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Abstract

The presence of uncertainty in policy evaluation significantly complicates the
process of policy ranking and selection in real-world settings. We formally consider
offline policy selection as learning preferences over a set of policy prospects given
a fixed experience dataset. While one can select or rank policies based on point
estimates of their expected values or high-confidence intervals, access to the full
distribution over one’s belief of the policy value enables more flexible selection
algorithms under a wider range of downstream evaluation metrics. We propose
a Bayesian approach for estimating this belief distribution in terms of posteriors
of distribution correction ratios derived from stochastic constraints. Empirically,
despite being Bayesian, the credible intervals obtained are competitive with state-of-
the-art frequentist approaches in confidence interval estimation. More importantly,
we show how the belief distribution may be used to rank policies with respect to
arbitrary downstream policy selection metrics, and empirically demonstrate that this
selection procedure significantly outperforms existing approaches, such as ranking
policies according to mean or high-confidence lower bound value estimates.

1 Introduction

Off-policy evaluation (OPE) [53] in the context of reinforcement learning (RL) is often motivated as
a way to mitigate risk in practical applications where deploying a policy might incur significant cost
or safety concerns [60]. Indeed, by providing a point estimate of the value of a target policy solely
from a static offline dataset of logged experience in the environment, OPE can help practitioners
determine whether a target policy is or is not safe and worthwhile to deploy. Still, in many practical
applications the ability to accurately estimate the online value of a specific policy is less of a concern
than the ability to select or rank a given set of policies (one of which may be the currently deployed
policy). For example, in recommendation systems, a practitioner may have a large number of policies
trained offline using various hyperparameters, while cost and safety constraints only allow a few of
those policies to be deployed as live experiments. Which policies should be chosen to form the small
subset that will be evaluated online?

This problem, related to but subtly different from OPE, is offline policy selection [17, 51, 36]. The
original motivations for OPE were arguably with offline policy selection in mind [53, 28], the idea
being that one can use estimates of the value of a set of policies to rank and then select from this set.
Accordingly, there is a rich literature of approaches for computing point estimates of the value of
the policy [19, 4, 31, 59, 45, 69, 62, 32, 66], as well as estimating high-confidence lower and upper
bounds on a target policy’s value [60, 36, 4, 25, 22, 11, 34].

These existing OPE approaches may be readily applied to the recommendation systems example above
by using either mean or high-confidence bounds estimates on each candidate policy to rank the set
and picking the top few to deploy online. However, such a naïve approach ignores crucial differences
between the OPE problem setting and the downstream evaluation criteria a practitioner prioritizes.
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For example, when choosing a few policies out of a large number of policies, a recommendation
systems practitioner may have a number of objectives in mind: They may strive to ensure that the
policy with the overall highest groundtruth value is within the small subset of selected policies (akin
to top-k precision). Or, in scenarios where the practitioner is sensitive to large differences in achieved
value, a more relevant downstream metric may be the difference between the largest groundtruth
value within the k selected policies compared to the groundtruth of the best possible policy overall
(akin to top-k regret). With these potential offline policy selection metrics, it is far from obvious that
ranking according to OPE mean or high-confidence bound estimates is ideal [17].

The diversity of downstream metrics for offline policy selection presents a challenge to any algorithm
that produces a point estimate for each policy. In fact, any one approach to computing point estimates
will necessarily be sub-optimal for some adversarially chosen policy selection criteria. To circumvent
this challenge, we propose to compute a belief distribution over groundtruth values for each policy.
Specifically, with the posteriors of the policy values, one can calculate the distribution of a variety of
criteria over the value for each policy. These posteriors can be used in a straightforward procedure that
takes estimation uncertainty into account to rank the policy candidates. While this belief distribution
approach to offline policy selection is attractive, it also presents its own challenge: how should one
estimate such a distribution in the purely offline setting?

