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ABSTRACT

This paper presents a framework for learning state and action abstractions in
sequential decision-making domains. Our framework, planning abstraction from
language (PARL), utilizes language-annotated demonstrations to automatically
discover a symbolic and abstract action space and induce a latent state abstraction
based on it. PARL consists of three stages: 1) recovering object-level and action
concepts, 2) learning state abstractions, abstract action feasibility, and transition
models, and 3) applying low-level policies for abstract actions. During inference,
given the task description, PARL first makes abstract action plans using the latent
transition and feasibility functions, then refines the high-level plan using low-level
policies. PARL generalizes across scenarios involving novel object instances and
environments, unseen concept compositions, and tasks that require longer planning
horizons than settings it is trained on.

1 INTRODUCTION

State and action abstractions have been widely studied in classical planning, reinforcement learning,
and operations research as a way to make learning and decision making more efficient (Giunchiglia
& Walsh, 1992; Ghallab et al., 2004; Sutton et al., 1999; Li et al., 2006; Rogers et al., 1991). In
particular, a state abstraction maps the agents’ raw observation of the states (e.g., images or point
clouds) into abstract state descriptions (e.g., symbolic or latent representations). Action abstraction
constructs a new library of actions which can be later refined into raw actions (e.g., robot joint
commands). “good” state and action representations are beneficial for both learning and planning, as
state abstraction extracts relevant information about the actions to be executed, and action abstraction
reduces the search space for meaningful actions that an agent could try.

Many prior works have explored methods for learning or discovering such state and action abstractions,
for example, through bi-simulation (Givan et al., 2003), by learning latent transition models (Chiappa
et al., 2017; Zhang et al., 2021), by inventing symbolic predicates about states (Pasula et al., 2007;
Silver et al., 2021), or from language (Andreas & Klein, 2015; Corona et al., 2021). In this paper,
we focus on the latter, and learn abstractions from language for planning. Fig. 1a shows the overall
learning and planning paradigm of our system. Our goal is to construct a language-conditioned policy
for solving complex tasks. Given a sufficient amount of demonstration data or online experience, a
reinforcement learning agent could, in theory, learn a language-conditioned policy to solve all tasks.
However, in scenarios where there is a significant amount of variations in the number of objects,
initial object configurations, and planning steps, learning such policies is inefficient and at times
infeasible. Therefore, we explore the idea of discovering a symbolic abstraction of the action space
from language and inducing a latent state abstraction for abstract actions. This allows agents to
plan at test time in an abstract state and action space, and reduces the horizon for policy learning by
decomposing long trajectories into shorter pieces using the action abstraction.

In particular, our framework, planning abstraction from language (PARL) takes a learning and
planning approach. First, illustrated in Fig. 1a, given paired demonstration trajectories and language
descriptions of the trajectories, we recover a symbolic abstract action space, composed of object-level
concepts and action concepts. Each object-level concept describes a property of an object (e.g., its
category or color), and each action concept is a verb schema that takes objects as its argument (e.g.,
clean). These object and action concepts can be recombined in a compositional manner to form
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Figure 1: The overview of our training and testing paradigm, and different types of generalizations
supported by our framework. (a) Given paired demonstration trajectories and language descriptions,
our framework discovers an abstract action space and a latent state abstraction that supports planning
for diverse language goals. (b) The example illustrates that our model can generalize to a new kitchen
environment, generalize to a goal that requires reasoning about the geometries of the sink and grey
pan, and generalize to the combination of concepts red and pan that is unseen during training.

the entire action space (e.g., clean(blue bowl)). Next, we learn four models based on the abstract
action space: (1) a state abstraction function that maps raw observations to a latent space, (2) an
abstract action transition model in the induced latent space, (3) an abstract action feasibility model
that classifies whether the execution of an abstract action will be successful on a particular abstract
state, and (4) a policy model that maps the current raw state and the abstract action to a raw action that
the agent can directly execute in the environment. Unlike works that aim to simultaneously learn a
symbolic action and state abstraction (Konidaris et al., 2018; Silver et al., 2021), our framework learns
a latent state abstraction as it allows us to capture important geometric constraints in environments,
such as whether the sink has enough space to place a particular object.

Such state and action abstraction enables us, at test time, to use planning in the abstract action space
to solve tasks. In particular, during test time, given the high-level task description (e.g., clean the
bowl), we first translate it into a corresponding abstract action to execute (i.e., clean(bowl)), and then
search for an abstract action sequence that sets up the preconditions for the target action (e.g., by
clean up other objects in the sink and turn on the faucet), and finally, execute the target action.

PARL enables various types of generalizations, and we highlight some of them in Fig. 1b. First, due
to the adoption of an object-centric representation for both states and actions, PARL generalizes to
scenarios with a different number of objects than those seen during training, and generalizes to unseen
composition of action concepts and object concepts (e.g., generalizing from cleaning red plates and
blue bowls to cleaning red bowls). Second, the planning-based execution enables generalization to
unseen sequences of abstract actions, and even to tasks that require a longer planning horizon.

In summary, this paper makes the following contributions. First, we propose to automatically discover
action abstractions from language-annotated demonstrations, without any manual definition of their
names, parameters and preconditions. Second, our object-centric transition and feasibility model for
abstract actions enables us to recover a latent state abstraction without the annotation of symbolic
predicates, such as object relations or states. Finally, through the combination of our abstraction
learning and planning algorithm, we enable generalization to different object numbers, different
verb-noun compositions, and different planning steps.

