

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIERARCHICAL EPSILON-NET GRAPHS: TIME GUAR- ANTEES FOR HNSW IN APPROXIMATE NEAREST NEIGHBOR SEARCH

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Hierarchical graph-based algorithms such as HNSW achieve state-of-the-art performance for Approximate Nearest Neighbor (ANN) search in practice, but they often lack theoretical guarantees on query time or recall due to their heavy use of randomized heuristic constructions. In contrast, existing theoretically grounded structures are typically difficult to implement and struggle to scale in real-world scenarios. We introduce a property of hierarchical graphs called Hierarchical ε -Net Navigation (HENN), grounded in ε -net theory from computational geometry. This framework allows us to establish time bounds for ANN search on graphs that satisfy the HENN property. The design of HENN is agnostic to the underlying proximity graph used at each layer, treating it as a black box. We further show that HNSW satisfies the HENN property with high probability, enabling us to derive formal time guarantees for HNSW. Direct construction of a HENN graph requires finding ε -nets. Existing methods for finding ε -nets are either probabilistic or, when deterministic, become impractical in high dimensions. To address this, we propose a budget-aware practical algorithm for building ε -nets, under a user-specified pre-processing time budget. Empirical evaluations confirm our theoretical guarantees for both HENN and HNSW, and demonstrate the effectiveness of the proposed budget-aware algorithm for constructing HENN and, more generally, ε -nets. This flexibility allows practitioners to select a method that best fits their specific use case.

1 INTRODUCTION

The Approximate Nearest Neighbor (ANN) problem involves retrieving the k closest points to a given query point q in a d -dimensional metric space. This problem is foundational in database systems, machine learning, information retrieval, and computer vision, and has seen growing importance in large language models (LLMs) [29], particularly in retrieval-augmented generation (RAG) pipelines, where relevant documents must be retrieved efficiently from large corpora [13; 34]. More generally, any vector database system implements some form of ANN search to enable efficient vector similarity queries [48; 19; 3]. For a comprehensive overview of additional applications, we refer the reader to the following surveys [54; 35; 37].

Several classes of algorithms have been developed for ANN. Hash-based approaches (e.g., Locality-Sensitive Hashing [21; 24; 8]) offer theoretical guarantees on retrieval quality but often struggle in practical settings [49]. Quantization-based methods cluster data and search among representative centroids, yielding speedups at the cost of approximation error [27; 16; 47]. Graph-based approaches [40; 26; 54], particularly hierarchical variants [40; 38; 42], have gained attention due to their strong empirical performance and scalability. These methods build graphs over the dataset and perform greedy traversal to locate approximate neighbors quickly.¹

Among them, the Hierarchical Navigable Small World (HNSW) [40] graph is widely used in practice. HNSW organizes data into multiple layers by assigning each point to a randomly chosen level and constructs navigable small-world graphs at each layer. While HNSW is widely used in many existing tools and is easy to implement, it lacks formal guarantees on query time, and its worst-case

¹Related work is further discussed in Appendix A.

Figure 1: A simple representation of the Hierarchical ε -net Navigation Graph (right) with an example of answering a query using this structure (left). Layers are numbered bottom-up, with layer 0 being the point set X and the last layer (layer L) called the root.

complexity is shown to be *linear to dataset size in adversarial settings* [25; 50]. In contrast, earlier theoretically grounded hierarchical structures like Cover Trees [5; 31], provide logarithmic query time guarantees by constructing hierarchies using r -nets.² However, these structures are relatively *difficult to implement* and often do not scale well to real datasets, limiting their practical adoption.

In this work, we introduce a general class of hierarchical graphs for ANN search, grounded in ε -net theory from computational geometry [23]. In these structures, each layer forms an ε -net of the preceding one, while the choice of proximity graph at each layer remains agnostic, allowing the use of any suitable graph. Our framework establishes time guarantees for such indices as a function of the properties of the underlying proximity graph. Notably, we show that HNSW is a special case of HENN with high probability, corresponding to the choice of NSW as the base proximity graph. As a crucial building block, we further propose budget-aware practical algorithms for computing ε -nets on large datasets, enabling the scalable construction of these hierarchical graphs.

Our contributions can be summarized as follows:

- We introduce a general property for hierarchical indices in ANN search, called *Hierarchical ε -Net Navigation (HENN)*, where each layer is an ε -net of the preceding one. This framework is agnostic to the choice of proximity graph and can be combined with common graphs such as kNN, NSW [40], NSG [14], RNG [51], etc.
- We establish *probabilistic* query-time bounds for HENN graphs, which are logarithmic in the dataset size and parameterized by the properties of the underlying proximity graph.
- We show that HNSW is a HENN with high probability, when NSW is used as the proximity graph, thereby yielding formal probabilistic time guarantees for HNSW.
- A key component in building HENN graphs is computing ε -nets. Existing randomized algorithms [23] provide ε -nets only with a fixed success probability, while deterministic methods based on discrepancy theory [6] are impractical in high dimensions. We design a budget-aware algorithm that allows the user to specify a preprocessing budget. More preprocessing time increases the probability of successfully constructing an ε -net.

Our empirical evaluation confirms the theoretical time bounds for HENN and HNSW as a special case of HENN, as well as for other HENN-based structures. We show that these bounds hold with high probability (greater than 0.99) in practical scenarios, and further demonstrate the flexibility of HENN by integrating it with different proximity graphs and comparing their performance. In addition, we illustrate how our budget-aware algorithm enables the construction of compressed indices: by allocating more preprocessing time, one can reduce index size while maintaining recall, highlighting a clear tradeoff between preprocessing cost and query performance. Finally, we implement HENN as a new index in the popular Faiss [12] library and compare it against state-of-the-art baselines, showing its equivalence to HNSW and empirically validating our theoretical claims.

Paper Organization. The paper is organized as follows. We begin by providing formal definitions and necessary background on ε -net theory and proximity graphs (Section 2). In Section 3, we introduce the HENN structure. The subsequent sections establish theoretical bounds (Section 4) and show that HNSW can be viewed as a HENN graph (Section 5). We then discuss practical aspects of

²Here, r -nets differ from ε -nets as defined in computational geometry. By r -net, we refer to a subset of points that ensures every point in the space is within distance r of some net point. In contrast, ε -nets refer to subsets that intersect all "heavy" ranges, containing more than an ε fraction of the total volume or weight.

108 constructing HENN graphs, including algorithms for computing ε -nets briefly in Section 6 (detailed
 109 in Appendix B), followed by our experimental evaluation in Section 7. The appendix contains related
 110 work, additional background on ε -nets and proximity graphs, results for parallel and dynamic settings,
 111 limitations, and further experimental details.

112 **2 BACKGROUND AND DEFINITIONS**

114 In this section, we introduce the concepts and notations that will be used throughout the paper.

116 **Data Model.** Let $X = \{x_i\}_{i=1}^n$ denote a set of n points, where each x_i is a d -dimensional vector in
 117 \mathbb{R}^d . We define a distance function $\mathbf{d} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ over this space, resulting in the metric space
 118 (X, \mathbf{d}) . For example, the ℓ_p -norm between two points x_i and x_j is defined as

$$119 \quad \mathbf{d}(x_i, x_j) = \|x_i - x_j\|_p = \left(\sum_{k=1}^d |x_i[k] - x_j[k]|^p \right)^{\frac{1}{p}}.$$

123 Unless otherwise stated, we use the ℓ_2 -norm in our examples and analysis. However, the results
 124 extend naturally to any metric space, yielding a bounded VC-dimension for the range families
 125 introduced later.³

126 **VC-dimension.** Let \mathcal{R} be a family of ranges defined over X , such as balls, axis-aligned rectangles,
 127 or half-spaces in \mathbb{R}^d . The VC-dimension of (X, \mathcal{R}) , denoted δ , is the largest integer m for which
 128 there exists a subset $S \subseteq X$ of size m that is *shattered* by \mathcal{R} [52; 20].

129 **ε -net.** Let (X, \mathcal{R}) be a range space with bounded VC-dimension δ . A subset $\mathcal{N} \subseteq X$ is called an
 130 ε -net of (X, \mathcal{R}) if, for every range $R \in \mathcal{R}$ with $|R \cap X| \geq \varepsilon|X|$, we get $\mathcal{N} \cap R \neq \emptyset$. In other words,
 131 \mathcal{N} intersects every “heavy” range; any range containing at least an ε -fraction of the points in X . We
 132 will often refer to an ε -net of (X, \mathcal{R}) simply as an ε -net of X when the range family is clear from the
 133 context.

134 We make use of the following well-known result [23; 20].

135 **Theorem 1** *Let (X, \mathcal{R}) be a range space with VC-dimension δ . If a random sample of size m_ε is
 136 drawn with replacement, where*

$$137 \quad m_\varepsilon \geq \max \left\{ \frac{4}{\varepsilon} \log \frac{4}{1-\varphi}, \frac{8\delta}{\varepsilon} \log \frac{16}{\varepsilon} \right\},$$

138 *then the sample forms an ε -net with probability at least φ .*

139 Ignoring constant factors, Theorem 1 implies the existence of an ε -net of size $O\left(\frac{\delta}{\varepsilon} \log \frac{1}{\varepsilon}\right)$ for range
 140 spaces with VC-dimension δ .⁴ The theorem also provides a *randomized sampling* method for
 141 constructing ε -nets. Alternatively, ε -nets with the same size can be constructed *deterministically*
 142 using techniques from discrepancy theory [6]. More details on ε -net construction is provided in
 143 Section 6.

144 **Problem Setting.** Our objective is to preprocess X and construct a data structure that enables
 145 answering the nearest-neighbor queries. Given a query point $q \in \mathbb{R}^d$ and a point set X , a k -nearest
 146 neighbor (k -NN) query aims to find the k closest points $x_i \in X$ to q ; i.e., $O_q = k \cdot \min_{x_i \in X} \mathbf{d}(x_i, q)$.
 147 The Approximate Nearest Neighbor (ANN) is a relaxed version of this problem where the goal is to
 148 find a set $A_q \subset X$ of size k with a high *recall rate*: the probability that each returned point in A_q
 149 belongs to O_q , formally: $\text{Recall}@k = \frac{|A_q \cap O_q|}{k}$.

150 **Proximity Graph (PG).** Given a point set X , a proximity graph is a graph whose vertices correspond
 151 to the points in X , and whose edges connect pairs of points according to a proximity criterion in
 152 the underlying space. The goal is to preserve the neighborhood structure of the data so that ANN

153 ³Throughout our guarantees and proofs, we follow the convention in computational geometry [1] of removing
 154 the dimension d as a multiplicative factor in big-oh notations. However, we explicitly retain d when it appears in
 155 the exponent.

156 ⁴Assuming a constant failure probability φ .

queries can be answered by navigating the graph. Several types of proximity graphs have been studied in the literature, including the Delaunay Triangulation (DT) [32], Navigable Small World graphs (NSW) [41], k -nearest neighbor graphs (k -NN), Relative Neighborhood Graphs (RNG) [51], and Navigable Spreading-out Graphs (NSG) [14]. A more detailed discussion of these graph types is provided in Appendix C.

3 HIERARCHICAL ε -NET NAVIGATION GRAPH (HENN)

In this section, we introduce a property for the hierarchical navigation graphs that guarantees their ANN query answering time.

