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Abstract

The causal bandit problem setting is a sequential decision-making framework where actions
of interest correspond to interventions on variables in a system assumed to be governed by
a causal model. The underlying causality may be exploited when investigating actions in
the interest of optimizing the yield of the reward variable. Most existing approaches assume
prior knowledge of the underlying causal graph, which is in practice restrictive and often
unrealistic. In this paper, we develop a novel Bayesian framework for tackling causal bandit
problems that does not rely on possession of the causal graph, but rather simultaneously
learns the causal graph while exploiting causal inferences to optimize the reward. Our meth-
ods efficiently utilize joint inferences from interventional and observational data in a unified
Bayesian model constructed with intervention calculus and causal graph learning. For the
implementation of our proposed methodology in the discrete distributional setting, we derive
an approximation of the sampling variance of the backdoor adjustment estimator. In the
Gaussian setting, we characterize the interventional variance with intervention calculus and
propose a simple graphical criterion to share information between arms. We validate our
proposed methodology in an extensive empirical study, demonstrating compelling cumula-
tive regret performance against state-of-the-art standard algorithms as well as optimistic
implementations of their causal variants that assume strong prior knowledge of the causal
structure.

1 Introduction

The multi-armed bandit (MAB) problem is a well-known sequential allocation framework for experimental
investigations (Berry & Fristedt, 1985). Classically, the MAB problem formulation features an action set
A consisting of |A| = K actions, also called arms, typically corresponding to interventions. Each arm
a ∈ A defines a real-valued distribution for the reward signal, with expected reward µa. The objective of
an allocation policy is to sequentially pick arms in a manner that maintains a balance between exploration
and exploitation in the interest of identifying and obtaining the greatest reward. Maximally and effectively
utilizing all available information is imperative, especially when investigating interventions that are either
or both resource-demanding and time consuming.

Lattimore et al. (2016) proposed the causal bandit (CB) problem setting wherein a non-trivial probabilistic
causal model is assumed to govern the distribution of the reward variable and its covariates (Pearl, 2000).
The addition of causal assumptions introduces avenues by which interventional distributions may be inferred
from observational distributions and information may be shared between arms. Most works addressing the
CB problem exploit strong assumptions as to prior knowledge of the underlying causal model to achieve
improvements over standard MAB algorithms. In this work, we develop a Bayesian CB framework that
does not require prior knowledge of the underlying causal structure, but instead efficiently utilizes previously
available observational data and acquired interventional data to inform exploitation and guide exploration.
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1.1 Related Work

In its original formulation by Lattimore et al. (2016), the CB problem presupposes knowledge of the un-
derlying causal graph. Accordingly, most proposed CB algorithms require knowledge of the causal graph
structure (Lattimore et al., 2016; Lee & Bareinboim, 2018; Maiti et al., 2021; Yabe et al., 2018), and some
additionally assume certain model parameters are given (Lu et al., 2020; Nair et al., 2021). Furthermore,
many approaches are dependent on some restrictive form or class of graphs. These assumptions are restrictive
and often unrealistic in practice.

More recently, Lu et al. (2021) proposed a central node approach based on the work of Greenewald et al.
(2019) that does not assume prior knowledge of the causal graph, but rather asymptotic knowledge of the
observational distribution. Their approach is restrictive in terms of structural and distributional assump-
tions, and while it is generally reasonable to assume that observational data is much more accessible than
interventional data (Greenewald et al., 2019), the large-sample observational setting is not often realistic.
de Kroon et al. (2022) proposed an estimator using separating sets to share information between arms with-
out assuming prior knowledge of nor requiring discovery of the causal graph. Their methodology makes
no attempt to learn the causal graph, and makes use of observational data only to strengthen conditional
independence testing to identify separating sets.

Relevant to our work is the estimation of interventional quantities from observational data using interven-
tion calculus (Pearl, 2000). In the CB setting, Lattimore et al. (2016) and Nair et al. (2021) consider
graph structures with no confounding such that the interventional distributions are equivalent to conditional
distributions, and Maiti et al. (2021) proposed a consistent estimator for the expected reward for discrete
variables using both interventional and observational data in the presence of confounding. Our work extends
the Bayesian model averaging approach proposed by Pensar et al. (2020) wherein the possible causal effect
estimates are averaged across an observational posterior distribution of graphs.

1.2 Our Contributions

We approach the CB problem from a Bayesian perspective, assuming simply that finite samples of observa-
tional data are available. Importantly, we do not assume the causal graph is known, nor are we restrictive as
to the class of graphs. We design a novel Bayesian CB framework called Bayesian Backdoor Bandit (BBB)
that efficiently utilizes the entirety of evidence from an ensemble of observational and interventional data
in a unified Bayesian model. Our proposed BBB methodology quantifies the uncertainty in the expected
reward estimates as contributed to by the reward signal and the causal model to identify potentially prof-
itable exploration, simultaneously learning the causal graph in addition to and for the purposes of improving
estimates to exploit. Through extensive numerical experiments, we validate our methodology by demonstrat-
ing compelling empirical performance against both non-causal and causal algorithms. In particular, even
with modest amounts of observational data, our BBB approach achieves substantially superior cumulative
regret performance compared to standard algorithms, as well as against a generously optimistic version of
the causal central node approach proposed by Lu et al. (2021) that assumes large-sample observational data.

Additionally, in detailing the application of our methods to the discrete and Gaussian distributional settings,
we propose various developments that are of independent interest. In the discrete setting, we derive an ap-
proximation for the sampling variance of the backdoor adjustment probability estimate. In the Gaussian
setting, we characterize the interventional variance of a target variable using intervention calculus and corre-
spondingly propose an estimator, and we propose a simple graphical criterion for sharing causal information
between arms to perform intervention calculus with jointly observational and interventional data.

The remainder of the paper is arranged as follows. We first review relevant background and notation in
Section 2. Then, we develop the formulation of our proposed Bayesian backdoor prior and posterior update
in Section 3, discussing the design of informative conditional priors given a graph and Bayesian model
averaging across graph structures. In Section 4, we develop our proposed algorithms by applying established
MAB algorithms under the BBB framework, and we discuss details regarding the implementation of BBB in
the discrete and Gaussian settings in Section 5. Finally, we provide extensive empirical results in Section 6
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and conclude with a discussion in Section 7. Appendices A to D contain proofs, additional details and
numerical results, and technical derivations.

2 Preliminaries

We consider the setting where the generative model governing a joint probability distribution P of a set
of p variables X = {X1, . . . , Xp} is a causal Bayesian network (CBN). A CBN consists of its structure G,
which takes the form of a directed acyclic graph (DAG), and its parameters ΘG . Its DAG G = (V,E),
often referred to as the underlying causal graph, is composed of a set of nodes V = {1, . . . , p} in one-to-one
correspondence with the variables, and a set of directed edges E oriented such that there are no directed
cycles. As is standard in causal literature, we may refer to a node i ∈ V and its corresponding variable
Xi ∈ X interchangeably.

The probability distribution P imposed by the CBN factorizes according to structure G, with local probability
distributions defined by ΘG . In particular, P (X) =

∏p
i=1 P (Xi | PaG

i , θ
G
i ), where PaG

i = {Xj : j → i ∈ E}
is the parents of Xi in G, and the local parameters θG

i ∈ ΘG specify the conditional probability distribution
(CPD) of Xi given its parents. In our work, we assume that X is a causally sufficient system with no
unobserved confounders.

The action set A consists of |A| = K arms that correspond to interventions on variables in X\Y , where Y =
Xp is the reward variable (Lattimore et al., 2016). In particular, let arm a ∈ A correspond to a deterministic
atomic intervention denoted do(X⟨a⟩ = xa) (Pearl, 1995), fixing X⟨a⟩ to some value xa ∈ Dom(X⟨a⟩), where
⟨a⟩ ∈ V is the node corresponding to the intervened variable. The expected reward of each arm a ∈ A is
given by µa := E[Y | do(X⟨a⟩ = xa)], and there is some optimal arm a∗ := argmaxa∈A µa corresponding to
the optimal reward µ∗ := µa∗ . Given a horizon of time steps T , let at ∈ A be the arm pulled by an algorithm
at time step t ∈ {1, . . . , T}. Denote by na(t) =

∑t
l=1 1 {al = a} the number of times arm a has been pulled

in t time steps. We take interest in optimizing the cumulative regret, where the objective of the algorithm
is to pull arms over T time steps with a balance between exploring different arms and exploiting the reward
signal to minimize the expected cumulative regret E[RT ] = Tµ∗ −

∑
a∈A µaE[na(T )].

In our problem formulation, we assume possession of n0 samples of observational data D0 prior to inves-
tigating arms. We denote by D(t) the interventional data acquired by pulling arm at at time t, and by
Da[t] =

⋃
l≤t,al=aD(l) the accumulated interventional data from arm a through time t. The combined ob-

servational and interventional data accrued through time t is D[t] = D0 ∪
⋃

a∈ADa[t], which we refer to as
ensemble data.

