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ABSTRACT

Hierarchical graph-based algorithms such as HNSW achieve state-of-the-art per-
formance for Approximate Nearest Neighbor (ANN) search in practice, but they
often lack theoretical guarantees on query time or recall due to their heavy use of
randomized heuristic constructions. In contrast, existing theoretically grounded
structures are typically difficult to implement and struggle to scale in real-world
scenarios. We introduce a property of hierarchical graphs called Hierarchical ε-Net
Navigation (HENN), grounded in ε-net theory from computational geometry. This
framework allows us to establish time bounds for ANN search on graphs that
satisfy the HENN property. The design of HENN is agnostic to the underlying
proximity graph used at each layer, treating it as a black box. We further show that
HNSW satisfies the HENN property with high probability, enabling us to derive
formal time guarantees for HNSW. Direct construction of a HENN graph requires
finding ε-nets. Existing methods for finding ε-nets are either probabilistic or, when
deterministic, become impractical in high dimensions. To address this, we propose
a budget-aware practical algorithm for building ε-nets, under a user-specified pre-
processing time budget. Empirical evaluations confirm our theoretical guarantees
for both HENN and HNSW, and demonstrate the effectiveness of the proposed
budget-aware algorithm for constructing HENN and, more generally, ε-nets. This
flexibility allows practitioners to select a method that best fits their specific use
case.

1 INTRODUCTION

The Approximate Nearest Neighbor (ANN) problem involves retrieving the k closest points to a given
query point q in a d-dimensional metric space. This problem is foundational in database systems,
machine learning, information retrieval, and computer vision, and has seen growing importance in
large language models (LLMs) [26], particularly in retrieval-augmented generation (RAG) pipelines,
where relevant documents must be retrieved efficiently from large corpora [12; 31]. More generally,
any vector database system implements some form of ANN search to enable efficient vector similarity
queries [42; 16; 3]. For a comprehensive overview of additional applications, we refer the reader to
the following surveys [48; 32; 33].

Several classes of algorithms have been developed for ANN. Hash-based approaches (e.g., Locality-
Sensitive Hashing [18; 21; 7]) offer theoretical guarantees on retrieval quality but often struggle
in practical settings [43]. Quantization-based methods cluster data and search among represen-
tative centroids, yielding speedups at the cost of approximation error [24; 14; 41]. Graph-based
approaches [35; 23; 48], particularly hierarchical variants [35; 34; 37], have gained attention due to
their strong empirical performance and scalability. These methods build graphs over the dataset and
perform greedy traversal to locate approximate neighbors quickly.1

Among them, the Hierarchical Navigable Small World (HNSW) [35] graph is widely used in practice.
HNSW organizes data into multiple layers by assigning each point to a randomly chosen level
and constructs navigable small-world graphs at each layer. While HNSW is widely used in many
existing tools and is easy to implement, it lacks formal guarantees on query time, and its worst-case

1Related work is further discussed in Appendix A.
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Figure 1: A simple representation of the Hierarchical ε-net Navigation Graph (right) with an example of
answering a query using this structure (left). Layers are numbered bottom-up, with layer 0 being the
point set X and the last layer (layer L) called the root.

complexity is shown to be linear to dataset size in adversarial settings [22; 44]. In contrast, earlier
theoretically grounded hierarchical structures like Cover Trees [5; 28], provide logarithmic query
time guarantees by constructing hierarchies using r-nets.2 However, these structures are relatively
difficult to implement and often do not scale well to real datasets, limiting their practical adoption.

In this work, we introduce a general class of hierarchical graphs for ANN search, grounded in ε-net
theory from computational geometry [20]. In these structures, each layer forms an ε-net of the
preceding one, while the choice of proximity graph at each layer remains agnostic, allowing the use
of any suitable graph. Our framework establishes time guarantees for such indices as a function of
the properties of the underlying proximity graph. Notably, we show that HNSW is a special case of
HENN with high probability, corresponding to the choice of NSW as the base proximity graph. As a
crucial building block, we further propose budget-aware practical algorithms for computing ε-nets on
large datasets, enabling the scalable construction of these hierarchical graphs.

Our contributions can be summarized as follows:
• We introduce a general property for hierarchical indices in ANN search, called Hierarchical ε-

Net Navigation (HENN), where each layer is an ε-net of the preceding one. This framework is
agnostic to the choice of proximity graph and can be combined with common graphs such as kNN,
NSW [35], NSG [13], RNG [45], etc.

• We establish probabilistic query-time bounds for HENN graphs, which are logarithmic in the
dataset size and parameterized by the properties of the underlying proximity graph.

• We show that HNSW is a HENN with high probability, when NSW is used as the proximity graph,
thereby yielding formal probabilistic time guarantees for HNSW.

• A key component in building HENN graphs is computing ε-nets. Existing randomized algo-
rithms [20] provide ε-nets only with a fixed success probability, while deterministic methods based
on discrepancy theory [6] are impractical in high dimensions. We design a budget-aware algorithm
that allows the user to specify a preprocessing budget. More preprocessing time increases the
probability of successfully constructing an ε-net.

Our empirical evaluation confirms the theoretical time bounds for HENN and HNSW as a special
case of HENN, as well as for other HENN-based structures. We show that these bounds hold with
high probability (greater than 0.99) in practical scenarios, and further demonstrate the flexibility of
HENN by integrating it with different proximity graphs and comparing their performance. In addition,
we illustrate how our budget-aware algorithm enables the construction of compressed indices: by
allocating more preprocessing time, one can reduce index size while maintaining recall, highlighting
a clear tradeoff between preprocessing cost and query performance. Finally, we implement HENN
as a new index in the popular Faiss [11] library and compare it against state-of-the-art baselines,
showing its equivalence to HNSW and empirically validating our theoretical claims.
Paper Organization. The paper is organized as follows. We begin by providing formal definitions
and necessary background on ε-net theory and proximity graphs (Section 2). In Section 3, we
introduce the HENN structure. The subsequent sections establish theoretical bounds (Section 4) and
show that HNSW can be viewed as a HENN graph (Section 5). We then discuss practical aspects of

2Here, r-nets differ from ε-nets as defined in computational geometry. By r-net, we refer to a subset of
points that ensures every point in the space is within distance r of some net point. In contrast, ε-nets refer to
subsets that intersect all "heavy" ranges, containing more than an ε fraction of the total volume or weight.
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constructing HENN graphs, including algorithms for computing ε-nets briefly in Section 6 (detailed
in Appendix B), followed by our experimental evaluation in Section 7. The appendix contains related
work, additional background on ε-nets and proximity graphs, results for parallel and dynamic settings,
limitations, and further experimental details.

2 BACKGROUND AND DEFINITIONS

In this section, we introduce the concepts and notations that will be used throughout the paper.

Data Model. Let X = {xi}ni=1 denote a set of n points, where each xi is a d-dimensional vector in
Rd. We define a distance function d : Rd × Rd → R over this space, resulting in the metric space
(X,d). For example, the ℓp-norm between two points xi and xj is defined as

d(xi, xj) = ∥xi − xj∥p =

(︄
d∑︂

k=1

|xi[k]− xj [k]|p
)︄ 1

p

.

Unless otherwise stated, we use the ℓ2-norm in our examples and analysis. However, the results
extend naturally to any metric space, yielding a bounded VC-dimension for the range families
introduced later.3

VC-dimension. LetR be a family of ranges defined over X , such as balls, axis-aligned rectangles,
or half-spaces in Rd. The VC-dimension of (X,R), denoted δ, is the largest integer m for which
there exists a subset S ⊆ X of size m that is shattered byR [46; 17].

ε-net. Let (X,R) be a range space with bounded VC-dimension δ. A subset N ⊆ X is called an
ε-net of (X,R) if, for every range R ∈ R with |R∩X| ≥ ε|X|, we getN ∩R ̸= ∅. In other words,
N intersects every “heavy” range; any range containing at least an ε-fraction of the points in X . We
will often refer to an ε-net of (X,R) simply as an ε-net of X when the range family is clear from the
context.