Definition 1 (Hierarchical ε -net Navigation Graph (HENN)) *A multi-layer graph built on top of the point set X is a HENN graph (has HENN property) if it satisfies the following criteria:*

1. **Nodes:** *Each node of the graph represents a point in X .*
2. **ε -net Hierarchy:** *Each layer \mathcal{L}_i , for $0 \leq i \leq L$, is an ε -net of the preceding layer, with $\mathcal{L}_0 = X$. The ε -net is defined with respect to the ring ranges and for a specific value of ε , both introduced later (Equation 1).*
3. **PG (Intra-layer edges):** *The nodes within each layer are connected with Intra-layer edges that construct a proximity graph (PG) to answer the ANN only inside this layer. Any PG can be integrated into HENN.*
4. **Inter-layer edges:** *Each pair of layers \mathcal{L}_i and \mathcal{L}_{i+1} , $0 \leq i < L$, are connected with Inter-layer edges. There is an edge between the nodes $v \in \mathcal{L}_i$ and $u \in \mathcal{L}_{i+1}$, if and only if v and u represent the same point in the point set X .*

We call a graph that satisfies the HENN property a *HENN graph*. Figure 1 (right) shows a simple example of a HENN graph, in which each layer contains half as many points as the layer below it. We now describe the HENN structure in detail, focusing on the high-level structure, as well as each individual component.

ε -net Hierarchy. Each layer \mathcal{L}_i in a HENN graph is an ε -net, with a choice of ε that results in the optimum query time (Equation 1). This ε -net is defined on the range space (X, \mathcal{R}) , where X denotes the input point set and \mathcal{R} is the family of *ring ranges* defined below.

Definition 2 (Ring Ranges) *Given a set of points X , and a distance function \mathbf{d} , a **ring** $R \in \mathcal{R}$ is specified with a base point $p \in \mathbb{R}^d$ and two values $r_1 < r_2$. Any point in X with distance within two values r_1 and r_2 from p falls inside the ring. Formally,*

$$R \cap X = \{x \in X \mid r_1 \leq \mathbf{d}(x, p) \leq r_2\}$$

Proposition 2 *The VC-dimension of the ring range space, (X, \mathcal{R}) , is $\Theta(d)$.*

The correctness of Proposition 2 follows the fact that each ring range $R : \langle p, r_1, r_2 \rangle$ can be formulated by mixing the two ball ranges $R' : \mathbf{d}(x, p) \leq r_2$ and $R'' : \mathbf{d}(x, p) \leq r_1$ as $R = R' - R''$. Hence, due to the mixing property of range spaces [20], the VC-dim of the ring ranges is two times the VC-dim of the distance ranges, i.e., $\Theta(d)$. Remember that we assumed the distance \mathbf{d} gives us a VC-dim of $\Theta(d)$ for balls.

Following Proposition 2 and Theorem 1, one can find an ε -net of size $m_\varepsilon = O(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon})$, for the ring range space, for a given value ε . The details on the construction of ε -net is provided in Section 6. Hereafter, whenever we refer to an ε -net of a point set, we mean an ε -net with respect to the range space of rings defined on that point set.

The Value of ε . To satisfy the HENN property, each layer \mathcal{L}_{i+1} must form an ε -net of the preceding layer \mathcal{L}_i . We define a function $\mathcal{E} : \mathbb{N} \rightarrow (0, 1)$ that specifies the value of ε for a layer of size n . In other words, \mathcal{L}_{i+1} is an $\mathcal{E}(|\mathcal{L}_i|)$ -net of \mathcal{L}_i . For the graph to be HENN, the required value of ε is

$$\varepsilon = \mathcal{E}(|\mathcal{L}_i|) = \mathcal{E}(n) = \Theta\left(\frac{d \log n}{n}\right), \quad (1)$$

where $n = |\mathcal{L}_i|$.

In the next section, we show that this choice of ε leads to optimal query time guarantees on the graph.

The Construction of HENN. Section 6 and Appendix B present the details of how to directly construct a HENN graph, including the methods for finding ε -nets. For a high-level perspective, we also provide pseudo-code outlining the construction procedure in Algorithm 1. Until then, we assume the graph is given and focus on establishing guarantees for it.

Query Answering Using a HENN Graph. During the query time, given a query point $q \in \mathbb{R}^d$, the goal is to find the approximate nearest neighbor of q within X . We follow the *greedy search* algorithm on top of HENN graph: Starting from a random node in the root (layer \mathcal{L}_L), we find the nearest neighbor of q within this layer by following a simple greedy search algorithm [41; 40]. After finding the nearest neighbor v_i in layer \mathcal{L}_i , we continue this process, starting from v_i in layer \mathcal{L}_{i-1} . We proceed until reaching the bottom (layer \mathcal{L}_0).⁵ A pseudo-code of this algorithm is provided in Algorithm 5 in the Appendix, and a visual illustration is shown in Figure 1 (left). Answering k -Nearest Neighbors for $k > 1$ can be achieved by considering a set of candidates at each step in the greedy algorithm or running a Beam Search to consider multiple paths to the query [40; 26].

4 THEORETICAL ANALYSIS

In this section, we analyze the query-time complexity of the HENN structure with respect to the black-box choice of the underlying proximity graph (PG) and the value of ε specified in Equation 1. We begin by introducing the preliminary concepts needed to establish the final time bound.

4.1 DEFINITIONS

Let $\text{GS}_q(\mathcal{G}, s)$ denote the result of running the greedy search algorithm (Algorithm 5) on a proximity graph \mathcal{G} for the query q , starting from node s . Let \mathcal{G}_L denote the proximity graph constructed at layer \mathcal{L} of HENN. We now introduce the following definition, which captures a property of the specific proximity graph under consideration:

Definition 3 (Recall Bound ρ_γ) *Let \mathcal{G} be a proximity graph defined on a point set X . The Recall Bound of \mathcal{G} is the smallest integer k such that, for all queries q , greedy search on \mathcal{G} returns at least one point among the k -nearest neighbors of q with probability at least γ . Formally,*

$$\rho_\gamma := \min \left\{ k \mid \Pr_{s,q} [\text{GS}_q(\mathcal{G}, s) \in \text{NN}_{k,X}(q)] \geq \gamma \right\}.$$

where $\text{NN}_{k,X}(q)$ denotes the ground-truth k -nearest neighbors of q in X , and the probability is taken over the queries and choices of the starting node.⁶

This definition captures a weaker notion of accuracy for proximity graphs compared to the standard recall metric. While $\text{Recall}@k$ measures the fraction of the true k nearest neighbors retrieved, ρ_γ identifies the smallest k such that, with high probability, *at least one* of the true k nearest neighbors is returned by the search algorithm. In our analysis, we fix a value of γ and consider the corresponding ρ_γ . However, one can generalize analysis by varying γ , which yields to a full distribution of the recall bound. Additional details on how to interpret the recall bound are provided in Appendix K.

4.2 RUNNING TIME ANALYSIS

We begin with a simplified setting where HENN consists of only two layers: the base layer $\mathcal{L}_0 = X$ and the upper layer \mathcal{L}_1 , which is an $\mathcal{E}(n)$ -net of X , where $n = |X|$. A greedy search is initiated from an initial node in \mathcal{L}_1 , proceeds until it reaches a *local minimum* in this layer, and then continues in the base layer. The following lemma provides an upper bound on the total number of steps taken after reaching the local minimum in \mathcal{L}_1 :

Lemma 3 *Let \mathcal{L}_1 and \mathcal{L}_0 be defined as above. Let $p = \text{GS}(\mathcal{G}_{\mathcal{L}_1}, s)$ denote the result of running GS from an initial node $s \in \mathcal{L}_1$. Then, with probability at least γ , the number of points in \mathcal{L}_0 that are closer to q than p is $O(\rho_\gamma \cdot \varepsilon \cdot n)$ where $\varepsilon = \mathcal{E}(n)$.*

Proof *Sketch:* This is a result of finding ε -nets on ring ranges, where it bounds the total number of points around q . The proof is provided in Appendix G. \square

⁵Note that this is the standard greedy algorithm used in the literature.

⁶Depending on the specific PG, this starting node can be uniformly random or even deterministic.

We now analyze the query running time of HENN and show that the choice of \mathcal{E} in equation 1 yields the optimal runtime. Throughout this analysis, we assume access to an algorithm that, for a given ε , computes an ε -net of size m_ε (see Theorem 1) with probability at least φ . A more detailed discussion of the construction algorithms is provided in Section 6.

Theorem 4 *Let a HENN index be given, as defined in Definition 1, constructed using a proximity graph \mathcal{G} at each layer, with recall bound ρ_γ for some choice of γ . Assume further that each layer forms an ε -net of size m_ε with probability at least φ , where ε is chosen as in Equation 1: $\mathcal{E}(n') = \Theta\left(\frac{d \log n'}{n'}\right)$. Let $n = |X|$ be the size of the point set. Then, for the number of layers $L = \log n$, the query running time is $O(\rho_\gamma \pi d \log^2 n)$, which holds with probability at least $(\varphi \gamma)^{\log n}$.*

Proof *Sketch: This is the result of applying Lemma 3 inductively on all layers. See Appendix G for the proof.* \square

Theorem 4 also shows that the best choice of function \mathcal{E} is $\mathcal{E}(n) = \frac{cd \log n}{n}$ for c to be a constant.⁷ This implies that for a layer \mathcal{L}_i of size n' , the next layer \mathcal{L}_{i+1} satisfies

$$|\mathcal{L}_{i+1}| = m_{\mathcal{E}(n')} = O\left(\frac{d}{\mathcal{E}(n')} \log \frac{1}{\mathcal{E}(n')}\right) \leq O\left(\frac{n'}{c}\right).$$

In other words, by choosing a sufficiently large constant c , the size of each layer decreases exponentially relative to the previous one.

For a choice of PG and a general γ that results in a recall bound ρ_γ , the query time will be $O(\rho_\gamma d \log^2 n)$. By choosing different values of γ , we obtain a spectrum of query times with probability at least $(\varphi \gamma)^{\log n}$, which provides more information about the probability distribution of the query time. More details on deriving a distribution over query time is provided in Appendix ??.

Space Usage. Since each layer decreases in size by at least a constant factor $c > 1$, the layer sizes form a geometric progression. Consequently, the total number of points stored across all layers is bounded by $\sum_{i=0}^L |\mathcal{L}_i| = \sum_{i=0}^L O\left(\frac{n}{c^i}\right) = O(n)$. Therefore, the overall space usage of a HENN graph is linear in n , under the assumption that each proximity graph requires a linear space to the size of its underlying dataset.

5 HNSW IS A HENN GRAPH

In this section, we present one of our main contributions: showing that HNSW is a HENN graph, with a high probability. Building on this connection, we derive probabilistic time guarantees for HNSW.

We begin with a simplified description of the HNSW [40]. During the preprocessing, points are inserted incrementally: for each new node, a maximum layer level is assigned at random, where the probability of being placed in higher layers decreases exponentially. Once the layers for the node are determined, the node is connected to its nearest neighbors among the inserted nodes at those layers, found using the greedy search procedure (Algorithm 5).

Equivalently, one can view HNSW as starting from the base layer that contains all points, and then recursively building higher layers by **randomly sampling** subsets of points, so that the size of each layer decreases exponentially with the level. At each layer, an NSW graph [41] is constructed on the sampled set. Examining the definition HENN,⁸ We observe that HNSW has the HENN property (probabilistically), where the underlying proximity graph is chosen to be NSW and the ε -net construction is implemented via random sampling (see Theorem 1).

