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Abstract

The first NLP experiment many researchers001
performed in their careers likely involved train-002
ing a standard architecture on labeled English003
data and optimizing for accuracy, without ac-004
counting for other dimensions such as fair-005
ness, interpretability, or computational effi-006
ciency. We show through surveys that this is007
indeed the case and refer to it as the square008
one experimental setup. NLP research often009
goes beyond the square one setup, e.g, focus-010
ing not only on accuracy, but also on fairness011
or interpretability, but typically only along a012
single dimension. Most work focused on mul-013
tilinguality, for example, considers only accu-014
racy; most work on fairness or interpretability015
considers only English; and so on. We show016
this through manual classification of recent017
NLP research papers and ACL Test-of-Time018
award recipients. Such one-dimensionality019
of most research means we are only explor-020
ing a fraction of the NLP research search021
space. We provide historical and recent ex-022
amples of how the square one bias has led re-023
searchers to draw false conclusions or make024
unwise choices, point to promising yet un-025
explored directions on the research manifold,026
and make practical recommendations to enable027
more multi-dimensional research.028

1 Introduction029

Our categorization of objects, say screwdrivers or030

NLP experiments, is heavily biased by early pro-031

totypes (Sherman, 1985; Das-Smaal, 1990). If032

the first 10 screwdrivers we see, are red and for033

hexagon socket screws, this will bias what features034

we learn to associate with screwdrivers. Likewise,035

if the first 10 NLP experiments we see or conduct036

are in sentiment analysis, this will likely also bias037

how we think of NLP experiments in the future.038

In this position paper, we postulate that we can039

meaningfully talk about the prototypical NLP ex-040

periment, and that the existence of such an exper-041

imental prototype steers and biases the research042

Figure 1: Visualization of contributions of ACL 2021
oral papers along 4 dimensions: multilinguality, fair-
ness and bias, efficiency, and interpretability (indicated
by color). Most work is clustered around the SQUARE
ONE or along a single dimension.

dynamics in our community. We will refer to this 043

prototype as NLP’s SQUARE ONE—and to the bias 044

that follows from it, as the SQUARE ONE BIAS. We 045

argue this bias manifests in a particular way: Since 046

research is a creative endeavor, and researchers 047

aim to push the research horizon, most research 048

papers in NLP go beyond this prototype, but only 049

along a single dimension at a time. Such dimen- 050

sions include multilinguality, efficiency, fairness, 051

and interpretability, among others. The effect of the 052

SQUARE ONE BIAS is to baseline novel research 053

contributions, rewarding work that differs from the 054

prototype in a concise, one-dimensional way. 055

We present several examples of this effect in 056

practice. For instance, analyzing the contributions 057

of ACL 2021 papers along 4 dimensions, we ob- 058

serve that most work is either clustered around 059

the SQUARE ONE or makes a contribution along 060

a single dimension (see Figure 1). Multilingual 061

work typically disregards efficiency, fairness, and 062

interpretability. Work on efficient NLP typically 063

only performs evaluations on English datasets, and 064
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disregards fairness and interpretability. Fairness065

and interpretability work is also mostly limited to066

English, and tends to disregard efficiency concerns.067

We argue that the SQUARE ONE BIAS has sev-068

eral negative effects, most of which amount to the069

study of one of the above dimensions being biased070

by ignoring the others. Specifically, by focusing071

only on exploring the edges of the manifold, we are072

not able to identify the non-linear interactions be-073

tween different research dimensions. We highlight074

several examples of such interactions in Section 3.075

Overall, we encourage a focus on combining multi-076

ple dimensions on the research manifold in future077

NLP research, and delve deeper into studying their078

(linear and non-linear) interactions.079

Contributions. We first establish that we can080

meaningfully talk about the prototypical NLP ex-081

periment, through a series of surveys and annota-082

tion experiments. This prototype amounts to ap-083

plying a standard architecture to an English dataset084

and optimizing for accuracy or F1. We discuss the085

impact of this prototype on our research commu-086

nity, and the bias it introduces. We then discuss the087

negative effects of this bias. We also list work that088

has taken steps to overcome the bias. Finally, we089

highlight blind spots and unexplored research direc-090

tions and make practical recommendations, aiming091

to inspire the community towards conducting more092

‘multi-dimensional’ research (see Figure 1).093

2 Finding the Square One094

In order to determine the existence and nature of a095

SQUARE ONE, we seek to identify commonalities096

between students’ first exposure to NLP. In most097

cases, we expect such exposure to occur during an098

introductory NLP course.099

Questionnaire for NLP Teachers. We therefore100

created a short questionnaire, which we sent to a101

geographically diverse set of teachers, including102

first authors from the last Teaching NLP workshop103

(Jurgens et al., 2021), asking about the first experi-104

ment that they presented in their NLP 101 course.105

We received 71 responses in total. Our first ques-106

tion was: The last time you taught an introductory107

NLP course, what was the first task you introduced108

the students to, or that they had to implement a109

model for? The relative majority of respondents110

(31.9%) said sentiment analysis, while 10.1% indi-111

cated topic classification.1 More importantly, we112

1The remaining responses included NER, language model-

Year Book Language Task

1999 Manning and Schütze (1999) English-French Alignment
2009 Jurafsky and Martin (2009) English LM
2009 Bird et al. (2009) English Name cl.
2013 Søgaard (2013) English Doc.cl.
2019 Eisenstein (2019) English Doc.cl.