2 RELATED WORK

Many prior works have explored learning abstract actions from imitation learning or reinforcement
learning using the guidance of language. Language instructions can be given in the form of sequences
of action terms (Corona et al., 2021; Andreas et al., 2017; Andreas & Klein, 2015; Jiang et al.,
2019; Sharma et al., 2021; Luo et al., 2023), programs (Sun et al., 2020), and linear temporal logic
(LTL) formulas (Bradley et al., 2021; Toro Icarte et al., 2018; Tellex et al., 2011). A common idea
underlying these works is that language introduces a hierarchical abstraction over the action space
that can improve the learning data efficiency and performance. However, they either focus on learning
hierarchical policies or focus on pure instruction following tasks (Sharma et al., 2021; Corona et al.,
2021). By contrast, our model leverages the action abstraction to plan (via tree search) in the abstract
action space for better generalization to more complex problems.
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Integrated model learning and planning is a promising strategy for building robots that can generalize
to novel situations and goals. Specifically, Chiappa et al. (2017); Xu et al. (2019); Zhang et al. (2021);
Schrittwieser et al. (2020); Mao et al. (2022) learn dynamics from raw pixels; Jetchev et al. (2013);
Pasula et al. (2007); Konidaris et al. (2018); Chitnis et al. (2021); Bonet & Geffner (2020); Asai &
Muise (2020); Silver et al. (2021); Zellers et al. assume access to the underlying factored states of
objects, such as object colors and other physical properties. Our model falls into the first group where
we learn a dynamics model from perception inputs (point clouds in our case) and the dynamics model
operates in a latent space. The primary difference between our work and other method in the first
group is that instead of learning a dynamics model at the lowest primitive action level, we learn a
transition model at an abstract level, by leveraging language instructions.

Another line of work has focused on learning latent transition models and planning with them (Shah
et al., 2022; Wang et al., 2022; Huang et al., 2023; Agia et al., 2023). These models focus on
learning a latent transition model for a given set of primitive actions (by contrast, we discover these
actions from language instructions), and their algorithm involves searching or sampling continuous
parameters for their actions (e.g., finding grasping and placement poses). By contrast, our goal is
to learn an abstract transition model in the latent space where the action set is purely discrete. This
allows us to use simpler tree search algorithms for planning and furthermore, enables us to solve
more geometrically challenging tasks such as object placements with learned feasibility.

A general goal of our system is to build agents that can understand language instructions and execute
actions in interactive environments to achieve goals (Kaelbling, 1993; Tellex et al., 2011; Mei et al.,
2016; Misra et al., 2017; Nair et al., 2022). See also recent surveys from Luketina et al. (2019) and
Tellex et al. (2020). Furthermore, the abstract action representation can be viewed as options in
hierarchical reinforcement learning (HRL; Sutton et al., 1999; Dietterich, 2000; Barto & Mahadevan,
2003; Mehta, 2011), and is related to domain control knowledge (de la Rosa & McIlraith, 2011),
goal-centric policy primitives (Park et al., 2020), and macro learning (Newton et al., 2007). Our
problem formulation is largely based on existing work on HRL, but we focus on discovering options
from language and learning planning-compatible abstract transition models.

3 PROBLEM FORMULATION

We study the problem of learning a language-conditioned goal-reaching policy. In this work, we
assume a fully observable environment, denoted as a transition model tuple ⟨S,A, T ⟩ where S is
the state space*, A is the action space, and T : S ×A → S is the transition function. Each task t in
the environment is associated with a natural language instruction Lt. The instruction Lt could either
be a simple goal description (e.g., “clean the bowl”) or a sequence of steps (e.g., “first pick up the
red bowl from the countertop, then put it in the sink, and finally clean it”). The core insight of our
approach lies in the assumption that each natural language description Lt consists of abstract actions.
Each abstract action a′ ∈ A′ can be factorized as (w1, w2, . . . , wK), where w1 is a verb symbol (e.g.,
“clean”) and each remaining wi is an object argument to the verb, represented by a set of object-level
symbols (e.g., “red bowl”). For example, the instruction “pick up the red bowl from the sink” can be
factorized into (pick-up, red, bowl, sink).

Our training data is composed of language-annotated demonstrations and interactions, each of which
consists of state-action pairs and the corresponding Lt. We also assume that each trajectory has been
segmented, such that the segments can be aligned to abstract actions in the instruction Lt. To allow
the system to understand the feasibility of different actions, our training dataset also contains failure
trajectories. In particular, the execution of some trajectories may lead to a failure, for example, in
scenarios where the agent can not place the object in the target position, as the target space has been
fully occupied by other objects. During test time, we evaluate our system on unseen instructions Lt

that contain a single goal action (e.g., “place the bowl into the sink”). Often the goal action is not
immediately feasible (e.g., there are other objects blocking the placement); therefore the agent need
to plan out additional actions before taking the goal action.

From the language-annotated data, our objective is to learn a policy with state and action abstractions.
The abstractions essentially correspond to the abstract state space S ′, the abstract action space A′,
and the abstract transition function T ′. Our state abstraction function ϕ : S → S ′ maps raw states to

*We assume that the raw state space is object-centric; that means, each raw state s ∈ S will be represented
by an image or a point cloud, together with the instance segmentation of all objects in the scene.
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Figure 2: The overall framework of PARL. PARL takes paired natural language instructions and
demonstration trajectories as inputs. It recovers object-level concepts such as shapes and colors, and
action concepts from the natural language. It then learns a planning-compatible model for object and
action concepts. At test time, given novel instructions, it performs a combined high-level planning
and low-level policy unrolling to output the next action to take.

Prompt

# Examples
# Clean the plate
[{‘name’: ‘clean’, ‘args’: [{‘plate’}]}]
# Clean the plate and place it to the cabinet
[{‘name’: ‘clean’, ‘args’: [{‘plate’}]},
{‘name’: ‘place’, ‘args’: [{‘plate’}, {‘cabinet’}]}]

[{‘name’: ‘pick-up’, ‘args’: [{‘red’, ‘plate’}]},
{‘name’: ‘place’, ‘args’: [

{‘red’, ‘plate’}, {‘sink’}
]}]

LLM Generation

Object concepts: red, plate, sink

Action concepts: pick-up, place

Extract Symbols

Instruction: “pick up the red plate and place it into the sink”

Figure 3: PARL prompts a pretrained large language model (LLM) to parse instructions into symbolic
formulas. Next, we extract the object-level and action concepts from the formulas.

abstract states. Similarly, function T ′ : S ′×A′ → S ′ learns an abstract transition model. To facilitate
planning and execution with these abstract actions a′ ∈ A′, we additionally learn a feasibility model
fa′ : S ′ → {0, 1}, which indicates whether an abstract action is feasible at the abstract state, and a
low-level policy model πa′ : S → A that can refine each abstract action into primitive actions in A
conditioned on the current environmental state.