We make use of the following well-known result [20; 17].

Theorem 1 Let (X,R) be a range space with VC-dimension δ. If a random sample of size mε is
drawn with replacement, where

mε ≥ max

{︃
4

ε
log

4

1− φ
,
8δ

ε
log

16

ε

}︃
,

then the sample forms an ε-net with probability at least φ.

Ignoring constant factors, Theorem 1 implies the existence of an ε-net of size O
(︁
δ
ε log

1
ε

)︁
for range

spaces with VC-dimension δ.4 The theorem also provides a randomized sampling method for
constructing ε-nets. Alternatively, ε-nets with the same size can be constructed deterministically
using techniques from discrepancy theory [6]. More details on ε-net construction is provided in
Section 6.

Problem Setting. Our objective is to preprocess X and construct a data structure that enables
answering the nearest-neighbor queries. Given a query point q ∈ Rd and a point set X , a k-nearest
neighbor (k-NN) query aims to find the k closest points xi ∈ X to q; i.e., Oq = k-minxi∈X d(xi, q).
The Approximate Nearest Neighbor (ANN) is a relaxed version of this problem where the goal is to
find a set Aq ⊂ X of size k with a high recall rate: the probability that each returned point in Aq

belongs to Oq , formally: Recall@k =
|Aq∩Oq|

k .

Proximity Graph (PG). Given a point set X , a proximity graph is a graph whose vertices correspond
to the points in X , and whose edges connect pairs of points according to a proximity criterion in
the underlying space. The goal is to preserve the neighborhood structure of the data so that ANN

3Throughout our guarantees and proofs, we follow the convention in computational geometry [1] of removing
the dimension d as a multiplicative factor in big-oh notations. However, we explicitly retain d when it appears in
the exponent.

4Assuming a constant failure probability φ.
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queries can be answered by navigating the graph. Several types of proximity graphs have been studied
in the literature, including the Delaunay Triangulation (DT) [29], Navigable Small World graphs
(NSW) [36], k-nearest neighbor graphs (k-NN), Relative Neighborhood Graphs (RNG) [45], and
Navigable Spreading-out Graphs (NSG) [13]. A more detailed discussion of these graph types is
provided in Appendix C.

3 HIERARCHICAL ε-NET NAVIGATION GRAPH (HENN)

In this section, we introduce a property for the hierarchical navigation graphs that guarantees their
ANN query answering time.

Definition 1 (Hierarchical ε-net Navigation Graph (HENN)) A multi-layer graph built on top of
the point set X is a HENN graph (has HENN property) if it satisfies the following criteria:

1. Nodes: Each node of the graph represents a point in X .
2. ε-net Hierarchy: Each layer Li, for 0 ≤ i ≤ L, is an ε-net of the preceding layer, with
L0 = X . The ε-net is defined with respect to the ring ranges and for a specific value of ε,
both introduced later (Equation 1).

3. PG (Intra-layer edges): The nodes within each layer are connected with Intra-layer edges
that construct a proximity graph (PG) to answer the ANN only inside this layer. Any PG
can be integrated into HENN.

4. Inter-layer edges: Each pair of layers Li and Li+1 , 0 ≤ i < L, are connected with
Inter-layer edges. There is an edge between the nodes v ∈ Li and u ∈ Li+1, if and only if v
and u represent the same point in the point set X .

We call a graph that satisfies the HENN property a HENN graph. Figure 1 (right) shows a simple
example of a HENN graph, in which each layer contains half as many points as the layer below it.
We now describe the HENN structure in detail, focusing on the high-level structure, as well as each
individual component.

ε-net Hierarchy. Each layer Li in a HENN graph is an ε-net, with a choice of ε that results in the
optimum query time (Equation 1). This ε-net is defined on the range space (X,R), where X denotes
the input point set andR is the family of ring ranges defined below.

Definition 2 (Ring Ranges) Given a set of points X , and a distance function d, a ring R ∈ R is
specified with a base point p ∈ Rd and two values r1 < r2. Any point in X with distance within two
values r1 and r2 from p falls inside the ring. Formally,

R ∩X = {x ∈ X | r1 ≤ d(x, p) ≤ r2}

Proposition 2 The VC-dimension of the ring range space, (X,R), is Θ(d).

The correctness of Proposition 2 follows the fact that each ring range R : ⟨p, r1, r2⟩ can be formulated
by mixing the two ball ranges R′ : d(x, p) ≤ r2 and R′′ : d(x, p) ≤ r1 as R = R′−R′′. Hence, due
to the mixing property of range spaces [17], the VC-dim of the ring ranges is two times the VC-dim
of the distance ranges, i.e., Θ(d). Remember that we assumed the distance d gives us a VC-dim of
Θ(d) for balls.

Following Proposition 2 and Theorem 1, one can find an ε-net of size mε = O(dε log
1
ε ), for the ring

range space, for a given value ε. The details on the construction of ε-net is provided in Section 6.
Hereafter, whenever we refer to an ε-net of a point set, we mean an ε-net with respect to the range
space of rings defined on that point set.

The Value of ε. To satisfy the HENN property, each layer Li+1 must form an ε-net of the preceding
layer Li. We define a function E : N→ (0, 1) that specifies the value of ε for a layer of size n. In
other words, Li+1 is an E(|Li|)-net of Li. For the graph to be HENN, the required value of ε is

ε = E(|Li|) = E(n) = Θ
(︂

d logn
n

)︂
, (1)

where n = |Li|.
In the next section, we show that this choice of ε leads to optimal query time guarantees on the graph.

4
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The Construction of HENN. Section 6 and Appendix B present the details of how to directly
construct a HENN graph, including the methods for finding ε-nets. For a high-level perspective, we
also provide pseudo-code outlining the construction procedure in Algorithm 1. Until then, we assume
the graph is given and focus on establishing guarantees for it.

Query Answering Using a HENN Graph. During the query time, given a query point q ∈ Rd,
the goal is to find the approximate nearest neighbor of q within X . We follow the greedy search
algorithm on top of HENN graph: Starting from a random node in the root (layer LL), we find
the nearest neighbor of q within this layer by following a simple greedy search algorithm [36; 35].
After finding the nearest neighbor vi in layer Li, we continue this process, starting from vi in layer
Li−1. We proceed until reaching the bottom (layer L0).5 A pseudo-code of this algorithm is provided
in Algorithm 5 in the Appendix, and a visual illustration is shown in Figure 1 (left). Answering
k-Nearest Neighbors for k > 1 can be achieved by considering a set of candidates at each step in the
greedy algorithm or running a Beam Search to consider multiple paths to the query [35; 23].

4 THEORETICAL ANALYSIS

In this section, we analyze the query-time complexity of the HENN structure with respect to the
black-box choice of the underlying proximity graph (PG) and the value of ε specified in Equation 1.
We begin by introducing the preliminary concepts needed to establish the final time bound.

4.1 DEFINITIONS

Let GSq(G, s) denote the result of running the greedy search algorithm (Algorithm 5) on a proximity
graph G for the query q, starting from node s. Let GL denote the proximity graph constructed at layer
L of HENN. We now introduce the following definition, which captures a property of the specific
proximity graph under consideration:

Definition 3 (Recall Bound ργ) Let G be a proximity graph defined on a point set X . The Recall
Bound of G is the smallest integer k such that, for all queries q, greedy search on G returns at least
one point among the k-nearest neighbors of q with probability at least γ. Formally,

ργ := min
{︂
k
⃓⃓⃓
Pr
s,q

[GSq(G, s) ∈ NNk,X(q) ] ≥ γ
}︂
.

where NNk,X(q) denotes the ground-truth k-nearest neighbors of q in X , and the probability is taken
over the queries and choices of the starting node.6

This definition captures a weaker notion of accuracy for proximity graphs compared to the standard
recall metric. While Recall@k measures the fraction of the true k nearest neighbors retrieved, ργ
identifies the smallest k such that, with high probability, at least one of the true k nearest neighbors
is returned by the search algorithm. In practice, we are typically interested in fixed probabilities such
as γ ≥ 0.9. For most existing navigable graphs, Malkov et al. [36]; Malkov & Yashunin [35] show
that ρ0.9 = O(1). We report and compare these values in Appendix I.