Table 1: First experiments in NLP textbooks. The ob-
jective across all books is optimizing for performance
(AER, perplexity, or accuracy), rather than fairness, in-
terpretability or efficiency.

also asked them about the language of the data 113

used in the experiment, and what metric they opti- 114

mized for. More than three quarters of respondents 115

reported that they used English language training 116

and evaluation data and more than three quarters 117

of the respondents asked the students to optimize 118

for accuracy or F1. The choice of using English 119

language datasets is particularly interesting in con- 120

trast to the native languages of the teachers and 121

their students: In around two thirds of the classes, 122

most students shared an L1 language that was not 123

English; and less than a quarter of the teachers 124

were L1 English speakers themselves. In summary, 125

the prototypical NLP 101 experiment, according 126

to our survey, is on an English classification task 127

with accuracy or F1 as performance metric. None 128

of the respondents reported to have optimized for 129

fairness, interpretability or efficiency metrics. 130

Classification of NLP Textbooks. What, then, are 131

the prototypical NLP experiments in undergradu- 132

ate and graduate textbooks? We list five exem- 133

plary NLP textbooks, spanning 20 years, in Table 1. 134

We observe that they, like the teachers in our sur- 135

vey, take the same point of departure: an English- 136

language experiment in which we use supervised 137

learning techniques to optimize for a standard per- 138

formance metric, e.g., perplexity or error. We note 139

an important difference, however: While the first 140

four books largely ignore issues relating to fairness, 141

interpretability, and efficiency, the most recent NLP 142

textbook in Table 1 (Eisenstein, 2019) discusses 143

efficiency (briefly) and fairness (more thoroughly). 144

ACL 2021 Oral Papers. We now seek to quantify 145

whether the same bias exists in contemporary re- 146

search. To this end, we annotate the 461 papers 147

that were presented orally at ACL 2021, a repre- 148

sentative cross-section of the 779 papers accepted 149

to the main conference. We focus on 4 dimensions 150

along which papers may differ from a prototypical 151

ing, language identification, hate speech detection, etc.
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Area # papers English Accuracy / F1 Multilinguality Fairness and bias Efficiency Interpretability >1 dimension

ACL 2021 oral papers 461 69.4% 38.8% 13.9% 6.3% 17.8% 11.7% 6.1%

MT and Multilinguality 58 0.0% 15.5% 56.9% 5.2% 19.0% 6.9% 13.8%
Interpretability and Analysis 18 88.9% 27.8% 5.6% 0.0% 5.6% 66.7% 5.6%
Ethics in NLP 6 83.3% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Dialog and Interactive Systems 42 90.5% 21.4% 0.0% 9.5% 23.8% 2.4% 2.4%
Machine Learning for NLP 42 66.7% 40.5% 19.0% 4.8% 50.0% 4.8% 9.5%
Information Extraction 36 80.6% 91.7% 8.3% 0.0% 25.0% 5.6% 8.3%
Resources and Evaluation 35 77.1% 42.9% 5.7% 8.6% 5.7% 14.3% 5.7%
NLP Applications 30 73.3% 43.3% 0.0% 10.0% 20.0% 10.0% 0.0%

Table 2: The number of ACL 2021 oral papers (top row) and of papers in each area (bottom rows) as well as the
fractions that only evaluate on English, only use accuracy / F1, make contributions along one of four dimensions,
and make contributions along more than a single dimension (from left to right).

NLP experiment: multilinguality, fairness and bias,152

efficiency, and interpretability.2 Compared to prior153

work that annotates the values of ML research pa-154

pers (Birhane et al., 2021), we are not concerned155

with a paper’s motivation but whether its practi-156

cal contributions constitute a meaningful departure157

from SQUARE ONE. For each paper, we anno-158

tate whether it makes a contribution along each159

dimension3 as well as the languages and metrics it160

employs for evaluation.161

The general statistics from our classification of162

ACL 2021 papers are presented in Table 2. In addi-163

tion, we highlight the statistics for the conference164

areas (tracks) corresponding to 3 of the 4 dimen-165

sions,4 as well as for the top 5 areas with the most166

papers. We show statistics for the remaining areas167

in Appendix A.1. We additionally visualize their168

distribution in Figure 1. Overall, almost 70% of pa-169

pers evaluate only on English, clearly highlighting170

a lack of language diversity in NLP (Bender, 2011;171

Joshi et al., 2020). Almost 40% of papers only172

evaluate using accuracy and/or F1, foregoing met-173

rics that may shed light on other aspects of model174

behavior. Regarding work that moves from the175

SQUARE ONE, most papers make a contribution176

in terms of efficiency, followed by multilinguality.177

However, most papers that evaluate on multiple178

2Other dimensions that could be considered in future work
are robustness, multimodality, and privacy, among others.

