
The Implicit Bias of Structured State Space
Models Can Be Poisoned With Clean Labels

Yonatan Slutzky∗ Yotam Alexander∗
Tel Aviv University Tel Aviv University

slutzky1@mail.tau.ac.il yotam.alexander@gmail.com

Noam Razin Nadav Cohen
PLI, Princeton University Tel Aviv University

noamrazin@princeton.edu cohennadav@tauex.tau.ac.il

Abstract

Neural networks are powered by an implicit bias: a tendency of gradient descent to
fit training data in a way that generalizes to unseen data. A recent class of neural
network models gaining increasing popularity is structured state space models
(SSMs). Prior work argued that the implicit bias of SSMs leads to generalization in
a setting where data is generated by a low dimensional teacher. In this paper, we
revisit the latter setting, and formally establish a phenomenon entirely undetected
by prior work on the implicit bias of SSMs. Namely, we prove that while implicit
bias leads to generalization under many choices of training data, there exist special
examples whose inclusion in training completely distorts the implicit bias, to a
point where generalization fails. This failure occurs despite the special training
examples being labeled by the teacher, i.e., having clean labels! We empirically
demonstrate the phenomenon, with SSMs trained independently and as part of
non-linear neural networks. In the area of adversarial machine learning, disrupting
generalization with cleanly labeled training examples is known as clean-label
poisoning. Given the proliferation of SSMs, we believe that delineating their
susceptibility to clean-label poisoning, and developing methods for overcoming
this susceptibility, are critical research directions to pursue.

1 Introduction

Overparameterized neural networks can fit their training data in multiple ways, some of which
generalize to unseen data, while others do not. Remarkably, when the training data is fit via gradient
descent (or a variant thereof), generalization tends to occur. This phenomenon—one of the greatest
mysteries in modern machine learning [91, 8]—is often viewed as stemming from an implicit bias: a
tendency of gradient descent, when applied to neural network models, to fit training data in a way
that complies with common data-generating distributions. The latter view was formalized for several
neural network models and data-generating distributions [55, 77, 27, 64].

A recent class of neural network models gaining significant popularity is structured state space models
(SSMs). SSMs are often regarded as a computationally efficient alternative to transformers [85], and
underlie prominent neural networks such as S4 [24], Mamba [22], LRU [58], Mega [48], S5 [75]
and more [62, 14]. The implicit bias of SSMs, i.e., of gradient descent over SSMs, was formally
studied in prior works, e.g., Emami et al. [16], Cohen-Karlik et al. [11, 12]. Notable among these
is Cohen-Karlik et al. [12], which considered a setting where data is generated by a low dimensional
teacher SSM, and gradient flow (gradient descent with infinitesimally small step size) over a high

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

dimensional student SSM fits training data comprising infinitely many sequences of a certain length.1
In this setting, the student SSM can fit the training data in multiple ways, some of which generalize
to sequences longer than those seen in training, while others do not. It was shown in Cohen-Karlik
et al. [12] that under mild conditions, an implicit bias leads to generalization.

In this paper, we revisit the setting of Cohen-Karlik et al. [12], with one key exception: rather
than training data comprising infinitely many sequences, we consider the realistic case where the
number of sequences is finite. Surprisingly, our theory and experiments reveal a phenomenon entirely
undetected by prior works on the implicit bias of SSMs. Namely, we find that while implicit bias
leads the student SSM to generalize under many choices of training sequences, there exist special
sequences which if included in training completely distort the implicit bias, resulting in the student
SSM failing to generalize. This failure to generalize takes place despite the fact that the special
sequences are labeled by the teacher SSM, i.e., they have clean labels! In the area of adversarial
machine learning, the phenomenon of generalization being disrupted by training instances with clean
labels is known as clean-label poisoning, and has received significant attention, both empirically
[71, 33] and theoretically [79, 6]. To our knowledge, the current paper is the first to formally prove
susceptibility of SSMs to clean-label poisoning.

Our theoretical analysis comprises two contributions. First, is a dynamical characterization of gradient
flow over an SSM, trained individually or as part of a non-linear neural network. The dynamical
characterization reveals that greedy low rank learning [43, 78, 65, 66]—a sufficient condition for
generalization with a low dimensional teacher SSM—is implicitly induced under many, but not
all, choices of training sequences. Our second theoretical contribution builds on our dynamical
characterization for a fine-grained analysis of gradient flow over an SSM, employing an advanced tool
from dynamical systems theory: a non-resonance linearization theorem [70]. The analysis proves that
there exist situations where: (i) training a student SSM on sequences labeled by a low dimensional
teacher SSM exhibits an implicit bias that leads to generalization; and (ii) adding to the training set
special sequences, also labeled by the teacher SSM (i.e., that also have clean labels), entirely distorts
the implicit bias, to an extent where generalization fails.

We corroborate our theory via experiments spanning a wide range of settings: from those covered by
our theory, to real-world (non-synthetic) settings comprising SSM-based S4 [24], Mamba-2 [14] and
LRU [58] neural networks trained on the CIFAR-10 dataset [38]. The experiments validate both our
dynamical characterization and the susceptibility of SSMs to clean-label poisoning. In light of the
growing prominence of SSMs, particularly in large language models, we believe that delineating this
susceptibility, and developing methods for overcoming it, are critical research directions to pursue.

2 Preliminaries

2.1 Notation

We use non-boldface lowercase letters for denoting scalars (e.g., α ∈ R, d ∈ N), boldface lowercase
letters for denoting vectors (e.g., x ∈ Rd), and non-boldface uppercase letters for denoting matrices
(e.g.,A ∈ Rd,d). We denote by 1 an all-ones vector and by 0 an all-zeros vector, with their dimensions
to be inferred from context. For d ∈ N, we let [d] := {1, 2, . . . , d}. For d ∈ N and i ∈ [d], we denote
by ei the i’th standard basis vector (i.e., a vector holding one in entry i and zeros elsewhere) of
dimension d, where the dimension is omitted from the notation and should be inferred from context.
We identify scalar sequences of finite lengths with vectors.

2.2 Structured State Space Models (SSMs)

A structured state space model (SSM) of dimension d ∈ N is parameterized by three matrices:
A ∈ Rd,d, a state transition matrix, which conforms to a predefined structure (e.g., is constrained to
be diagonal); B ∈ Rd,1, an input matrix; and C ∈ R1,d, an output matrix. Given the values of A,
B and C, the SSM realizes a mapping ϕ(A,B,C)(·) that receives as input a length k scalar sequence
x ∈ Rk, for any k ∈ N, and produces as output a scalar y ∈ R equal to the last element of the
sequence y ∈ Rk defined through the following recursive formula:

sk′ = Ask′−1 +Bxk′ , yk′ = Csk′ , k
′ ∈ [k] , (1)

1More precisely, the training data is formed from a continuous (Gaussian) distribution of sequences having a
certain length, all labeled by the teacher SSM.

2

where (sk′ ∈ Rd)k′∈[k]∪{0} is a sequence of states, and s0 = 0. It is straightforward to show that
the mapping ϕ(A,B,C)(·) is fully determined by the sequence (CAk

′
B)∞k′=0, known as the impulse

response of the SSM. In particular, for any k ∈ N and x ∈ Rk:

y = ϕ(A,B,C)(x) = (CAk−1B, . . . , CAB,CB)x =
∑k−1

k′=0
CAk

′
B · xk−k′ . (2)

For convenience, we often identify an SSM with the triplet (A,B,C) holding its parameter matrices,
and regard the (single column) matrices B and C⊤ as vectors.

Perhaps the most common form of structure imposed on SSMs is diagonality [25, 28, 58, 48, 22].
Accordingly, unless stated otherwise, we assume that the state transition matrix A of an SSM is
diagonal.

Some of our results will account for SSMs that are part of non-linear neural networks, or more
specifically, for SSMs whose output undergoes a transformation σ(· ,w), where: σ : R×W → R is
some differentiable mapping; W is some Euclidean space, regarded as a parameter space; and w ∈ W ,
regarded as a parameter vector. Given values for A, B, C and w, such a neural network realizes
the mapping ϕ(A,B,C),w(·) := σ(ϕ(A,B,C)(·),w). This architecture (namely, an SSM followed by a
parametric transformation) is ubiquitous among SSM-based neural networks (see, for example, Gu
et al. [24], Gupta et al. [28], Gu et al. [25]).

2.3 Teacher-Student Setting

We consider the teacher-student setting of Cohen-Karlik et al. [12], described hereinbelow. Data is
labeled by a teacher SSM (A∗, B∗, C∗) of dimension d∗ ∈ N, i.e., the ground truth label of x ∈ Rk,
for any k ∈ N, is ϕ(A∗,B∗,C∗)(x) ∈ R. For some n ∈ N and κ ∈ N>2d∗ , we are given a training
set S comprising n labeled sequences of length κ, i.e., S :=

(
(x(i), y(i))

)n
i=1

, where x(i) ∈ Rκ and
y(i) = ϕ(A∗,B∗,C∗)(x

(i)) for every i ∈ [n]. A student SSM (A,B,C) of dimension d ∈ N>κ is
trained by minimizing the square loss over S, referred to as the training loss:

ℓS(A,B,C) :=
1

n

∑n

i=1

(
y(i) − ϕ(A,B,C)(x

(i))
)2

. (3)

Optimization is implemented via gradient flow, which is formally equivalent to gradient descent with
infinitesimally small step size (learning rate), and was shown to well-approximate gradient descent
with moderately small step size [15]. The dynamics of gradient flow are, for t ∈ R≥0:

(Ȧ(t), Ḃ(t), Ċ(t)) = −∇ℓS(A(t), B(t), C(t)) , (4)

where (Ȧ(t), Ḃ(t), Ċ(t)) := d
dt (A(t), B(t), C(t)), and (A(·), B(·), C(·)) is a curve representing the

optimization trajectory. Generalization of the student at time t ∈ R≥0 of optimization is measured by
the extent to which ϕ(A(t),B(t),C(t))(·) approximates ϕ(A∗,B∗,C∗)(·), not only over input sequences
of length κ as used for training, but also over input sequences of other lengths. This accounts not only
for in-distribution generalization as considered in classical machine learning theory [72], but also
for out-of-distribution generalization (extrapolation) as prevalent in modern machine learning [45].
Formally, in line with Equation (2), generalization is quantified by how close the first k elements
of the student’s impulse response are to the first k elements of the teacher’s impulse response, for
different values of k.
Definition 1. The generalization error of the student SSM over sequence length k is:

maxk′∈{0,1,...,k−1}
∣∣BAk′C −B∗(A∗)k

′
C∗∣∣ . (5)

Clearly, there exist assignments for (A,B,C) with which the training loss ℓS(·) is minimized (i.e.,
equals zero) and the student SSM perfectly generalizes over any sequence length k.2 On the other
hand, it was shown in Cohen-Karlik et al. [12] that, regardless of the size of the training set S (i.e.,
of n) and the input sequences it comprises (namely, (x(i))ni=1), there exist assignments for (A,B,C)
with which the training loss ℓS(·) is minimized, and yet the student has arbitrarily high generalization
error over sequence lengths beyond κ, e.g., over sequence length κ+ 1 (for completeness, we prove
this fact in Appendix C). The latter two facts together imply that if minimization of the training

2This is the case, for example, if A, B and C are respectively attained by padding A∗, B∗ and C∗ with
zeros on the right and/or bottom.

3

loss ℓS(·) via gradient flow (Equation (4)) produces an assignment for (A,B,C) with which the
student generalizes over sequence lengths beyond κ, it must be an outcome of implicit bias. The
main result in Cohen-Karlik et al. [12] states that if the training set S is infinite and each entry of
each input sequence x(i) is independently drawn from the standard normal distribution,3 then under
mild conditions the implicit bias of gradient flow is such that it convergences to a solution which
generalizes over any sequence length k.

In this paper, we focus on the realistic case where the training set S is finite. Surprisingly, our theory
and experiments (Sections 3 and 4, respectively) reveal a phenomenon completely undetected by
Cohen-Karlik et al. [12], and any other work we are aware of on the implicit bias of SSMs.

3 Theoretical Analysis
3.1 Dynamical Characterization
In this subsection we derive a dynamical characterization of gradient flow over an SSM, trained
individually or as part of a non-linear neural network. The dynamical characterization reveals that
greedy low rank learning [69, 39, 4, 43, 65, 66]—a sufficient condition for generalization with a
low dimensional teacher SSM—is implicitly induced under many, but not all, choices of training
sequences. Section 3.2 will build on the dynamical characterization to prove that the implicit bias of
SSMs can be poisoned with clean labels.

Our dynamical characterization applies to a setting more general than that laid out in Section 2.3.
Specifically, it applies to the same setting, with two exceptions: (i) the student SSM is potentially
embedded in a non-linear neural network, i.e., the mapping ϕ(A,B,C)(·) is replaced by ϕ(A,B,C),w(·)
as defined in Section 2.2; and (ii) the training labels (y(i))ni=1 need not be assigned by a teacher SSM,
i.e., they may be arbitrary. We denote the resulting training loss—a generalization of ℓS(·) from
Equation (3)—by ℓ̃S(·):

ℓ̃S(A,B,C,w) :=
1

n

∑n

i=1

(
y(i) − ϕ(A,B,C),w(x(i))

)2
. (6)

Proposition 1 below establishes our dynamical characterization: equations of motion for the (diagonal)
entries of A during gradient flow over ℓ̃S(·).

Proposition 1. Consider optimization of the generalized loss ℓ̃S(·) defined in Equation (6) via
gradient flow. That is, consider, for any t ∈ R≥0:

(Ȧ(t), Ḃ(t), Ċ(t), ẇ(t)) = −∇ℓ̃S(A(t), B(t), C(t),w(t)) ,

where (Ȧ(t), Ḃ(t), Ċ(t), ẇ(t)) := d
dt (A(t), B(t), C(t),w(t)), and (A(·), B(·), C(·),w(·)) is a

curve representing the optimization trajectory. For j ∈ [d], denote by aj(·) the j’th diagonal entry
of A(·), by bj(·) the j’th entry of B(·), and by cj(·) the j’th entry of C(·). Assume that the training
sequence length κ is greater than or equal to two. For l ∈ [κ] and i ∈ [n], denote the l’th element of
the i’th training sequence x(i) by x(i)l . Then, for any j ∈ [d] and t ∈ R≥0:

ȧj(t) :=
d
dtaj(t) = bj(t)cj(t)

∑κ−2

l=0
γ(l)(t) · aj(t)l , (7)

where:

γ(l)(t) := 2(l+1)
n

∑n

i=1
δ(i)(t)ξ(i)(t)x

(i)
κ−l−1 , (8)

with:

δ(i)(t) := y(i) − ϕ(A(t),B(t),C(t)),w(t)(x
(i)) , ξ(i)(t) := ∂

∂zσ(z,w(t))
∣∣
z=ϕ(A(t),B(t),C(t))(x(i))

. (9)

Proof sketch (proof in Appendix D). The result readily follows from differentiation of ℓ̃S(·) (Equa-
tion (6)) with respect to each diagonal entry of A.

3Formally, this condition means that the training loss ℓS(·) is the expected value of (y − ϕ(A,B,C)(x))
2,

where the entries of x are independently drawn from the standard normal distribution, and y = ϕ(A∗,B∗,C∗)(x).

4

3.1.1 Interpretation
Proposition 1 implies that during gradient flow, the motion of aj(·)—the j’th diagonal entry of the
state transition matrix A(·)—is given by a degree κ− 2 polynomial in aj(·), where the coefficients of
the polynomial are time-varying. In particular, at time t ∈ R≥0 of optimization, the coefficient of the
l’th power in the polynomial, for l ∈ {0, 1, . . . , κ− 2}, is a product of two factors: (i) γ(l)(t), which
depends on the power l but not on the entry index j; and (ii) bj(t)cj(t) (the j’th entry of the input
matrix B(·) times the j’th entry of the output matrix C(·)), which does not depend on the power l
but does depend on the entry index j.

Different training sets admit greedy learning. Consider the case where A(·) emanates from
standard near-zero initialization [20, 30, 59], i.e., where aj(0) ≈ 0 for all j. If the factor γ(0)(·)
is small throughout—as is the case, e.g., if the penultimate (κ − 1’th) element of each training
sequence x(i) is small (see Equation (8))—then the constant coefficient (i.e., the coefficient of the
zeroth power) in the polynomial determining the motion of aj(·) is negligible. The dynamics of
(aj(·))dj=1 then exhibit greedy learning, similarly to the dynamics of various quantities in various
types of neural networks [69, 39, 4, 43, 65, 66]. Namely, (aj(·))dj=1 all progress slowly at first,
following near-zero initialization, and then, whenever an entry reaches a critical threshold, it starts
moving rapidly—see empirical demonstrations in Figure 2 and Appendix I.1. The greedy learning
of (aj(·))dj=1 implies a greedy low rank learning of the state transition matrix. More specifically, it
implies a tendency to fit training data with A having low rank, meaning a tendency to generalize if
data is generated by a low dimensional teacher SSM.

Certain training sequences impede greedy learning. In stark contrast to the above, if the training
sequences (x(i))ni=1 are such that the factor γ(0)(·) is not small—as can be the case, e.g., if there
is a training sequence x(i) in which the last elements are relatively large—then the polynomials
determining the motions of (aj(·))dj=1 have non-negligible constant coefficients, and greedy low rank
learning will generally not take place—see empirical demonstrations in Figure 2 and Appendix I.1.

3.2 Clean-Label Poisoning
In this subsection we employ the dynamical characterization from Section 3.1 for a fine-grained anal-
ysis of gradient flow over an SSM. The analysis considers a teacher-student setting as in Section 2.3,
and proves existence of situations where: (i) training a student SSM on sequences labeled by a low
dimensional teacher SSM exhibits an implicit bias that leads to generalization; and (ii) adding to
the training set certain sequences, also labeled by the teacher SSM (i.e., that also have clean labels),
entirely distorts the implicit bias, to an extent where generalization fails. To our knowledge, this
constitutes the first formal proof of susceptibility of SSMs to clean-label poisoning. Facilitating
the analysis is an advanced tool from dynamical systems theory—a non-resonance linearization
theorem [70]—which may be of independent interest.

The teacher-student setting considered in this subsection is characterized by Assumptions 1 and 2
below. While this setting is specific, it fulfills the purpose of proving existence of situations where
SSMs are susceptible to clean-label poisoning. Moreover, as discussed in Appendix B, our theory
can be adapted to account for different extensions of the setting, i.e., for different relaxations of
Assumptions 1 and 2. Empirically, we demonstrate in Section 4 that SSMs are susceptible to clean-
label poisoning in a wide range of settings: from the specific setting considered in this subsection,
to real-world (non-synthetic) settings comprising SSM-based S4 [24], Mamba-2 [14] and LRU [58]
neural networks trained on the CIFAR-10 dataset [38].
Assumption 1. The teacher SSM is of dimension d∗ = 2, and its parameter matrices are given by:

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
. (10)

Assumption 2. The input and output matrices of the student SSM, B and C, are respectively fixed at
1 and 1⊤ throughout training.

Under Assumptions 1 and 2, generalization is straightforward to attain: all that is needed in order for
the student SSM to achieve low generalization error over any sequence length (Definition 1) is that
one of the diagonal entries of its state transition matrix A be sufficiently close to one while the rest
are sufficiently close to zero.

Proposition 2 below proves that generalization takes place in cases where: each training sequence has
zeros in its last two elements and non-negative values elsewhere; and at least one training sequence is

5

not identically zero. Underlying the proof is the dynamical characterization from Section 3.1: with
the last elements of each training sequence being small, the characterization establishes greedy low
rank learning, which in turn implies generalization (see interpretation in Section 3.1.1).

Proposition 2. Consider the teacher-student setting of Section 2.3, subject to Assumptions 1 and 2.
Suppose that for every i ∈ [n], the training sequence x(i) has zeros in its last two elements and
non-negative values elsewhere. Suppose also that x(i) ̸= 0 for some i ∈ [n]. Then, for any k ∈ N,
ϵ ∈ R>0 and δ ∈ R>0, there exists an open set I of arbitrarily small initializations for the student
SSM,4 and a corresponding time t ∈ R>0, such that gradient flow initialized in I reaches at time t
a point where the training loss is at most δ and the generalization errors over sequence lengths
1, 2, . . . , k are at most ϵ.

Proof sketch (proof in Appendix E). The proof specializes the dynamical characterization from Sec-
tion 3.1 per Assumptions 1 and 2, and per the conditions posed on the training sequences. Choosing
the set I to be sufficiently concentrated around the origin, the specialized characterization implies
that gradient flow initialized in I exhibits greedy low rank learning (see interpretation of the charac-
terization in Section 3.1.1). The greedy low rank learning leads a single diagonal entry of the state
transition matrix A to reach the vicinity of one while the rest of the diagonal entries remain near zero.
As stated in the text following Assumptions 1 and 2, this ensures generalization.

As stated in the text following Assumptions 1 and 2, under these assumptions, generalization is
straightforward to attain. Indeed, Proposition 2 above proves that generalization takes place even in
cases where the training set S entails little information, e.g., in the case where S includes e1 (one
followed by zeros) as a sole training sequence. Theorem 1 below proves that in this latter case, despite
generalization being straightforward to attain, adding to S a single cleanly labeled example—or more
specifically, a single carefully selected sequence x† of moderate (Euclidean) norm labeled by the
teacher SSM—can entirely disrupt generalization.

In the context of Theorem 1, disrupting generalization requires preventing greedy low rank learn-
ing. This is achieved, in accordance with the dynamical characterization from Section 3.1 (see its
interpretation in Section 3.1.1), by selecting a sequence x† whose last elements are relatively large.
To prove that such selection indeed disrupts generalization, Theorem 1 relies on an advanced tool
from dynamical systems theory—a non-resonance linearization theorem [70]—which may be of
independent interest.

Theorem 1, albeit specific, constitutes what is to our knowledge the first formal proof of susceptibility
of SSMs to clean-label poisoning. In Appendix B we discuss different extensions of Theorem 1,
including an extension that allows for any training set S permitted by Proposition 2 (i.e., for any
choice of training sequences (x(i))ni=1 where: for every i ∈ [n], x(i) has zeros in its last two
elements and non-negative values elsewhere; and x(i) ̸= 0 for some i ∈ [n]), at the expense of the
added sequence x† potentially having large norm. Empirically, we demonstrate in Section 4 that the
conclusion of Theorem 1 carries over to a wide range of settings, including ones where an SSM is
part of a non-linear neural network.

Theorem 1. Consider the teacher-student setting of Section 2.3, subject to Assumptions 1 and 2.
Suppose the training sequence length and the dimension of the student SSM respectively satisfy
κ ∈ {7, 9, 11, . . .} and d ≥ 8. Define the sequences x := e1 ∈ Rκ and x† := eκ−1 ∈ Rκ. Denote by
y and y† the labels respectively assigned to x and x† by the teacher SSM, i.e., y := ϕ(A∗,B∗,C∗)(x)
and y† := ϕ(A∗,B∗,C∗)(x

†). Suppose the training set S includes (x, y) as a sole example. Let
k ∈ N≥κ+2 and ϵ ∈ R>0. Then, there exists an open set I of arbitrarily small initializations for the
student SSM,4 such that with any initialization in I:

• gradient flow converges to a point where the training loss is minimal (i.e., equals zero) and
the generalization errors over sequence lengths 1, 2, . . . , k are at most ϵ; and

• appending to S the (cleanly labeled) example (x†, y†) leads gradient flow to converge to a
point where the training loss is minimal and the generalization error over sequence length k
is at least min{0.1, (9d)−1(1− (0.6)1/(κ−1))}.

4That is, for any neighborhood N of the origin in the space of diagonal matrices in Rd,d (the latter space is
identified with Rd), there exists an open subset I ⊂ N .

6

Figure 1: Illustration of the main ideas behind the proof of Theorem 1. See proof sketch for an annotation.

Proof sketch (proof in Appendix F). Figure 1 illustrates the main ideas behind the proof. Below is a
description of these ideas, along with an annotation of the figure.

As stated in the text following Assumptions 1 and 2, a sufficient condition for the student SSM to
achieve low generalization errors is that one of the diagonal entries of its state transition matrix A be
close to one while the rest are close to zero. The proof shows that this condition is also necessary, thus
the set labeled “generalizing solutions” in Figure 1 is a neighborhood of one-hot assignments for the
diagonal entries of A. Next, similarly to the proof of Proposition 2, the dynamical characterization
from Section 3.1 is used to establish that when training on (x, y), under choices of I (set of
initializations) sufficiently concentrated around the origin, a gradient flow trajectory emanating
from I exhibits greedy low rank learning, and thus converges to the set of generalizing solutions—as
illustrated in Figure 1.

For analyzing the behavior of gradient flow when training on {(x, y), (x†, y†)}, the proof makes
use of the fact that the last elements of x† are relatively large. In accordance with the dynamical
characterization from Section 3.1 (see its interpretation in Section 3.1.1), this fact implies that greedy
low rank learning does not take place. The proof identifies reference trajectories of gradient flow
(when training on {(x, y), (x†, y†)}) that converge to non-generalizing solutions; one such reference
trajectory is illustrated in Figure 1. These reference trajectories emanate from near-zero initializations
that cannot be included in I, since they lead gradient flow to converge to non-generalizing solutions
even when training only on (x, y). However, the proof shows that I can consist of initializations
near those of reference trajectories, since gradient flow emanating from such I: (i) converges
to a generalizing solution when training on (x, y); and (ii) closely tracks a reference trajectory
when training on {(x, y), (x†, y†)}, resulting in convergence to a non-generalizing solution—as
illustrated in Figure 1. This concludes the proof.

The main technical challenge faced by the proof lies in item (ii) above, namely, in establishing
that when training on {(x, y), (x†, y†)}, an initialization near that of a reference trajectory leads
gradient flow to closely track the reference trajectory. Since the training loss is non-convex, gradient
flow trajectories may diverge from one another exponentially fast. Establishing that a reference
trajectory is tracked thus requires sharp bounds on convergence times. The crux of the challenge
is to derive such bounds, as trajectories pass near saddle points, and a-priori, may not escape these
saddle points sufficiently fast. To show that saddle points are escaped swiftly, the proof employs an
advanced tool from dynamical systems theory which may be of independent interest: a non-resonance
linearization theorem [70]. Namely, rather than directly analyzing trajectories in the vicinity of a
saddle point, the proof constructs linear approximations, and uses the non-resonance linearization
theorem to show that the linear approximations are sufficiently accurate, which in turn implies that
the trajectories escape the saddle point sufficiently fast. The non-resonance linearization theorem
requires the spectrum of the Hessian of the training loss to be free of certain algebraic dependencies
known as resonances. If these resonances are absent—which the proof shows to be the case—the
non-resonance linearization theorem provides guarantees on the accuracy of linear approximations
that are far better than guarantees attainable via standard smoothness arguments.

4 Experiments

This section presents experiments corroborating our theory. It is organized as follows. Section 4.1
demonstrates the dynamical characterization we derived (in Section 3.1), showcasing that optimization
of an SSM implicitly induces greedy low rank learning (a sufficient condition for generalization with
a low dimensional teacher SSM) under some, but not all, choices of training sequences. Section 4.2
then demonstrates the clean-label poisoning phenomenon we established (in Section 3.2), by showing

7

0.0 0.5 1.0 1.5
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
with special sequences

0 1 2
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 2: Demonstration of the dynamical characterization from Section 3.1: optimization of an SSM—trained
individually or as part of a non-linear neural network—implicitly induces greedy learning of the diagonal entries
of the state transition matrix A under some, but not all, choices of training sequences. First (leftmost) plot
shows the magnitudes of the entries of A throughout the iterations of gradient descent, in a case where an
overparameterized student SSM of dimension d = 10 is trained individually on a training set labeled by a teacher
SSM of dimension d∗ = 1, and the training set does not include “special” sequences, i.e., sequences in which the
last elements are relatively large. Second plot portrays a scenario that is identical, except that special sequences
are included in the training set. Third and fourth plots adhere to the descriptions of first and second plots,
respectively, except that the student SSM is trained along with a successive multi-layer perceptron (non-linear
neural network), and the teacher SSM is followed by a (fixed) multi-layer perceptron. Notice that, with and
without a multi-layer perceptron, greedy learning takes place when special sequences are excluded, and does not
take place when they are included. For further experiments (including teacher SSMs of higher dimension, and
additional variations) and visualizations (including the effective rank of A, and additional quantities, throughout
optimization) see Appendix I.1. For further details see Appendix J.1.

that adding special cleanly labeled sequences to the training set of an SSM can completely ruin
its generalization. Code for reproducing our experiments can be found at https://github.com/
YoniSlutzky98/imp-bias-ssm-poison.

