Offline Policy Selection under Uncertainty

*Mengjiao Yang', “Bo Dai®, *Ofir Nachum®
George Tucker®, Dale Schuurmans®#
TUC Berkeley, °Google Brain, *University of Alberta

Abstract

The presence of uncertainty in policy evaluation significantly complicates the
process of policy ranking and selection in real-world settings. We formally consider
offline policy selection as learning preferences over a set of policy prospects given
a fixed experience dataset. While one can select or rank policies based on point
estimates of their expected values or high-confidence intervals, access to the full
distribution over one’s belief of the policy value enables more flexible selection
algorithms under a wider range of downstream evaluation metrics. We propose
a Bayesian approach for estimating this belief distribution in terms of posteriors
of distribution correction ratios derived from stochastic constraints. Empirically,
despite being Bayesian, the credible intervals obtained are competitive with state-of-
the-art frequentist approaches in confidence interval estimation. More importantly,
we show how the belief distribution may be used to rank policies with respect to
arbitrary downstream policy selection metrics, and empirically demonstrate that this
selection procedure significantly outperforms existing approaches, such as ranking
policies according to mean or high-confidence lower bound value estimates.

1 Introduction

Off-policy evaluation (OPE) [53]] in the context of reinforcement learning (RL) is often motivated as
a way to mitigate risk in practical applications where deploying a policy might incur significant cost
or safety concerns [[60]]. Indeed, by providing a point estimate of the value of a target policy solely
from a static offline dataset of logged experience in the environment, OPE can help practitioners
determine whether a target policy is or is not safe and worthwhile to deploy. Still, in many practical
applications the ability to accurately estimate the online value of a specific policy is less of a concern
than the ability to select or rank a given set of policies (one of which may be the currently deployed
policy). For example, in recommendation systems, a practitioner may have a large number of policies
trained offline using various hyperparameters, while cost and safety constraints only allow a few of
those policies to be deployed as live experiments. Which policies should be chosen to form the small
subset that will be evaluated online?

This problem, related to but subtly different from OPE, is offline policy selection [17,51}136]. The
original motivations for OPE were arguably with offline policy selection in mind [53} 28], the idea
being that one can use estimates of the value of a set of policies to rank and then select from this set.
Accordingly, there is a rich literature of approaches for computing point estimates of the value of
the policy [19, 14,131} 159, 145,169} 162, 132} 66, as well as estimating high-confidence lower and upper
bounds on a target policy’s value [60} 36, 4, 25 22| [11} [34]].

These existing OPE approaches may be readily applied to the recommendation systems example above
by using either mean or high-confidence bounds estimates on each candidate policy to rank the set
and picking the top few to deploy online. However, such a naive approach ignores crucial differences
between the OPE problem setting and the downstream evaluation criteria a practitioner prioritizes.
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For example, when choosing a few policies out of a large number of policies, a recommendation
systems practitioner may have a number of objectives in mind: They may strive to ensure that the
policy with the overall highest groundtruth value is within the small subset of selected policies (akin
to top-k precision). Or, in scenarios where the practitioner is sensitive to large differences in achieved
value, a more relevant downstream metric may be the difference between the largest groundtruth
value within the k selected policies compared to the groundtruth of the best possible policy overall
(akin to top-k regret). With these potential offline policy selection metrics, it is far from obvious that
ranking according to OPE mean or high-confidence bound estimates is ideal [17]].

The diversity of downstream metrics for offline policy selection presents a challenge to any algorithm
that produces a point estimate for each policy. In fact, any one approach to computing point estimates
will necessarily be sub-optimal for some adversarially chosen policy selection criteria. To circumvent
this challenge, we propose to compute a belief distribution over groundtruth values for each policy.
Specifically, with the posteriors of the policy values, one can calculate the distribution of a variety of
criteria over the value for each policy. These posteriors can be used in a straightforward procedure that
takes estimation uncertainty into account to rank the policy candidates. While this belief distribution
approach to offline policy selection is attractive, it also presents its own challenge: how should one
estimate such a distribution in the purely offline setting?

We propose Bayesian Distribution Correction Estimation (BayesDICE) to address this challenge.
BayesDICE works by estimating posteriors over correction ratios for each state-action pair, corre-
sponding to a belief distribution over density ratios between the off-policy data and the stationary
distribution of the target policy. In contrast to the point estimates of state-of-the-art DICE estima-
tors [45) 169} 166l], BayesDICE maintains a distribution from which the sampled ratio satisfies the
stationary distribution condition with high probability. Given belief distributions over these correction
ratios, the belief distribution over a policy value may be estimated by averaging these correction
distributions over offline data, weighted by rewards or other nonlinear utilities in the case of more
exotic downstream policy selection criteria.

As a preliminary experiment, we show that the proposed BayesDICE is highly competitive to existing
frequentist approaches when applied to confidence interval estimation. Then, we demonstrate the
superiority of BayesDICE applied to offline policy selection under different utility measures, across a
variety of discrete and continuous RL tasks. Our policy selection experiments suggest that, while
conventional wisdom in the OPE literature focuses on using lower bound estimates to select policies
(due to safety concerns) [36l], policy ranking based on the lower bound estimates may not always
lead to lower downstream regret. Furthermore, when other metrics of policy selection are considered,
such as top-k precision, being able to sample from the posterior enables significantly better policy
selection than only having access to the mean or confidence bounds of the estimated policy values.

We note that the offline policy selection problem is distinct from offline policy optimization (OPO)

[139] 1241 135} 16]], where one seeks a policy from a parameterized class that optimizes a pointwise

objective without consideration of its performance relative to an ensemble of reference policies. (This

distinction will become clear in Section 2] below.) In summary, the contributions of this paper are

three-fold:

* We formally define offline policy selection and compare and contrast it to traditional OPE (and
OPO).

* We propose BayesDICE for characterizing the posterior of the stationary state-action ratio, derived
from the perspective of stochastic constraints.