We now describe a Bayesian approach to the general MAB problem, with some notation adapted from
Kaufmann et al. (2012). The parameters ΘA = (θa)a∈A, assumed to mutually independently define the
corresponding marginal reward distributions pθa

(y) := P [Y = y | do(X⟨a⟩ = xa)], jointly follow a modular
prior distribution Π0(ΘA) =

∏
a∈A π

0
a(θa). Typically, (π0

a)a∈A are chosen to be all equal and uninformative.
When arm at ∈ A is pulled at time step t and a realization yt ← Y | do(X⟨at⟩ = xat) is observed, the posterior
Πt is computed by updating according to πt

at
(θat

) ∝ pθat
(yt) πt−1

at
(θat

), while πt
a = πt−1

a for a ̸= at. For each
arm a ∈ A, the posterior πt

a induces a posterior distribution for the expected reward µa, which is simply a
marginal or transformation of πt

a since, in general, µa is a function of θa. These posteriors are utilized by
Bayesian MAB algorithms, which we discuss and apply under our proposed framework in Section 4.

3 Designing Informative Priors with Intervention Calculus

In this section, we detail the development of our proposed BBB model consisting of an informative prior Π0

constructed using observational data that seamlessly integrates interventional data to obtain the posterior
Πt. For each arm a ∈ A, we construct conditional priors π0

a|Z(θa) using the backdoor adjustment given
sets Z ⊆ X \ X⟨a⟩ as follows. If Z satisfies the backdoor criterion relative to X⟨a⟩ and Y (Pearl, 2000,
Definition 3.3.1), then the interventional distribution Y | do(X⟨a⟩ = xa) may be expressed in terms of the

3



Under review as submission to TMLR

joint observational distribution of {X⟨a⟩, Y } ∪ Z via the backdoor adjustment (Pearl, 2000, Theorem 3.3.2):

P [Y = y | do(X⟨a⟩ = xa)] =
∑

z∈Dom(Z)

P (Y = y | X⟨a⟩ = xa,Z = z)P (Z = z). (1)

Eq. (1) provides an avenue through which an estimator for µa using observational data may be derived,
which we denote µ̂a,bda(Z) and with which we design an informative prior π0

a|Z such that the induced prior
distribution of the expected reward µa satisfies

Eπ0
a|Z

[µa] = µ̂a,bda(Z), Varπ0
a|Z

[µa] = ŜE2 [µ̂a,bda(Z)] . (2)

The matching of the prior variance with the sampling variance of the backdoor adjustment estimator en-
deavors to assign the appropriate prior effective sample size. When arm at = a is pulled at time step
t ∈ {1, . . . , T} and a realization of the reward yt ← Y | do(X⟨a⟩ = xa) is observed in D(t), the posterior πt

a|Z
is computed by updating according to πt

a|Z(θa) ∝ pθa
(yt) πt−1

a|Z (θa).

Thus far we have taken for granted the possession of adjustment set Z, the validity of which is dependent on
the underlying causal structure G which we assume to be unknown. If Y ̸∈ PaG

⟨a⟩, then Z = PaG
⟨a⟩ satisfies

the backdoor criterion relative to X⟨a⟩ and Y , and its uncertainty is quantified by the posterior probability
P (Pa⟨a⟩ = Z | D[t]) given the ensemble data at time t. Accordingly, the posterior of θa is determined by
averaging over all possible parent sets for X⟨a⟩:

πt
a(θa) =

∑
Z⊆X\X⟨a⟩

πt
a|Z(θa)P (Pa⟨a⟩ = Z | D[t]), (3)

which is the key posterior distribution to be updated at each time step t in the Bayesian CB problem. Note
that if Y ∈ PaG

⟨a⟩, then P [Y = y | do(X⟨a⟩ = xa)] = P (Y = y) holds straightforwardly for y ∈ Dom(Y ).
Accordingly, if Y ∈ Z, we compute µ̂a,bda(Z) with the marginal distribution of Y for the design of π0

a|Z.

The parent set distribution in (3) is obtained according to a posterior distribution of DAG structures:

P (Pai = Z | D[t]) =
∑

G′:PaG′
i

=Z

P (G′ | D[t]). (4)

The structure posterior is given by P (G | D[t]) ∝ P (D[t] | G)P (G), where P (G) is the structure prior, and the
marginal likelihood P (D[t] | G) =

∫
P (D[t] | G,ΘG)P (ΘG | G)dΘG is obtained by integrating the likelihood

function over the support of a conjugate prior of the parameters as follows. Let m ∈ I := {1, . . . ,M} index
the M = n0 + t samples of data in D[t], and let Oi ⊆ I represent the data points for which Xi is not fixed
by intervention. We make standard assumptions of global and local parameter independence and parameter
modularity (see Heckerman et al. (1995) and Friedman & Koller (2003) for details). These allow us to express
the marginal likelihood as P (D[t] | G) =

∏p
i=1 P (xi[Oi] | paG

i [Oi]), where xi[·] and paG
i [·] represent indexed

samples of Xi and PaG
i in D[t], respectively. Assuming a conjugate prior and complete data, each conditional

likelihood P (xi[Oi] | paG
i [Oi]) can be calculated in closed form by integrating over the parameters:

P (xi[Oi] | paG
i [Oi]) =

∫ [ ∏
m∈Oi

P
(
xi[m] | paG

i [m], θG
i

)]
P (θG

i )dθG
i (5)

where θG
i = θXi|PaG

i
is the parameters specifying the conditional distribution of Xi given its parents (Eaton

& Murphy, 2007).

Assuming the distribution P is faithful to G (that is, all and only the conditional independence relationships
in P are entailed by G), the posterior probability P (G | D[t]) will concentrate around the Markov equivalence
class with increasing samples of observational data n0. The equivalence class consists of the identification
of all direct edge connections (that is, the skeleton of G) and some edge orientations called compelled edges,
but even with infinite observational data, in general, not all edge orientations are identifiable without inter-
ventional data. The effect on P (G | D[t]) of pulling arm a ∈ A and observing interventional data according
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to the intervention do(X⟨a⟩ = xa) is primarily though not limited to that of clarifying the orientation of the
edges incident to X⟨a⟩ in G.

Considering that the DAG space grows super-exponentially with the number of variables (Robinson, 1977),
computation of the parent set probabilities P (Pai | D[t]) is admittedly challenging, even when the maximum
number of parents is restricted. It is generally computationally advantageous to additionally assume a
structure prior satisfying modularity, that is P (G) = Πp

i=1P (PaG
i ), so that the posterior distribution is

proportional to decomposable weights consisting of the product of local scores depending only on a node
and its parents (Friedman & Koller, 2003). This property of score decomposability is crucial for the efficient
implementation of Markov Chain Monte Carlo (MCMC) methods in which the probability distribution
of features in G may be estimated by sampling DAGs from a Markov chain with stationary distribution
P (G | D[t]) (Madigan et al., 1995; Friedman & Koller, 2003; Kuipers & Moffa, 2017). Particularly useful for
our purposes is an algorithm developed by Pensar et al. (2020) to compute the exact parent set probabilities
for a graph in time O(3pp) that also takes advantage of score decomposability.

4 Bayesian Backdoor Bandit Algorithms

In this section, we apply our proposed BBB framework to several state-of-the-art MAB algorithms, namely
upper confidence bound (UCB), Thompson sampling (TS), and Bayesian UCB (Bayes-UCB). Each method is
concerned with designing and computing some criterion Ua(t) to maintain a balance between exploration and
exploitation when selecting arms according to at ∈ argmaxa∈A Ua(t). In what follows, we briefly introduce
these methods and discuss their application under the BBB framework.

The general UCB family of algorithms operates under the principle of optimism in the face of uncertainty
(Lai & Robbins, 1985). Arms that have not been investigated as many times as others have more uncertain
reward estimates and thus optimistically have potential for greater reward, motivating the design of a padding
function Fa(t) for computing the selection criterion Ua(t) = µ̂a(t) + Fa(t). Intuitively, the combination of
the expected reward estimate µ̂a(t) and the uncertainty Fa(t) maintains a balance between high confidence
exploitation and potentially profitable exploration. Perhaps the most well-known and typically the default
instantiation of UCB algorithms is UCB1 (Agrawal, 1995; Auer et al., 2002) which computes the following
criterion:

Ua(t) = µ̂a(t− 1) + c
√

log(t− 1)/na(t− 1). (6)

The confidence tuning parameter c > 0, discussed in Sutton & Barto (2018), controls the desired degree of
exploration, where c =

√
2 in Auer et al. (2002). Hereafter, when discussing UCB, we refer to the policy

expressed by the criterion in (6).

In what we refer to as BBB-UCB, we estimate the expected reward with the posterior mean Eπt−1
a

[µa] with
respect to (3), and we replace 1/na(t− 1) with the posterior variance Varπt−1

a
[µa] ∼ 1/(n0 + na(t− 1)). In

particular, for each arm a ∈ A, we compute

Ua(t) = Eπt−1
a

[µa] + c
√

Varπt−1
a

[µa] log(t), (7)

where, for outer expectation with respect to the parent set distribution Pt−1(Z) := P (Pai = Z | D[t− 1]) in
(4),

Eπt−1
a

[µa] = EPt−1

[
Eπt−1

a|Z
[µa]

]
, Varπt−1

a
[µa] = EPt−1

[
Varπt−1

a|Z
[µa]

]
+ VarPt−1

[
Eπt−1

a|Z
[µa]

]
.