4.2 RUNNING TIME ANALYSIS

We begin with a simplified setting where HENN consists of only two layers: the base layer L0 = X
and the upper layer L1, which is an E(n)-net of X , where n = |X|. A greedy search is initiated from
an initial node in L1, proceeds until it reaches a local minimum in this layer, and then continues in the
base layer. The following lemma provides an upper bound on the total number of steps taken after
reaching the local minimum in L1:

Lemma 3 Let L1 and L0 be defined as above. Let p = GS(GL1 , s) denote the result of running GS
from an initial node s ∈ L1. Then, with probability at least γ, the number of points in L0 that are
closer to q than p is O(ργ · ε · n) where ε = E(n).

Proof Sketch: This is a result of finding ε-nets on ring ranges, where it bounds the total number of
points around q. The proof is provided in Appendix G. □

5Note that this is the standard greedy algorithm used in the literature.
6Depending on the specific PG, this starting node can be uniformly random or even deterministic.
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We now analyze the query running time of HENN and show that the choice of E in equation 1 yields
the optimal runtime. Throughout this analysis, we assume access to an algorithm that, for a given ε,
computes an ε-net of size mε (see Theorem 1) with probability at least φ. A more detailed discussion
of the construction algorithms is provided in Section 6.

Theorem 4 Let a HENN index be given, as defined in Definition 1, constructed using a proximity
graph G at each layer, with recall bound ργ for some choice of γ. Assume further that each
layer forms an ε-net of size mε with probability at least φ, where ε is chosen as in Equation 1:
E(n′) = Θ

(︂
d logn′

n′

)︂
. Let n = |X| be the size of the point set. Then, for the number of layers

L = log n, the query running time is O(d log2 n), which holds with probability at least (φγ)logn.

Proof Sketch: This is the result of applying Lemma 3 inductively on all layers. See Appendix G for
the proof. □

Theorem 4 also shows that the best choice of function E is E(n) = cd logn
n for c to be a constant.7

This implies that for a layer Li of size n′, the next layer Li+1 satisfies

|Li+1| = mE(n′) = O
(︂

d
E(n′) log

1
E(n′)

)︂
≤ O

(︂
n′

c

)︂
.

In other words, by choosing a sufficiently large constant c, the size of each layer decreases exponen-
tially relative to the previous one.

For a choice of PG and γ that results in a recall bound ργ which is not constant, the query time
will be O(ργd log

2 n). By choosing different values of γ, we obtain a spectrum of query times with
probability at least (φγ)logn, which provides more information about the probability distribution of
the query time.

Space Usage. Since each layer decreases in size by at least a constant factor c > 1, the layer sizes
form a geometric progression. Consequently, the total number of points stored across all layers is
bounded by

∑︁L
i=0 |Li| =

∑︁L
i=0 O

(︁
n
ci

)︁
= O(n). Therefore, the overall space usage of a HENN

graph is linear in n, under the assumption that each proximity graph requires a linear space to the
size of its underlying dataset.

5 HNSW IS A HENN GRAPH

In this section, we present one of our main contributions: showing that HNSW is a HENN graph, with
a high probability. Building on this connection, we derive probabilistic time guarantees for HNSW.

We begin with a simplified description of the HNSW [35]. During the preprocessing, points are
inserted incrementally: for each new node, a maximum layer level is assigned at random, where the
probability of being placed in higher layers decreases exponentially. Once the layers for the node are
determined, the node is connected to its nearest neighbors among the inserted nodes at those layers,
found using the greedy search procedure (Algorithm 5).

Equivalently, one can view HNSW as starting from the base layer that contains all points, and then
recursively building higher layers by randomly sampling subsets of points, so that the size of
each layer decreases exponentially with the level. At each layer, an NSW graph [36] is constructed
on the sampled set. Examining the definition HENN,8 We observe that HNSW has the HENN
property (probabilistically), where the underlying proximity graph is chosen to be NSW and the ε-net
construction is implemented via random sampling (see Theorem 1).

5.1 TIME COMPLEXITY ANALYSIS OF HNSW

Let c > 1 denote the constant parameter in the HNSW index construction that controls the rate
of layer size reduction. Specifically, for every i ≥ 1 we have |Li| = |Li−1|

c . We now turn to the
following key question to analyze each layer of the HNSW graph: "BASED ON THEOREM 1, WHAT

ARE THE VALUES OF ε AND φ THAT GUARANTEE A RANDOM SAMPLE OF SIZE n
c

FORMS AN ε-NET WITH

PROBABILITY AT LEAST φ?"

7See the proof in Appendix G
8Also see Section 6 for an example of construction algorithm.
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Lemma 5 For any layer Li of size n in the HNSW index, the next layer Li+1 is an ε-net of Li with
ε = Θ

(︂
d logn

n

)︂
, and with probability at least φ = 1−Θ

(︂
logn
n

)︂
.

Proof Sketch: This is a result of applying the size in Theorem 1. See Appendix G for proof. □

Combining Theorem 4 and Lemma 5, for HNSW we conclude that the function E in this graph
satisfies: E(n) = Θ

(︂
d logn

n

)︂
. Thus, HNSW implicitly uses the optimal choice of E for ε values.

Consequently, the query running time is O(d log2 n), with a probability of at least(︁
(1− logn

n ) · γ
)︁logn

,

where the parameter γ depends on the recall quality of the NSW proximity graph (which has a
constant degree π).
Success Probability in Practice. Assuming a constant recall bound ργ for NSW, the above probability
simplifies to (1− logn

n )logn. For concreteness, we can evaluate the probability for different dataset

sizes: (1) When the dataset size is n = 103, we have
(︂
1− log 1000

1000

)︂log 1000

≈ 0.905. (2) When the

dataset size is n = 106, we obtain
(︂
1− log 106

106

)︂log 106

≈ 0.9996.

These calculations explain why, in practice, HNSW often exhibits logarithmic query times in most
cases. Observing this in HNSW therefore also provides indirect evidence of the effectiveness of
NSW, in terms of recall bound, as the underlying proximity graph.

6 HENN CONSTRUCTION

Table 1: Comparison of different methods for constructing ε-nets.

Algorithms Output Guarantee Time Guarantee Practical
Sampling-based [20] Probabilistic Fast ✓

Discrepancy-based [6] Deterministic Slow (exponential to d) ✗

Sketch-and-Merge [6] Deterministic Near-linear to n ✗

Budget-Aware (ours) Probabilistic (Budget-based) Fast (budget-based) ✓

A detailed discussion of the preprocessing phase of HENN, along with an algorithm for constructing
HENN graphs directly, is deferred to Appendix B. The core element of this algorithm is the compu-
tation of ε-nets. As our final contribution, we introduce and analyze a budget-aware algorithm for
building ε-nets, also detailed in Appendix B. A summary of existing approaches and our proposed
method is provided in Table 1.

7 EXPERIMENTS

In this section, we empirically validate the theoretical results of the proposed HENN structure and
assess the algorithms developed for its construction. Furthermore, we implement the general HENN
graph within the widely used Faiss library [27; 11], providing it as a new index alongside the existing
popular ANN indices. The code is publicly available at this anonymous repository. Additional
experimental results are provided in Appendix I due to space constraints.
We organize the experiments into the following parts:
1. Experiments Setup. Description of datasets (both real and synthetic), baseline methods, evalua-

tion metrics, and configuration details.
2. Proximity Graph Integration. Integration of different proximity graphs into the HENN frame-

work and evaluation of their performance.
3. Verification of Time Guarantees. Empirical validation of the time bounds proved in Section 4.
4. ε-net Construction. Comparison of introduced algorithms for building ε-nets (Section 6) and

their impact when integrated into HENN.
5. Comparison with Other ANN Indices. Evaluation of a standard implementation of HENN

integrated with the HNSW index in the widely used FAISS library, and comparison against other
indices available there, including LSH [7], IVF-PQ [24], and NSG [13].