* We design a simulation-based policy ranking algorithm, OfflineSelect, that converts the estimated
posteriors from BayesDICE to a ranking of policies with respect to a selection criterion.

2 Offline Policy Selection

We consider an infinite-horizon Markov decision process (MDP) [54] denoted as M =
(S, A, R, T, uo, ), which consists of a state space, an action space, a deterministic reward function,
a transition probability function, an initial state distribution, and a discount factor v € (0, 1]. For
simplicity, we restrict our analysis to deterministic rewards, and extending our methods to stochastic
reward scenarios is straightforward. In this setting, a policy 7(a;|s;) interacts with the environment
starting at so ~ po and receives a scalar reward r; = R(s;, a;) as the environment transitions into a
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Figure 1: An overview of our proposed approach to offline policy selection. While traditional
approaches compute a point estimate for the value of each policy and then rank according to these
estimates, BayesDICE approximates an entire belief distribution over the value of each policy
conditioned on the provided finite experience dataset. The BayesDICE approximate posteriors are
passed to 0fflineSelect (Algorithm[T)), which simulates samples from the posteriors and chooses
the policy ranking which achieves the best expected utility (top-2 regret in this example). In many
scenarios, leveraging the belief distribution leads to better policy selection than traditional approaches.

new state s;y1 ~ T'(s¢, ay) at each timestep ¢. The value of a policy is defined as

P (7T) = (1 - ’7) E307at75t [E;io ’Ytrt] : (1
We formalize the offline policy selection problem as providing a ranking O € Perm([1, N])
over a set of candidate policies {m;}, given only a fixed dataset D = {20 :=

(séj),s(j),a(j),r(j),s’(j))}?:l where s(()j) ~ o, (s9),a0)) ~ dP are samples of an unknown
distribution d?, 79 = R(s),a¥), and 5'0) ~ T(s), a®).[]

The vanilla approach to the offline policy selection problem is to characterize the value of each policy
under some utility function u(7) and then sort the policies accordingly; i.e.,

O < ArgSortDescending({u(m;)} ;).

The utility u(m;) is typically the result of an OPE algorithm applied to D and 7;; i.e., u(m;) is either
a mean or lower-confidence bound estimate of the policy’s normalized per-step reward in (T).

2.1 Selection evaluation

A proposed ranking O will eventually be evaluated according to how well its policy ordering aligns
with the groundtruth policy values. In this section, we elaborate on several potential forms of this
evaluation score.

The groundtruth policy value for 7r; is given by p(m;), and we use p; as shorthand for this expression.
As part of the offline policy selection problem, we are given a ranking score S, which serves as the
downstream selection criterion we want to optimize. The ranking score is a function that produces a
scalar evaluation metric given a proposed ranking O and groundtruth policy values of {p,}¥ . The
S can take on many forms and is application specific; e.g.,

* top-k precision: This is an ordinal ranking score. The score considers the top % policies in terms
of groundtruth means p; and returns the proportion of these which appear in the top & spots of O.

* top-k accuracy: Another ordinal ranking score, this score considers the top-k policies in sorted
order in terms of groundtruth means p; and returns the proportion of these which appear in the
same ordinal location in O.

* top-k correlation: Another ordinal ranking score, this represents the Pearson correlation coefficient
between the ranking of top-k policies in sorted order in terms of groundtruth means p(7;) and the
truly best top-k policies.

* top-k regret: This is a cardinal ranking score. This score respresents the difference in groundtruth
means p; between the overall best policy — i.e., max; p; — and the best policy among the top-k
ranked policies — i.e., max;c[1 k] Po]-

* Beyond expected return: One may define the above ranking scores in terms of statistics of the
policy value other than the groundtruth means {p, }¥ . For example, in safety-critical applications,

>This tuple-based representation of the dataset is for notational and theoretical convenience, following [11134].
In practice, the dataset is usually presented as finite-length trajectories {(s¥ ) a, r(()] ) s )}ix,, and
this can be processed into a dataset of finite samples from po and from d” x R x T. We further assume, for

mathematical simplicity, that the dataset is sampled i.i.d., as is common in the OPE literature [62]]. In some cases
this may be relaxed by assuming a fast mixing time [45]].



one may be concerned with the variance of the policy return. Accordingly, one may define CVaR
analogues to top-k precision and regret. For simplicity, we will restrict the discussion in this paper
to ranking scores which only depend on the groundtruth expected returns {p, }¥ ;.

2.2 Bayes ranking simulation from the posterior

It is not clear whether ranking according to vanilla OPE (either mean or confidence based) is ideal for
any of the ranking scores above, including, for example, top-1 regret in the presence of uncertainty.
However, if one has access to an approximate belief distribution over the policy values, one can
simply simulate the Bayes risk over all candidate ranks to find a near-optimal ranking [18]] with
respect to an arbitrary specified downstream ranking score, and we elaborate on this Bayes decision

procedure here.

In the ideal case if we have access to the true
groundtruth policy values {p,}¥ , and the rank-
ing score function S, we can calculate the score
value of any ranking O and find the ranking O*
that optimizes this score. However, we are lim-
ited to a finite offline dataset and the full return
distributions are unknown. In this offline setting,
we propose to instead compute a belief distribu-
tion ¢({p,; }},), and then we can optimize over
the expected ranking score, i.e.,

(’j* = argminEq [S(Ou {pz f\il)] (2)
(@]

as shown in Algorithm (I} This algorithm com-
putes the Bayes risk by simulating realizations
of the groundtruth values {p,}¥.; with samples
from the belief distribution ¢({p,},), and in

Algorithm 1 0OfflineSelect

Inputs Posteriors ¢({p; }¥.,), ranking score S
Initialize O*; L* > Track best score
for O in Pern([1, ..., N]) do
L=0
for j = 1tondo
sample {5 }); ~ q({p;}}L)
> Sum up sample scores
L=L+8({p"}1,0)
end for
if L < L* then
> Update best ranking/score
L*=L,0"=0
end if
end for; return O*, L*

this way estimates the expected realized ranking
score S over all possible rankings O. As we will show empirically, matching the Bayes selection
process (the S used in Algorithm[I) to the downstream ranking score naturally leads to improved
performance. The question left now becomes how to effectively learn a belief distribution over
{5, }}¥,, and this is answered by the BayesDICE algorithm.