The Bayesian procedures of Bayes-UCB and TS are especially amenable to straightforward application under
the BBB framework. These methods follow the Bayesian MAB formulation introduced in Section 2, typically
taking as input uninformative priors in Π0 that are equivalent for each arm. At each time step t, TS samples
the expectations from the posterior Ua(t) ← πt−1

a (µa), effectively selecting arm a ∈ A with probability
equal to the posterior probability that µa is the highest expectation (Thompson, 1933). Bayes-UCB instead
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computes for each arm at time t an upper quantile of µa based on its posterior distribution induced by πt−1
a :

Ua(t) = Q

(
1− 1

t(log T )c
, πt−1

a

)
, (8)

where Q(r, ρ) is the quantile function defining Pρ(X ≤ Q(r, ρ)) = r for probability distribution ρ and random
variable X ∼ ρ, and c is a constant for computing the quantile used in the theoretical analysis of Bayes-UCB,
with c = 0 empirically preferred (Kaufmann et al., 2012). For the BBB variants of Bayes-UCB and TS, we
need simply to supply our designed backdoor adjustment prior Π0 and make appropriate Bayesian updates
to obtain the posterior Πt.

We present our proposed BBB methodology applied to Bayes-UCB, TS, and UCB in Algorithm 1.

Algorithm 1 BBB-Alg(T,A,D0, c)

Require: Horizon T , action set A, observational data D0, confidence level c
1: Compute the observational parent set posteriors (4)
2: for all a ∈ A and Z ⊆ X \X⟨a⟩ do
3: Compute π0

a|Z according to (2)
4: end for
5: for all t = 1, . . . , T do
6: for all a ∈ A do
7: Compute criterion Ua(t) according to Alg:

• Bayes-UCB: Ua(t) = Q(1− 1/(t(log T )c), πt−1
a ) as in (8)

• TS: Sample Ua(t)← πt−1
a (µa)

• UCB: Ua(t) = Eπt−1
a

[µa] + c
√

Varπt−1
a

[µa] log(t) as in (7)
8: end for
9: Pull arm at ∈ argmaxa∈A Ua(t) and observe D(t)

10: for all Z ⊆ X \X⟨a⟩ where a = at do
11: Update πt

a|Z according to πt
a|Z(θa) ∝ pθa(yt) πt−1

a|Z (θa)
12: end for
13: Compute or update the parent set posteriors (4)
14: end for

5 Implementation Details

5.1 Nonparametric Discrete Setting

We now detail the application of our proposed construction of π0
a|Z to the setting where the CPDs are

multinomials, with each variable Xi ∈ X probabilistically attaining its states depending on the attained state
configuration of its parents PaG

i . The reward variable Y = Xp is a binary variable with Dom(Y ) = {0, 1}.
If Y ̸∈ Z, µa may be estimated with observational data through straightforward empirical estimation of (1):

µ̂a,bda(Z) = P̂ [Y = 1 | do(X⟨a⟩ = xa)] = 1
n0

∑
z

n0[1, xa, z]n0[z]
n0[xa, z] , (9)

where n0[1, xa, z] represents the number of the n0 samples of D0 in which Y = 1, X = xa, and Z = z, with
corresponding definitions for n[xa, z] and n[z].

Analysis of the sampling distribution of (9) is admittedly challenging. To design an appropriately weighted
informative prior as proposed in (2), we require some characterization of the sampling variability of µ̂a,bda(Z).
Hence, we derive an approximation of the variance of (9), ŜE2[µ̂a,bda(Z)]. We accomplish this by first re-
expressing the joint counts n0[·] as sums of elements of a multinomial random vector. The term within the
sum may then be expressed as a product and ratio of intersecting random quantities, which we approximate
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through a first-order Taylor series expansion. The details of the derivation are delegated to Appendix D. It
is appropriate to acknowledge that Maiti et al. (2021) proposed a provably unbiased strategy for empirical
estimation of (1) through splitting the sample into independent partitions. However, this approach suffers
from severe loss of precision through what some may consider underutilization of the observed data. In
our experiments detailed in Appendix C.1, we find the empirical performance of (9) in our applications
to be acceptable. We additionally provide extensive empirical validation of our derived approximation,
demonstrating coverage probabilities comparable to empirical estimates of the sampling variability for modest
sample sizes.

Since the reward variable under arm a is a Bernoulli random variable with probability parameter µa =
P [Y = 1 | do(X⟨a⟩ = xa)], we assume a conjugate prior π0

a|Z = Beta(α0, β0) for θa = µa designed according
to (2), resulting in prior hyperparameters

α0 = µ̂a,bda(Z)
(
µ̂a,bda(Z)[1− µ̂a,bda(Z)]

ŜE2 [µ̂a,bda(Z)]
− 1
)
, β0 = α0

(
1− µ̂a,bda(Z)
µ̂a,bda(Z)

)
.

5.2 Gaussian Unit Deviation Setting

In this section, we consider the setting where the causal model may be expressed as a set of Gaussian
structural equations:

Xj =
p∑

i=1
βijXi + εj , εj ∼ N(0, σ2

j ), j = 1, . . . , p. (10)

There is no intercept term, which is analogous to having prior knowledge of the observational means, and
we consider interventions xa ∈ {−1, 1}, which may be interpreted as investigating unit deviations from the
observational means. In this setting, the causal effect of X⟨a⟩ on Y is given by

ψ⟨a⟩ := E[Y | do(X⟨a⟩ = x′ + 1)]− E[Y | do(X⟨a⟩ = x′)]

for any x′ ∈ R, derived via a special case of (1). Note that in our problem formulation, Y | do(X⟨a⟩ = 1)
and −Y | do(X⟨a⟩ = −1) are identically distributed, so all data generated from interventions on X⟨a⟩

may be combined to estimate ψ⟨a⟩. Since µa = xaψ⟨a⟩, we focus our efforts on estimating and modeling
ψ⟨a⟩. Accordingly, in constructing our priors using intervention calculus, we design priors π0

⟨a⟩|Z for θ⟨a⟩

corresponding to estimating ψ⟨a⟩, and allow π0
a|Z to be the induced priors for θa corresponding to µa = ψ⟨a⟩xa,

detailed as follows.

If Y ̸∈ Z, then a consistent estimator of ψ⟨a⟩, denoted ψ̂⟨a⟩,bda, may be obtained with observational data by
the least squares regression

Y = ψ⟨a⟩X⟨a⟩ + γ⊤Z + e, e ∼ N(0, η2), (11)

where γ ∈ R|Z| is the coefficients of the parents Z (Maathuis et al., 2009; Pensar et al., 2020), and some
dependence on a is omitted for simplicity. Correspondingly, we express the desired interventional distribution
as Y | do(X⟨a⟩ = xa) ∼ N(ψ⟨a⟩xa, ω

2). Claiming no prior knowledge of the interventional variance, we assume
a Normal-inverse-gamma (N-Γ−1) conjugate prior π0

⟨a⟩|Z for θ⟨a⟩ = (ψ⟨a⟩, ω
2):

ψ⟨a⟩ | ω2 ∼ N
(
m0, ω

2ν−1
0
)
, ω2 ∼ Γ−1(u0, v0). (12)

Since in general, the residual variance η2 in (11) is not equivalent to ω2, we propose the following to estimate
ω2 from observational data.
Proposition 1. Suppose that X follows the causal structural equation model (SEM) in (10). Let Y,X ∈ X,
and denote by ψ the causal effect of X on Y . Then for any x ∈ Dom(X),

Var[Y | do(X = x)] = Var[Y − ψX].
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Note that the variance on the right side is with respect to the observational distribution of X. Intuitively,
subtracting by ψX negates the noise variances σ2 in (10) propogated through and from X to Y . We include
a detailed proof for Proposition 1 in Appendix A.

Thus, to estimate ω2 from D0, we propose the estimator ω̂2 =
∑

i(ỹi − ¯̃y)2/(n0 − |Z| − 2) where ỹi are
realizations of Ỹ := Y − ψ̂⟨a⟩,bda(Z)X⟨a⟩ in D0, and n0 − |Z| − 2 is the degrees of freedom resulting from
estimating ¯̃y in addition to |Z|+ 1 coefficients in (11). Accordingly, we design the prior ω2 ∼ Γ−1(u0, v0) to
have prior mean E[ω2] = v0/(u0−1) = ω̂2, resulting in hyperparameters u0 = (n0−|Z|)/2 and v0 =

∑
i(ỹi−

¯̃y)2/2. After marginalizing out ω2, ψ⟨a⟩ ∼ t2a0(m0, v0(u0ν0)−1), so we set Eπ0
⟨a⟩|Z

[ψ⟨a⟩] = m0 = ψ̂⟨a⟩,bda(Z)

and solve to obtain ν0 = v0/(u0ŜE2[ψ̂⟨a⟩,bda(Z)]).

To maximally utilize the ensemble data, we further generalize the estimation of ψ⟨a⟩ via regression in (11)
to include eligible samples of intervention data. This is achieved through the following proposition, which
we prove in Appendix A. This result does not rely on any parametric assumptions for the underlying causal
model, assuming simply that X follows a general linear SEM with DAG G (Pearl, 2000).
Proposition 2. Suppose that X follows a linear SEM with a DAG G, and X,Y ∈ X. Suppose that W ∈
X \ {X,Y } does not block any directed path from X to Y in G. Then for any w ∈ R,

∂

∂x
E[Y | do(X = x)] = ∂

∂x
E[Y | do(X = x), do(W = w)].