We propose Bayesian Distribution Correction Estimation (BayesDICE) to address this challenge.
BayesDICE works by estimating posteriors over correction ratios for each state-action pair, corre-
sponding to a belief distribution over density ratios between the off-policy data and the stationary
distribution of the target policy. In contrast to the point estimates of state-of-the-art DICE estima-
tors [45, 69, 66], BayesDICE maintains a distribution from which the sampled ratio satisfies the
stationary distribution condition with high probability. Given belief distributions over these correction
ratios, the belief distribution over a policy value may be estimated by averaging these correction
distributions over offline data, weighted by rewards or other nonlinear utilities in the case of more
exotic downstream policy selection criteria.

As a preliminary experiment, we show that the proposed BayesDICE is highly competitive to existing
frequentist approaches when applied to confidence interval estimation. Then, we demonstrate the
superiority of BayesDICE applied to offline policy selection under different utility measures, across a
variety of discrete and continuous RL tasks. Our policy selection experiments suggest that, while
conventional wisdom in the OPE literature focuses on using lower bound estimates to select policies
(due to safety concerns) [36], policy ranking based on the lower bound estimates may not always
lead to lower downstream regret. Furthermore, when other metrics of policy selection are considered,
such as top-k precision, being able to sample from the posterior enables significantly better policy
selection than only having access to the mean or confidence bounds of the estimated policy values.

We note that the offline policy selection problem is distinct from offline policy optimization (OPO)
[39, 24, 35, 6], where one seeks a policy from a parameterized class that optimizes a pointwise
objective without consideration of its performance relative to an ensemble of reference policies. (This
distinction will become clear in Section 2 below.) In summary, the contributions of this paper are
three-fold:
• We formally define offline policy selection and compare and contrast it to traditional OPE (and

OPO).
• We propose BayesDICE for characterizing the posterior of the stationary state-action ratio, derived

from the perspective of stochastic constraints.
• We design a simulation-based policy ranking algorithm, OfflineSelect, that converts the estimated

posteriors from BayesDICE to a ranking of policies with respect to a selection criterion.

2 Offline Policy Selection

We consider an infinite-horizon Markov decision process (MDP) [54] denoted as M =
hS;A;R; T; �0; i, which consists of a state space, an action space, a deterministic reward function,
a transition probability function, an initial state distribution, and a discount factor  2 (0; 1]. For
simplicity, we restrict our analysis to deterministic rewards, and extending our methods to stochastic
reward scenarios is straightforward. In this setting, a policy �(atjst) interacts with the environment
starting at s0 � �0 and receives a scalar reward rt = R(st; at) as the environment transitions into a
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Figure 1: An overview of our proposed approach to of�ine policy selection. While traditional
approaches compute a point estimate for the value of each policy and then rank according to these
estimates, BayesDICE approximates an entire belief distribution over the value of each policy
conditioned on the provided �nite experience dataset. The BayesDICE approximate posteriors are
passed toOfflineSelect (Algorithm 1), which simulates samples from the posteriors and chooses
the policy ranking which achieves the best expected utility (top-2 regret in this example). In many
scenarios, leveraging the belief distribution leads to better policy selection than traditional approaches.

new statest +1 � T(st ; at ) at each timestept. The value of a policy is de�ned as
� (� ) := (1 �  ) Es0 ;a t ;s t [

P 1
t =0  t r t ] : (1)

We formalize theof�ine policy selectionproblem as providing a rankingO 2 Perm([1; N ])
over a set of candidate policies f � i gN

i =1 given only a �xed dataset D = f x ( j ) :=
(s( j )

0 ; s( j ) ; a( j ) ; r ( j ) ; s0( j ) )gn
j =1 wheres( j )

0 � � 0, (s( j ) ; a( j ) ) � dD are samples of an unknown
distributiondD , r ( j ) = R(s( j ) ; a( j ) ), ands0( j ) � T(s( j ) ; a( j ) ). 2

The vanilla approach to the of�ine policy selection problem is to characterize thevalueof each policy
under someutility functionu(� ) and then sort the policies accordingly;i.e.,

O  ArgSortDescending(f u(� i )gN
i =1 ):

The utility u(� i ) is typically the result of an OPE algorithm applied toD and� i ; i.e., u(� i ) is either
a mean or lower-con�dence bound estimate of the policy's normalized per-step reward in (1).