4.1 Dynamical Characterization

As discussed in Section 3.1.1, the dynamical characterization in Proposition 1 (Equations (7) to (9))
implies that optimization of an SSM—trained individually or as part of a non-linear neural network—
implicitly induces greedy learning of the diagonal entries of the state transition matrix A under
some, but not all, choices of training sequences. For example, if the last elements of each training
sequence are small then greedy learning takes place, and if there are training sequences in which
the last elements are relatively large then greedy learning may not take place. Figure 2 empirically
demonstrates this, for a standalone SSM as well as one included in a non-linear neural network.
Further experiments are reported in Appendix I.1.

4.2 Clean-Label Poisoning

Theorem 1 proved existence of situations where clean-label poisoning of an SSM takes place, i.e.,
situations where: (i) training a student SSM on sequences labeled by a low dimensional teacher
SSM exhibits an implicit bias that leads to generalization; and (ii) adding to the training set special
sequences, also labeled by the teacher SSM (i.e., that also have clean labels), entirely distorts the
implicit bias, to an extent where generalization fails. Table 1 empirically demonstrates clean-label
poisoning of SSMs in three different teacher-student settings: the setting of Theorem 1; a standalone
SSM setting beyond Theorem 1 (meaning it does not satisfy the assumptions of Theorem 1, e.g., it
includes multiple training sequences, and learning of the input matrix B and output matrix C); and a
setting where an SSM is part of a non-linear neural network.

We further demonstrate clean-label poisoning of SSMs in real-world (non-synthetic) settings com-
prising SSM-based S4 [24], Mamba-2 [14] and LRU [58] neural networks trained on the CIFAR-10
dataset [38]. In these settings we do not have access to a teacher (i.e., to a ground truth labeling map-
ping), and accordingly, cleanly labeled poisonous examples are generated from CIFAR-10 examples
by introducing human-imperceptible additive noise to input sequences, while keeping their labels
intact. The noise added to an input sequence is rendered to have relatively large last elements—in
line with our theory5—using an adapted version of the Gradient Matching method from Geiping
et al. [18] (see Appendix J.3 for details). Adding to the training set cleanly labeled poisonous
examples as described leads to significant deterioration in the generalization of the SSM-based neural
networks—see Table 2.

We believe the susceptibility of SSMs to clean-label poisoning goes far beyond the demonstrations
herein. In light of the growing prominence of SSMs, particularly in large language models, delineating
this susceptibility, and developing methods for overcoming it, are of prime importance.

5Our theory does not suggest that relatively large last elements are necessary for clean-label poisoning of
SSMs in these real-world settings. Accordingly, it may be possible for the noise to have a different pattern.

8

https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://github.com/YoniSlutzky98/imp-bias-ssm-poison

Table 1: Demonstration of clean-label poisoning of SSMs in three different teacher-student settings: the setting
of Theorem 1; a standalone SSM setting beyond Theorem 1 (meaning it does not satisfy the assumptions
of Theorem 1, e.g., it includes multiple training sequences, and learning of the input matrix B and output
matrix C); and a setting where an SSM is part of a non-linear neural network, i.e., is followed by a multi-layer
perceptron. In each setting, a high dimensional student is trained until convergence (namely, until the training
loss is lower than 0.01), and data is generated (i.e., sequences are labeled) by a low dimensional teacher of the
same architecture as the student. Reported are generalization errors (each averaged over four random seeds)
for two training sets per setting: (i) a training set that does not include “special” sequences, i.e., sequences
in which the last elements are relatively large; and (ii) a training set obtained by adding to the former special
sequences along with the (clean) labels assigned to them by the teacher. In the first two settings (SSMs trained
independently) generalization errors are measured via impulse responses, as defined in Definition 1. In the third
setting (SSM trained as part of non-linear neural network) generalization errors are measured using a held-out
test set. All reported generalization errors are normalized (scaled) such that a zero mapping corresponds to a
value of one. Notice that across all settings, special training sequences significantly deteriorate generalization.
For further experiments and details see Appendices I.2 and J.2, respectively.

Setting Without special sequences With special sequences

Per Theorem 1 1.27× 10−3 5.01× 10−2

Standalone SSM beyond Theorem 1 0.194 16.62
SSM in non-linear neural network 1.64× 10−3 5.45× 10−2

Table 2: Demonstration of clean-label poisoning of SSMs in real-world (non-synthetic) settings comprising
SSM-based S4 [24], Mamba-2 [14] and LRU [58] neural networks trained on the (sequential variant of the)
CIFAR-10 dataset [38]. Each row in the table summarizes an experiment with a different SSM-based neural
network, where cleanly labeled poisonous examples are generated from CIFAR-10 examples by introducing
human-imperceptible additive noise to input sequences, while keeping their labels intact. The noise added
to an input sequence is rendered to have relatively large last elements—in line with our theory5—using an
adapted version of the Gradient Matching method from Geiping et al. [18]. The first column in the table specifies
the SSM-based neural network being poisoned. The second column reports two cross-entropy losses on the
CIFAR-10 test set: one obtained by training the neural network on original CIFAR-10 training examples, and
the other obtained by training the neural network on the same examples along with cleanly labeled poisonous
examples as described above. The third column is identical to the second, except that it reports classification
accuracies rather than cross-entropy losses. Finally, the fourth column in the table reports the relative size of the
last elements in the noise introduced for generating a cleanly labeled poisonous example, where the relative size
is averaged over all such examples, and quantified by the Euclidean norm of the last 3% of elements divided
by the Euclidean norm of all elements. Throughout the table, quantities are averaged over three random seeds.
Notice that in all experiments, the addition of cleanly labeled poisonous examples deteriorates generalization.
For further details see Appendices I.3 and J.3.

SSM-based NN Loss without / with poisoning Accuracy without / with poisoning Noise tail size

S4 [24] 0.739 / 0.839 78.8% / 76.9% 0.406
Mamba-2 [14] 1.005 / 1.178 77.8% / 75.1% 0.559
LRU [58] 0.892 / 1.111 72.4% / 68.3% 0.469

5 Limitations

It is important to acknowledge several limitations of this paper. First, while the dynamical characteri-
zation derived in Proposition 1 applies to a broad setting (e.g., it allows the SSM to be embedded in a
non-linear neural network), the proof of generalization in Proposition 2 is restricted to a more specific
setting (e.g., it requires Assumptions 1 and 2), and the proof of clean-label poisoning in Theorem 1 is
restricted to an even more specific setting (e.g., it requires the original training set to include a single
example, in addition to Assumptions 1 and 2). Appendix B extends the settings of Proposition 2
and Theorem 1, but even under such extension the settings remain fairly restricted. A second limita-
tion of this paper relates to the guarantees provided by Proposition 2 and Theorem 1: each ensures
existence of a set I of initializations with which a desired result holds, and while I has positive
volume (it is open), this volume may be low. Third, except for the dynamical characterization derived
in Proposition 1 and the real-world (non-synthetic) experiments reported in Section 4.2, our theory
and experiments pertain to near-zero initialization, which is common for neural networks [20, 30], but
does not account for modern SSM initializations designed to alleviate vanishing gradients [23, 25].
Fourth, due to vanishing gradients, maintaining reasonable run-times in experiments with near-zero

9

initialization necessitated a relatively small scale (in terms of, e.g., SSM dimension and training
sequence length). Addressing these limitations is an important set of directions for future work.

6 Conclusion

The proliferation of SSMs, particularly in large language models, renders it crucial to understand
their implicit bias. In this paper, we revisited prior beliefs by which the implicit bias of SSMs leads
to generalization when data is generated by a low dimensional teacher. We formally proved that,
in stark contrast to these beliefs, there exist special examples whose addition to training data can
completely distort the implicit bias, to a point where generalization with a low dimensional teacher
fails. This failure occurs despite the special examples being labeled by the teacher, i.e., having clean
labels! We corroborated our theory via experiments spanning a wide range of settings: from those
analyzed theoretically, to real-world settings comprising prominent SSM-based neural networks.
The experiments confirmed that generalization in SSMs can be disrupted by cleanly labeled training
examples, i.e., that SSMs are susceptible to clean-label poisoning.

Our results point to significant challenges in both theory and practice of SSMs. On the theoretical
front, our results suggest that generalization in SSMs cannot be explained via the traditional view of
implicit complexity minimization [26, 77, 90], or through the nascent view by which generalization
is typical [82, 53, 54, 7, 2]. Indeed, if generalization in SSMs was due to the implicit bias finding
a solution which, among all solutions fitting training data, minimizes some (data-independent)
complexity measure, then training with additional cleanly labeled examples would not change the
solution found, and thus would not disrupt generalization.6 Moreover, if generalization in SSMs was
due to typicality, i.e., to the majority of solutions fitting training data being ones that generalize, then
additional cleanly labeled training examples would only improve generalization, as they enhance the
dominance of such majority. We believe fundamentally new approaches may be needed in order to
theoretically pinpoint the source of generalization in SSMs.

Moving to the practical side, the fact that SSMs are susceptible to clean-label poisoning raises
significant concerns regarding safety, robustness and reliability. For example, large language models,
which are becoming more and more reliant on SSMs [19, 61, 3], are often fine-tuned via supervised
learning on public internet data [41, 40, 81], and in this process, it may be easy for a malicious actor
to add cleanly labeled training examples, e.g., by adding unlabeled training examples prior to label
generation. We believe that delineating the susceptibility of SSMs to clean-label poisoning, and
developing methods for overcoming this susceptibility, are critical research directions to pursue.

Our results suggest that learning dynamics may facilitate progress in the foregoing research direc-
tions. Indeed, in settings covered by our theory, clean-label poisoning correlates with a dynamical
factor γ(0)(·) (defined in Proposition 1) being large during learning, i.e., during optimization (see
Section 3.1.1 as well as Figures 16 to 19 in Appendix I). By monitoring γ(0)(·) throughout learning,
one may detect clean-label poisoning and take responsive action (e.g., prevent deployment of a
poisoned model). Moreover, it is plausible that by adding to the training loss a penalty term that
encourages γ(0)(·) to be small, one may improve resilience to clean-label poisoning. Investigating
such methods, and extending them to settings beyond our theory, may promote safer, more robust and
more reliable deployment of SSMs.

Acknowledgments and Disclosure of Funding

We thank Eshbal Hezroni for assistance in preparing the illustrative figure, and Itamar Zimerman
for contributions to the real-world experiments. This work was supported by the European Research
Council (ERC) grant NN4C 101164614, a Google Research Scholar Award, a Google Research Gift,
Meta, the Yandex Initiative in Machine Learning, the Israel Science Foundation (ISF) grant 1780/21,
the Tel Aviv University Center for AI and Data Science, the Adelis Research Fund for Artificial
Intelligence, Len Blavatnik and the Blavatnik Family Foundation, and Amnon and Anat Shashua. NR
is supported in part by the Zuckerman STEM Leadership Program.

6Prior work argued that generalization in different neural networks cannot be explained via implicit com-
plexity minimization [83], but to our knowledge, such results do not apply to SSMs.

10

References
[1] Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna. Bullseye

polytope: A scalable clean-label poisoning attack with improved transferability. In 2021 IEEE European
symposium on security and privacy (EuroS&P), pages 159–178. IEEE, 2021.

[2] Yotam Alexander, Yonatan Slutzky, Yuval Ran-Milo, and Nadav Cohen. Do neural networks need gradient
descent to generalize? a theoretical study. arXiv preprint arXiv:2506.03931, 2025.

[3] Carmen Amo Alonso, Jerome Sieber, and Melanie N Zeilinger. State space models as foundation models:
A control theoretic overview. arXiv preprint arXiv:2403.16899, 2024.

[4] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization.
Advances in neural information processing systems, 32, 2019.

[5] Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir
Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal mirror
descent. In International Conference on Machine Learning, pages 468–477. PMLR, 2021.

[6] Avrim Blum, Steve Hanneke, Jian Qian, and Han Shao. Robust learning under clean-label attack. In
Conference on Learning Theory (COLT), pages 591–634. PMLR, 2021.

[7] Gon Buzaglo, Itamar Harel, Mor Shpigel Nacson, Alon Brutzkus, Nathan Srebro, and Daniel Soudry. How
uniform random weights induce non-uniform bias: Typical interpolating neural networks generalize with
narrow teachers. arXiv preprint arXiv:2402.06323, 2024.

[8] Satrajit Chatterjee and Piotr Zielinski. On the generalization mystery in deep learning. arXiv preprint
arXiv:2203.10036, 2022.

[9] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pages 1305–1338. PMLR, 2020.

[10] François Chollet et al. keras, 2015.

[11] Edo Cohen-Karlik, Avichai Ben David, Nadav Cohen, and Amir Globerson. On the implicit bias of
gradient descent for temporal extrapolation. In International Conference on Artificial Intelligence and
Statistics, pages 10966–10981. PMLR, 2022.

[12] Edo Cohen-Karlik, Itamar Menuhin-Gruman, Raja Giryes, Nadav Cohen, and Amir Globerson. Learning
low dimensional state spaces with overparameterized recurrent neural nets. In International Conference on
Learning Representations (ICLR), 2023.

[13] Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient descent
at the edge of stability. arXiv preprint arXiv:2209.15594, 2022.

[14] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

[15] Omer Elkabetz and Nadav Cohen. Continuous vs. discrete optimization of deep neural networks. Advances
in Neural Information Processing Systems (NeurIPS), 34:4947–4960, 2021.

[16] Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, and Alyson K Fletcher.
Implicit bias of linear rnns. In International Conference on Machine Learning (ICML), pages 2982–2992.
PMLR, 2021.

[17] Ji Gao, Amin Karbasi, and Mohammad Mahmoody. Learning and certification under instance-targeted
poisoning. In Conference on Uncertainty in Artificial Intelligence, 2021.

[18] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. arXiv preprint
arXiv:2009.02276, 2020.

[19] Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam Ibrahim,
and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint arXiv:2405.16712, 2024.

[20] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[21] T. H. Gronwall. Note on the derivatives with respect to a parameter of the solutions of a system of
differential equations. Annals of Mathematics, 20:292, 1919.

11

[22] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

[23] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
optimal polynomial projections, 2020.

[24] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396, 2021.

[25] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models, 2022.

[26] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Im-
plicit regularization in matrix factorization. Advances in neural information processing systems (NeurIPS),
30, 2017.

[27] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear
convolutional networks. Advances in neural information processing systems (NeurIPS), 31, 2018.

[28] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured state
spaces, 2022.

[29] Chirag Gupta, Sivaraman Balakrishnan, and Aaditya Ramdas. Path length bounds for gradient descent and
flow. Journal of Machine Learning Research, 22(68):1–63, 2021.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[31] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. S. Stepleman, editor,
Scientific Computing, pages 55–64, Amsterdam, 1983. North-Holland.

[32] Roger A. Horn and Charles R. Johnson. Hermitian and symmetric matrices, page 167–256. Cambridge
University Press, 1985.

[33] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Practical
general-purpose clean-label data poisoning. Advances in Neural Information Processing Systems (NeurIPS),
33:12080–12091, 2020.

[34] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020.

[35] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International Conference on Machine Learning (ICML), pages 1724–1732. PMLR,
2017.

[36] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[37] Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu and
leaky relu networks on nearly-orthogonal data. Advances in Neural Information Processing Systems, 36:
30167–30221, 2023.

[38] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[39] Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

[40] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter
open-access multilingual language model. 2023.

[41] Quentin Lhoest, Albert Villanova Del Moral, Yacine Jernite, Abhishek Thakur, Patrick Von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A community library
for natural language processing. arXiv preprint arXiv:2109.02846, 2021.

[42] Binghui Li, Zhixuan Pan, Kaifeng Lyu, and Jian Li. Feature averaging: An implicit bias of gradient descent
leading to non-robustness in neural networks. arXiv preprint arXiv:2410.10322, 2024.

[43] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent for
matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.

12

[44] Soon Hoe Lim, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Noisy recurrent neural
networks. Advances in Neural Information Processing Systems (NeurIPS), 34:5124–5137, 2021.

[45] Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

[46] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. arXiv
preprint arXiv:1906.05890, 2019.

[47] Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets: Margin
maximization and simplicity bias. Advances in Neural Information Processing Systems, 34:12978–12991,
2021.

[48] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and
Luke Zettlemoyer. Mega: Moving average equipped gated attention. In International Conference on
Learning Representations (ICLR), 2023.

[49] Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning leverage computational
hardness? In International Conference on Algorithmic Learning Theory, 2018.

[50] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The curse of concentration in
robust learning: Evasion and poisoning attacks from concentration of measure. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4536–4543, 2019.

[51] Pierre Marion, Yu-Han Wu, Michael E Sander, and Gérard Biau. Implicit regularization of deep residual
networks towards neural odes. arXiv preprint arXiv:2309.01213, 2023.

[52] Hancheng Min, Salma Tarmoun, René Vidal, and Enrique Mallada. On the explicit role of initialization on
the convergence and implicit bias of overparametrized linear networks. In International Conference on
Machine Learning, pages 7760–7768. PMLR, 2021.

[53] Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A Louis. Is sgd a bayesian sampler? well,
almost. Journal of Machine Learning Research, 22(79):1–64, 2021.

[54] Chris Mingard, Henry Rees, Guillermo Valle-Pérez, and Ard A Louis. Do deep neural networks have an
inbuilt occam’s razor? arXiv preprint arXiv:2304.06670, 2023.

[55] Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953, 2017.

[56] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role
of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[57] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals & systems (2nd ed.). Prentice-Hall,
Inc., USA, 1996. ISBN 0138147574.

[58] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. Resurrecting recurrent neural networks for long sequences. In International Conference on
Machine Learning (ICML), pages 26670–26698. PMLR, 2023.

[59] Rom N Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy TH Smith, Ramin Hasani, Mathias
Lechner, Qi An, Christopher Ré, Hajime Asama, Stefano Ermon, et al. State-free inference of state-space
models: The transfer function approach. arXiv preprint arXiv:2405.06147, 2024.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[61] Maciej Pióro, Kamil Ciebiera, Krystian Król, Jan Ludziejewski, and Sebastian Jaszczur. Moe-mamba:
Efficient selective state space models with mixture of experts. arXiv preprint arXiv:2401.04081, 2024.

[62] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In
International Conference on Machine Learning (ICML), pages 28043–28078. PMLR, 2023.

[63] Hrithik Ravi, Clay Scott, Daniel Soudry, and Yutong Wang. The implicit bias of gradient descent on
separable multiclass data. Advances in Neural Information Processing Systems, 37:81324–81359, 2024.

[64] Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by norms.
Advances in neural information processing systems (NeurIPS), 33:21174–21187, 2020.

13

[65] Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in tensor factorization. In Interna-
tional Conference on Machine Learning (ICML), pages 8913–8924. PMLR, 2021.

[66] Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in hierarchical tensor factorization
and deep convolutional neural networks. In International Conference on Machine Learning (ICML), pages
18422–18462. PMLR, 2022.

[67] Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. 2007 15th
European Signal Processing Conference, 2007.

[68] P K Sahoo and T Riedel. Mean Value Theorems and Functional Equations. WORLD SCIENTIFIC, 1998.
doi: 10.1142/3857.

[69] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[70] George R Sell. Smooth linearization near a fixed point. American Journal of Mathematics, pages
1035–1091, 1985.

[71] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and
Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. Advances in
neural information processing systems (NeurIPS), 31, 2018.

[72] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014.

[73] L. Silverman. Realization of linear dynamical systems. IEEE Transactions on Automatic Control, 16(6):
554–567, 1971. doi: 10.1109/TAC.1971.1099821.

[74] Alex Simpkins. System identification: Theory for the user, 2nd edition (ljung, l.; 1999) [on the shelf].
IEEE, 19(2):95–96, 2012. doi: 10.1109/MRA.2012.2192817.

[75] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence
modeling. In International Conference on Learning Representations (ICLR), 2023.

[76] Eduardo D. Sontag. Mathematical control theory : deterministic finite dimensional systems. Texts in
applied mathematics ; 6. Springer-Verlag, New York, 1990. ISBN 0387973664.

[77] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias
of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57, 2018.

[78] Shih-Yu Sun, Vimal Thilak, Etai Littwin, Omid Saremi, and Joshua M Susskind. Implicit greedy rank
learning in autoencoders via overparameterized linear networks. arXiv preprint arXiv:2107.01301, 2021.

[79] Fnu Suya, Saeed Mahloujifar, Anshuman Suri, David Evans, and Yuan Tian. Model-targeted poisoning
attacks with provable convergence. In International Conference on Machine Learning (ICML), pages
10000–10010. PMLR, 2021.

[80] Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140. American Mathemati-
cal Society, 2024.

[81] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[82] Guillermo Valle-Pérez, Ard A Louis, and Chico Q Camargo. Deep learning generalizes because the
parameter-function map is biased towards simple functions. In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[83] Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Conference
on Learning Theory (COLT), pages 4224–4258. PMLR, 2021.

[84] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

[85] Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without attention. arXiv
preprint arXiv:2212.10544, 2022.

[86] Zheng Wang, Geyong Min, and Wenjie Ruan. The implicit bias of gradient descent toward collaboration
between layers: A dynamic analysis of multilayer perceptions. Advances in Neural Information Processing
Systems, 37:74868–74898, 2024.

14

[87] Johan S Wind, Vegard Antun, and Anders C Hansen. Implicit regularization in ai meets generalized
hardness of approximation in optimization–sharp results for diagonal linear networks. arXiv preprint
arXiv:2307.07410, 2023.

[88] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Conference on
Learning Theory, pages 3635–3673. PMLR, 2020.

[89] Jingfeng Wu, Vladimir Braverman, and Jason D Lee. Implicit bias of gradient descent for logistic regression
at the edge of stability. Advances in Neural Information Processing Systems, 36:74229–74256, 2023.

[90] Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training linear
neural networks. arXiv preprint arXiv:2010.02501, 2020.

[91] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

[92] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-label
backdoor attacks on video recognition models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 14443–14452, 2020.

[93] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein. Transferable
clean-label poisoning attacks on deep neural nets. In International conference on machine learning (ICML),
pages 7614–7623. PMLR, 2019.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All of our theoretical claims and empirical results are clearly presented in
Sections 2 to 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our work are properly discussed in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

16

Justification: All of our assumptions are clearly presented before each claim. All claims are
rigorously proven in the appendix, with concise proof sketches in the main paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all implementation details in Appendix J. Code for reproduc-
ing the experiments will be made available at https://github.com/YoniSlutzky98/
imp-bias-ssm-poison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://github.com/YoniSlutzky98/imp-bias-ssm-poison

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all implementation details in Appendix J. Code for reproduc-
ing the experiments will be made available at https://github.com/YoniSlutzky98/
imp-bias-ssm-poison.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all implementation details in Appendix J. Code for reproduc-
ing the experiments will be made available at https://github.com/YoniSlutzky98/
imp-bias-ssm-poison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 4 and 5 report the standard deviations for the synthetic clean-label
poisoning experiments reported in Tables 1 and 3, respectively. Tables 7 and 8 report the
standard deviations for the real-world clean-label poisoning experiments reported in Tables 2
and 6, respectively. Further demonstrations of the dynamical characterization (as shown in
Figure 2), covering additional settings and random seeds, appear in Appendix I.1.

Guidelines:

• The answer NA means that the paper does not include experiments.

18

https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://github.com/YoniSlutzky98/imp-bias-ssm-poison

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide all implementation details in Appendix J. Code for reproduc-
ing the experiments will be made available at https://github.com/YoniSlutzky98/
imp-bias-ssm-poison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper fully conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We explicitly discuss the broader impacts of our work in Section 6.
Guidelines:

19

https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not deal with data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the usages of the CIFAR-10 dataset [38], the S4 model [24]
and the gradient matching method [18] in Section 4.2.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

20

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide all implementation details in Appendix J. Code for reproduc-
ing the experiments will be made available at https://github.com/YoniSlutzky98/
imp-bias-ssm-poison.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets
https://github.com/YoniSlutzky98/imp-bias-ssm-poison
https://github.com/YoniSlutzky98/imp-bias-ssm-poison

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Related Work

An SSM can be viewed as a special case of a linear dynamical system (LDS): a classic object of study
in areas such as systems theory [57] and control theory [76]. The problem of learning from data an
SSM that admits in-distribution and out-of-distribution generalization is an instance of what is known
in the LDS literature as system identification [74]. Determination of whether a high dimensional
SSM realizes a mapping that is also realizable by a low dimensional SSM (in our context, these are a
student and a teacher, respectively) is considered in the LDS literature under the topic of minimal
realization theory [73]. Despite these connections, our work is distinct from classic LDS literature:
it studies the implicit bias of gradient descent, a phenomenon brought to light by the recent rise of
overparameterized neural networks [55].

A significant line of research has characterized the implicit bias of gradient descent in over-
parameterized neural networks [69, 39, 56, 77, 27, 46, 34, 88, 9, 90, 5, 52, 47, 13, 89, 87, 51,
37, 86, 42, 63]. Several recent works formally studied the implicit bias of gradient descent in the
context of recurrent neural networks [44, 16, 12]: a broad class of models that includes SSMs. Some
of these works [16, 12] focus specifically on SSMs, in particular Cohen-Karlik et al. [12] which we
extend (by lifting the unrealistic assumption of infinite training data—see Section 1). However, to our
knowledge, none of the prior works on the implicit bias of gradient descent over SSMs or recurrent
neural networks have formally established susceptibility to clean-label poisoning, as we do.

Since its demonstration in Shafahi et al. [71], clean-label poisoning has received significant empirical
attention [93, 92, 33, 1]. It was also studied theoretically for convex models [79, 6].7 To our knowl-
edge, none of the prior works on clean-label poisoning have formally established the phenomenon for
SSMs, whose optimization is non-convex.

B Extensions of Theorem 1 and Proposition 2

In this appendix, we extend Theorem 1 to allow for additional training sets. Furthermore, we outline
extensions of Theorem 1 and Proposition 2 to settings in which: (i) the teacher SSM is of arbitrary
dimension d∗ ≥ 2; (ii) the input and output matrices of the teacher SSM vary; and (iii) the input and
output matrices of the student SSM are learned (as opposed to being fixed throughout training).

Clean-label poisoning with additional training sets. Theorem 2 below extends Theorem 1 to
allow for any training set S permitted by Proposition 2 (i.e., for any choice of training sequences
(x(i))ni=1 where: for every i ∈ [n], x(i) has zeros in its last two elements and non-negative values
elsewhere; and x(i) ̸= 0 for some i ∈ [n]), at the expense of the added (cleanly labeled poisonous)
sequence x† potentially having large norm.8

Theorem 2. Consider the teacher-student setting of Section 2.3, subject to Assumptions 1 and 2.
Suppose that for every i ∈ [n] the training sequence x(i) has zeros in its last two elements and
non-negative values elsewhere. Suppose also that x(i) ̸= 0 for some i ∈ [n]. Finally, suppose that
the dimension of the student SSM satisfies d ≥ 5. Then, for any k ∈ N≥3, δ ∈ R>0 and ϵ ∈ R>0,
there exists a scalar c ∈ R>0 and an open set I of initializations for the student SSM,4 such that with
any initialization in I:

• there exists a time t ∈ R>0 at which gradient flow reaches a point where the training loss is
at most δ, and the generalization errors over sequence lengths 1, 2, . . . , k are at most ϵ; and

• appending to S the (cleanly labeled) example (x†, y†), where x† := c · eκ−1 ∈ Rκ and
y† := ϕ(A∗,B∗,C∗)(x

†), leads to the existence of a time t ∈ R>0 at which gradient flow
reaches a point where the training loss is at most δ, and the generalization error over
sequence length k is at least 0.5− 2/d.