Proposition 2 asserts a simple graphical criterion which, if satisfied, defines an avenue by which information
can be shared between arms. In our work, we check the graphical criterion for estimating the causal effect
of X⟨a⟩ on Y with interventional data generated from intervening on Xj as follows. Using another algorithm
proposed by Pensar et al. (2020) for computing exact ancestor posterior probabilities, we consider the
criterion satisfied at time step t if the event that Xj blocks a directed path from X⟨a⟩ to Y has low posterior
probability:

P (X⟨a⟩ ⇝ Xj ⇝ Y | D[t]) ≤ min{P (X⟨a⟩ ⇝ Xj | D[t]), P (Xj ⇝ Y | D[t])} ≤ τ (13)

where Xj ⇝ Y denotes that Xj is an ancestor of Y and the threshold is set to τ = 0.1 in our application. If
(13) holds at time step t, we combine the observational data and the data from interventions on Xj when
conducting the regression (11). While independent samples of observational and interventional data are
not guaranteed to have identically distributed errors in the regression (11), we provide extensive empirical
validation of our proposed regression with ensemble data in Appendix C.2, confirming indistinguishable
performance for the purposes of estimating ψ⟨a⟩ and its sampling variability compared to that of purely
observational data.

6 Numerical Experiments

We conducted extensive numerical experiments to empirically validate our proposed methodology. For our
experiments, we generated CBN models with p = 10 variables. The structures were randomly generated
according to a process adapted from de Kroon et al. (2022), and the reward variable was designated to have
|PaG

p | = 3 parents. The conditional probability distributions of each CBN were likewise generated randomly.
Atomic interventions as described in Section 5 were allowed on all variables excluding the reward variable,
with the discrete variables assumed to be binary, resulting in |A| = 2(p − 1) = 18 actions. Additional
experimental details are provided in Appendix B.

6.1 Cumulative Regret Comparisons

We evaluated our BBB methodology against algorithms designed to optimize cumulative regret, including
popular standard MAB algorithms Bayes-UCB, TS, and UCB that do not utilize causal assumptions (see
Section 4). Additionally, we compared against what can be interpreted as a highly optimistic version of
the central node approach by Lu et al. (2021), introduced in Section 1, by presupposing knowledge of the
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direct causes of the reward variable. In particular, for Bayes-UCB∗, TS∗, and UCB∗, we executed the
respective algorithms over the reduced action set A′ = {a ∈ A : ⟨a⟩ ∈ PaG

p }. Accordingly, for the cases
where ⟨a∗⟩ ̸∈ PaG

p , we redefined the optimal intervention to a∗ = argmaxa∈A′ µa when evaluating the regret
of TS∗ and (Bayes-)UCB∗.

Using the process described above, we generated 100 CBN models for each distributional setting. For each
CBN, we executed the competing methods 10 times but our BBB methods only 5 times due to their greater
computational expense, with T = 5000 time steps. The results presented are averaged across all simulations
for each time step, with the cumulative regret normalized by the optimal reward µ∗ to ensure that each CBN
model contributes comparably. In preference to the competing methods, we tuned for their best-performing
parameters where relevant and applied them to our BBB implementations.

The empirical cumulative regret results in Figure 1 demonstrate that in both the discrete and Gaussian
settings and for all algorithms, our BBB methodology is able to reliably outperform the non-causal variants
with finite samples of observational data. The improvement increases monotonically with increasing sample
sizes of observational data (n0). While corresponding variants of Bayes-UCB and TS perform comparably,
UCB achieves substantially lower regret because the parameter c in (6) was tuned to maintain a balance
between exploration and exploitation that is most empirically preferred. In particular, UCB is able to
avoid excessive exploration by scaling its padding term with a relatively small constant, whereas Bayes-UCB
maintains a relatively high minimum exploration rate according to its formulation in (8), as does TS.

In comparison to the optimistic central node versions of the algorithms, BBB generally achieves lower
cumulative regret with n0 ≥ 800 in the discrete setting and n0 ≥ 40 in the Gaussian setting. Recall that,
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Figure 1: Cumulative regret results against T = 5000 time steps comparing Alg, Alg∗, and BBB-Alg for
Alg ∈ {Bayes-UCB,TS,UCB}. BBB methods were executed with n0 = 100 · 2k in the discrete setting and
n0 = 10 · 2k in the Gaussian setting
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in practical applications, the central node approach relies on the availability of large-sample observational
data as well as a sequence of interventions to recover the reward generating variables PaG

p . Based on our
simulation settings, this reduces the action set from |A| = 18 arms to only |A′| = 2|PaG

p | = 6 arms, and
we additionally restrict a∗ ∈ A′ to evaluate the regret. Furthermore, the regret results reported for these
methods do not include the interventions required to identify PaG

p , thus representing a kind of best case
scenario for the central node approach. In contrast, our methodology derives substantial benefit from modest
amounts of observational data samples n0.

Indeed, we find that our BBB methods are able to perform competitively against the competing methods even
when the latter are given n0 time steps to explore arms before incurring regret. To compensate for the fact
that BBB utilizes n0 samples of observational data prior to investigating arms, we present the results where
the competing algorithms TS(∗) and (Bayes-)UCB(∗) are given a head start of n0 ∈ {100·2k : k = 0, 1, . . . , 5}
time steps to explore arms before incurring regret. The results for the discrete setting are shown in Figure 2.
The Gaussian results are omitted because n0 ≤ 320 is relatively small, so the head start does not offer
substantial benefit to the competing methods. In all cases, BBB still significantly outperforms the standard
algorithms TS and (Bayes-)UCB given the head start. Given sufficient samples of observational data, BBB
still performs comparably to if not better than the optimistic central node variants in terms of cumulative
regret, for which the head start is only an additional unwarranted advantage given that they already require
significantly more observational data as well as additional interventions.

6.2 Structure Identification

In addition to the cumulative regret performance, it is of interest to consider the structure identification
behavior of the BBB approach in our experiments. We measure the concentration of the posterior probability
across DAGs G with respect to the underlying causal graph G∗ using the edge support sum of absolute errors
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Figure 2: Discrete cumulative regret for Alg ∈ {Bayes-UCB,TS,UCB} with a head start of n0 ∈ {100 · 2k :
k = 0, 1, . . . , 5} time steps for competing methods
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(ESSAE), which is given at time t by
p∑

i=1

∑
j ̸=i

∣∣∣P (j ∈ PaG
i | D[t])− 1

{
j ∈ PaG∗

i

}∣∣∣ .
This quantity may be understood as a probabilistic version of the structural hamming distance, a common
metric in Bayesian network structure learning literature. Lower ESSAE corresponds to greater concentration
of the posterior probability around the causal graph G∗. The results are provided in Figure 3.

In the discrete results for BBB-Bayes-UCB and BBB-TS, the initial ESSAE is unsurprisingly lower for the
larger sample sizes, but the trend quickly reverses as the time steps progress. This effect is also observed
occurring in the Gaussian results, but at an accelerated pace. This behavior is perhaps best understood in
complement to the cumulative regret results in Figure 1. If P is faithful to G, then if n0 is large, the structure
prior P (G | D0) is expected to concentrate around the Markov equivalence class, which entails identification
of the skeleton and in general, partial identification of the orientations. Additionally, the conditional priors
π0

a|Z are precise models, allowing BBB to quickly identify and select arm(s) a ∈ A with small regret µ∗−µa,
which has the effect of clarifying the orientation of edges incident to such X⟨a⟩. The policies take no interest
in determining the orientation of the remaining edges if the uncertainty does not indicate potential to identify
more profitable actions. In contrast, when n0 is small, the greater uncertainty in both the structure prior and
the conditional priors encourage the exploration of many different arms, thus incurring greater cumulative
regret. In addition to clarifying the orientation of the incident edges, selecting arm(s) a ∈ A contributes to
identifying the direct edge connections excluding those from PaG

⟨a⟩ to X⟨a⟩, as can be seen in (5). Thus, the
skeleton is recovered and more edge orientations are identified than in the case where n0 is large, achieving
lower ESSAE at the cost of greater cumulative regret. Notably, while this reversal appears to be absent in
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Figure 3: Discrete (n0 = 100 ·2k) and Gaussian (n0 = 10 ·2k) results of the ESSAE of the full graph structure
for BBB-Alg, Alg ∈ {Bayes-UCB,TS,UCB}
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the discrete results for BBB-UCB, in actuality it has simply not yet been realized even after T = 5000 time
steps due to the small exploration constant c in (7).

7 Discussion

In this paper, we proposed the BBB framework for enhancing experimental investigations with observational
data. BBB consists of an aggregation of various strategies for estimating and modeling the parameters of
interest with jointly interventional and observational data in order to efficiently utilize all available data
to inform exploitation and exploration. Applied in our methodology but also of independent interest, we
derived a well-performing approximation for the variance of the discrete backdoor adjustment estimator, and
in the Gaussian setting, we characterized the interventional variance using the observational distribution and
proposed a simple graphical criterion for sharing information between arms. We empirically validated our
proposed algorithms through extensive numerical experiments against standard MAB algorithms as well as
a generously optimistic version of a recently proposed CB approach.

A substantial limitation of our method is the computational expense of computing the parent set probabilities
and the conditional parameter posteriors corresponding to each parent set. However, such an investment is
justified when interventions are particularly expensive or time-consuming. In these settings, it is crucial to
utilize all available evidence, motivating future work in scaling our methods to feasibly operate for larger
causal systems. Note that parent set probabilities with trivial support may be thresholded to zero and the
corresponding conditional posteriors need not be updated. This significantly reduces the computational load
of causal parameter modeling, especially for systems with sparse structures, so the structure posterior tends
to be the limiting factor. However, we emphasize that exact computation is not always necessary. Instead,
approximations may be attained efficiently through MCMC, and posterior sampling methods such as BBB-
TS need only to sample a single DAG from the posterior distribution of causal graphs. Kuipers et al. (2022)
applied their hybrid MCMC approach, in which DAGs are sampled from a restricted space estimated by a
structure learning algorithm, on systems with up to 200 variables.