2.1 Selection evaluation

A proposed rankingO will eventually be evaluated according to how well its policy ordering aligns
with the groundtruth policy values. In this section, we elaborate on several potential forms of this
evaluation score.

The groundtruth policy value for� i is given by� (� i ), and we use� i as shorthand for this expression.
As part of the of�ine policy selection problem, we are given aranking scoreS, which serves as the
downstream selection criterion we want to optimize. The ranking score is a function that produces a
scalar evaluation metric given a proposed rankingO and groundtruth policy values off � i g

N
i =1 . The

S can take on many forms and is application speci�c;e.g.,
• top-k precision: This is an ordinal ranking score. The score considers the topk policies in terms

of groundtruth means� i and returns the proportion of these which appear in the topk spots ofO.
• top-k accuracy: Another ordinal ranking score, this score considers the top-k policies in sorted

order in terms of groundtruth means� i and returns the proportion of these which appear in the
same ordinal location inO.

• top-k correlation: Another ordinal ranking score, this represents the Pearson correlation coef�cient
between the ranking of top-k policies in sorted order in terms of groundtruth means� (� i ) and the
truly best top-k policies.

• top-k regret: This is a cardinal ranking score. This score respresents the difference in groundtruth
means� i between the overall best policy –i.e., maxi � i – and the best policy among the top-k
ranked policies –i.e., maxi 2 [1;k ] � O [k ].

• Beyond expected return: One may de�ne the above ranking scores in terms of statistics of the
policy value other than the groundtruth meansf � i g

N
i =1 . For example, in safety-critical applications,

2This tuple-based representation of the dataset is for notational and theoretical convenience, following [11, 34].
In practice, the dataset is usually presented as �nite-length trajectoriesf (s( j )

0 ; a( j )
0 ; r ( j )

0 ; s( j )
1 ; : : : )gm

j =1 , and
this can be processed into a dataset of �nite samples from� 0 and fromdD � R � T . We further assume, for
mathematical simplicity, that the dataset is sampled i.i.d., as is common in the OPE literature [62]. In some cases
this may be relaxed by assuming a fast mixing time [45].

3



one may be concerned with the variance of the policy return. Accordingly, one may de�ne CVaR
analogues to top-k precision and regret. For simplicity, we will restrict the discussion in this paper
to ranking scores which only depend on the groundtruth expected returnsf � i g

N
i =1 .

2.2 Bayes ranking simulation from the posterior

It is not clear whether ranking according to vanilla OPE (either mean or con�dence based) is ideal for
any of the ranking scores above, including, for example, top-1 regret in the presence of uncertainty.
However, if one has access to an approximate belief distribution over the policy values, one can
simply simulate the Bayes risk over all candidate ranks to �nd a near-optimal ranking [18] with
respect to an arbitrary speci�ed downstream ranking score, and we elaborate on this Bayes decision
procedure here.

Algorithm 1 OfflineSelect

Inputs Posteriorsq(f � i g
N
i =1 ), ranking scorêS

Initialize O� ; L � � Track best score
for O in Perm([1; :::; N ]) do

L = 0
for j = 1 to n do

samplef �̂ ( j )
i gN

i =1 � q(f � i g
N
i =1 )