7
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Figure 2: Comparison of HENN integrated with different proximity graphs. Points closer to the upper-
right indicate better performance. QPS (queries per second) is the inverse of the average query time.
the synthetic dataset contains 20k points with d = 4 following mixture of Gaussians.

Figure 3: Effect of dataset size
n on the query time (GIST
dataset).

Figure 4: Effect of PG degree on
the query time (SIFT dataset).

Figure 5: Effect of dimension d
on the query time (synthetic uni-
form).

6. Proximity Graph Comparison. Analysis of recall bounds and performance trade-offs across
different proximity graphs (provided in Appendix I).

Experiments Setup. We use standard benchmark datasets for ANN search [2], including SIFT-
128 [25], GIST-960 [25], FASHION-MNIST-784 [50], and NYTIMES-256 [39], along with syn-
thetic datasets (uniform distributions and mixtures of Gaussians). Both Euclidean (ℓ2-norm) and
cosine (angular) distance metrics are considered. For proximity graphs, we evaluate several structures,
including KNN, KGRAPH [10],9 NSW [36], NSG [13], and FAANG [19]. Our methods are denoted
as HENN+X, where X specifies the underlying proximity graph used in the construction. Additional
details on experimental setup can be found at the Appendix I.
Proximity Graph Integration. Figure 2 presents the performance of HENN when integrated with
different proximity graphs across different datasets. The plots show the trade-off between query
speed and recall as the exponential decay rate (the number of layers) in HENN are varied. Increasing
the number of layers generally improves recall but slows down query processing, whereas fewer
layers yield faster queries at the cost of weakening the hierarchical structure. Overall, HENN+NSW
and HENN+FAANG achieve the best area under the curve (AUC).
Verification of Time Guarantees. We study the impact of several parameters on query time. Figure 3
illustrates the effect of dataset size n on query time. For each dataset, we subsampled n points and
generated random queries within the space. Across all datasets, the query time grows logarithmically
with n, consistent with Theorem 4. Similarly, Figure 15 (in Appendix I) reports the number of visited
hops during greedy search with a similar trend. Similar experiments on more datasets is provided in
Appendix I.

The effect of the proximity graph degree is shown in Figure 4, where we varied the degree across all
layers. The results indicate that query time scales linearly with the graph degree π. Figure 5 examines
the effect of data dimensionality d on query time. Starting from d = 2, as d increases, the search
is more likely to get trapped in local minima (curse of dimensionality), which accelerates query by
halting the greedy search early. However, once d exceeds 64, the query time becomes dominated by
the linear dependence on d. Similar results on the number of visited hops and other datasets are in
Appendix I.
ε-net Construction. As discussed in Section 6 (and Appendix B), the budget-aware algorithm
introduces a trade-off between the preprocessing budget and the success rate of the resulting ε-
net. Figure 18 (in Appendix I) illustrates this trade-off: larger budgets B significantly increase the
probability that the final set forms a valid ε-net. For example, on the FASHION-MNIST dataset,

9Here, KGRAPH refers to NN-descent applied on a kNN graph, following [10].
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Figure 6: HENN index compression (with a cost of more preprocessing time) as an effect of using the
Budget-Aware algorithm for finding ε-nets.

Figure 7: Comparison of HENN implementation in Faiss library with other indices.

allocating only 30% of the sampled points through finding unhit-sets raises the success rate from 0.7
to 1.0.

More importantly, Figure 6 demonstrates the impact of the budget-aware algorithm on the final HENN
index. Compressing the index by selecting smaller subsets as ε-nets normally reduces the success
rate (φ), but integrating the budget-aware strategy substantially changes this effect. As a result,
HENN+BUDGETAWARE produces a more compact index with the same recall as HENN+NSW
(or equivalently, HNSW). In other words, by spending additional preprocessing time, we obtain a
smaller index, with a higher probability of each layer being an ε-net, resulting in no loss in recall.
Comparison with Other ANN Indices. We integrated HENN as a new index within the popular
Faiss library and compared it against widely used ANN indices. Figure 7 presents this comparison.
As expected, HENN+NSW and HNSW exhibit nearly identical performance in both recall and query
time, consistent with our discussion in Section 5. The only noticeable difference is a slightly higher
preprocessing time for HENN+NSW, which arises from employing the construction Algorithm 1
rather than the highly optimized incremental procedure used in HNSW.10

Additional Experiments. Further results on parameter variations, such as exponential decay, com-
parisons of recall bounds across different proximity graphs, index size, and preprocessing time are
provided in Appendix I.

Discussion and Limitations. We defer a discussion on the parallelization, dynamic setting, and
limitation of our work to the Appendix D.

8 CONCLUSION
We introduced HENN, a structural property for hierarchical graph-based indices in ANN search
that unifies theoretical guarantees with practical efficiency. By organizing layers as ε-nets, HENN
achieves provable polylogarithmic query time while retaining a simple and implementable design.
We further provided a probabilistic analysis of HNSW, shedding light on the reasons behind its
strong empirical performance. To support practical adoption, we developed a budget-aware algorithm
for ε-net construction, allowing practitioners to balance preprocessing time against recall quality.

10Our objective in this study is not to provide a comprehensive comparison of HENN against all ANN
baselines, but rather to demonstrate the equivalence between HENN+NSW and HNSW, since HENN represents
a structural property rather than a specific graph.

9
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A RELATED WORK

In this section, we review the literature most relevant to our work.

Hierarchical Methods for ANN A notable class of approaches for solving the ANN problem is
based on hierarchical structures. One of the most widely used methods in this category is Hierarchical
Navigable Small World (HNSW) [35], which constructs a multi-layered structure of navigable small-
world graphs to enable efficient search. Interestingly, the core idea of hierarchical organization can
be traced back to earlier work in computational geometry, including Cover Trees [5] and Navigating
Nets [28].

Hierarchical Navigable Small World (HNSW) graphs [35] construct a multi-layered hierarchy of
navigable small world (NSW) graphs. An NSW graph serves as an efficient approximation of the
Delaunay graph [17], which is known to be an optimal structure for solving the approximate nearest
neighbor (ANN) problem [36]. The Delaunay graph is closely related to the Voronoi diagram, which
partitions the space into cells based on their proximity to the points in the dataset. Unlike the
Delaunay graph, which requires explicit geometric computation, NSW graphs are built incrementally
by inserting points and connecting them to their approximate nearest neighbors [36]. During insertion
and querying, HNSW employs a greedy search algorithm (Algorithm 5) to navigate through the graph
and locate nearby points. To improve scalability, HNSW organizes the data in a hierarchy where the
number of nodes decreases exponentially across layers, resulting in O(log n) layers and a total space
complexity of O(n).

The Cover Tree [5] and Navigating Nets [28] are hierarchical data structures for nearest neighbor
search in general metric spaces. Both achieve logarithmic query times by recursively organizing
data into nested layers, cover trees through covering and separation invariants, and navigating nets
via sequences of r-nets that approximate the dataset at multiple scales. While they offer strong
theoretical guarantees and predictable performance, these methods are challenging to implement and
scale poorly in practice, limiting their adoption in modern large-scale applications.

Beyond HNSW, several other hierarchical indices and heuristics have been proposed. None being
generalized to HENN. For example, HVS organizes data into coarse Voronoi regions that are refined
hierarchically, enabling layered navigation and accelerating search by progressively narrowing the
candidate set [34]. HCNNG instead builds multiple hierarchical clusterings and merges them into
a proximity graph, leveraging both global and local structure. By combining clustering with MST-
based connectivity, HCNNG reduces construction overhead while maintaining competitive query
performance [37].

