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Abstract

Computer vision can accelerate ecological research and conservation monitoring,
yet adoption in ecology lags in part because of a lack of trust in black-box neural-
network-based models. We seek to address this challenge by applying post-hoc
explanations to provide evidence for predictions and document limitations that are
important to field deployment. Using aerial imagery from Glacier Bay National
Park, we train a Faster R-CNN to detect pinnipeds (harbor seals) and generate ex-
planations via gradient-based class activation mapping (HiResCAM, LayerCAM),
local interpretable model-agnostic explanations (LIME), and perturbation-based
explanations. We assess explanations along three axes relevant to field use: (i) lo-
calization fidelity: whether high-attribution regions coincide with the animal rather
than background context; (ii) faithfulness: whether deletion/insertion tests produce
changes in detector confidence; and (iii) diagnostic utility: whether explanations
reveal systematic failure modes. Explanations concentrate on seal torsos and con-
tours rather than surrounding ice/rock, and removal of the seals reduces detection
confidence, providing model-evidence for true positives. The analysis also uncov-
ers recurrent error sources, including confusion between seals and black ice and
rocks. We translate these findings into actionable next steps for model development,
including more targeted data curation and augmentation. By pairing object detec-
tion with post-hoc explainability, we can move beyond “black-box” predictions
toward auditable, decision-supporting tools for conservation monitoring.

1 Introduction

Computer vision is increasingly used to study wildlife populations [Gray et al., 2022], habitat change
[Xiong et al., 2024], and the impacts of climate and human activity [Růžička et al., 2023], yet uptake
in ecology remains uneven. While available technical expertise in ecological research teams is
certainly a barrier to adoption, another critical one is trust: the most accurate detectors today are deep
neural networks, whose internal reasoning is opaque to practitioners who must defend decisions about
protected species and resource allocation [Gray et al., 2022, Stavelin et al., 2021, Viegut et al., 2024,
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Mpouziotas et al., 2024]. A single false positive or negative can carry both operational and ethical
costs, as overestimating a species’ presence may draw attention and resources away from truly at-risk
populations, whereas underestimating it can hide early signs of decline and delay crucial conservation
action [Chambert et al., 2015, Doull et al., 2021]; accuracy alone is not sufficient. Ecological research
and implementation require evidence for model decisions, visibility into failure modes, and a way to
decide when to rely on automated predictions in the field [Gevaert, 2022, Buchelt et al., 2024].

Object detection in ecological imagery presents additional challenges for transparency. The targets are
relatively small, partially occluded, and often visually confounded with background structures (e.g.
dark ice or rock outcrops); animals appear in a variety of poses; and aerial acquisition often introduces
scale variation and motion blur [Buchelt et al., 2024]. In such settings, standard benchmarks can mask
shortcut learning: a detector may key on context rather than the animal itself. Post-hoc explainability
methods offer a path to audit these behaviors. Gradient-based class activation mapping can highlight
influential regions in a model’s internal representations; model-agnostic perturbation methods can
test whether predictions depend on putative evidence; and perturbation-based deletion/insertion tests
can ask whether removing that evidence changes the decision. While bounding boxes from object
detection models provide spatial localization, they do not reveal which features within the region drive
the model’s prediction. Class activation maps, by contrast, can indicate whether the detector focuses
on biologically meaningful structures rather than confounding background features. This distinction
is crucial for fostering practitioner trust and for diagnosing edge cases where unusual pigmentation,
occlusion, or environmental artifacts may lead the model to misinterpret the scene. However, most
explainability work focuses on classification rather than detection, and, to our knowledge, there exist
no studies that evaluate explanations against ecologically-relevant criteria in conservation workflows.

Our objective in this paper is to present evidence via a case study that post-hoc explainability
should be routine when validating computer-vision models for ecology and conservation. Using a
standard computer vision approach for pinniped (seal) monitoring, we apply CAM-style methods
(HiResCAM, LayerCAM) [Draelos and Carin, 2021, Jiang et al., 2021], LIME [Ribeiro et al.,
2016b], and perturbation-based explanations [Verma et al., 2022], and measure their value with
field-relevant criteria: localization fidelity (do attributions align with the animal), faithfulness under
deletion/insertion (do edits to the target object move detector confidence as expected), and diagnostic
utility (do explanations reveal systematic errors). By moving beyond “black-box” predictions
to auditable detections, our case study illustrates how explainability can bridge the trust gap for
conservation monitoring.