� Sum up sample scores

L = L + Ŝ(f �̂ ( j )
i gN

i =1 ; O)
end for
if L < L � then

� Update best ranking/score
L � = L; O� = O

end if
end for; return O� ; L �

In the ideal case if we have access to the true
groundtruth policy valuesf � i g

N
i =1 , and the rank-

ing score functionS, we can calculate the score
value ofanyrankingO and �nd the rankingO�

that optimizes this score. However, we are lim-
ited to a �nite of�ine dataset and the full return
distributions are unknown. In this of�ine setting,
we propose to instead compute a belief distribu-
tion q(f � i g

N
i =1 ), and then we can optimize over

the expected ranking score,i.e.,
~O� := argmin

O
Eq

�
S(O; f � i g

N
i =1 )

�
(2)

as shown in Algorithm 1. This algorithm com-
putes the Bayes risk by simulating realizations
of the groundtruth valuesf � i g

N
i =1 with samples

from the belief distributionq(f � i g
N
i =1 ), and in

this way estimates the expected realized ranking
scoreS over all possible rankingsO. As we will show empirically, matching the Bayes selection
process (theS used in Algorithm 1) to the downstream ranking score naturally leads to improved
performance. The question left now becomes how to effectively learn a belief distribution over
f � i g

N
i =1 , and this is answered by the BayesDICE algorithm.

3 BayesDICE

We propose BayesDICE for estimating the belief distribution overf � i g
N
i =1 . We �rst investigate

alternative characterizations of policy value to justify a representation in terms of stationary density
correction ratios (generally known as DICE or marginalized importance weights). These correction
ratios are characterized by a set of constraints, one for each state-action pair, which presents a
challenge for posterior inference. However, by re-expressing Bayesian inference as an optimization,
we bypass this dif�culty viastochastic constraints, a derivation that is of independent interest. We
then apply the resultingconstrained posterior inferenceto DICE, yielding a novel estimator that is
computationally attractive while supporting a broad range of ranking scores for downstream tasks.

3.1 Alternative Representations of Policy Value

To accomplish of�ine policy selection one must choose a speci�c expression to represent the value of
a policy. There are several principal requirements for such a representation:
• Of�ine : Since we focus on ranking policies given onlyof�ine data, the policy value should not

depend on on-policy samples or access to a known behavior policy.
• Versatility : Since the downstream task may utilize different ranking scores, the policy value

representation should be compatible with ef�cient evaluation of these scores.
With these considerations in mind, we review choices for representing the value of a policy� . De�ne

Q� (s; a) = E
� P 1

t =0  t R(st ; at )js0 = s; a0 = a
�

and d� (s; a) = (1 �  )
P 1

t =0  t d�
t (s; a) ;

with d�
t (s; a) = P (st = s; at = ajs0 � � 0 ; 8i < t; a i � � (�jsi ) ; si +1 � T (�jsi ; ai )) ;
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which are the state-actionvalue functionandstationary visitationsof � . These quantities satisfy the
recursions
Q� (s; a) = R(s; a) +  � P � Q� (s; a); where P � Q(s; a) := Es0� T ( s;a ) ;a 0� � ( s0) [Q(s0; a0)]; (3)
d� (s; a) = (1 �  )� 0(s)� (ajs) +  � P �

� d� (s; a); where P �
� d(s; a) := � (ajs)

P
~s; ~a T(sj~s; ~a)d(~s; ~a): (4)

From these identities, the policy value can be expressed in two equivalent ways:
� (� ) = (1 �  ) � Ea0 � � ( s0 )

s0 � � 0

[Q� (s0 ; a0)] (5)

= E( s;a ) � d � [r (s; a)]: (6)

Current OPE methods are generally based on one of the representations(1), (5) or (6). For example,
importance sampling (IS) estimators [53, 44, 19] are based on(1); LSTDQ [37] is a representative
algorithm for �tting Q� and thus based on(5); the DICE algorithms [66] estimate the stationary
density ratio� � (s; a) := d� (s;a )

dD so that� (� ) = EdD [� � � r ], and are thus based on(6). To reduce
notational clutter, we omit the superscripted� on � when it is clear from context.