3 BayesDICE

We propose BayesDICE for estimating the belief distribution over {p,}¥.,. We first investigate
alternative characterizations of policy value to justify a representation in terms of stationary density
correction ratios (generally known as DICE or marginalized importance weights). These correction
ratios are characterized by a set of constraints, one for each state-action pair, which presents a
challenge for posterior inference. However, by re-expressing Bayesian inference as an optimization,
we bypass this difficulty via stochastic constraints, a derivation that is of independent interest. We
then apply the resulting constrained posterior inference to DICE, yielding a novel estimator that is
computationally attractive while supporting a broad range of ranking scores for downstream tasks.

3.1 Alternative Representations of Policy Value

To accomplish offline policy selection one must choose a specific expression to represent the value of

a policy. There are several principal requirements for such a representation:

» Offline: Since we focus on ranking policies given only offline data, the policy value should not
depend on on-policy samples or access to a known behavior policy.

* Versatility: Since the downstream task may utilize different ranking scores, the policy value
representation should be compatible with efficient evaluation of these scores.

With these considerations in mind, we review choices for representing the value of a policy 7. Define

Q" (s,a) =E [X272 7" R(st,ar)|so = s,a0 = a] and d" (s,a) = (1 —7) X272 7'd7 (s,0a),
with df (s,a) = P(st = s,a¢ = also ~ po, Vi < t,a; ~ 7 (:85), i1 ~ T (-|si, a:)),



which are the state-action value function and stationary visitations of 7. These quantities satisfy the
recursions

Qﬂ- (S, a‘) = R(S? a’) + v PWQW(Sv a’)? where PWQ(Sa (l) = ES'NT(s,a),a’NW(.s [ ( )}

d%(5,a) = (1 - 1o(s)n(als) +7 - PId™(s,a), where Prd(s,a) = n(als) Xy 5 T(s[5, a)d(,a).

From these identities, the policy value can be expressed in two equivalent ways:
p(m) = (1 =) - Eagarn(so)[Q" (50, a0)] ©)

S0~ HO
= E(s,a)~ar [1(s, @)]. 6)
Current OPE methods are generally based on one of the representations (I)), (3) or (). For example,
importance sampling (IS) estimators [53} 44}, [19]] are based on (T)); LSTDQ [37] is a representative
algorithm for fitting Q™ and thus based on (5)); the DICE algorithms [66] estimate the stationary
density ratio (7 (s, a) 1= L (S 2(9) o that p (7) = Egp [C™ - 7], and are thus based on (6). To reduce
notational clutter, we omit the superscripted 7 on ¢ when it is clear from context.

Among the three representations, the stationary density ratio representation fully supports the stated
requirements, and hence is the most promising for the ultimate selection task. First, IS estimators

suffer from an exponential growth in variance [42] and require knowledge of the behavior policy.

By contrast, the functions Q™ and d” share common minimax properties [62] and can be estimated
without knowledge of the behavior policy enabling behavior-agnostic learning. However, Q™ exhibits
a linear dependence on R (s, a), hence, even if Q™ is estimated accurately, it is still infeasible to
evaluate ranking scores that involve (1 — v) E [>";°, v*o(r;)] with a nonlinear o (unless one learns

a different ) function for each possible ranking score, which may be computationally expensive).

By contrast, the stationary density ratios (s, a) are independent of reward, which enables efficient
ranking on a variety of downstream ranking scores. For example, in the case of a nonlinear utility

o, the policy value may be easily computed from the stationary density ratio as Ego [( - o (7)].

Based on these considerations, representing policy value via stationary density ratios best satisfies the
requirements: it enjoys statistical advantages for offline setting [67,29] and is flexible for downstream
ranking score calculation. Therefore, we focus on developing a Bayesian estimator for (™.

3.2 Stationary Ratio Posterior Estimation

Typically, a posterior ¢ ((™|D) is defined in terms of a prior p (¢™) and likelihood function p (D|(™)
via Bayes’ rule i.e., ¢(¢™|D) « p(D|¢™) p (¢™). However, the posterior can also be equivalently
expressed as the result of an optimization problem [63} |68]]

{1116171,1 —Ey(¢ry [logp (DIC™)] + KL (qllp) , (7)
= min E+KL(q|p), st. g€ PN{&=—Eyn [logp(DICT)]}- )

where P is the space of valid densities. This optimization interpretation of Bayesian inference has
been generalized in well known work on posterior regularization and reguarlized Bayes [43} 141, [70],
which considers more complex loss functions on £ and richer constraints on the “posterior”
min AU (§) + KL , 9

Jmin AU (qllp) ©)
where P (D, &) := PN Q (D, &) with Q (D, ) as a set defined by data-dependent constraints with
slack variable £ and U (-) a loss function. Although (9) can easily express (8], they key advantage is
that the more general formulation allows Bayesian inference to be practically applied in scenarios
when the likelihood does not have an explicit, tractable form, or when there are additional constraints
that cannot be conveniently encoded in the prior or likelihood [43} 41 [70].

This framing allows us to naturally incorporate constraints arising from the stationary density ratio
representation (@). However, previous work only considers finitely many constraints on posterior
expectations, while the constraints for ¢ induced by () consider each ratio function individually on
arbitrary (s, a) € S x A, which can potentially be infinitely many. Therefore, to apply the generalized
Bayesian framework (9) to our scenario, we first need to extend the formulation by considering a
function space embedding to reduce the number of constraints to finitely many [12} 38} [11]], then

reformulate these as chance constraints to ensure ( satisfies the constraints with high probability [47].

Constraints Embedding First, we use a function space embedding to reduce the number of

constraints to finitely many [12,[38[11]. Let A4 (s, a) := (1—v)uo(s)m(a|s)+vy-PIrd(s,a)—d (s, a).