4 PLANNING ABSTRACTION FROM LANGUAGE

Our proposed framework, planning abstraction from language (PARL), is illustrated in Fig. 2. PARL
operates in three main stages: symbol discovery, planning-compatible model learning, and test-time
planning and execution. We first discover a set of action and object concepts from the language
instructions in the dataset by leveraging pretrained large language models (LLMs). Next, we ground
these symbols using the demonstration data and interactions. In particular, we learn a planning-
compatible model consisting of the state abstraction, transition and feasibility for abstract actions, and
low-level policy. During inference, given state and action abstractions, we translate the instructions
into symbolic formulas represented using the discovered action and object concepts, and use a search
algorithm based on the learned transition and feasibility functions to generate plans and execute.

4.1 SYMBOL DISCOVERY

In the first stage, we consider all Lt instructions in the training dataset and employ pretrained large
language models (LLMs) to discover a set of symbols. Each action in Lt is subsequently translated
into a symbolic formula (w1, w1, . . . , wK), which contain the discovered action and object concepts.
Illustrated in Fig. 3, given the instruction Lt, we prompt LLMs to parse the instruction into a list
of abstract actions, where each action consists of an action concept (e.g., pick-up), and a list of
arguments, where each argument is represented as a set of object concepts (e.g., red, plate). We
provide detailed prompts in Appendix A.1. In contrast to representing each action term as a textual
sentence, the decomposed action and object concepts allow us to easily enumerate all possible actions
an agent can take. This compositional approach can become especially useful when an agent needs to
take additional abstract actions to achieve a language goal that is not immediately feasible.

4.2 PLANNING-COMPATIBLE MODEL LEARNING

In the second stage, we utilize the language-annotated demonstration data to ground the discovered
action and object concepts on the raw environmental states. Specifically, we train a group of four
models. First and foremost, we learn a state abstraction function ϕ : S → S ′ that maps the raw
state to the abstract state. Second, we learn an abstract transition function T ′ that models transitions
in the abstract state space S ′. Third, for each abstract action a′, we learn a feasibility function fa′
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Figure 4: Neural network architectures for our planning-compatible models, composed of (a) an
object-level PCT encoder for extracting state abstractions and (b) an abstract transition Transformer
for abstract transition and the feasibility prediction.

that determines whether an action a′ is feasible in a given abstract state. Fourth, for each action
a′, we learn a low-level policy function πa′ that maps abstract actions to specific actions in the raw
action space A. In this section, we first describe an end-to-end model that unifies the state abstraction
function, the abstract transition model, and the feasibility model. We present how the end-to-end
model support plannning with abstraction in Section 4.3. We then present the details for the low-level
policies in the Section 4.4. Below, we will describe our models for a raw state space S represented
by 3D point clouds, but similar ideas can be easily extended to other representations such as 2D
images, which we discuss in Appendix A.2. We present implementation details of our models in
Appendix A.3.

State abstraction function. The state abstraction function ϕ is an object-centric encoder, which
encodes the raw state from a given point cloud. Specifically, a state is represented by a list of
segmented object point clouds {x1, .., xN}, where N is the number of objects in the environment.
Each object point cloud contains a set of spatial points and their RGB colors, i.e., xi ∈ R6×M , where
M is the number of points in each point cloud. We encode each point cloud separately using a Point
Cloud Transformer (PCT; Guo et al., 2021) to obtain latent features for the objects {h1, · · · , hN}.

Abstract transition model. The abstract transition function T ′ takes the abstract state s′t =
{h1, · · · , hN}(t) and the abstract action a′t as input, and predicts the next abstract state s′t+1 =

{h1, · · · , hN}(t+1). As illustrated in Fig. 4b, this function is implemented by an object-centric
Transformer. The input to this function contains two parts: the abstract state representation for time
step t as a sequence of latent embeddings of the objects, and the encoding of the abstract action
as a sequence of token embeddings. The function predicts the abstract state representation at time
step t + 1, which is the sequence of output tokens from the Transformer that correspond to the
objects. Recall that an abstract action is composed of a verb name v (e.g., place), and a sequence of
object-level concepts for each argument (e.g., red plate and countertop). We encode the factorized
action (w1, w2, · · · , wK) as a sequence of discrete tokens using learnable token embeddings. We use
positional embeddings to differentiate each element of the input sequence to the Transformer encoder.

Feasibility function. One important purpose of the abstract transition model is to be able to predict
the feasibility of a future action. For example, we want the agent to understand that it needs to pick up
an object before moving the object; and it needs to ensure there is enough space in the target region
such that it can place the object in the target region. We predict feasibility by integrating a binary
feasibility prediction module fa′ with the aforementioned object-centric Transformer. Illustrated in
Fig. 4b, we append a feasibility query token to the combined sequence of object embeddings for s′t
and action token embeddings for a′t. The output of the Transformer encoder at this query position
will be used to predict a binary label for the feasibility of executing a′t at s′t. Specifically, we use
another small Multi-Layer Perceptron (MLP) module on top of the Transformer for prediction.

Training. Our training data contains paired language instructions and robot interaction trajectories.
For some of the demonstrations, the execution of the last action may cause a failure, therefore
indicating an infeasible action. We use the successful and failed trajectories as positive and negative
examples, respectively, to jointly train our state abstraction function, the abstract transition model,
and the feasibility model.
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In particular, each data point is in the form of the sequence {s0, a′0, · · · , a′ℓ−1, sℓ}, where a′’s are
the abstract actions parsed by the LLM, s0 is the initial state, and subsequent si+1’s are the raw
environment state after the execution of each abstract action a′i. For each data sequence, we first
randomly subsample a suffix to obtain {sk, a′k, · · · , a′ℓ−1, sℓ}. Next, we use ϕ to encode the new
initial state sk as s′k = ϕ(sk). Then we recurrently apply the Transformer-based abstract transition
model s′i+1 = T ′(s′i, a

′
i) and feasibility prediction model feasi = f(s′i, a

′
i), for all i = k, · · · , ℓ− 1.