Proof. See Appendix G.

7Non-convex models were theoretically treated as well [49, 50, 17], but such treatments considered a
different type of poisoning, namely, one where poisonous examples come instead of (rather than in addition to)
original training examples.

8An additional limitation of Theorem 2 compared to Theorem 1 is that its guarantees pertain to some point
along the gradient flow trajectory, whereas those of Theorem 1 pertain to the trajectory’s limit.

23

Teacher of arbitrary dimension. For any d∗ ≥ 2, consider the following parameter assignments
for the teacher SSM:

A∗ =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rd
∗,d∗ , B∗ =



1√
d−1
d∗−1√
d−1
d∗−1

...√
d−1
d∗−1


∈ Rd

∗,1 , C∗ =



1√
d−1
d∗−1√
d−1
d∗−1

...√
d−1
d∗−1



⊤

∈ R1,d∗ .

In this setting, the mapping ϕ(A∗,B∗,C∗)(·) realized by the teacher SSM is the same as the mapping
realized by the teacher SSM defined in Equation (10) (where the teacher has dimension d∗ = 2).
Accordingly, Proposition 2 and Theorem 1 and their proofs apply as stated.

Varying teacher input and output matrices. Given any teacher SSM (A∗, B∗, C∗) with which
Proposition 2 and Theorem 1 hold (including a high dimensional teacher as described above), similar
results hold with the teacher SSM (A∗, α1B

∗, α2C
∗), where α1, α2 ∈ R ̸=0 are arbitrary. Indeed, if

we likewise scale the values of the (fixed) student parameters B and C, i.e. we replace B by α1B
and C by α2C, then for every sequence x:

ϕ(A∗,α1B∗,α2C∗)(x) = α1α2ϕ(A∗,B∗,C∗)(x)

and likewise:
ϕ(A,α1B,α2C)(x) = α1α2ϕ(A,B,C)(x) .

The training loss and its derivatives thus scale by a positive factor, and so do generalization errors
(Definition 1). Accordingly, the proofs of Proposition 2 and Theorem 1 carry through.

Learned student input and output matrices. Below we outline a modification of Proposition 2
and Theorem 1 that accounts for a setting in which the input and output matrices of the student
SSM are learned. Suppose these input and output matrices—B and C, respectively—are learned
with a learning rate (step size) that may be different from the learning rate of the student’s state
transition matrix A. Formally, suppose the optimization trajectory (A(·), B(·), C(·)) is governed by
the following dynamics:

Ȧ(t) = − ∂

∂A
ℓS(A(t), B(t), C(t))

Ḃ(t) = −η · ∂

∂B
ℓS(A(t), B(t), C(t))

Ċ(t) = −η · ∂

∂C
ℓS(A(t), B(t), C(t))

, t ∈ R≥0 , (11)

where η > 0 represents the ratio between the learning rate of B and C, and the learning rate of A.
Consider a trajectory induced by Equation (11), and a corresponding trajectory that emanates from
the same initialization, but where only A is learned (or equivalently, where η in Equation (11) is
replaced by zero). Arguments similar to those used in the proofs of Proposition 2 and Theorem 1
can be used to show that the divergence between these two trajectories is upper bounded by a
quantity that depends on η, and in particular tends to zero as η does. Accordingly, if η is sufficiently
small, generalization errors attained when A, B and C are learned jointly (i.e., when optimization
is governed by Equation (11)), are close to those attained when only A is learned. Proposition 2
and Theorem 1—which apply to a setting where only A is learned—thus translate to results that
apply to a setting where B and C are also learned.

C Low Training Loss with High Generalization Error

As stated in Section 2.3, it was shown in Cohen-Karlik et al. [12] that, regardless of the size of the
training set S (i.e., of n), and the length κ input sequences it comprises (namely, (x(i) ∈ Rκ)ni=1),
there exist assignments for the student SSM (A,B,C) which minimize the training loss ℓS(·), yet
suffer from arbitrarily high generalization error over sequence lengths beyond κ, e.g. over sequence
length κ+ 1. For completeness, we prove this fact below.

24

Proposition 3. For any ϵ ∈ R>0 there exist assignments for (A,B,C) with which the generalization
error is zero over sequence length κ,9 yet it is at least ϵ over sequence length κ+ 1.

Proof. Let d > κ, which we will take as the dimension of our student SSM, and let

(A,B,C) =
(
Diag(a1, . . . , ad), (b1, . . . , bd), (c1, . . . , cd)

⊤) .

We we will consider the system of equations

(CAiB)0≤i≤d−1 = r ,

where r ∈ Rd. First, observe that our claim follows if a solution (A,B,C) exists for for every r.
Indeed, take r such that its first κ entries coincide with (C∗(A∗)iB∗)0≤i≤κ−1, and each of its final
d − κ entries differs from the corresponding entry of (C∗(A∗)iB∗)κ≤i≤d−1 by ϵ or more. Then
(A,B,C) solving these equations would provide the required assignment. To see that this system is
indeed solvable for every r ∈ Rd, note that it can be rewritten as V ⊤g = r, where

V =


1 a1 a21 · · · ad−1

1

1 a2 a22 · · · ad−1
2

...
...

...
. . .

...
1 ad a2d · · · ad−1

d

 ,

and g = (b1c1, . . . , bdcd)
⊤. V is a Vandermonde matrix, and it is well known that it is invertible as

long as a1, . . . , ad are all distinct. Therefore for any such r, and fixed, distinct a1, . . . , ad, one can
solve the equation by setting g = (V ⊤)−1r. To obtain (B,C) which satisfy g = (V ⊤)−1r, one can
simply set B = 1 and C = g⊤.

D Proof of Proposition 1 (Dynamical Characterization)

Fix t ≥ 0. We use the following shorthands for simplicity:

ϕ̃(x(i)) := ϕ(A(t),B(t),C(t)),w(t)(x
(i)) , ϕ(x(i)) := ϕ(A(t),B(t),C(t))(x

(i)) .

The objective ℓ̃S in time t takes the following form:

ℓ̃S(A(t), B(t), C(t)) =
1

n

n∑
i=1

(y(i) − ϕ̃(x(i)))2 .

Fix j ∈ [d]. Deriving w.r.t aj(t) and consecutively applying the chain rule we obtain the following

∂

∂aj(t)
ℓ̃S(A(t), B(t), C(t)) =

1

n

n∑
i=1

∂

∂ϕ̃(x(i))
(y(i) − ϕ̃(x(i)))2 · ∂

∂aj(t)
ϕ̃(x(i))

=
2

n

n∑
i=1

(ϕ̃(x(i))− y(i)︸ ︷︷ ︸
=−δ(i)(t)

) · ∂

∂aj(t)
σ
(
ϕ(x(i)),w(t)

)

= − 2

n

n∑
i=1

δ(i)(t)
∂

∂z
σ(z,w(t))|z=ϕ(x(i))︸ ︷︷ ︸

=ξ(i)(t)

· ∂

∂aj(t)
ϕ(x(i))

= − 2

n

n∑
i=1

δ(i)(t)ξ(i)(t) · ∂

∂aj(t)

(κ∑
l=1

C(t)A(t)κ−lB(t)x
(i)
l

)
= (∗) .

9Note that this implies zero training loss, i.e. ℓS(A,B,C) = 0 for any training set S of sequence length κ ,
regardless of its size.

25

Recalling that A is diagonal, we have that C(t)A(t)κ−lB(t)x
(i)
l =

∑d
j′=1 cj′(t)aj′(t)

κ−lbj′(t)x
(i)
l .

Hence,

(∗) = − 2

n

n∑
i=1

δ(i)(t)ξ(i)(t) · ∂

∂aj(t)

(κ∑
l=1

d∑
j′=1

cj′(t)aj′(t)
κ−lbj′(t)x

(i)
l

)

= − 2

n

n∑
i=1

δ(i)(t)ξ(i)(t)

(κ∑
l=1

(κ− l)cj(t)aj(t)
κ−l−1bj(t)x

(i)
l

)
= (∗∗) .

Reversing the order of summation and reordering we receive the following:

(∗∗) = −bj(t)cj(t)
κ−2∑
l=0

aj(t)
l · 2(l + 1)

n

(n∑
i=1

δ(i)(t)ξ(i)(t)x
(i)
κ−l−1

)
︸ ︷︷ ︸

=γ(l)(t)

.

The proof concludes by noting that ȧj(t) = − ∂
∂aj(t)

ℓ̃S((A(t), B(t), C(t))).

E Proof of Proposition 2 (Generalization)

Proposition 2 follows from Proposition 4, which is identical up to allowing the non-zero diagonal
element of A∗ to be any positive value instead of 1.
Proposition 4. Consider the teacher-student setting of Section 2.3, subject to Assumption 2 and the
teacher SSM given by

A∗ =

(
a∗ 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
, (12)

for some a∗ > 0. Suppose that for every i ∈ [n] the training sequence x(i) has zeros its last two
elements and non-negative values elsewhere. Suppose also that x(i) ̸= 0 for some i ∈ [n]. Then, for
any k ∈ N, ϵ ∈ R>0 and δ ∈ R>0, there exists a time t ∈ R>0 and an open set I of initializations for
the student SSM, such that gradient flow initialized in I reaches at time t a point at which the training
loss ℓS(·) is no greater than δ, and the generalization errors over sequence lengths 1, 2, . . . , k are no
greater than ϵ.

Proof. For k ∈ N and A ∈ Rd,d, we denote by Genk(A) the generalization error over sequence
length k (Definition 1). Note that B and C are omitted from this notation, as they are fixed to
the values B = 1, C = 1⊤ throughout the proof. With slight abuse of notation, we also denote
ℓS(A) := ℓS(A,B,C). Consider the point A0 = (a0, 0, . . . , 0) where 0 < a0 < a∗. We will first
show that if we initialize at A0, gradient flow will converge to (a∗, 0, . . . , 0), and therefore achieve
perfect generalization. Indeed, writing 3 in terms of the entries of A we get:

ℓS(A(τ)) =
1

n

n∑
i=1

κ−1∑
l=2

(a∗)lx
(i)
κ−l −

κ−1∑
l=2

 d∑
j=1

aj(τ)
l

x
(i)
κ−l

2

.

The derivative of ℓS(A) with respect to ap is therefore:

∂

∂ap
ℓS(A) = − 2

n

n∑
i=1

κ−1∑
l=2

(a∗)lx
(i)
κ−l −

κ−1∑
l=2

 d∑
j=1

alj

x
(i)
κ−l

(κ−1∑
l=2

l al−1
p x

(i)
κ−l

)
.

For j > 2, aj(0) = 0 and thus ȧj(0) = − ∂
∂aj

ℓS(A(0)) = 0. Therefore for all j > 2, aj(t) = 0 for
all τ > 0. Hence it suffices to show that a1(τ) converges to a∗ as τ → ∞. To see this, note that
because aj(τ) = 0 for all t > 0 the dynamics simplify to

ȧ1(τ) = − ∂

∂a1
ℓS(A(τ)) =

2

n

n∑
i=1

(
κ−1∑
l=2

x
(i)
κ−l((a

∗)l − a1(τ)
l)

)(
κ−1∑
l=2

l a1(t)
l−1x

(i)
κ−l

)
.

26

For all i ∈ [n], at τ = 0 it holds that(
κ−1∑
l=2

x
(i)
κ−l((a

∗)l − a1(t)
l)

)(
κ−1∑
l=2

l a1(t)
l−1x

(i)
κ−l

)
≥ 0

by the non negativity of the entries of x(i). Additionally, by the positivity of at least one of the entries
of x(i) for some i ∈ [n], at least one of the above expressions is positive. Furthermore, this expression
can equal zero if and only if a1 = a∗ (in which case ȧ1(τ) = 0). Therefore ȧ1(τ) > 0 for all τ > 0,
and hence a1(τ) is monotonically increasing. It is also bounded from above (by a∗), thus it converges.
Furthermore, the limit must be a point where the derivative vanishes, and therefore it must equal a∗.

Because A(τ) converges to (a∗, 0, . . . , 0) when initialized at A0 , for any ϵ, δ > 0 there exists
t > 0 such that ℓS(A(t)) < ϵ

2 , Genk(A(t)) < δ
2 . Now by the continuity of ℓS(·), Genk(·) and

by Lemma 29, there exists an open set I such that, if we initialize gradient flow from Ã(0) ∈ I,
resulting in the trajectory Ã(τ), we get that ∥A(t)− Ã(t)∥2 is sufficiently small to ensure that

ℓS(Ã(t)) < δ , Genk(Ã(t)) < ϵ ,

as required.

F Proof of Theorem 1 (Clean-Label Poisoning)

The outline of the proof is as follows. Appendix F.1 details the setting and additional notation.
Appendix F.2 analyzes gradient flow over ℓS , where the dataset S does not include “poisoned”
samples, and shows that it converges to a generalizing solution. Appendix F.3 analyzes gradient flow
after the addition of “poisoned” samples, establishing that generalization degrades. Appendix F.4
proves that the different initialization sets considered in Appendix F.2 and Appendix F.3 intersect,
and that one can construct an open set I such that both phenomena occur.

F.1 Setting and Additional Notation

We will slightly change our notation and use L to denote the sequence length, and k as an index. For
any x ∈ Rd and any r ≥ 0 we use Br(x) to denote

Br(x) := {z ∈ Rd : ∥x− z∥2 < r} (13)

and Br(x) to denote

Br(x) := {z ∈ Rd : ∥x− z∥2 ≤ r} . (14)

For any x ∈ Rd and any V ⊆ Rd we define the Euclidean distance between x and V as

Dist(x,V) := inf
z∈V

∥x− z∥2 . (15)

We use W1 and W2 to respectively denote

W1 := Span{1} , W2 := Span{e1 − e2, . . . , e1 − ed} . (16)

Note that for any j ∈ {2, . . . , d} it holds that

1⊤(e1 − ej) = 1− 1 = 0 .

Hence W1 and W2 are orthogonal. Additionally, it holds that

W1 ∩W2 = {0} , dimW1 = 1 , dimW2 = d− 1 ,

hence W1 ∪W2 = Rd. Finally, for any ψ ≥ 0 we use Diff(ψ) to denote

Diff(ψ) :=
{
x ∈ Rd : ∀i, j ∈ [d], |xi − xj | ≤ ψ

}
(17)

and Diff(ψ)C to denote

Diff(ψ)C :=

{
x ∈ Rd : ∃i, j ∈ [d] s.t. |xi − xj | > ψ

}
. (18)

27

Recall that the teacher SSM (Equation (10)) is given by (A∗, B∗, C∗), where

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
.

We claim that the teacher is equivalent, i.e. has the same impulse response, as a d-dimensional SSM
with Ad = Diag(1, 0, . . . , 0), Bd = 1 and Cd = 1⊤.
Proposition 5. For all i ≥ 0

C∗(A∗)iB∗ = Cd(Ad)iBd .

Proof. It is easy to see that both expressions evaluate to d when i = 0, and to 1 when i ≥ 1.

We will henceforth abuse notation slightly and redefine the teacher (A∗, B∗, C∗) to equal this d
dimensional teacher, i.e. we set A∗ := Ad, B∗ := Bd, C∗ := Cd.

We denote the generalization error on sequences of length L (Definition 1) by GenL(A), i.e.

GenL(A) := maxL′∈{0,1,...,L−1}
∣∣BAL′

C −B∗(A∗)L
′

C∗∣∣ .
For a training set S =

(
(x(i), y(i))

)n
i=1

, we make a slight abuse of notation and denote the training
error of a weight matrix A ∈ Rd,d to be

ℓS(A) := ℓS(A,B,C) =
1

n

n∑
i=1

(
y(i) − ϕ(A,B,C)(x

(i))
)2

.

Note that B and C are kept implicit in these notations, as they are fixed to the values B = 1, C = 1⊤

throughout our analysis.

Examining the teacher weights (A∗, B∗, C∗), one can note that for any j ∈ [L− 1] and any z ∈ R it
holds that

ϕ(A∗,B∗,C∗)(z · ej) =
d∑
k=1

c∗k(a
∗
k)
L−jb∗kz = 1 · 1L−j · 1 · z + 0 · z = z .

To facilitate clearer distinction, we denote S1 the training set considered in the first case, and S2 the
training set considered in the second case. We provide below an explicit description of the training
sets and their induced losses.
Definition 2. The training sets S1,S2 are defined as follows:

S1 := {(x, y)} = {
(
e1, ϕA∗,B∗,C∗(e1)

)
} ,

S2 := {(x, y), (x†, y†)} = {
(
e1, ϕA∗,B∗,C∗(e1)

)
,
(
eL−1, ϕA∗,B∗,C∗(eL−1)

)
} .

The objective ℓS1
(·) takes the following form:

ℓS1
(A) =

(
ϕ(A∗,B∗,C∗)(e1)− ϕ(A,B,C)(e1)

)2
=

(
1−

d∑
k=1

aL−1
k

)2

. (19)

For any time t ≥ 0 and any index j ∈ [d] the gradient flow update ȧj(t;S1) takes the following form

ȧj(t;S1) = − ∂

∂aj(t;S1)
ℓS1

(
A(t;S1)

)
= 2(L− 1)

(
1−

d∑
k=1

ak(t;S1)
L−1

)
aj(t;S1)

L−2 . (20)

The objective ℓS2
(·) takes the following form:

ℓS2
(A) =

1

2

((
ϕA∗,B∗,C∗(e1)− ϕ(A,B,C)(e1)

)2
+
(
ϕ(A∗,B∗,C∗)(eL−1)− ϕ(A,B,C)(eL−1)

)2)
=

1

2

((
1−

d∑
k=1

aL−1
k

)2
+
(
1−

d∑
k=1

ak
)2)

. (21)

28

For any time t ≥ 0 and any index j ∈ [d] the gradient flow update ȧj(t;S2) takes the following form

ȧj(t;S2) = − ∂

∂aj(t;S2)
ℓS2

(
A(t;S2)

)
= (L− 1)

(
1−

d∑
k=1

ak(t;S2)
L−1

)
aj(t;S2)

L−2 + 1−
d∑
k=1

ak(t;S2) .
(22)

Note that by Lemma 23 the above flows are defined for all t ≥ 0. We denote by I0 a set of initial
values for the matrix A which we will use throughout the proof:10

I0 :=

{
α · (ζ1, . . . , ζd)⊤ ∈ Rd : α ∈ (0,

1

2d
), 1 = ζ1 > ζ2 > · · · > ζd > 0

}
. (23)

Throughout Appendix F.2 and Appendix F.3 we will be concerned with subsets of I0 for which the
respective claims hold.

F.2 Gradient Flow Under S1 Generalizes

Throughout this part, we omit the dependence on S1 for simplicity. We begin by proving that when
initializing at some A(0) ∈ I0, the parameters of A converge to a point where the training loss equals
zero.
Lemma 1. Suppose we initialize at A(0) ∈ I0 and evolve A(t) according to the gradient flow
dynamics in Equation (19). Then the limit limt→∞A(t) =: Â1 exists and satisfies

ℓ(Â1) = 0 .

Proof. We first prove that for any j ∈ [d] and for any time t ≥ 0 it holds that

αζj ≤ aj(t) ≤ 1 .

Recall that

ȧj(t) = 2(L− 1)

(
1−

d∑
k=1

ak(t)
L−1

)
aj(t)

L−2 .

Hence, by Equation (23) it must hold that ȧj(t) ≥ 0 for any t ≥ 0; Since αζj > 0 and since L− 1 is
even we have

1−
d∑
k=1

(αζk)
L−1 ≥ 1− d · (αζ1)L−1 ≥ 1− d(

1

2d
)L−1 > 0 .

Hence at time t = 0 we have ȧj(0) > 0. For any t > 0, if the derivative equals zero then
either 1 −

∑d
k=1 ak(t)

L−1 = 0 or aj(t) = 0, implying the derivative must remain equal to zero
for t

′
> t. Hence, αζj ≤ aj(t) for any t ≥ 0. Additionally, for any time t ≥ 0 it holds that

1−
∑d
k=1 ak(t)

L−1 ≥ 0. At initialization it is positive by the above, and again if at some point it
is equals zero then it must remain zero thereafter. Therefore, aj(t) can never reach 1: since L− 1
is even and since all entries are strictly positive, if it were to reach or cross 1 we would reach a
contradiction to the previous argument. Thus, we have showed that the gradient flow trajectory is
contained in the following open and bounded set:

V = Bd(0) \Bαζd
2

(0) .

Note that the teacher A∗ is within V . Next, we claim that within V the objective ℓ satisfies the PL
condition (see Definition 13) with PL coefficient 2(L− 1)2(αζd

2
√
d
)2L−4. Indeed, for any A ∈ V and

any j ∈ [d] it holds that

∂

∂aj
ℓ(A) = 2(L− 1)

(
1−

d∑
k=1

aL−1
k

)
aL−2
j .

10A is a diagonal matrix , so we treat I0 as a subset of Rd.

29

For any A ∈ V there must exist an index j∗ ∈ [d] for which |aj∗ | ≥ αζd
2
√
d

and thus

∥∇ℓ(A)∥22 ≥
(
2(L− 1)

(
1−

d∑
k=1

aL−1
k

)
aL−2
j∗

)2

= 4(L− 1)2a2L−4
j∗ ℓ(A)

≥ 2 · 2(L− 1)2
(
αζd

2
√
d

)2L−4

ℓ(A) .

Finally, there exists some constant M > 0 such that within V the objective ℓ has M -Lipschitz
gradients, since ℓ is analytic in Rd and since V is contained within the compact and bounded Bd(0).
The above conditions allows us to invoke Lemma 25 which states that the limit limt→∞A(t) =: Â1

exists and satisfies ℓ(A(t)) = 0 as required.

We now introduce a set I1 ⊆ I0, under which we prove the rest of the claims in this section.

Definition 3. Let η1 > 0. We use I1(η1) to denote the following subset of I0:

I1(η1) :=
{
A ∈ I0 : ∀j ∈ {2, . . . , d}. α ≤

(
1− (1− η1)

L−1 − η1
d− 1

) 1
L−1 1

ζj
(1− ζL−3

j)
1

L−3

}
.

We now prove that if A(0) ∈ I1, the first diagonal entry tends to 1, while the rest of the entries must
remain close to 0.

Proposition 6. Let η1 > 0. Suppose we initialize at A(0) ∈ I1(η1) and evolve A(t) according to
the gradient flow dynamics in Equation (19). For any j ∈ {2, . . . , d} and for any time t ≥ 0 it holds
that:

0 ≤ aj(t) ≤
(
1− (1− η1)

L−1 − η1
d− 1

) 1
L−1

.

Additionally, there exists some time t∗ ≥ 0 such that for any time t ≥ t∗ it holds that:

1− η1 ≤ a1(t) ≤ 1 .

Proof. Per the proof of Lemma 1, ȧj(t) ≥ 0 for any j ∈ [d] and t ≥ 0 and thus the entries aj(t) are
positive and non-decreasing (as functions of t). Reordering the dynamics, we have the following for
any j ∈ {2, . . . , d} and for any time τ ≥ 0:

ȧj(τ)aj(τ)
−L+2 =

ȧj(τ)

aj(τ)L−2
= 2(L− 1)

(
1−

d∑
k=1

ak(τ)
L−1

)
=

ȧ1(τ)

a1(τ)L−2
= ȧ1(τ)a1(τ)

−L+2 .

Integrating both sides w.r.t time, we receive the following for any time t ≥ 0:

aj(t)
−L+3

−L+ 3
− aj(0)

−L+3

−L+ 3
=

∫ t

0

ȧj(τ)aj(τ)
−L+2dτ

=

∫ t

0

ȧ1(τ)a1(τ)
−L+2dτ

=
a1(t)

−L+3

−L+ 3
− a1(0)

−L+3

−L+ 3
.

Organizing the equation and plugging the initial values, we get that

aj(t)
−L+3 = a1(t)

−L+3 + (αζj)
−L+3 − α−L+3 .

30

Both sides are positive by our first argument and since αζj < α, and so taking the 1
L−3 root yields

aj(t) =

(
1

a1(t)−L+3 + (αζj)−L+3 − α−L+3

) 1
L−3

≤
(

1
1

(αζj)L−3 − 1
αL−3

) 1
L−3

=

(
(αζj)

L−3

1− ζL−3
j

) 1
L−3

= αζj

(
1

1− ζL−3
j

) 1
L−3

.

Since A(0) ∈ I1(η1), we obtain that

aj(t) ≤
(
1− (1− η1)

L−1 − η1
d− 1

) 1
L−1 1

ζj
(1− ζL−3

j)
1

L−3 ζj

(
1

1− ζL−3
j

) 1
L−3

=

(
1− (1− η1)

L−1 − η1
d− 1

) 1
L−1

as desired. We now show that there exists t∗ ≥ 0 such that for any time t ≥ t∗ it holds that
a1(t) ≥ 1− η1 .

By Lemma 1, there exists time t∗ ≥ 0 such that for any t ≥ t∗ it holds that

ℓ(A(t)) =

(
1−

d∑
k=1

ak(t)
L−1

)2

≤ η21 .

Therefore, for any time t ≥ t∗ we have∣∣∣∣1− d∑
k=1

ak(t)
L−1

∣∣∣∣ ≤ η1 =⇒ 1− η1 ≤
d∑
k=1

ak(t)
L−1 ≤ 1 + η1 .

Focusing on the left hand side and plugging the bound on the rest of the entries, we receive

1− η1 ≤ a1(t)
L−1 + (d− 1) · 1− (1− η1)

L−1 − η1
d− 1

= a1(t)
L−1 + 1− (1− η1)

L−1 − η1 .

Rearranging yields

(1− η1)
L−1 ≤ a1(t)

L−1 =⇒ 1− η1 ≤ a1(t) .

Additionally, a1(t) can never cross 1 - since L− 1 is even and since all entries are strictly positive, if
it were to cross 1 we would reach a contradiction to the argument in Lemma 1 stating that the residual
1−

∑d
k=1 ak(t)

L−1 is always non-negative. With this we complete our proof.

An immediate result from Proposition 6 is the following corollary regarding the student’s recovery of
the teacher.
Corollary 1. Let η1 > 0. Suppose we initialize at A(0) ∈ I1(η1) and evolve A(t) according to the
gradient flow dynamics in Equation (19). The limit limt→∞A(t) =: Â1 satisfies

∥Â1 −A∗∥2 ≤

√
η21 + (d− 1)

(
1− (1− η1)L−1 − η1

d− 1

) 2
L−1

.

Proof. By Proposition 6, there exists time t∗ ≥ 0 such that for any time t ≥ t∗ it holds that
∥A(t)−A∗∥2

=

√√√√(1− a1(t))2 +

d∑
k=2

(
0− ak(t)

)2 ≤

√
η21 + (d− 1)

(
1− (1− η1)L−1 − η1

d− 1

) 2
L−1

.

The argument follows from Lemma 1 and from continuity.

31

Remark 1. Note that the upper bound in corollary 1 satisfies the following

lim
η1→0

√
η21 + (d− 1)

(
1− (1− η1)L−1 − η1

d− 1

) 2
L−1

=

√
lim
η1→0

η21 + (d− 1)

(
1− (1− η1)L−1 − η1

d− 1

) 2
L−1

= 0 .

Hence, for any recovery threshold δ > 0 there exists η1,δ > 0 such that if A(0) ∈ I1(η1,δ) then Â1

recovers A∗ with an error of no more than δ.

So far, we have argued that the parameters of A converge to a point which is close A∗. We conclude
by showing that this leads to low generalization error.

Proposition 7. Let L
′ ≥ L+2. For any ϵ > 0 there exists an open set of initializations I1 := I1(δϵ)

such that under S1, A converges to a point such that GenL′ (A) ≤ ϵ.