5.1 TIME COMPLEXITY ANALYSIS OF HNSW

Let $c > 1$ denote the constant parameter in the HNSW index construction that controls the rate of layer size reduction. Specifically, for every $i \geq 1$ we have $|\mathcal{L}_i| = \frac{|\mathcal{L}_{i-1}|}{c}$. We now turn to the following key question to analyze each layer of the HNSW graph: "BASED ON THEOREM 1, WHAT ARE THE VALUES OF ε AND φ THAT GUARANTEE A RANDOM SAMPLE OF SIZE $\frac{n}{c}$ FORMS AN ε -NET WITH PROBABILITY AT LEAST φ ?"

⁷See the proof in Appendix G

⁸Also see Section 6 for an example of construction algorithm.

324 **Lemma 5** For any layer \mathcal{L}_i of size n in the HNSW index, the next layer \mathcal{L}_{i+1} is an ε -net of \mathcal{L}_i with
 325 $\varepsilon = \Theta\left(\frac{d \log n}{n}\right)$, and with probability at least $\varphi = 1 - \Theta\left(\frac{\log n}{n}\right)$.
 326

327 **Proof** Sketch: This is a result of applying the size in Theorem 1. See Appendix G for proof. \square

328 Combining Theorem 4 and Lemma 5, for HNSW we conclude that the function \mathcal{E} in this graph
 329 satisfies: $\mathcal{E}(n) = \Theta\left(\frac{d \log n}{n}\right)$. Thus, HNSW implicitly uses the optimal choice of \mathcal{E} for ε values.
 330

331 Consequently, the query running time is $O(d \log^2 n)$, with a probability of at least
 332

$$\left(1 - \frac{\log n}{n}\right) \cdot \gamma^{\log n},$$

333 where the parameter γ depends on the recall quality of the NSW proximity graph (which has a
 334 constant degree π).
 335

336 **Success Probability in Practice.** Assuming a constant recall bound ρ_γ for NSW, the above probability
 337 simplifies to $\left(1 - \frac{\log n}{n}\right)^{\log n}$. For concreteness, we can evaluate the probability for different dataset
 338 sizes: (1) When the dataset size is $n = 10^3$, we have $\left(1 - \frac{\log 1000}{1000}\right)^{\log 1000} \approx 0.905$. (2) When the
 339 dataset size is $n = 10^6$, we obtain $\left(1 - \frac{\log 10^6}{10^6}\right)^{\log 10^6} \approx 0.9996$.
 340

341 These calculations explain why, in practice, HNSW often exhibits logarithmic query times in most
 342 cases. Observing this in HNSW therefore also provides indirect evidence of the effectiveness of
 343 NSW, in terms of recall bound, as the underlying proximity graph.
 344

345 6 HENN CONSTRUCTION

346 Table 1: Comparison of different methods for constructing ε -nets.
 347

348 Algorithms	349 Output Guarantee	350 Time Guarantee	351 Practical
352 Sampling-based [23]	353 Probabilistic	354 Fast	355 ✓
356 Discrepancy-based [6]	357 Deterministic	358 Slow (exponential to d)	359 ✗
360 Sketch-and-Merge [6]	361 Deterministic	362 Near-linear to n	363 ✗
364 <i>Budget-Aware</i> (ours)	365 Probabilistic (Budget-based)	366 Fast (budget-based)	367 ✓

368 A detailed discussion of the preprocessing phase of HENN, along with an algorithm for constructing
 369 HENN graphs directly, is deferred to Appendix B. The core element of this algorithm is the computation
 370 of ε -nets. As our final contribution, we introduce and analyze a budget-aware algorithm for
 371 building ε -nets, also detailed in Appendix B. A summary of existing approaches and our proposed
 372 method is provided in Table 1.
 373

374 7 EXPERIMENTS

375 In this section, we empirically validate the theoretical results of the proposed HENN structure and
 376 assess the algorithms developed for its construction. Furthermore, we implement the general HENN
 377 graph within the widely used Faiss library [30; 12], providing it as a new index alongside the existing
 378 popular ANN indices. The code is publicly available at this [anonymous repository](#). Additional
 379 experimental results are provided in Appendix I due to space constraints.
 380

381 We organize the experiments into the following parts:

- 382 **1. Experiments Setup.** Description of datasets (both real and synthetic), baseline methods, evaluation
 383 metrics, and configuration details.
- 384 **2. Proximity Graph Integration.** Integration of different proximity graphs into the HENN frame-
 385 work and evaluation of their performance.
- 386 **3. Verification of Time Guarantees.** Empirical validation of the time bounds proved in Section 4.
- 387 **4. ε -net Construction.** Comparison of introduced algorithms for building ε -nets (Section 6) and
 388 their impact when integrated into HENN.
- 389 **5. Comparison with Other ANN Indices.** Evaluation of a standard implementation of HENN
 390 integrated with the HNSW index in the widely used FAISS library, and comparison against other
 391 indices available there, including LSH [8], IVF-PQ [27], and NSG [14].

Figure 2: Comparison of HENN integrated with different proximity graphs. Points closer to the upper-right indicate better performance. QPS (queries per second) is the inverse of the average query time. the synthetic dataset contains 20k points with $d = 4$ following mixture of Gaussians.

Figure 3: Effect of dataset size n on the query time (GIST dataset).

Figure 4: Effect of PG degree on the query time (SIFT dataset).

Figure 5: Effect of dimension d on the query time (synthetic uniform).

6. **Proximity Graph Comparison.** Analysis of recall bounds and performance trade-offs across different proximity graphs (provided in Appendix I).

Experiments Setup. We use standard benchmark datasets for ANN search [2], including SIFT-128 [28], GIST-960 [28], FASHION-MNIST-784 [56], and NYTIMES-256 [45], along with synthetic datasets (uniform distributions and mixtures of Gaussians). Both Euclidean (ℓ_2 -norm) and cosine (angular) distance metrics are considered. For proximity graphs, we evaluate several structures, including KNN, KGRAPH [11],⁹ NSW [41], NSG [14], and FAANG [22]. Our methods are denoted as HENN+X, where X specifies the underlying proximity graph used in the construction. Additional details on experimental setup can be found at the Appendix I.

Proximity Graph Integration. Figure 2 presents the performance of HENN when integrated with different proximity graphs across different datasets. The plots show the trade-off between query speed and recall as the exponential decay rate (the number of layers) in HENN are varied. Increasing the number of layers generally improves recall but slows down query processing, whereas fewer layers yield faster queries at the cost of weakening the hierarchical structure. Overall, HENN+NSW and HENN+FAANG achieve the best area under the curve (AUC).

Verification of Time Guarantees. We study the impact of several parameters on query time. Figure 3 illustrates the *effect of dataset size n* on query time. For each dataset, we subsampled n points and generated random queries within the space. Across all datasets, the query time grows logarithmically with n , consistent with Theorem 4. Similarly, Figure 15 (in Appendix I) reports the number of visited hops during greedy search with a similar trend. Similar experiments on more datasets is provided in Appendix I.

The effect of the *proximity graph degree* is shown in Figure 4, where we varied the degree across all layers. The results indicate that query time scales linearly with the graph degree π . Figure 5 examines the *effect of data dimensionality d* on query time. Starting from $d = 2$, as d increases, the search is more likely to get trapped in local minima (curse of dimensionality), which accelerates query by halting the greedy search early. However, once d exceeds 64, the query time becomes dominated by the linear dependence on d . Similar results on the number of visited hops and other datasets are in Appendix I.

ε -net Construction. As discussed in Section 6 (and Appendix B), the budget-aware algorithm introduces a trade-off between the preprocessing budget and the success rate of the resulting ε -net. Figure 18 (in Appendix I) illustrates this trade-off: larger budgets \mathcal{B} significantly increase the probability that the final set forms a valid ε -net. For example, on the FASHION-MNIST dataset,

⁹Here, KGRAPH refers to NN-descent applied on a k NN graph, following [11].

Figure 6: HENN index compression (with a cost of more preprocessing time) as an effect of using the Budget-Aware algorithm for finding ε -nets.

Figure 7: Comparison of HENN implementation in Faiss library with other indices.

allocating only 30% of the sampled points through finding unhit-sets raises the success rate from 0.7 to 1.0.

More importantly, Figure 6 demonstrates the impact of the budget-aware algorithm on the final HENN index. *Compressing* the index by selecting smaller subsets as ε -nets normally reduces the success rate (φ), but integrating the budget-aware strategy substantially changes this effect. As a result, HENN+BUDGETAWARE produces a more compact index with the same recall as HENN+NSW (or equivalently, HNSW). In other words, by spending additional preprocessing time, we obtain a smaller index, with a higher probability of each layer being an ε -net, resulting in no loss in recall.

Comparison with Other ANN Indices. We integrated HENN as a new index within the popular Faiss library and compared it against widely used ANN indices. Figure 7 presents this comparison. As expected, HENN+NSW and HNSW exhibit nearly *identical performance* in both recall and query time, consistent with our discussion in Section 5. The only noticeable difference is a slightly higher preprocessing time for HENN+NSW, which arises from employing the construction Algorithm 1 rather than the highly optimized incremental procedure used in HNSW.¹⁰

Additional Experiments. Further results on parameter variations, such as exponential decay, comparisons of recall bounds across different proximity graphs, index size, and preprocessing time are provided in Appendix I.

Discussion and Limitations. We defer a discussion on the parallelization, dynamic setting, and limitation of our work to the Appendix D.

8 CONCLUSION

We introduced HENN, a structural property for hierarchical graph-based indices in ANN search that unifies theoretical guarantees with practical efficiency. By organizing layers as ε -nets, HENN achieves provable polylogarithmic query time while retaining a simple and implementable design. We further provided a probabilistic analysis of HNSW, shedding light on the reasons behind its strong empirical performance. To support practical adoption, we developed a budget-aware algorithm for ε -net construction, allowing practitioners to balance preprocessing time against recall quality.

¹⁰Our objective in this study is not to provide a comprehensive comparison of HENN against all ANN baselines, but rather to demonstrate the equivalence between HENN+NSW and HNSW, since HENN represents a structural property rather than a specific graph.

486 REFERENCES
487

488 [1] Pankaj K Agarwal. Range searching. In *Handbook of discrete and computational geometry*, pp. 489 1057–1092. Chapman and Hall/CRC, 2017.

490 [2] ANN Benchmarks. URL <http://ann-benchmarks.com>.

491 [3] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-492 marking tool for approximate nearest neighbor algorithms. *Information Systems*, 87:101374, 493 2020.

494 [4] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Com-495 munications of the ACM*, 18(9):509–517, 1975.

496 [5] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In 497 *Proceedings of the 23rd international conference on Machine learning*, pp. 97–104, 2006.

498 [6] Bernard Chazelle. *The Discrepancy Method: Randomness and Complexity*. Cambridge 500 University Press, Cambridge, UK, 2000. ISBN 978-0-521-77093-4. URL 501 <https://www.cambridge.org/core/books/discrepancy-method/46C58D0C5DD0F8A01AD9FE221EAD7E8E>.