For this data point, the loss value is defined as

L =

ℓ∑
i=k+1

∥s′i − ϕ(si)∥2 +
ℓ−1∑
i=k

BCE(feasi, feasi),

where BCE is the binary cross-entropy loss, and feasi is the groundtruth feasibility label. feasi is
true for all i < ℓ, and is true for i = ℓ if the trajectory execution is successful (i.e., the last action is
successful) or false otherwise. During training, we use stochastic gradient decent to optimize ϕ, T ′,
and fa′ , by randomly sampling a batch of data points.

4.3 PLANNING WITH LEARNED ABSTRACTIONS

Based on the learned abstract transition model and feasibility function, we use a simple tree search
algorithm to find abstract action sequences that can achieve the language goal. This is required when
the given language goal only contains the last abstract action to achieve (e.g., put the bowl into the
sink.) Specifically, the search algorithm acts in a breadth-first search (BFS) manner; it takes the
current raw state s0 and finds a sequence of high-level actions (a′1, · · · , a′K) such that a′K is the
underlying abstract action in the language goal.

Given s0, we first map it to a latent abstract state s′0 using the state abstraction model. Then we
enumerate all possible a′0 ∈ A′ (the first action) and compute their feasibility. Subsequently, the
abstract transition model is applied to predict the subsequent abstract state s′1 for all generated a′0’s.
By repeating this strategy recursively we can generate the final search tree. For each generated action
sequence a′0, · · · , a′K and the corresponding feasibility scores feasi, we compute the feasibility of the
entire sequence as mini feasi. The algorithm expands the search tree for a fixed horizon, and returns
the sequence that ends with the specified last abstract action with highest feasibility score.

To accelerate search, the algorithm prunes the search space at every iteration by considering only a
subset of abstract action sequences based on the feasibility scores of the sequence. This essentially
resembles a beam-search strategy. As the computation for different states and actions can be
parallelized, this algorithm can be efficiently implemented on a GPU. During execution, we use
closed-loop execution, where we replan after executing each action using the low-level controller.

4.4 LOW-LEVEL POLICY

Given the high-level plan computed by the search algorithm, our next step is to apply low-level
policies πa′ : S → A that conditions on the current raw state s to refine an abstract action a′ to a
primitive action a that the agent can directly execute in the environment. Our framework is agnostic
to the specific implementation of the low-level policy. For experiments in the 2D gridworld with
simplified navigation actions and object interactions, we adopt the FiLM method to fuse state and
language information into a single embedding (Perez et al., 2018), then apply an actor-critic method to
learn the policy. For experiments in 3D environments that require more precise end-effector controls
for object manipulation, instead of outputting robot control commands, we ask the low-level policy to
output either an object to pick, or an object to drop the current holding object on (essentially giving the
robot a pick and place primitive). Both models are trained with data sampled from language-paired
demonstrations and can predict actions directly from raw observations.

5 EXPERIMENTS

We evaluate our models in two different domains: BabyAI (Chevalier-Boisvert et al., 2019), a 2D grid
world environment, and Kitchen-Worlds (Yang et al., 2023), a 3D robotic manipulation benchmark.

5.1 BABYAI

Environment. The BabyAI platform features a 2D grid world, in which an agent is tasked to navigate
and interact with objects in the environment given language instructions. Each simulated environment
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Longer Steps Novel Concept Combinations

Key-Door All-Objects Two-Corridors All-Objects

End-to-End BC 0.00 0.00 0.00 0.00
End-to-End A2C 0.00 0.00 0.00 0.00
Ours (high + low) 0.45 0.39 0.52 0.27

High-Level BC 0.00 0.00 0.00 0.00
High-Level A2C 0.27 0.00 0.44 0.00
Ours (high only) 0.87 0.89 0.94 0.91

Table 1: Success rate of different models on BabyAI. We compare with behavior cloning and A2C
baselines on two settings: (End-to-End) directly predicting low-level actions, and (High-Level)
predicting high-level action tokens with oracle low-level policies.

contains four types of objects (key, door, ball, and box) with six possible colors. We focus on tasks
involving two types of subgoals: 1) Pickup, which requires the agent to navigate to a target object
specified by its color and type and then pick up the object; and 2) Open, which requires the agent
to navigate to a colored door and open it with a key of matching color. The demonstration data are
generated with the bot agent native to the platform. All models tested on this environment use a
factorized observation space, which encodes the objects and their properties in each grid cell.

Goal: pick green keyGoal: pick green boxGoal: pick blue key

(a) Key-Door (b) All-Objects (c) Two-Corridors

Figure 5: We evaluate our models on diverse task set-
tings created in the BabyAI environments.

Setup. We evaluate models on three task
settings: Key-Door, All-Objects, and Two-
Corridors. In Key-Door, an agent needs
to retrieve a key in a locked room. We
design the environments such that the agent
must first find a sequence of other keys to
unlock intermediary doors before gaining
access to the target key. Shown in Fig. 5a,
for instance, to get a blue key behind a
yellow-locked door, the agent first acquires
a red key to unlock a red door, revealing
a yellow key. The All-Objects setting is
similar to Key-Door, except that the goal can be any object types (e.g., pick up the blue box, Fig. 5b).
Compared to Key-Door, All-Objects requires the models to accurately ground more visual concepts
and efficiently plan with a larger action space. In the Two-Corridors setting, the agent needs to
reach a target key that is at the end of a corridor (see Fig. 5c). To traverse each corridor, the agent
needs to find keys to unlock intermediary doors. Each environment has two disconnected corridors,
therefore requiring the agent to plan multiple steps into the future to find the correct path to the goal.
We provide details for the settings in Appendix C.1.

Furthermore, we evaluate two types of generalizations on the aforementioned task settings. To test
generalization to longer steps, we train the models on task instances that require at most 3 abstract
actions to complete and test on task instances that can be solved with a minimum of 5 abstract actions.
To test generalization to novel concept combinations, we withhold data involving red key during
training and evaluate on goals involving this unseen concept combination. For all experiment, we
evaluate on 100 task instances and report the average success rate.