3
@



Consider a feature mapping ¢ (-, -) : S x A — R and the induced RKHS .4, and define (¢, Ag) :=
E(l—'y)u,o(s)Tr(a\s)-i-’vaId(s,a) [¢(Sv a)] - ]Ed(s,a) [QZ)(S, a)]

Then the constraints (@) can be expressed as A4(s, a) = 0. We can match distributions in terms of
their embeddings [57]] by measuring (¢, Ag) T (¢, Ag), a generalization of the approximation methods
in [121[38].. In particular, when |S||A] is finite and we set ¢ (s, a) = d5,4, Where 5 o, € {0, 1}‘SHA| is
an indicator vector with a single 1 at position (s, a) and 0 otherwise, we are matching the distributions
pointwise. The feature map ¢ (s, a) can also be set to general reproducing kernel & ((s, a),-) € R*.

As long as the kernel k (-, -) is characteristic, the embeddings will match if and only if the distributions
are identical almost surely [58]. We further re-frame the constraint with Fenchel duality [46]

(0:80) (0 8a) = max BT (6, 80) = 575
= (D)= max (1-9) Byox [ 6] =56 + B [C (5,0) 5T (v0(s',0') 0 (5, @))] , (10)

resulting in the final constraint £ ({, D) = 0.

Chance Constraints Given that the experience is a finite sample from d”, we have to appr0x1mate
¢ with a sample estimator ¢ and the constraint for ¢ in (T0) might not hold exactly using /. However,

under mild conditions, we have & (S Jecgi= {C / (¢, D) < } with high probability (see Ap-

pendix @ for the precise statement and proof). Thus, we expect a randomly sampled ratio ¢ ~ ¢ (¢)
to be in the relaxed feasible set = with high probability. Incorporating this into (@) yields

min KL (qllp) = NS, s.t. Py (£((,D) <€) >, (11
q

where the chance constraint enforces the probability that ( is feasible under the posterior. This
formulation can be equivalently rewritten as

min - KL(qllp) — AP (£(C, D) <€) (12)
Then, by applying Markov’s inequality, i.e., Py (¢(¢,D) <¢) = 1 =P, ((((,D)>¢€) > 1 —

w, we can obtain an upper bound on (12)) as

min KL (¢llp) + 2B, [£(C, D)] (13)
= min max KL (q||p) + /\Eq(oq(mg) [ED [C (s,a)-B" (ve(s',a") — ¢ (s,a)) = [~ (5)]

a(Q) a(BIC)
+(1 =7 Euor [879] |, (14)

where the last equation follows by interchangeability [56| [10]]. Note that £ (¢, D) > 0 since H 4 is
symmetric, so the outer optimization is lower bounded. We amortize the optimization for S w.r.t. each
¢ to a distribution ¢ (3|¢) to reduce the computational effort. The pseudo-code of the BayesDICE
algorithm is shown in Algorithm 2]

Finally, with the posterior approximation for (;, denoting the estimate for candidate policy ¢,
we can draw posterior samples of p; by drawing a sample ; ~ ¢((;) and computing p; =
% Z(s,a,r) ep Gi(s,a)r. This defines a posterior distribution over p;. For the joint posterior over

{pi}}¥., we use a mean field approximation to express it as a product of independent marginals,

i.e., q({pi}}1) = [, q(p:). This defines the necessary inputs for 0ff1ineSelect to determine a
ranking of the candidate policies.

Given the space limits, please see Appendix [B|and |C|for a discussion of other important aspects
of BayesDICE, including an alternative safe surrogate of the chance constraints, parametrization
of the posteriors, variants of BayesDICE for undiscounted MDPs, connections to vanilla Bayesian
stochastic processes, and the application of BayesDICE to exploration.

4 Related work

We categorize the relevant related work into five categories: offline policy selection, offline policy
optimization, off-policy evaluation, Bayesian reinforcement learning, and posterior regularization.



Algorithm 2 BayesDICE

Inputs sampled initial states jip = {s/’ 7y, offline data D = (s, 5D a@ rO), s,

target policy 7, parametrized distributions gy, (-, ) and g, (-, ), a prior p, convex function f
(conjugate f*), constants ¢, A, learning rates 7, 1)g, training iterations 7", and batch size B.
fort=1,...,Tdo

Sample batch {(s\),a),70) ¢'G))}B | from D, {s(()j)}f’:1 from fig, a’V) ~ 7(s'Y)) and
a((Jj) ~ w(séj)) forj=1,...,B.

Sample By ~ qo, (s, a$"), B ~ o, (s9),a)), B’ ~ g, (s'D,a’'D), and ¢ ~ gy, (s, D).
Compute loss J = K L(pllga,) + K L(pllgo,) + 25 3121 (¢v(8 = ) = f7(8)) + (1 = 7)Bo-

Update 6, < 61 + 1V, J and Oy < 0y — Vg, J.
end for; return gy, (-, )

Offline policy selection The decision making problem we formalize as offline policy selection
is a member of a set of problems in RL referred to as model selection. Previously, this term has
been used to refer to state abstraction selection [28, 30] as well as learning algorithm and feature
selection [23} 150]. More relevant to our proposed notion of policy selection are a number of previous
works which use model selection to refer to the problem of choosing a near-optimal Q-function from
a set of candidate approximation functions [21} 20, 27, 64]. In this case, the evaluation metric is
typically defined as the L., norm of difference of ) versus the state-action value function of the
optimal policy @*. While one can relate this evaluation metric to the sub-optimality (i.e., regret) of
the policy induced by the Q-function, we argue that our proposed policy selection problem is both
more general — since we allow for the use of policy evaluation metrics other than sub-optimality — and
more practically relevant — since in many practical applications, the policy may not be expressible
as the argmax of a ()-function. Lastly, the offline policy selection problem we describe is arguably
a formalization of the problem approached in [51]] and referred to as hyperparameter selection. In
contrast to this previous work, we not only formalize the decision problem, but also propose a method
to directly optimize the policy selection evaluation metric. Offline policy selection has also been
studied by [[17], who consider desirable properties of a point estimator to yield good rankings in
terms of a notion of ranking score referred to as fairness.