Proof. Under the dataset S1, we have shown above that for any δ > 0 there exists an open set of
initializations I1(δ) such that GF will converge to a solution a whose parameters satisfy ∥A−A∗∥2 ≤
δ . It follows from the continuity of the length L

′
impulse response that there is an open set of

initializations from which we converge to a point GenL′ (A) ≤ ϵ.

We abuse notation slightly and denote I1(ϵ) := I1(η1,δ1) where δ1 is the maximal δ that guarantees
GenL′ (Â1) ≤ ϵ.

F.3 Gradient Flow Over S2 Converges but Does Not Generalize

In this section, we show that one can find a set of initializations I2 such that gradient flow under S2

converges to a point with high generalization error. The proof shows that gradient flow trajectories
initialized in I2 evolve similarly to reference trajectories which provably stays away from any
permutation of A∗.11 Since the training loss is non-convex, gradient flow trajectories can diverge
from one another exponentially fast. Establishing that a reference trajectory is tracked thus requires
sharp bounds on convergence times. The proof in this section is rather involved and is thus split into
several parts.

• Appendix F.3.1 defines the reference trajectories and shows their poor ability of generaliza-
tion.

• Appendix F.3.2 characterizes the critical points of the objective ℓ, focusing on a specific
saddle point of interest (which we denote s).

• Appendix F.3.3 presents relevant background on dynamical systems, introducing a lineariza-
tion result needed for the rest of the proof.

• In Appendix F.3.4 we start analyzing the trajectories themselves, showing that they must
pass near s.

• Appendix F.3.5 shows that the trajectories must escape sufficiently fast from s using the
tools presented in F.3.3.

• Appendix F.3.6 proves that after escaping from s the trajectories converge to global minima.

• Appendix F.3.7 shows that the overall divergence between trajectories emanating from I2
and their corresponding reference trajectories can be bounded from above, implying the
former trajectories have poor generalization.

Throughout this part, we omit the dependence on S2 for simplicity.

11Any permutation of A∗ yields a system with the same impulse response.

32

F.3.1 Reference Trajectories

We begin by proving the following useful lemma which states that gradient flow maintains the order
of the entries of A.

Lemma 2. Suppose we initialize at A(0) ∈ Rd and evolve A(t) according to Equation (22). Let
π : [d] → [d] be a permutation such that for any j ∈ [d− 1]:

aπ(j)(0) ≥ aπ(j+1)(0) .

Then for any j ∈ [d− 1] and any t ≥ 0 it holds that

aπ(j)(t) ≥ aπ(j+1)(t) .

Proof. Recall the dynamics from Equation (22):

ȧj(t) = (L− 1)

(
1−

d∑
k=1

ak(t)
L−1

)
aj(t)

L−2 + 1−
d∑
k=1

ak(t) .

Fix j ∈ [d− 1]. By the linearity of the derivative, we obtain the following equality by plugging the
above dynamics

d

dt

(
aπ(j)(t)− aπ(j+1)(t)

)
= ˙aπ(j)(t)− ˙aπ(j+1)(t)

= 2(L− 1)

(
1−

d∑
k=1

ak(t)
L−1

)(
aπ(j)(t)

L−2 − aπ(j+1)(t)
L−2

)
.

Assume on the contrary there exists some time t1 ≥ 0 for which aπ(j)(t1) < aπ(j+1)(t1). By the
assumption, t1 > 0. By continuity, there must exist some time t2 ∈ [0, t1) for which aπ(j)(t2) =

aπ(j+1)(t2). This would imply that for any t ≥ t2, the derivative d
dt

(
aπ(j)(t)−aπ(j+1)(t)

)
is equal

zero, which in turn would imply that

aπ(j)(t)− aπ(j+1)(t) = aπ(j)(t2)− aπ(j+1)(t2) = 0

in contradiction to the assumption on t1.

In what follows, we define the notion of reference initialization.

Definition 4. Let A ∈ I0 be some initialization of the parameters. The corresponding reference
initialization Aref is defined as

∀j ∈ [d]. arefj =

{
a1, j = 1, 2

aj , otherwise
.

We use Aref (t) to denote the gradient flow trajectories emanating from the reference initializations.

We now prove that any point with zero training loss which is sufficiently close to a reference trajecory
has poor generalization.

Lemma 3. Let L
′ ≥ L+2. There exists some δ2 > 0 such that any pointA = (a1, a2, . . . , ad) ∈ Rd

which satisfies:

• ℓ(A) = 0

• a1 ≥ a2 ≥ · · · ≥ ad

• ∥A−Aeq∥ ≤ δ2 for some point Aeq = (aeq1 , . . . , a
eq
d) ∈ Rd such that aeq1 = aeq2

must satisfy GenL′ (A) ≥ min

{
0.1, 1

9d · (1− (0.6)
1

L−1)

}
.

33

Proof. Let L∗ ∈ {L+ 1, . . . , L
′} such that L∗ is even. We now show that

d∑
k=1

aL
∗−1

k ≤ 1− c

for some constant c > 0 which is independent of L
′
. This in turn implies that

GenL′ (A) ≥ (1− CAL
∗−1B) ≥ c

which gives us the desired lower bound. To do this, we write

d∑
k

aL
∗−1

k =

d∑
k

aL−1
k aL

∗−L
k .

First note that |ak| ≤ 1 for all k ∈ [d] - this follows from the fact that L− 1 is even and from the fact
that ℓ(A) = 0 and hence

∑
k a

L−1
k = 1. Therefore, for all k ∈ [d] we have

|aL
∗−1

k | = |aL−1
k aL

∗−L
k | = |aL−1

k | · |aL
∗−L

k | ≤ aL−1
k .

Assume first that a1 = a2 = a. Then clearly aL−1
1 + aL−1

2 = 2aL−1 ≤ 1 and hence

aL−1
1 , aL−1

2 ≤ 1

2
=⇒ a1, a2 ≤ (

1

2
)

1
L−1 .

Now by continuity it follows that for sufficiently small δ2 > 0, we have that if ∥A−Aeq∥ ≤ δ2 then

a1, a2 ≤ (0.6)
1

L−1 .

Let J := {r : ar ≤ 0}. For such indices we have aL
∗−1

r ≤ 0. Suppose that∑
k∈J

aL−1
k ≥ 0.1 .

Then we have that
d∑
k=1

aL
∗−1

k ≤
∑
k/∈J

aL
∗−1

k =
∑
k/∈J

aL−1
k aL

∗−L
k ≤

∑
k/∈J

aL−1
k = 1−

∑
k/∈J

aL−1
k ≤ 0.9

so we can take c = 0.1. Otherwise we have that∑
k/∈J

aL−1
k ≥ 0.9

so there exists some k∗ /∈ J such that aL−1
k∗ ≥ 1

9d . On the other hand, we have

ak∗ ≤ a1 ≤ |a1| ≤ (0.6)
1

L−1 .

Therefore, since k∗ /∈ J we have 0 ≤ aL
∗−L

k∗ ≤ ak∗ and so

aL−1
k∗ − aL

∗−1
k∗ = aL−1

k∗ (1− aL
∗−L

k∗) ≥ 1

9d
(1− ak∗) ≥

1

9d

(
1− (0.6)

1
L−1
)

.

This yields the following:

1−
d∑
k=1

aL
∗−1

k =

d∑
k=1

aL−1
k −

d∑
k=1

aL
∗−1

k =

d∑
k=1

(aL−1
k − aL

∗−1
k) ≥ 1

9d

(
1− (0.6)

1
L−1
)

which gives us c = 1
9d

(
1 − (0.6)

1
L−1
)
. In either case we can find a constant c > 0 proving the

argument.

Lemma 3 motivates us to find an open subset of initializations under which the respective gradient
flow trajectories remain close to their reference trajectory counterparts, as this would allow us to
lower bound generalization error.

34

F.3.2 Characterization of Critical Points

In this section we characterize the critical points of the objective ℓ.

Lemma 4. Let A ∈ Rd be a point such that

∇ℓ(A) = 0 .

Then either A is a global minimum, i.e. ℓ(A) = 0, or exists s ∈ R such that A = s · 1.

Proof. By Equation (22), for any j ∈ [d] it holds that

∂

∂aj
ℓ(A) = (L− 1)

(d∑
k=1

aL−1
k − 1

)
aL−2
j +

d∑
k=1

ak − 1 = 0 .

If
∑d
k=1 a

L−1
k − 1 = 0, then the above implies that

∑d
k=1 ak − 1 = 0. This in turn yields that

ℓ(A) =
1

2

((
1−

d∑
k=1

aL−1
k

)2
+
(
1−

d∑
k=1

ak
)2)

= 0 ,

i.e. A is a global minimum. Suppose
∑d
k=1 a

L−1
k − 1 ̸= 0. Then we obtain by rearranging that

aL−2
j =

(
1−

∑d
k=1 ak

)
(L− 1)

(∑d
k=1 a

L−1
k − 1

) .

L− 2 is odd, and so taking the L− 2 root on both sides we obtain that

aj =


(
1−

∑d
k=1 ak

)
(L− 1)

(∑d
k=1 a

L−1
k − 1

)


1
L−2

:= s

completing our proof.

Lemma 4 establishes that critical points of ℓ which are not global minima must reside within
W1 = Span{1} (Equation (16)). These saddle points pose an obstacle to the convergence of gradient
flow to a global minimum. The following lemma outlines the type of points gradient flow could
encounter assuming we initialize at I0 or at a reference initialization.

Lemma 5. Suppose we initialize at A(0) ∈ I0 and at Aref (0), and evolve A(t) and Aref (t)
according to Equation (22). Then for any time t ≥ 0 it holds that

ℓ
(
A(t)

)
, ℓ
(
Aref (t)

)
≤ 1 .

Proof. Per Equation (23) the entries at initialization are arranged in descending order. Since L− 1 is
even we have that the initializations satisfy the inequalities

1−
d∑
k=1

ak(0)
L−1 = 1−

d∑
k=1

(αζk)
L−1 ≥ 1− 2(αζ1)

L−1 −
d∑
k=3

(αζk)
L−1 = 1−

d∑
k=1

arefk (0)L−1

and

1−
d∑
k=1

ak(0) = 1−
d∑
k=1

(αζk) ≥ 1− 2(αζ1)−
d∑
k=3

(αζk) = 1−
d∑
k=1

arefk (0) .

By Equation (23) it holds that αζ1 < 1
2d , thus we have that

1− 2(αζ1)
L−1 −

d∑
k=3

(αζk)
L−1 ≥ 1− d · (αζ1)L−1 ≥ 1− d(

1

2d
)L−1 > 0

35

and

1− 2(αζ1)−
d∑
k=3

(αζk) ≥ 1− d · (αζ1) ≥ 1− d(
1

2d
) > 0 .

On the other hand, by Equation (23) it also holds that αζd > 0, thus we have that

1−
d∑
k=1

(αζk)
L−1 ≤ 1− d · (αζd)L−1 < 1

and

1−
d∑
k=1

(αζk) ≤ 1− d · (αζd) < 1 .

Therefore, the quantities

1−
d∑
k=1

ak(0)
L−1 , 1−

d∑
k=1

arefk (0)L−1 , 1−
d∑
k=1

ak(0) , 1−
d∑
k=1

arefk (0)

are all within the interval (0, 1). Thus, the objective at both initializations is no more than 1 since
both satisfy

ℓ(A) =
1

2

(
(1− d · aL−1)2 + (1− d · a)2

)
≤ 1

2
(12 + 12) ≤ 1 .

The proof is completed by the argument in Lemma 22 which states that under gradient flow the
objective is non-increasing.

The following lemma shows that only a specific region of W1 can contain critical points with loss
lower than that of the initialization points we consider. This, along with Lemma 22, implies that only
a specific region of W1 is relevant.

Lemma 6. Let A ∈ Rd be a point for which there exists a ∈ R such that A = a · 1. If a ̸∈ [1d ,
3
d]

then either ∇ℓ(A) ̸= 0 or ℓ(A) > 1

Proof. We begin by proving that for any a ∈ R, if a /∈ (0, 3d] then a · 1 must incur a loss greater than
1. If a > 3

d then it holds that d · a > 3, hence we obtain that

ℓ(a · 1) = 1

2

(
(1− d · aL−1)2 + (1− d · a)2

)
≥ (1− d · a)2

2
> 1 .

The same argument applies when a < − 1
d , since in that case d · a < −1 =⇒ (1− d · a)2 > 2. Next,

we show that if a ∈ [− 1
d ,

1
d) then ∇ℓ(a · 1) ̸= 0. Suppose a ∈ [− 1

d , 0]. L − 1 is even and d ≥ 8
hence

d · aL−1 − 1 ∈ [−1, 0) =⇒ (L− 1)(d · aL−1 − 1)aL−2 ∈
(
0,
L− 1

dL−2

)
⊆
(
0,
L− 1

8L−2

)
.

The function f(L) := L−1
8L−2 is decreasing for L ≥ 3 and acheives the value 0.25 when L = 3, hence

since L ≥ 3 we get f(L) ≤ 0.25. Thus we have for any j ∈ [d] that the gradient’s jth entry statisfies

∇ℓ(a · 1) =
(
(L− 1)(d · aL−1)aL−2 + (d · a− 1)

)
≤
(
0.25 + (d · a− 1)

)
≤ (0.25− 1) < 0 .

Suppose a ∈ (0, 1d). In this case, we have that

aL−1 <
1

d
=⇒ d · aL−1 < 1 =⇒ (L− 1)(d · aL−1 − 1)aL−2 < 0 .

Hence, since d · a− 1 < 0 we have for any j ∈ [d] that the gradient’s jth entry satisfies

∇ℓ(a · 1)j =
(
(L− 1)(d · aL−1 − 1)aL−2 + (d · a− 1)

)
< 0 .

Therefore, any critical point which is not a global minimum and has value in (0, 1) cannot reside
outside of [1d ,

3
d].

36

Having disqualified most of W1, we now identify the unique critical point on the non-disqualified
region of W1 and show that it is not a global minimum.
Lemma 7. There exists a unique s ∈ [1d ,

3
d] for which ∇ℓ(s · 1) = 0. Additionally, s satisfies

s := s · 1 = argmin
A∈W1

ℓ(A)

and

ℓ(s) ≥ 1

8
> 0 .

Proof. We focus on the following function:

f(a) =
1

2

(
(1− d · aL−1)2 + (1− d · a)2

)
.

Note that f(a) = ℓ(a · 1). It holds that

f
′
(a) := (L− 1)(d · aL−1 − 1)aL−2 + (d · a− 1) .

Note that f
′
(a) = ∇ℓ(a · 1)j for any j ∈ [d], and so f

′
(a) = 0 if and only if ∇ℓ(a · 1) = 0. We

proceed to show that within [− 1
d ,

3
d], f

′(a) has a root and is monotonic. It holds that

f
′
(0) = d

(
(L− 1)(d · (0)L−1 − 1)(0)L−2 + (d · 0− 1)

)
= −d < 0 .

Next, since d ≥ 8 it holds that

(L− 1)(1− d · (3
d
)L−1)(

3

d
)L−2 ≤ (L− 1)(

3

d
)L−2 ≤ L− 1

2L−2
(
3

4
)L−2 =: h(L) .

h(L) is a decreasing function for L ≥ 3 and achieves the value 0.75 when L = 3, hence since L ≥ 3
we get h(L) ≤ 1. Therefore,

f
′
(
3

d
) = d

(
(L− 1)(d · (3

d
)L−1 − 1)(

3

d
)L−2 + (d · 3

d
− 1)

)
= d
(
2− (L− 1)(1− d · (3

d
)L−1)(

3

d
)L−2

)
≥ d(2− 1)

> 0 .

Hence by continuity, f
′
(a) has a root within [− 1

d ,
3
d]. Note that by Lemma 4, f

′
(a) doesn’t have a

root within [− 1
d ,

1
d), implying the root is actually achieved in [1d ,

3
d]. Next, it holds that

f
′′
(a) = d

(
(L− 1)(2L− 3)d · a2L−4 − (L− 1)(L− 2)aL−3 + d

)
≥ d
(
d− (L− 1)(L− 2)aL−3

)
.

Because d ≥ 8 and L− 3 is even, we have for any a ∈ [− 1
d ,

3
d]

(L− 1)(L− 2)aL−3 ≤ (L− 1)(L− 2)(
3

d
)L−3 ≤ (L− 1)(L− 2)

2L−3
(
3

4
)L−3 =: g(L) .

g(L) is a decreasing function for L ≥ 4 and achieves the value 2.25 when L = 4, hence since L ≥ 4
we get g(L) ≤ 2.25. Therefore

f
′′
(a) ≥ d(d− 2.25) > 0 ,

implying f
′

is monotonically increasing in [− 1
d ,

3
d]. Hence, there exists a unique s ∈ [1d ,

3
d] such that

f
′
(s) = 0, which implies that ∇ℓ(s · 1) = 0. Note that we showed that s is a minimizer of f over

[− 1
d ,

3
d], as f ’s derivative is zero at s and the second derivative is positive along the interval. Finally,

let a ∈ R \ [− 1
d ,

3
d]. By Lemma 4, it holds that

f(a) = ℓ(a · 1) ≥ 1 .

37

On the other hand, it also holds that

f(s) < f(
1

d
) =

1

2

(
(1− d · (1

d
)L−1)2 + (1− d · 1

d
)2
)
≤ 1

2
.

Thus, s is a minimizer of f over R, meaning that s := s · 1 is a minimizer of ℓ over W1 as required.
On the other hand, since d ≥ 8 and L ≥ 4 it holds that

1− d · sL−1 ≥ 1− d · (3
d
)L−1 = 1− 3 · (3

d
)L−2 ≥ 1− 3 · (3

8
)2 ≥ 1

2
.

Therefore,

ℓ(s) =
1

2

(
(1− d · sL−1)2 + (1− d · s)2

)
≥ 1

2
(1− d · sL−1)2 ≥ 1

8
> 0

completing the proof.

In the last two lemmas of this section, we explicitly compute an eigendecomposition of ℓ’s hessian in
s and bound its eigenvalues.
Lemma 8. Consider s defined in Lemma 7. An eigendecomposition of the symmetric hessian matrix
∇2ℓ(s) is the following:

• The eigenvector 1 with the eigenvalue

λ+ := (L− 1)
(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 + d .

• For j ∈ {2, . . . , d} the eigenvector e1 − ej with the eigenvalue

λ− := (L− 1)(L− 2)(d · sL−1 − 1)sL−3 .

Proof. We begin by computing the hessian matrix ∇2ℓ(A) for a general A ∈ Rd, which is symmetric
since ℓ(A) is analytic. by Equation (22), for any j ∈ [d] it holds that

∂

∂aj
ℓ(A) = (L− 1)

(d∑
k=1

aL−1
k − 1

)
aL−2
j +

d∑
k=1

ak − 1 .

Therefore, for any j ∈ [d] we have that(
∇2ℓ(A)

)
jj

= (L− 1)

(
(2L− 3)a2L−4

j + (L− 2)

d∑
k=1,k ̸=j

aL−1
k aL−3

j − (L− 2)aL−3
j

)
+ 1 .

Additionally, for any j, i ∈ [d] such that j ̸= i we have that(
∇2ℓ(A)

)
ij

= (L− 1)2aL−2
i aL−2

j + 1 .

Now we specialize to A = s. For j ∈ [d], we obtain(
∇2ℓ(s)

)
jj

= (L− 1)
(
(2L− 3)s2L−4 + (L− 2)(d− 1)s2L−4 − (L− 2)sL−3

)
+1

= (L− 1)
(
(2L− 3 + L · d− 2d− L+ 2)s2L−4 − (L− 2)sL−3

)
+1

= (L− 1)
(
(L− 1 + L · d− 2d)s2L−4 − (L− 2)sL−3

)
+1 =: ω1 .

For j, i ∈ [d] such that j ̸= i we obtain that(
∇2ℓ(s)

)
ij

= (L− 1)2s2L−4 + 1 =: ω2 .

Observe that

∇2ℓ(s) = (ω1 − ω2)Id + ω21d,d

where 1d,d is the d, d all ones matrix. Hence, by Lemma 26 we obtain that an eigendecomposition
for ∇2ℓ(s) is the following:

38

• The eigenvector 1 with the eigenvalue λ+ := ω1 + (d− 1)ω2.

• For j ∈ {2, . . . , d} the eigenvector e1 − ej with the eigenvalue λ− := ω1 − ω2.

λ+ takes the following form:

λ+ = (L− 1)
(
(L− 1 + L · d− 2d)s2L−4 − (L− 2)sL−3

)
+1 + (d− 1)

(
(L− 1)2s2L−4 + 1

)
= (L− 1)

(
(L− 1 + L · d− 2d+ Ld− d− L+ 1)s2L−4 − (L− 2)sL−3

)
+d

= (L− 1)
(
(2L · d− 3d)s2L−4 − (L− 2)sL−3

)
+d

= (L− 1)
(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 + d .

λ− takes the following form:

λ− = (L− 1)
(
(L− 1 + L · d− 2d)s2L−4 − (L− 2)sL−3

)
+1−

(
(L− 1)2s2L−4 + 1

)
= (L− 1)

(
(L− 1 + L · d− 2d− L+ 1)s2L−4 − (L− 2)sL−3

)
= (L− 1)

(
(L · d− 2d)s2L−4 − (L− 2)sL−3

)
= (L− 1)

(
(L− 2)d · sL−1 − (L− 2)

)
sL−3

= (L− 1)(L− 2)
(
d · sL−1 − 1

)
sL−3 .

We now turn to bounding λ+ and λ−.
Lemma 9. The eigenvalues λ+ and λ− from Lemma 8 statisfy

λ+ ≥ d− 1 > 0

and

λ− ∈ (−1, 0) .

Proof. Since s ∈ [1d ,
3
d] and since d ≥ 8 we obtain

(L− 1)
(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 ≥ −(L− 1)(L− 2)sL−3

≥ −(L− 1)(L− 2)(
3

d
)L−3

≥ − (L− 1)(L− 2)

2L−3
(
3

4
)L−3 =: f(L) .

f(L) is increasing for L ≥ 7 and achieves a value that is > −0.6 for L = 7. Hence since L ≥ 7 we
get f(L) ≥ −0.6 > −1. Therefore,

λ+ = (L− 1)
(
(2L− 3)d · sL−1 − (L− 2)

)
sL−3 + d ≥ d− 1 > 0 .

Next, since s ∈ [1d ,
3
d] and since d ≥ 8 we obtain

(L− 1)(L− 2)sL−3 ≤ (L− 1)(L− 2)(
3

d
)L−3 ≤ (L− 1)(L− 2)

2L−3
(
3

4
)L−3 =: g(L) .

g(L) is decreasing and positive for L ≥ 7 and achieves a value that is < 0.6 for L = 7. Hence since
L ≥ 7 we get 0 ≤ g(L) ≤ 0.6 < 1. Additionally, note that

−1 ≤ d · sL−1 − 1 ≤ 3 · (3
d
)L−2 − 1 ≤ 3(

3

8
)L−2 < 0 .

Therefore, we obtain that

λ− = (L− 1)(L− 2)sL−3(d · sL−1 − 1) ∈ (−1, 0)

which completes our proof.

39

In the first half of F.3.2 we characterized the critical point s and established that it is the only critical
point that is relevant in our case, since it is not a global minimum and since we cannot exclude the
possibility that gradient flow would converge to it. In what follows, we give a closed form solution to
the dynamics obtained under the linear approximation around s to our true dynamics. We will show
that under these linearized dynamics, any gradient flow trajectory not initialized in W1 will escape s
at an exponential rate.
Lemma 10. The linear approximation around s of the gradient flow dynamics (see Equation (22)) is
defined by

Ȧlin(t) := −∇ℓ(s)−∇2ℓ(s)
(
Alin(t)− s

)
= −∇2ℓ(s)

(
Alin(t)− s

)
.

The solution to the above linear differential equations system is given by

Alin(t) = Q exp

(
− t ·Diag(λ+, λ−, . . . , λ−)

)
Q⊤(Alin(0)− s

)
+ s ,

where λ+ and λ− are the eigenvalues ∇2ℓ(s) found in Lemma 8, and Q is an orthogonal matrix
whose first column is 1√

d
1 and the rest of its columns are an orthonormal basis of W2 (defined in

Equation (16)).

Proof. First note that the first order Taylor’s expansion around s of −∇ℓ(A) is given by

−∇ℓ(s)−∇2ℓ(s)
(
A(t)− s

)
.

Since s is a critical point of ℓ (i.e., ∇ℓ(s) = 0), we obtain the following linear approximation

Ȧlin(t) = −∇2ℓ(s)
(
A(t)− s

)
.

Per Lemma 8, an eigendecomposition of ∇2ℓ(s) is given by the eigenvector 1 with the eigenvalue
λ+, and the eigenvectors {e1 − e2, . . . , e1 − ed} with the eigenvalue λ−. Therefore, we may write
∇2ℓ(s) as the orthogonal eigendecomposition

∇2ℓ(s) = QDiag(λ+, λ−, . . . , λ−)Q
⊤

where the first column ofQ is 1√
d
1, and the rest of its columns are an orthonormal basis of Span{e1−

e2, . . . , e1 − ed} = W2. The proof is completed by invoking Lemma 27 which yields the following
solution to the linear system:

Alin(t) = Q exp

(
− t ·Diag(λ+, λ−, . . . , λ−)

)
Q⊤(Alin(0)− s

)
+ s .

The following corollary computes the solution of the linear approximation as a function of the
initialization’s projections onto W1 and W2 (Equation (16)):

Corollary 2. Denote the projection of Alin(0) to W1 by β11 where β1 ∈ R, and the projection of
Alin(0) to W2 by β2 · v ∈ W2 where v ∈ W2 is a unit vector β2 ∈ R. Then for any t ≥ 0 it holds
that

Alin(t) =

(
exp(−t · λ+)(β1 − s) + s

)
1+

(
exp(−t · λ−) · β2

)
v .

Proof. Plugging the projections of Alin(0) to W1 and W2, we can write the following:

Alin(0)− s = (β1 − s)1+ β2v .

Hence per Lemma 27 at time t ≥ 0 the solution Alin(t) takes the following form:

Alin(t) = Q exp

(
− t ·Diag(λ+, λ−, . . . , λ−)

)
Q⊤
(
(β1 − s)1+ β2v

)
+s .

40

Q is a projection matrix to the respective eigenspaces of ∇2ℓ(s), hence since 1 ∈ W1 and v ∈ W2

we obtain

Alin(t) =

(
exp(−t · λ+)(β1 − s)

)
1+

(
exp(−t · λ−) · β2

)
v + s

=

(
exp(−t · λ+)(β1 − s) + s

)
1+

(
exp(−t · λ−) · β2

)
v

as required.

Remark 2. Note that if β2 ̸= 0 (i.e. the initialization Alin(0) was not in W1), then the solution to
the system diverges from s. Since λ− < 0 < λ+ we obtain

lim
t→∞

(
exp(−t · λ+)(β1 − s) + s

)
1 = s · 1 = s

and

lim
t→∞

∥∥∥∥(exp(−t · λ−) · β2)v − s

∥∥∥∥
2

→ ∞ .

On the other hand, if β2 = 0 then the solution to the system converges to s.

F.3.3 Linearization of Dynamical Systems

In F.3.2 we characterized the critical point s ∈ 1 and established that it is the only non global
minimum that we could converge to given our initialization. We would now like to show that in
fact gradient flow will escape s and converge rapidly towards a global minimum. Corollary 2 gives
some indication why this may be the case—it shows that the local linearization of the dynanics near
s will tend to repel any trajectory which is not on the line W1. Intuitively one expects that once
we are sufficiently close to s, the linearized dynamics provide a sufficiently good approximation to
ensure that the same conclusion will hold for the nonlinear system as well. Unfortunately, existing
results from the optimization literature (e.g. Jin et al. [35]) give escape times which do not suffice
for our purposes12. To obtain the required bounds on the escape time we will require some results
from dynamical systems theory. Informally, the idea is that if a non linear dynamical system satisfies
certain conditions on the spectrum of its linearization (these are sometimes called “non-resonance
conditions”), then it is locally smoothly equivalent to its linearization. This will allow us to bound
the escape time of gradient flow in terms of the closed form dynamics obtained for the linearization
in Corollary 2.