In addition to scaling, there are a number of interesting directions for future investigations. Though we
validated our proposed BBB methodology numerically by demonstrating compelling empirical performance
against well-studied algorithms, we leave formal theoretical analysis of the BBB framework to future work.
Finally, it would be interesting to consider how to share information between arms in the discrete setting as
in Proposition 2 with an equally simple graphical criterion.
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A Proofs

In this section, we prove Proposition 1 and Proposition 2.

Proof of Proposition 1. Let Z be the parent set of X. Then by a special case of (1),

p(y | do(x)) =
∫
p(y | x, z)p(z)dz

=
∫
ϕ(y | ψx+ γ⊤z, σ2)ϕ(z | 0,ΣZ)dz

= ϕ(y | ψx,γ⊤ΣZγ + σ2),

where ϕ(· | µ,Σ) is the probability density function of N(µ,Σ) and ΣZ is the covariance matrix of Z. Thus,

Y | do(X = x) ∼ N(ψx,γ⊤ΣZγ + σ2).

Now representing [Y | X,Z] by a linear regression:

Y = ψX + γ⊤Z + ε,

where ε ∼ N(0, σ2) ⊥ Z ∼ N(0,ΣZ). Then we have

Var(Y − ψX) = Var(γ⊤Z + ε)
= γ⊤ΣZγ + σ2 = Var(Y | do(X = x)).

Proof of Proposition 2. The result follows straightforwardly from a simple graphical argument. Let ΞG
XY

denote the distinct directed paths from X to Y in the causal graph G given the model (10), where ξ ∈ ΞG
XY
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consists of all the directed edges i→ j ∈ E on the given path from X to Y . Then the causal effect of X on
Y can be expressed as the sum of propagated direct effects along all directed paths from X to Y :

ψXY := ∂

∂x
E[Y | do(X = x)] =

∑
ξ∈ΞG

XY

∏
i→j∈ξ

βij .

We denote the variables under the intervention do(W = w), w ∈ R as X̃, with resulting causal model

X̃j =
p∑

i=1
β̃ijX̃i + ε̃j , j = 1 . . . , p,

where

β̃ij =
{

0 if Xj = W

βij otherwise,
ε̃j =

{
w if Xj = W

εj otherwise.

The corresponding causal graph for X̃ is the mutilated graph G̃ resulting from deleting all edges into W .
The causal effect of X̃ on Ỹ is then

ψX̃Ỹ := ∂

∂x
E[Ỹ | do(X̃ = x)] = ∂

∂x
E[Y | do(X = x), do(W = w)] =

∑
ξ∈ΞG̃

XY

∏
i→j∈ξ

β̃ij .

Since W does not block any directed path from X to Y , the mutilated graph G̃ retains all the directed paths
from X to Y in G, so ΞG̃

XY = ΞG
XY . By the same reasoning, β̃ij = βij for all i → j ∈ ξ where ξ ∈ ΞG̃

XY .
Therefore, for any w ∈ R,

∂

∂x
E[Y | do(X = x)] = ∂

∂x
E[Y | do(X = x), do(W = w)].

B Experimental Details

In this section, we include details regarding the experiments discussed in Section 6. The complete code for
reproducing our results has been made available at the following link:

https://anonymous.4open.science/r/bcb0

For our experiments, we generated CBN models for p = 10 variables with reward variable Y = Xp. In order to
investigate interesting structures with diverse non-trivial confounding relationships, we randomly generated
graph structures using the following process adapted from de Kroon et al. (2022). Given a fixed topological
sort of the variables X1 ≺ · · · ≺ Xp where the reward variable is Y = Xp, we sequentially considered nodes
in reverse topological order: i = p−1, . . . , 1. We uniformly sampled the maximum out-degree of Xi, denoted
di, from 1 to p − i. Then, for di times, we randomly selected Xj from {Xj ∈ X : Xi ≺ Xj}, adding
Xi → Xj to the graph only if the edge was not already present and |PaG

j | < 3. We imposed an additional
requirement that |PaG

p | = 3, randomly adding parents if necessary. If the generated structure consisted of
multiple disconnected components, we rejected the structure and reattempted the process.

The conditional probability distributions of each CBN were likewise generated randomly. For discrete net-
works, the variables were all assumed to be binary, and the conditional probability tables were randomly
generated uniformly and normalized, and were accepted only if for every edge Xj → Xi, there is a suffi-
ciently large causal effect, with |P [Xi = xi | do(Xj = xj)] − P (Xi = xi)| ≥ 0.05 for some xi ∈ Dom(Xi)
and xj ∈ Dom(Xj). Additionally, we required the marginal probability of any single discrete level to be
at least 0.01, and that the reward signal of the optimal intervention a∗ be sufficiently large with respect to

15

https://anonymous.4open.science/r/bcb0


Under review as submission to TMLR

the observational mean: µ∗ − E[Y ] ≥ 0.05. For Gaussian networks, according to the model expressed in
(10), we sampled coefficients uniformly from [−1,−0.5]∪ [0.5, 1] for Xi ∈ PaG

j and standard deviations from
[
√

0.5, 1], and we normalized the system to have unit variance. Note that in the Gaussian setting, there are
effectively |A| = 9 actions given that interventional data on the same variable may be combined as discussed
in Section 5.2, which we implement for the competing methods as well. We found that ⟨a∗⟩ ∈ PaG

p held
for 98% of the discrete models that we randomly generated, though only for 65% of the random Gaussian
models. As discussed in Section 6, we artificially enforced ⟨a∗⟩ ∈ PaG

p when evaluating the regret of TS∗ and
(Bayes-)UCB∗.

For Bayes-UCB(∗), the best quantile constant in (8) was c = 0, in agreement with the empirical recommen-
dation by Kaufmann et al. (2012). The best exploration parameter for UCB in (6) was c = 1/(2

√
2) for

UCB(∗) in the discrete setting. In the Gaussian setting, UCB and UCB∗ preferred c = 1/2 and c = 1/
√

2,
respectively, the latter of which we applied for BBB. We used standard uninformative priors for TS(∗), with
α0 = β0 = 1 for the Beta prior and m0 = 0, ν0 = 1, and u0 = v0 = 1 for the N-Γ−1 prior. For BBB,
we computed exact parent set probabilities (4) using the program1 implementing the efficient algorithm
developed by and applied in Pensar et al. (2020), restricting the maximum size of parent sets to three and
using the Bayesian Dirichlet equivalent uniform and Bayesian Gaussian equivalent scores. For the Gaussian
setting, we checked the graphical criterion in Proposition 2 according to (13) with τ = 0.1.

While we focused in Section 3 on designing the marginal posteriors according to (3), a notable difference
between our proposed Bayesian CB framework and the Bayesian MAB approach described in Section 2 is that
in our design, the posterior distribution is not modular, with the marginals (πt

a)a∈A mutually dependent on
the distribution of graph structures. However, because of software limitations and for simplicity, we sampled
the criterion Ua(t) for each arm independently in the implementation of BBB-TS in our experiments (line
7 in Algorithm 1). Although preliminary results have shown the difference in empirical performance to
be negligible, a more precise implementation would first sample a DAG G from the posterior distribution
P (G | D[t]) and subsequently for each arm a ∈ A, sample Ua(t) from πt

a|PaG
⟨a⟩

.

C Additional Experiments

Here, we present the results from additional experiments designed to evaluate firstly our proposed approxima-
tion of the sampling variance of the discrete backdoor adjustment estimator (9), and secondly the application
of Proposition 2 by way of Gaussian backdoor adjustment with jointly interventional and observational data.

C.1 Discrete Backdoor Adjustment and Variance

In this section, we describe and present experiments evaluating the behavior of µ̂a,bda(Z) where Z = PaG
⟨a⟩

as in (9), as well as our proposed approximation of its variance, derived in detail in Appendix D. Four
variance estimation methods were investigated. In the naive approach, µ̂a,bda(Z) is treated as a conditional
proportion as is the case when |Z| = 0, and the variance is estimated as µ̂a,bda(Z)[1− µ̂a,bda(Z)]/n[xa] where
n[xa] is the number of samples of data where X⟨a⟩ = xa. The sampling approach estimates the variance
from samples from the population distribution, and the bootstrap approach conducts resampling from each
sample distribution, each with 103 repetitions.

The generation of discrete CBNs for the simulation scenarios was designed as follows. The graph structure
was generated simply by initializing a structure where there is a direct edge from the intervened node X⟨a⟩

to the reward variable Y and X⟨a⟩ has |Z| = m parents. For each parent Xj ∈ Z, an edge Xj → Y was
randomly added with 0.5 probability to create backdoor paths. Finally, conditional probability tables were
generated uniformly as described in Section 6.

For observational sample sizes n0 ∈ {100 · 2k : k = 0, 1, . . . , 5} and parent set sizes |Z| ∈ {0, 1, 2, 3}, 103

scenarios were created by randomly generating CBNs as described above and the methods were assessed
under each scenario through the following process. First, 106 datasets were generated, each with n0 samples
of observational data, and for each dataset, µ̂a,bda(Z) was computed for some arbitrary xa ∈ Dom(X⟨a⟩).