502 [7] Benjamin Coleman, Santiago Segarra, Alexander J Smola, and Anshumali Shrivastava. Graph 503 reordering for cache-efficient near neighbor search. *Advances in Neural Information Processing 504 Systems*, 35:38488–38500, 2022.

505 [8] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing 506 scheme based on p-stable distributions. In *Proceedings of the twentieth annual symposium on 507 Computational geometry*, pp. 253–262, 2004.

508 [9] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. *Computational 509 Geometry: Algorithms and Applications*. Springer-Verlag, Berlin, Heidelberg, 3rd edi- 510 tion, 2008. ISBN 978-3-540-77973-5. URL <https://www.springer.com/gp/book/9783540779735>.

511 [10] Haya Diwan, Jinrui Gou, Cameron Musco, Christopher Musco, and Torsten Suel. Navigable 512 graphs for high-dimensional nearest neighbor search: Constructions and limits. *Advances in 513 Neural Information Processing Systems*, 37:59513–59531, 2024.

514 [11] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for 515 generic similarity measures. In *Proceedings of the 20th international conference on World wide 516 web*, pp. 577–586, 2011.

517 [12] Faiss Library. URL <https://github.com/facebookresearch/faiss>.

518 [13] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, 519 and Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language 520 models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and 521 Data Mining*, pp. 6491–6501, 2024.

522 [14] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search 523 with the navigating spreading-out graph. *arXiv preprint arXiv:1707.00143*, 2017.

524 [15] Jianyang Gao and Cheng Long. Rabitq: Quantizing high-dimensional vectors with a theoretical 525 error bound for approximate nearest neighbor search. *Proceedings of the ACM on Management 526 of Data*, 2(3):1–27, 2024.

527 [16] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. *IEEE 528 transactions on pattern analysis and machine intelligence*, 36(4):744–755, 2013.

529 [17] Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental maintenance of 530 approximate histograms. *ACM Transactions on Database Systems (TODS)*, 27(3):261–298, 531 2002.

540 [18] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
 541 Kumar. Accelerating large-scale inference with anisotropic vector quantization. In *International*
 542 *Conference on Machine Learning*, pp. 3887–3896. PMLR, 2020.

543

544 [19] Yikun Han, Chunjiang Liu, and Pengfei Wang. A comprehensive survey on vector database:
 545 Storage and retrieval technique, challenge. *arXiv preprint arXiv:2310.11703*, 2023.

546

547 [20] Sariel Har-Peled. *Geometric Approximation Algorithms*, volume 173 of *Mathematical Surveys*
 548 and *Monographs*. American Mathematical Society, Providence, RI, 2011. ISBN 978-0-8218-
 549 4911-8. URL <https://www.ams.org/books/surv/173/>.

550

551 [21] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
 552 removing the curse of dimensionality. 2012.

553

554 [22] Ben Harwood and Tom Drummond. Fanng: Fast approximate nearest neighbour graphs. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 5713–
 555 5722, 2016.

556

557 [23] David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. In *Proceedings of the*
 558 *second annual symposium on Computational geometry*, pp. 61–71, 1986.

559

560 [24] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
 561 curse of dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of*
 562 *computing*, pp. 604–613, 1998.

563

564 [25] Piotr Indyk and Haike Xu. Worst-case performance of popular approximate nearest neighbor
 565 search implementations: Guarantees and limitations. *Advances in Neural Information*
 566 *Processing Systems*, 36:66239–66256, 2023.

567

568 [26] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,
 569 and Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single
 570 node. *Advances in neural information processing Systems*, 32, 2019.

571

572 [27] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
 573 search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.

574

575 [28] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
 576 search. In *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, volume 33,
 577 pp. 117–128. IEEE, 2011.

578

579 [29] Zhi Jing, Yongye Su, Yikun Han, Bo Yuan, Haiyun Xu, Chunjiang Liu, Kehai Chen, and
 580 Min Zhang. When large language models meet vector databases: A survey. *arXiv preprint*
 581 *arXiv:2402.01763*, 2024.

582

583 [30] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE*
 584 *Transactions on Big Data*, 7(3):535–547, 2019.

585

586 [31] Robert Krauthgamer and James R Lee. Navigating nets: Simple algorithms for proximity
 587 search. In *Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms*,
 588 pp. 798–807. Citeseer, 2004.

589

590 [32] Gérard Le Caer and Renaud Delannay. Correlations in topological models of 2d random cellular
 591 structures. *Journal of Physics A: Mathematical and General*, 26(16):3931, 1993.

592

593 [33] Jussi Lehtonen. The lambert w function in ecological and evolutionary models. *Methods in*
 594 *Ecology and Evolution*, 7(9):1110–1118, 2016.

595

596 [34] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
 597 Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
 598 generation for knowledge-intensive nlp tasks. *Advances in neural information processing*
 599 *systems*, 33:9459–9474, 2020.

594 [35] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
 595 Approximate nearest neighbor search on high dimensional data—experiments, analyses, and
 596 improvement. *IEEE Transactions on Knowledge and Data Engineering*, 32(8):1475–1488,
 597 2019.

598 [36] Peng-Cheng Lin and Wan-Lei Zhao. Graph based nearest neighbor search: Promises and
 599 failures. *arXiv preprint arXiv:1904.02077*, 2019.

601 [37] Yingfan Liu, Cheng Hong, and Jiangtao Jiang. Revisiting k-nearest neighbor graph construction
 602 on high-dimensional data: Experiments and analyses. *arXiv preprint arXiv:2112.02234*, 2021.
 603 URL <https://arxiv.org/abs/2112.02234>.

604 [38] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. Hvs: hierarchical graph struc-
 605 ture based on voronoi diagrams for solving approximate nearest neighbor search. *Proceedings
 606 of the VLDB Endowment*, 15(2):246–258, 2021.

607 [39] Kejing Lu, Chuan Xiao, and Yoshiharu Ishikawa. Probabilistic routing for graph-based approxi-
 608 mate nearest neighbor search. *arXiv preprint arXiv:2402.11354*, 2024.

610 [40] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
 611 using hierarchical navigable small world graphs. *IEEE transactions on pattern analysis and
 612 machine intelligence*, 42(4):824–836, 2018.

614 [41] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
 615 nearest neighbor algorithm based on navigable small world graphs. *Information Systems*, 45:
 616 61–68, 2014.

617 [42] Javier Vargas Munoz, Marcos A Gonçalves, Zanoni Dias, and Ricardo da S Torres. Hierar-
 618 chical clustering-based graphs for large scale approximate nearest neighbor search. *Pattern
 619 Recognition*, 96:106970, 2019.

621 [43] Blaise Munyampirwa, Vihan Lakshman, and Benjamin Coleman. Down with the hierarchy:
 622 The ‘h’ in hnsw stands for “hubs”. *arXiv preprint arXiv:2412.01940*, 2024.

623 [44] Nabil H Mustafa. Computing optimal epsilon-nets is as easy as finding an unhit set. In *46th
 624 International Colloquium on Automata, Languages, and Programming (ICALP 2019)*, pp. 87–1.
 625 Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

627 [45] David Newman. Bag of Words. UCI Machine Learning Repository, 2008. DOI:
 628 <https://doi.org/10.24432/C5ZG6P>.

630 [46] Stephen M Omohundro. Five balltree construction algorithms. 1989.

631 [47] Ezgi Can Ozan, Serkan Kiranyaz, and Moncef Gabbouj. Competitive quantization for approxi-
 632 mate nearest neighbor search. *IEEE Transactions on Knowledge and Data Engineering*, 28(11):
 633 2884–2894, 2016.

634 [48] James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector database management systems.
 635 *The VLDB Journal*, 33(5):1591–1615, 2024.

636 [49] Ninh Pham and Tao Liu. Falconn++: A locality-sensitive filtering approach for approximate
 637 nearest neighbor search. *Advances in Neural Information Processing Systems*, 35:31186–31198,
 638 2022.

640 [50] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. Graph-based nearest neighbor search:
 641 From practice to theory. In *International Conference on Machine Learning*, pp. 7803–7813.
 642 PMLR, 2020.

643 [51] Godfried T Toussaint. The relative neighbourhood graph of a finite planar set. *Pattern recogni-
 644 tion*, 12(4):261–268, 1980.

646 [52] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies
 647 of events to their probabilities. In *Measures of complexity: festschrift for alexey chervonenkis*,
 pp. 11–30. Springer, 2015.

648 [53] Jeffrey S Vitter. Random sampling with a reservoir. *ACM Transactions on Mathematical*
649 *Software (TOMS)*, 11(1):37–57, 1985.
650

651 [54] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
652 experimental comparison of graph-based approximate nearest neighbor search. *arXiv preprint*
653 *arXiv:2101.12631*, 2021.

654 [55] Zeyu Wang, Qitong Wang, Xiaoxing Cheng, Peng Wang, Themis Palpanas, and Wei Wang.
655 Steiner-hardness: A query hardness measure for graph-based ann indexes. *Proceedings of the*
656 *VLDB Endowment*, 17(13):4668–4682, 2024.

657 [56] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
658 benchmarking machine learning algorithms, 2017.

660 [57] Shuo Yang, Jiadong Xie, Yingfan Liu, Jeffrey Xu Yu, Xiyue Gao, Qianru Wang, Yanguo Peng,
661 and Jiangtao Cui. Revisiting the index construction of proximity graph-based approximate
662 nearest neighbor search. *arXiv preprint arXiv:2410.01231*, 2024.

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

TABLE OF CONTENT

1. Related Work	A
2. HENN Construction	B
3. Background on Proximity Graphs	C
4. Discussion and Limitations	D
5. Dynamic Setting	E
6. Parallelization	F
7. Proofs	G
8. Pseudo-codes	H
9. More on Experiments	I
10. The Use of Large Language Models (LLMs)	J
11. More on Recall Bound	K

A RELATED WORK

In this section, we review the literature most relevant to our work.

Hierarchical Methods for ANN A notable class of approaches for solving the ANN problem is based on hierarchical structures. One of the most widely used methods in this category is Hierarchical Navigable Small World (**HNSW**) [40], which constructs a multi-layered structure of navigable small-world graphs to enable efficient search. Interestingly, the core idea of hierarchical organization can be traced back to earlier work in computational geometry, including **Cover Trees** [5] and **Navigating Nets** [31].

Hierarchical Navigable Small World (**HNSW**) graphs [40] construct a multi-layered hierarchy of navigable small world (**NSW**) graphs. An **NSW** graph serves as an efficient approximation of the Delaunay graph [20], which is known to be an optimal structure for solving the approximate nearest neighbor (ANN) problem [41]. The Delaunay graph is closely related to the Voronoi diagram, which partitions the space into cells based on their proximity to the points in the dataset. Unlike the Delaunay graph, which requires explicit geometric computation, **NSW** graphs are built incrementally by inserting points and connecting them to their approximate nearest neighbors [41]. During insertion and querying, **HNSW** employs a greedy search algorithm (Algorithm 5) to navigate through the graph and locate nearby points. To improve scalability, **HNSW** organizes the data in a hierarchy where the number of nodes decreases exponentially across layers, resulting in $O(\log n)$ layers and a total space complexity of $O(n)$.

The Cover Tree [5] and Navigating Nets [31] are hierarchical data structures for nearest neighbor search in general metric spaces. Both achieve logarithmic query times by recursively organizing data into nested layers, cover trees through covering and separation invariants, and navigating nets via sequences of r -nets that approximate the dataset at multiple scales. While they offer strong theoretical guarantees and predictable performance, these methods are challenging to implement and scale poorly in practice, limiting their adoption in modern large-scale applications.