We begin by defining the notions of smooth conjugation and smooth linearization of dynamical
systems:

Definition 5. Let f, g : Rd → Rd be two CM vector fields with a common fixed point x0 ∈ Rd,
i.e., f(x0) = g(x0) = 0. For any K ∈ [M] we say that f and g are CK-conjugate near x0 when
there exist neighborhoods V1,U1 ⊆ Rd such that x0 ∈ V1,U1 and there exist a CK-diffeomorphism
H : V1 → U1 satisfying the following:

• H(x0) = x0.

• Whenever x(t) ∈ V1 is a solution of ẋ(t) = f
(
x(t)

)
for t in some interval I ⊆ R then

y(t) = H
(
x(t)

)
is a solution of ẏ(t) = g

(
y(t)

)
for t ∈ I.

• Whenever y(t) ∈ U1 is a solution of ẏ(t) = g
(
y(t)

)
for t in some interval I ⊆ R then

x(t) = H−1
(
y(t)

)
is a solution of ẋ(t) = f

(
x(t)

)
for t ∈ I.

The mapping H is referred to as the CK-conjugation between ẋ(t) = f
(
x(t)

)
and ẏ(t) = g

(
y(t)

)
.

Consider the first order Taylor’s expansion of f around x0 given by

ẋ(t) = f
(
x(t)

)
= A

(
x(t)− x0

)
+ F

(
x(t)− x0

)
12recall that our strategy is to bound the divergence between our trajectory and the reference one, and this

divergence depends on the convergence time achieved by gradient flow.

41

where A = Df(x0), F (0) = 0 and DF (0) = 0d,d is the d, d zero matrix. The associated linear
equation is given by

ẏ(t) = A
(
y(t)− x0

)
.

We say that f admits a CK-linearization near x0 when it is CK-conjugate near x0 with its linear
approximation.

We now introduce the Strict Hyperbolicity property and the Non-resonance condition (also known as
the Sternberg condition). These are sufficient conditions for a dynamical system to admit a smooth
linearization and we will later show our system satisfies them.

Definition 6. Let A ∈ Rd,d be a matrix with eigenvalues λ1, . . . , λd ∈ R repeated with multiplicities.
We say that A is strictly hyperbolic when:

• For all j ∈ [d] it holds that λj ̸= 0.

• There exist j+, j− ∈ [d] such that λj+ > 0 and λj− < 0.

Definition 7. Let A ∈ Rd,d be a matrix with eigenvalues λ1, . . . , λd ∈ R repeated with multiplicities.
For any m ∈ Nd≥0 non-negative integers vector and any λ ∈ R we denote γ(λ,m) as the following
quantity:

γ(λ,m) := λ−
d∑
k=1

mk · λk .

For any N ∈ N such that N ≥ 2 we say that A satisfies the non-resonance condition of order N
when for all j ∈ [d] and all m ∈ Nd≥0 such that

∑d
k=1mk ∈ {2, . . . , N} it holds that γ(λj ,m) ̸= 0.

Finally, we present the property of matrix Q-smoothness.

Definition 8. Let A ∈ Rd,d be a matrix with eigenvalues λ1, . . . , λd ∈ R repeated with multiplicities.
Suppose A is strictly hyperbolic. Denote the following quantities:

ρ+ :=
max{|λj | : j ∈ [d], λj > 0}
min{|λj | : j ∈ [d], λj > 0}

, ρ− :=
max{|λj | : j ∈ [d], λj < 0}
min{|λj | : j ∈ [d], λj < 0}

.

Let Q ∈ N>0. We define the Q-smoothness of A to be the largest integer K ∈ N≥0 for which there
exist M,N ∈ N>0 satisfying the following:

• Q =M +N .

• M −Kρ+ ≥ 0.

• N −Kρ− ≥ 0.

We are now ready to present Theorem 1 of [70], which states conditions under which there exists a
smooth linearization of a dynamical system.13

Theorem 3 (Theorem 1 of [70] (adapted)). Let Q ∈ N such that Q ≥ 2. Let f : Rd → Rd be an
analytic (i.e. C∞) vector field with a fixed point x0. Consider the first order Taylor’s expansion of f
around x0 given by

ẋ(t) = f
(
x(t)

)
= A

(
x(t)− x0

)
+ F

(
x(t)− x0

)
where A = Df(x0), F (0) = 0 and DF (0) = 0d,d. If A is strictly hyperbolic (Definition 6) and
satisfies the non-resonance condition of order Q (Definition 7) then f admits a CK linearization
near x0 where K is the Q-smoothness of A (Definition 8).

Proof. See proof of Theorem 1 in [70].

Having introduced these general results on local linearization, we now show that the dynamical
system induced by gradient flow admits a smooth linearization near s. We begin by showing that
−∇2ℓ(s) is strictly hyperbolic and satisfies the non-resonance condition.

13We present slightly adapted results that are specialized to our setting.

42

Proposition 8. Consider s defined in Lemma 7. The hessian matrix −∇2ℓ(s) is strictly hyperbolic
and satisfies the non-resonance condition of order d− 2.

Proof. Per Lemma 9, it holds that

λ+ ≥ d− 1 > 0

and

−1 < λ− < 0 .

Hence by Definition 6, ∇2ℓ(s) is strictly hyperbolic. Additionally, for any m ∈ {0, . . . , d− 2} we
have that

λ+ +m · λ− ≥ d− 1−m > 0 .

Let m ∈ Nd≥0 such that
∑d
k=1mk ∈ {2, . . . , d− 2}. Per definition Definition 7 we have that

γ(λ+,m) = (1−m1)λ+ − λ−

d∑
k=2

mk .

If m1 ∈ {0, 1} then since λ− < 0 < λ+ and
∑d
k=2mk ∈ {1, . . . , d− 2} we obtain

γ(λ+,m) ≥ −λ−
d∑
k=2

mk > 0 .

Otherwise, since
∑d
k=2mk ∈ {0, . . . , d− 4} we obtain by the above that

γ(λ+,m) ≤ −λ+ − λ−

d∑
k=2

mk ≤ −(d− 1) +

d∑
k=2

mk < 0 .

Hence γ(λ+,m) ̸= 0. Next, per Definition 7 we have that

γ(λ−,m) =

(
1−

d∑
k=2

mk

)
λ− −m1 · λ+ .

If m1 = 0 then since 1−
∑d
k=2mk ∈ {−1, . . . ,−d+ 3} we obtain

γ(λ−,m) =

(
1−

d∑
k=2

mk

)
λ− > 0 .

If m1 = d− 2 then 1−
∑d
k=2mk = 1 and so

γ(λ−,m) = λ− − (d− 2)λ+ < 0 .

Otherwise, since
∑d
k=2mk − 1 ∈ {0, . . . , d− 3} we obtain by the above that

γ(λ−,m) ≤ −λ+ −
(d∑
k=2

mk − 1

)
λ− ≤ −(d− 1) +

d∑
k=2

mk − 1 < 0 .

Hence γ(λ−,m) ̸= 0. Therefore by Definition 7, −∇2ℓ(s) satisfies the non-resonance condition of
order d− 2.

Next, we turn to lower bound the Q-smoothness of −∇2ℓ(s).

Proposition 9. For any Q ∈ N>0, the Q-smoothness of −∇2ℓ(s) is at least ⌊Q2 ⌋.

Proof. Per Lemma 9, we have the following:

ρ+ =
max{λ+}
min{λ+}

= 1 , ρ− =
max{λ−}
min{λ−}

= 1 .

Therefore per Definition 8 and since ∇2ℓ(s) is strictly hyperbolic, the Q-smoothness of −∇2ℓ(s) is
the largest K ∈ N≥0 for which there exist M,N ∈ N>0 such that

43

• Q =M +N .

• M −K ≥ 0.

• N −K ≥ 0.

One can easily verify this implies that the Q-smoothness of −∇2ℓ(s) is at least ⌊Q2 ⌋.

Finally, we are ready to prove the following proposition which shows that our dynamical system
induced by gradient flow admits a linearization which is at least C3.

Proposition 10. The dynamical system induced by gradient flow (see Equation (22)) admits a
linearization near s that is at least C3.

Proof. First note that the vector field −∇ℓ(A) which gradient flow follows is analytic. Next, per
Propositions 8 and 9 it holds that −∇2ℓ(s) is strictly hyperbolic, satisfies the non-resonance condition
of order at least d−2, and has Q-smoothness of at least ⌊Q2 ⌋ for any Q ∈ N>0. Hence, by Theorem 3
the vector field −∇ℓ(A) admits a C⌊ d−2

2 ⌋-linearization near s. The proof concludes by noting that
d ≥ 8 hence ⌊d−2

2 ⌋ ≥ 3.

We denote the above linearization by H : V1 → U1, where the neighborhoods V1,U1 ⊆ Rd are such
that s ∈ V1,U1. To set the stage for the rest of the proof, we prove the following proposition that
considers a restriction of H to a smaller domain that satisfies a few additional conditions which we
will require later.

Proposition 11. There exists r1 > 0 which satisfies the following:

1. r1 ≤ 1
2d .

2. For any A ∈ Br1(s) it holds that

|λmin
(
∇2ℓ(A)

)
| ≤ 2|λ−| .

3. H|Br1
(s) is Lipschitz and there exist r2 ∈ (0, r1) and r3 > 0 such that H−1|Br3

(s) is
Lipschitz and it holds that

H[Br2(s)] ⊆ Br3(s) ⊆ H[Br1(s)] .

Proof. We show there exist three non empty intervals of the form (0, bi] for i ∈ [3], such that if
r1 ∈ (0, bi] then it satisfies the corresponding requirement above. This would imply that the minimal
upper limit r1 := min{b1, b2, b3} satisfies all requirements. The first condition is trivial, with
b1 = 1

2d . Next, since ∇ℓ(A) is analytic it holds that ∇2ℓ(A) is symmetric for any A ∈ Rd. Since
λ− < 0, by the continuity of the eigenvalues of ∇2ℓ(A) around s there exists b2 > 0 such that the
second requirement is satisfied for all (0, b2]. Lastly, since H : V1 → U1 is C3 and since V1,U1 are
neighborhoods of s, we can invoke Lemma 28 which states that there exists b3 > 0 such that for any
b ∈ (0, b3] the third and fourth requirements are satisfied.

F.3.4 Movement Towards the Saddle s

Having established key properties of the loss landscape, we are ready to begin the dynamical analysis
of the gradient flow trajectories over time. We first give a simple bound on the magnitude of the
entries of A(t).

Lemma 11. Suppose we initialize at A(0) ∈ I0 and at Aref (0), and evolve A(t) and Aref (t)
according to Equation (22). For any t ≥ 0 and any j ∈ [d] it holds that

Aj(t), A
ref
j (t) ∈ [−3, 3] .

44

Proof. First, we have shown in Lemma 5 that the initialization I0 guarantees all points encountered
by gradient flow have loss no larger than 1. Assume on the contrary that there exist t ≥ 0 and j ∈ [d]
for which

Aj(t) /∈ [−3, 3] .

Since L − 1 is even, we obtain that aj(t)L−1 ≥ 3L−1 > 3 and that any k ∈ [d], k ̸= j satisfies
ak(t)

L−1 ≥ 0. Hence, we obtain that

ℓ
(
A(t)

)
=

((
1−

d∑
k=1

ak(t)
L−1

)2
+
(
1−

d∑
k=1

ak(t)
)2)

≥
(
1−

d∑
k=1

ak(t)
L−1

)2

≥ (3− 1)2

> 1 .

in contradiction to Lemma 22. The proof is identical when we consider the reference trajectory.

The above yields the following useful corollary.

Corollary 3. There exists N > 0 such if we initialize at A(0) ∈ I0 and at Aref (0), and evolve
A(t) and Aref (t) according to Equation (22) then for any t ≥ 0 the functions −∇ℓ

(
A(t)

)
and

−∇ℓ
(
Aref (t)

)
are N -Lipschitz.

Proof. As shown in Lemma 11, all points encountered by gradient flow are contained in the compact
set [−3, 3]d. The claim thus follows from the fact that ℓ(A) is analytic.

We continue to prove the following lemma which analyzes the trajectories when initializing in an
interval of points on the line W1 (Equation (16)).

Lemma 12. Let a1, a2 ∈ [− 1
d ,

4
d] \ {s} such that a1 ̸= a2. Suppose we initialize at A1(0) = a1 · 1

and A2(0) = a2 · 1, and evolve A1(t) and A2(t) according to Equation (22). It holds that:

• There exist functions a1, a2 : R≥0 → R such that

A1(t) = a1(t) · 1, A2(t) = a2(t) · 1 .

• For any t ≥ 0 it holds that a2(t) < a1(t) ⇐⇒ a2 < a1.

• For any r > 0 there exists t1 ≥ 0 such that for any t ≥ t1 it holds thatA1(t), A2(t) ∈ Br(s).

Proof. When initializing at A(0) = a · 1 and evolving A(t) according to the gradient flow dynamics,
all entries evolve according to the same dynamics and therefore must stay equal throughout the
optimization. Concretely, all entries obey the following dynamics:

ȧ(t) =

(
(L− 1)

(
1− d · a(t)L−1

)
a(t)L−2 +

(
1− d · a(t)

))
.

Hence, the first claim holds. Rewriting the above in terms of Lemma 7, we have

ȧ(t) = −1

d
f

′
(a(t)) .

In Lemmas 6 and 7, we showed that the above expression is positive for a(t) ∈ [− 1
d , s) and equals

zero at s. We now show that the above expression is negative for a(t) ∈ (s, 4d]. Indeed, since d ≥ 8

45

we have that

−1

d
f

′
(
4

d
) = (L− 1)(1− d · (4

d
)L−1)(

4

d
)L−2 + (1− d · (4

d
))

≤ (L− 1)(
4

d
)L−2 − 3

≤ L− 1

1.5L−2
(
4

5 1
3

)L−2

︸ ︷︷ ︸
=:h(L)

−3

≤ 0.75− 3

< 0 ,

where the second to last inequality stems from the fact that h(L) is decreasing for L ≥ 4, that
h(4) = 0.75, and that L ≥ 7. Next, we also have for any a ∈ (s, 4d] that

−1

d
f

′′
(a) = −(L− 1)(2L− 3)d · a2L−4 + (L− 1)(L− 2)aL−3 − d

≤ −d+ (L− 1)(L− 2)aL−3

≤ −d+ (L− 1)(L− 2)(
4

d
)L−3

≤ −d+ (L− 1)(L− 2)

1.5L−3
(
4

5 1
3

)L−3

︸ ︷︷ ︸
=:g(L)

≤ −d+ 15

8
< 0 ,

where the second to last inequality stems from the fact that g(L) is decreasing for L ≥ 7, that
g(7) = 15

8 , and that L ≥ 7. Therefore, since − 1
df

′
(s) = 0 and from monotonicity we obtain that

− 1
df

′(
a(t)

)
is negative for a(t) ∈ (s, 4d]. We continue by noting that per Lemma 30, trajectories of

the same system of ODEs with different initalizations must never meet, hence by continuity it must
hold that a2(t) < a1(t) ⇐⇒ a2 < a1 for all t ≥ 0. Finally, since s is a critical point in the interval
and since a1(t), a2(t) evolve monotonically (increase if initialized < s and decrease otherwise), we
get by Lemma 30 that a1(t) and a2(t) cannot reach s in any finite time. However, since s is the
unique critical point in the interval, a1(t) and a2(t) must converge to s as t→ ∞. Hence, there exists
some time t1 ≥ 0 such that for any t ≥ t1 the entries of both A1(t) and A2(t) are within Br(s).

We useAZ(t) andA−(t) to denote the trajectories generated by initializing at 0 and − 1
d ·1 respectively

and evolving according to Equation (22). Additionally, for any r > 0 we use t1(r) ≥ 0 to denote the
minimal time which satisfies

AZ
(
t1(r)

)
∈ Br(s) .

Note this means that for r ∈ (0, s) we have AZ
(
t1(r)

)
= r√

d
· 1+ s.

We denote the following projections of the trajectoryA(t) and the reference trajectoryAref (t), which
will be used in the rest of the proof.

Definition 9. Suppose we initialize at A(0) ∈ I0 and at Aref (0), and evolve A(t) and Aref (t)
according to Equation (22). For any t ≥ 0, we denote the projections of A(t) and Aref (t) to the
subspace W1 using

β1(t) · 1 , βref1 (t) · 1

where β1(t), β
ref
1 (t) ∈ R. Additionally, we denote the projections of A(t) and Aref (t) to the

subspace W2 using

β2(t) · v(t) , βref2 (t) · vref (t)

46

where β2(t), β
ref
2 (t) ∈ R and v(t),vref (t) ∈ W2 are unit vectors. Per Equation (16), W1 and W2

are orthogonal and span Rd, hence we may write

A(t) = β1(t) · 1+ β2(t) · v(t) ,

Aref (t) = βref1 (t) · 1+ βref2 (t) · vref (t) .

Remark 3. Per Equation (16), W1 and W2 are orthogonal therefore since (β1(t)·1)⊤(β2(t)·v(t)) =
0 and (βref1 (t) · 1)⊤(β2(t)ref · vref (t)) = 0, we obtain

Dist
(
A(t),W1

)
= ∥β2(t) · v(t)∥2 = |β2(t)| ,

Dist
(
Aref (t),W1

)
= ∥βref2 (t) · vref (t)∥2 = |βref2 (t)|

and

Dist
(
A(t),W2

)
= ∥β1(t) · 1∥2 =

√
d|β1(t)| ,

Dist
(
Aref (t),W2

)
= ∥βref1 (t) · 1∥2 =

√
d|βref1 (t)| .

Before proving the main claim of this section, we introduce another condition on the initialization
which we denote I3.
Definition 10. Let r > 0. We use I3(r) to denote the following subset of I0:

I3(r) :=
{
A ∈ I0 : α ≤

min

{
r,

∥∥∥∥AZ(t1(r))−A−(t1(r))∥∥∥∥
2

}
6d

exp
(
−N · t1(r)

)
, ζd ≤

1

2

}
for N of Corollary 3 and for AZ(t), A−(t) and t1(r) of Lemma 12.

We are now ready to prove the main claim of this section, which states that under the above on the
initalization, both the original and reference trajectories must enter a sufficiently small sphere around
s and furthermore they arrive at points that are sufficiently faraway from W1.

Proposition 12. Let r ∈ (0, s). Suppose we initialize at A(0) ∈ I3(r4) and at Aref (0), and evolve
A(t) and Aref (t) according to Equation (22). There exist constants D+(r), D−(r) > 0 such that:

• A
(
t1(

r
4)
)
, Aref

(
t1(

r
4)
)
∈ B r

2
(s).

• |β2
(
t1(

r
4)
)
|, |βref2

(
t1(

r
4)
)
| ∈ [α ·D−(r), α ·D+(r)].

Proof. Consider the trajectories AZ(t) and A−(t) introduced in Lemma 12. Per Lemma 12, for any
time t ≥ 0 and any index j ∈ [d] we have

a−j (t) < aZj (t) < s .

We begin by showing that for A(0) ∈ I3(r4), the distance between AZ
(
t1(

r
4)
)

and A
(
t1(

r
4)
)

is at
most r

24 . First note that per Lemma 12, AZ(t) never leaves Bs(s) ⊆ [−3, 3]d. Thus per Corollary 3,
both AZ(t) and A(t) are always contained in a compact domain where the vector field −∇ℓ(A) is
N -Lipschitz. Therefore, we can invoke Lemma 29 which results in the following:

∥AZ
(
t1(

r

4
)
)
−A
(
t1(

r

4
)
)
∥2 ≤ ∥AZ(0)−A(0)∥2 · exp

(
N · t1(

r

4
)
)

= ∥A(0)∥2 · exp
(
N · t1(

r

4
)
)

≤ α · d · exp
(
N · t1(

r

4
)
)

.

Per Definition 10, α satisfies

α ≤
min

{
r
4 ,

∥∥∥∥AZ(t1(r4))−A−(t1(r4))∥∥∥∥
2

}
6d

exp
(
−N · t1(

r

4
)
)

.

47

Hence, we obtain that∥∥∥∥AZ(t1(r4))−A(t1(r4))
∥∥∥∥
2

≤
min

{
r
4 ,

∥∥∥∥AZ(t1(r4))−A−(t1(r4))∥∥∥∥
2

}
6d

exp(−N · t1(
r

4
)) · d · exp(N · t1(

r

4
))

=

min

{
r
4 ,

∥∥∥∥AZ(t1(r4))−A−(t1(r4))∥∥∥∥
2

}
6

≤ r

24
.

Therefore, using the triangle inequality we obtain∥∥∥∥A(t1(r4))−s

∥∥∥∥
2

≤
∥∥∥∥AZ(t1(r4))−s

∥∥∥∥
2

+

∥∥∥∥A(t1(r4))−AZ(t1(r4))
∥∥∥∥
2

≤ r

4
+

r

24
≤ r

2
.

Hence, A(t1) ∈ B r
2
(s). Next, by Remark 3 we obtain that∣∣∣∣β2(t1(r4))

∣∣∣∣ = Dist
(
A
(
t1(

r

4
)
)
,W1

)
.

By Lemma 12 we have AZ
(
t1(

r
4)
)
∈ W1, hence∣∣∣∣β2(t1(r4))

∣∣∣∣ ≤ ∥∥∥∥AZ(t1(r4))−A(t1(r4))
∥∥∥∥
2

≤ α · d · exp
(
N · t1(

r

4
)
)

.

Thus, denoting D+(r) := d · exp
(
N · t1(r4)

)
we get the first part of the second claim. We now show

that β1
(
t1(

r
4)
)
∈ (− 1

d , s). Per Lemma 12, we get by definition of t1 that∥∥∥∥AZ(t1(r4))−s

∥∥∥∥
2

=
r

4

and so since ∥AZ
(
t1(

r
4)
)
−A
(
t1(

r
4)
)
∥2 ≤ r

24 and r < s it must hold that β1
(
t1(

r
4)
)
< s. Since

∥∥∥∥AZ(t1(r4))−A(t1(r4))
∥∥∥∥
2

≤

∥∥∥∥AZ(t1(r4))−A−(t1(r4))∥∥∥∥
2

6

it must hold that

β1
(
t1(

r

4
)
)
> a−

(
t1(

r

4
)
)

where A−(t1(r4))= a−
(
t1(

r
4)
)
·1. Note that by Lemma 12 we obtain

β1
(
t1(

r

4
)
)
> a−

(
t1(

r

4
)
)
> −1

d

as a−(t) is monotonically increasing. Therefore by Lemma 12 and by continuity, there must exist

some point a ∈
(

− 1
d , β1

(
t1(

r
4)
))

such that if we initialize Aa(0) = a · 1 and evolve Aa(t)

according to the gradient flow dynamics, then it holds that

Aa
(
t1(

r

4
)
)
= β1

(
t1(

r

4
)
)
·1 .

48

Per Lemma 12, Aa(t) never leaves [−3, 3]d where the vector field −∇ℓ(A) is N -Lipschitz. Thus,
invoking Lemma 29 we obtain∣∣∣∣β2(t1(r4))

∣∣∣∣ = ∥∥∥∥β2(t1(r4))·v(t1(r4))
∥∥∥∥
2

=

∥∥∥∥β2(t1(r4))·v(t1(r4))+β1(t1(r4))·1− β2
(
t1(

r

4
)
)
·v
(
t1(

r

4
)
)∥∥∥∥

2

=

∥∥∥∥A(t1(r4))−Aa(t1(r4))
∥∥∥∥
2

≥
∥∥∥∥A(0)−Aa(0)

∥∥∥∥
2

· exp
(
−N · t1(

r

4
)
)

.

As Aa(0) ∈ W1, we can lower bound the right hand side by the distance between A(0) and W1 and
obtain ∣∣∣∣β2(t1(r4))

∣∣∣∣ ≥ Dist
(
A(0),W1

)
· exp

(
−N · t1(

r

4
)
)

.

Next, observe that ζd ≤ 1
2 since A(0) ∈ I3(r4), hence

ζ1 −
∑d
k=1 ζk
d

≥ 1− d− 1

d
− 1

2d
=

1

2d
.

Therefore,

Dist
(
A(0),W1

)
=

√√√√ d∑
k=1

(
α · ζk −

∑d
k=1 α · ζk
d

)2

= α

√√√√ d∑
k=1

(
ζk −

∑d
k=1 ζk
d

)2

≥ α ·
∣∣∣∣ζ1 − ∑d

k=1 ζk
d

∣∣∣∣
≥ α · 1

2d
.

Hence, we meet the second part of the second claim with D−(r) defined as

D−(r) :=
1

2d
· exp

(
−N · t1(

r

4
)
)
> 0 .

Note that the proof for the reference case is identical.

We note the following remark which deals with the value of points in a sufficiently small sphere
around s.
Remark 4. Let µ > 0. The objective ℓ is continuous and ℓ(s) > 0 there exists r(µ) > 0 such that
any A ∈ Br(µ)(s) satisfies

ℓ(A) ≤ (1 +
µ

4
) · ℓ(s) .

We conclude this section by proving the following corollary, which states that when A(0) ∈ I3, a set
of additional properties are satisfied.
Corollary 4. Let µ > 0. Consider r̃(µ) := min{r2, r(µ)} for the respective r2 and r(µ) of
Proposition 11 and Remark 4. Suppose we initialize at A(0) ∈ I3(r̃4) and at Aref (0), and evolve
A(t) and Aref (t) according to Equation (22). There exist constants D+(µ), D−(µ) > 0 such that:

• A
(
t1(

r̃(µ)
4)
)
, Aref

(
t1(

r̃(µ)
4)
)
∈ B r2

2
(s).

49

•
∣∣∣∣β2(t1(r̃(µ)4)

)∣∣∣∣, ∣∣∣∣βref2

(
t1(

r̃(µ)
4)
)∣∣∣∣ ∈ [α ·D−(µ), α ·D+(µ)].

• ℓ
(
A
(
t1(

r̃(µ)
4)
))
, ℓ

(
Aref

(
t1(

r̃(µ)
4)
))

≤ (1 + µ
4)ℓ(s).

Proof. We consider the constants D+(µ) := D+(r̃(µ)) and D−(µ) := D−(r̃(µ)) from Proposi-
tion 12. Per Proposition 12 and since A(0) ∈ I3(r̃(µ)4), we have that:

• A
(
t1(

r̃(µ)
4)
)
, Aref

(
t1(

r̃(µ)
4)
)
∈ B r̃(µ)

2
(s).

•
∣∣∣∣β2(t1(r̃(µ)4)

)∣∣∣∣, ∣∣∣∣βref2

(
t1(

r̃(µ)
4)
)∣∣∣∣ ∈ [α ·D−(µ), α ·D+(µ)].

As r̃(µ) ≤ r2, r(µ), we immediately obtain that

A
(
t1(

r̃(µ)

4
)
)
, Aref

(
t1(

r̃(µ)

4
)
)
∈ B r2

2
(s)

and

A
(
t1(

r̃(µ)

4
)
)
, Aref

(
t1(

r̃(µ)

4
)
)
∈ B r(µ)

2
(s) .

Finally, recall Remark 4 which combined with the latter argument results in

ℓ

(
A
(
t1(

r̃(µ)

4
)
))
, ℓ

(
Aref

(
t1(

r̃(µ)

4
)
))

≤ (1 +
µ

4
)ℓ(s)

as required.

F.3.5 Escape From the Saddle s

In the previous section, we showed that the gradient flow trajectories must reach a sufficiently small
sphere around s. Our goal in this section is showing that not only do both trajectories escape it, but
they also do it fast enough14. To begin this section, we prove the following three lemmas regarding
the diffeomorphism H from Proposition 10. The following lemma proves that W1 is mapped into
itself under H .
Lemma 13. Let A ∈ Br2(s) \ {s} and denote Ã := H(A). If A ∈ W1 then Ã ∈ W1.