Among the three representations, the stationary density ratio representation fully supports the stated
requirements, and hence is the most promising for the ultimate selection task. First, IS estimators
suffer from an exponential growth in variance [42] and require knowledge of the behavior policy.
By contrast, the functionsQ� andd� share common minimax properties [62] and can be estimated
without knowledge of the behavior policy enablingbehavior-agnosticlearning. However,Q� exhibits
a linear dependence onR (s; a), hence, even ifQ� is estimated accurately, it is still infeasible to
evaluate ranking scores that involve(1 �  ) E [

P 1
t =0  t � (r t )] with a nonlinear� (unless one learns

a differentQ function for each possible ranking score, which may be computationally expensive).
By contrast, the stationary density ratios� (s; a) areindependentof reward, which enables ef�cient
ranking on a variety of downstream ranking scores. For example, in the case of a nonlinear utility
� , the policy value may be easily computed from the stationary density ratio asEdD [� � � (r )].
Based on these considerations, representing policy value via stationary density ratios best satis�es the
requirements: it enjoys statistical advantages for of�ine setting [67, 29] and is �exible for downstream
ranking score calculation. Therefore, we focus on developing a Bayesian estimator for� � .

3.2 Stationary Ratio Posterior Estimation

Typically, a posteriorq(� � jD ) is de�ned in terms of a priorp(� � ) and likelihood functionp(Dj � � )
via Bayes' rulei.e., q(� � jD ) / p(Dj � � ) p(� � ). However, the posterior can also be equivalently
expressed as the result of an optimization problem [63, 68]

min
q2P

� Eq( � � ) [logp(Dj � � )] + KL (qkp) ; (7)

= min
q

� + KL (qkp) ; s:t : q 2 P \
�

� = � Eq( � � ) [logp(Dj � � )]
	

: (8)

whereP is the space of valid densities. This optimization interpretation of Bayesian inference has
been generalized in well known work onposterior regularizationandreguarlized Bayes[43, 41, 70],
which considers more complex loss functions on� and richer constraints on the “posterior”

min
q2P (D ;� )

�U (� ) + KL (qkp) ; (9)

whereP (D; � ) := P \ 
 ( D; � ) with 
 ( D; � ) as a set de�ned by data-dependent constraints with
slack variable� andU (�) a loss function. Although(9) can easily express(8), they key advantage is
that the more general formulation allows Bayesian inference to be practically applied in scenarios
when the likelihood does not have an explicit, tractable form, or when there are additional constraints
that cannot be conveniently encoded in the prior or likelihood [43, 41, 70].

This framing allows us to naturally incorporate constraints arising from the stationary density ratio
representation(4). However, previous work only considers�nitely many constraints onposterior
expectations, while the constraints for� induced by(4) consider each ratio functionindividuallyon
arbitrary(s; a) 2 S� A, which can potentially be in�nitely many. Therefore, to apply the generalized
Bayesian framework(9) to our scenario, we �rst need to extend the formulation by considering a
function space embedding to reduce the number of constraints to �nitely many [12, 38, 11], then
reformulate these as chance constraints to ensure� satis�es the constraints with high probability [47].

Constraints Embedding First, we use a function space embedding to reduce the number of
constraints to �nitely many [12, 38, 11]. Let � d (s; a) := (1 �  )� 0(s)� (ajs)+  �P �

� d(s; a)� d (s; a).
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Consider a feature mapping� (�; �) : S� A ! Rm and the induced RKHSH � , and de�neh�; � d i :=
E(1 �  ) � 0 (s) � (ajs)+  �P �

� d(s;a ) [� (s; a)] � Ed(s;a ) [� (s; a)].