2 Related Work

Related work on explainable AI (XAI) is extensive within the broader AI community [Saarela and
Podgorelec, 2024], yet crossover into ecology remains limited. Recent reviews in earth observation
underscore emerging regulations and guidance that call for explainable algorithms and discuss their
anticipated impact on practice [Gevaert, 2022, Buchelt et al., 2024]. Despite this consensus, most
ecological deep learning systems still operate as opaque “black boxes,” leaving gaps in understanding
how models use visual evidence in ecological research and conservation workflows.

Early applications of XAI in ecology show promise but are concentrated in classification and
regression tasks. For example, LIME has been used to provide localized insights in species distribution
modeling [Ryo et al., 2021] and to highlight influential image regions for bird classification [Kumar
and Kondaveeti, 2024]. Spatially explicit explanations for object detection and segmentation are
more established in other high-stakes domains: medical imaging uses them to reveal diagnostically
relevant regions [Brima and Atemkeng, 2024], and autonomous driving applies them to justify road
detection and scene segmentation [Mankodiya et al., 2022]. This disparity suggests an opportunity to
adapt and evaluate such methods for ecological detection and monitoring tasks, where localization
fidelity and faithfulness are critical.

The methodological foundation to bridge this gap is readily available through open-source toolkits
[Gil, Ribeiro et al., 2016a]. Building on this work, we apply spatially explicit explanations to
ecological imagery and evaluate them against ecologically-relevant conservation criteria.

2



3 Methods

3.1 General Pipeline

We integrated an object detection model with post-hoc explainability methods to create a pipeline
that interprets a ‘black-box’ model through clear visualizations and aids conservation monitoring
decisions. Our dataset consists of 1,974 aerial drone images from Glacier Bay National Park, each
annotated with bounding boxes for seals (Appendix A). We trained a detection model using Faster
R-CNN, a widely applied model in ecological research [Cipriano et al., 2025], achieving a final mean
average precision at 50% intersection over union (mAP50) of 0.95 and mean average recall (mAR)
of 0.69 on a held-out test set (Appendix B). We then analyzed the model using three explainability
techniques (Appendix C): CAM-style methods (HiResCAM, LayerCAM) [Draelos and Carin, 2021,
Jiang et al., 2021], LIME [Ribeiro et al., 2016b], and perturbation-based explanations [Verma et al.,
2022]. These explanations were evaluated against ecologically relevant criteria to assess localization
fidelity, faithfulness, and diagnostic utility (Appendix D).

3.2 Explainability Approaches

Three explainability techniques are used to interpret the model’s decision-making process, each
offering a unique perspective on feature importance. First, Gradient-based CAM methods generate
heatmaps that highlight image regions most influential to a specific prediction. We utilized two
variants, HiResCAM [Draelos and Carin, 2021] and LayerCAM [Jiang et al., 2021], which offer
higher spatial fidelity than traditional methods, a critical feature for localizing small or partially
occluded animals in aerial imagery. These methods produce a spatial relevance map by analyzing
the gradients and activations within the model’s final convolutional block. Then, LIME explains
predictions by approximating the model’s local decision boundary using an interpretable surrogate
model trained on perturbed input samples [Ribeiro et al., 2016b]. We adapted the standard LIME
framework for the multi-instance object detection task with three improvements: improved superpixel
segmentation, a detector-aware weighting scheme to aggregate explanations for multiple objects,
and proximity-based spatial suppression to produce cleaner attribution maps. A perturbation-based
approach is also used to assess which image features are necessary for detection. This method
systematically and minimally alters an image to determine the smallest edit required to cause the
model’s prediction confidence to fall below a threshold and fail to detect an object. The process
relies on a greedy forward-selection algorithm that iteratively perturbs the most important superpixels
within or near the target’s bounding box. Together, these three techniques demonstrate how to
move from “black-box” predictions to explainable detections by providing visual insights into model
behavior. Complete methods for the explainability approaches are provided in Appendix C. Code for
explainability methods is available here: https://github.com/duke-trust-lab/on-thin-ice.