Beyond **HNSW**, several other hierarchical indices and heuristics have been proposed. None being generalized to **HENN**. For example, **HVS** organizes data into coarse Voronoi regions that are refined hierarchically, enabling layered navigation and accelerating search by progressively narrowing the candidate set [38]. **HCNNG** instead builds multiple hierarchical clusterings and merges them into a proximity graph, leveraging both global and local structure. By combining clustering with MST-based connectivity, **HCNNG** reduces construction overhead while maintaining competitive query performance [42].

Some methods integrate hierarchical tree structures with graph refinement, while large-scale libraries such as **FAISS** [30] adopt hierarchical inverted file strategies. In **FAISS**, coarse quantization partitions the dataset into clusters, which are then refined with product quantization (**PQ**) [27].

756 **Other Solutions for ANN** Solutions to the nearest neighbor problem can be categorized along
 757 several dimensions. One common distinction is between classical methods, which primarily target the
 758 exact NN problem. Examples include k-d trees [4], ball trees [46], and Delaunay triangulations [21].
 759 While effective in low-dimensional spaces, these methods typically fail to scale in high-dimensional
 760 settings. Another broad category includes quantization-based methods [27; 16; 47], which cluster the
 761 data and represent points by their assigned centroids (codewords), thereby approximating distances
 762 efficiently. Additionally, hashing-based methods such as Locality-Sensitive Hashing (LSH [8])
 763 provide theoretical guarantees and have been widely used for high-dimensional ANN, and finally, the
 764 graph-based methods [41; 40; 50; 38]. For comprehensive overviews of these and other approaches,
 765 we refer the reader to the following surveys [48; 19; 3; 54; 35; 37].

766 Beyond graph topology, several lines of work improve ANN accuracy and efficiency through quanti-
 767 zation. Guo, et al. [18] introduce direction-sensitive quantizers that better preserve angular similarity,
 768 enabling faster high-dimensional inference with competitive recall. Similarly, Rabitq [15] provides
 769 a quantization scheme with theoretical reconstruction-error guarantees designed specifically for
 770 ANN search, showing that quantization can substantially reduce memory while retaining accuracy.
 771 These works mainly focus on compressing the data vectors used for distance estimation, whereas our
 772 focus is on the structure and navigability of the search graph itself. Another complementary line is
 773 probabilistic search guidance [39], which proposes stochastic transition rules to escape local minima
 774 and improve robustness of greedy search. Such methods modify the search dynamics rather than the
 775 graph structure. The above systems are orthogonal and compatible with our theoretical contributions.
 776 Quantization-based methods can be applied inside any graph index to reduce vector memory footprint.
 777 Similarly, probabilistic routing modifies how the search moves on a fixed graph.

778
 779
 780 **Worst-Case Performance Analysis.** Several works study the limitations of graph-based ANN
 781 indices. Indyk et al. [25] show that HNSW can require linear query time on adversarial datasets.
 782 Wang et al. [55] propose Steiner-hardness as a graph-native measure of query difficulty, capturing
 783 structural factors that influence cost and enabling the design of unbiased workloads. While these
 784 approaches characterize hard queries or highlight specific *failure cases on proximity graphs*, our
 785 analysis takes a complementary view by providing general bounds on query time for HENN as a
 786 function of the underlying proximity graph. Moreover, empirical results suggest that the worst-case
 787 recall bounds rarely manifest in practice, as they remain stable across real-world datasets.

788
 789
 790
 791 **Comparison with Other Structural Analyses.** Other recent works focus on improving or analyzing
 792 proximity graph constructions. Yang et al. [57] revisit construction strategies for indices like RNG
 793 and NSWG, optimizing pruning and edge selection to reduce build time without harming query
 794 performance. Diwan et al. [10] study the fundamental limits of navigable graphs, proving upper and
 795 lower bounds on node degree for efficient greedy routing. In contrast, our contribution is structural:
 796 we introduce HENN as a graph-agnostic framework based on ε -net layering, yielding provable
 797 polylogarithmic query-time guarantees for any underlying proximity graph.

798 DiskANN [26] shows that a navigable graph combined with SSD-aware prefetching enables billion-
 799 scale search with near-HNSW accuracy. Lin & Zhao [36] provide a critical examination of proximity-
 800 graph search, showing that well-constructed flat graphs can perform competitively and highlighting
 801 when greedy search succeeds or fails. Practical engineering optimizations also matter: Coleman et
 802 al. [7] demonstrate that simple node reordering can substantially reduce cache misses and latency.
 803 Most recently, Munyampirwa et al. [43] show that the performance of HNSW largely comes from a
 804 set of high-degree “hub” nodes, and that flattening the hierarchy yields similar recall and speed.

805 Although our theorems are stated for hierarchical structures, the same ε -net sampling idea can be
 806 applied to a single-layer graph: selecting an ε -net and adding long-range shortcut edges between
 807 its representatives mimics the effect of “hub” nodes. After following such a shortcut, our bounds
 808 control the remaining number of steps needed to reach the true neighbor. Thus, our framework not
 809 only explains hierarchical graphs like HNSW but also provides a structural justification for recent
 flat, hub-based designs.

810 **B HENN CONSTRUCTION**
811812 In this section, we first present an algorithm for directly constructing a HENN graph, followed by a
813 discussion on building ε -nets, which serve as a key subroutine in the construction.
814815 The preprocessing phase of building a HENN graph follows a recursive process provided in Algo-
816 rithm 1. As an input, it receives a function $\mathcal{E} : \mathbb{N} \rightarrow (0, 1)$, that calculates the value of ε as a function
817 of input size n (see Equation 1 for the best choice of this function).818 It begins with the initial set of points being the entire point set, i.e., $\mathcal{L}_0 = X$, and constructs an ε -net
819 over X , where $\varepsilon = \mathcal{E}(|X|)$. This forms the first layer, denoted \mathcal{L}_1 . After finding the points in this
820 layer, we follow a black-box approach for constructing a *proximity graph* within this layer and add
821 the intra-layer edges accordingly (see Appendix C for more details).
822823 **Algorithm 1** HENN Construction (Preprocess) Algorithm824 **Require:** The set of points X , maximum number of layers L , and the function \mathcal{E} .
825 **Ensure:** The HENN graph \mathcal{H} .826 1: **function** $\text{BUILDHENN}(X, L, \mathcal{E})$
827 2: $\mathcal{L}_0 \leftarrow X$
828 3: **for** $i \leq L$ **do**
829 4: $\varepsilon \leftarrow \mathcal{E}(|\mathcal{L}_{i-1}|)$
830 5: $\mathcal{L}_i \leftarrow \text{BuildEpsNet}(\mathcal{L}_{i-1}, \varepsilon)$ ▷ See Appendix B.1
831 6: Connect each node in \mathcal{L}_i to the previous layer (Inter-layer edges).
832 7: Build a proximity graph on \mathcal{L}_i (Intra-layer edges). ▷ See Appendix C.
833 8: **Return** $\mathcal{H} = \{\mathcal{L}_0, \mathcal{L}_1, \dots, \mathcal{L}_L\}$ and the edges.
834835 Subsequently, the algorithm recursively builds each layer \mathcal{L}_{i+1} as an $\mathcal{E}(|\mathcal{L}_i|)$ -net of the previous layer
836 \mathcal{L}_i and adds the inter-layer edges. This process continues until a total of L layers are constructed,
837 where L is a hyperparameter specifying the depth of the HENN graph. Even though this construction
838 follows a sequential order in building layers, a discussion on how to parallelize this step is provided
839 in Appendix F.840 In the next sections, we present several algorithms for constructing ε -nets, which serve as a crucial
841 subroutine in the preprocessing phase of HENN. Each algorithm is suitable for different settings,
842 offering a range of trade-offs between speed, guarantees, and practicality. This allows a practitioner to
843 select the method that best matches their requirements. A comparative summary of these algorithms
844 is provided in Table 1.
845846 **B.1 EXISTING ε -NET CONSTRUCTION ALGORITHMS**
847848 We begin with an overview of existing algorithms from the computational geometry literature. Then,
849 as our third contribution, we introduce a new algorithm that balances preprocessing time and the
850 success probability of ε -net construction, based on a user-specified budget.
851852 **Sampling-based.** The *random sampling* algorithm (Theorem 1) offers a fast and practical way to
853 construct ε -nets: it simply selects m_ε random points from the dataset without enumerating ranges
854 \mathcal{R} . However, the guarantee holds only with a certain probability, making this approach inherently
855 non-deterministic. Also, repeating the process multiple times using a Las-Vegas algorithm is not
856 practical (see Algorithm 2).
857858 **Discrepancy-based.** When exact deterministic ε -nets are required, e.g., for robustness, algorithms
859 from discrepancy theory [6] can be applied. Recursively partitioning the dataset yields a guaranteed
860 ε -net in $O(n|\mathcal{R}|) = O(n^{\delta+1})$ time. The sketch-and-merge technique [6; 21] improves runtime to
861 $O(\delta^{3\delta} \cdot \frac{1}{\varepsilon^2} \log(\frac{\delta}{\varepsilon}) \cdot n)$, though these methods remain impractical due to their exponential dependence
862 on the dimension d (see Algorithm 3).
863The algorithm (Algorithm 3) works by iteratively *halving* the point-set X , until reaching the desired
size of $c_0 \frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}$, where c_0 is a large enough constant.

864 **Algorithm 2** Building ε -net (Sampling-based Algorithm)
 865
 866 **Require:** The range space (X, \mathcal{R}) , value of ε , failure probability φ' .
 867 **Ensure:** The ε -net \mathcal{A} .

```

1: function BUILDEPSNETSAMPLING( $X, \varepsilon, \varphi'$ ) ▷ Sampling-based algorithm
2:   repeat
3:      $m_\varepsilon \leftarrow$  calculate the size (Theorem 1)
4:      $\mathcal{A} \leftarrow m_\varepsilon$  random samples with replacement from  $X$ .
5:   until IS_EPSNET( $\mathcal{A}$ ) = true ▷ Takes long
6:   Return  $\mathcal{A}$ 

```

In order to do so, it first constructs an arbitrary matching Π of the points. A matching Π is a set of pairs (x, y) where $x, y \in X$, it also partitions X into a set of $\frac{|X|}{2}$ disjoint pairs. Given this matching, this algorithm randomly picks one of the points in each pair, removing the other point of the pair, resulting in a subset of remaining points $X_1 \subset X$ where $|X_1| = \frac{|X|}{2}$.

Continuing this process k times for the following value of k

$$2^k = \frac{|X|}{c_0 \frac{\delta}{\varepsilon} \log \frac{\delta}{\varepsilon}} \quad (2)$$

results in the set $|X_k|$ which is an ε -net for X . It is easy to make this process deterministic by following the conditional expectation method at each halving step [6].

Algorithm 3 Building ε -net (Discrepancy-based Algorithm)

Require: The range space (X, \mathcal{R}) , value of ε , failure probability φ' .