Some methods integrate hierarchical tree structures with graph refinement, while large-scale libraries
such as FAISS [27] adopt hierarchical inverted file strategies. In FAISS, coarse quantization partitions
the dataset into clusters, which are then refined with product quantization (PQ) [24].

Other Solutions for ANN Solutions to the nearest neighbor problem can be categorized along
several dimensions. One common distinction is between classical methods, which primarily target the
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exact NN problem. Examples include k-d trees [4], ball trees [40], and Delaunay triangulations [18].
While effective in low-dimensional spaces, these methods typically fail to scale in high-dimensional
settings. Another broad category includes quantization-based methods [24; 14; 41], which cluster the
data and represent points by their assigned centroids (codewords), thereby approximating distances
efficiently. Additionally, hashing-based methods such as Locality-Sensitive Hashing (LSH [7])
provide theoretical guarantees and have been widely used for high-dimensional ANN, and finally, the
graph-based methods [36; 35; 44; 34]. For comprehensive overviews of these and other approaches,
we refer the reader to the following surveys [42; 16; 3; 48; 32; 33].

Worst-Case Performance Analysis. Several works study the limitations of graph-based ANN
indices. Indyk et al. [22] show that HNSW can require linear query time on adversarial datasets.
Wang et al. [49] propose Steiner-hardness as a graph-native measure of query difficulty, capturing
structural factors that influence cost and enabling the design of unbiased workloads. While these
approaches characterize hard queries or highlight specific failure cases on proximity graphs, our
analysis takes a complementary view by providing general bounds on query time for HENN as a
function of the underlying proximity graph. Moreover, empirical results suggest that the worst-case
recall bounds rarely manifest in practice, as they remain stable across real-world datasets.

Comparison with Other Structural Analyses. Other recent works focus on improving or analyzing
proximity graph constructions. Yang et al. [51] revisit construction strategies for indices like RNG
and NSWG, optimizing pruning and edge selection to reduce build time without harming query
performance. Diwan et al. [9] study the fundamental limits of navigable graphs, proving upper and
lower bounds on node degree for efficient greedy routing. In contrast, our contribution is structural:
we introduce HENN as a graph-agnostic framework based on ε-net layering, yielding provable
polylogarithmic query-time guarantees for any underlying proximity graph.

B HENN CONSTRUCTION

In this section, we first present an algorithm for directly constructing a HENN graph, followed by a
discussion on building ε-nets, which serve as a key subroutine in the construction.

The preprocessing phase of building a HENN graph follows a recursive process provided in Algo-
rithm 1. As an input, it receives a function E : N −→ (0, 1), that calculates the value of ε as a function
of input size n (see Equation 1 for the best choice of this function).

It begins with the initial set of points being the entire point set, i.e., L0 = X , and constructs an ε-net
over X , where ε = E(|X|). This forms the first layer, denoted L1. After finding the points in this
layer, we follow a black-box approach for constructing a proximity graph within this layer and add
the intra-layer edges accordingly (see Appendix C for more details).

Algorithm 1 HENN Construction (Preprocess) Algorithm

Require: The set of points X , maximum number of layers L, and the function E .
Ensure: The HENN graphH.

1: function BUILDHENN(X,L, E)
2: L0 ← X
3: for i ≤ L do
4: ε← E(|Li−1|)
5: Li ← BuildEpsNet(Li−1, ε) ▷ See Appendix B.1
6: Connect each node in Li to the previous layer (Inter-layer edges).
7: Build a proximity graph on Li (Intra-layer edges). ▷ See Appendix C.
8: ReturnH = {L0,L1, · · · ,LL} and the edges.

Subsequently, the algorithm recursively builds each layer Li+1 as an E(|Li|)-net of the previous layer
Li and adds the inter-layer edges. This process continues until a total of L layers are constructed,
where L is a hyperparameter specifying the depth of the HENN graph. Even though this construction
follows a sequential order in building layers, a discussion on how to parallelize this step is provided
in Appendix F.
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In the next sections, we present several algorithms for constructing ε-nets, which serve as a crucial
subroutine in the preprocessing phase of HENN. Each algorithm is suitable for different settings,
offering a range of trade-offs between speed, guarantees, and practicality. This allows a practitioner to
select the method that best matches their requirements. A comparative summary of these algorithms
is provided in Table 1.

B.1 EXISTING ε-NET CONSTRUCTION ALGORITHMS

We begin with an overview of existing algorithms from the computational geometry literature. Then,
as our third contribution, we introduce a new algorithm that balances preprocessing time and the
success probability of ε-net construction, based on a user-specified budget.

Sampling-based. The random sampling algorithm (Theorem 1) offers a fast and practical way to
construct ε-nets: it simply selects mε random points from the dataset without enumerating ranges
R. However, the guarantee holds only with a certain probability, making this approach inherently
non-deterministic. Also, repeating the process multiple times using a Las-Vegas algorithm is not
practical (see Algorithm 2).

Algorithm 2 Building ε-net (Sampling-based Algorithm)

Require: The range space (X,R), value of ε, failure probability φ′.
Ensure: The ε-net A.

1: function BUILDEPSNETSAMPLING(X, ε, φ′) ▷ Sampling-based algorithm
2: repeat
3: mε ← calculate the size (Theorem 1)
4: A ←mε random samples with replacement from X .
5: until ISEPSNET(A) = true] ▷ Takes long
6: Return A

Discrepancy-based. When exact deterministic ε-nets are required, e.g., for robustness, algorithms
from discrepancy theory [6] can be applied. Recursively partitioning the dataset yields a guaranteed
ε-net in O(n|R|) = O(nδ+1) time. The sketch-and-merge technique [6; 18] improves runtime to
O(δ3δ · 1

ε2 log(
δ
ε ) · n), though these methods remain impractical due to their exponential dependence

on the dimension d (see Algorithm 3).

The algorithm (Algorithm 3) works by iteratively halving the point-set X , until reaching the desired
size of c0 δ

ε log
δ
ε , where c0 is a large enough constant.

In order to do so, it first constructs an arbitrary matching Π of the points. A matching Π is a set of
pairs (x, y) where x, y ∈ X , it also partitions X into a set of |X|

2 disjoint pairs. Given this matching,
this algorithm randomly picks one of the points in each pair, removing the other point of the pair,
resulting in a subset of remaining points X1 ⊂ X where |X1| = |X|

2 .

Continuing this process k times for the following value of k

2k =
|X|

c0
δ
ε log

δ
ε

(2)

results in the set |Xk| which is an ε-net for X . It is easy to make this process deterministic by
following the conditional expectation method at each halving step [6].

Comparison. The randomized algorithm is straightforward to implement, requiring only random
sampling from each layer Li to construct the subsequent layer Li+1. However, it is inherently
randomized and provides running-time guarantees in expectation. Furthermore, its time complexity
depends on the time to verify if the selected set is indeed an ε-net.

In contrast, the deterministic discrepancy-based algorithm deterministically constructs an ε-net by
progressively halving each layer Li. This process involves only halving Li a couple of times to
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Algorithm 3 Building ε-net (Discrepancy-based Algorithm)

Require: The range space (X,R), value of ε, failure probability φ′.
Ensure: The ε-net A.

1: function BUILDEPSNETDISC(X, ε,R) ▷ Build ε-net by providing ε
2: k ← number of iterations (Equation 2)
3: A ← X
4: for 1 ≤ i ≤ k do
5: A ← Halving(A,R) ▷ The halving step, with arbitrary matching.
6: Return A

identify the next layer Li+1 (See BuildEpsNetDisc in Algorithm 3). Nevertheless, the running time
of the discrepancy-based algorithm depends exponentially on the dimensionality of the input points,
which makes it impractical.

B.2 BUDGET-AWARE ALGORITHM FOR CONSTRUCTING ε-NETS

To bridge the gap between sampling-based methods (fast but probabilistic) and discrepancy-based
methods (deterministic but computationally expensive), we introduce a budget-aware algorithm.
This approach allows the user to control a resource budget, thereby adjusting the trade-off between
construction speed and the probability that the resulting set forms a valid ε-net.