3For multilinguality, we consider papers that evaluate on 3
languages, or 4 languages if they focus on MT (as the standard
MT experiment includes two languages). For fairness and bias,
we consider papers that improve fairness in a specific setting
or analyze the bias of a method, e.g. regarding gender. For
efficiency, we consider papers that analyze memory, speed, or
computational complexity. For interpretability, we consider
papers that interpret or explain a model’s predictions.

4Unlike EACL 2021, NAACL-HLT 2021 and EMNLP
2021, ACL 2021 had no area associated with efficiency. To
compensate for this, we annotated the 20 oral papers of the
“Efficient Models in NLP” track at EMNLP 2021 (see Ap-
pendix A.2).

languages are part of the corresponding MT and 179

Multilinguality track. Despite being an area re- 180

ceiving increasing attention (Blodgett et al., 2020), 181

only 6.3% of papers evaluate the bias or fairness 182

of a method. Overall, only 6.1% of papers make 183

a contribution along two or more of these dimen- 184

sions. Among these, joint contributions on both 185

multilinguality and efficiency are the most common 186

(see Figure 1). In fact, 22 of the 26 two-or-more- 187

dimensional papers focus on efficiency, and 17 of 188

these on the combination of multilinguality and ef- 189

ficiency. This means less than 1% of the ACL 2021 190

papers consider combinations of (two or more of) 191

multilinguality, fairness and interpretability. We 192

find this surprising, given these topics are consid- 193

ered among the most popular topics in the field. 194

Some areas have particularly concerning statis- 195

tics. A large majority of research work in dia- 196

log (90.5%), summarization (91.7%), sentiment 197

analysis (100%), and language grounding (100%) 198

is done only on English; however, ways of ex- 199

pressing sentiment (Volkova et al., 2013; Yang 200

and Eisenstein, 2017; Vilares et al., 2018) and vi- 201

sually grounded reasoning (Liu et al., 2021; Yin 202

et al., 2021) do vary across languages and cultures. 203

Systems in the top tracks tend to evaluate on effi- 204

ciency, but in general do not consider fairness or 205

interpretability of the proposed methods. Even the 206

creation of new resources and evaluation sets (cf., 207

Resource and Evaluation in Table 2) seems to be 208

directed towards rewarding and enabling SQUARE 209

ONE experiments; favoring English (77.1%), and 210

with modest efforts on other dimensions. Notably, 211

we only identified a single paper that considers 212

three dimensions (Renduchintala et al., 2021). This 213

paper considers gender bias (Fairness) in relation 214

to speed-quality (Efficiency) trade-offs in multilin- 215

gual machine translation (Multilinguality). Finally, 216

we observe that best-paper award winning papers 217

3



Year Paper Language Metric

1995 Grosz et al. (1995) English n/a
1995 Yarowsky (1995) English acc.
1996 Berger et al. (1996) English acc.
1996 Carletta (1996) n/a n/a

2010 Baroni and Lenci (2010) English acc.
2010 Turian et al. (2010) English F1

2011 Taboada et al. (2011) English acc.
2011 Ott et al. (2011) English acc./F1

Table 3: Test-of-Time Award 2021-22 papers

are not more likely to consider more than one of the218

four dimensions. Only 1 in 8 papers did; the best219

paper (Xu et al., 2021), like most two-dimensional220

ACL 2021 papers, considered multilinguality and221

efficiency.222

Test-of-Time Award Recipients. Current papers223

provide us with a snapshot of actual current re-224

search practices, but the one-dimensionality of the225

best paper award winning papers at ACL 2021 sug-226

gest the SQUARE ONE BIAS also biases what we227

value in research, i.e., our perception of ideal re-228

search practices. This can also be seen in the papers229

that have received the ACL Test-of-Time Award in230

the last two years (Table 3). Seven in eight papers231

included empirical evaluations performed exclu-232

sively on English data. Six papers were exclusively233

concerned with optimizing for accuracy or F1.234

Blackbox NLP Papers. Finally, we check if more235

multi-dimensional papers were presented at a work-236

shop devoted to one of the above dimensions. The237

rationale would be that if everyone at a workshop238

already explores one of these dimensions, maybe239

including another is a way to have an edge over240

other submissions. Unfortunately, this does not241

seem to be the case. We manually annotated the242

first 10 papers in the Blackbox NLP 2021 program5243

that were available as pre-prints at the time of sub-244

mission.6 Of the 10 papers, only one included more245

than one dimension (Abdullah et al., 2021). This246

number aligns well with the overall statistics of247

ACL 2021 (6.1%). All the other Blackbox NLP248

papers only considered interpretability for English.249

3 Square One Bias: Examples250

In the following, we highlight both historical and251

recent examples touching on different aspects of re-252

search in NLP that illustrate how the gravitational253

5https://blackboxnlp.github.io/
6These annotations are made publicly available along with

the rest of the data collected for this paper at url.