Proof. Since A ∈ W1 there exists a ∈ Br2(s) such that A = a · 1. Per Proposition 11 and Lemma 7,
it holds that r2 < r1 ≤ 1

2d and s ∈ [1d ,
3
d]. Thus we obtain that a ∈ [0, 4d]. Assume on the contrary

that Ã /∈ W1. On the one hand, if we initialize at A(0) = a · 1 and evolve A(t) according to
Equation (22), then per Lemma 12 A(t) ∈ Br2(s) for all t ≥ 0, and furthermore limt→∞A(t) = s.
By continuity H(A(t)) converges to s as well. On the other hand, if we initialize at Ã(0) = Ã

and evolve Ã(t) according to the linear approximation around s of the gradient flow dynamics (see
Lemma 10), then per Remark 2 the solution Ã(t) diverges away from s (since the projection of Ã to
W2 is not zero). This contradicts our assumption that H is a conjugation (see Definition 5).

The following lemma proves the existence of two points in W1 that are mapped by H to “opposite
sides” of s.
Lemma 14. There exists a1, a2 ∈ [s− r2

2
√
d
, s+ r2

2
√
d
] \ {s} such that there exist ã1 ∈ [s− r3√

d
, s)

and ã2 ∈ (s, s+ r3√
d
] for which either

H(a1 · 1) = ã1 · 1 , H(a2 · 1) = ã2 · 1
or

H(a1 · 1) = ã2 · 1 , H(a2 · 1) = ã1 · 1 .
14recall that the divergence between the two trajectories depends on the convergence time achieved by gradient

flow.

50

Proof. Consider a1 = s− r2
4
√
d

and a2 = s+ r2
4
√
d

. Both a1 ·1 and a2 ·1 are within W1∩Br2(s) and

so by Proposition 11 and Lemma 13 it holds that H(a1 · 1), H(a2 · 1) ∈ W1 ∩Br3(s). Thus we can
denoteH(a1 ·1) = ã1 ·1 and (a2 ·1) = ã2 ·1 for some ã1, ã2 ∈ [s− r3√

d
, s+ r3√

d
]. ã1, ã2 are distinct

and different than s since a1, a2 ̸= s are distinct and since H is a homeomorphism with H(s) = s.
Assume WLOG that ã1 < ã2 (otherwise we flip the indices). Assume on the contrary that ã1, ã2 > s

(the case where ã1, ã2 < s is symmetric). Per Remark 2, if we initialize at Ã(0) = ã2 · 1 and evolve
Ã(t) according to the linear approximation around s of the gradient flow dynamics, then our trajectory
(which converges to s) must reach ã1 · 1 after some finite time t2, i.e.we obtain Ã(t2) = ã1 · 1. Thus
we obtain that

H−1
(
Ã(t2)

)
= H−1(ã1 · 1) = H−1

(
H(a1 · 1)

)
= a1 · 1 .

Hence, per Proposition 10 if we initialize at A(0) = a2 · 1 and evolve A(t) according to the gradient
flow dynamics, we would get that

A(t2) = H−1
(
Ã(t2)

)
= a1 · 1 .

The proof concludes by noting that the above is a contradiction to Lemma 12.

The following lemma proves that W1 is mapped into itself under H−1.

Lemma 15. Let Ã ∈ Br3(s) \ {s} and denote A := H−1(Ã). If Ã ∈ W1 then A ∈ W1.

Proof. Since Ã ∈ W1 ∩ Br3(s) there exists ã ∈ [s − r3, s + r3] \ {s} such that Ã = ã · 1.
Assume WLOG that ã ∈ [s− r3, s) (the opposite case is symmetric). Per Lemma 14, there exists
a′ ∈ [s− r2

2
√
d
, s+ r2

2
√
d
] \ {s} such that there exists ã′ ∈ [s− r3√

d
, s) for which

H(a′ · 1) = ã′ · 1 .

Assume that ã ≤ ã′. By Lemma 10, if we initialize at Ã(0) = Ã and evolve Ã(t) according to the
linear approximation around s of the gradient flow dynamics, then our trajectory (which converges to
s) must reach ã′ · 1 after some finite time t2, i.e.we obtain Ã(t2) = ã′ · 1. Thus we obtain that

H−1
(
Ã(t2)

)
= H−1(ã′ · 1) = H−1

(
H(a′ · 1)

)
= a′ · 1 .

Hence, per Proposition 10 if we initialize at A(0) = A = H−1(Ã) and evolve A(t) according to the
gradient flow dynamics, we would get that

A(t2) = H−1
(
Ã(t2)

)
= a′ · 1 .

Invoking Lemma 2 we conclude that A ∈ W1. Assume that ã > ã′. By Lemma 10, if we initialize
at Ã′(0) = Ã′ and evolve Ã′(t) according to the linear approximation around s of the gradient flow
dynamics, then our trajectory (which converges to s) must reach ã · 1 after some finite time t2, i.e.we
obtain Ã′(t2) = ã · 1 = Ã. On the one hand, note that H−1(Ã) = A. On the other hand, if we
initialize at A′(0) = a′ · 1 and evolve A′(t) according to the gradient flow dynamics (defined in
Equation (21)), we get by Proposition 10 that A′(t2) = H−1

(
Ã′(t2)

)
. Thus, A′(t2) = A. The proof

concludes by invoking Lemma 12 which states that A′(t) ∈ W1 for any t ≥ 0.

The following two lemmas give bounds on the original dynamics in terms of the linearized ones.

Lemma 16. Let A ∈ Br2(s) \ {s}. It holds that

Dist(A,W1) ≤ G̃ · Dist
(
H(A),W1

)
where G̃ is the Lipschitz coefficient of H−1|Br3

(s).

Proof. First note that per Proposition 11, H−1|Br3
(s) is indeed Lipschitz. Let G̃ > 0 be its Lipschitz

coefficient. Next, by definition of the Dist measure (Equation (15)) we have that

Dist
(
H(A),W1

)
= min
Ã∈W1

∥H(A)− Ã∥2 .

51

Since A ∈ Br2(s), it holds by Proposition 11 that H(A) ∈ Br3(s). Thus, since Br3(s) is a ball it
must hold that

min
Ã∈W1

∥H(A)− Ã∥2 = min
Ã∈W1∩Br3

(s)
∥H(A)− Ã∥2 .

As H is onto Br3(s), by Proposition 11 there exists A′ ∈ Br1(s) such that

H(A′) ∈ argmin
Ã∈W1∩Br3 (s)

∥H(A)− Ã∥2 .

Hence by the Lipschitz property of of H−1 we obtain

min
Ã∈W1∩Br3

(s)
∥H(A)− Ã∥2 = ∥H(A)−H(A′)∥2

≥ 1

G̃

∥∥∥∥H−1
(
H(A)

)
−H−1

(
H(A′)

)∥∥∥∥
2

=
1

G̃
∥A−A′∥2 .

Since A′ = H−1(Ã) for some Ã ∈ W1 ∩Br3(s), it holds by Lemma 15 that A′ ∈ W1. Thus,

1

G̃
∥A−A′∥2 ≥ 1

G̃
min

A′′∈W1

∥A−A′′∥2 =
1

G̃
· Dist(A,W1) .

Combining the above inequalities and multiplying by G̃ we obtain overall that

G̃ · Dist
(
H(A),W1

)
≥ |A−A′∥2 ≥ Dist(A,W1)

as required.

Lemma 17. Let A ∈ Br1(s). It holds that

Dist
(
H(A),W1

)
≤ G · Dist(A,W1)

where G is the Lipschitz coefficient of H|Br1
(s).

Proof. First note that per Proposition 11, H|Br1
(s) is indeed Lipschitz. Let G > 0 be its Lipschitz

coefficient . Next, by definition of the Dist measure we have that

Dist(A,W1) = min
A′∈W1

∥A−A′∥2 .

Since A ∈ Br1(s) and Br1(s) is a ball, it must hold that

min
A′∈W1

∥A−A′∥2 = min
A′∈W1∩Br1

(s)
∥A−A′∥2 .

By the Lipschitz property of H we obtain

min
A′∈W1∩Br1

(s)
∥A−A′∥2 ≥ min

A′∈W1∩Br1
(s)

1

G
∥H(A)−H(A′)∥2 ≥ Dist

(
H(A),W1

)
.

where the last inequality follows from Lemma 13. Multiplying by G gives the result.

Before proving the main claims of this section, we introduce another condition on the initialization
which we denote I4.

Definition 11. Let µ > 0. We denote G′ := max{1, G, G̃} for G̃ and G from Lemmas 16 and 17.
We use I4(µ) to denote the following subset of I0:

I4(µ) :=
{
A ∈ I0 : α ≤ r3

4max{2, exp(−2λ−)} ·G′2
√
dD+(µ)

}
for r3, λ− and D+ from Proposition 11, Lemma 8, , and Corollary 4 respectively.

52

In the next two propositions, we bound the time it takes to escape the sphere around s under the
linearized dynamics, and prove an additional claim that will be utilized later to show that the trajectory
never returns to a certain sphere around s.

We introduce notation which will be used in both propositions; Let µ > 0. Suppose we initialize
at A(0) ∈ I3(r̃(µ)4) ∩ I4(µ) (for r̃ of Corollary 4) and at Aref (0), and evolve A(t) and Aref (t)

according to Equation (22). Suppose we initialize Ã(0) = H

(
A
(
t1(

r̃(µ)
4)
))

and at Ãref (0) =

H

(
Aref

(
t1(

r̃(µ)
4)
))

(for t1 of Lemma 12), and evolve Ã(t) and Ãref (t) according to the linearized

dynamics (see Lemma 10). For any time t ≥ 0, denote the representations of Ã(t) and Ãref (t) with
the orthogonal subspaces W1 and W2 to be

Ã(t) = β̃1(t) · 1+ β̃2(t) · ṽ(t)
and

Ãref (t) = β̃ref1 (t) · 1+ β̃ref2 (t) · ṽref (t)

where ṽ(t), ṽref (t) ∈ W2 are unit vectors.

The following proposition give quantitative bounds on the rate of exponential escape from s of
trajectories under the lineaarized dynamics.

Proposition 13. There exist times t2(µ), t
ref
2 (µ) ≥ 2 for which it holds

•
∣∣∣∣β̃2(t2(µ))∣∣∣∣, ∣∣∣∣β̃ref2

(
t2(µ)

)∣∣∣∣ = r3
2
√
d

.

• For G′ := max{1, G, G̃} it holds that

t2(µ), t
ref
2 (µ) ∈

[
− 1

λ−
ln

(
r3

4G′2
√
dαD+(µ)

)
,− 1

λ−
ln

(
G′2r3

2
√
dαD−(µ)

)]
.

• For any t ∈ [0, t2(µ)] it holds that Ã(t) ∈ Br3(s).

• For any t ∈ [0, tref2 (µ)] it holds that Ãref (t) ∈ Br3(s).

Proof. We prove the argument for Ã (the proof is identical for Ãref). Recall Corollary 4 which states
that

Dist
(
A
(
t1(

r̃(µ)

4
)
)
,W1

)
=

∣∣∣∣β2(t1(r̃(µ)4
)
)∣∣∣∣ ∈ [α ·D−(µ), α ·D+(µ)] .

Thus, applying Lemmas 16 and 17 we obtain

α ·D−(µ)

G̃
≤ Dist

(
Ã(0),W1

)
= |β̃2(0)| ≤ G · α ·D+(µ) .

Per Lemma 10, for any t ≥ 0 the solution at time t to the linear dynamics initialized at Ã(0) is given
by (

exp(−t · λ+)
(
β̃1(0)− s

)
+ s

)
1+

(
exp(−t · λ−) · β̃2(0)

)
ṽ(0) .

As noted in Remark 2, the coefficient |β̃1(t) − s| tends to zero as t grows, while the coefficient

|β̃2(t)| tends to ∞ as t grows. We first bound the time t2(µ) for which
∣∣∣∣β̃2(t2(µ))∣∣∣∣ = r3

2
√
d

. Since

A(0) ∈ I4(µ), it holds that

max{2, exp(−2λ−)} ≤ r3

4G′2
√
dαD+(µ)

.

53

Therefore since λ− < 0 (by Lemma 9) we obtain the following positive time t−:

t− := − 1

λ−
ln

(
r3

4G′2
√
dαD+(µ)

)
≥ − 1

λ−
ln
(
exp(−2λ−)

)
= 2 .

Thus, at time t− the solution to the linear dynamics satisfies the following:

Dist(Ã(t−),W1) = |β̃2(t−)|

= |β̃2(0)| · exp(−t− · λ−)
≤ G ·D+(µ) · α · exp(−t− · λ−)

= G ·D+(µ) · α · exp
(
λ−
λ−

ln

(
r3

4G′2
√
dαD+(µ)

))
=
G ·D+(µ) · α · r3
4G′2

√
dαD+(µ)

≤ r3

4G′
√
d

≤ r3

4
√
d

,

where the last two inequalities stem from the fact that G′ ≥ G, 1. Hence, t− is a lower bound on
t2(µ). On the other hand, note that

G′2 · r3
2
√
dαD−(µ)

≥ r3

4G′2
√
dαD+(µ)

and so since λ− < 0 we obtain the following positive time t+:

t+ := − 1

λ−
ln

(
G′2 · r3

2
√
dαD−(µ)

)
≥ − 1

λ−
ln

(
r3

4G′2
√
dαD+(µ)

)
= t− .

Thus, at time t+ the solution to the linear dynamics statisfies the following:

|β̃2(t+)| = |β̃2(0)| · exp(−t+ · λ−)

≥ α ·D−(µ)

G̃
· exp(−t+ · λ−)

=
α ·D−(µ)

G̃
· exp

(
λ−
λ−

ln

(
G′2 · r3

2
√
dαD−(µ)

))
=
α ·D−(µ)

G̃
· G′2 · r3
2
√
dαD−(µ)

≥ G′ · r3
2
√
d

≥ r3

2
√
d

,

where the last two inequalities stem from the fact that G′ ≥ G̃, 1. Hence, t+ is an upper bound on
t2(µ). Next, we show that |β̃1(t−) − s| ≤ r3

2
√
d

. This will allow us to claim by monotonicity that

Ã(t2
(
µ)
)
∈ Br3(s), since then we’ll have the following:∥∥∥∥Ã(t2(µ))−s

∥∥∥∥
2

=

∥∥∥∥β̃1(t2(µ))·1+ β̃2
(
t2(µ)

)
·v
(
t2(µ)

)
−s

∥∥∥∥
2

=

∥∥∥∥(β̃1(t2(µ))−s) · 1∥∥∥∥
2

+

∥∥∥∥β̃2(t2(µ))·v(t2(µ))∥∥∥∥
2

≤ r3

2
√
d
·
√
d+

r3

2
√
d
· 1

≤ r3 .

54

Since Ã(0) ∈ Br3(s) it holds that |β̃1(0)− s| ≤ r3√
d

. Hence, since λ+

λ−
< −1 (by Lemma 9) it holds

that

|β̃1(t−)− s| = | exp(−λ+ · t−)
(
β̃1(0)− s

)
+ s− s|

≤ |β̃1(0)− s| · exp(−λ+ · t−)

≤ r3√
d
·
(

r3

4G′2
√
dαD+(µ)

) λ+
λ−

≤ r3

2
√
d

,

where the last inequality stems from the fact that 2 ≤ r3
4G′2

√
dαD+(µ)

. Finally, since under the linear

dynamics |β̃2(t)| monotonically grows and |β̃1(t)| monotonically tends to s, it must hold that for any
t ∈ [0, t2(µ)] we have Ã(t) ∈ Br3(s).

The next proposition shows that β̃2(t) must be larger than some constant throughout a time interval
of length 1 before t2(µ).
Proposition 14. For any τ ∈ [0, 1] it holds that∣∣∣∣β̃2(t2(µ)− τ

)∣∣∣∣, ∣∣∣∣β̃ref2

(
t2(µ)− τ

)∣∣∣∣ = r3

2
√
d
· exp(λ− · τ) .

Proof. We prove the argument for Ã (the proof is identical for Ãref). In Proposition 13 we’ve
established that t2(µ) ≥ 2. Thus, per Lemma 10, for any τ ∈ [0, 1] the solution at the positive time
t2(µ)− τ ≥ 1 to the linear dynamics initialized at Ã(0) is given by(

exp
(
− (t2(µ)− τ) · λ+

)(
β̃1(0)− s

)
+ s

)
1+ exp

(
− (t2(µ)− τ) · λ−

)
· β̃2(0)ṽ(0) .

Hence, since
∣∣∣∣β̃2(t2(µ))∣∣∣∣ = r3

2
√
d

we obtain that∣∣∣∣β̃2(t2(µ)− τ
)∣∣∣∣ = | exp

(
− (t2(µ)− τ) · λ−

)
· β̃2(0)|

= | exp
(
− t2(µ) · λ−

)
· β̃2(0)| · exp(λ− · τ)

=

∣∣∣∣β̃2(t2(µ))∣∣∣∣ · exp(λ− · τ)

=
r3

2
√
d
· exp(λ− · τ) .

The above established that there exists a time which is O(ln(1
α)) where at least one of the linearized

trajectories is at a constant distant from W1. We complete this section by proving the following
corollary, which states that the corresponding non linear dynamics trajectory must also be at a constant
distance from W1 during a time interval of length 1. This will eventually allow us to claim that the
trajectory must remain trapped within a set where the objective ℓ satistfies satisfies the PL condition
(see Definition 13), which in turn ensures a rapid convergence to a global minimum (discussed in the
next section).

Corollary 5. Let µ > 0. Suppose we initialize at A(0) ∈ I3(r̃(µ)4)∩I4(µ) (for r̃ of Corollary 4) and
at Aref (0), and evolve A(t) and Aref (t) according to Equation (22). For any τ ∈ [0, 1] it holds that∣∣∣∣β2(t1(r̃(µ)4

) + t2(µ)− τ
)∣∣∣∣ = Dist

(
A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1

)
≥ r3 · exp(λ−)

2G ·
√
d

and∣∣∣∣βref2

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)∣∣∣∣ = Dist
(
Aref

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
,W1

)
≥ r3 · exp(λ−)

2G ·
√
d

.

55

Proof. We prove the argument for A (the proof is identical for Aref). In Proposition 14 we have
shown that for any τ ∈ [0, 1] it holds that Ã

(
t2(µ) − τ

)
∈ Br3(s), and so the mapping H is a

conjugation to the original dynamics. Therefore since we’ve initialized Ã(0) at H
(
A
(
t1(

r̃(µ)
4)
))

, it

must hold that for any τ ∈ [0, 1]

H−1

(
Ã
(
t2(µ)− τ

))
= A

(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
.

Since H−1[Br3] ⊆ Br1 we obtain that A
(
t1(

r̃(µ)
4) + t2(µ)− τ

)
∈ Br1 , and thus by Lemma 17 we

obtain

Dist
(
A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1

)
≥

Dist
(
Ã
(
t2(µ)− τ

)
,W1

)
G

.

Note that by orthgonoality
∣∣∣∣β̃2(t2(µ)− τ

)∣∣∣∣ = Dist
(
Ã
(
t2(µ)− τ

)
,W1

)
, hence plugging Proposi-

tion 14 we receive

Dist
(
A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1

)
≥

∣∣∣∣β̃2(t2(µ)− τ
)∣∣∣∣

G
=
r3 · exp(λ− · τ)

2G ·
√
d

≥ r3 · exp(λ−)
2G ·

√
d

where the last inequality is due to λ− < 0. The proof is complete by observing that

Dist
(
A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
,W1

)
=

∣∣∣∣β2(t1(r̃(µ)4
) + t2(µ)− τ

)∣∣∣∣ .

F.3.6 Convergence to a Global Minimum

We begin this section by proving the following corollary regarding the difference between different
coordinates of the points reached by the gradient flow trajectories. We will later show that this ensures
the objective satisfies the PL condition (Definition 13).

Corollary 6. Let µ > 0. Suppose we initialize at A(0) ∈ I3(r̃(µ)4) ∩ I4(µ) (for r̃ of Corollary 4)
and at Aref (0), and evolve A(t) and Aref (t) according to Equation (22). For any τ ∈ [0, 1] it holds
that there exist i, j, iref , jref ∈ [d] such that∣∣∣∣ai(t1(r̃(µ)4

) + t2(µ)− τ
)
−aj

(
t1(

r̃(µ)

4
) + t2(µ)− τ

)∣∣∣∣ ≥ r3 · exp(λ−)
2G · d1.5

and ∣∣∣∣arefiref (t1(r̃(µ)4
) + tref2 (µ)− τ

)
−aref

jref

(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)∣∣∣∣ ≥ r3 · exp(λ−)
2G · d1.5

.

Proof. The claim follows from invoking Lemma 31 and plugging the lower bound on |β2| and |βref2 |
provided in Corollary 5.

We continue by proving that ℓ satisfies the PL condition (Definition 13) on the subset of points
Diff(b)C (Equation (18)):
Lemma 18. Let b > 0. The function ℓ|Diff(b)C∩[−3,3]d satisfies the PL condition with PL coefficient

µ =
1

2
min

{
2d,

(
(L− 1)̃b

)2
4

, (
b̂

b̂+ 2
)2
}

,

for b̃ := (b2)
L−2 and b̂ := (b6)

L−2.

56

Proof. Let A ∈ Diff(b)C ∩ [−3, 3]d. Recalling the definition of Diff(b)C (Equation (18)) there exist
i, j ∈ [d] such that |ai − aj | ≥ b. Since ai ̸= aj , at least one is non-zero. Assume WLOG that
aj ̸= 0. Hence, since 0 < L− 2 ∈ Nodd we get per proposition 20 that

|aL−2
i − aL−2

j | ≥ (
b

2
)L−2 =: b̃

and

|1− aL−2
i

aL−2
j

| ≥ (
b

6
)L−2 =: b̂ .

Denote ress := 1−
∑d
k=1 ak and resl := 1−

∑d
k=1 a

L−1
k . If ress = 0, then it holds that

∥∇ℓ(A)∥2 =

d∑
k=1

(L− 1)2(aL−2
k)2res2l = (∗) .

By the triangle inequality, either |aL−2
i | ≥ b̃

2 or |aL−2
j | ≥ b̃

2 . In either case,

(∗) ≥ (L− 1)2
b̃2

4
res2l =

(
(L− 1)̃b

)2
4

(
1

2
res2l +

1

2
res2s) =

(
(L− 1)̃b

)2
4

ℓ(A) ,

i.e. the PL condition is satisfied with µ = 1
2 · ((L−1)̃b)

2

4 . If resl = 0, then it holds that

∥∇ℓ(A)∥2 =

d∑
k=1

res2s = dres2s = 2d(
1

2
res2l +

1

2
res2s) = 2dℓ(A) ,

i.e. the PL condition is satisfied with µ = 1
2 ·2d. Assume resl, ress ̸= 0 and denote χ := −ress

(L−1)resl
̸=

0. For any k ∈ [d] we have

∇ℓ(A)k = (L− 1)aL−2
k resl + ress = (L− 1)aL−2

k resl − (L− 1)resl · χ = (L− 1)(aL−2
k − χ)resl

or equivalently

∇ℓ(A)k = (L− 1)aL−2
k resl + ress = −(L− 1)aL−2

k

ress
(L− 1)χ

+ ress = (1−
aL−2
k

χ
)ress

Squaring the above identities we obtain

∇ℓ(A)2k = (L− 1)2(aL−2
k − χ)2res2l = (1−

aL−2
k

χ
)2res2s .

By the triangle inequality we have that either

|aL−2
i − χ| ≥ b̃

2
or

|aL−2
j − χ| ≥ b̃

2
.

Therefore, if res2l ≥ res2s we get that

∥∇ℓ(A)∥2 =

d∑
k=1

(L− 1)2(aL−2
k − χ)2res2l

≥
(
(L− 1)̃b

)2
4

res2l

≥
(
(L− 1)̃b

)2
4

(
1

2
res2l +

1

2
res2s)

=

(
(L− 1)̃b

)2
4

ℓ(A) ,

57

i.e. the PL condition is satisfied with µ = 1
2

((L−1)̃b)
2

4 . On the other hand if res2l < res2s, then by
proposition 21 either

|1− aL−2
i

χ
| ≥ b̂

b̂+ 2

or

|1−
aL−2
j

χ
| ≥ b̂

b̂+ 2

and therefore

∥∇ℓ(A)∥2 =

d∑
k=1

(1−
aL−2
k

χ
)2res2s ≥ (

b̂

b̂+ 2
)2res2s ≥ (

b̂

b̂+ 2
)2(

1

2
res2l +

1

2
res2s) = (

b̂

b̂+ 2
)2ℓ(A) ,

i.e. the PL condition is satisfied with µ = 1
2 (

b̂

b̂+2
)2. Overall, we get that whenever A ∈ Diff(b)C ∩

[−3, 3]d, the PL condition is satisfied with µ = 1
2 min

{
2d,

((L−1)̃b)
2

4 , (b̂

b̂+2
)2
}

, as required.

The above results in the following corollary regarding the PL condition satisfied by ℓ at a certain set
of points reached by the gradient flow trajectories.

Corollary 7. Let µ > 0. Suppose we initialize at A(0) ∈ I3(r̃(µ)4) ∩ I4(µ) (for r̃ of Corollary 4)
and at Aref (0), and evolve A(t) and Aref (t) according to Equation (22). For any τ ∈ [0, 1] it holds
that ℓ satisfies the PL condition (Definition 13) at the points

A
(
t1(

r̃(µ)

4
) + t2(µ)− τ

)
and

Aref
(
t1(

r̃(µ)

4
) + tref2 (µ)− τ

)
with PL coefficient

µ1 :=
1

2
min

{
2d,

(
(L− 1)̃b

)2
4

, (
b̂

b̂+ 2
)2
}

,

for

b̃ :=

(
r3 · exp(λ−)
4G · d1.5

)L−2

, b̂ :=

(
r3 · exp(λ−)
12G · d1.5

)L−2

Proof. The claim follows from invoking Lemma 18 and plugging the bound on the coordinate
difference provided in Corollary 6.

For the rest of the proof, we let µ = µ1 from Corollary 7. We are now ready to prove the following
proposition, which states that at time t1(

r̃(µ1)
4) + t2(µ1), the trajectory is at a point whose value

improves upon the value of ℓ at s by a constant:

Proposition 15. Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈ I3(r̃(µ1)
4) ∩ I4(µ1)

(for r̃ of Corollary 4) and at Aref (0), and evolve A(t) and Aref (t) according to Equation (22). it
holds that

ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
and

ℓ(s)− ℓ

(
Aref

(
t1(

r̃(µ1)

4
) + tref2 (µ1)

))
≥ min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
.

58

Proof. We prove the argument for A (the proof is identical for Aref). First, suppose that

ℓ

(
A
(
t1(

r̃(µ1)
4) + t2(µ1)

))
≤ ℓ(s)

2 . Then it holds that

ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ ℓ(s)− ℓ(s)

2
=
ℓ(s)

2
≥ min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
.

Next, suppose that ℓ
(
A
(
t1(

r̃(µ1)
4) + t2(µ1)

))
> ℓ(s)

2 . Thus per Lemma 22, for any τ ∈ [0, 1] it

holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)− τ

))
≥ ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
>
ℓ(s)

2
.

Next, per Corollary 7 for any τ ∈ [0, 1] it also holds that ℓ satisfies the PL condition in the point
A
(
t1(

r̃(µ1)
4) + t2(µ1)− τ

)
with PL coefficient µ1. Thus, by Lemma 32 it holds that the difference

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)− 1

))
−ℓ
(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
is lower bound by

2
(
t1(

r̃(µ1)

4
) + t2(µ1)− t1(

r̃(µ1)

4
)− t2(µ1) + 1

)
· µ1 ·

ℓ(s)

2
= µ1 · ℓ(s) .