Ensure: The ε -net \mathcal{A} .

```

1: function BUILDEPSNETDISC( $X, \varepsilon, \mathcal{R}$ ) ▷ Build  $\varepsilon$ -net by providing  $\varepsilon$ 
2:    $k \leftarrow$  number of iterations (Equation 2)
3:    $\mathcal{A} \leftarrow X$ 
4:   for  $1 \leq i \leq k$  do
5:      $\mathcal{A} \leftarrow \text{Halving}(\mathcal{A}, \mathcal{R})$  ▷ The halving step, with arbitrary matching.
6:   Return  $\mathcal{A}$ 

```

Comparison. The randomized algorithm is straightforward to implement, requiring only random sampling from each layer \mathcal{L}_i to construct the subsequent layer \mathcal{L}_{i+1} . However, it is inherently randomized and provides running-time guarantees in expectation. Furthermore, its time complexity depends on the time to verify if the selected set is indeed an ε -net.

In contrast, the deterministic discrepancy-based algorithm deterministically constructs an ε -net by progressively halving each layer \mathcal{L}_i . This process involves only halving \mathcal{L}_i a couple of times to identify the next layer \mathcal{L}_{i+1} (See `BuildEpsNetDisc` in Algorithm 3). Nevertheless, the running time of the discrepancy-based algorithm depends exponentially on the dimensionality of the input points, which makes it impractical.

B.2 BUDGET-AWARE ALGORITHM FOR CONSTRUCTING ε -NETS

To bridge the gap between sampling-based methods (fast but probabilistic) and discrepancy-based methods (deterministic but computationally expensive), we introduce a *budget-aware algorithm*. This approach allows the user to control a resource budget, thereby adjusting the trade-off between construction speed and the probability that the resulting set forms a valid ε -net.

Given a user-specified timing budget \mathcal{B} , which determines the allowed construction time, we design an algorithm that achieves success with a probability depending on \mathcal{B} . This approach is inspired by the deterministic ε -net construction via finding an unhit range, known as NET-FINDER algorithm [44]. Our proposed **BUDGET-AWARE** algorithm is presented in Algorithm 4.

918 **Algorithm 4** Budget-Aware ε -net Construction

919
920 **Require:** The range space (X, \mathcal{R}) , value of ε , the budget \mathcal{B} .
921 **Ensure:** The ε -net.

922 1: **function** BUDGETAWARE($X, \varepsilon, \mathcal{B}$)
923 2: $\mathcal{N} \leftarrow$ small random sample from X . ▷ See [44]
924 3: **for** $i \leq \mathcal{B}$ **do** ▷ At most \mathcal{B} iterations.
925 4: $R \leftarrow$ FindUnhitRange(\mathcal{N}, \mathcal{R}) ▷ Find $R \in \mathcal{R}$ where $|R| \geq \varepsilon \cdot |X|$ but $R \cap \mathcal{N} = \emptyset$.
926 5: **if** R exists **then**
927 6: Add $O(1)$ random points from R to \mathcal{N} .
928 7: **else**
929 8: break ▷ \mathcal{N} is an ε -net.
930 **return** \mathcal{N}

931
932 The algorithm begins with a small random sample \mathcal{N} from the point set X , similar to GENERAL
933 NET-FINDER [44]. At each iteration, it identifies a *heavy* range R not intersecting \mathcal{N} :

934
$$R \in \mathcal{R}, \quad |R| \geq \varepsilon \cdot |X|, \quad R \cap \mathcal{N} = \emptyset.$$

935
936 While GENERAL NET-FINDER proceeds until all heavy ranges are covered, BUDGET-AWARE
937 terminates after at most \mathcal{B} iterations. The parameter \mathcal{B} , specified by the user, controls the preprocessing
938 time and introduces a trade-off between efficiency and the final success probability (see below).

939
940 **B.3 ANALYSIS OF BUDGET-AWARE ALGORITHM**

941
942 We analyze both the running time of the BUDGET-AWARE algorithm and bound the failure probability
943 as a function of the user-provided budget \mathcal{B} .

944
945 **Success Probability.** Let \mathcal{C} denote the random variable representing the number of calls to the oracle
946 FindUnhitRange (Line 3) needed to obtain an ε -net. Prior work [44] shows that $\mathbb{E}[\mathcal{C}] = O(1/\varepsilon)$.
947 Failure occurs when $\mathcal{C} \geq \mathcal{B}$, meaning that \mathcal{B} calls are not enough, hence by Markov's inequality:

948
$$\Pr(\text{failure}) = \Pr(\mathcal{C} \geq \mathcal{B}) \leq \frac{\mathbb{E}[\mathcal{C}]}{\mathcal{B}} \leq \frac{1}{\varepsilon \cdot \mathcal{B}}.$$

949
950 Thus, increasing \mathcal{B} improves success probability: doubling \mathcal{B} halves the failure probability.

951
952 **Time Complexity.** Each iteration (Line 3 in Alg. 4) requires one call to FindUnhitRange. A
953 naive implementation checks all $R \in \mathcal{R}$ for intersection with \mathcal{N} , costing $O(|\mathcal{R}|) = O(n^\delta)$ for
954 VC-dimension δ . To improve practicality, in our experiments, we instead partition the space into
955 disjoint ranges of size at least εn , searching only within this partition. This heuristic reduces the cost
956 to $O(n)$ per call.¹¹ Therefore, the total preprocessing time is $O(\mathcal{B} \cdot n)$.¹² See experiments for more
957 details (Section 7 and Appendix I).

958
959 **Output Size.** The output of NET-FINDER is known to be an ε -net of size $O(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon})$ (see Theorem 1). The same bound holds for the BUDGET-AWARE algorithm.

960
961 **C BACKGROUND ON PROXIMITY GRAPHS**

962
963 Graph-based algorithms for the ANN problem typically begin by constructing a graph on the given
964 dataset X . A key property of these graphs is *navigability*, which ensures that the Greedy Search
965 algorithm (Algorithm 5) can be effectively applied [41]. Specifically, navigability means that by
966 following a sequence of locally greedy steps, the algorithm can successfully reach an approximate
967 nearest neighbor of the query point q .

968
969 ¹¹With optimized libraries and parallelization, this step can be made faster in practice.

970
971 ¹²Our success probability analysis assumes the naive implementation, which always identifies an unhit range.
972 In practice, however, we show experimentally that the heuristic variant also achieves reliable performance.

972 According to this definition, a **complete graph** over the point set is trivially navigable. The most
 973 optimized navigable graph can, in principle, be obtained by constructing the dual of the Voronoi
 974 diagram of the points, known as the **Delaunay triangulation** [9]. However, constructing this graph is
 975 computationally challenging, particularly in high dimensions, due to the curse of dimensionality.
 976

977 An efficient approximation of the Delaunay triangulation can be achieved through a simple random-
 978 ized algorithm that incrementally inserts points and connects each new point to its nearest neighbors
 979 in the existing graph structure. This approach forms the basis of the **Navigable Small World** (NSW)
 980 graph [41]. The HNSW algorithm adopts a similar strategy within each layer, while introducing
 981 additional heuristics to improve practical performance, such as adding random exploration edges
 982 between points. These heuristics can also be incorporated into the HENN structure as well, treating
 983 the navigable graph as a black-box [40].

984 A natural baseline is the **k -NN graph**, where each point is connected to its k nearest neighbors. While
 985 this structure is easy to build and widely used, it is well known that for small values of k , k -NN
 986 graphs tend to exhibit numerous local minima that hinder greedy navigation [37].

987 Another classical proximity structure is the **Relative Neighborhood Graph (RNG)**, introduced in
 988 computational geometry [51]. An edge between two points exists only if no other point lies within
 989 the lens defined by them, making the RNG a sparse subgraph of the Delaunay triangulation. While
 990 RNGs enjoy theoretical navigability guarantees, their practical construction cost and sparsity often
 991 limit their use in large-scale ANN systems.

992 The **Navigable Spreading-Out Graph (NSG)** [14] has emerged as a practical ANN graph structure
 993 that carefully sparsifies a k -NN graph while ensuring connectivity and navigability. NSG uses a
 994 diversification step to spread out edges and eliminate redundancy, resulting in a graph that balances
 995 efficiency and search quality. It is among the most competitive structures in large-scale ANN
 996 benchmarks.

997 For a more detailed comparison of these graph structures, we refer the reader to [57]. As highlighted
 998 earlier, any navigable graph can be treated as a black box and seamlessly integrated into the HENN
 999 framework within each layer.

1000 D DISCUSSION AND LIMITATIONS

1001 We highlight several practical aspects and limitations of constructing general HENN graphs using
 1002 Algorithm 1.

1003 HENN construction can be naturally *parallelized* during the indexing phase, enabling faster pre-
 1004 processing. Moreover, it can support *dynamic updates* to the dataset, provided that the layers are
 1005 maintained and the ε -net property is preserved. Further details on parallel construction and dynamic
 1006 maintenance are given in Appendices F and E.

1007 HENN is defined as a structural property that extends to any metric \mathbf{d} yielding bounded VC-dimension
 1008 for ring ranges. This includes widely used metrics such as ℓ_p -norms and angular distances (cosine
 1009 similarity). However, if the VC-dimension is unbounded, ε -net construction becomes impractical.

1010 The theoretical time guarantees of HENN rely on properties of the underlying proximity graphs,
 1011 particularly their degree and recall bounds. In practice, many commonly used proximity graphs exhibit
 1012 constant degree and bounded recall. However, certain graphs, such as the Delaunay Triangulation
 1013 (DT), may have degrees that grow exponentially with dimension.

1014 E DYNAMIC SETTING

1015 In this section, we present a procedure for maintaining the HENN structure under dynamic updates
 1016 to the point set X . The supported operations include `Insert` (x), which adds a new point x , and
 1017 `Delete` (x), which removes an existing point $x \in X$.

1018 Based on the discussion in Theorem 1, a random sample of an appropriate size forms an ε -net of X
 1019 with high probability. We denote this required sample size by m_ε , given by:

1026

$$m_\varepsilon = O\left(\frac{d}{\varepsilon} \log \frac{d}{\varepsilon}\right)$$

1029

1030 Each layer of HENN, denoted by \mathcal{L}_i , is constructed as a random sample of size $m_{\varepsilon(|\mathcal{L}_{i-1}|)}$ from the
 1031 previous layer (see Equation 1). Consequently, the problem reduces to dynamically maintaining a
 1032 random sample S of size m_ε from the point set X .¹³

1033 This problem can be addressed using Reservoir Sampling [53] and the *Backing Samples* technique [17].
 1034 The key idea is to handle `Insert`(\mathbf{x}) operations by probabilistically adding the new element to the
 1035 sample S using a non-uniform coin toss. To support deletions, a larger backing sample is maintained
 1036 beyond size m_ε , allowing for efficient resampling of S once the size drops below a threshold. This
 1037 approach yields a constant amortized update time.

1038 According to this, we can maintain the HENN structure dynamically:

1039

1040 **Insert(\mathbf{x})**: To insert a new point, dynamic updates are performed starting from layer \mathcal{L}_1 and
 1041 proceeding upward through the hierarchy, stopping at the highest layer where the new point is
 1042 included. This process takes $O(\log n)$ time, matching the insertion time complexity of HNSW.

1043

1044 **Delete(\mathbf{x})**: Deletion begins at layer \mathcal{L}_1 , where the point x is removed if present. If the size of a
 1045 layer falls below a critical threshold (as discussed in [17]), the layer must be resampled. Following
 1046 resampling, the HENN structure is rebuilt from that layer up to the root, which incurs a cost of
 1047 $O(n \log n)$ in the worst case. However, since such rebuilding occurs infrequently, only when the
 1048 layer size drops significantly (e.g., $m_\varepsilon < c_0 n$ for a constant c_0), the amortized cost remains $O(\log n)$.