Then the constraints(4) can be expressed as� d(s; a) = 0 . We can match distributions in terms of
their embeddings [57] by measuringh�; � d i > h�; � d i , a generalization of the approximation methods
in [12, 38]. In particular, whenjSj jAj is �nite and we set� (s; a) = � s;a , where� s;a 2 f 0; 1gjSjj A j is
an indicator vector with a single1 at position(s; a) and0 otherwise, we are matching the distributions
pointwise. The feature map� (s; a) can also be set to general reproducing kernelk ((s; a); �) 2 R1 .
As long as the kernelk (�; �) is characteristic, the embeddings will match if and only if the distributions
are identical almost surely [58]. We further re-frame the constraint with Fenchel duality [46]

h�; � d i > h�; � d i = max
� 2H �

� > h�; � d i � � > �

= ` (�; D) := max
� 2H �

(1�  ) E� 0 �
�
� > �

�
� � > � + EdD

�
� (s; a) � > (� (s0; a0) � � (s; a))

�
; (10)

resulting in the �nal constraint̀ (�; D) = 0 .

Chance Constraints Given that the experience is a �nite sample fromdD , we have to approximate
` with a sample estimator̂` and the constraint for� in (10)might not hold exactly using̀̂. However,

under mild conditions, we haved
� (s;a )
dD 2 � :=

n
� : ^̀(�; D) 6 �

o
with high probability (see Ap-

pendix A for the precise statement and proof). Thus, we expect a randomly sampled ratio� � q(� )
to be in the relaxed feasible set� with high probability. Incorporating this into (9) yields

min
q

KL (qkp) � ��; s:t : Pq (` (�; D) 6 � ) > �; (11)

where the chance constraint enforces the probability that� is feasible under the posterior. This
formulation can be equivalently rewritten as

min
q

KL (qkp) � � Pq (` (�; D) 6 � ) (12)

Then, by applying Markov's inequality,i.e., Pq (` (�; D) 6 � ) = 1 � Pq (` (�; D) > � ) > 1 �
Eq [` ( �; D )]

� , we can obtain an upper bound on (12) as

min
q

KL (qkp) +
�
�

Eq [`(�; D)] (13)

= min
q( � )

max
q( � j � )

KL (qkp) +
�
�

Eq( � ) q( � j � )

h
ÊD

h
� (s; a) � � > �

� (s0; a0) � � (s; a)
�

� f � (� )
i

+ (1 �  ) E� 0 �

h
� > �

i i
; (14)

where the last equation follows by interchangeability [56, 10]. Note that̀ (�; D) > 0 sinceH � is
symmetric, so the outer optimization is lower bounded. We amortize the optimization for� w.r.t. each
� to a distributionq(� j� ) to reduce the computational effort. The pseudo-code of the BayesDICE
algorithm is shown in Algorithm 2.

Finally, with the posterior approximation for� i , denoting the estimate for candidate policyi ,
we can draw posterior samples of�� i by drawing a sample� i � q(� i ) and computing�̂ i =
1
n

P
(s;a;r )2D � i (s; a)r . This de�nes a posterior distribution over�� i . For the joint posterior over

f �� i gN
i =1 we use a mean �eld approximation to express it as a product of independent marginals,

i.e., q(f �� i gN
i =1 ) =

Q
i q(�� i ). This de�nes the necessary inputs forOfflineSelect to determine a

ranking of the candidate policies.

Given the space limits, please see Appendix B and C for a discussion of other important aspects
of BayesDICE, including an alternative safe surrogate of the chance constraints, parametrization
of the posteriors, variants of BayesDICE for undiscounted MDPs, connections to vanilla Bayesian
stochastic processes, and the application of BayesDICE to exploration.