3.3 Assessing Explanations Along Ecologically-Relevant Axes

We evaluated explanations along three ecologically relevant dimensions: localization fidelity, faith-
fulness, and diagnostic utility. For localization fidelity, we looked at how well explanation methods
focused on the animal rather than surrounding background. We measured the attribution ratio, which
is the proportion of high-attribution pixels within the annotated bounding boxes, and the maximum
saliency hit-rate, the percentage of images where the most important pixel fell inside a labeled
box. Faithfulness considered whether explanations truly reflected the model’s reasoning, using our
perturbation-based method to calculate two measures. The flip rate measures the frequency of cases
where removing the highlighted features caused the model to miss the target. The confidence drop
reflects the mean reduction in prediction confidence, both overall and for cases where the prediction
was not successfully flipped. Diagnostic utility analyzed the practical value of explanations by
reviewing false positive detections with saliency maps overlaid on ground-truth labels, allowing us to
identify image features that led to false positive detections and suggest improvements to the model
and dataset. Complete methods for explanation assessment are provided in Appendix D. Together,
these measures reveal how well the explanations capture model behavior and guide trustworthy
decision-making in conservation monitoring.
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4 Results

We examine model predictions alongside post-hoc attributions to characterize correct predictions and
uncover sources of error with the aim of providing explainable predictions that both increase trust
in the model and inform model improvements. In a representative success (Figure 1, top row), both
LayerCAM and HiResCAM reveal concentrated activation over the torsos and contours of the seals,
while LIME highlights superpixels that overlap the same regions. This alignment supports localization
fidelity. We quantify localization fidelity across 76 test images by quantifying the attribution ratio, or
the normalized proportion of mid- to high-attribution pixels falling within annotated bounding boxes.
LayerCAM achieved an attribution ratio of 67.69± 25.13%, with a maximum-saliency hit rate of
94.70% (125/132 boxes). HiResCAM achieved a comparable attribution ratio of 58.56 ± 30.83%
and a hit rate of 69.70% (92/132 boxes). LIME yielded an attribution ratio of 48.76± 29.51%, with
a maximum-saliency hit rate of 92.42% (122/132 boxes). Visualizations, paired with quantitative
metrics computed on the test dataset, provide an improved understanding as to whether detections are
grounded in biologically meaningful regions or in the surrounding context.

(a) Original (b) LayerCAM (c) HiResCAM (d) LIME

(e) Original (f) LayerCAM (g) HiResCAM (h) LIME

Figure 1: Visual explanations of harbor seal detections using Faster R-CNN. Top row: Successful
detection. In the attribution maps, a color spectrum represents relative importance, with warm colors
(e.g., red, orange, yellow) indicating high contribution and cool colors (e.g., blue) indicating little
or no contribution. (a) Original detections with bounding boxes. (b) LayerCAM attribution (c)
HiResCAM attribution (d) LIME attribution. Bottom row: Challenging failure case where black ice
is misidentified as a seal. (e) Original detections with bounding boxes, including a false positive
with 0.58 confidence. (f) LayerCAM attribution (g) HiResCAM attribution (h) LIME attribution.
The attribution maps reveal that the model confuses black ice with seals, indicating a limitation in
generalizing to environments with black ice or rocks.

Attribution maps indicate where the detector attends, while perturbation-based explanations test
whether those regions are necessary. In Figure 2, the seal is detected at full confidence; masking
the seal body or replacing it with noise drives confidence to 0, whereas blurring reduces it to 0.77.
Aggregated over 76 test images, mask and noise were most destructive, yielding mean confidence
decreases of 0.97 and 0.87 with flip rates of 97.33% and 80.00%, respectively (flip = detection
suppressed to zero). Blur caused a smaller average decrease (0.27) and a lower flip rate (21.33%);
when predictions did not flip, confidence fell by only 0.07 under blur (0.10 for mask; 0.37 for
noise). Taken together, these results show that our model relies primarily on intact body contours and
coherent feature patterns: occlusion or structure-breaking noise reliably removes detections, while
blurred images retain sufficient morphology to sustain many true positives.

Most false positives in the test set were attributable to annotation gaps, ambiguous background
features, or visually confounding ice conditions. Identified errors included one missed seal annotation,
four cases involving dark shapes at image edges, one dark shape in open water, one merged detection
of two adjacent seals, and several instances of black ice. An example of a challenging failure (Figure
1, bottom row) illustrates a false positive in which the detector identifies a patch of black ice as a seal.
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(a) Original detection (b) Mask

(c) Noise (d) Blur

Figure 2: Perturbations of a successful seal detection. (a) Original detection with confidence score
1.00. (b) Masking the seal body leads to no detection. (c) Adding noise leads to no detection. (d)
Blurring reduces confidence to 0.77 but preserves detection. These perturbations demonstrate how
the model relies on seal contours and feature coherence for reliable predictions.