attraction of the SQUARE ONE has led researchers 254

to draw false conclusions, unconsciously steer stan- 255

dard research practices, or make unwise choices. 256

Architectural Biases. One pervasive bias in our 257

models regards morphology. Many of our models 258

were not designed with morphology in mind, ar- 259

guably because of the poor morphology of English. 260

Traditional n-gram language models, for example, 261

have been shown to perform much worse on lan- 262

guages with elaborate morphology due to data spar- 263

sity problems (Khudanpur, 2006; Bender, 2011; 264

Gerz et al., 2018). Such models were neverthe- 265

less more commonly used than more linguistically 266

informed alternatives such as factored language 267

models (Bilmes and Kirchhoff, 2003) that repre- 268

sent words as sets of features. Word embeddings 269

have been widely used, in part because pre-trained 270

embeddings covered a large part of the English 271

vocabulary. However, word embeddings are not 272

useful for tasks that require access to morphemes, 273

e.g., semantic tasks in morphologically rich lan- 274

guages (Avraham and Goldberg, 2017). 275

While studies have demonstrated the ability of 276

word embeddings to capture linguistic information 277

in English, it remains unclear whether they capture 278

the information needed for processing morphologi- 279

cally rich languages (Tsarfaty et al., 2020). A bias 280

towards morphologically rich languages is also ap- 281

parent in our tokenization algorithms. Subword 282

tokenization performs poorly on languages with 283

reduplication (Vania and Lopez, 2017), while byte 284

pair encoding does not align well with morphol- 285

ogy (Bostrom and Durrett, 2020). Consequently, 286

languages with productive morphological systems 287

also are disadvantaged when shared ‘language- 288

universal’ tokenizers are used in current large-scale 289

multilingual language models (Ács, 2019; Rust 290

et al., 2021) without any further vocabulary adapta- 291

tion (Wang et al., 2020; Pfeiffer et al., 2021). 292

Another bias in our models relates to word or- 293

der. In order for n-gram models to capture inter- 294

word dependencies, words need to appear in the 295

n-gram window. This will occur more frequently 296

in languages with relatively fixed word order com- 297

pared to languages with relatively free word order 298

(Bender, 2011). Word embedding approaches such 299

as skip-gram (Mikolov et al., 2013) adhere to the 300

same window-based approach and thus have sim- 301

ilar weaknesses for languages with relatively free 302

word order. LSTMs are also sensitive to word or- 303

der and perform worse on agreement prediction in 304
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Basque, which is both morphologically richer and305

has a relatively free word order (Ravfogel et al.,306

2018) compared to English (Linzen et al., 2016).307

They have also been shown to transfer worse to dis-308

tant languages for dependency parsing compared309

to self-attention models (Ahmad et al., 2019). Such310

biases concerning word order are not only inher-311

ent in our models but also in our algorithms. A312

recent unsupervised parsing algorithm (Shen et al.,313

2018) has been shown to be biased towards right-314

branching structures and consequently performs315

better in right-branching languages like English316

(Dyer et al., 2019). While the recent generation317

of self-attention based architectures can be seen318

as inherently order-agnostic, recent methods focus-319

ing on making attention more efficient (Tay et al.,320

2020) introduce new biases into the models. Specif-321

ically, models that reduce the global attention to a322

local sliding window around the token (Liu et al.,323

2018; Child et al., 2019; Zaheer et al., 2020) may324

incur similar limitations as their n-gram and word325

embedding-based predecessors, performing worse326

on languages with relatively free word order.7327

The singular focus on maximizing a performance328

metric such as accuracy introduces a bias towards329

models that are expressive enough to fit a given330

distribution well. Such models are typically black-331

box and learn highly non-linear relations that are332

generally not interpretable. Interpretability is gen-333

erally studied in papers focusing exclusively on334

this topic; a recent example is BERTology (Rogers335

et al., 2020). Studies proposing more interpretable336

methods typically build on state-of-the-art meth-337

ods (Weiss et al., 2018) and much work focuses338

on leveraging components such as attention for in-339

terpretability, which have not been designed with340

that goal in mind (Serrano and Smith, 2019; Wiegr-341

effe and Pinter, 2019). As a result, researchers342

eschew directions focusing on models that are in-343

trinsically more interpretable such as generalized344

additive models (Hastie and Tibshirani, 2017) and345

their extensions (Chang et al., 2021; Agarwal et al.,346

2021) but which have so far not been shown to347

match the performance of state-of-the-art methods.348

As most datasets on which models are evaluated349

focus on sentences or short documents, state-of-350

the-art methods restrict their input size to around351

512 tokens (Devlin et al., 2019) and leverage meth-352

7An older work of Khudanpur (2006) argues that free
word order is less of a problem as local order within phrases
is relatively stable. However, it remains to be seen to what
degree this affects current models.