Offline policy optimization While it is possible to integrate desired criteria such as pessimism into
offline policy optimization [35} 6], this requires the desired criteria (e.g., maximum high-confidence
lower bound) to be specified prior to policy learning, which might differ from what a practitioner
deploying the policy prefers (e.g., policies that achieve top-k precision or regret). Furthermore,
policies in practical applications may not be amenable to (policy)-gradient-based learning (e.g.,
policies with business logic and hard-coded rules). In these cases, it is much easier to rank a set of
candidate policies given a set of criteria rather than learning one policy for each criterion.

Off-policy evaluation Off-policy evaluation (OPE) is a highly active area of research. While the
original motivation for OPE was in the pursuit of policy selection [53} 28], the field has historically
almost exclusively focused on the related but distinct problem of estimating the online value (accu-
mulated rewards) of a single target policy. In addition to a plethora of techniques for providing point
estimates of this groundtruth value [19, 4] 31} 159} 32, 145/ 169/ 66]], there is also a growing body of
literature that uses frequentist principles to derive high-confidence lower bounds for the value of a
policy [4, 161} 251136} 22, [11}134]]. As our results demonstrate, ranking or selecting policies based on
either their estimated mean or lower confidence bounds can at times be sub-optimal, depending on
the evaluation criteria.

Bayesian reinforcement learning Our proposed method for offline policy selection relies on
Bayesian principles to estimate a posterior distribution over the groundtruth policy value. While
many Bayesian RL methods have been proposed for policy optimization [14}152]], especially in the
context of exploration [26} [13},133]], relatively few have been proposed for policy evaluation. In one
instance, [21] derive PAC-Bayesian bounds on estimates of the Bellman error of a candidate (-value
function. In contrast to this work, the BayesDICE estimates a distribution over stationary density ratio,
and this distribution allows us to directly optimize arbitrary downstream policy selection metrics.
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Figure 2: CI estimation results. The y-axis shows the empirical coverage and median log-interval
width across 200 trials. BayesDICE exhibits near true coverage with narrow interval width.

Distinguish distributional RL.  Although both distributional RL [2} 8, [7] and BayesDICE learn
distributions over quantities of interest, these distributions are significantly different and with different
update rules. Distributional RL fits a distribution of returns over future trajectories, where the
randomness comes from stochasticity of MDP transitions and policy action selections. In contrast,
BayesDICE learns distributions of stationary density ratios in a Bayesian posterior sense, which
captures uncertainty from both model stochasticity and finite observations, while marginalizing over
any stochasticity in MDP transitions and policy action selections. More importantly, BayesDICE is
designed to serve as a component for policy selection derived via Bayes decision theory, with which
distributional RL is not compatible.

Bayesian inference with posterior regularization Unlike vanilla Bayesian inference for posterior
computation, the proposed BayesDICE does not rely on an explicitly computed log-likelihood, but
instead estimates the posterior of the stationary density ratio by enforcing a stochastic constraint. This
formulation of BayesDICE is inspired by the functional optimization view of Bayesian inference [63}
68,19]. There are several works introducing the data-dependent constraints or regularization to encode
the side information of the posterior into the optimization framework, e.g., generalized expectation
criteria [43]], learning from measurements [41]], and regularized Bayes [70]. The most important
difference lies in the formulation of the constraints: the existing works only considers expectation
constraints/regularization, while we largely extend the framework to more general chance constraints.

S Experiments

We empirically evaluate BayesDICE in estimating confidence intervals (which can be used for policy
selection) and offline policy selection under linear and neural network posterior parametrizations
on tabular Bandit, Taxi [[16]], FrozenLake [5]], and continuous-control Reacher [5]] tasks. As shown
in Figure |2} BayesDICE outperforms existing methods for confidence interval (CI) estimation based
on concentration inequalities, producing accurate coverage while maintaining tight interval width,
suggesting that BayesDICE achieves accurate posterior estimation in practice while being robust
to approximation errors and potentially misaligned Bayesian priors. Moreover, in offline policy
selection settings, matching the selection criteria (Algorithm/T)) to a variety of ranking scores (enabled
by the estimated posterior) shows clear advantage over policy ranking based on point estimates or
confidence intervals. See Appendix [D|for additional results and implementation details.

5.1 Confidence interval estimation

We first evaluate the BayesDICE approximate posterior by computing the accuracy of the credible
intervals [40] it produces. To make comparisons with previous work, we evaluate frequentist confi-
dence interval properties of BayesDICE against a known set of CI estimators based on concentration
inequalities, and against CoinDICE [11]], which is based-on empirical likelihood. While the frequen-
tist confidence interval is analagous to the Bayesian credible interval, they have different statistical
properties, so we expect that evaluating the credible intervals BayesDICE produces under frequentist
measures will give a pessimistic estimate of its true performance. To compute the concentration-
inequality-based baselines, we follow [11] by first using weighted (i.e., self-normalized) per-step
importance sampling [59] to obtain a policy value estimate for each logged trajectory. These trajecto-
ries provide a finite sample of value estimates. We use self-normalized importance sampling in MDP
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Figure 3: Left: Policy selection using top-k ranking scores compared to mean/confidence ranking
approaches on two-armed Bandit and Reacher. We fix the posterior to the one approx1mated by
BayesDICE and evaluate different S used in Algonthmlto compute a policy ranking. Using S$=8
results in the best performace. Right: Policy selection under regret and correlation at top-k compared
to other methods using point estimate (DualDICE) or high-confidence lower bounds. Mean and
standard error across 10 seeds are shown.

environments (which has been found to yield better empirical results on these tasks [42] 45] despite
being biased). We then use empirical Bernstein’s inequality [61]], bias-corrected bootstrap [60]], and
Student’s t-test to derive lower and upper high-confidence bounds on these estimates. We further
consider Bayesian Deep Q-Networks (BDQN, only applicable to function approximation) [1] with an
average empirical reward prior in the function approximation setting. BDQN applies Bayesian linear
regression to the last layer of a deep Q-network to learn a distribution of Q-values. Both BayesDICE
and BDQN output a distribution of parameters, from which we conduct Monte Carlo sampling and
use the resulting samples to compute a credible interval at a given confidence level.