1Pensar et al. (2020) provided their code under the MIT License at https://github.com/jopensar/BIDA.
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Figure 4: Coverage probability per scenario using various estimators of Var[µ̂a,bda(Z)] across n0 ∈ {100 · 2k :
k = 0, 1, . . . , 5} samples of observational data and |Z| ∈ {0, 1, 2, 3} adjustment set sizes

Then, for each of the four methods, the variance was estimated corresponding to the first 103 estimates of
µ̂a,bda(Z), and from those the 2 standard deviation interval coverage probability of the true µa was computed.

The estimator µ̂a,bda(Z) itself was found to be generally unbiased, with the average of the 106 estimates
deviating from the true µa by less than 2% in over 99% of the 24,000 scenarios. The coverage probability
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Figure 5: Coverage probability per simulation scenario across sample sizes for observational and ensemble
data generating methods

results are shown in Figure 4, where each boxplot visualizes the coverage probability of a method across
103 scenarios randomly generated under the given simulation setting. The outliers and invalid values, which
typically corresponded to extreme scenarios, were removed. The naive approach is only correct when |Z| = 0
and performs poorly when otherwise. The general results may be summarized as Naive < Bootstrap ≈
Proposed < Sampling, though our proposed estimator appears to outperform the bootstrap approach for
larger |Z| and perform comparably with the population sampling approach for larger n0.

C.2 Gaussian Backdoor Adjustment with Ensemble Data

In this section, we empirically validate our methodology of conducting the regression (11) with jointly
interventional and observational data to estimate ψ⟨a⟩, as discussed in Section 5.2. In particular, we compare
the coverage probability of ψ̂⟨a⟩,bda(Z) where Z = PaG

⟨a⟩ estimated using purely observational data and
ensemble data. The ensemble data was generated by allowing each data sample to be generated by one
of the possible interventions {do(Xj = xj) : Xj ∈ Z, xj ∈ {−1, 1}} or by passive observation, with equal
probability given to each of the 2|Z|+ 1 options.

For sample sizes n ∈ {10 ·2k : k = 0, 1, . . . , 5} and parent set sizes |Z| ∈ {1, 2, 3, 4}, 103 scenarios were created
by randomly generating CBNs. The network structures were generated as described in Appendix C.1, and
the parameters as in Section 6. Each data generation method was evaluated for each scenario by generating
105 datasets with n samples and estimating ψ̂⟨a⟩,bda(Z) and ŜE2[ψ̂⟨a⟩,bda(Z)] for each dataset by conducting
the regression (11). From those estimates, 95% confidence interval coverage probabilities were computed for
each scenario.

The average of the 105 estimates of ψ̂⟨a⟩,bda(Z) deviated from the true ψ⟨a⟩ by at most 0.9% across all
24,000 simulation scenarios for both data generation methods. The coverage probability results are shown
in Figure 5. Since the results did not vary across parent set sizes, each boxplot visualizes the coverage
probability of a method across the 4, 000 simulation scenarios at each sample size. It is easy to see equivalent
performance of the estimator computed with ensemble data compared to observational data, with consistent
coverage across all sample sizes.
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D Derivation of the Discrete Backdoor Adjustment Variance Approximation

In this section, we derive the approximation of the sampling variance of (9):

µ̂a,bda(Z) = 1
n0

∑
z

n0[1, xa, z]n0[z]
n0[xa, z] .

D.1 Introduction

For simplicity, we redefine some notation. The backdoor adjustment to estimate the interventional distribu-
tion of Y | do(X = x) with parent set Z = PaG

X with r parent configurations is given by:

P [Y = y | do(X = x)] =
∑

z
P (Y = y | X = x,Z = z)P (Z = z).

Empirically, given n samples of observational data, this quantity is estimated using counts:

P̂ [Y = y | do(X = x)] =
∑

z

n[y, x, z]
n[x, z]

n[z]
n

= 1
n

∑
z

n[y, x, z]n[z]
n[x, z] (14)

where n[y, x, z] represents the number of samples in which Y = y, X = x, and Z = z, with corresponding
definitions for n[x, z] and n[z]. The joint probability distribution of X, Y , and Z may be lumped into a
multinomial random vector N = (N1, N1

′, N1
′′, . . . , Nr, Nr

′, Nr
′′) ∈ R3r where for i = 1, . . . , r,

Ni = n[y, x, zi], Ni
′ = n[¬y, x, zi], Ni

′′ = n[¬x, zi].

Note that Ni +Ni
′ +Ni

′′ = n[zi], so
∑r

i=1(Ni +Ni
′ +Ni

′′) = n, so N may be thought of as a repartitioning
of the joint probability distribution of X, Y , and Z into 3r disjoint levels:

N = (N1, N1
′, N1

′′, . . . , Nr, Nr
′, Nr

′′) ∼ Multinom(n,p),
p = (p1, p1

′, p1
′′, . . . , pr, pr

′, pr
′′), where

pi = E
[
n[y, x, zi]

n

]
, pi

′ = E
[
n[¬y, x, zi]

n

]
, pi

′′ = E
[
n[¬x, zi]

n

]
for i = 1, . . . , r.

(15)

The advantage of such a representation is so that for each zi, the term within the summation may be
expressed as a function of three disjoint elements of a multinomial random vector:

1
n

r∑
i=1

n[y, x, zi]n[zi]
n[x, zi]

= 1
n

r∑
i=1

n[y, x, zi] (n[y, x, zi] + n[¬y, x, zi] + n[¬x, zi])
n[y, x, zi] + n[¬y, x, zi]

= 1
n

r∑
i=1

Ni(Ni +Ni
′ +Ni

′′)
Ni +Ni

′ .

(16)

Note that each term is not straightforward to compute. An obvious challenge is that the denominator of
each term in the summation in (16) can be zero, so there is no analytical solution for its mean, variance,
and covariance.

D.2 Taylor Series Expansion for Ratio Distribution

To circumvent this challenge, we approximate the ratio in (16) with the Taylor series approximation. We
begin by defining

Mi = Ni(Ni +Ni
′ +Ni

′′)
n2 ,

Wi = Ni +Ni
′

n
,

Qi = f(Mi,Wi) = Mi

Wi
.
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This allows us to express the variance of (16) in terms of Qi:

Var
[
P̂ [Y = y | do(X = x)]

]
= Var

[
r∑

i=1
Qi

]

=
r∑
i

Var [Qi] + 2
r∑

i=1

∑
j>i

Cov [Qi, Qj ] .
(17)

By Taylor series expansion around µi = (µMi
, µWi

) = (E[Mi],E[Wi]):

Qi = f(Mi,Wi)

≈ f(µi) + (Mi − µMi
) ∂f
∂Mi

(µi) + (Wi − µWi
) ∂f
∂Wi

(µi)

+ 1
2(Mi − µMi)2 ∂

2f

∂M2
i

(µi) + 1
2(Wi − µWi)2 ∂

2f

∂W 2
i

(µi)

+ (Mi − µMi
)(Wi − µWi

) ∂2f

∂Mi∂Wi
(µi),

(18)

where
∂f

∂Mi
(Mi,Wi) = 1

Wi
,

∂2f

∂M2
i

(Mi,Wi) = 0,

∂f

∂Wi
(Mi,Wi) = −Mi

W 2
i

,
∂2f

∂W 2
i

(Mi,Wi) = 2Mi

W 3
i

,

∂2f

∂Mi∂Wi
(Mi,Wi) = ∂2f

∂Wi∂Mi
(Mi,Wi) = 1

W 2
i

(19)

Given (18), we obtain an approximate expected value:

E[Qi] ≈ f(µi) + 1
2
∂2f

∂M2
i

(µi)Var[Mi] + 1
2
∂2f

∂W 2
i

(µi)Var[Wi] + ∂2f

∂Mi∂Wi
(µi)Cov[Mi,Wi]. (20)

For variance and covariance, we use a simpler approximation:

Qi = f(Mi,Wi) ≈ f(µi) + (Mi − µMi
) ∂f
∂Mi

(µi) + (Wi − µWi
) ∂f
∂Wi

(µi), (21)

resulting in

Var[Qi] ≈
∂f

∂Mi
(µi)2Var[Mi] + ∂f

∂Wi
(µi)2Var[Wi]

+ 2 ∂f

∂Mi
(µi)

∂f

∂Wi
(µi)Cov[Mi,Wi],

(22)

and

E[QiQj ] ≈ f(µi)f(µj)

+ ∂f

∂Mi
(µi)

∂f

∂Mj
(µj)Cov[Mi,Mj ] + ∂f

∂Mi
(µi)

∂f

∂Wj
(µj)Cov[Mi,Wj ]

+ ∂f

∂Wi
(µi)

∂f

∂Mj
(µj)Cov[Wi,Mj ] + ∂f

∂Wi
(µi)

∂f

∂Wj
(µj)Cov[Wi,Wj ],

so
Cov[Qi, Qj ] = E[QiQj ]− E[Qi]E[Qj ]

= ∂f

∂Mi
(µi)

∂f

∂Mj
(µj)Cov[Mi,Mj ] + ∂f

∂Mi
(µi)

∂f

∂Wj
(µj)Cov[Mi,Wj ]

+ ∂f

∂Wi
(µi)

∂f

∂Mj
(µj)Cov[Wi,Mj ] + ∂f

∂Wi
(µi)

∂f

∂Wj
(µj)Cov[Wi,Wj ].