ods that are inefficient when scaling to longer 353

documents. This has led to the emergence of a 354

wide range of more efficient models (Tay et al., 355

2020), which, however, are rarely used as baseline 356

methods in NLP. Similarly, the standard pretrain- 357

fine-tune paradigm (Ruder et al., 2019) requires 358

separate model copies to be stored for each task, 359

and thus restricts work on multi-domain, multi- 360

task, multi-lingual, multi-subpopulation methods 361

that is enabled by more efficient and less resource- 362

intensive (Schwartz et al., 2020) fine-tuning meth- 363

ods (Houlsby et al., 2019; Pfeiffer et al., 2020) 364

In sum, (what we typically consider as) standard 365

baselines and state-of-the-art architectures favor 366

languages with some characteristics over others and 367

are optimized only for performance, which in turn 368

propagates the SQUARE ONE BIAS: If researchers 369

study aspects such as multilinguality, efficiency, 370

fairness or interpretability, they are likely to do 371

so with and for commonly used architectures (i.e., 372

often termed ‘standard architectures’), in order to 373

reduce (too) many degrees of freedom in their em- 374

pirical research. This is in many ways a sensible 375

choice in order to maximize perceived relevance— 376

and thereby, impact. However, as a result, multi- 377

linguality, efficiency, fairness, interpretability, and 378

other research areas inherit the same biases, which 379

typically slip under the radar. 380

Annotation Biases. Many NLP tasks can be cast 381

differently and formulated in multiple ways, and 382

differences may result in different annotation styles. 383

Sentiment, for example, can be annotated at the 384

document, sentence or word level (Socher et al., 385

2013). In machine comprehension, answers are 386

sometimes assumed to be continuous, but Zhu et al. 387

(2020) annotate discontinuous spans. In depen- 388

dency parsing, different annotation guidelines can 389

lead to very different downstream performance 390

(Elming et al., 2013). How we annotate for a task 391

may interact in complex ways with dimensions 392

such as multilinguality, efficiency, fairness, and in- 393

terpretability. The Universal Dependencies project 394

(Nivre et al., 2020) is motivated by the observa- 395

tion that not all dependency formalisms are easily 396

applicable to all languages. Aligning guidelines 397

across languages has enabled researchers to ask in- 398

teresting questions, but such attempts may limit the 399

analysis of outlier languages (Croft et al., 2017). 400

Other examples of annotation guidelines interact- 401

ing with the above dimensions exist: Slight nuances 402

in how annotation guidelines are formulated can 403
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lead to severe model biases (Hansen and Søgaard,404