We plot the empirical coverage and interval width at different confidence levels in Figure 2] To
compute the empirical interval coverage, we conduct 200 trials with randomly sampled datasets. The
interval coverage is the proportion of the 200 intervals that contains the true value of the target policy.
The interval log-width is the median of the log width of the 200 intervals. As shown in Figure 2]
BayesDICE’s coverage closely follows the intended coverage (black dotted line), while maintaining
narrow interval width across all tasks.

5.2 Policy selection

Next, we demonstrate the benefit of matching the policy selection criteria to the ranking score
in offline policy selection. Our evaluation is based on a variety of cardinal and ordinal ranking
scores defined in Section[2.1] We begin by considering the use of Algorithm [I] with BayesDICE-
approximated posteriors. By keeping the BayesDICE posterior fixed, we focus our evaluation on
the performance of Algorithm [T} We plot the groundtruth performance of this procedure applied
to Bandit and Reacher in Figure [3| (left). These figures compare using different S to rank the
policies according to Algorlthm [1] across different downstream ranking scores S. We find that
aligning the criteria S used in Algorithm |1 I with the downstream ranking score S is empirically
the best approach (S = S). In contrast, using point estimates such as Mean or Mean + Std can
yield much worse downstream performance. We also see that in the Bandit setting, where we can
analytically compute the Bayes-optimal ranking, using aligned ranking scores in conjunction with
BayesDICE-approximated posteriors achieves near-optimal performance.

Having established BayesDICE’s ability to compute accurate posterior distributions as well as the
benefit of appropriately aligning the ranking score used in Algorithm [T} we compare BayesDICE
to state-of-the-art OPE methods in policy selection. In these experiments, we use Algorithm [I| with
posteriors approximated by BayesDICE and S = S. We compare the use of BayesDICE in this way
to ranking via point estimates of DualDICE [45]] and other confidence-interval estimation methods
introduced in Section We present results in Figure|3| in terms of top-£ regret and correlation on
Bandit and Reacher tasks across different sample sizes and behavior data. BayesDICE outperforms
other methods on both tasks. See additional ranking results in Appendix [D}

6 Conclusion

In this paper, we formally defined the offline policy selection problem, and proposed BayesDICE
to first estimate posterior distributions of policy values before using a simulation-based procedure



to compute an optimal policy ranking. Empirically, BayesDICE not only provides accurate belief
distribution estimation, but also shows excellent performance in policy selection tasks. Extending
BayesDICE to estimating a posterior distribution over return distributions (instead of the expected
return) is an important direction of future research.
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Appendix

A Proofs for Finite Sample Relaxation

The following lemma will be needed.
Lemma 1. [[53], Lemma 4] Let X = {x;}._, be i.i.d.random variables in a ball H of radius C

i
centered around the origin in a Hilbert space. Denote their average by & = % Z?zl x;. Then for
any § > 0, with probability at least 1 — 9,

M 1
r—Ez|| < —= |1 2log - | .
Iz~ Ea] ﬁ<+\/ og5>

Theorem 2. Denote (* (s,a) = % which is bounded by C¢, under the assumption that ||¢||5 <
Cy 1Blly < Cp, ¥B € Hp and f is Ly-Lipschitz continuous, then (* € = := {( : £((,D) < €}

with probability 1 — exp (772%2) with C :== (14+7) (1 4+ C¢) C3Cy + LsCp.

Proof. Let
LG D, B) = (1 =7 Buor [B70] +Ep[((s,a) - BT (v0(s', a') — 6(s,a)) — f* (B)],

and

0 (¢dP,8) == (1 =) Euor [B7¢] +Ear [C(s,a) - BT (ve(s', ') — b(s,a)) — [ (B)].

We also denote 3 = argmaxgey,, (¢, D, p).

Following the discussion in footnote 2 in main text, the D ~ dP iid., it is obvious that
E[L(¢,D,B)] =1t (C, dP, B). Under the bounded assumption of (3, ¢), we can bound |[|¢[| , < C.
Therefore, by Lemmal([I] we have

P(i(e0.8) ~o (¢ 2.5) > ) <o (25

Since (*(s,a) = d"é;,a)’ we have ¢ (¢*,dP,8) = 0, V8 € Hy. Finally, recall
maxge, ¢t (¢, D, B) = 0 since Hg is symmetric. We achieve the conclusion. O

B More Discussions on BayesDICE
In this section, we provide more details about BayesDICE.

Remark (Alternative safe surrogates of chance constraints): We apply the Markov’s inequality
to (T2)) for the upper bound (T3)). In fact, the optimization with chance constraints has rich literature [3]],
where plenty of surrogates can be derived with different safe approximations. For example, if the
parametrization of ¢ is simple, one can directly calculate the CDF for the probability P, (¢ (¢, D) < €);
or one can also exploit different probability inequalities to derive other surrogates, e.g., condition
value-at-risk, i.e.,

1
min KL(q||p)+)\irt1f t+-E,[¢((,D)—-t]| , (15)
q €
+
and Bernstein approximation [47]. These surrogates lead to tighter approximation to the chance
probability P, (¢ (¢) < €) with the extra cost in optimization.

Remark (parametrization of ¢ (¢) and ¢ (5|¢)): We parametrize both ¢ (¢) (and the result-
ing ¢ (8]¢)) as Gaussians with the mean and variance approximated by a multi-layer perceptron
(MLP), i.e.: ¢ = MLP,,(s,a) + 0w &, & ~N(0,1). w and w’ denote the parameters of the MLP.