In this sample, attribution methods provide important insight. Both LayerCAM and HiResCAM show
strong activations over the black ice region, revealing that the model is relying on low-level visual
similarity between seals and dark ice patches rather than on biological features. LIME confirms
this by assigning this region high importance for the prediction. In these instances, attribution maps
consistently highlighted the confounding structures, confirming the model’s attention was drawn to
confounding structures rather than seals in these instances.

5 Discussion

This case study argues that post-hoc explainability should be standard practice when validating
computer-vision models for ecological research and conservation monitoring. Our results highlight
three axes important to the ecology domain: localization fidelity, faithfulness, and diagnostic utility.
We show how explanations provide evidence for predictions while revealing practical limitations.

Our perturbation-based explanations provide a check of faithfulness: when putative evidence is
removed or corrupted, we observe a reduction in our model’s confidence. Masking and noise
produced large mean confidence drops with high flip rates, whereas blur yielded smaller changes.
This indicates reliance on intact body contours and coherent feature patterns rather than contextual
shortcuts, while also showing that coarse structural cues can sometimes sustain predictions.

Explanations are valuable for diagnosing model limitations and guiding improvements (diagnostic
utility). They indicate that the current detector may not generalize well in environments with large
amounts of black ice or rock mixed with ice, as these features can be mistaken for seals. This analysis
reveals key targets that humans should review when validating detections. Understanding this failure
mode suggests potential solutions, such as targeted data augmentation to include more negative
examples of black ice or refining the training dataset to better capture background variability.
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CAM variants, LIME, and perturbations offer complementary lenses on model behavior. Using
multiple methods reduces over-reliance on any single explainer, reveals edge cases and artifacts for
review, and strengthens confidence in the explanations when different methods consistently highlight
the same visual features, providing a clearer basis for data curation and thresholding decisions.

As a case study, our aim is to demonstrate a practical workflow and its decision-supporting value,
not to claim habitat- or model-general conclusions. All explainers are post-hoc approximations with
method-specific sensitivities (i.e., CAM to layer choice/upsampling; LIME to superpixel segmentation
and perturbation kernel), and our deletion edits (mask, noise, blur) can induce distribution shift that
conflates causal evidence removal with artifacts. Faithfulness is measured via changes in post-NMS
confidence, which may be miscalibrated and need not correspond to error rates or mAP changes.
Localization is evaluated against bounding boxes rather than pixel masks, potentially penalizing
explanations that focus on salient subregions or spill slightly outside labels.

Together, these findings support our central claim: pairing object detection with post-hoc explain-
ability moves beyond “black-box” outputs toward auditable evidence that improves trust and guides
model improvement in conservation monitoring.
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A Data Collection and Labeling Methods

Drone surveys were conducted using a Wingtra One Gen II fixed-wing platform (Zurich, Switzerland)
with vertical takeoff and landing (VTOL) capabilities imaging with a Sony Alpha 6100 APS-C
camera (Tokyo, Japan) with a Sony E 20mm f/2.8 lens. Flight plans were created and carried out
using WingtraPilot flight planning software. Flights operated at 60–85 m altitude and 9–22 m/s
airspeed over regions that were historically sampled by occupied aircrafts. Drone operations were
conducted under permit by NOAA and the NPS.

Flights in glacial fjords occurred along non-overlapping parallel transects oriented lengthwise through
the glacial end of the fjord, with transects oriented approximately perpendicular to the glacier terminus.
These flight plans were similar to those of historic surveys that used occupied aircrafts [Womble
et al., 2020], but were optimized to achieve high-density coverage of the inner regions of the fjords
where seal densities are highest. Surveys from occupied aircrafts historically sampled the entire
west arm of JHI along the same 12 transects year after year, maintaining a 100-m buffer between
photographs across transects and a 20-m buffer between consecutive photographs along transects.
Surveys from unoccupied aircrafts in 2023 and 2024 surveyed smaller gross extents with a series
of nearly contiguous but not overlapping transects, maintaining a 5-m buffer between photographs
across transects and 65–70% overlap between consecutive photographs along transects. Surveys
from unoccupied aircrafts in glacial fjords consisted of 1–3 flights each using impromptu flight
plans informed by the extent of floating ice habitat and drone performance in the prevailing weather
conditions at the time of the survey. Surveys of terrestrial sites also consisted of parallel transects
arranged in a high density to achieve a target of 60% overlap between photographs along transects
and across transects.