2021a) and hurt model fairness. In interpretability,405

we can use feature attribution methods and word-406

level annotations to evaluate interpretability meth-407

ods applied to sequence classifiers (Rei and Sø-408

gaard, 2018), but we cannot directly use feature at-409

tribution methods to obtain rationales for sequence410

labelers. Annotation biases can also stem from the411

characteristics of the annotators, including their do-412

main experience (McAuley and Leskovec, 2013),413

demographics (Jørgensen and Søgaard, 2021), or414

educational level (Al Kuwatly et al., 2020).415

Annotation biases form an integral part of the416

SQUARE ONE BIAS: In NLP experiments, we417

commonly rely on the same pools of annotators,418

e.g., computer science students, professional lin-419

guists, or MTurk contributors. Sometimes these420

biases percolate through reuse of resources, e.g.,421

through human or machine translation into new422

languages. Examples of such recycled resources423

include Conneau et al. (2018) and Kassner et al.424

(2021), among others. Even when such translation-425

based resources resonate with syntax and semantics426

of the target language, and are fluent and natural,427

they still suffer from translation artefacts: they428

are often target-language surface realizations of429

source-language-based conceptual thinking. As a430

consequence, evaluations of cross-lingual transfer431

models on such data typically overestimate their432

performance as properties such as word order and433

even the choice of lexical units are inherently bi-434

ased by the source language (Vanmassenhove et al.,435

2021). Put simply, the choice of the data creation436

protocol, e.g., translation-based versus data collec-437

tion directly in the target language (Clark et al.,438

2020) can yield profound differences in model per-439

formance for some groups, or may have serious440

impact on the interpretability or computational effi-441

ciency (e.g., sample efficiency) of our models.442

Selection Biases. For many years, the English443

Penn Treebank (Marcus et al., 1994) was an inte-444

gral part of the SQUARE ONE of NLP. This corpus445

consists entirely of newswire, i.e., articles and edi-446

torials from the Wall Street Journal, and arguably447

amplified the (existing) bias toward news articles.448

Since news articles tend to reflect a particular set449

of linguistic conventions, have a certain length, and450

are written by certain demographics, the bias to-451

ward news articles had an impact on the linguistic452

phenomena studied in NLP (Judge et al., 2006), led453

to under-representation of challenges with handling454

longer documents (Beltagy et al., 2021), and had 455

impact on early papers in fairness (Hovy and Sø- 456

gaard, 2015). Note how such a bias may interact in 457

non-linear ways with efficiency, i.e., efficient meth- 458

ods for shorter documents need not be efficient for 459

longer ones, or fairness, i.e., what mitigates gender 460

biases in news articles need not mitigate gender 461

biases in product reviews. 462

Protocol Biases. In the prototypical NLP experi- 463

ment, the dataset is in the English language. As a 464

consequence, it is also standard protocol in multi- 465

lingual NLP to use English as a source language 466

in zero-shot cross-lingual transfer (Hu et al., 2020). 467

In practice, there are generally better source lan- 468

guages than English (Lin et al., 2019; Turc et al., 469

2021), and results are heavily biased by the com- 470

mon choice of English. For instance, effectiveness 471

and efficiency of few-shot learning can be impacted 472

by the choice of the source language (Pfeiffer et al., 473

2021; Zhao et al., 2021). English also dominates 474

language pairs in machine translation, leading to 475

lower performance for non-English translation di- 476

rections (Fan et al., 2020), which are particularly 477

important in multilingual societies. Again, such 478

biases may interact in non-trivial ways with dimen- 479

sions explored in NLP research: It is not inconceiv- 480

able that there is an algorithm A that is more fair, 481

interpretable or efficient than algorithm B on, say, 482

English-to-Czech transfer or translation, but not on 483

German-to-Czech or French-to-Czech. 484

Organizational Biases. The above architectural, 485

annotation, selection and protocol biases follow 486

from the SQUARE ONE BIAS, but they also con- 487

serve the SQUARE ONE. If our go-to architectures, 488

resources, and experimental setups are tailored to 489

some languages over others, some objectives over 490

others, and some research paradigms over others, 491

it is considerably more work to explore new sets of 492

languages, new objectives, or new protocols. The 493

organizational biases we discuss below may also 494

reinforce the SQUARE ONE BIAS. 495

The organization of our conferences and review- 496

ing processes perpetuates certain biases. In par- 497

ticular, both during reviewing and for later pre- 498

sentation at conferences, papers are organized in 499

areas. Upon submission, a paper is assigned to 500

a single area. Reviewers are recruited for their 501

expertise in a specific area, which they are associ- 502

ated with. Such a reviewing system incentivizes 503

papers that make contributions to the chosen area, 504

in order to appeal to the reviewers of this area and 505
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implicitly penalizes papers that make contributions506

along multiple dimensions, as reviewers unfamil-507

iar with the related areas may not appreciate their508

inter-disciplinary or inter-areal magnitude or value.509

Even new initiatives that seek to improve review-510

ing such as ARR8 adhere to this area structure9 and511

thus further the SQUARE ONE BIAS. A review-512

ing system that allows papers to be associated with513

multiple dimensions of research and that assigns514

reviewers with complementary expertise—similar515

to TACL10—would ameliorate this situation. Once516

a paper is accepted, presentations at conferences517

are organized by areas, limiting audiences in most518

cases to members of said area and thereby reducing519

the cross-pollination of ideas.11520

Unexplored Areas of the Research Manifold.521

The discussed biases, which seem to originate from522

a SQUARE ONE BIAS, leave areas of the research523

manifold unexplored. Character-based language524

models are often reported to perform well for mor-525

phologically rich languages or on non-canonical526

text (Ma et al., 2020), but little is known about527

their fairness properties, and attribution-based in-528

terpretability methods have not been developed for529

such models. Annotation biases that stem from530

annotator demographics have been studied for En-531

glish POS tagging (Hovy and Søgaard, 2015) or532

English summarization (Jørgensen and Søgaard,533

2021), for example, but there has been very little534

research on such biases for other languages. While535

linguistic differences among genders is shared536

among some languages, genders differ in very dif-537

ferent ways between other languages, e.g., Span-538

ish and Swedish (Johannsen et al., 2015). We dis-539

cuss important unexplored areas of the research540

manifold in §5, but first we briefly survey existing,541

multi-dimensional work, i.e., the counter-examples542

to our claim that NLP research is biased to one-543

dimensional extensions of the square one.544

8aclrollingreview.org/
9www.2022.aclweb.org/callpapers

10transacl.org/index.php/tacl
11Another previously pervasive organizational bias, which

is now fortunately being institutionally mitigated within the
*ACL community through dedicated mentoring programs and
improved reviewing guidelines, concerned penalizing research
papers for their non-native writing style, where it was fre-
quently suggested to the authors whose native language is not
English to ‘have their paper proofread by a native speaker’. As
one hidden consequence, this attitude might have set a higher
bar for the native speakers of minor and endangered languages
working on such languages to put their research problems in
the spotlight, that way also implicitly hindering more work of
the entire community on these languages.