Remark (connection to Bayesian inference for stochastic processes): Recall the posterior can
be viewed as the solution to an optimization [63} 16870 9],

q(¢P) = arggﬁ;in —(q(¢),logp (¢, D)) + KL (¢ (<) [lp(€))
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Then (13) mathematically equivalent to define a log-likelihood log p (D|¢) x £ (¢, D), where p (D|()

is a Gibbs point process [I5, 65]. For example, plug f (8) = 33" back into (T3), we have

B* =Ep[C(s,a)- (yp(s',a') — ¢ (5,a))] + (1 —7) E,r [¢], resulting the optimization
. A -
mqanL (qu) + ZEunoﬂ'E'D[C (817 a’l)T k ((sla ay, 8,17 all) ) (827 as, 8/27 0/2)) C (527 a2)
+2h (s a", 5,0, d") - C(5,0)], (16)

with the kernel k ((s1, a1, s1, al) , (s2, a2, s5, as)) := (yé(sh,al) — ¢ (s1, al))T (vp(s5,a3) — ¢ (s2,a2))
and h (s°,a°% s,a,s',a") == (1—7)¢ (s(l),a(f)T (v9(sh,a5) — & (s2,a2)). If the prior p (¢) is a GP,
the posterior ¢ (¢|D) will also a GP. Obviously, with different choices of f* (-), the BayesDICE
framework is far beyond GP.

However, we emphasize although the model define via stochastic processes likelihood in (I6)
acheives the equivalent optimization, such a likelihood p (D|() is improper in the causality sense as
we discussed in Section[3]

Remark (auxilary constraints and undiscounted MDP): As [66] suggested, the non-negative
and normalization constraints are important for optimization. We use positive activation functions
(ReLU) to ensure the non-negativity of the mean of the ¢ (¢). For the normalization, we consider the

. 2
chance constraints P (ED <€) - 1) < €1 | = &;. By applying the same technique, it leads to an
extra term i‘—llEq [maxaeR a-Ep [¢— 1]} in (T3).

With the normalization condition introduced, the proposed BayesDICE is ready for undiscounted
MDP by simply setting v = 1 in (I3)) together with the above extra term for normalization.

C BayesDICE for Exploration vs. Exploitation Tradeoff

In main text, we mainly consider exploiting BayesDICE for estimating various ranking scores for both
discounted MDP and undiscounted MDP. In fact, with the posterior of the stationary ratio computed,
we can also apply it for better balance between exploration vs. exploitation for policy optimization.

Instead of selecting from a set of policy candidates, the policy optimization is considering all
feasible policies and selecting optimistically. Specifically, the feasibility of the stationary state-action
distribution can be characterized as

X:d(s,a):(1—'y);z0—|—73*d(s)7 Vs €S, (17)

where P,d (s) := > _ . T (s|5,a)d(5,a). Apply the feature mapping for distribution matching, we

obtain the constraint for ¢ - w with { (s, a) := dg gj)a) as

max B'Ego | D (C(s,a)m(als) ¢ (s) =7 (¢ (s,a) w (als) & (s)

BEH

+(1 =) Eyy [876) 1" (8) =0.
(18)

a

Then, we have the posteriors for all valid policies should satisfies

with £(C-m,D) = maxsex, BTBo (S, (¢ (s,0) 7 (als)) 6 (5) 7 (¢ (5, @) w (als)) 6 ()] +
(1= E,, [B"¢] — f* (8). Meanwhile, we will select one posterior from among these poste-
riors of all valid policies optimistically, i.e.,

Jax B [U (7,7, D)] + M& — XKL (q(¢) g () [lp (¢, 7)) 20)
st. P,(0(C-mD)<e) =€ 1)

where E, [U (7, r, D)| denotes the optimistic policy score to capture the upper bound of the policy
value estimation. For example, the most widely used one is

B, [U (7,7,D)] = Bgfip [r -] + A, {(ED (7 1] — Elip [r - r}ﬂ ,
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where the second term is the empirical variance and usually known as one kind of “exploration
bonus”.

Then the whole algorithm is iterating between solving (20) and use the obtain policy collecting data
into D in (20).

This Exploration-BayesDICE follows the same philosophy of [49, 48] where the variance of posterior
of the policy value is taken into account for exploration. However, there are several significant
differences: i), the first and most different is the modeling object, [49| 48]] is updating with Q-
function, while we are handling the dual representation; ii), BayesDICE is compatible with arbitary
nonlinear function approximator, while [49, 48] considers tabular or linear functions; iii), BayesDICE
is considering infinite-horizon MDP, while [49} 48] considers fixed finite-horizon case. Therefore,
the exploration with BayesDICE pave the path for principle and practical exploration-vs-exploitation
algorithm. The regret bound is out of the scope of this paper, and we leave for future work.

D Experiment details and additional discussion and results

D.1 Environments and policies.

Bandit. We create a Bernoulli two-armed bandit with binary rewards where « controls the propor-
tion of optimal arm (v = 0 and o = 1 means never and always choosing the optimal arm respectively).
Our policy selection experiments are based on 5 target policies with o = [0.75, 0.8, 0.85, 0.9, 0.95].

Reacher. We modify the Reacher task to be infinite horizon, and sample trajectories of length 100
in the behavior data. To obtain different behavior and target policies, We first train a deterministic
policy from OpenAl Gym [5] until convergence, and define various policies by converting the optimal
policy into a Gaussian policy with optimal mean with standard deviation 0.4 — 0.3a. Our selection
experiments are based on 5 target policies with o = [0.75,0.8,0.85,0.9, 0.95].

D.2 Parametrization Details

For the convex function f in (T4), we used f(z) = 22. We parametrize the distribution correction
ratio as a Gaussian using a deep neural network for the continuous control task. Specifically, we
use feed-forward networks with two hidden-layers of 64 neurons each and ReL.U as the activation
function. The networks are trained using the Adam optimizer (5; = 0.99, S2 = 0.999) with batch
size 2048 and learning rate 0.0001 on CPUs.