1049

1050 F PARALLELIZATION

1051

1052 In this section, we present a parallelized approach to constructing the HENN index during pre-
 1053 processing. While the original HENN construction, shown in Algorithm 1, runs sequentially by
 1054 building layers \mathcal{L}_1 through \mathcal{L}_m from the base point set X , this process can be parallelized to reduce
 1055 preprocessing time.

1056 To enable parallelization, we exploit the fact that layer sampling in HENN is performed with
 1057 replacement. Given p parallel CPU cores, we can independently generate samples for each layer
 1058 in parallel. Specifically, each core performs independent sampling, effectively achieving a p -factor
 1059 speedup for the sampling phase performed on each layer.

1060 HNSW also uses a parallelization to enhance preprocessing [40], where each input point is processed
 1061 independently. For each point, a random level is assigned, and the point is inserted into the corre-
 1062 sponding layers. This results in a total construction time of $O(n \log n)$, which can be reduced to
 1063 $O(\frac{n \log n}{p})$ under parallel execution with p cores.

1064 For HENN, the construction begins by sampling a subset of size $\frac{n}{2^m}$ for the first layer \mathcal{L}_1 , and
 1065 recursively building higher layers. Each layer \mathcal{L}_i requires constructing a navigation graph, the
 1066 complexity of which depends on the chosen method. For instance, NSW-based graph construction
 1067 requires $O(|\mathcal{L}_i| \log |\mathcal{L}_i|)$ time on the i th layer. Excluding graph construction, the sampling phase
 1068 alone can be executed in $O(\frac{n \log n}{p})$ time using p cores.

1069

1070 G PROOFS

1071

1072 G.1 PROOF OF LEMMA 3

1073

1074 **Proof** Since \mathcal{L}_1 is an ε -net of \mathcal{L}_0 , we know that each (ring) range R of size more than $\varepsilon \cdot n$, intersects
 1075 with \mathcal{L}_1 . In other words:

1076

$$|R| \geq \varepsilon n \rightarrow \mathcal{L}_1 \cap R \neq \emptyset$$

1077

¹³ S is a random sample with replacement, with each element having a probability $\frac{m_\varepsilon}{n}$ being in S .

1080 This comes from the definition of an ε -net.
 1081

1082 Based on the definition of recall bound, we know that there are at most ρ_γ more points, denoted as
 1083 $P = \{p_1, p_2, \dots, p_{\rho_\gamma}\}$, in \mathcal{L}_1 that are closer to q than p (with probability of at least γ).
 1084

1085 Assume that the points in P are sorted based on their distance to q , with p_1 being the closest. For
 1086 each $p_j \in P$ define a unique range R_j , which is a ring centered at q , covering all the distances
 1087 between $(d(q, p_{j-1}), d(q, p_j))$, exclusively (see Figure 8). In addition, define one more ring,
 1088 $R_{\rho_\gamma+1}$ for $(d(q, p_{\rho_\gamma}), d(q, p))$.
 1089

1090 All these $\rho_\gamma + 1$ ranges are disjoint, and they do not contain any point in \mathcal{L}_1 . Since \mathcal{L}_1 is an ε -net for
 1091 this range space, this means that all the ranges R_j have at most $\varepsilon \cdot n$ points from \mathcal{L}_0 (the lower level).
 1092 As a result, the union of all these ranges contains at most $\varepsilon \cdot n \cdot (\rho_\gamma + 1)$ points. \square
 1093

1104 Figure 8: Visualization of Lemma 3. In this example, $\rho_\gamma = 2$ and the black points are inside the ε -net.
 1105

1106 G.2 PROOF OF THEOREM 4

1107 **Proof** The query process begins at the top layer \mathcal{L}_L , where GS is executed on the corresponding
 1108 proximity graph. The search then proceeds layer by layer until reaching the base layer \mathcal{L}_0 .
 1109

1110 In the final step, the algorithm identifies a point
 1111

$$1112 p = \text{GS}(\mathcal{G}_{\mathcal{L}_1}, s),$$

1113 the output of greedy search on $\mathcal{G}_{\mathcal{L}_1}$ starting from some initial node s . From p , the search continues in
 1114 the base layer \mathcal{L}_0 . We analyze the running time inductively, proceeding from the base layer upward.
 1115

1116 Let $T(n)$ denote the time required to query a HENN graph constructed on a dataset of size n .
 1117 Computing p requires $T(|\mathcal{L}_1|)$ time, since layers $\mathcal{L}_1, \dots, \mathcal{L}_L$ themselves form a HENN structure. By
 1118 Lemma 3, continuing the search from p in the base layer requires at most $O(\rho_\gamma \cdot \varepsilon n)$ hops. If π is the
 1119 degree of the proximity graph, the total cost per hop is $O(\pi)$. Thus,
 1120

$$T(n) = T(|\mathcal{L}_1|) + O(\pi \rho_\gamma \varepsilon n).$$

1121 Treating ρ_γ and π as fixed constants gives
 1122

$$1123 T(n) = T(m_{\varepsilon(n)}) + O(\varepsilon n),$$

1124 where m_ε is the size of the ε -net. By Theorem 1 and using the fact that VC-dim is $\Theta(d)$, we have
 1125 $m_\varepsilon = O\left(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon}\right)$. Substituting this bound yields
 1126

$$1127 T(n) = T\left(O\left(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon}\right)\right) + O(\varepsilon n).$$

1128 Ignoring constant factors, we obtain
 1129

$$1130 T(n) \leq T\left(\frac{d}{\varepsilon} \log \frac{1}{\varepsilon}\right) + \varepsilon n.$$

1131 Let $x(n) = \frac{1}{\varepsilon}$ as a function of n . Then,
 1132

$$1133 T(n) \leq T(d \cdot x(n) \log x(n)) + \frac{n}{x(n)}.$$

1134 To guarantee convergence, we require
 1135

$$1136 d \cdot x(n) \log x(n) = o(n).$$

1137 At the same time, to minimize the second term $\frac{n}{x(n)}$, we select $x(n)$ as large as possible subject to
 1138 this constraint. The optimal choice is obtained by solving
 1139

$$1140 x(n) \log x(n) = \frac{n}{d},$$

1141 which admits the asymptotic solution
 1142

$$1143 \log x(n) = W\left(\frac{n}{d}\right) \approx \log(n/d) - \log \log(n/d) + O(1),$$

1144 where W denotes the Lambert W function [33]. Consequently, up to lower-order terms,
 1145

$$1146 x(n) = \frac{n}{d \log n}.$$

1147 This implies
 1148

$$\frac{n}{x(n)} = d \cdot \log n,$$

1149 and therefore, since $L = \log n$, the total running time is (bringing back the constants ρ_γ and π)
 1150

$$1151 T(n) = O(\rho_\gamma \pi d \log^2 n).$$

1152 Finally, to see why this choice of $x(n)$ is optimal, suppose instead we take $x(n)$ such that
 1153

$$1154 d \cdot x(n) \log x(n) = n^{1-\alpha}, \quad \alpha > 0.$$

1155 Then $x(n) \approx \frac{n^{1-\alpha}}{d \log n}$, which yields
 1156

$$\frac{n}{x(n)} = dn^\alpha \log n,$$

1157 leading to a runtime strictly larger than $O(d \log^2 n)$. Hence, the choice $x(n) = \frac{n}{d \log n}$ is asymptotically optimal.
 1158

1159 To achieve this running time, two conditions must hold: (1) each layer must form an ε -net of the
 1160 preceding one, and (2) the greedy search at each layer must return a point within the ρ_γ nearest
 1161 neighbors of the query in the layer below.
 1162

1163 For (1), since each layer is an ε -net with probability at least φ , the probability that all L layers are
 1164 valid ε -nets is φ^L . For (2), by the definition of the recall bound, the event occurs with probability
 1165 at least γ per layer, and thus γ^L across all layers. Combining these independent events, the above
 1166 query time is achieved with probability at least $(\varphi \cdot \gamma)^L$ for $L = \log n$. \square
 1167

1168 G.3 PROOF OF LEMMA 5

1169 **Proof** For a large enough constant $c_1 \geq c$, choosing $\varepsilon = \frac{c_1 \delta \log n}{n}$ we have:
 1170

$$1171 \frac{8\delta}{\varepsilon} \log \frac{16}{\varepsilon} \leq \frac{n}{c}.$$

1172 Choose a failure probability $\varphi' = \frac{\log n}{c_2 n}$ for a large enough constant $c_2 > 1$. Then,
 1173

$$1174 \frac{4}{\varepsilon} \log \frac{4}{\varphi'} \leq \frac{8\delta}{\varepsilon} \log \frac{16}{\varepsilon}.$$

1175 Hence, by Theorem 1, we obtain
 1176

$$1177 \max\left\{\frac{4}{\varepsilon} \log \frac{4}{\varphi'}, \frac{8\delta}{\varepsilon} \log \frac{16}{\varepsilon}\right\} = \frac{8\delta}{\varepsilon} \log \frac{16}{\varepsilon} \leq \frac{n}{c}.$$

1178 Therefore, setting $m_\varepsilon = \frac{n}{c}$ gives us that \mathcal{L}_{i+1} is an ε -net of \mathcal{L}_i , with
 1179

$$1180 \varepsilon = \Theta\left(\frac{\delta \log n}{n}\right) \quad \text{and success probability at least } 1 - \Theta\left(\frac{\log n}{n}\right).$$

1181 \square

H PSEUDO-CODES

I MORE ON EXPERIMENTS

I.1 DETAILS ON EXPERIMENTAL SETTING

Real Datasets. We evaluate our methods on standard ANN benchmarks with both Euclidean and angular (cosine) distance metrics. The datasets include: SIFT-128 [28], consisting of 1M vectors in 128 dimensions; GIST-960 [28], with 1M vectors in 960 dimensions; FASHION-MNIST, containing 60K vectors in 784 dimensions; and NYTIMES, with 290K vectors in 56 dimensions. Among these, NYTIMES is evaluated with cosine similarity, while the others use the Euclidean norm.

Synthetic Datasets. To study the effect of varying parameters such as dimensionality, we generated synthetic datasets for ANN search. These were drawn either from a uniform distribution or from mixtures of anisotropic Gaussians, producing several skewed clusters that mimic the structure of challenging real-world datasets.

Queries. For our experiments, queries are generated in two ways: by randomly sampling a subset of points from the dataset, and by creating an additional set of points drawn uniformly at random from the ambient space.

Methods. In our experiments, we combined HENN with different PGs at each level. For this purpose, we followed the construction algorithm 1 with a standard construction process for the PG.

Implementation of ε -net Construction. We employ two approaches for building ε -nets. The first is *Random Sampling*, where a random subset of size m_ε is selected, which yields an ε -net with a certain probability. Other approaches, such as sketch-and-merge or discrepancy-based methods, are not practical in this context as their complexity grows exponentially with the dimension d . Our second approach is the *Budget-Aware Algorithm*, in which the user specifies a budget \mathcal{B} , expressed as a ratio $r \in (0, 1]$.