4 Counter-Examples 545

Most of the exceptions to our thesis about the ‘one- 546

dimensionality’ of NLP research, in our classifica- 547

tion of ACL 2021 Oral Papers, came from studies 548

of efficiency in a multilingual context. Another 549

example of this is Ahia et al. (2021), who show that 550

for low-resource languages, weight pruning hurts 551

performance on tail phenomena, but improves ro- 552

bustness to out-of-distribution shifts—this is not ob- 553

served in the SQUARE ONE (high-resource) regime. 554

There are also studies of fairness in a multilin- 555

gual context. Huang et al. (2020), for example, 556

show significant differences in social bias for mul- 557

tilingual hate speech systems across different lan- 558

guages. Zhao et al. (2020) study gender bias in 559

multilingual word embeddings and cross-lingual 560

transfer. González et al. (2020) also study gen- 561

der bias, but by relying on reflexive pronominal 562

constructions that do not exist in the English lan- 563

guage; this is a good example of research that 564

would not have been possible taking SQUARE 565

ONE as our point of departure. Dayanik and Padó 566

(2021) study adversarial debiasing in the context 567

of a multilingual corpus and show some mitigation 568

methods are more effective for some languages 569

rather than others. Nozza (2021) studies multilin- 570

gual toxicity classification and finds that models 571

misinterpret non-hateful language-specific taboo 572

interjections as hate speech in some languages. 573

There has been much less work on other combi- 574

nations of these dimensions, e.g., fairness and ef- 575

ficiency, but Hansen and Søgaard (2021b) show 576

that weight pruning has disparate effects on perfor- 577

mance across demographics; the min-max differ- 578

ence in group disparities is negatively correlated 579

with model size. Renduchintala et al. (2021) also 580

observe that techniques to make inference more ef- 581

ficient, e.g., greedy search, quantization, or shallow 582

decoder models, have a small impact on perfor- 583

mance, but dramatically amplify gender bias. In 584

a rare study of fairness and interpretability, Vig 585

et al. (2020) propose a methodology to interpret 586

which parts of a model are causally implicated in its 587

behavior. They apply this methodology to analyze 588

gender bias in pre-trained Transformers, finding 589

that gender bias effects are sparse and concentrated 590

in small parts of the network. 591

5 Blind Spots 592

We identified several under-explored areas on the 593

research manifold. The common theme is a lack 594
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of studies of how dimensions such as multilingual-595

ity, fairness, efficiency, and interpretability interact.596

We now summarize some open problems that we597

believe are particularly important to address: (i)598

While recent work has begun to study the trade-off599

between efficiency and fairness, this interaction600

remains largely unexplored, especially outside of601

the empirical risk minimization regime; (ii) fair-602

ness and interpretability interact in potentially603

many ways, i.e., interpretability techniques may af-604

fect the fairness of the underlying models (Agarwal,605

2021), but rationales may also, for example, be bi-606

ased toward certain demographics in how they are607

presented (Feng and Boyd-Graber, 2018; González608

et al., 2021); (iii) finally, multilinguality and in-609

terpretability seem heavily underexplored. While610

there exists resources for English for evaluating in-611

terpretability methods against gold-standard human612

annotations, there are, to the best of our knowledge,613

no such resources for other languages.12614

6 Discussion615

Is SQUARE ONE BIAS not the Flipside of Sci-616

entific Protocol? One potential argument for a617

community-wide SQUARE ONE BIAS is that when618

studying the impact of some technique t, say a619

novel regularization term, we want to compare620

some system with and without t, i.e., control for all621

other factors. To maximize impact and ease work-622

load, it makes sense at first sight to stick to a system623

and experimental protocol that is familiar or well-624

studied. Always returning to the SQUARE ONE is625

a way to control for all other factors and relating626

new findings to known territory. The reason why627

this is only seemingly a good idea, however, is that628

the factors we study in NLP research, may be non-629

linearly related. The fact that t makes for a positive630

net contribution under one set of circumstances,631

does not imply that it would do so under different632

circumstances. This is illustrated most clearly by633

the research surveyed in §3. Ideally, we thus want634

to study the impact of t under as many circum-635

stances as possible, but in the absence of resources636

to do so, it is a better (collective) search strategy to637

apply t to a random set of circumstances (within638

the space of relevant circumstances, of course).639

Should Each Paper Aim to Cover All Dimen-640

sions? We believe that a researcher should aspire641

12We again note that there are other possible dimensions,
not studied in this work, that can expose more blind spots: e.g.,
fairness and multi-modality, multilinguality and privacy.