D.3 Additional empirical discussions

BayesDICE v.s. CoinDICE. Because BayesDICE is a Bayesian method, it produces credible
intervals. While the credible interval is analogous to the frequentist confidence interval, it has
different statistical properties, so it is unsurprising that evaluating the credible intervals BayesDICE
produces under frequentist measures favors frequentist methods like CoinDICE. The benefit of
BayesDICE is its applicability and superior performance for policy selection with arbitrary criteria.

Function approximation in BayesDICE. Constraint embedding can be generalized to use neural
network function approximators with potential approximation error. Specifically, as long as the
inner product is well-defined, we can characterize the constraints with maz sc #(f, A) = 0 where
F, i.e., testing function space, can be composed of neural networks. The solution is then known
as a “weak solution” in differential equations and finite-element methods. The approximation error
induced by such embedding depends on the flexibility of the testing function space. The theoretical
analysis considers an idealized scenario which provides guidance. In practice, however, the limited
expressibility of the function approximators used, relaxed constraints, and inexact optimization
introduce approximation errors, which are challenging to quantify analytically. Empirically, Figure ]
shows that BayesDICE parametrized by kernel and neural network exhibit similar performance,
demonstrating the practical effectiveness of neural network as function approximators.

Choice of the prior. The prior of the ratio variables is chosen to be unit Gaussian. We conducted

experiments where the prior mean ranges from [0.1, 10] and prior variance ranges from [0.1, 1], and
observed the resulting confidence intervals to be similar to those in the paper.
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Figure 4: Confidence interval estimation on kernel and neural network parametrized BayesDICE.

Choice of approximate posterior. We chose a Gaussian variational posterior for simplicity. A
downside of this choice is that sampled correction ratio can be negative. In practice, we found
that is rarely the case, and Gaussian posterior was sufficient to achieve strong performance. More-
over, BayesDICE can naturally incorporate advanced parameterizations, e.g., flow and stochastic
differential equations which can ensure positivity.

Comparison to point estimators. The posterior mean estimate of BayesDICE differs from the
point estimate in DualDICE due to the prior (i.e., regularization). We summarize the average (across
10 seeds) log RMSE of DualDICE (pt) and of the mean estimate from BayesDICE (1) on Bandit (B),
FrozenLake (F), Taxi (T) and Reacher (R) with varying number of trajectories in the table below. For
our choice of prior and these tasks, the performance of the point and mean estimators are similar.

B50 B100 B200 F50 FI100 T20 T50 R25
pt -496 -479 -569 -909 -831 -336 -506 -3.31
w786 -9.14 -7.09 -994 -959 -324 411 -3.06

Scalability of BayesDICE. Depending on the evaluation metric chosen, its structural properties
can be exploited to nullify the need to test all permutations in Algorithm[T} Such structural properties
are present in many natural metrics (such as top-k precision or regret). Therefore, BayesDICE can
easily scale to larger numbers of candidate policies.

D.4 Additional experimental results

A BayesDICE (ours) V  CoinDICE @ Bernstein %  Bootstrapping 4F  Student t ---' Expected coverage
Frozenlake (marginal) Taxi (marginal)
# trajectories = 50 # trajectories = 100 # trajectories = 20 # trajectories = 50
o & v - v - Y
& 10 3 10 — —
g -
S os
o
S
=
g, 04
8
E o]

Interval log-width

06 07 0s 09 0% 06 07 05 09 095 _ 06 0
Confidence interval (1 — a)

08 09 008 06 07 08 09 095

Figure 5: Confidence interval estimation with concentration inequality baselines computed from
marginalized importance sampling (as opposed to the per-step importance sampling in the original
paper. BayesDICE and CoinDICE still perform much better than methods based on concentration
inequality.
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Figure 6: Additional k values for top-k ranking on bandit. Ranking results based on Algorithm
(blue lines) always perform better than using mean ("Mean") or high-confidence lower bound ("Mean
- Std").
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Figure 7: Additional k values for top-k ranking on reacher and additional selection criteria (precision
and regret). Ranking results based on Algorithm [I] (blue lines) generally perform much better
than using mean ("Mean") or high-confidence lower bound ("Mean - Std") for top-k accuracy and
correlation. Precision and regret are similar between posterior samples and the mean/confidence
bound based ranking.
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Figure 8: BayesDICE out’f)g?forms other confidence-interval based policy#sgfjéction approaches under
the minimum regret criteria across all trajectory lengths, behavior data (higher Alpha means behavior
data is closer to optimal policy), and top-k values considered for the bandit task.

20



Reacher

—— Bootstrap ’- Bernstein Studentt —@- DualDICE -W~ CoinDICE —— BayesDICE
Score = Correlation-Top2 Score = Correlation-Top3 Score = Correlation-Top4
A A A
E 05 — ¢ —
0.5 — —A— @ ———A
— F"‘—;—ﬁ/' 0.5 /&4— 6—/" e
==4 ——— _ Q:QQ’?’
0.0 @ 0.0 0.0 *cE
=3
/v ®
-0.5 /V -0.5 v/v\' -0.5 v/v/""—'v [
o
o
—1.0Y — -1.0
1.0
A A A
05 05 / ——A > 4
6@4\%‘/ — osie—=——8 o
() g Y v Q”w’
0.01* ok x 0.0 * 0.0 SESa UE
\ S
B
X [
’ °
s
>
°
5
- v X - -0.5 it
0.5 Ty 0.5 v V— s
S}
2
g
=3
®
I
o
w
>
g
=3
®
I
o
ES
>
-0.5 0.5 0.5 g
. —0. —0. B
T~ —r— —y &
~1.0 ¥Y—7 _i0 Y ¥ 10 ¥ v 2
10 25 50 100 10 25 50 100 10 25 50 100
# Trajs # Trajs # Trajs

Figure 9: BayesDICE outperforms other confidence-interval based policy selection approaches under
the maximum correlation (between true and computed rankings) criteria across all trajectory lengths,
behavior data (higher Alpha means behavior data is closer to optimal policy), and top-k values
considered for the reacher task.
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