Given a user-specified timing budget B, which determines the allowed construction time, we design
an algorithm that achieves success with a probability depending on B. This approach is inspired by
the deterministic ε-net construction via finding an unhit range, known as NET-FINDER algorithm [38].
Our proposed BUDGET-AWARE algorithm is presented in Algorithm 4.

Algorithm 4 Budget-Aware ε-net Construction

Require: The range space (X,R), value of ε, the budget B.
Ensure: The ε-net.

1: function BUDGETAWARE(X, ε,B)
2: N ← small random sample from X . ▷ See [38]
3: for i ≤ B do ▷ At most B iterations.
4: R← FindUnhitRange(N ,R) ▷ Find R ∈ R where |R| ≥ ε · |X| but R ∩N = ∅.
5: if R exists then
6: Add O(1) random points from R to N .
7: else
8: break ▷ N is an ε-net.

return N

The algorithm begins with a small random sample N from the point set X , similar to GENERAL
NET-FINDER [38]. At each iteration, it identifies a heavy range R not intersecting N :

R ∈ R, |R| ≥ ε · |X|, R ∩N = ∅.

While GENERAL NET-FINDER proceeds until all heavy ranges are covered, BUDGET-AWARE
terminates after at mostB iterations. The parameterB, specified by the user, controls the preprocessing
time and introduces a trade-off between efficiency and the final success probability (see below).

B.3 ANALYSIS OF BUDGET-AWARE ALGORITHM

We analyze both the running time of the BUDGET-AWARE algorithm and bound the failure probability
as a function of the user-provided budget B.

Success Probability. Let C denote the random variable representing the number of calls to the oracle
FindUnhitRange (Line 3) needed to obtain an ε-net. Prior work [38] shows that E[C] = O(1/ε).
Failure occurs when C ≥ B, meaning that B calls are not enough, hence by Markov’s inequality:

Pr(failure) = Pr(C ≥ B) ≤ E[C]
B
≤ 1

ε · B
.
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Thus, increasing B improves success probability: doubling B halves the failure probability.

Time Complexity. Each iteration (Line 3 in Alg. 4) requires one call to FindUnhitRange. A
naive implementation checks all R ∈ R for intersection with N , costing O(|R|) = O(nδ) for
VC-dimension δ. To improve practicality, in our experiments, we instead partition the space into
disjoint ranges of size at least εn, searching only within this partition. This heuristic reduces the cost
to O(n) per call.11 Therefore, the total preprocessing time is O(B · n).12 See experiments for more
details (Section 7 and Appendix I).

Output Size. The output of NET-FINDER is known to be an ε-net of size O(dε log
1
ε ) (see Theo-

rem 1). The same bound holds for the BUDGET-AWARE algorithm.

C BACKGROUND ON PROXIMITY GRAPHS

Graph-based algorithms for the ANN problem typically begin by constructing a graph on the given
dataset X . A key property of these graphs is navigability, which ensures that the Greedy Search
algorithm (Algorithm 5) can be effectively applied [36]. Specifically, navigability means that by
following a sequence of locally greedy steps, the algorithm can successfully reach an approximate
nearest neighbor of the query point q.

According to this definition, a complete graph over the point set is trivially navigable. The most
optimized navigable graph can, in principle, be obtained by constructing the dual of the Voronoi
diagram of the points, known as the Delaunay triangulation [8]. However, constructing this graph is
computationally challenging, particularly in high dimensions, due to the curse of dimensionality.

An efficient approximation of the Delaunay triangulation can be achieved through a simple random-
ized algorithm that incrementally inserts points and connects each new point to its nearest neighbors
in the existing graph structure. This approach forms the basis of the Navigable Small World (NSW)
graph [36]. The HNSW algorithm adopts a similar strategy within each layer, while introducing
additional heuristics to improve practical performance, such as adding random exploration edges
between points. These heuristics can also be incorporated into the HENN structure as well, treating
the navigable graph as a black-box [35].

A natural baseline is the k-NN graph, where each point is connected to its k nearest neighbors. While
this structure is easy to build and widely used, it is well known that for small values of k, k-NN
graphs tend to exhibit numerous local minima that hinder greedy navigation [33].

Another classical proximity structure is the Relative Neighborhood Graph (RNG), introduced in
computational geometry [45]. An edge between two points exists only if no other point lies within
the lens defined by them, making the RNG a sparse subgraph of the Delaunay triangulation. While
RNGs enjoy theoretical navigability guarantees, their practical construction cost and sparsity often
limit their use in large-scale ANN systems.

The Navigable Spreading-Out Graph (NSG) [13] has emerged as a practical ANN graph structure
that carefully sparsifies a k-NN graph while ensuring connectivity and navigability. NSG uses a
diversification step to spread out edges and eliminate redundancy, resulting in a graph that balances
efficiency and search quality. It is among the most competitive structures in large-scale ANN
benchmarks.

For a more detailed comparison of these graph structures, we refer the reader to [51]. As highlighted
earlier, any navigable graph can be treated as a black box and seamlessly integrated into the HENN
framework within each layer.

D DISCUSSION AND LIMITATIONS

We highlight several practical aspects and limitations of constructing general HENN graphs using
Algorithm 1.

11With optimized libraries and parallelization, this step can be made faster in practice.
12Our success probability analysis assumes the naive implementation, which always identifies an unhit range.

In practice, however, we show experimentally that the heuristic variant also achieves reliable performance.
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HENN construction can be naturally parallelized during the indexing phase, enabling faster pre-
processing. Moreover, it can support dynamic updates to the dataset, provided that the layers are
maintained and the ε-net property is preserved. Further details on parallel construction and dynamic
maintenance are given in Appendices F and E.

HENN is defined as a structural property that extends to any metric d yielding bounded VC-dimension
for ring ranges. This includes widely used metrics such as ℓp-norms and angular distances (cosine
similarity). However, if the VC-dimension is unbounded, ε-net construction becomes impractical.

The theoretical time guarantees of HENN rely on properties of the underlying proximity graphs,
particularly their degree and recall bounds. In practice, many commonly used proximity graphs exhibit
constant degree and bounded recall. However, certain graphs, such as the Delaunay Triangulation
(DT), may have degrees that grow exponentially with dimension.

E DYNAMIC SETTING

In this section, we present a procedure for maintaining the HENN structure under dynamic updates
to the point set X . The supported operations include Insert(x), which adds a new point x, and
Delete(x), which removes an existing point x ∈ X .

Based on the discussion in Theorem 1, a random sample of an appropriate size forms an ε-net of X
with high probability. We denote this required sample size by mε, given by:

mε = O

(︃
d

ε
log

d

ε

)︃
Each layer of HENN, denoted by Li, is constructed as a random sample of size mE(|Li−1|) from the
previous layer (see Equation 1). Consequently, the problem reduces to dynamically maintaining a
random sample S of size mε from the point set X .13

This problem can be addressed using Reservoir Sampling [47] and the Backing Samples technique [15].
The key idea is to handle Insert(x) operations by probabilistically adding the new element to the
sample S using a non-uniform coin toss. To support deletions, a larger backing sample is maintained
beyond size mε, allowing for efficient resampling of S once the size drops below a threshold. This
approach yields a constant amortized update time.

According to this, we can maintain the HENN structure dynamically:

Insert(x): To insert a new point, dynamic updates are performed starting from layer L1 and
proceeding upward through the hierarchy, stopping at the highest layer where the new point is
included. This process takes O(log n) time, matching the insertion time complexity of HNSW.

Delete(x): Deletion begins at layer L1, where the point x is removed if present. If the size of a
layer falls below a critical threshold (as discussed in [15]), the layer must be resampled. Following
resampling, the HENN structure is rebuilt from that layer up to the root, which incurs a cost of
O(n log n) in the worst case. However, since such rebuilding occurs infrequently, only when the
layer size drops significantly (e.g., mε < c0n for a constant c0), the amortized cost remains O(log n).