On the other hand, recall that by Corollary 4 and since gradient flow is non-increasing we have that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)− 1

))
≤ ℓ

(
A
(
t1(

r̃(µ1)

4
)
))

≤ (1 +
µ1

4
)ℓ(s) .

Thus, we obtain the following:

(1 +
µ1

4
)ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ µ1 · ℓ(s) .

Reorganizing thus yields

ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ 3µ1 · ℓ(s)

4

as required.

We continue to prove the following proposition, which states that after time t1(
r̃(µ1)

4) + t2(µ1), the
points reached by the gradient flow trajectory are ones where ℓ satisfies the PL condition with a
certain PL coefficient.
Proposition 16. Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈ I3(r̃(µ1)

4) ∩ I4(µ1)

(for r̃ of Corollary 4) and at Aref (0), and evolve A(t) and Aref (t) according to Equation (22).
There exists ν > 0 such that for any time t it holds that:

• If t ≥ t1(
r̃(µ1)

4) + t2(µ1) then A(t) ∈ Diff(ν)C .

• If t ≥ t1(
r̃(µ1)

4) + tref2 (µ1) then Aref (t) ∈ Diff(ν)C .

Additionally, it holds that ℓ satistfies the PL condition at Diff(ν)C with coefficient µ2 for

µ2 :=
1

2
min

{
2d,

(
(L− 1)ν̃

)2
4

, (
ν̂

ν̂ + 2
)2
}

where

ν̃ := (
ν

2
)L−2 , ν̂ := (

ν

6
)L−2

59

Proof. We prove the argument for A (the proof is identical for Aref). Let t ≥ t1(
r̃(µ1)

4) + tref2 (µ1).
Denote for any ψ ≥ 0 the function

f(ψ) := min
A∈Diff(ψ)∩[−3,3]d

ℓ(A)

for Diff(ψ) defined in Equation (17). Per Lemma 7 and since s ∈ [−3, 3]d it holds that

ℓ(s) = min
A∈W1

ℓ(A) = min
A∈W1∩[−3,3]d

ℓ(A) = min
A∈Diff(0)∩[−3,3]d

ℓ(A) = f(0) .

Invoking Lemma 33, it holds that f is right side continuous in 0. Hence by continuity, we obtain that
there exists ν such that for any ψ ∈ [0, ν] it holds that

f(ψ) ≥ f(0)− 1

2
min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
= ℓ(s)− 1

2
min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
> ℓ(s)−min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
.

On the other hand, per Proposition 15 and since the objective is non-increasing under gradient flow
(see Lemma 22), we obtain the following:

ℓ(s)− ℓ
(
A(t)

)
≥ ℓ(s)− ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
≥ min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
.

Rearranging we thus obtain

f(ψ) > ℓ(s)−min

{
ℓ(s)

2
,
3µ1 · ℓ(s)

4

}
≥ ℓ
(
A(t)

)
.

Note that per Lemma 33, f is non increasing w.r.t ψ, thus it must hold that A(t) ̸∈ Diff(ψ) (since it is
in [−3, 3]d). As this holds for any ψ ∈ [0, ν], we obtain that A(t) ∈ Diff(ν)C . Hence, the argument
follows from Lemma 18.

The final proposition of this section proves that the gradient flow trajectory converges to a global
minimum Â2.

Proposition 17. Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈ I3(r̃(µ1)
4) ∩ I4(µ1)

(for r̃ of Corollary 4) and evolve A(t) according to Equation (22). There exists Â2 ∈ Rd such that

lim
t→∞

A(t) = Â2 and ℓ(Â2) = 0 .

Proof. Per Corollary 7, there exists ν > 0 such that for any t ≥ t1(
r̃(µ1)

4) + t2(µ1) it holds that
A(t) ∈ Diff(ν)C where ℓ satisfies the PL condition with coefficient µ2 (defined in Corollary 7). Next,
note that per Lemma 11 and Corollary 3, A(t) is always contained in [−3, 3]d, where ℓ’s gradient is
N Lipschitz. Therefore, the claim follows from Lemma 25.

F.3.7 Overall Divergence From Reference Trajecory

In this section we show that one can choose a set of initializations such that the divergence between
Â2 and some point on the reference trajectory is arbitrarily small. This shows that Â2 must not
recover the teacher (per Lemma 3). We begin by proving the following lemma which gives explicit
times at which the gradient flow trajectories reach points of arbitrary small value.
Lemma 19. Let η2 ∈ (0, 1). Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈
I3(r̃(µ1)

4) ∩ I4(µ1) (for r̃ of Corollary 4) and evolve A(t) according to Equation (22). Denote

t∗2(µ1) := min

{
t2(µ1), t

ref
2 (µ1)

}
. Denote the time t3(η2) ≥ 0 to be

t3(η2) := − ln(η2)

2µ2
− 1

λ−
ln

(
G′2r3

2
√
dαD−(µ1)

)
+

1

λ−
ln

(
r3

4G′2
√
dαD+(µ1)

)
.

60

It holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2)

))
≤ η2 .

Proof. First, note that since λ− < 0 < G′ and 0 < D−(µ1) < D+(µ1) we obtain that

t3(η2) = − ln(η2)

2µ2
+

1

λ−
ln

(
D−(µ1)

2G′4D+(µ1)

)
≥ − ln(η2)

2µ2
.

The right term is positive as 0 < η2 < 1 and µ2 > 0. Next per Proposition 13 it holds that

|t2(µ1)− tref2 (µ1)| ≤ − 1

λ−
ln

(
G′2r3

2
√
dαD−(µ)

)
+

1

λ−
ln

(
r3

4G′2
√
dαD+(µ)

)
=

1

λ−
ln

(
D−(µ1)

2G′4D+(µ1)

)
which results in

t1(
r̃(µ1)

4
) + t∗2(µ1) + t3(η2) ≥ t1(

r̃(µ1)

4
) + t2(µ1)−

ln(η2)

2µ2
.

Hence, per Lemma 22 we obtain that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2)

))
≤ ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)−

ln(η2)

2µ2

))
.

Per Proposition 16 there exists ν > 0 such that for any t ≥ t1(
r̃(µ1)

4) + t2(µ1) it holds that
A(t) ∈ Diff(ν)C where ℓ satisfies the PL condition with coefficient µ2 (defined in Corollary 7). Thus,
per Lemma 24 it holds that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)−

ln(η2)

2µ2

))
≤ ℓ

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1)

))
· exp(2µ2 ·

ln(η2)

2µ2
)

≤ ℓ(A(0)) · η2
where the second to last inequality stems from Lemma 22. The proof follows by noting that at
initialization ℓ’s value is no more than 1.

We continue to the following lemma which proves that there exist times at which the distance between
the gradient flow trajectory and Â2 (defined in Proposition 17) is arbitrarily small.

Lemma 20 (Distance between gradient flow trajectory and Â2). Let δ ∈ (0, 1). Consider µ1 from
Corollary 7. Suppose we initialize at A(0) ∈ I3(r̃(µ1)

4) ∩ I4(µ1) (for r̃ of Corollary 4). Denote
t∗2(µ1) := min{t2(µ1), t

ref
2 (µ1)}. Then there exists η2,δ > 0 such that∥∥∥∥Â2 −A

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤ δ .

Proof. Denote A∗ :=

{
A ∈ Rd : ℓ(A) = 0

}
. Per Corollary 7, there exists µ2 > 0 such that for any

t ≥ t1(
r̃(µ1)

4) + t2(µ1) it holds that ℓ satisfies the PL condition in A(t) with PL coefficient µ2. Next,
note that per Lemma 11 and Corollary 3 it holds that ℓ’s gradient is N Lipschitz in A(t). Therefore
by Lemma 25 for any t ≥ 0 it holds that∥∥∥∥Â2 −A

(
t1(

r̃(µ1)

4
) + t2(µ1) + t

)∥∥∥∥
2

≤

√
N

µ2
Dist

(
A
(
t1(

r̃(µ1)

4
) + t2(µ1) + t

)
,A∗

)
.

Additionally, note that since ℓ is continuous and non-negative, when considering its restriction to
[−3, 3]d we obtain that its 1 sub-level set is compact. Therefore we obtain by Lemma 35 that there

61

exists η2,δ ∈ (0, 1) such that for any A ∈ [−3, 3]d if ℓ(A) ≤ η2,δ then Dist(A,A∗) ≤
√

µ2

N δ. It was
shown in Lemma 19 that

t1(
r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ) ≥ t1(

r̃(µ1)

4
) + t2(µ1)

and so we obtain that∥∥∥∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤

√
N

µ2
Dist

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
,A∗

)
.

It was also shown that

ℓ

(
A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

))
≤ η2,δ

and so we obtain ∥∥∥∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤

√
N

µ2

µ2

N
δ = δ .

as required.

Before proving the last proposition of this section, we introduce another condition on the initialization
which we denote I5.
Definition 12. Let δ, η > 0. We use I5(δ, η) to denote the following subset of I0:

I5(δ, η) :=
{
A ∈ I0 : (1− ζ2) ≤

δ(
G′2r3

2
√
dD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)
4) + t3(η)

)) · α
}

for r3, D−, G′ and µ1 from Proposition 11, Corollaries 4 and 7, , and Definition 11 respectively.

We proceed to proving the following proposition which upper bounds the divergence between A(t)
and Aref (t).
Proposition 18. Let δ > 0. Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈
I3(r̃(µ1)

4) ∩ I4(µ1) ∩ I5(δ2 , η2,δ) (for η2,δ of Lemma 20) and at Aref (0), and evolve A(t) and

Aref (t) according to Equation (22). Denote t∗2(µ1) := min

{
t2(µ1), t

ref
2 (µ1)

}
. It holds that∥∥∥∥A(t1(r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤ δ

2

for η2,δ described in Lemma 20.

Proof. Per Lemma 11 and Corollary 3 for any t ≥ 0 it holds that A(t), Aref (t) are contained in
[−3, 3]d, where ℓ’s gradient is N Lipschitz . Thus per Lemma 29 it holds that∥∥∥∥A(t1(r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤
∥∥∥∥A(t1(r̃(µ1)

4
) + t∗2(µ1)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)∥∥∥∥
2

· exp
(
N · t3(η2,δ)

)
.

Next, since t∗2(µ1) ≤ t2(µ1), t
ref
2 (µ1) we obtain by Proposition 13 that for any t ∈

[t1(
r̃(µ1)

4), t1(
r̃(µ1)

4) + t∗2(µ1)] it holds that

H
(
A(t)

)
, H
(
Aref (t)

)
∈ Br3(s) .

62

Invoking Proposition 11, the above results in

A(t), Aref (t) ∈ Br1(s) .

By definitions of r1 and Br1(s) (Proposition 11), the above yields the following for any t in the
interval [t1(

r̃(µ1)
4), t1(

r̃(µ1)
4) + t∗2(µ1)] and k ∈ [0, 1]:∣∣∣∣λmin

(
∇2ℓ

(
k ·A(t) + (1− k) ·Aref (t)

))∣∣∣∣ ≤ 2|λ−| .

Next, it holds that λmin

(
∇2ℓ(A)

)
= −λmax

(
− ∇2ℓ(A)

)
for any A ∈ Rd. Therefore, invoking

Lemma 34 and plugging the above we obtain that∥∥∥∥A(t1(r̃(µ1)

4
) + t∗2(µ1)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)∥∥∥∥
2

≤ exp

(∫ t∗2(µ1)

0

2|λ−|dτ
)
·
∥∥∥∥A(t1(r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)∥∥∥∥

2

= exp(2t∗2(µ1)|λ−|) ·
∥∥∥∥A(t1(r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)∥∥∥∥

2

.

Note that λ− < 0 and so |λ−| = −λ−. Thus, recalling Proposition 13 we upper bound t∗2(µ1) and
obtain that∥∥∥∥A(t1(r̃(µ1)

4
) + t∗2(µ1)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1)

)∥∥∥∥
2

≤ exp

(
− 2

λ−
ln

(
G′2r3

2
√
dαD−(µ1)

)
|λ−|

)
·
∥∥∥∥A(t1(r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)∥∥∥∥

2

=

(
G′2r3

2
√
dαD−(µ1)

)2

·
∥∥∥∥A(t1(r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)∥∥∥∥

2

.

Applying Lemma 29 once more, we obtain that∥∥∥∥A(t1(r̃(µ1)

4
)
)
−Aref

(
t1(

r̃(µ1)

4
)
)∥∥∥∥

2

≤ ∥A(0)−Aref (0)∥2 · exp
(
N · t1(

r̃(µ1)

4
)
)

.

Finally, by Equation (23) and Definition 4 we have at initalization that

∥A(0)−Aref (0)∥2 = |a2(0)− aref2 (0)| = α · (1− ζ2) .

Altogether we obtain the following bound on the divergence:∥∥∥∥A(t1(r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤ α · (1− ζ2)

(
G′2r3

2
√
dαD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)

4
) + t3(η2,δ)

))
.

The proof concludes by recalling that the initialization satisfies A(0) ∈ I5(δ2 , η2,δ) and so since
α > 0 we can rewrite and obtain that

α · (1− ζ2) ≤
δ
2(

G′2r3
2
√
dαD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)
4) + t3(η2,δ)

))
and so

α · (1− ζ2)

(
G′2r3

2
√
dαD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)

4
) + t3(η2,δ)

))
≤ δ

2
.

63

We finish this section by proving the following corollary bounding the distance between Â2 (the point
to which the gradient flow trajecory converges to) and Aref

(
t1(

r̃(µ1)
4) + t∗2(µ1) + t3(η2,δ)

)
, a point

which by Lemma 3 is far away from the teacher.

Corollary 8. Let δ > 0. Consider µ1 from Corollary 7. Suppose we initialize at A(0) ∈ I3(r̃(µ1)
4) ∩

I4(µ1)∩I5(δ2 , η2,δ) (for η2,δ of Lemma 20) and at Aref (0), and evolve A(t) and Aref (t) according

to Equation (22). Denote t∗2(µ1) := min

{
t2(µ1), t

ref
2 (µ1)

}
. It holds that∥∥∥∥Â2 −Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤ δ

where A(t) converges to Â2 (see Proposition 17).

Proof. Per Lemma 20, it holds that∥∥∥∥Â2 −A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)∥∥∥∥
2

≤ δ

2
.

Per Proposition 18, it holds that

∥A
(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
−Aref

(
t1(

r̃(µ1)

4
) + t∗2(µ1) + t3(η2,δ)

)
∥2 ≤ δ

2
.

The claim thus follows from the triangle inequality.

Let I2(δ2) be the initialization subset defined above, i.e.

I2(δ2) := I3(
r̃(µ1)

4
) ∩ I4(µ1) ∩ I5(

δ2
2
, η2,δ2)

for δ2 of Lemma 3. Invoking the lemma we obtain that for any L
′ ≥ L+ 2 it holds that

GenL′(Â2) ≥
1

2
min

{
0.1, 1/(9d) · (1− (0.6)1/(L−1))

}
which concludes our proof of the fact that gradient flow under S2 converges to a non-generalizing
solution when initialized at I2(δ).

F.4 Initialization Subsets Intersect

In Proposition 7 we showed that when initializing at I1(ϵ) gradient flow converges to a point Â1 which
satisfies GenL′ (Â1) ≤ ϵ. In Corollary 8 we showed that when initializing at I2(δ2) gradient flow

converges to a point Â2 which satisfies GenL′ (Â2) ≥ 1
2 min

{
0.1, 1/(9d) · (1− (0.6)1/(L−1))

}
.

In this section we show that not only do the initialization subsets I1(ϵ) and I2(δ2) intersect but also
that their intersection contains an open subset. For convenience of the reader, we rewrite the full
requirements as they appear in the statements of Appendices F.1 to F.3 and state their respective
arguments. The base initialization set (Equation (23)) we consider is

I0 =

{
α · (ζ1, . . . , ζd)⊤ ∈ Rd : α ∈ (0,

1

2d
), 1 = ζ1 > ζ2 > · · · > ζd > 0

}
.

I1(ϵ) (Definition 3) was defined as

I1(ϵ) =

{
A ∈ I0 : ∀j ∈ {2, . . . , d}. α ≤

(
1− (1− η1,δ1)

L−1 − η1,δ1
d− 1

) 1
L−1 1

ζj
(1− ζL−3

j)
1

L−3

}
for η1,δ1 of Remark 1. I3(r̃(µ1)

4) (Definition 10) was defined as

I3(
r̃(µ1)

4
) :=

A ∈ I0 : α ≤
min

{
r̃(µ1)

4 ,

∥∥∥∥AZ(t1(r̃(µ1)
4)

)
−A−(t1(r̃(µ1)

4)
)∥∥∥∥

2

}
6d

e−N ·t1(r̃(µ1)
4), ζd ≤

1

2


64

for r̃(·) and µ1 of Corollaries 4 and 7 respectively. I4(µ1) (Definition 11) was defined as

I4(µ1) =

{
A ∈ I0 : α ≤ r3

4max{2, exp(−2λ−)} ·G′2
√
dD+(µ1)

}
I5(δ2, η2,δ2) (Definition 12) was defined as

I5(δ2, η2,δ2) =

A ∈ I0 : (1− ζ2) ≤
δ2(

G′2r3
2
√
dD−(µ1)

)2

exp

(
N ·

(
t1(

r̃(µ1)
4) + t3(η2,δ2)

)) · α


for η2,δ2 of Lemma 20. We begin by observing the following simplication:

I1(ϵ) ∩ I0 = I0 ∩

{
A ∈ I0 : α ≤

(
1− (1− η1,δ1)

L−1 − η1,δ1
d− 1

) 1
L−1 1

ζ2
(1− ζL−3

2)
1

L−3

}
since the right hand side is monotonically decreasing in ζ and since ζ2 > ζj for any j ∈ {3, . . . d}.
Next, we also require that 1

2 ≥ ζ3. Note that this requirement satisfies the requirement of I3 on the
magnitude of ζd (since ζ3 > ζ4 > · · · > ζd). Moreover, note that I3 and I4 impose upper bounds on
α which are not related to ζ2, . . . , ζd. Therefore, there exists some α∗ > 0 such that if α ∈ (0, α∗)
then all of these conditions are satisfied. Moving on to the conditions that involve α and ζ2 we first
observe that there exists constants S, T > 0 such that

α ≤ S

ζ2
(1− ζL−3

2)
1

L−3

is equivalent to the condition from I1 and

(1− ζ2) ≤ Tα

is equivalent to the condition from I5. Invoking Lemma 36 we obtain that there exist constants
q1, w1 ∈ (0, 1) and q2, w2 ∈ (12 , 1) such that taking α ∈ (q1, w1) and ζ2 ∈ (q2, w2) satisfies the two
conditions involving α and ζ2. The above discussion is summarized in the following proposition.
Proposition 19. For any ϵ > 0 there exist constants q1, w1 ∈ (0, 1) and q2, w2 ∈ (12 , 1) such that
the set {

α · (1, ζ2, . . . , ζd)⊤ : (α, ζ2) ∈ (q1, w1)× (q2, w2),
1

2
≥ ζ3 > · · · > ζd

}
is contained in the intersection of initialization subsets given by

I1(ϵ) ∩ I2(δ2) .

Now that we have characterized a set of initializations which satisfy all our requirements, we will
show that this set contains an open subset.
Lemma 21. The set of initializations satisfying all our requirements, namely{

α · (1, ζ2, . . . , ζd)⊤ : (α, ζ2) ∈ (q1, w1)× (q2, w2),
1

2
≥ ζ3 > · · · > ζd

}
contains an open set, namely a set of the form (a1, b1)× (a2, b2)× · · · × (ad, bd).

Proof. We begin by restricting ζ3, . . . , ζd by requiring that for 3 ≤ j ≤ d, ζj ∈ [ej , fj] where the
closed intervals {[ej , fj]}2≤j≤d satisfy

1

2
> f2 > e2 > f3 > e3 > · · · > fd > ed > 0 .

We can restrict α further, by requiring that α ∈ (a1, b1), where a1, b1 are chosen such that for all
2 ≤ j ≤ d we have

a1fj > b1ej .

65

We now claim that for all 2 ≤ j ≤ d

(b1ej , a1fj) ⊆
⋂

α∈(a1,b1)

[αej , αfj] .

Indeed, for any α ∈ (a1, b1) we have b1ej > αej and a1fj < αfj . It follows that we can take
aj = b1ej , bj = a1fj and obtain that the set (a1, b1)× (a2, b2)× · · · × (ad, bd) is contained within{

α(1, ζ2, . . . , ζd) : (α, ζ2) ∈ (q1, w1)× (q2, w2),
1

2
> ζ3 > · · · > ζd

}
as required.

G Proof of Theorem 2

The first part of the Theorem is a special case of Proposition 2. We present below the proof for the
second part.

For k ∈ N and A ∈ Rd,d, we denote by Genk(A) the generalization error over sequence length k
(Definition 1). Note that B and C are omitted from this notation, as they are fixed to the values
B = 1, C = 1⊤ throughout the proof. With slight abuse of notation, we also denote ℓS(A) :=
ℓS(A,B,C).

Our proofs considers an augmented objective, given for the training set S ′′ obtained by scaling all
sequences by 1

c :

S ′′ =

{(
1

c
x,

1

c
y

)
: (x,y) ∈ S ′

}
=

{(
1

c
x,

1

c
y

)
: (x,y) ∈ S

}
∪ {(eκ−1, 1)} .

Since SSMs realize linear mappings, for any A ∈ Rd,d we have that

ℓS′′(A) =
1

c2
ℓS′(A) =

n

(n+ 1)c2
ℓS(A) +

1

n+ 1
ℓ{(eκ−1,1)}(A) .

We prove the required statement for the gradient flow dynamics (Equation (4)) obtained for the set
S ′′, from which it follow that it also holds when we revert back to the set S′, since the two systems
of ODEs differ only by a positive scale.

First, consider the objective when the training set consists solely of the sequence(
1

c
x†, ϕA∗,B∗,C∗

(
1

c
x†
))

= (eκ−1, 1) .

The corresponding training loss (Equation (3)) is given by

ℓ{(eκ−1,1)}(A) =

(
1−

κ−1∑
l=0

d∑
i=1

ali[eκ−1]κ−l

)2

=

(
1−

d∑
i=1

ai

)2

=

(
1−

d∑
i=1

ai

)2

,

and the corresponding gradient flow dynamics (Equation (4)) for τ ∈ R≥0 are given by

∀i ∈ [d] , ȧi(τ) = −2

(
d∑
i=1

ai(τ)− 1

)
.

For any initialization of the student SSM A0 = (α1, . . . , αd), it is straightforward to show that the
solution to the above system of ODEs A(τ) is given by

∀i ∈ [d], τ ∈ R≥0 , ai(τ) =
1 +

∑d
j=1 αi − αj

d
−

1−
∑d
j=1 αj

d
· exp(−2 · d · τ) .

Specifically, as τ → ∞ the solution A(τ) converges exponentially fast to the point Ã0 given by

∀i ∈ [d] , α̃i =
1 +

∑d
j=1 αi − αj

d
,

66

which satisfies

ℓ{(eκ−1,1)}(Ã0) =

(
1−

d∑
i=1

1 +
∑d
j=1 αi − αj

d

)2

= 0 .

Consider the open set I of initializations for the student SSM given by

I :=

(
− 1

d3
,
1

d3

)d
Note that for any ϵ > 0, the corresponding set of initializations from Proposition 2 and the set I
intersect, and moreover the intersection contains an open set sufficient for our needs. We next prove
that for any initialization A0 = (α1, . . . , αd) ∈ I, the point Ã0 that the system converges to as
τ → ∞ satisfies Genk(Ã0) > 1− 4

d . For any index i ∈ [d] it holds that

∀j ∈ [d] , |αi − αj | <
1

d2
=⇒

∣∣∣∣∣∣
d∑
j=1

αi − αj

∣∣∣∣∣∣ ≤
d∑
j=1

|αi − αj | <
1

d
.

The latter implies that

1

d2
≤ 1

d
− 1

d2
<

1 +
∑d
j=1 αi − αj

d
<

1

d
+

1

d2
<

2

d
,

which results in (
1 +

∑d
j=1 αi − αj

d

)2

∈
(

1

d4
,
4

d2

)
.

Overall, since d ≥ 5 and k ≥ 3 we obtain that

Genk(Ã0) = max
k′∈{0,1,...,k−1}

∣∣∣∣∣1−
d∑
i=1

α̃k
′

i

∣∣∣∣∣
≥

∣∣∣∣∣1−
d∑
i=1

α̃2
i

∣∣∣∣∣
=

∣∣∣∣∣∣1−
d∑
i=1

(
1 +

∑d
j=1 αi − αj

d

)2
∣∣∣∣∣∣

> 1− 4d

d2

= 1− 4

d
.

By the continuity of ℓ{(eκ−1,1)}(A) andGenk(A), the above implies that for any initializationA0 ∈ I
there exists a time t ∈ R>0 such that when initializing at A(0) = A0 and evolving A(τ) according to
the above dynamics it holds that

ℓ{(eκ−1,1)}(A(t)) ≤
δ

4

and

Genk(A(t)) ≥
3

4
− 3

d
.

Now consider the objective for the full set S ′′

ℓS′′(A) =
n

(n+ 1)c2
ℓS(A) +

1

n+ 1
ℓ{(eκ−1,1)}(A) ,

67

whose corresponding gradient flow dynamics (Equation (4)) for τ ∈ R≥0 are given by

∀i ∈ [d] , ȧi(τ) = − n

(n+ 1)c2
∂

∂ai(τ)
ℓS(A(τ))−

2

n+ 1

(
d∑
i=1

ai(τ)− 1

)
.

Observe that the left terms of both the objective and the dynamics all vanish as c→ ∞. Additionally,
note that when the left terms of the dynamics vanish, the dynamics differ by a positive scale from
those discussed above when the training set consists solely of the sequence (eκ−1, 1). Therefore
by continuity, for any initialization A0 ∈ I and any time t′ ∈ R>0 there exists c ∈ R>0 such that
when initializing A(0) = A0 = A′(0), evolving A(τ) according to the dynamics given when the left
terms vanish, and evolving A′(τ) according to the full dynamics, it holds that ∥A(t′)−A′(t′)∥2 is
sufficiently small to ensure that both∣∣∣∣ 1

n+ 1
ℓ{(eκ−1,1)}(A(t

′))− ℓS′′(A′(t′))

∣∣∣∣ ≤ δ

4

and

|Genk(A(t′))−Genk(A
′(t′))| ≤ 1

4
− 1

d
.

The proof follows by invoking the last claim for the time t obtained previously.

H Auxiliary Theorems and Lemmas

In this section we provide additional Theorems and Lemmas used throughout our proofs.

Lemma 22. Let f : Rd → R be some differentiable function. Suppose we optimize over f by
initializing x(0) := x0 for some x0 ∈ Rd and updating using gradient flow, i.e.:

ẋ(t) :=
d

dt
x(t) = −∇f(x(t)) .

Then the objective is non-increasing w.r.t time, i.e. for any t ≥ 0 it holds that

d

dt
f(x(t)) ≤ 0 .

Proof. Applying the chain rule, we obtain the following:

d

dt
f(x(t)) = ∇f(x(t))⊤ d

dt
x(t) = f(x(t))⊤(−f(x(t))) = −∥f(x(t))∥22 ≤ 0 .

Lemma 23. Let f : Rd → R be some continuously differentiable function, which is also coercive,
namely

lim
∥x∥→∞

f(x) = ∞ .

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ Rd and updating using gradient
flow, i.e.:

ẋ(t) :=
d

dt
x(t) = −∇f(x(t)) . (24)

Then there exists a global solution to the above ODE, namely a curve x(t) which satisfies the above
equation for all t ≥ 0.

Proof. By Lemma 22 and the coercivity of f , the trajectories of gradient flow cannot escape from
some compact set K := K(x0). Because f is continuously differentiable ∇f has some finite
Lipschitz constant onK. Existence of the solution for all t ≥ 0 now follows from the Picard–Lindelöf
theorem (see [80]).