(23)
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In what follows, we first derive important quantities from the multinomial distribution in Appendix D.3 and
apply them to compute the quantities in (17).

D.3 Multinomial Derivations

For this subsection, in an abuse of notation, let N = (N1, . . . , Nr) ∼ Multinom(n,p) and u, v, w, x ∈
{1, . . . , r} are distinct values. It is well-known that E[Nu] = npu, Var[Nu] = npu(1−pu), and Cov(Nu, Nv) =
−npupv. Furthermore,

E[NuNv] = Cov[Nu, Nv] + E[Nu]E[Nv]
= n(n− 1)pupv,

(24)

and the first four moments from derivating the moment generating function are:

E[Nu] = npu,

E[N2
u] = n(n − 1)p2

u + E[Nu]
= npu[1 + (n − 1)pu],

E[N3
u] = n(n − 1)[(n − 2)p3

u + 2p2
u] + E[N2

u]
= npu [1 + (n − 1)pu(3 + (n − 2)pu)] ,

E[N4
u] = n(n − 1)(n − 2)

[
(n − 3)p4

u + 3p3
u

]
+ 2n(n − 1)

[
(n − 2)p3

u + 2p2
u

]
+ E[N3

u]
= npu [1 + (n − 1)pu(7 + (n − 2)pu[6 + (n − 3)pu])] .

(25)

Define indicator random variable Ui such that Ui = 1 if the outcome for trial i is u ∈ {1, . . . , r} and Ui = 0
otherwise. Similarly define Vi for v ̸= u, Wi for w ̸= v ̸= u, and Xi for x ̸= w ̸= v ̸= u. Then Nu, Nv, Nw,
and Nx may be expressed as

Nu =
n∑

i=1
Ui, Nv =

n∑
i=1

Vi, Nw =
n∑

i=1
Wi, Nx =

n∑
i=1

Xi.

We are interested in E[N2
uN

2
v ], E[N3

uNv], E[N2
uNvNw], E[NuNvNwNx], E[N2

uNv], and E[NuNvNw].
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E[N2
uN2

v ] = E

[(
n∑

i=1

Ui

)2( n∑
i=1

Vi

)2]

= E

[
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

UiUjVkVl

]
by distributing

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

E [UiUjVkVl] by linearity of expectation

=
n∑

i=1

n∑
j=1

∑
k ̸=i
k ̸=j

∑
l ̸=i
l̸=j

E [UiUjVkVl] since UiVi = 0 for all i = 1, . . . , n

=
n∑

i=1

n∑
j=1

∑
k ̸=i
k ̸=j

∑
l ̸=i
l ̸=j

E [UiUj ] E [VkVl] by independence between trials

=
∑
i=j

∑
k=l
k ̸=i

E [UiUj ] E [VkVl] +
∑

i

∑
j ̸=i

∑
k ̸=i
k ̸=j

∑
l ̸=k
l ̸=i
l ̸=j

E [UiUj ] E [VkVl]

+
∑
i=j

∑
k ̸=i

∑
l ̸=k
l̸=i

E [UiUj ] E [VkVl] +
∑
k=l

∑
i̸=k

∑
j ̸=i
j ̸=k

E [UiUj ] E [VkVl] reexpressed

=
∑

i

∑
k=l
k ̸=i

E[U2
i ]E[V 2

k ] +
∑

i

∑
j ̸=i

∑
k ̸=i
k ̸=j

∑
l ̸=k
l ̸=i
l ̸=j

E[Ui]E[Uj ]E[Vk]E[Vl] reexpressed; independence; and

+
∑

i

∑
k ̸=i

∑
l ̸=k
l̸=i

E[U2
i ]E[VkVl] +

∑
k

∑
i ̸=k

∑
j ̸=i
j ̸=k

E[Ui]E[Uj ]E[V 2
k ] since E[UiUj ] = E[Ui]E[Uj ], i ̸= j

= n(n − 1)pupv + n(n − 1)(n − 2)(n − 3)p2
up2

v since E[U2
i ] = E[Ui] = pu

+ n(n − 1)(n − 2)pup2
v + n(n − 1)(n − 2)p2

upv

= n(n − 1)pupv [1 + (n − 2)(pu + pv + (n − 3)pupv)] simplified.

Hence,

E[N2
uN

2
v ] = n(n− 1)pupv [1 + (n− 2)(pu + pv + (n− 3)pupv)] . (26)

Following the same derivation strategy,

E[N3
uNv] = n(n− 1)pupv [1 + (n− 2)pu(3 + (n− 3)pu)] , (27)

E[N2
uNvNw] = n(n− 1)(n− 2)pupvpw [1 + (n− 3)pu] , (28)

E[NuNvNwNx] = n(n− 1)(n− 2)(n− 3)pupvpwpx, (29)
E[N2

uNv] = n(n− 1)pupv [1 + (n− 2)pu] , (30)
E[NuNvNw] = n(n− 1)(n− 2)pupvpw. (31)

D.4 Numerator and Denominator of Ratio

We now turn to the task of deriving expressions for Var[Mi], Var[Wi], and Cov[Mi,Wi] in order to compute
(22), and additionally for Cov[Mi,Mj ], Cov[Mi,Wj ], Cov[Wi,Mj ], and Cov[Wi,Wj ] for (23). For this
subsection, return to the notation for N expressed in (15).
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The distribution of Wi = n−1(Ni + Ni
′) is most simple. By the lumping property of multinomial random

vectors,

E[Wi] = pi + pi
′,

Var[Wi] = (pi + pi
′)(1− pi − pi

′)
n

,

Cov[Wi,Wj ] = − (pi + pi
′)(pj + pj

′)
n

.

(32)

The distribution of Mi = n−2Ni(Ni +Ni
′ +Ni

′′) is more challenging. From (25) and (24), the expectation
is given by:

E[Mi] = n−2E[Ni(Ni +Ni
′ +Ni

′′)]
= n−2 (E[N2

i ] + E[NiNi
′] + E[NiNi

′′]
)

= n−2 (npi[1 + (n− 1)pi] + n(n− 1)pipi
′ + n(n− 1)pipi

′′)
= n−1pi[1 + (n− 1)(pi + pi

′ + pi
′′)].

(33)

Next, the variance is given by:

Var[Mi] = n−4Var[Ni(Ni +Ni
′ +Ni

′′)]
= n−4Var[N2

i +NiNi
′ +NiNi

′′]
= n−4(Var[N2

i ] + Var[NiNi
′] + Var[NiNi

′′]
+ 2Cov[N2

i , NiNi
′] + 2Cov[N2

i , NiNi
′′] + 2Cov[NiNi

′, NiNi
′′]
)
.

The terms in the expression above are given below. From the moments of the multinomial distribution (25):

Var[N2
i ] = E[N4

i ]− E[N2
i ]2

= npi [1 + (n− 1)pi(7 + (n− 2)pi[6 + (n− 3)pi])]− (npi[1 + (n− 1)pi])2

= npi

[
1 + (n− 1)pi(7 + (n− 2)pi[6 + (n− 3)pi])− npi(1 + (n− 1)pi)2] .

From (26) and (24):

Var[NiNi
′] = E[N2

i Ni
′2]− E[NiNi

′]2

= n(n− 1)pipi
′[1 + (n− 2)(pi + pi

′ + (n− 3)pipi
′)]− [n(n− 1)pipi

′]2

= n(n− 1)pipi
′[1 + (n− 2)(pi + pi

′ + (n− 3)pipi
′)− n(n− 1)pipi

′],
Var[NiNi

′′] = n(n− 1)pipi
′′[1 + (n− 2)(pi + pi

′′ + (n− 3)pipi
′′)− n(n− 1)pipi

′′].

From (27), (25), and (24):

Cov[N2
i , NiNi

′] = E[N3
i Ni

′]− E[N2
i ]E[NiNi

′]
= n(n− 1)pipi

′ [1 + (n− 2)pi(3 + (n− 3)pi)]
− npi[1 + (n− 1)pi]n(n− 1)pipi

′

= n(n− 1)pipi
′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]

Cov[N2
i , NiNi

′′] = n(n− 1)pipi
′′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]
.

From (28) and (24):

Cov[NiNi
′, NiNi

′′] = E[N2
i Ni

′Ni
′′]− E[NiNi

′]E[NiNi
′′]

= n(n− 1)(n− 2)pipi
′pi

′′[1 + (n− 3)pi]− n(n− 1)pipi
′n(n− 1)pipi

′′

= n(n− 1)pipi
′pi

′′ [(n− 2)[1 + (n− 3)pi]− n(n− 1)pi] .
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Hence, Var[Mi] is derived:

Var[Mi] = n−4(npi

[
1 + (n− 1)pi(7 + (n− 2)pi[6 + (n− 3)pi])− npi(1 + (n− 1)pi)2]

+ n(n− 1)pipi
′[1 + (n− 2)(pi + pi

′ + (n− 3)pipi
′)− n(n− 1)pipi

′]
+ n(n− 1)pipi

′′[1 + (n− 2)(pi + pi
′′ + (n− 3)pipi

′′)− n(n− 1)pipi
′′]

+ 2n(n− 1)pipi
′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]

+ 2n(n− 1)pipi
′′ [1 + (n− 2)(3pi + (n− 3)p2

i )− npi(1 + (n− 1)pi)
]

+ n(n− 1)pipi
′pi

′′ [(n− 2)[1 + (n− 3)pi]− n(n− 1)pi]
)
.