4 Related work

We categorize the relevant related work into �ve categories: of�ine policy selection, of�ine policy
optimization, off-policy evaluation, Bayesian reinforcement learning, and posterior regularization.
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Algorithm 2 BayesDICE

Inputs sampled initial stateŝ� 0 = f s( j )
0 gm

j =1 , of�ine data D = f (s( j )
0 ; s( j ) ; a( j ) ; r ( j ) ; s0( j ) )gn

j =1 ,
target policy� , parametrized distributionsq� 1 (�; �) andq� 2 (�; �), a prior p, convex functionf
(conjugatef � ), constants�; � , learning rates� � ; � � , training iterationsT, and batch sizeB .
for t = 1 ; : : : ; T do

Sample batchf (s( j ) ; a( j ) ; r ( j ) ; s0( j ) )gB
j =1 from D, f s( j )

0 gB
j =1 from �̂ 0, a0( j ) � � (s0( j ) ) and

a( j )
0 � � (s( j )

0 ) for j = 1 ; : : : ; B .
Sample� 0 � q� 1 (s( j )

0 ; a( j )
0 ), � � q� 1 (s( j ) ; a( j ) ), � 0 � q� 1 (s0( j ) ; a0( j ) ), and� � q� 2 (s( j ) ; a( j ) ).

Compute losŝJ = KL (pkq� 1 ) + KL (pkq� 2 ) + �
�B

P B
i =1 (� (� � � 0) � f � (� )) + (1 �  )� 0.

Update� 1  � 1 + � � r � 1 Ĵ and� 2  � 2 � � � r � 2 Ĵ .
end for; return q� 2 (�; �)

Of�ine policy selection The decision making problem we formalize as of�ine policy selection
is a member of a set of problems in RL referred to asmodel selection. Previously, this term has
been used to refer to state abstraction selection [28, 30] as well as learning algorithm and feature
selection [23, 50]. More relevant to our proposed notion of policy selection are a number of previous
works which use model selection to refer to the problem of choosing a near-optimalQ-function from
a set of candidate approximation functions [21, 20, 27, 64]. In this case, the evaluation metric is
typically de�ned as theL 1 norm of difference ofQ versus the state-action value function of the
optimal policyQ� . While one can relate this evaluation metric to the sub-optimality (i.e., regret) of
the policy induced by theQ-function, we argue that our proposed policy selection problem is both
more general – since we allow for the use of policy evaluation metrics other than sub-optimality – and
more practically relevant – since in many practical applications, the policy may not be expressible
as the argmax of aQ-function. Lastly, the of�ine policy selection problem we describe is arguably
a formalization of the problem approached in [51] and referred to ashyperparameter selection. In
contrast to this previous work, we not only formalize the decision problem, but also propose a method
to directly optimize the policy selection evaluation metric. Of�ine policy selection has also been
studied by [17], who consider desirable properties of a point estimator to yield good rankings in
terms of a notion of ranking score referred to asfairness.

Of�ine policy optimization While it is possible to integrate desired criteria such as pessimism into
of�ine policy optimization [35, 6], this requires the desired criteria (e.g., maximum high-con�dence
lower bound) to be speci�ed prior to policy learning, which might differ from what a practitioner
deploying the policy prefers (e.g., policies that achieve top-k precision or regret). Furthermore,
policies in practical applications may not be amenable to (policy)-gradient-based learning (e.g.,
policies with business logic and hard-coded rules). In these cases, it is much easier to rank a set of
candidate policies given a set of criteria rather than learning one policy for each criterion.

Off-policy evaluation Off-policy evaluation (OPE) is a highly active area of research. While the
original motivation for OPE was in the pursuit of policy selection [53, 28], the �eld has historically
almost exclusively focused on the related but distinct problem of estimating the online value (accu-
mulated rewards) of a single target policy. In addition to a plethora of techniques for providing point
estimates of this groundtruth value [19, 4, 31, 59, 32, 45, 69, 66], there is also a growing body of
literature that uses frequentist principles to derive high-con�dence lower bounds for the value of a
policy [4, 61, 25, 36, 22, 11, 34]. As our results demonstrate, ranking or selecting policies based on
either their estimated mean or lower con�dence bounds can at times be sub-optimal, depending on
the evaluation criteria.