The training dataset was visually reviewed and manually thinned to remove photographs that did not
include at least one positive instance of a harbor seal on floating ice. This was done to mitigate the
risk of negative bias in model training, which can occur with an overabundance of negative training
data. The resulting dataset images were each subdivided into tiles of 640×640 pixels. Each tile was
manually inspected and annotated to mark all harbor seal locations using Labelme [Russell et al.,
2008].
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B Object Detection Model

We employed a transfer learning approach for seal detection. Our model, a Faster R-CNN [Ren
et al., 2016] with a ResNet-50 backbone and Feature Pyramid Network (FPN), was initialized with
weights pre-trained on the COCO dataset. We then performed full fine-tuning, updating all layers
of the network to adapt the model to our seal dataset. Prior to training, images were pre-processed
to ensure compatibility with the Faster R-CNN model. The dataset was split into 1,744 training
images, 151 validation images, and 76 test images of pinnipeds collected from aerial drone surveys.
To improve robustness, the training dataset was additively augmented with geometric transformations
(horizontal and vertical flips, rotations 0 - 45°, and random crops) and color adjustments (brightness,
contrast, saturation, and hue). Validation images were processed only with normalization and
tensor conversion for consistency, while the test set was completely held out and used only for final
evaluation without any data augmentation. The model was trained using stochastic gradient descent
with gradient clipping, warmup learning rate scheduling, and early stopping. Weights and Biases
[Biewald, 2020] was used for experiment tracking. Hyperparameters were tuned over learning rate
(0.001-0.01), momentum (0.85–0.95), and weight decay (0.0001–0.001) using a grid search. The
chosen configuration used a batch size of 8, a learning rate of 0.0090, momentum of 0.874, and
weight decay of 0.0001. Although training was set for up to 200 epochs, the best model was obtained
at epoch 67, where validation performance peaked with a mean Average Precision (mAP, averaged
over IoU thresholds from 0.5 to 0.95) of 0.61, mAP50 of 0.95, and mean Average Recall (mAR,
recall averaged across up to 100 detections per image) of 0.69. The corresponding training and
validation losses were 0.11 and 0.13, respectively. On the held-out test set of 76 images, the final
model achieved an overall mAP of 0.65, with mAP50 of 0.98 and mAP75 of 0.78. Performance was
consistent across object (seal) sizes, with mAP values of 0.62 for small objects, 0.65 for medium, and
0.77 for large, while mAR100 reached 0.72.

C Explainability Approaches

C.1 Gradient-based Class Activation Mapping

Gradient-based CAM methods explain a model’s prediction by backpropagating the gradient of a
scalar target (e.g., the class logit yc) to an internal convolutional layer and converting those gradients
and activations into a spatial relevance map [Selvaraju et al., 2019]. The map is then upsampled
to input resolution and visualized as a heatmap over the image. We apply two CAM variants:
HiResCAM [Draelos and Carin, 2021] and LayerCAM [Jiang et al., 2021]. Compared with traditional
approaches Grad-CAM/Grad-CAM++ [Selvaraju et al., 2019], both methods avoid global spatial
pooling and instead use element-wise interactions between activations and gradients, yielding higher
spatial fidelity—important for aerial imagery where animals are often small, low-contrast, or partially
occluded.

To apply CAM, we first select a convolutional layer that preserves spatial structure, typically the last
conv block of the detector’s backbone/head. For Faster R-CNN, this is backbone.body.layer4. Let
its feature tensor be A ∈ RK×U×V , where Ak is the k-th channel and (U, V ) are spatial dimensions.
For each prediction, we define the target scalar as the detector’s class score/logit for the predicted
class yc and compute the gradient G = ∂yc

∂A ∈ RK×U×V . These per-location derivatives indicate
how sensitive yc is to changes in A. We then form relevance using element-wise activation–gradient
products, as shown in Eq. (1) (LayerCAM) and Eq. (2) (HiResCAM).

