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Abstract

High-energy, large-scale particle colliders in nuclear and high-energy physics gen-1

erate data at extraordinary rates, reaching up to 1 terabyte and several petabytes2

per second, respectively. The development of real-time, high-throughput data3

compression algorithms capable of reducing this data to manageable sizes for4

permanent storage is of paramount importance. A unique characteristic of the5

tracking detector data is the extreme sparsity of particle trajectories in space, with6

an occupancy rate ranging from approximately 10−6 to 10%. Furthermore, for7

downstream tasks, a continuous representation of this data is often more useful8

than a voxel-based, discrete representation due to the inherently continuous na-9

ture of the signals involved. To address these challenges, we propose a novel10

approach using implicit neural representations for data learning and compression.11

We also introduce an importance sampling technique to accelerate the network12

training process. Our method matches traditional compression algorithms while13

offering significant speed-up and maintaining negligible accuracy loss, leveraging14

the proposed importance sampling strategy.15

1 Introduction16

High-energy particle accelerators, such as the Large Hadron Collider (LHC) and the Relativistic17

Heavy Ion Collider (RHIC), represent pinnacle achievements in modern physics, enabling profound18

investigations into the fundamental particles and forces of the universe. The operation of these19

colossal machines generates an immense volume of data, necessitating efficient compression methods20

to manage and analyze the deluge of information effectively. Traditionally, data compression for such21

accelerators has been challenging due to the sheer scale and complexity of the data involved [12, 17,22

20, 21].23

Recent advances in deep learning have introduced novel approaches to data compression that surpass24

traditional methods in both efficiency and effectiveness [5, 15, 33, 37]. Unlike conventional techniques25

(e.g., SC and ZFP), deep learning models are adept at capturing intricate and non-linear patterns in26

large datasets. However, most current deep learning-based compression models rely on grid-based,27

resolution-fixed representations that are ill-suited for scientific applications where a continuous28

representation of data is crucial [23, 29, 31].29

Implicit Neural Representations (INRs) have recently emerged as a promising method in the field30

of machine learning, offering a pathway to efficient compression and continuous representation31

learning [35]. These models excel in representing data in a continuous form, enabling more flexible32

and granular analysis and reconstruction [16, 18, 28, 36]. Nevertheless, the typical deployment of33

INRs has primarily focused on dense datasets, such as images, and not on the sparse, irregularly34

distributed data characteristic of particle accelerators.35
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One of the unique challenges in accelerator data is its sparsity–the trajectories of particles are36

extremely sparse in space, presenting a significant obstacle to traditional INR applications. Moreover,37

the need for speed in compression is paramount. Traditional INR training methods, which involve38

processing all data points, become inefficient in the context of accelerator data, where a substantial39

proportion of the data points are zero-valued. This characteristic significantly impedes the training40

process, necessitating a novel approach to manage and exploit the sparse nature of the data effectively.41

This work first investigates the adaptability of INRs to learn from sparse data typical of accelerator42

outputs. We propose an innovative importance sampling-based strategy that selectively trains on the43

most informative data points rather than the entire dataset. This approach not only preserves the44

integrity and granularity of the data but also significantly accelerates the training process.45

2 Method46

The objectives of this study are twofold: firstly, to assess the capability of INRs in representing47

sparse data; and secondly, to explore a novel importance sampling technique designed to significantly48

expedite training on sparse datasets by adapting to the differential importance of grid points.49

Problem Setup We analyze 3D time projection cham-
ber (TPC) data from a minipad array with r = 48 cylin-
drical layers divided into three groups of r = 16 layers
each–inner, middle, and outer. When unwrapped, these
layers form a rectangular grid with z rows along the
axial dimension and c columns along the azimuthal
dimension of the TPC. Despite consistent row num-
bers (z) across all groups, the column numbers (c) vary
by layer group. We focus on the outer layer group
for this study. The full 3D data volume for an outer
layer group is (c, z, r) = (2304, 498, 16). For synchro-
nization with the TPC’s data concentrator, the data is
segmented into 12 non-overlapping azimuthal sections
and the horizontal dimension is halved, resulting in
a processed data shape of (c, z, r) = (192, 249, 16).
Figure 1 showcases the data utilized in this study. Ad-
ditional data details are provided in Appendix A.
Objective The model input, denoted as x = (c, z, r),
maps to the signal intensity y at these coordinates
through the function:

f(x;Θ) = y (1)
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Figure 1: Illustration of the working principal for
the time projection chamber (TPC) of sPHENIX
Experiment [1, 22]. For simplicity, a single
charge particle is visualized, as it is produced
at the collision point, and traverses through the
TPC leaving ion-electron pairs along its trajectory.
These ionization electrons drift along an electrical
field to the end plate for amplification and read-
out. During experiment, thousands of particle can
be produced at a single collision and tracks from
multiple collisions can pile up onto each other in
the TPC data.
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Here, f represents the INR function, parameterized by weights Θ. In this study, we employ three51

distinct models of INRs to address the challenges of compressing sparse accelerator data: Sinusoidal52

Representation Networks (SIREN) [30], Fourier Feature Networks (FFNet) [32], and Wavelet Implicit53

Neural Representations (WIRE) [27]. Network details are available in Appendix B.54

2.1 Sampling Strategies55

Importance Sampling The core of the importance sampling lies in assigning sampling probabilities56

based on the informativeness of the data points. Specifically, data points with non-zero values are57

deemed more informative for the model and are consequently assigned higher sampling probabilities.58

Formally, the sampling weights are calculated as follows:59

weights =
w(yi)∑
w(yi)

where w(yi) =

{|yi| if yi ̸= 0,

ϵ if yi = 0.
(2)

with ϵ denoting a small number. This formulation ensures that non-zero data points are more likely to60

be selected during the sampling process, thereby reducing the disproportionate influence of zero-value61

data in the training set.62

Entropy-based Sampling Data points with low-probability values are often more informative for63

visualization and discovery, as established in the literature [7, 8, 9]. For instance, in image analysis,64

foreground pixels, though rarer, hold more significance than the abundant background pixels. Here,65

entropy-based sampling is a method that prioritizes rare data points to enhance INR training. The66
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key idea is to overrepresent rare values while retaining a representative sample. The importance67

function (IF) assigns lower priorities to common points and higher priorities to rare ones. Formally,68

let y denote a data point’s field value and p(y) the probability density function of these values. Rare69

values correspond to low p(y), and common values to high p(y). The importance function is defined70

as: IF(y) ∝ 1
p(y) on the support of y. To achieve a uniform target distribution over field values y,71

bounded by ℓ and u, we adjust the sampled data to upweight rare values and downweight common72

ones. This process resembles rejection sampling [6, 26], where acceptance is governed by the ratio:73
f(y)

C·p(y) , with C ensuring f(y) ≤ C · p(y) for all y. Here, p(y) represents the dataset’s PDF, and74

f(y) the target uniform distribution. The importance function IF(y) thus guides sample selection,75

overrepresenting rare values. More implementation details are available at Appendix C.76

3 Experiments77

3.1 Continuous Reconstruction78

Task. The goal of this task is to evaluate the ability of INRs to learn continuous patterns from sparse79

3D data from an example collider tracking detector, the TPC of sPHENIX Experiment [1, 22] as80

illustrated in Figure 1. Our focus is on determining whether these models can effectively reconstruct81

data at arbitrary resolutions, which is crucial for enhancing the flexibility and utility of INRs in82

physics.83

Setup. All models are initially trained on data at its original resolution (super-resolution scale84

S = 1) to establish a performance benchmark. In the subsequent experiments, data is progressively85

downsampled to lower resolutions (e.g., yhalf = downsample(yorig, 4)) and then reconstructed back86

to the original resolution (e.g., S = 4).87

Results summary. Figure 2 provides a qualitative comparison of reconstruction and super-resolution88

results across different INR models. The results indicate that while all models achieve faithful data89

reconstruction, SIREN consistently outperforms the others, with FFNet showing the least effective90

performance. In the context of super-resolution, all models maintain high-quality outputs even91

when the vertical and azimuthal dimensions are downsampled by a factor of 2, resulting in a total92

super-resolution scale of S = 4 (×2 in z and ×2 in c). Impressively, the models continue to deliver93

accurate continuous reconstructions at higher scales, such as S = 16 (×4 in z and ×4 in c). However,94

a significant performance drop is observed when the number of layers is halved, that is, (×2 in r).95

This decline could be attributed to the relatively small number of layers (16 in total) compared to96

the other dimensions, where the resolution is much higher (2304 for c and 498 for r). Therefore, it97

may be more advantageous to reduce resolution in the z and c dimensions rather than r. Due to space98

constraints, a more detailed summary of the results is provided in the Appendix D.99
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Figure 2: Qualitative results of continuous reconstruction with super-resolution scales of ×4 and ×8. The ×4
super-resolution is trained on (96, 125, 16) and and the ×8, on (96, 125, 8). Both are evaluated on the full
resolution (192, 249, 16).

