Sheng Jin, Wentao Liu, and Chen Change Loy. Aligning bag of regions for
 757 open-vocabulary object detection, 2023b. URL <https://arxiv.org/abs/2302.13996>.
 758

759 Size Wu, Wenwei Zhang, Sheng Jin, Wentao Liu, and Chen Change Loy. Aligning bag of regions
 760 for open-vocabulary object detection. In *Proceedings of the IEEE/CVF conference on computer*
 761 *vision and pattern recognition*, pp. 15254–15264, 2023c.

762 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Wentao Liu, and Chen Change Loy. Clim: Con-
 763 trastive language-image mosaic for region representation. In *Proceedings of the AAAI conference*
 764 *on artificial intelligence*, volume 38, pp. 6117–6125, 2024.

765 Xiaoshi Wu, Feng Zhu, Rui Zhao, and Hongsheng Li. Cora: Adapting clip for open-vocabulary
 766 detection with region prompting and anchor pre-matching. In *Proceedings of the IEEE/CVF*
 767 *conference on computer vision and pattern recognition*, pp. 7031–7040, 2023d.

768

769 Han Xu, Jie Ren, Pengfei He, Shenglai Zeng, Yingqian Cui, Amy Liu, Hui Liu, and Jiliang Tang.
 770 On the generalization of training-based chatgpt detection methods, 2023.

771 Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
 772 Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models, 2024. URL
 773 <https://arxiv.org/abs/2402.13116>.
 774

775 Caixia Yan, Xiaojun Chang, Minnan Luo, Huan Liu, Xiaoqin Zhang, and Qinghua Zheng.
 776 Semantics-guided contrastive network for zero-shot object detection. *TPAMI*, 2022.

777 Lewei Yao, Renjie Pi, Hang Xu, Wei Zhang, Zhenguo Li, and Tong Zhang. G-detkd: Towards
 778 general distillation framework for object detectors via contrastive and semantic-guided feature
 779 imitation, 2021. URL <https://arxiv.org/abs/2108.07482>.

780

781 Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, Chunjing
 782 Xu, and Hang Xu. Detclip: Dictionary-enriched visual-concept paralleled pre-training for open-
 783 world detection, 2022a. URL <https://arxiv.org/abs/2209.09407>.

784 Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, Chunjing
 785 Xu, and Hang Xu. Detclip: Dictionary-enriched visual-concept paralleled pre-training for open-
 786 world detection. In *NeurIPS*, 2022b.

787

788 Keren Ye, Mingda Zhang, Adriana Kovashka, Wei Li, Danfeng Qin, and Jesse Berent. Cap2det:
 789 Learning to amplify weak caption supervision for object detection. In *ICCV*, 2019.

790 Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Open-vocabulary detr
 791 with conditional matching. In *European conference on computer vision*, pp. 106–122. Springer,
 792 2022.

793

794 Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
 795 detection using captions. In *Proceedings of the IEEE/CVF conference on computer vision and*
 796 *pattern recognition*, pp. 14393–14402, 2021a.

797

798 Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
 799 detection using captions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 800 *Pattern Recognition*, 2021b.

801

802 Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
 803 detection using captions. In *CVPR*, 2021c.

804

805 Ruizhe Zeng, Lu Zhang, Xu Yang, and Zhiyong Liu. Boosting open-vocabulary object detection by
 806 handling background samples. In *International Conference on Neural Information Processing*,
 807 pp. 274–289. Springer, 2024.

808

809 Chuhuan Zhang, Chaoyang Zhu, Pingcheng Dong, Long Chen, and Dong Zhang. Cyclic contrastive
 810 knowledge transfer for open-vocabulary object detection. *arXiv preprint arXiv:2503.11005*, 2025.

811 Yanan Zhang, Jiangmeng Li, Lixiang Liu, and Wenwen Qiang. Rethinking misalignment in vision-
 812 language model adaptation from a causal perspective. 2024.

810 Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, Vijay Kumar B. G, Anastasis Stathopoulos,
811 Manmohan Chandraker, and Dimitris Metaxas. Exploiting unlabeled data with vision and lan-
812 guage models for object detection, 2022a. URL <https://arxiv.org/abs/2207.08954>.
813

814 Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, BG Vijay Kumar, Anastasis Stathopoulos,
815 Manmohan Chandraker, and Dimitris N Metaxas. Exploiting unlabeled data with vision and
816 language models for object detection. In *European conference on computer vision*, pp. 159–175.
817 Springer, 2022b.

818 Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
819 Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image
820 pretraining. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
821 nition*, pp. 16793–16803, 2022.

822 Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting
823 twenty-thousand classes using image-level supervision. In *European conference on computer
824 vision*, pp. 350–368. Springer, 2022a.