Rk = ReLU(Gk)⊙Ak, Lc =

K∑
k=1

Rk (1)

Lc = ReLU

(
K∑

k=1

Ak ⊙Gk

)
(2)

We bilinearly upsample Lc to the input size, perform min–max normalization to [0, 1], and overlay
the heatmap on the image for interpretation.
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C.2 Local Interpretable Model-Agnostic Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) explains predictions by generating perturbed
inputs and fitting a sparse local surrogate model to approximate the black-box decision boundary
[Ribeiro et al., 2016b]. For images, the input is first segmented into superpixels, which are selectively
masked and passed through the detector; the surrogate model then assigns importance weights to
each segment, indicating its contribution to the prediction. Let the input image be segmented into
regions S = {s1, . . . , sn}. For each perturbed sample x′ ⊆ S, the model prediction is recorded as
f(x′). LIME solves a locally weighted regression problem to estimate coefficients βi such that:

f(x′) ≈ β0 +
∑
i

βi · 1[si ∈ x′],

where βi captures the relevance of segment si.

We adapt LIME for multi-instance object detection with detector-aware weighting and proximity sup-
pression. Our implementation introduces three refinements. First, we apply improved segmentation
by converting images to the LAB color space and using SLIC [Van der Walt et al., 2014] with higher
compactness and smoothing, producing more perceptually coherent regions. We then remove very
small or black segments to avoid spurious explanations. Second, we adapt LIME to handle multiple
detected objects. Given a set of instances I = {i1, . . . , iM}, each with bounding box bi, confidence
score ci, and area ai, we assign weights

wi =



ci∑M
j=1 cj

, confidence mode,

ai∑M
j=1 aj

, area mode,

1

M
, uniform mode,

and compute combined instance scores using Intersection-over-Union IoU–based matching. The
confidence mode prioritizes objects with high prediction scores ci, focusing the analysis on features
that drive the model’s most certain detections. The area mode weights objects by their bounding-box
size ai, emphasizing the visual importance of larger instances. The uniform mode assigns equal
weight (1/M) to all detections, producing a balanced, aggregated explanation of feature importance
for the class as a whole, unbiased by confidence or size.

We then construct an explanation map by merging segment importances with spatial weighting:
segments overlapping or close to a detection box receive higher relevance, while distant or background
regions are suppressed. This yields cleaner, less cluttered maps that focus attention on the true object
instances, adapting LIME’s perturbation paradigm to the multi-instance detection setting.

C.3 Perturbation-based Explanations

For perturbation-based (deletion) explanations, we begin by processing an image x with a detector
f , which produces detections Dx = {(bk, ck, sk)}Kk=1, where each detection has a bounding box bk,
class ck, and confidence sk. For a chosen target instance t = (bt, ct, st), the goal is to construct an
edited image x′ such that the target either disappears or its confidence falls below a fixed threshold
τ = 0.5, while edits remain minimal.

First, we localize the region to be perturbed. The image is segmented into superpixels, and we take
those intersecting the target’s bounding box. If this set is too small, we expand it by including a thin
dilated ring around the box (2% of the image, at least 2 pixels wide).

Next, we apply perturbations within these regions. Each perturbation is applied on a mask dilated by
2 pixels to ensure coverage. The options are: constant background fill, Gaussian blur (σ = 5), and
additive noise (level ≈ 0.6). Let x⊙ PS denote applying perturbation P to x on the superpixel set S.

In the additive noise condition, pixels within the perturbed region are replaced with random values
sampled from a uniform distribution U(0, 1) and rescaled to the original image range. This operation
preserves global brightness statistics while destroying local semantic structure, serving as a standard
information-removal baseline in faithfulness testing [Ivanovs et al., 2021].

Then, at each iteration, we use a greedy forward-selection procedure: we perturb the superpixel that
yields the largest reduction in the target’s confidence. Formally, the set of perturbed superpixels is
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updated as
St+1 = St ∪ argmin

s∈R\St

f
(
x⊙ PSt∪{s}

)
,

where R is the eligible region, P the perturbation operator, and f the detector’s confidence score.

The process continues until either the target’s confidence drops below

f(x⊙ PSt
) < τ,

or the maximum number of iterations (default 80) is reached.