(34)

Next, consider Cov[Mi,Mj ].

Cov[Mi,Mj ] = n−4Cov
[
Ni(Ni +Ni

′ +Ni
′′), Nj(Nj +Nj

′ +Nj
′′)
]

= n−4Cov
[
N2

i +NiNi
′ +NiNi

′′, N2
j +NjNj

′ +NjNj
′′]

= n−4(Cov[N2
i , N

2
j ]

+ Cov[N2
i , NjNj

′] + Cov[N2
i , NjNj

′′] + Cov[NiNi
′, N2

j ] + Cov[NiNi
′′, N2

j ]
+ Cov[NiNi

′, NjNj
′] + Cov[NiNi

′, NjNj
′′]

+ Cov[NiNi
′′, NjNj

′] + Cov[NiNi
′′, NjNj

′′]
)
.

The terms in the expression above are given below. From (26) and (25):

Cov[N2
i , N

2
j ] = E[N2

i N
2
j ]− E[N2

i ]E[N2
j ]

= n(n− 1)pipj [1 + (n− 2)(pi + pj + (n− 3)pipj)]
− npi[1 + (n− 1)pi]npj [1 + (n− 1)pj ]

= npipj [(n− 1)(1 + (n− 2)(pi + pj + (n− 3)pipj))
− n(1 + (n− 1)pi)(1 + (n− 1)pj)]

From (28), (25), and (24):

Cov[N2
i , NjNj

′] = E[N2
i NjNj

′]− E[N2
i ]E[NjNj

′]
= n(n− 1)(n− 2)pipjpj

′[1 + (n− 3)pi]− npi(1 + (n− 1)pi)n(n− 1)pjpj
′

= n(n− 1)pipjpj
′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)] ,

Cov[N2
i , NjNj

′′] = n(n− 1)pipjpj
′′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)] ,

Cov[NiNi
′, N2

j ] = n(n− 1)pjpipi
′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)] ,

Cov[NiNi
′′, N2

j ] = n(n− 1)pjpipi
′′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)] .

From (29) and (24):

Cov[NiNi
′, NjNj

′] = E[NiNi
′NjNj

′]− E[NiNi
′]E[NjNj

′]
= n(n− 1)(n− 2)(n− 3)pipi

′pjpj
′ − n(n− 1)pipi

′n(n− 1)pjpj
′

= n(n− 1)pipi
′pjpj

′ [(n− 2)(n− 3)− n(n− 1)] ,
Cov[NiNi

′, NjNj
′′] = n(n− 1)pipi

′pjpj
′′ [(n− 2)(n− 3)− n(n− 1)] ,

Cov[NiNi
′′, NjNj

′] = n(n− 1)pipi
′′pjpj

′ [(n− 2)(n− 3)− n(n− 1)] ,
Cov[NiNi

′′, NjNj
′′] = n(n− 1)pipi

′′pjpj
′′ [(n− 2)(n− 3)− n(n− 1)] .
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Hence, Cov[Mi,Mj ] is derived:

Cov[Mi,Mj ]
= n−4(npipj

[
(n− 1)(1 + (n− 2)(pi + pj + (n− 3)pipj))
− n(1 + (n− 1)pi)(1 + (n− 1)pj)

]
+ n(n− 1)pipjpj

′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)]
+ n(n− 1)pipjpj

′′ [(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)]
+ n(n− 1)pjpipi

′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)]
+ n(n− 1)pjpipi

′′ [(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)]
+ n(n− 1)pipi

′pjpj
′ [(n− 2)(n− 3)− n(n− 1)]

+ n(n− 1)pipi
′pjpj

′′ [(n− 2)(n− 3)− n(n− 1)]
+ n(n− 1)pipi

′′pjpj
′ [(n− 2)(n− 3)− n(n− 1)]

+ n(n− 1)pipi
′′pjpj

′′ [(n− 2)(n− 3)− n(n− 1)]
)

= n−3pipj

[
(n− 1)

(
1 + (n− 2)(pi + pj + (n− 3)pipj)
+ (pj

′ + pj
′′)[(n− 2)[1 + (n− 3)pi]− n(1 + (n− 1)pi)]

+ pjpi(pi
′ + pi

′′)[(n− 2)[1 + (n− 3)pj ]− n(1 + (n− 1)pj)]
+ (pi

′ + pi
′′)(pj

′ + pj
′′)[(n− 2)(n− 3)− n(n− 1)]

)
− n(1 + (n− 1)pi)(1 + (n− 1)pj)

]

(35)

Finally, we turn our attention to Cov[Mi,Wi], Cov[Mi,Wj ], and Cov[Wi,Mj ]. Beginning with Cov[Mi,Wi]:

Cov[Mi,Wi] = n−3Cov
[
Ni(Ni +Ni

′ +Ni
′′), Ni +Ni

′]
= n−3Cov

[
N2

i +NiNi
′ +NiNi

′′, Ni +Ni
′]

= n−3(Cov[N2
i , Ni] + Cov[N2

i , Ni
′]

+ Cov[NiNi
′, Ni] + Cov[NiNi

′, Ni
′] + Cov[NiNi

′′, Ni] + Cov[NiNi
′′, Ni

′]
)
.

The terms in the expression above are given below. From (25):

Cov[N2
i , Ni] = E[N3

i ]− E[N2
i ]E[Ni]

= npi [1 + (n− 1)pi(3 + (n− 2)pi)]− npi[1 + (n− 1)pi]npi

= npi [1 + (n− 1)pi(3 + (n− 2)pi)− npi(1 + (n− 1)pi)]
= npi [1 + pi((n− 1)[3− 2pi]− n)] .

From (30) and (25):

Cov[N2
i , Ni

′] = E[N2
i Ni

′]− E[N2
i ]E[Ni

′]
= n(n− 1)pipi

′[1 + (n− 2)pi]− npi(1 + (n− 1)pi)npj

= npipi
′ [(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)] .

(36)

From (30) and (25):

Cov[NiNi
′, Ni] = E[N2

i Ni
′]− E[NiNi

′]E[Ni]
= n(n− 1)pipi

′[1 + (n− 2)pi]− n(n− 1)pipi
′npi

= n(n− 1)pipi
′[1− 2pi],

Cov[NiNi
′, Ni

′] = n(n− 1)pi
′pi[1− 2pi

′],
Cov[NiNi

′′, Ni] = n(n− 1)pipi
′′[1− 2pi].
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From (31), (24), and (25):

Cov[NiNi
′′, Ni

′] = E[NiNi
′′Ni

′]− E[NiNi
′′]E[Ni

′]
= n(n− 1)(n− 2)pipi

′′pi
′ − n(n− 1)pipi

′′npi
′

= −2n(n− 1)pipi
′′pi

′.

(37)

Hence, Cov[Mi,Wi] is derived:

Cov[Mi,Wi] = n−3(npi[1 + pi((n− 1)[3− 2pi]− n)]
+ npipi

′[(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)]
+ n(n− 1)pipi

′[1− 2pi]
+ n(n− 1)pi

′pi[1− 2pi
′]

+ n(n− 1)pipi
′′[1− 2pi]

− 2n(n− 1)pipi
′′pi

′).
= n−2pi

(
1 + pi((n− 1)[3− 2pi]− n)
+ pi

′[(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)]
)

+ n−2(n− 1)(pipi
′[2− 2pi − 2pi

′] + pipi
′′[1− 2pi − 2pi

′]).

(38)

Then, moving on to Cov[Mi,Wj ] and Cov[Wi,Mj ]:

Cov[Mi,Wj ] = n−3Cov
[
Ni(Ni +Ni

′ +Ni
′′), Nj +Nj

′]
= n−3Cov

[
N2

i +NiNi
′ +NiNi

′′, Nj +Nj
′]

= n−3(Cov[N2
i , Nj ] + Cov[N2

i , Nj
′]

+ Cov[NiNi
′, Nj ] + Cov[NiNi

′, Nj
′] + Cov[NiNi

′′, Nj ] + Cov[NiNi
′′, Nj

′]
)
.

The terms in the expression above are given below. From (36):

Cov[N2
i , Nj ] = npipj [(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)] ,

Cov[N2
i , Nj

′] = npipj
′ [(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)] .

From (37):

Cov[NiNi
′, Nj ] = −2n(n− 1)pipi

′pj ,

Cov[NiNi
′, Nj

′] = −2n(n− 1)pipi
′pj

′,

Cov[NiNi
′′, Nj ] = −2n(n− 1)pipi

′′pj ,

Cov[NiNi
′′, Nj

′] = −2n(n− 1)pipi
′′pj

′.

Hence, Cov[Mi,Wj ] and Cov[Wi,Mj ] are derived:

Cov[Mi,Wj ] = n−3[npi(pj + pj
′)[(n− 1)(1 + (n− 2)pi)− n(1 + (n− 1)pi)]

− 2n(n− 1)pi(pi
′pj + pi

′pj
′ + pi

′′pj + pi
′′pj

′)
]

= n−2pi(pj + pj
′)
[
(n− 1)(1 + (n− 2)pi − 2(pi

′ + pi
′′)(pj + pj

′))
− n(1 + (n− 1)pi)

]
,

Cov[Wi,Mj ] = n−2pj(pi + pi
′)
[
(n− 1)(1 + (n− 2)pj − 2(pj

′ + pj
′′)(pi + pi

′))
− n(1 + (n− 1)pj)

]
.

(39)

Thus, all quantities necessary to compute (17) are derived.
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