Baseline. We compare our method with two learning-based baselines based on behavior cloning (BC)
and advantage actor-critic (A2C). Both baselines use similar neural network backbones as our model,
which processes the factorized observation with Feature-wise Linear Modulation (FiLM; Perez et al.,
2018). The behavior cloning model is trained to predict the action to take from demonstrations with a
cross-entropy loss, and the model is trained on the same demonstration dataset as our model. The A2C
model has the exploration stage, where the agent can act itself in the environment and receive rewards.
For a fair comparison with our bi-level planning and acting model, we studied two groups of models:
End-to-End and High-Level. The End-to-End BC/A2C model is trained to directly predict low-level
actions in the original action space (e.g., turn left, move forward, pick up an object), but compared to
the baseline in BabyAI, we train it to solve tasks that require a significantly larger number of steps
(e.g., the hardest benchmark in Chevalier-Boisvert et al. (2019) usually only involves unlocking one
intermediate door before reaching the target). The High-Level BC/A2C model is trained to predict
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Novel Environments Novel Concept Combinations

All-Objects Sink All-Objects

Goal-Conditioned BC 0.82 0.39 0.14
Ours 0.86 0.61 0.57

Table 2: Success rate of different models on Kitchen-Worlds. We compare Goal-Conditioned BC
with our model on generalization to novel concept combinations and environments.

abstract actions and uses a manually scripted oracle controller to refine abstract actions to low-level
commands. We provide implementation details for the baselines in Appendix B.1.

Result. We present the results on generalization experiments in Table 1. The End-to-End A2C failed
to solve the tasks due to the large low-level action space and the long-horizon nature of our tasks.
Since here we are only testing models on generalization to more complex tasks (they can all achieve
nearly perfect performance on tasks seen during training), we found that self-explorations in the A2C
model help the agent generalize to unseen scenarios. Our model (high+low) can efficiently explore
the environment with learned abstraction. More importantly, we observe that our model (high+low)
can generalize the learned dependencies between actions (e.g., to open a locked door, must first pick
the corresponding key) to longer planning horizons, which is crucial for completing challenging
Two-Corridors tasks. We also evaluate our model using the oracle low-level controller and observed
a significant increase in performance after decoupling planning and low-level control. The same
trend was not observed for the High-Level RL baseline, affirming the importance of learning a
planning-compatible model instead of a policy. We also observe a very minimal performance drop
when generalizing our models on new concept combinations. Since our model uses the network based
on FiLM, it can decompose a language instruction to individual action and object concepts, therefore
supporting compositional generalization to new combinations. We additionally study two variants of
our method (high only) on generalization to longer steps for All-Objects. Without replanning, the
success rate of the model decreased from 0.89 to 0.65. After replacing the FiLM network with a MLP
to fuse information from language and observation, the success rate dropped to zero, suggesting that
disentangling concepts are crucial for robust generalization. In Appendix D.1, we show examples of
the generated plans for all three task settings.

5.2 KITCHEN-WORLDS

Environment. The Kitchen-Worlds (Yang et al., 2023) environments feature diverse 3D scenes
and objects in a 3D kitchen environment. It requires the models to ground visual concepts on 3D
observations and predict action feasibilities that are affected by geometric features of the objects.
Each environment consists of objects from six categories (medicine bottle, water bottle, food, bowl,
mug, and pan) and six colors (red, green, blue, yellow, grey, and brown). A robotic gripper is used to
move objects around five types of storage units and surfaces (sink, left counter, right counter, top
shelf, and cabinet). The simulation is supported by the PyBullet physics simulator (Coumans &
Bai, 2017), which we also use to verify the feasibility of the grasps, object placements, and motion
trajectories. We place six simulated cameras in the environment to capture the whole environment.
RGB-D images and instance segmentation masks are rendered and converted to point clouds.

Figure 6: The kitchen environments
with 3D furniture and objects.

Setup. We test the models on two task settings: All-Objects
and Sink. For both settings, we instantiate the environments
with random scene layouts, furniture and object assets, and
initial object placements. In All-Objects, the task involves
placing the target object at a desired location. The main
challenge of this task is to ground visual concepts involving
diverse objects and locations, without explicit supervision
(i.e., there is no classification label for object colors and
categories). The optimal solutions involve one pick and
one place action. The second Sink setting is designed to
evaluate the models’ abilities to reason about object shapes
and environmental constraints. The solution could involve
one to two pick-and-place actions. For example, shown in
Fig. 7, given a sink that is occupied by a large object, the
agent needs to first remove the object from the sink, then
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(pick-up, blue, pan, sink) (place, blue, pan, left counter) (place, blue, mug, right counter) (place, blue, mug, sink)

Start Goal

Action Sequence: 

Figure 7: Given the language goal of placing blue mug in the sink, our model can reason about the
geometry of the environment and perform planning with learned abstract latent space to predict the
sequence of abstract actions. Each abstract action is expressed as a verb term and object arguments.
For example, (pick-up, blue, pan, sink) corresponds to picking up the blue pan from the sink.

place the target object in the sink. Given enough space, the object can be directly placed in the sink.
We provide details for the settings in Appendix C.2.

We conduct generalization experiments on the two task settings discussed above. We first evaluate
whether the models can generalize to new environments with novel object instances. This is particu-
larly important because the visual concepts are directly grounded on point clouds. We then evaluate
whether the learned models can generalize to new task instances involving withheld object concepts,
specifically red bowl. We evaluate 100 task instances and report the average success rate.

Baseline. We compare our method with Goal-Conditioned BC, which is trained to predict the
sequence of abstract actions from a starting low-level state conditioned on a language goal. The
model is implemented as a Transformer Encoder-Decoder, where the Encoder encodes object point
clouds and the goal, and the decoder autoregressively decodes a sequence of abstract actions including
the verb and object arguments; details are presented in Appendix B.2. We augment the training data
by sampling start and end states, analogous to hindsight goal relabeling (Andrychowicz et al., 2017).
During inference, the model predicts the next best action and replan after each step.