to cover as many dimensions as possible with their 642

research. While this may not be possible in every 643

instance due to various factors (lack of data, time, 644

standardization, tooling, etc), considering the di- 645

mensions encourages us to think more holistically 646

about our research and its final impact. It may 647

also accelerate progress as follow-up work will 648

already be able to build on the insights of multi- 649

dimensional analyses of new methods. It will also 650

promote the cross-pollination of ideas, which will 651

no longer be confined to their own sub-areas. At 652

the same time, multi-dimensional research requires 653

researchers to become experts in multiple areas. 654

Practical Recommendations. What can we do 655

to incentivize and facilitate multi-dimensional re- 656

search? i) Currently, most NLP models are eval- 657

uated by one or two performance metrics, but we 658

believe dimensions such as fairness, efficiency, and 659

interpretability need to become integral criteria for 660

model evaluation, in line with recent proposals of 661

more user-centric leaderboards (Ethayarajh and 662

Jurafsky, 2020; Ma et al., 2021). This requires 663

new tools, e.g., to evaluate environmental impact 664

(Henderson et al., 2020), as well as new bench- 665

marks, e.g., to evaluate fairness (Koh et al., 2021). 666

ii) We believe separate conference tracks (areas) 667

lead to unfortunate silo effects and inhibit multi- 668

dimensional research. Rather, we imagine confer- 669

ence submissions could provide a checklist with 670

dimensions along which they make contributions, 671

similar to reproducibility checklist. Reviewers can 672

be assigned based on their expertise corresponding 673

to different dimensions. iii) Finally, we recommend 674

awareness of research prototypes and encourage 675

reviewers and chairs to prioritize research that de- 676

parts from prototypes in multiple dimensions, in 677

order to explore new areas of the research manifold. 678

7 Conclusion 679

We identified the prototypical NLP experiment 680

through surveys and annotation experiments. We 681

highlighted the associated SQUARE ONE BIAS, 682

which encourages research to go beyond the proto- 683

type in a single dimension. We discussed the prob- 684

lems resulting from this bias, by studying the area 685

statistics of a recent NLP conference as well as by 686

discussing historic and recent examples. We finally 687

pointed to under-explored research directions and 688

made practical recommendations to inspire more 689

multi-dimensional research in NLP. 690
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A Appendix1138

A.1 Analysis of remaining areas at ACL 20211139

We provide statistics for the remaining areas at1140

ACL 2021 in Table 4.1141

A.2 Analysis of Efficiency area at EMNLP1142

20211143

We annotated the 20 papers presented orally at1144

EMNLP 2021 in the “Efficient Models in NLP”1145

area. Among the presented papers, 19/20 are mono-1146

lingual and 17 focus only on English. Among the1147

other two, one focuses on Indonesian and one on1148

Chinese. The last paper focuses on MT with multi-1149

ple languages. Papers mainly evaluate using accu-1150

racy and/or F1 and many papers evaluate on GLUE.1151

There is a single two-dimensional paper according1152

to our criteria (the paper focusing on MT, which1153

makes contributions on multilinguality and effi-1154

ciency) while two other papers can be considered1155

two-dimensional but cover dimensions that we do1156

not annotate, i.e. privacy and robustness respec-1157

tively. This analysis corroborates our findings that1158

research papers depart from SQUARE ONE in such1159

dedicated conference areas/tracks, but largely only1160

across a single dimension.1161
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Area # papers English Accuracy / F1 Multilinguality Fairness and bias Efficiency Interpretability >1 dimension

Question Answering 24 95.8% 41.7% 4.2% 4.2% 8.3% 4.2% 0.0%
Sentence-level Semantics 23 87.0% 56.5% 8.7% 0.0% 4.3% 17.4% 4.3%
Computational Social Science 18 77.8% 66.7% 0.0% 22.2% 0.0% 16.7% 0.0%
Language Generation 18 83.3% 0.0% 11.1% 5.6% 11.1% 11.1% 5.6%
Sentiment Analysis 18 100.0% 72.2% 0.0% 0.0% 11.1% 11.1% 0.0%
Summarization 12 91.7% 0.0% 0.0% 8.3% 0.0% 8.3% 0.0%
Semantics: Lexical Semantics 12 58.3% 41.7% 25.0% 0.0% 16.7% 0.0% 8.3%
Information Retrieval 12 91.7% 8.3% 0.0% 0.0% 0.0% 0.0% 8.3%
Language Grounding to Vision 11 100.0% 18.2% 0.0% 0.0% 9.1% 27.3% 0.0%
Syntax 10 40.0% 20.0% 30.0% 0.0% 20.0% 10.0% 20.0%
Best Paper Session 8 50.0% 50.0% 12.5% 0.0% 25.0% 25.0% 12.5%
Speech and Multimodality 6 66.7% 33.3% 16.7% 0.0% 0.0% 0.0% 0.0%
Phonology and Morphology 6 33.3% 33.3% 33.3% 0.0% 0.0% 16.7% 16.7%
Linguistic Theories 6 100.0% 16.7% 0.0% 0.0% 16.7% 33.3% 0.0%
Theme 5 20.0% 40.0% 20.0% 20.0% 20.0% 20.0% 20.0%

Table 4: The number of papers in the remaining areas as well as the fractions that only evaluate on English, only
use accuracy / F1, make contributions along one of four dimensions, and make contributions along more than a
single dimension (from left to right).
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