F PARALLELIZATION

In this section, we present a parallelized approach to constructing the HENN index during pre-
processing. While the original HENN construction, shown in Algorithm 1, runs sequentially by
building layers L1 through Lm from the base point set X , this process can be parallelized to reduce
preprocessing time.

To enable parallelization, we exploit the fact that layer sampling in HENN is performed with
replacement. Given p parallel CPU cores, we can independently generate samples for each layer

13S is a random sample with replacement, with each element having a probability mε
n

being in S.
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in parallel. Specifically, each core performs independent sampling, effectively achieving a p-factor
speedup for the sampling phase performed on each layer.

HNSW also uses a parallelization to enhance preprocessing [35], where each input point is processed
independently. For each point, a random level is assigned, and the point is inserted into the corre-
sponding layers. This results in a total construction time of O(n log n), which can be reduced to
O(n logn

p ) under parallel execution with p cores.

For HENN, the construction begins by sampling a subset of size n
2m for the first layer L1, and

recursively building higher layers. Each layer Li requires constructing a navigation graph, the
complexity of which depends on the chosen method. For instance, NSW-based graph construction
requires O(|Li| log |Li|) time on the ith layer. Excluding graph construction, the sampling phase
alone can be executed in O(n logn

p ) time using p cores.

G PROOFS

G.1 PROOF OF LEMMA 3

Proof Since L1 is an ε-net of L0, we know that each (ring) range R of size more than ε ·n, intersects
with L1. In other words:

|R| ≥ εn −→ L1 ∩R ̸= ∅

This comes from the definition of an ε-net.

Based on the definition of recall bound, we know that there are at most ργ more points, denoted as
P = {p1, p2, · · · , pργ}, in L1 that are closer to q than p (with probability of at least γ).

Assume that the points in P are sorted based on their distance to q, with p1 being the closest. For
each pj ∈ P define a unique range Rj , which is a ring centered at q, covering all the distances
between (d(q, pj−1),d(q, pj)), exclusively (see Figure 8). In addition, define one more ring, Rργ+1

for
(︁
dist(q, pργ ), dist(q, p)

)︁
.

All these ργ + 1 ranges are disjoint, and they do not contain any point in L1. Since L1 is an ε-net for
this range space, this means that all the ranges Rj have at most ε · n points from L0 (the lower level).
As a result, the union of all these ranges contains at most ε · n · (ργ + 1) points. □

Figure 8: Visualization of Lemma 3. In this example, ργ = 2 and the black points are inside the ε-net.

G.2 PROOF OF THEOREM 4

Proof The query process begins at the top layer LL, where GS is executed on the corresponding
proximity graph. The search then proceeds layer by layer until reaching the base layer L0.

In the final step, the algorithm identifies a point

p = GS(GL1 , s),
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the output of greedy search on GL1
starting from some initial node s. From p, the search continues in

the base layer L0. We analyze the running time inductively, proceeding from the base layer upward.

Let T (n) denote the time required to query a HENN graph constructed on a dataset of size n.
Computing p requires T (|L1|) time, since layers L1, . . . ,LL themselves form a HENN structure. By
Lemma 3, continuing the search from p in the base layer requires at most O(ργ · εn) hops. If π is the
degree of the proximity graph, the total cost per hop is O(π). Thus,

T (n) = T (|L1|) +O(πργεn).

Treating ργ and π as constants gives

T (n) = T (mE(n)) +O(εn),

where mε is the size of the ε-net. By Theorem 1 and using the fact that VC-dim is Θ(d), we have
mε = O

(︁
d
ε log

1
ε

)︁
. Substituting this bound yields

T (n) = T
(︁
O
(︁
d
ε log

1
ε

)︁)︁
+O(εn).

Ignoring constant factors, we obtain

T (n) ≤ T
(︁
d
ε log

1
ε

)︁
+ εn.

Let x(n) = 1
ε as a function of n. Then,

T (n) ≤ T
(︁
d · x(n) log x(n)

)︁
+ n

x(n) .

To guarantee convergence, we require

d · x(n) log x(n) = o(n).

At the same time, to minimize the second term n
x(n) , we select x(n) as large as possible subject to

this constraint. The optimal choice is obtained by solving

x(n) log x(n) = n
d ,

which admits the asymptotic solution

log x(n) = W (nd ) ≈ log(n/d)− log log(n/d) +O(1),

where W denotes the Lambert W function [30]. Consequently, up to lower-order terms,

x(n) = n
d logn .

This implies
n

x(n) = d · log n,
and therefore, since L = log n, the total running time is

T (n) = O(d log2 n).

Finally, to see why this choice of x(n) is optimal, suppose instead we take x(n) such that

d · x(n) log x(n) = n1−α, α > 0.

Then x(n) ≈ n1−α

d logn , which yields
n

x(n) = dnα log n,

leading to a runtime strictly larger than O(d log2 n). Hence, the choice x(n) = n
d logn is asymptoti-

cally optimal.

To achieve this running time, two conditions must hold: (1) each layer must form an ε-net of the
preceding one, and (2) the greedy search at each layer must return a point within the ργ nearest
neighbors of the query in the layer below.

For (1), since each layer is an ε-net with probability at least φ, the probability that all L layers are
valid ε-nets is φL. For (2), by the definition of the recall bound, the event occurs with probability
at least γ per layer, and thus γL across all layers. Combining these independent events, the above
query time is achieved with probability at least (φ · γ)L for L = log n. □
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G.3 PROOF OF LEMMA 5

Proof For a large enough constant c1 ≥ c, choosing ε = c1δ logn
n we have:

8δ

ε
log

16

ε
≤ n

c
.

Choose a failure probability φ′ = logn
c2n

for a large enough constant c2 > 1. Then,

4

ε
log

4

φ′ ≤
8δ

ε
log

16

ε
.

Hence, by Theorem 1, we obtain

max
{︂

4
ε log

4
φ′ ,

8δ
ε log 16

ε

}︂
= 8δ

ε log 16
ε ≤

n
c .

Therefore, setting mε =
n
c gives us that Li+1 is an ε-net of Li, with

ε = Θ
(︂

δ logn
n

)︂
and success probability at least 1−Θ

(︂
logn
n

)︂
.

□

H PSEUDO-CODES

Algorithm 5 Greedy Search Algorithm

Require: The HENN graphH and the query point q.
Ensure: The approximate nearest neighbor of q in X .

1: function QUERY(H, q)
2: v ← random point from root(L0)
3: for each layer i = L,L− 1, · · · , 0 do
4: v ← GreedySearch(Li, v, q)

5: Return v
6: function GREEDYSEARCH(G, v, q) ▷ G is the proximity graph, starting node v, and query q
7: next← v
8: repeat
9: curr ← next

10: N ← neighbors of curr in G.
11: next← argminu∈N d(u, q) ▷ Closest neighbor to q
12: until d(next, q) ≥ d(curr, q) ▷ Until getting stuck in local minimum
13: Return curr

I MORE ON EXPERIMENTS

I.1 DETAILS ON EXPERIMENTAL SETTING

Real Datasets. We evaluate our methods on standard ANN benchmarks with both Euclidean and
angular (cosine) distance metrics. The datasets include: SIFT-128 [25], consisting of 1M vectors in
128 dimensions; GIST-960 [25], with 1M vectors in 960 dimensions; FASHION-MNIST, containing
60K vectors in 784 dimensions; and NYTIMES, with 290K vectors in 56 dimensions. Among these,
NYTIMES is evaluated with cosine similarity, while the others use the Euclidean norm.

Synthetic Datasets. To study the effect of varying parameters such as dimensionality, we generated
synthetic datasets for ANN search. These were drawn either from a uniform distribution or from
mixtures of anisotropic Gaussians, producing several skewed clusters that mimic the structure of
challenging real-world datasets.
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Queries. For our experiments, queries are generated in two ways: by randomly sampling a subset
of points from the dataset, and by creating an additional set of points drawn uniformly at random
from the ambient space.