Concretely, if the target ε -net size is m , we first select $(1 - r)m$ elements uniformly at random. The remaining $r \cdot m$ elements are then chosen using a heuristic procedure (see Algorithm 6), which is based on the unhit-set discovery technique described in Section B.1.

1.2 COMPARISON OF PROXIMITY GRAPHS

In this section, we compare several proximity graphs, including kNN, KGRAPH, NSG, FAANG, and NSW. While this is not the primary focus of our work, we report their recall bounds and query times in a flat (single-layer) setting across multiple datasets.

1242 **Algorithm 6** Finding an Unhit Range

1243 **Require:** A point set X and a subset \mathcal{N} as the ε -net placeholder.
1244 **Ensure:** The ε -net with high probability.
1245 1: **function** FINDANUNHITSET($X, \varepsilon, \mathcal{N}$)
1246 2: **for** $i \leq \mathcal{B}$ **do** ▷ At most \mathcal{B} iterations.
1247 3: $p \leftarrow$ a random point from X
1248 4: Partition the whole space based on the distance of points to p .
1249 5: **for** partition P_i **do**
1250 6: **if** $P_i \cap \mathcal{N} = \emptyset$ **then**
1251 7: Add a random point from P_i to \mathcal{N}
1252 8: **If** no new points added, just add a random point to \mathcal{N} .
1253 **return** \mathcal{N}

1254

1255 Figure 9: Comparison of recall bound (average hit among k neighbors of the query) between different
1256 proximity graphs (synthetic dataset).
1257
1258
1259
1260
1261
1262

1263 Figures 9 and 10 present the recall bounds of these proximity graphs on both synthetic and real
1264 datasets. In these experiments, we varied the value of k in the k -nearest neighbor search and, over
1265 multiple runs, measured the fraction of queries for which the returned neighbors included the true k
1266 nearest neighbors. This fraction provides an estimate of the probability of correctly retrieving the k
1267 nearest neighbors. As k increases, this probability naturally improves, since the search is more likely
1268 to include points from the true neighborhood of the query. We define the recall bound of a proximity
1269 graph (Definition 3) as the smallest value of k for which this probability exceeds 0.9 on average.
1270 Notably, some graphs, such as NSW (used in HNSW), show very small recall bounds, which in turn
1271 leads to better performance for HENN.
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

I.3 INDEXING SIZE AND TIME

In this section, we evaluate the indexing phase of HENN, focusing on index size and preprocessing time. Figure 13 reports the indexing cost of HENN when integrated with different proximity graphs. We observe that the build time for NSW is higher than for other graphs, since our implementation includes a second refinement phase to enforce the desired node degree specified by the user. In terms of memory usage, the index grows almost linearly with both the dataset size n and the dimensionality d .

I.4 ADDITIONAL EXPERIMENTS

Effect of n and d . Figure 14 illustrates the effect of dataset size n on query time, while Figure 15 reports its effect on the number of hops (steps) in the greedy search. In both cases, the dependence on n is logarithmic, consistent with Theorem 4. Figure 16 shows the effect of dimensionality d on query time and hops, which scales linearly with d as predicted by Theorem 4. As discussed earlier, increasing d raises the likelihood of getting trapped in local minima (for proximity graphs with fixed degree). Consequently, for smaller values of d , the query time initially decreases before the linear

Figure 10: comparison of recall bound (average hit among k neighbors of the query) between different proximity graphs (real datasets).

Figure 11: Comparison of query times of different PGs in a single-layer setting (synthetic dataset).

dependence on d dominates. Figure 17 also shows the effect of dimension d on the synthetic data with Mixture of Gaussians distribution.

Budget-Aware ε -net construction Figure 18 demonstrates the effectiveness of the budget-aware algorithm in constructing ε -nets with high probability. Across multiple real datasets, even a small preprocessing budget (as low as 10%) substantially increases the likelihood that the resulting set forms a valid ε -net. This property is particularly important for **compressing the HENN index**: by selecting smaller subsets per layer, we can reduce the overall index size, but at the cost of recall, since the subsets may no longer be ε -nets with high probability. Incorporating the budget-aware strategy mitigates this issue, yielding smaller subsets that retain a high probability of being ε -nets and thus achieve recall comparable to the non-compressed version (as shown earlier in Figure 6).

Figure 19 further illustrates the trade-off in preprocessing time. While the budget-aware algorithm requires additional time, growing linearly with the budget, it provides substantially better ε -net quality, making the extra preprocessing cost as a trade-off.

Effect of Proximity Graph Degree. Figure 20 illustrates the impact of varying the degree of the proximity graph (across all layers) on the query time of HENN over additional datasets. The results confirm a linear dependence on the graph degree.

Effect of exponential decay Figure 21 shows the effect of varying the exponential decay rate, which controls the reduction in layer size (and equivalently, the number of layers) on recall and query time. Smaller decay values produce deeper hierarchies with more layers, leading to higher recall but longer query times, since the greedy search must traverse additional layers. Interestingly, there exists an optimal number of layers that minimizes query time. Increasing the decay (reducing the number of layers) weakens the hierarchical structure and degrades performance. In the extreme case of very few layers, query time increases again, as most of the effort is spent in the top layer, which contains $O(n)$ points, making it more prone to getting stuck in local minima.

Figure 12: Comparison of query times of different PGs in a single-layer setting (real dataset).

Figure 13: Index size and index time as a function of dataset size n and dimension d . This is the synthetic dataset with Mixture of Gaussians distribution.

J USE OF LARGE LANGUAGE MODELS (LLMs)

LLMs were used for polishing text, checking grammar, and assisting in debugging code. All research ideas, methods, experiments, and analyses are the authors' own. The authors take full responsibility for the content.

K MORE ON RECALL BOUND

In this section, we further examine the recall bound parameter introduced in Definition 3 and provide deeper insight into the results of Theorem 4. In particular, we interpret the theorem's implications: broadly, Theorem 4 derives a probability distribution for the final running time (i.e., the number of visited hops) in the HENN index. This distribution is governed by the structural properties of the underlying proximity graph.

Let K be a *random variable* denoting the rank of the output returned when running the greedy search algorithm on the chosen proximity graph \mathcal{G} . In other words, a search over \mathcal{G} returns the K -th nearest neighbor of the query point. The distribution of K is inherently determined by the structure and quality of the proximity graph: a better-designed graph places more probability mass on smaller values of K , yielding a lower expected rank.

The exact distribution of this variable can be empirically observed by repeatedly sampling from it, that is, by running the search algorithm and recording the quality of its outputs (see Figures 9 and 10). While our goal in this paper is not to derive closed-form distributions for different proximity graphs, doing so would be an interesting direction for future work.

We define the PMF and CDF of K as

$$p_k := \Pr(K = k), \quad F_K(k) := \Pr(K \leq k) = \sum_{j=1}^k p_j.$$

Based on our definition of the recall bound (Definition 3), the value ρ_γ is given by:

$$\rho_\gamma := F_K^{-1}(\gamma).$$

Figure 14: Effect of dataset size n on the query time.Figure 15: Number of visited hops vs n .

Following Theorem 4, for any fixed value $K = k$, the running time of HENN is

$$O(k \cdot d \cdot \log^2 n)$$

with probability at least p_k^L , where L is the number of layers, which is at most $O(\log n)$.

Let T be the random variable representing the number of hops visited (i.e., the running time of HENN). Theorem 4 therefore implies the following: for any $k \in \mathbb{N}$ and a fixed constant $c > 0$, defining

$$t_k := ck d \log^2 n \quad \text{and} \quad L := \log n,$$

the running-time random variable T satisfies

$$\Pr(T \leq t_k) = \Pr(T \leq ck d \log^2 n) = (F_K(k))^L.$$

Thus, the CDF of T on the discrete grid $\{t_k\}_{k \geq 1}$ is

$$F_T(t_k) := \Pr(T \leq t_k) = (F_K(k))^L, \quad k = 1, 2, \dots,$$

Figure 16: Number of visited hops vs. d (synthetic dataset)

Figure 17: Effect of dimension d on the query time. The results are on the synthetic dataset with varying d (Mixture of Gaussians distribution).

Figure 18: The comparison of Random Sampling and Budget-Aware algorithms on finding an ε -net. The budget ratio r means that for an ε -net of size m_ε , we added $(1 - r) \cdot m_\varepsilon$ points greedily by finding unhit ranges (see Appendix I for details). The experiment is run on small subset of these datasets.

with $F_T(t_0) := 0$.

From this, we can derive the probability mass function of the running-time distribution of HENN:

$$\Pr(T = t_k) = (F_K(k))^L - (F_K(k-1))^L. \quad (3)$$

Result. Based on the above, Theorem 4 provides a probability distribution for the running time of the HENN structure, expressed in terms of the properties of the underlying proximity graph. Since each proximity graph induces its own distribution over the random variable K , graphs whose distributions place more mass on smaller values of K (e.g., those with smaller medians) correspondingly yield better average running times.

K.1 EMPIRICAL RESULTS

In this subsection, we present empirical results to validate the preceding discussion. We begin by examining the distribution of K across different proximity graphs. Then, using equation 3 (derived from Theorem 4), we compute the corresponding distribution of the HENN running time. Finally, we compare these theoretical predictions with empirical measurements to confirm that the observed running times of HENN align with these insights. In our experiments, we report the expected running time and compare it across different proximity graph constructions.

Settings. We conducted experiments using the following proximity graphs: KNN, KGraph, NSW, and FAANG. The datasets used were Random (L2), Mixture of Gaussians L2, NYTimes (Cosine), and GloVe (Cosine). Additional details about these datasets and experimental configurations are provided in the main Experiments section of the paper.

Distribution of K . Figure 22 illustrates the empirical distribution of K for the different proximity graphs. For example, on the Mixture of Gaussians dataset, several graphs tend to get trapped in local minima, which creates a secondary peak (a local mode) in the middle of the distribution.

Figure 19: Comparing the time spent to find ε -net using Budget-Aware algorithm for different values of budget \mathcal{B} .

Figure 20: Effect of the degree of PG on the query time. Every other parameter, like the number of layers, is fixed.

In contrast, NSW is able to escape these local traps more effectively, resulting in a distribution that concentrates more heavily on smaller values of K .

Distribution of T . Figure 23 shows the derived distribution of the running-time variable T using equation 3. Here, we choose an arbitrary constant c , so the resulting values do not correspond directly to the exact number of visited hops; rather, they represent a scaled version of the running time. The goal is to enable a meaningful *relative* comparison across different proximity graphs and dataset settings, which this transformation preserves.

Expected Value of T . Figure 24 reports the expected value of T across different proximity graphs and datasets, computed using the result of Theorem 4 and equation 3. These values reflect the predicted average running time of HENN under each proximity graph construction (again, here T is proportional to time).

Figure 24: Expected values of T .

Real Query Time of HENN. Figure 25 presents the actual query-time performance of HENN constructed using different proximity graphs. The empirical runtimes exhibit patterns consistent with

1579 Figure 21: Effect of exponential decay rate on time and recall of HENN. Higher decay rate is equivalent
1580 of smaller number of layers. The experiments are on synthetic dataset with Mixture of Gaussians with
1581 10k points and $d = 4$.

Figure 22: Distribution of K .

our theoretical predictions: the relative ordering and average behavior closely mirror the expected values of T , thereby validating our analysis.

Figure 23: Distribution of T .

Figure 25: Real observed average query times of HENN.