Result. Both Goal-Conditioned BC and our model perform well on generalizing to new object
instances for All-Objects. Because the Goal-Conditioned BC model is trained on relabeled goals, it
can fail to find the optimal plan for a given goal, therefore leading to long execution sequences or
even time out. By contrast, our model, instead of imitating the demonstrations, learns the underlying
abstract transition models. We observe a more significant performance difference between our model
and the baseline on Sink. Our model can implicitly reason about the size and shape of the occupying
objects in the sink to predict whether directly moving other objects into the sink is feasible. This type
of reasoning is performed implicitly in the latent space instead of requiring manually defined logical
predicates. This result demonstrates that our model is able to recover a state abstraction (e.g., whether
an object can be placed in the sink) from paired language and demonstration data. In Appendix D.2,
we show that our model is able to accurately predict feasibilities for abstract actions, even 5 steps into
the future. Figure 7 illustrates one example where the feasible plan is found. Furthermore, we see
strong performance from our models in generalization to novel concept combinations. These results
demonstrate the advantage of our factorized state representation, where concepts of colors and object
categories can be combined flexibly to support compositional generalization. We perform an ablation
study by replacing our object-centric transformer with a FiLM network that operates on a scene-level
abstract latent state and observed 6% decrease in success on the Sink setting. This result highlights
the benefits of explicit object-centric representations for geometrically challenging tasks.

6 CONCLUSION

In this paper, we introduce planning abstraction from language (PARL), a framework that leverages
language-annotated demonstrations to automatically discover state and action abstraction. We learn
transition and feasibility models for abstract actions that can recover a latent state abstraction without
the annotation of symbolic predicates and generalize to unseen action-object compositions, and
longer planning horizons. Currently, our method relies on segmented trajectories where the actions in
language instructions are aligned with the low-level commands. Future work can leverage automatic
segmentation of trajectories (Sharma et al., 2021; Luo et al., 2023). Another future direction is to
integrate pretrained foundation models (Radford et al., 2021; Zhang et al., 2022; Wang et al., 2023)
for object recognition with the factorized representation for generalization to unseen object concepts.
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Supplementary Material for
Learning Planning Abstractions from Language

The appendix is organized as the following. In Appendix A, we specify the prompts we use for
PARL as well as PARL’s model architecture in 2D and 3D. In Appendix B we discuss the baseline
implementations, and in Appendix C we describe the environments and data collection strategy for
BabyAI and Kitchen-Worlds. In Appendix D, we provide additional experiments. We discuss the
limitations of our method and future directions in Appendix E.

A PARL

A.1 PROMPTS FOR LLMS

We provide examples of the prompts we use for the GPT-4 LLM below. Recall that each natural
language Lt is parsed to one or multiple abstract actions. Each abstract action is represented as a
sequence of symbols (w1, w2, . . . , wK), where w1 is a verb symbol (e.g., “clean”) and each remaining
wi is an object argument to the verb, represented by a set of object-level symbols (e.g., “red bowl”).

Map each natural language instruction to symbolic
actions. Each symbolic action should contain the name and its arguments.

Example: Clean the plate.
Output: [{‘name’: ‘clean’, ‘args’: [{‘plate’}]}]

Example: Clean the blue plate and place it into the sink
Output: [{‘name’: ‘clean’, ‘args’: [{‘blue’, ‘plate’}]},

{‘name’: ‘place’, ‘args’: [{‘blue’, ‘plate’}, {‘cabinet’}]}]

Example: Pick up the red plate and place it into the sink.
Output: [{‘name’: ‘pick_up’, ‘args’: [{‘red’, ‘plate’}]},

{‘name’: ‘place’, ‘args’: [{‘red’, ‘plate’}, {‘sink’}]}]

Example: Pick up the blue mug from the sink, place it in the cabinet.
Then pick up the brown pan from the counter, and place it into the sink.
Output: [{‘name’: ‘pick_up’, ‘args’: [{‘blue’, ‘mug’}, {‘sink’}]},

{‘name’: ‘place’, ‘args’: [{‘blue’, ‘mug’}, {‘cabinet’}]},
{‘name’: ‘pick_up’, ‘args’: [{‘brown’, ‘pan’}, {‘counter’}]},
{‘name’: ‘place’, ‘args’: [{‘brown’, ‘pan’}, {‘sink’}]}]

Listing 1: Example GPT-4 prompt to map natural language instructions to symbolic formulas that our
model consumes. Prompt context is in gray, input language descriptions are green, and generated
word tokens are purple.

A.2 MODEL ARCHITECTURE FOR BABYAI

We describe the model architecture for the BabyAI grid world below. The model comprises the
state abstraction function, the abstract transition model, and the feasibility model. The model can be
trained end-to-end with the objectives described in Section 4.2.

State abstraction function. The state abstraction function ϕ encodes the raw state st to a latent
feature map s′t ∈ RH×W×C , where H and W are the height and width of the grid world, and C is
the dimension of the latent feature. In particular, the raw environment state st is represented by a
13 × 13 grid, where each cell stores three integer values representing the indices of the contained
object, its color, and its state (e.g., locked). A convolutional neural network (CNN) is used to process
the raw environment state and map it to the latent feature map.

Abstract transition model. The abstract transition function T ′ takes the abstract state s′t ∈
RH×W×C and the abstract action a′t as input, and predicts the next abstract state s′t+1 ∈ RH×W×C .
For a given abstract action, we encode its factorized representation (w1, w2, · · · , wK) as a sequence
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of discrete tokens using learnable token embeddings. To predict the next latent state s′t+1, we use
a total of K FiLM layers (Perez et al., 2018) to modulate the latent feature map representing the
current abstract state s′t. Each FiLM layer is conditioned on the latent token of the symbol wi in the
factorized action.

Feasibility function. The feasibility function predicts whether an abstract action a′t can be performed
in an abstract state s′t. Similar to the abstract transition model, K FiLM layers are used to fuse the
latent tokens of the abstract action with the latent state. The resulting feature map is then flattened
and passed to a Multi-Layer Perceptron (MLP) module with two linear layers to predict the binary
feasibility for the abstract action.

A.3 MODEL ARCHITECTURE FOR KITCHEN-WORLDS

Below we provide details for the end-to-end model based on an object-centric Transformer that
unifies state abstraction, abstract transition, and feasibility prediction.

State abstraction. For a given raw environment state st, The state abstraction function encodes
the corresponding sequence of N segmented object point clouds {x1, · · · , xN}(t), where each point
cloud contains M number of xyz points and their RGB colors, i.e., xi ∈ R6×M . We use a learned
encoder hx to encode each object point cloud separately as hx(xi). This encoder is built on the Point
Cloud Transformer (PCT; Guo et al., 2021). We treat the encoded object latents as the latent abstract
state, i.e., {hx(x1), · · · , hx(xN )}(t) = {h1, · · · , hN}(t)

Tokenization. The abstract transition model and feasibility function are both conditioned on the given
abstract action a′t. We convert the factorized representation of an abstract action (w1, w2, · · · , wK)(t)

to a sequence of latent tokens using learnable word embeddings. Specifically, we convert wi to latent
token hw(wi), for i = 1, · · · ,K.