3.2 Compression100

Task. The goal of this task is to assess the performance of INRs in compressing TPC data. Notably,101

the entire dataset is compressed into the neural network, with no latent space required—only the102

network itself needs to be stored.103
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Figure 3: Panel A. MSE vs. compression ratio for conventional method (MGARD, SZ, and ZFP) nd INR
approaches (SIREN, WIRE, and FFNet). Panel B. MSE vs. sampling ratio for different sampling methods based
on the SIREN algorithm. Panel C. time vs. sampling ratio for different sampling methods.

Setup. We will compare the proposed INR models with three traditional compression algorithms:104

MGARD [2, 10], a multilevel lossy compression technique based on multigrid methods; ZFP [25],105

a compressed format for multidimensional arrays with spatial correlation; and SZ [14, 24], an106

error-controlled lossy algorithm optimized for high compression ratios.107

Results summary. For traditional methods, ZFP operates by transforming, quantizing, and entropy108

coding blocks of data. However, if the target bit rate per value is too low, the algorithm struggles to109

represent the transformed and quantized data within the specified bit budget. In our experiments, we110

observed that ZFP’s compression threshold is around 20; beyond this point, it begins to lose a signifi-111

cant amount of information in the compressed data (See Figure 3A). Similarly, SZ can be configured112

to target a specific compression ratio, but it generally focuses on controlling error bounds rather than113

directly targeting a compression ratio. When SZ is used in iterative computational processes, extreme114

compression can lead to non-convergence or instability, as excessive compression degrades data115

accuracy. On the other hand, INR-based methods demonstrate competitive performance, surpassing116

traditional methods like MGARD and SZ. Notably, SIREN excels in this regard, outperforming117

both traditional and other INR-based methods when the compression ratio exceeds 20. For instance,118

SIREN achieves comparable MSE to ZFP while delivering higher compression efficiency.119

3.3 Efficiency120

Task. The goal of this task is to evaluate the speed-up achieved using different sampling methods.121

Additionally, we will examine the trade-off between accuracy and speed.122

Setup. We explored three sampling methods: Importance Sampling (IS), random sampling, and123

entropy-based sampling. All experiments were conducted using SIREN as the baseline model.124

Results summary. From Figure 3B, we can observer that IS consistently achieves the lowest MSE125

across all sampling ratios, highlighting its effectiveness in capturing the most critical data points126

for training. In contrast, Entropy-based sampling initially produces higher MSE values than IS but127

demonstrates gradual improvement as the sampling ratio increases. While IS is the most effective128

method for minimizing MSE, it shows a linear increase in computation time as the sampling ratio129

grows (See Figure 3C). Rand sampling has nearly identical computational time to IS, also increasing130

linearly with the sampling ratio. It also offers significant speed-ups compared to the full sampling,131

though at the cost of slightly higher MSE. Entropy-based sampling, although effective at full data132

usage, is the most computationally expensive, particularly at lower sampling ratios. Overall, IS offers133

the best balance between accuracy and computational efficiency, making it the most suitable method134

for applications where high accuracy is critical, even at the cost of moderately higher computational135

demands.136

4 Conclusion137

In this work, we address the challenge of compressing the vast, sparse data generated by high-energy138

particle colliders using implicit neural representations combined with importance sampling. Our139

method achieves comparable compression performance to traditional algorithms while providing a140

significant speedup in training time with minimal accuracy loss. This approach offers a scalable and141

efficient solution for real-time data processing in physics research.142
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A Data Configuration255

We analyze simulated data from 200 GeV Au+Au collisions detected by the sPHENIX TPC, leverag-256

ing the HIJING event generator [34] and the Geant4 Monte Carlo detector simulation package [3],257

integrated within the sPHENIX software framework. The sPHENIX TPC is designed to detect258

thousands of charged particles produced in high-energy Au+Au collisions at the Relativistic Heavy259