Methods. In our experiments, we combined HENN with different PGs at each level. For this
purpose, we followed the construction algorithm 1 with a standard construction process for the PG.

Implementation of ε-net Construction. We employ two approaches for building ε-nets. The
first is Random Sampling, where a random subset of size mε is selected, which yields an ε-net with
a certain probability. Other approaches, such as sketch-and-merge or discrepancy-based methods,
are not practical in this context as their complexity grows exponentially with the dimension d. Our
second approach is the Budget-Aware Algorithm, in which the user specifies a budget B, expressed as
a ratio r ∈ (0, 1].

Concretely, if the target ε-net size is m, we first select (1− r)m elements uniformly at random. The
remaining r ·m elements are then chosen using a heuristic procedure (see Algorithm 6), which is
based on the unhit-set discovery technique described in Section B.1.

Algorithm 6 Finding an Unhit Range

Require: A point set X and a subset N as the ε-net placeholder.
Ensure: The ε-net with high probability.

1: function FINDANUNHITSET(X, ε,N )
2: for i ≤ B do ▷ At most B iterations.
3: p← a random point from X
4: Partition the whole space based on the distance of points to p.
5: for partition Pi do
6: if Pi ∩N = ∅ then
7: Add a random point from Pi to N
8: If no new points added, just add a random point to N .

return N

I.2 COMPARISON OF PROXIMITY GRAPHS

In this section, we compare several proximity graphs, including KNN, KGRAPH, NSG, FAANG,
and NSW. While this is not the primary focus of our work, we report their recall bounds and query
times in a flat (single-layer) setting across multiple datasets.

(a) Uniform distribution (ℓ2) (b) Mixture of Gaussians (ℓ2) (c) Mixture of Gaussians (cosine)

Figure 9: Comparison of recall bound (average hit among k neighbors of the query) between different
proximity graphs (synthetic dataset).

Figures 9 and 10 present the recall bounds of these proximity graphs on both synthetic and real
datasets. In these experiments, we varied the value of k in the k-nearest neighbor search and, over
multiple runs, measured the fraction of queries for which the returned neighbors included the true k
nearest neighbors. This fraction provides an estimate of the probability of correctly retrieving the k
nearest neighbors. As k increases, this probability naturally improves, since the search is more likely
to include points from the true neighborhood of the query. We define the recall bound of a proximity
graph (Definition 3) as the smallest value of k for which this probability exceeds 0.9 on average.
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(a) Fashion-MNIST (b) SIFT (c) NYTimes

Figure 10: omparison of recall bound (average hit among k neighbors of the query) between different
proximity graphs (real datasets).

Notably, some graphs, such as NSW (used in HNSW), show very small recall bounds, which in turn
leads to better performance for HENN.

(a) Uniform distribution (ℓ2) (b) Mixture of Gaussians (ℓ2) (c) Mixture of Gaussians (cosine)

Figure 11: Comparison of query times of different PGs in a single-layer setting (synthetic dataset).

(a) Fashion-MNIST (b) SIFT (c) NYTimes

Figure 12: Comparison of query times of different PGs in a single-layer setting (real dataset).

Figures 12 and 11 compare the query-time performance of these proximity graphs in a single-layer
(flat) setting across different datasets.

I.3 INDEXING SIZE AND TIME

In this section, we evaluate the indexing phase of HENN, focusing on index size and preprocessing
time. Figure 13 reports the indexing cost of HENN when integrated with different proximity graphs.
We observe that the build time for NSW is higher than for other graphs, since our implementation
includes a second refinement phase to enforce the desired node degree specified by the user. In terms
of memory usage, the index grows almost linearly with both the dataset size n and the dimensionality
d.

I.4 ADDITIONAL EXPERIMENTS

Effect of n and d. Figure 14 illustrates the effect of dataset size n on query time, while Figure 15
reports its effect on the number of hops (steps) in the greedy search. In both cases, the dependence
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(a) Indexing time vs. n (b) Indexing time vs. d (c) Index size vs. n (d) Index size vs. d

Figure 13: Index size and index time as a function of dataset size n and dimension d. This is the
synthetic dataset with Mixture of Gaussians distribution.

(a) SIFT (b) Fashion-MNIST

Figure 14: Effect of dataset size n on the query time.

on n is logarithmic, consistent with Theorem 4. Figure 16 shows the effect of dimensionality d on
query time and hops, which scales linearly with d as predicted by Theorem 4. As discussed earlier,
increasing d raises the likelihood of getting trapped in local minima (for proximity graphs with fixed
degree). Consequently, for smaller values of d, the query time initially decreases before the linear
dependence on d dominates. Figure 17 also shows the effect of dimension d on the synthetic data
with Mixture of Gaussians distribution.

Budget-Aware ε-net construction Figure 18 demonstrates the effectiveness of the budget-aware
algorithm in constructing ε-nets with high probability. Across multiple real datasets, even a small
preprocessing budget (as low as 10%) substantially increases the likelihood that the resulting set
forms a valid ε-net. This property is particularly important for compressing the HENN index: by
selecting smaller subsets per layer, we can reduce the overall index size, but at the cost of recall, since
the subsets may no longer be ε-nets with high probability. Incorporating the budget-aware strategy
mitigates this issue, yielding smaller subsets that retain a high probability of being ε-nets and thus
achieve recall comparable to the non-compressed version (as shown earlier in Figure 6).

Figure 19 further illustrates the trade-off in preprocessing time. While the budget-aware algorithm
requires additional time, growing linearly with the budget, it provides substantially better ε-net
quality, making the extra preprocessing cost as a trade-off.

Effect of Proximity Graph Degree. Figure 20 illustrates the impact of varying the degree of the
proximity graph (across all layers) on the query time of HENN over additional datasets. The results
confirm a linear dependence on the graph degree.

Effect of exponential decay Figure 21 shows the effect of varying the exponential decay rate,
which controls the reduction in layer size (and equivalently, the number of layers) on recall and query
time. Smaller decay values produce deeper hierarchies with more layers, leading to higher recall but
longer query times, since the greedy search must traverse additional layers. Interestingly, there exists
an optimal number of layers that minimizes query time. Increasing the decay (reducing the number
of layers) weakens the hierarchical structure and degrades performance. In the extreme case of very
few layers, query time increases again, as most of the effort is spent in the top layer, which contains
O(n) points, making it more prone to getting stuck in local minima.
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(a) GIST (b) SIFT (c) Fashion-MNIST

Figure 15: Number of visited hops vs n.

(a) Uniform distribution (b) Mixture of Gaussians distribution

Figure 16: Number of visited hops vs. d (synthetic dataset)

J USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used for polishing text, checking grammar, and assisting in debugging code. All research
ideas, methods, experiments, and analyses are the authors’ own. The authors take full responsibility
for the content.
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Figure 17: Effect of dimension d on the query time. The results are on the synthetic dataset with
varying d (Mixture of Gaussians distribution).

(a) SIFT (b) NYTimes (c) Fashion-MNIST

Figure 18: The comparison of Random Sampling and Budget-Aware algorithms on finding an ε-net.
The budget ratio r means that for an ε-net of size mε, we added (1− r) ·mε points greedily by finding
unhit ranges (see Appendix I for details). The experiment is run on small subset of these datasets.

(a) SIFT (b) NYTimes (c) Fashion-MNIST

Figure 19: Comparing the time spent to find ε-net using Budget-Aware algorithm for different values of
budget B.

(a) GIST (b) Fashion-MNIST

Figure 20: Effect of the degree of PG on the query time. Every other parameter, like the number of
layers, is fixed.
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(a) time vs. decay (b) recall vs. decay

Figure 21: Effect of exponential decay rate on time and recall of HENN. Higher decay rate is equivalent
of smaller number of layers. The experiments are on synthetic dataset with Mixture of Gaussians with
10k points and d = 4.
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