Auxiliary embeddings. We use a learned embedding for the query token hq. We use a learned
position embedding hpos(l) to indicate the position index l of the object point clouds, action tokens,
and query token in input sequences to the subsequent transformer. We use learned type embeddings
htype(τ) to differentiate the object embeddings (τ = 0), action embeddings (τ = 1), and query
embedding (τ = 2).

Object-centric transformer. The object-centric transformer serves two purposes. First, given a latent
abstract state s′t = {h1, · · · , hN}(t) and the abstract action a′t as input, and the transformer predicts
whether the abstract action is feasible at this time step. Second, given the latent abstract state and a
feasible abstract action, the transformer predicts the next abstract state s′t+1 = {h1, · · · , hN}(t+1).

To predict feasibility, the input to the transformer consists of the object part e, the action part c, and
query part q. Specifically, these are

ei = [hi;hpos(i);htype(0)],

ci = [hw(wi);hpos(i−N);htype(1)],

q = [hq;hpos(i−N −K);htype(2)],

where [; ] is the concatenation at the feature dimension. The transformer takes as input the concate-
nated sequence {e1, · · · , eN , c1, · · · , cK , q}(t). The output token of the transformer at the query
position is fed into a small Multi-Layer Perceptron (MLP) to predict the binary feasiblity label for
the action a′t.

To predict the next abstract state, the transformer ignores the query part of the input using the attention
mask, and only takes in {e1, · · · , eN , c1, · · · , ck}(t). The output tokens of the transformer at the
position of the objects are taken to be the latent abstract state for the next time step {h1, · · · , hN}(t+1).

Batching. To batch plan sequences with different lengths and with different number of objects, we
use zero embeddings at the padding positions and attention masks for the transformer to avoid the
effect of these padded inputs. We do not compute loss for padded actions in plan sequences.

Parameters. We provide network and training parameters in Table 3.
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Parameter Value

Number of points for object point cloud M 512
Max plan lengths 6
Max number of objects Nmax 11
Length of factorized action K 4
PCT point cloud encoder hx out dim 352
Word embedding vocab size 23
Word embedding hw learned embedding
Word embedding hw dim 352
Position embedding hpos learned embedding
Position embedding hpos dim 16
Type embedding htype learned embedding
Type embedding htype dim 16
Transformer number of layers 12
Transformer number of heads 12
Transformer hidden dim 384
Transformer dropout 0.1
Transformer activation ReLU
Loss Focal (γ = 2)
Epochs 2000
Optimizer Adam
Learning rate 1e-4
Gradient clip value 1.0
Batch size 32
Learing rate warmup Linear (Tend = 20)
Learning rate decay Cosine annealing (Tmax = 2000)

Table 3: Model Parameters

B BASELINES

B.1 RL MODELS FOR BABYAI

We compare our method with two RL baselines based on Advantage Actor-Critic (A2C; Mnih et al.,
2016). The End-to-End RL baseline takes in a partial and egocentric view of the environment
represented in a 7 × 7× feature map and directly predicts one of the seven low-level actions (i.e.,
turn left, turn right, move forward, pick up an object, drop an object, toggle, terminate). The model
uses a convolutional neural network to process the raw environment state and use FiLM layers (Perez
et al., 2018) to condition the model on the input language instructions. The High-Level RL baseline
predicts high-level abstract actions instead of low-level actions. The predicted high-level abstract
actions are executed using an oracle controller provided by the BabyAI simulator. This model
observes the raw environment state as a 13 × 13 × 3 feature map and predicts an integer index
representing the selected abstract action. For both baselines, a non-zero reward is credited to the
agent only when the agent reaches the language goal. The reward is adjusted based on the number of
low-level steps the agent takes to encourage efficient goal-reaching behavior.

B.2 GOAL-CONDITIONED BEHAVIOR CLONING FOR KITCHEN-WORLDS

This baseline takes in the current raw environment state st = {x1, · · · , xN}(t) and the goal abstract
action a′goal = (w1, w2, · · · , wK) as input, and predicts the next abstract action to execute a′t =

(w1, w2, · · · , wK)(t). The model design of this baseline is related to transformer-based models (Chen
et al., 2021; Liu et al., 2022; Mees et al., 2022) but different in the specific implementation we
choose for our domain. This baseline uses the same object point cloud encoding, action tokenization,
position embeddings, and type embeddings as our model, which are discussed in Appendix A.3.
Different from the Transformer encoder that is used by our model, this baseline uses the Transformer
encoder-decoder architecture. The encoder encodes the concatenated sequence of the object latents
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for st and action latents for a′goal, and the decoder autoregressively decodes each element wi of the
abstract action a′t.

C ENVIRONMENTS

C.1 BABYAI

Below we present details for the data collection procedures and evaluation setups of the task settings
Key-Door, All-Objects and Two-Corridors below. The involved concepts are listed in Table 4.

Type Value

Verb Pick-up, Open
Object Key, Door, Ball, Box
Color Red, Green, Blue, Yellow, Grey, Purple

Table 4: BabyAI Concepts

Key-Door. To collect training data for this task setting, we vary the environments by randomizing
the placements of the doors for the 9 rooms in the grid world. During initialization, we recursively
lock each room and place the key of the locked door in another room. As such, to solve the task, the
agent must first find a sequence of other keys to unlock intermediary doors before gaining access
to the target key. For each scene, we put in 3 keys for 3 locked doors and 3 distractor objects. For
each scene, we collect a demonstration trajectory by first searching for the sequence of high-level
actions to reach the goal using a task planner and then mapping the high-level actions to low-level
actions, which can be executed by an oracle controller. In total, we collect 100,000 demonstration
trajectories. For evaluation, the same randomized procedure is used to initialize the testing scenes. A
trial is considered successful only when the agent reaches the language goal within a limited budget
of 200 low-level steps.