Ion Collider (RHIC), operating at collision rates of approximately 100 kHz. The ionization charges260

generated by these collisions are captured within the TPC gas volume, drifted, amplified, and col-261

lected by 160,000 mini pads [4], and subsequently digitized using the SAMPA v5 application-specific262

integrated circuit at a 20 MHz rate [19, 13].263

As the ionization charge drifts along the z-axis at approximately 8 cm/µs, the corresponding ADC264

(Analog-Digital Converter) time series data provides a measure of the z-location dependent ionization265

charge density. These ADC values are quantified as 10-bit unsigned integers, ranging from 0 to266

1023, which represent the initial ionization charge density. Spatial interpolation of the trajectory267

location between neighboring pads is derived from the ADC amplitudes, emphasizing the need to268

maintain relative ADC ratios in lossy compression strategies. Prior to data readout, zero suppression269

is implemented on the SAMPA chips, setting ADC values below a threshold of 64 to zero, simplifying270

the data stream.271

Data from the SAMPA chips are then transmitted via 960 6-Gbps optical fibers through the FELIX272

interfaces [11] to a network of commodity computing servers, where the potential for on-the-fly273

compression by algorithms embedded in field-programmable gate arrays or directly on the servers274

exists. The detector’s TPC minipad array consists of 48 cylindrical layers, categorized into three275

sets (inner, middle, and outer), each containing 16 layers. When expanded, each layer forms a276

rectangular grid with consistent rows in the z-direction across all groups but varying column counts277

in the azimuthal direction due to different layer group configurations. The 3D data volume for an278

outer layer group, for instance, takes the form of (2304, 498, 16) across azimuthal, horizontal, and279

radial dimensions. To align with the segmentation protocols of the TPC’s readout data concentrator,280

we segment a full data frame into 12 distinct non-overlapping sections along the azimuth and reduce281

the horizontal dimension by half, resulting in a processed data shape of (192, 249, 16).282

B Model Architecture283

We begin by leveraging a standard Multi-Layer Perceptron (MLP) for modeling Implicit Neural284

Representations (INRs). MLPs, composed of multiple fully connected layers with nonlinear ac-285

tivation functions, are known for their universal approximation capabilities across various tasks.286

Mathematically, an MLP with L layers is expressed as:287

f(x) = WLσ(WL−1σ(· · ·σ(W1x+ b1) · · · ) + bL−1) + bL
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where Wi and bi represent the weights and biases of the i-th layer, respectively, and σ denotes the288

activation function.289

Despite their versatility, MLPs exhibit an issue called spectral bias, favoring the learning of low-290

frequency components and struggling with high-frequency content. This limitation significantly291

hinders their performance in tasks requiring fine-grained detail, such as scientific data modeling and292

signal reconstruction. To mitigate the spectral bias, we explore three advanced methods designed to293

enhance the ability of MLPs to capture high-frequency information: FFNet [32], SIREN [30], and294

WIRE [27].295

FFNet addresses the spectral bias by introducing Fourier features that map the input x into a higher-296

dimensional space. This mapping is defined as:297

γ(x) = [sin(2πBx), cos(2πBx)]

where B is a matrix of frequencies drawn from a Gaussian distribution. The transformed features γ(x)298

enrich the input with high-frequency components, enabling the MLP to model complex functions299

more effectively.300

The FFNet model is therefore formulated as:301

f(x) = MLP(γ(x))

This approach significantly improves the network’s ability to capture detailed and high-frequency302

variations in the data.303

SIREN mitigates spectral bias by employing sinusoidal activation functions. These periodic functions,304

such as the sine function, naturally encode high-frequency information. The SIREN model is given305

by:306

f(x) = WL sin(WL−1 sin(· · · sin(W1x+ b1) · · · ) + bL−1) + bL

By replacing traditional activations with sine functions, SIREN effectively captures high-frequency307

details, making it particularly suitable for applications in neural rendering and signal processing.308

WIRE introduces wavelet transforms into the INR framework to capture multi-scale information.309