Finally, pre- and post-edit detections are matched by class agreement and Intersection-over-Union
(IoU). If no detection overlaps the original target by more than δ = 0.2, the target is considered
absent and its confidence is set to zero. A perturbation is valid if the matched confidence falls below
τ . Minimality is quantified by the perturbed area fraction.

We use the three commonly applied perturbations in explainability research to assess faithfulness
(masking, additive uniform noise, and Gaussian blur). The three are representative of the most
common ways to remove information that have been used in both deletion–insertion and occlusion
based testing in computer vision [Ivanovs et al., 2021]. Our goal is not to propose new perturbations
but to compare these established methods in the context of ecologically valid object detection,
quantifying how each affects model confidence when evidence for object presence is removed.

D Assessing Explanations Along Ecologically-Relevant Axes

D.1 Localization fidelity

We quantified how well explanation methods highlight the animal rather than the surrounding
context using LayerCAM and HiResCAM attribution maps. We calculated the proportion of mid-
to high-attribution pixels falling within annotated bounding boxes, normalized by the total number
of attribution pixels, which we call the attribution ratio. In addition, we measured the percentage of
images in which the maximum-saliency pixel was located inside a labeled box, which we call the
maximum saliency hit-rate.

D.2 Faithfulness

To evaluate faithfulness, we utilize our perturbation-based explanations and compute two criteria.
The flip rate measures how often the target is suppressed below a threshold τ ,

FRp =
1

N

N∑
i=1

1
[
s
′(p)
i < τ

]
,

where si is the original confidence and s
′(p)
i the confidence after perturbation p.

The confidence drop is defined as

△spi = si − s
′(p)
i ,

and we report both the mean across all cases,

CDp =
1

N

N∑
i=1

spi ,

and the conditional mean among unsuccessful flips
(
s
′(p)
i ≥ τ

)
:

Up = { i : s′(p)i ≥ τ }, CDp
flip =

1

|Up|
∑
i∈Up

spi .

Together, these metrics capture both the efficacy of perturbations in flipping predictions and the extent
to which confidences are reduced even when flips do not occur.
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D.3 Diagnostic Utility

Explanations were reviewed for their capacity to identify conditions in which the model is prone to
error, thus forming opportunities to improve both model design and dataset quality. We conducted a
targeted review of false positives (detections not annotated as seals) by overlaying predicted bounding
boxes and saliency maps with ground-truth labels. False positive detections were isolated and
manually inspected to characterize the contexts in which they occurred. This analysis was performed
across LayerCAM, HiResCAM, and LIME to confirm the consistency of observed patterns.

E Black Masking Perturbation

We also conducted black masking experiments (RGB: 0,0,0) on both YOLO and Faster R-CNN
models using the same 76 test images, following the same perturbation approach.

E.1 Results

For the YOLO Model, 44 out of 76 images (57.9%) produced successful counterfactuals with a 100%
flip rate, requiring an average of 1.2 ± 0.4 superpixels and changing 0.45% ± 0.20% of the image
area. The mean confidence drop was 0.73 ± 0.15. For the Faster R-CNN Model, 40 out of 76 images
(52.6%) produced successful counterfactuals with a 100% flip rate, requiring an average of 1.3 ± 0.5
superpixels and changing 0.52% ± 0.25% of the image area. The mean confidence drop was 0.75 ±
0.18.

E.2 Comparison with Other Perturbation Methods

Black masking achieved a 100% flip rate, exceeding the effectiveness of mean background masking
(97.33%), noise (80.00%), and blur (21.33%).

These results indicate that the model does not rely primarily on color cues for detection: even when
regions were replaced with uniform black pixels, predictions were suppressed as effectively as when
using the mean or noisy masks. This indicates that the model’s decisions depend more on structural
and spatial features than on specific color information.

12


	Introduction
	Related Work
	Methods
	General Pipeline
	Explainability Approaches
	Assessing Explanations Along Ecologically-Relevant Axes

	Results
	Discussion
	Data Collection and Labeling Methods
	Object Detection Model
	Explainability Approaches
	Gradient-based Class Activation Mapping
	Local Interpretable Model-Agnostic Explanations (LIME)
	Perturbation-based Explanations

	Assessing Explanations Along Ecologically-Relevant Axes
	Localization fidelity
	Faithfulness
	Diagnostic Utility

	Black Masking Perturbation
	Results
	Comparison with Other Perturbation Methods