All-Objects. The environments are randomized using the same procedure described above. Different
from Key-Door, this task setting requires the agent to locate a target object that can be any of the
following object types: key, ball, and box. Each scene contains 3 keys for 3 locked doors, 3 distractor
objects, and 1 target object. In total, we collect 100,000 demonstrations using the combination of
the high-level task planner and the low-level oracle controller. For evaluation, the same randomized
procedure is used to initialize the testing scenes. A trial is considered successful only when the agent
reaches the language goal within a limited budget of 200 low-level steps.

Two-Corridors. To collect training data for this task setting, we vary the environments by randomiz-
ing the placements of the doors for the 9 rooms in the grid world. We initialize each environment by
constructing corridors such that the agent can traverse each corridor by unlocking intermediary doors
and that the two corridors are disconnected from each other. Each corridor consists of 3 locked doors
with 3 matching keys. Each scene contains a total of 6 key objects and 3 distractor objects. We collect
100,000 demonstrations using the combination of the high-level task planner and the low-level oracle
controller. For evaluation, the same randomized procedure is used to initialize the testing scenes. A
trial is considered successful only when the agent reaches the language goal within a limited budget
of 200 low-level steps.

C.2 KITCHEN-WORLDS

Below we present details for the data collection procedures and evaluation setups of the task settings
All-Objects and Sink below. For both settings, the involved concepts are listed in Table 5.

All-Objects. To collect training data for this task setting, we randomly initialize the environments
with different 3D models and placements of the furniture (e.g., cabinet, counter, and sink). Examples
of the randomized environments are shown in Figure 6. For each scene, we randomly place up to 4
objects in the scene with randomized initial positions. For each scene, we collect three trajectories
each containing 6 abstract actions by randomly choosing a feasible action to execute at each step
and simulating with the Pybullet simulator. To collect failure cases, at each step, we also randomly
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Type Value

Verb Pick, Place
Object Bowl, Mug, Pan, Medicine Bottle, Water Bottle, Food
Location Left Counter, Right Counter, Top Shelf, Sink, Cabinet
Color Red, Green, Blue, Yellow, Grey, Brown

Table 5: Kitchen-Worlds Concepts

execute an action and record whether the action is successful or failed. This procedure gives us failed
trajectories with different lengths. In total, we collected interaction trajectories in 3920 scenes. For
evaluation, the same randomized procedure is used to initialize the testing scenes. If the model fails
to complete the goal abstract action in 5 steps, we consider the trial to be unsuccessful. Note that for
this task setting, the optimal solution involves two abstract actions — a pick and a place action.

Sink. To collect training data for this task setting, we randomly initialize the environments as
described above. For each scene, we randomly place up to 4 objects in the scene and choose a
random subset of the the objects to place in the sink. For each scene, we collect three trajectories each
containing 6 abstract actions. At each time step, we choose a sink-related action with 50% chance
(e.g., pick an object from the sink or place an object into the sink). In total, we collected interaction
trajectories in 3360 scenes. For evaluation, if the model fails to complete the goal abstract action in 5
steps, we consider the trial to be unsuccessful. For this task setting, the optimal solution can involve
up to four abstractions.

D ADDITIONAL RESULTS

D.1 BABYAI QUALITATIVE EXAMPLES

We provide generated plans in Figure 8. Our model is able to accurately generate multi-step plans for
diverse environments and language goals.

1. pick up red key
2. open red door
3. pick yellow key
4. open yellow door
5. pick blue key

1. pick up green key
2. open green door 
3. pick up blue key 
4. open blue door
5. pick up yellow key

1. pick up purple key
2. open purple door
3. pick up yellow key 
4. open yellow door 
5. pick up yellow box

1. pick up yellow key 
2. open yellow door
3. pick up purple key 
4. open purple door
5. pick up red ball

1. pick up red key 
2. open red door 
3. pick up grey key
4. open grey door 
5. pick up green key

1. pick up yellow key
2. open yellow door
3. pick up purple key
4. open purple door
5. pick up grey key

(a) Key-Door (b) All-Objects (c) Two-Corridors

Figure 8: Plan predictions for different task settings. Each figure visualizes the initial state of the
environment and the location of the agent (represented by the red arrow). On the right of each figure,
the sequence of planned abstract actions is listed. The last abstract action in each list is the goal
abstract action in the given language instruction.

D.2 FEASIBILITY PREDICTION

We present a breakdown of feasibility prediction performance below. In general, we observe that
our model is able to accurately predict feasibilities for abstract actions, even 5 steps into the future.
The model performs well for both the task setting that requires grounding diverse visual concepts
(i.e., All-Objects) and the one that requires geometric reasoning (i.e., Sink). We observe a decrease
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in performance when the model generalizes to a new concept combination that is never seen during
training. However, even in this challenging case, the average F1 score is still above 90% on the
testing data.

Task Setting Generalization Train Test

Avg. Avg. k k + 1 k + 2 k + 3 k + 4 k + 5

All-Objects New Env. 99.70 98.17 99.00 98.51 97.79 97.32 96.45 98.89
Sink New Env. 99.84 98.01 98.13 98.55 98.10 97.38 97.63 97.01
All-Objects New Concept Comb. 91.97 90.08 88.74 90.36 87.67 90.24 88.68 99.01

Table 6: Feasibility prediction F1 scores for Kitchen-Worlds environments. For each setting, the
scores on the training data and testing data are presented. For the testing data, we further present
the feasibility prediction performance for abstract actions at different future time step ai given only
current environment state sk, for i = k, · · · , k + 5.

E LIMITATIONS

For the 3D environment, we assume the instance segmentation is provided so that we can extract
object point clouds. Future work can explore the use of unsupervised object discovery (Sajjadi et al.,
2022; Wang et al., 2021).

We assume that the input language instructions can be parsed into symbolic formulas following a
fixed form. We further assume that the input language instructions are complete. Future work should
relax these assumptions and operate on more diverse forms of language instructions.

In this work, we learn state abstraction and action abstract from language-annotated demonstrations.
In order to scale to a large set of action and object concepts, our planning-compatiable models can be
integrated with pretrained vision-language representations (Ma et al., 2023; Karamcheti et al., 2023)
to bootstrap the learning of visual groundings and geometric reasoning.
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