Wavelets provide a powerful means to decompose signals into different frequency bands, enabling310

the model to capture both local and global features. The WIRE model is expressed as:311

f(x) =
∑
j,k

cj,kΨj,k(x)

where cj,k are the wavelet coefficients and Ψj,k(x) represents the wavelet basis functions. By312

integrating wavelet transforms with neural networks, WIRE efficiently models both high-frequency313

and low-frequency components.314

C Sampling Strategies315

Importance Sampling. Both the data and their corresponding weights are flattened into one-316

dimensional arrays, enabling simplified index management. The stochastic selection of data points is317

then performed using the ‘torch.multinomial‘ function, which allows for weighted sampling with318

replacement:319

indices = torch.multinomial(weights_flat, num_samples, replacement=True)

The sampled data points are subsequently retrieved based on these indices:320

sampled_data = data_flat[indices]

By prioritizing non-zero data points, the importance sampling approach aims to more effectively321

allocate computational resources, thereby enhancing the training dynamics of our INR model. This322

strategy is particularly suited to handling the inherent sparsity in TPC data and aligns with the goal of323

accurately capturing the significant physical phenomena represented by non-zero values.324
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Entropy-based Sampling. We approximate p(y) using a histogram P (y), where P (xi) represents325

the count of data points near the value xi. The importance function is then computed as:326

IF(xi) ∝
C

P (xi)
,

where C is a proportionality constant chosen such that IF(xi) · P (xi) = C across all bins. This327

approach results in a new histogram PSamp(xi) that is as uniform as possible given the constraints of328

the dataset.329

For a given sampling ratio ρ and a dataset containing N data points, let B represent the number of330

histogram bins. The constant C is determined by:331

C =
N · ρ
B

.

If C is smaller than the smallest count across all bins in P (y), the algorithm samples C points from332

each bin. Otherwise, the sampling adjusts to allocate the deficit among bins with counts exceeding C,333

ensuring that the overall distribution remains as uniform as possible.334

This entropy-based sampling framework not only prioritizes rare values but also maximizes the335

information content of the sampled data, making it particularly well-suited for INR training where336

the goal is to capture complex and subtle features within scientific datasets.337

D Results338

D.1 Task 1 Additional Results339

In this section, we demonstrate the influence of sub-sampling on super-resolution accuracy. In340

Figure 4 to 6, we show the reconstruction with input from sub-sampling 192× 249× 16 (S = 4),341

96× 125× 16 (S = 4), and 48× 63× 16 (S = 16). All the reconstructions are then evaluated on full342

resolution 192× 249× 16 with L1 errors listed on the differences. We can see that the reconstruction343

quality decreases as S increases.344

Since the TPC data has the lowest resolution in the layer dimension r, sub-sampling along this345

dimension affect the reconstruction quality in the most obvious way. As we can see by comparing346

Figure 6 and 7, because the S = 8 reconstruction sub-sample the layer dimension, it quality is lower347

than the S = 16 super-resolution.348

9



SIREN WIRE FFNet

L1 = 2.9 L1 = 4.17 L1 = 3.31

Pr
ed

ic
tio

n
D

iff
er

en
ce

0

100

200

300

400

500

−500

−300

−100

100

300

500

Super-resolution S = 1

Figure 4: Qualitative results of continuous reconstruction with super-resolution scales of ×1. All INR models
were trained on data with dimensions 192× 249× 16 and evaluated on datasets of the same size.
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Figure 5: Qualitative results of continuous reconstruction with super-resolution scales of ×4. All INR models
were trained on data with dimensions 96×125×16 and evaluated on datasets with dimensions 192×249×16.
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Figure 6: Qualitative results of continuous reconstruction with super-resolution scales of ×16. All INR models
were trained on data with dimensions 48× 63× 16 and evaluated on datasets with dimensions 192× 249× 16.
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Figure 7: Qualitative results of continuous reconstruction with super-resolution scales of ×8. All INR models
were trained on data with dimensions 96× 125× 8 and evaluated on datasets with dimensions 192× 249× 16.
This is only the super-resolution that sub-sample the layer dimension. Since the layer dimension has the lowest
resolution in TPc data, sub-sampling along this dimension affect the super-resolution accuracy significantly.

11


	Introduction
	Method
	Sampling Strategies

	Experiments
	Continuous Reconstruction
	Compression
	Efficiency

	Conclusion
	Data Configuration
	Model Architecture
	Sampling Strategies
	Results
	Task 1 Additional Results