825 Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting
826 twenty-thousand classes using image-level supervision, 2022b. URL <https://arxiv.org/abs/2201.02605>.
827

828 Chaoyang Zhu and Long Chen. A survey on open-vocabulary detection and segmentation: Past,
829 present, and future, 2024. URL <https://arxiv.org/abs/2307.09220>.
830

831 Pengkai Zhu, Hanxiao Wang, and Venkatesh Saligrama. Zero shot detection. *TCSVT*, 30(4), 2020a.
832

833 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: De-
834 formable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020b.
835

836 Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20
837 years: A survey, 2023. URL <https://arxiv.org/abs/1905.05055>.
838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A APPENDIX**865 **A.1 USE OF LLM**

866 We use LLM to aid or polish writing. Details are described in the paper.

867 **A.2 ETHICS STATEMENT**868 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
869 sonal or sensitive data. All datasets used in this paper (e.g., COCO, LVIS) are publicly available and
870 widely adopted in the research community, and we strictly follow their licenses and intended usage.
871 The proposed DeCo-DETR framework is designed for academic exploration of open-vocabulary
872 object detection. Potential misuse of the model in safety-critical or surveillance scenarios is outside the
873 scope of this research, and we strongly encourage responsible and ethical use in line with research
874 integrity principles.
875876 **A.3 REPRODUCIBILITY STATEMENT**877 We make every effort to ensure the reproducibility of our results. Full training details, including
878 model architectures, hyperparameters, and optimization schedules, are provided in the main paper
879 and appendix. The experimental settings cover key modules such as Dynamic Hierarchical Con-
880 cept Pool construction, Hierarchical Knowledge Distillation, and Parametric Decoupling Training,
881 with clear descriptions of dataset preprocessing and evaluation protocols. Our implementation is
882 based on PyTorch and standard detection frameworks. To facilitate replication, we will release the
883 source code, configuration files, and pre-trained models upon publication. All reported results can
884 be reproduced using the provided settings and supplementary material.
885886 **A.4 METHODOLOGY DETAILS**887 The student prototypes A and teacher prototypes P share the same index dimension M because
888 they are derived from the same set of multi-modal clusters in the joint CLIP embedding space. This
889 correspondence is established as follows:890

- 891 1. **Joint Clustering:** We perform clustering on the aligned pairs of region visual features and
892 text embeddings (filtered by CLIP). This partitions the data into M clusters, where each
893 cluster $j \in \{1, \dots, M\}$ represents a specific shared semantic concept.
- 894 2. **Definition of Prototypes:** For each cluster j , the Teacher Prototype P_j is defined as the
895 centroid of the *text embeddings* in that cluster, while the Student Prototype A_j is initialized
896 as the centroid of the *visual embeddings* in the same cluster.
- 897 3. **Alignment Mechanism:** Since P_j and A_j originate from the same multi-modal cluster j ,
898 they are naturally paired. The distillation loss aligns the student’s distribution (calculated
899 via A) with the teacher’s distribution (calculated via P), ensuring the student learns the
900 corresponding semantic structure.

901 **A.5 OVD BENCHMARKS**902 According to the training data, existing Open-Vocabulary Object Detection (OVD) methods are
903 summarized into four types of benchmarks: Vanilla OVD (V-OVD), Caption-based OVD (C-OVD),
904 Generalized OVD (G-OVD), and Weakly Supervised OVD (WS-OVD). All benchmarks rely on
905 instance-level annotations and large-scale image-text pairs to learn OVD.906 For clarity, *base categories* are defined as those included in the instance-level annotations, while
907 *novel categories* are the others.908 **A.5.1 VANILLA OVD (V-OVD)**909 V-OVD Cai et al. (2022a); Du et al. (2022); Gu et al. (2022a); Kamath et al. (2021); Li et al. (2022);
910 Minderer et al. (2022); Yao et al. (2022b); Zhong et al. (2022) is a pure OVD benchmark setting.

918 It requires the detector to train only on an object detection dataset with a fixed set of categories.
 919 Information about novel categories is unavailable, but unannotated data is allowed. A common
 920 practice for this benchmark is to learn open vocabulary knowledge from image-text pairs and transfer
 921 the knowledge to detectors through transfer learning or knowledge distillation. V-OVD is similar
 922 to Zero-Shot Detection (ZSD) Bansal et al. (2018a); Rahman et al. (2019); Yan et al. (2022); Zhu
 923 et al. (2020a), except that V-OVD relies on large-scale image-text pairs to acquire open-vocabulary
 924 knowledge.

926 A.5.2 CAPTION-BASED OVD (C-OVD)

928 C-OVD Bravo et al. (2022); Gao et al. (2022); Ma et al. (2022b); Zareian et al. (2021c) adds addi-
 929 tional image caption annotations to the V-OVD benchmark. This refers to in-domain captions of the
 930 instance-level annotations (e.g., COCO-Captions Chen et al. (2015)) rather than large-scale image-
 931 text pairs like CC3M Sharma et al. (2018) or CLIP400M Radford et al. (2021b). In-domain captions
 932 enrich annotations and imply a distribution of potential novel categories. C-OVD is expected to
 933 perform better than V-OVD due to slightly more annotations.