Bayesian reinforcement learning Our proposed method for of�ine policy selection relies on
Bayesian principles to estimate a posterior distribution over the groundtruth policy value. While
many Bayesian RL methods have been proposed for policy optimization [14, 52], especially in the
context of exploration [26, 13, 33], relatively few have been proposed for policy evaluation. In one
instance, [21] derive PAC-Bayesian bounds on estimates of the Bellman error of a candidateQ-value
function. In contrast to this work, the BayesDICE estimates a distribution over stationary density ratio,
and this distribution allows us to directly optimize arbitrary downstream policy selection metrics.
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Figure 2: CI estimation results. They-axis shows the empirical coverage and median log-interval
width across200trials. BayesDICE exhibits near true coverage with narrow interval width.

Distinguish distributional RL Although both distributional RL [2, 8, 7] and BayesDICE learn
distributions over quantities of interest, these distributions are signi�cantly different and with different
update rules. Distributional RL �ts a distribution of returns over future trajectories, where the
randomness comes from stochasticity of MDP transitions and policy action selections. In contrast,
BayesDICE learns distributions of stationary density ratios in aBayesian posteriorsense, which
captures uncertainty from both model stochasticity and �nite observations, while marginalizing over
any stochasticity in MDP transitions and policy action selections. More importantly, BayesDICE is
designed to serve as a component for policy selection derived via Bayes decision theory, with which
distributional RL is not compatible.

Bayesian inference with posterior regularization Unlike vanilla Bayesian inference for posterior
computation, the proposed BayesDICE does not rely on an explicitly computed log-likelihood, but
instead estimates the posterior of the stationary density ratio by enforcing a stochastic constraint. This
formulation of BayesDICE is inspired by the functional optimization view of Bayesian inference [63,
68, 9]. There are several works introducing the data-dependent constraints or regularization to encode
the side information of the posterior into the optimization framework,e.g., generalized expectation
criteria [43], learning from measurements [41], and regularized Bayes [70]. The most important
difference lies in the formulation of the constraints: the existing works only considersexpectation
constraints/regularization, while we largely extend the framework to more generalchance constraints.

5 Experiments

We empirically evaluate BayesDICE in estimating con�dence intervals (which can be used for policy
selection) and of�ine policy selection under linear and neural network posterior parametrizations
on tabular Bandit, Taxi [16], FrozenLake [5], and continuous-control Reacher [5] tasks. As shown
in Figure 2, BayesDICE outperforms existing methods for con�dence interval (CI) estimation based
on concentration inequalities, producing accurate coverage while maintaining tight interval width,
suggesting that BayesDICE achieves accurate posterior estimation in practice while being robust
to approximation errors and potentially misaligned Bayesian priors. Moreover, in of�ine policy
selection settings, matching the selection criteria (Algorithm 1) to a variety of ranking scores (enabled
by the estimated posterior) shows clear advantage over policy ranking based on point estimates or
con�dence intervals. See Appendix D for additional results and implementation details.

5.1 Con�dence interval estimation

We �rst evaluate the BayesDICE approximate posterior by computing the accuracy of thecredible
intervals [40] it produces. To make comparisons with previous work, we evaluate frequentist con�-
dence interval properties of BayesDICE against a known set of CI estimators based on concentration
inequalities, and against CoinDICE [11], which is based-on empirical likelihood. While the frequen-
tist con�dence interval is analagous to the Bayesiancredible interval, they have different statistical
properties, so we expect that evaluating the credible intervals BayesDICE produces under frequentist
measures will give a pessimistic estimate of its true performance. To compute the concentration-
inequality-based baselines, we follow [11] by �rst using weighted (i.e., self-normalized) per-step
importance sampling [59] to obtain a policy value estimate for each logged trajectory. These trajecto-
ries provide a �nite sample of value estimates. We use self-normalized importance sampling in MDP
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