934 A.5.3 GENERALIZED OVD (G-OVD)

936 G-OVD Feng et al. (2022a); Zang et al. (2022); Zhao et al. (2022b) introduces human priors on novel
 937 categories to the V-OVD benchmark. It assumes that if specific novel categories are likely to appear
 938 during inference, it is beneficial to prepare for them during training. Most existing methods assume
 939 all dataset category names (including novel ones) are known during training. A typical solution
 940 involves generating instance-level pseudo annotations.

942 A.5.4 WEAKLY SUPERVISED OVD (WS-OVD)

944 WS-OVD Zhou et al. (2022a) utilizes image-level category labels beyond G-OVD. Similar to
 945 Weakly Supervised Detection (WSD) Bilen & Vedaldi (2016); Ye et al. (2019), image-level labels
 946 reflect the presence of base and novel categories. The annotation cost is significantly higher than the
 947 benchmarks mentioned above, giving WS-OVD methods the greatest potential to push the limits of
 948 OVD.

950 Table 5: Summary of OVD benchmarks. “Caption”: in-domain captions like COCO-Captions.
 951 “Category Prior”: human priors on novel categories. “Image Label”: image-level category labels.

Benchmark	Caption	Category Prior	Image Label
V-OVD			
C-OVD	✓		
G-OVD		✓	
WS-OVD	✓	✓	✓

959 A.6 ABLATION STUDY

961 This section contains some tables of ablation experiments.

963 A.7 LIMITATIONS

965 Although DeCo-DETR achieves state-of-the-art performance in open-vocabulary object detection,
 966 several limitations remain. First, the construction of the Dynamic Hierarchical Concept Pool
 967 (DHCP) relies on large vision-language models such as LLaVA and CLIP, which may hinder de-
 968 ployment in resource-constrained environments. Second, despite mitigating task conflicts via para-
 969 metric decoupling training, the model’s generalization ability on extreme long-tailed distributions
 970 or fine-grained categories with high similarity still requires further improvement. Additionally, the
 971 current method is primarily designed for static image detection and has not yet been extended to
 972 real-time open-vocabulary detection in video sequences or dynamic scenarios.

972
 973 Table 6: Comparison of inference efficiency and open-vocabulary detection performance on COCO.
 974 DeCo-DETR achieves the best trade-off between accuracy and speed.

975 Method	976 Backbone	977 <i>AP_{novel}</i>	978 Text Enc.	979 Latency (ms)	980 FPS
<i>Fusion-based:</i>					
977 Grounding DINO-T	978 Swin-T	979 42.1	980 BERT-Base	981 ~280	982 3.5
977 VL-PLM	978 ResNet-50	979 32.3	980 RoBERTa	981 ~210	982 4.7
<i>Distillation/Decoupled:</i>					
980 DetPro	981 ResNet-50	982 29.4	983 -	984 250	985 4.0
980 CAKE	981 ResNet-50	982 38.2	983 -	984 145	985 6.9
980 DeCo-DETR (Ours)	981 ResNet-50	982 41.3	983 -	984 135	985 7.4

985 Table 7: Comparison of performance of different models on the OV-COCO dataset

986 Model	987 AP_{50^{novel}}	988 AP_{50^{base}}
988 LLaVA-1.5 7B	989 30.1	990 52.1
989 LLaVA-1.5 13B(Ours)	990 38.2	991 55.5
990 LLaVA-NEXT 7B	991 32.1	992 53.3
991 LLaVA-NEXT 13B	992 38.6	993 55.8
992 Qwen2.5-VL 7B	993 33.1	994 53.9
993 Qwen2.5-VL 32B	994 38.9	995 55.9

996 A.8 SOCIAL IMPACT

997 DeCo-DETR has broad application potential in autonomous driving, human-computer interaction,
 998 and intelligent security systems. By enhancing the model’s ability to recognize unseen categories,
 999 it can improve the adaptability and safety of intelligent systems in open-world environments. How-
 1000 ever, we also recognize that efficient object detection technology could be misused for privacy in-
 1001 fringement or large-scale surveillance. Therefore, we encourage the research community to adhere
 1002 to ethical guidelines, ensure that applications align with social responsibility and legal standards,
 1003 and promote the development of transparent, trustworthy, and controllable AI systems.

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048

1049 Table 8: Ablation study on the number of Decoder Queries (N) and Fine-grained Prototypes (M_2).
 1050 The default setting is highlighted in bold.

Configuration	Queries (N)	Fine Units (M_2)	AP_{novel}	AP_{base}	Latency (ms)
DeCo-DETR	300	4800	36.5	53.8	125
DeCo-DETR	1000	4800	39.1	54.5	130
DeCo-DETR	2000	4800	41.3	55.5	135
DeCo-DETR	2000	0 (Coarse only)	30.8	54.1	131
DeCo-DETR	2000	9600 (Double)	41.5	55.6	142

1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079