Theorem 4. Let V ⊆ Rd be an open set. Let f : V → R be a non-negative differentiable function
satisfying the following conditions:

68

• The set X∗ := {x ∈ V : f(x) = 0} is not empty.

• There exists µ > 0 such that for any x ∈ V it holds that

∥∇f(x)∥22 ≥ 2µf(x) .

• There exists M > 0 such that ∇f(x) is M -Lipschitz in V .

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ V and evolving via gradient
flow, i.e. via the update rule

ẋ(t) :=
d

dt
x(t) = −∇f(x(t)) .

Assume the set V is not escaped, i.e. for any time t ≥ 0 it holds that x(t) ∈ V . Then it holds that∫ ∞

0

∥ẋ(t)∥2dt =
∫ ∞

0

∥∇f(x(t))∥2dt ≤

√
M

µ
Dist(x0, X

∗) .

Proof. The theorem is a restatement of theorem 9 in [29].

Definition 13. Let V ⊆ Rd be an open set. Let f : V → R be a differentiable function. We say that
f satisfies the Polyak-Lojasiewicz condition with coefficient µ > 0 at x ∈ V

∥∇f(x)∥22 ≥ 2µ(f(x)− min
y∈Rd

f(y)) .

If the above holds for all x ∈ V we say that f satisfies the PL condition in V .

Lemma 24. Let V ⊆ Rd be an open set. Let f : V → R be a non-negative differentiable function
satisfying the following conditions:

• The set x∗ := {x ∈ V : f(x) = 0} is not empty.

• PL condition (Definition 13) - there exists µ > 0 such that for any x ∈ V it holds that

∥∇f(x)∥2 ≥ 2µf(x) .

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ V and evolving via gradient
flow, i.e. via the update rule

ẋ(t) :=
d

dt
x(t) = −∇f(x(t)) .

Assume the set V is not escaped, i.e. for any time t ≥ 0 it holds that x(t) ∈ V . Then for any t ≥ 0 it
holds that

f(x(t)) ≤ f(x(0)) · exp(−2µ · t) .

Namely, it holds that

lim
t→∞

f(x(t)) = 0 .

Proof. Let t ≥ 0. By the chain rule, it holds that

d

dt
f(x(t)) = ∇f(x(t))⊤ d

dt
x(t) = f(x(t))⊤(−f(x(t))) = −∥f(x(t))∥22 .

By the PL condition and since V is not escaped, we have that

d

dt
f(x(t)) = −∥∇f(x(t))∥22 ≤ −2µf(x(t)) .

Therefore, by Grönwall’s inequality [21] we have that

f(x(t)) ≤ f(x(0)) · exp
(∫ t

0

−2µdτ

)
= f(x(0)) · exp(−2µ · t) .

Taking the limit as t→ ∞ completes the proof.

69

Lemma 25. Let V ⊆ Rd be an open set. Let f : V → R be a non-negative differentiable function
satisfying the following conditions:

• The set X∗ := {x ∈ V : f(x) = 0} is not empty.

• f satisfies the PL condition with coefficient µ > 0 (see Definition 13).

• Lipschitz gradient - there exists M > 0 such that ∇f(x) is M -Lipschitz in V .

Suppose we optimize over f by initializing x(0) := x0 for some x0 ∈ V and evolving via gradient
flow, i.e. via the update rule

ẋ(t) :=
d

dt
x(t) = −∇f(x(t)) .

Assume the set V is not escaped, i.e. for any time t ≥ 0 it holds that x(t) ∈ V . Then the limit
limt→∞ x(t) = x∗ exists and satisfies f(x∗) = 0 and

∥x∗ − x0∥2 ≤

√
M

µ
Dist(x0, X

∗) .

Proof. Let ϵ > 0. By theorem 4, it holds that∫ ∞

0

∥ẋ(τ)∥2dτ ≤

√
M

µ
Dist(x0, X

∗)

which is finite since X∗ is not empty. Hence, there exists t∗ ≥ 0 such that for any t ≥ t∗ it holds that∫ ∞

t

∥ẋ(τ)∥2dτ ≤ ϵ .

Therefore, for any t2 ≥ t1 ≥ t∗ it holds by the fundamental theorem of calculus and by the triangle
inequality that

∥x(t2)− x(t1)∥2 =

∥∥∥∥x0 +

∫ t2

0

ẋ(τ)dτ − x0 −
∫ t1

0

ẋ(τ)dτ

∥∥∥∥
2

=

∥∥∥∥ ∫ t2

t1

ẋ(τ)dτ

∥∥∥∥
2

≤
∫ t2

t1

∥ẋ(τ)∥2dτ

≤
∫ ∞

t1

∥ẋ(τ)∥2dτ

≤ ϵ .

Thus, the Cauchy convergence criterion is met and so the limit limt→∞ x(t) = x∗ exists. Plugging
f ’s continuity and lemma 24 yields the following

f(x∗) = f
(
lim
t→∞

x(t)
)
= lim
t→∞

f
(
x(t)

)
= 0 .

Finally, by continuity and by the triangle inequality it holds that

∥x∗ − x0∥2 =

∥∥∥∥x0 +

∫ ∞

0

ẋ(τ)dτ − x0

∥∥∥∥
2

=

∥∥∥∥∫ ∞

0

ẋ(τ)dτ

∥∥∥∥
2

≤
∫ ∞

0

∥ẋ(t)∥2

≤

√
M

µ
Dist(x0, X

∗)

as required.

70

Lemma 26. Let a, b ∈ R. An eigendecomposition of the matrix (a− b)Id + b1d,d, where 1d,d is the
d, d all ones matrix, is the following:

• The eigenvector 1 with the eigenvalue a+ (d− 1)b.

• For j ∈ {2, . . . , d} the eigenvector e1 − ej with the eigenvalue a− b.

Proof. First, it holds that

[(a− b)Id + b1d,d]1 = (a− b)1+ b · d1 = (a+ (d− 1)b)1

hence 1 is an eigenvector with the eigenvalue a+ (d− 1)b. Next, note that for any j ∈ {2, . . . , d}
we have

[(a− b)Id + b1d,d](e1 − ej) = (a− b)e1 + b1− (a− b)ej − b1 = (a− b)(e1 − ej)

hence e1 − ej is an eigenvector with the eigenvalue a − b. Finally, note that the set {1, e1 −
e2, . . . , e1 − ed} is linearly independent and thus spans Rd. Therefore, the above eigenvectors and
eigenvalues constitute and eigendecomposition of (a− b)Id + b1d,d.

Lemma 27. Let W ∈ Rd,d be a symmetric matrix and b ∈ Rd be a vector. The solution of the linear
dynamical system

ẏ(t) = −W (y(t)− b)

is given by

y(t) = exp(−W)
(
y(0)− b

)
= Q exp(−t · Λ)Q⊤(y(0)− b

)
+ b

where W = QΛQ⊤ is any orthogonal eigendecomposition of W .

Proof. Using the change of variables z(t) = y(t)− b, the given system simplifies to

ż(t) = −Wz(t)

whose solution is given by

z(t) = exp(−t ·W)z(0) .

Reversing the change of variables and reorganizing yields

y(t) = exp(−t ·W)
(
y(0)− b

)
+ b .

Let W = QΛQ⊤ be an orthogonal eigendecomposition of the symmetric W . Then we have by the
definition of matrix exponential that

y(t) = Q exp(−t · Λ)Q⊤(y(0)− b
)
+ b

as required.

Lemma 28. Let x0 ∈ Rd. Let V1,U1 ⊆ Rd be neighborhoods of x0. Let H : V1 → U1 be a C3

diffeomorphism. There exists r > 0 such that for any r1 ∈ (0, r] there exist r2 ∈ (0, r1) and r3 > 0
for which

• H[Br2(s)] ⊆ Br3(s) ⊆ H[Br1(s)].

• H|Br1
(s) is Lipschitz.

• H−1|Br3
(s) is Lipschitz.

Proof. V1 and U1 are neighborhoods of x0 and so there exist r
′
, r

′′
> 0 for which Br′ (x0) ⊆ V1 and

Br′′ (x0) =: U2 ⊆ U1. Hence, by H’s continuity there exists some small enough r > 0 for which
Br(x0) ⊆ V1 is mapped by H to H[Br(x0)] ⊆ U2. Fix r1 ∈ (0, r]. Then it holds that Br1(x0)
satisfies

Br1(x0) ⊆ Br(x0) ⊆ V1

71

and is mapped by H to

H[Br1(x0)] ⊆ H[Br(x0)] ⊆ U2 .

Since Br1(x0) is a compact ball and since H is C3, we obtain that H is Lipschitz over Br1(x0),
i.e. H|Br1

(x0)
is Lipschitz. Similarly, we obtain that H−1 is Lipschitz over U2, i.e. H−1|U2

is

Lipschitz. Therefore since H[Br1(x0)] ⊆ U2 we obtain that H−1|H[Br1
(x0)]

is Lipschitz. Next, note

that for any r2 ∈ (0, r1) the compact ball Br2(x0) satisfies H[Br2(x0)] ⊆ H[Br1(x0)]. Hence, by
taking a small enough r2 we can guarantee by H’s continuity that there exists some r3 > 0 for which
Br3(x0) satisfies

H[Br2(x0)] ⊆ Br3(x0) ⊆ H[Br1(x0)] .

Since H−1|H[Br1
(x0)]

is Lipschitz and Br3(x0) ⊆ H[Br1(x0)] we obtain that H−1|Br3
(x0)

is
Lipschitz.

Lemma 29. Let f : Rd → Rd be a vector field and let B ⊆ Rd be a bounded and compact space.
Suppose f is N -Lipschitz within B for some constant N > 0. Consider the following system of
ODEs:

ẋ(t) = f
(
x(t)

)
.

Consider two initialization points x1(0),x2(0) ∈ B. Suppose we evolve x1(t),x2(t) according to
the above system. If for any t ≥ 0 it holds that x1(t),x2(t) ∈ B, then

∥x1(0)− x2(0)∥2 · exp(−N · t) ≤ ∥x1(t)− x2(t)∥2 ≤ ∥x1(0)− x2(0)∥2 · exp(N · t) .

Proof. Let t ≥ 0. Applying the chain rule, we obtain the following:
d

dt
∥x1(t)− x2(t)∥2 =

d

dt

√(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

1

2∥x1(t)− x2(t)∥2
d

dt

(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

2

2∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤ d

dt

(
x1(t)− x2(t)

)
=

1

∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤(
f
(
x1(t)

)
− f

(
x2(t)

))
.

Thus, applying the Cauchy Schwarz inequality we obtain
d

dt
∥x1(t)− x2(t)∥2 ≤ 1

∥x1(t)− x2(t)∥2
· ∥x1(t)− x2(t)∥2 · ∥f

(
x1(t)

)
− f

(
x2(t)

)
∥2

= ∥f
(
x1(t)

)
− f

(
x2(t)

)
∥2 .

f is N -Lipschitz within B, and so since x1(t),x2(t) ∈ B we obtain
d

dt
∥x1(t)− x2(t)∥2 ≤ ∥f

(
x1(t)

)
− f

(
x2(t)

)
∥2 ≤ N · ∥x1(t)− x2(t)∥2 .

Finally, plugging Grönwall’s inequality [21] results in
∥x1(t)− x2(t)∥2 ≤ ∥x1(0)− x2(0)∥2 · exp(N · t) .

Next, consider the following system of ODEs which we coin the reversal of f :

ẋ(t) = −f
(
x(t)

)
.

Consider the initialization points x1(0) = x1(t) and x2(0) = x2(t). Suppose we evolve x1(t),x2(t)
according to the reversal of f . Then it holds that for any time t ∈ [0, t] and any i ∈ [2] we have

xi(t) = xi(t− t)

hence xi(t) ∈ B. As Lipschitz continuity is invariant to sign, −f isN -Lipschitz withinB. Therefore,
we can apply the above claim on the reversal of f , and obtain that

∥x1(0)− x2(0)∥2 = ∥x1(t)− x2(t)∥2
≤ ∥x1(0)− x2(0)∥2 · exp(N · t)
= ∥x1(t)− x2(t)∥2 · exp(N · t) .

The proof concludes by rearranging of the left and right hand side.

72

Lemma 30. Let f : Rd → Rd be a Lipschitz continuous vector field. Consider the following system
of ODEs:

ẋ(t) = f
(
x(t)

)
.

Consider two initialization points x1(0),x2(0) ∈ Rd. Suppose we evolve x1(t),x2(t) according to
the above system. If x1(0) ̸= x2(0) then for any t ∈ R it holds that x1(t) ̸= x2(t).

Proof. The argument follows from the Picard–Lindelöf existence and uniqueness theorem, which
states that for a given initialization x(0), there exists a unique solution x(t) to the ODE system

ẋ(t) = f
(
x(t)

)
.

Lemma 31. Let x ∈ Rd. Denote x’s representation with the orthogonal subspaces W1 and W2 to be
x = β1 · 1+ β2 · v

where v ∈ W2 is a unit vector. There exist i, j ∈ [d] such that

|xi − xj | ≥
|β2|
d

.

Proof. Denote v’s representation with the basis vectors of W2 to be

v =

d∑
k=2

λk(e1 − ek) =


∑d
k=2 λk
−λ2

...
−λd


where λ2, . . . , λd ∈ R. Denote Λ := (λ2, . . . , λd)

⊤ ∈ Rd−1. As v is a unit vector, it holds that

1 = ∥v∥22 =

(d∑
k=2

λk

)2

+

d∑
k=2

(−λk)2 =

(d∑
k=2

λk

)2

+

d∑
k=2

λ2k .

Hence,

1−
(d∑
k=2

λk

)2

=

d∑
k=2

λ2k .

Applying the Cauchy-Schwartz inequality we obtain the following:(d∑
k=2

λk

)2

=

(d∑
k=2

1 · λk
)2

= ⟨1,Λ⟩ ≤ ∥1∥22 · ∥Λ∥2 = (d− 1)

d∑
k=2

λ2k .

Therefore, we obtain that
d∑
k=2

λ2k = 1−
(d∑
k=2

λk

)2

≥ 1− (d− 1)

d∑
k=2

λ2k =⇒ d

d∑
k=2

λ2k ≥ 1 =⇒
d∑
k=2

λ2k ≥ 1

d
.

Therefore, there exists i∗ ∈ {2, . . . , d} for which λ2i∗ ≥ 1
d(d−1) and thus |λi∗ | ≥ 1√

d(d−1)
. If there

exists j ∈ {2, . . . , d} for which λj has a distinct sign than λi∗ , then it holds that

|vi∗ − vj | = | − λi∗ + λj | ≥ |λi∗ − 0| ≥ 1√
d(d− 1)

.

Otherwise, all entries of Λ share the same sign, and so it holds that for any j ∈ {2, . . . , d}

|v1 − vj | = |
d∑
k=2

λk − (−λj)| =
d∑
k=2

|λk|+ |λj | ≥ |λi∗ | ≥
1√

d(d− 1)
.

Therefore, there must exist i, j ∈ [d] for which |vi − vj | ≥ 1√
d(d−1)

, resulting in the following:

|xi − xj | = |β1 + β2 · vi − β1 − β2 · vj | = |β2| · |vi − vj | ≥
|β2|√
d(d− 1)

.

73

Proposition 20. Let x, y ∈ [−s, s] for some s > 0 such that |x− y| ≥ b for some b > 0. Then for
any k ∈ Nodd it holds that |xk − yk| ≥ (b2)

k. Additionally, if y ̸= 0 then |1− xk

yk
| ≥ (b2s)

k.

Proof. Suppose WLOG that x ≥ y. By the triangle inequality it holds that max{|x|, |y|} ≥ b
2 . If

x ≥ 0 ≥ y, then since k ∈ Nodd it holds that

|xk − yk| = |x|k + |y|k ≥ (
b

2
)k .

Now suppose that x, y ≥ 0. Then we have that

|xk − yk| = xk − yk ≥ (y + b)k − yk ≥ bk ≥ (
b

2
)k .

The case of x, y ≤ 0 is identical. As for the second inequality, If y ̸= 0, we get

|1− xk

yk
| = |y

k − xk

yk
| = |xk − yk|

|yk|
≥

(b2)
k

|yk|
.

Since y ∈ [−s, s] we get that |yk| ≤ sk and so

(b2)
k

|yk|
≥ (

b

2s
)k .

Proposition 21. Let x, y, z ∈ R such that y, x.z ̸= 0, and let b̂ > 0. If |1 − x
y | ≥ b̂ then either

|1− x
z | ≥

b̂

b̂+2
or |1− y

z | ≥
b̂

b̂+2
.

Proof. Assume to the contrary that both |1− x
z | <

b̂

b̂+2
and |1− y

z | <
b̂

b̂+2
. This implies that

0 < 1− b̂

b̂+ 2
≤ x

z
,
y

z
< 1 +

b̂

b̂+ 2
.

Hence, we get that

1

b̂+ 1
=

2

2b̂+ 2
=
b̂+ 2− b̂

b̂+ 2 + b̂
=

1− b̂

b̂+2

1 + b̂

b̂+2

<
x
z
y
z

=
x

y
<

1 + b̂

b̂+2

1− b̂

b̂+2

=
b̂+ 2 + b̂

b̂+ 2− b̂
=

2b̂+ 2

2
= b̂+ 1 .

Rearranging we obtain

−b̂ < −b̂
b̂+ 1

=
1

b̂+ 1
− 1 <

x

y
− 1 < b̂

which implies |xy − 1| < b̂ , contradicting our assumption.

Lemma 32. Let f : Rd → R be a differentiable function. Consider the gradient flow dynamics
induced by f , namely:

ẋ(t) = −∇f
(
x(t)

)
initialized at some x0 ∈ Rd. Let t1 < t2 be times such that

{x(t) : t ∈ [t1, t2]} ⊆
{
z ∈ Rd : f(z) ≥ min

y∈Rd
f(y) + c

}
for some c ≥ 0 and f satisfies the PL condition with some coefficient µ > 0 in {x(t) : t ∈ [t1, t2]}.
Then

f
(
x(t1)

)
−f
(
x(t2)

)
≥ 2(t2 − t1) · µ · c .

74

Proof. By the fundamental theorem for line integrals we have

f
(
x(t1)

)
−f
(
x(t2)

)
= −

∫ t2

t1

〈
∇f
(
x(τ)

)
, ẋ(τ)

〉
dτ =

∫ t2

t1

∥∇f
(
x(τ)

)
∥2dτ

applying the PL condition and Equation (24) we get the required result.

Lemma 33. Let g : Rd → R be a continuous function and let r > 0 and let B be a compact set such
that 0 ∈ B. For any ψ ≥ 0 denote the minimum value of g over Diff(ψ) ∩B as

f(ψ) := min
x∈Diff(ψ)∩B

g(x) .

It holds that f is right side continuous in ψ = 0.

Proof. Recalling the definition of Diff(ψ) (Equation (17)), we have that for any ψ ≥ 0 the set
Diff(ψ) ∩ B is compact, thus f(ψ) is properly defined for any ψ ≥ 0 (as by continuity g attains a
minimum over the set). Next, note that f is non-increasing since for any ψ2 ≥ ψ1 ≥ 0 it holds that

Diff(ψ1) ∩B ⊆ Diff(ψ2) ∩B =⇒ f(ψ1) = min
x∈Diff(ψ1)∩B

g(x) ≥ min
x∈Diff(ψ2)∩B

g(x) = f(ψ2) .

Let {ψn}∞n=1 be a non-increasing sequence of non-negative reals for which

lim
n→∞

ψn = 0 .

As f is non-increasing, the sequence {f(ψn)}∞n=1 is monotonically non-decreasing and upper
bounded by f(0). Hence, the limit R := limn→∞ f(ψn) exists and satisfies R ≤ f(0). For any
ψ ≥ 0 we let xψ be a minimizer of g over Diff(ψ) ∩B, i.e.

xψ ∈ argmin
x∈Diff(ψ)∩B

g(x) .

The set B is compact and so the sequence {xψn
}∞n=1 has a convergent subsequence {xψnk

}∞k=1.
Denote its limit

lim
k→∞

xψnk
=: x∗ ∈ Br(0) .

Assume on the contrary that x∗ ̸∈ Diff(0). Hence by definition of Diff(0) it holds that

ψ̃ := max
i,j∈[d]

|x∗i − x∗j | > 0 .

However, since limn→∞ ψn = 0 there exists k̃ ∈ N such that for any k ∈ N such that k ≥ k̃ it holds
that ψnk

≤ ψ̃
2 and thus

xψnk
∈ Diff(ψnk

) ⊆ Diff(
ψ̃

2
) ∧ x∗ /∈ Diff(

ψ̃

2
) .

This results in limk→∞ xψnk
̸= x∗ in contradiction. Therefore we obtain x∗ ∈ Diff(0) ∩B. By g’s

continuity and f ’s definition we thus obtain the following

lim
k→∞

g(xψnk
) = g(lim

k→∞
xψnk

) = g(x∗) ≥ f(0) .

Per xψ’s definition and since limn→∞ f(ψn) = R we also obtain

lim
k→∞

g(xψnk
) = lim

k→∞
f(ψnk

) = R ,

i.e., R ≥ f(0). Overall we obtain that R ≤ f(0) ≤ R, hence R = f(0). The above result is satisfied
for any sequence {ψn}∞n=1, hence limψ→0+ f(ψ) = f(0) as required.

Lemma 34. Let f : Rd → Rd be a C1 and Lipschitz vector field. Consider the system of ODEs
given by

ẋ(t) = f
(
x(t)

)
.

75

Consider two initialization points x1(0),x2(0) ∈ Rd. For any t ≥ 0 we use λmax(t) to denote the
maximum over the line segment between x1(t) and x2(t) of the maximal eigenvalue of the Jacobian
of f , i.e.

λmax(t) := max
k∈[0,1]

λmax

(
∇f
(
k · x1(t) + (1− k) · x2(t)

))
.

For any t ≥ 0 it holds that

∥x1(t)− x2(t)∥2 ≤ exp

(∫ t

0

λmax(τ)dτ

)
·∥x1(0)− x2(0)∥2 .

Proof. First note that since f is Lipschitz, λmax(t) is defined for any t ≥ 0. Next, if x1(0) = x2(0)
then the trajectories coincide and so the claim trivially follows. Suppose x1(0) ̸= x2(0). By
definition, we have that

d

dt

(
x1(t)− x2(t)

)
= f

(
x1(t)

)
−f
(
x2(t)

)
.

As f is C1, we obtain by the mean value theorem (see [68]) that there exists k ∈ [0, 1] for which

f
(
x1(t)

)
−f
(
x2(t)

)
= ∇f

(
k · x1(t) + (1− k) · x2(t)

)(
x1(t)− x2(t)

)
.

Additionally, by the chain rule we also have

d

dt
∥x1(t)− x2(t)∥2 =

d

dt

√(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

1

2∥x1(t)− x2(t)∥2
d

dt

(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

)
=

2

2∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤ d

dt

(
x1(t)− x2(t)

)
=

1

∥x1(t)− x2(t)∥2
·
(
x1(t)− x2(t)

)⊤(
f
(
x1(t)

)
−f
(
x2(t)

))
.

Plugging the above yields

d

dt
∥x1(t)− x2(t)∥2 =

(
x1(t)− x2(t)

)⊤∇f(k · x1(t) + (1− k) · x2(t)
)(
x1(t)− x2(t)

)
∥x1(t)− x2(t)∥2

= ∥x1(t)− x2(t)∥2 ·
(
x1(t)− x2(t)

)⊤∇f(k · x1(t) + (1− k) · x2(t)
)(
x1(t)− x2(t)

)(
x1(t)− x2(t)

)⊤(
x1(t)− x2(t)

) = (∗) .

The right term is bound by the Rayleigh quotient (see [32]), and so the above can be bound by

(∗) ≤ ∥x1(t)− x2(t)∥2 · λmax
(
∇f
(
k · x1(t) + (1− k) · x2(t)

))
≤ ∥x1(t)− x2(t)∥2 · λmax(t)

where the last inequality stems from λmax(t)’s definition. Dividing both sides by ∥x1(t)− x2(t)∥2
and integrating w.r.t time yields the following

ln(∥x1(t)− x2(t)∥2)− ln(∥x1(0)− x2(0)∥2) =
∫ t

0

d
dτ ∥x1(τ)− x2(τ)∥2
∥x1(τ)− x2(τ)∥2

dτ ≤
∫ t

0

λmax(τ)dτ .

Reorganizing the inequality and taking exponents yields

∥x1(t)− x2(t)∥2 ≤ exp

(∫ t

0

λmax(τ)dτ + ln(∥x1(0)− x2(0)∥2)
)

= exp

(∫ t

0

λmax(τ)dτ

)
·∥x1(0)− x2(0)∥2

as required.

76

Lemma 35. Let f : Rd → R be a continuous non-negative function with minx∈Rd f(x) = 0. Denote
X∗ := {x ∈ Rd : f(x) = 0}. Suppose that the 1 sub-level set of f defined as L1(f) := {x ∈ Rd :
f(x) ≤ 1} is compact. Then for any δ > 0 there exists η > 0 such that for any x ∈ Rd if f(x) ≤ η
then Dist(x, X∗) ≤ δ.

Proof. Assume on the contrary that there exists δ > 0 such that for any ϵ > 0 there exists xη ∈ Rd
for which f(xη) ≤ δ and Dist(xη, X∗) > δ. Consider the sequence {x 1

n
}∞n=1. For any n ∈ N it

holds that f(x 1
n
) ≤ 1

n and Dist(x 1
n
, X∗) > δ, therefore it holds that

lim
n→∞

f(x 1
n
) = 0 .

The sub-level set L1(f) is compact and satisfies x 1
n
∈ L1(f) for any n ∈ N, hence the sequence

{x 1
n
}∞n=1 is bounded. Therefore, the sequence has a convergent subsequence {x 1

nk

}∞k=1 with some
limit x∗ := limk→∞ xnk

. By f ’s continuity we get that
f(x∗) = f(lim

k→∞
xnk

) = lim
k→∞

f(xnk
) = lim

n→∞
f(xn) = 0 ,

i.e., x∗ ∈ X∗. This is a contradiction since all x 1
n

must remain at distance at least δ from x∗ on the
one hand, and x 1

nk

converges to x∗ on the other hand.

Lemma 36. Let T, S > 0, n ∈ N and x∗ ∈ (0, 1). There exist q1, w1 ∈ (0, x∗) and q2, w2 ∈ (12 , 1)
such that for any x ∈ (q1, w1) and y ∈ (q2, w2) it holds that

1− y ≤ Tx

and

x ≤ S

y
(1− yn)

1
n .

Proof. First note that since T > 0, the first requirement is equivalent to having
1− y

T
≤ x .

Let y ∈ (0, 1). It holds that

lim
y→1−

S

y
(1− yn)

1
n = lim

y→1−

S

y

(
(1− y)

n−1∑
i=0

yi
) 1

n

= S · n 1
n · lim

y→1−
(1− y)

1
n = 0 .

Therefore, there exists y′ ∈ (0, 1) such that for any y ∈ [y′, 1) it holds that
S

y
(1− yn)

1
n ≤ x∗ .

On the other hand, it also holds that

S
y+1
2

(
1− (y+1

2)n
) 1

n

1−y
T

=
2TS

y + 1
·

(
(1− y+1

2)
∑n−1
i=0 (

y+1
2)i

) 1
n

1− y

=

2TS

(∑n−1
i=0 (

y+1
2)i

) 1
n

y + 1
· (1

2
)

1
n · (1− y)

1
n

1− y
.

Hence, taking the limit as y → 1− we obtain that

lim
y→1−

S
y+1
2

(
1− (y+1

2)n
) 1

n

1−y
T

= lim
y→1−

2TS

(∑n−1
i=0 (

y+1
2)i

) 1
n

y + 1
· (1

2
)

1
n · (1− y)

1
n

1− y

= TS · n 1
n · (1

2
)

1
n · lim

y→1−

1

(1− y)
n−1
n

= ∞ .

77

Therefore, there exists y′′ ∈ (0, 1) such that for any y ∈ [y′′, 1) it holds that

S
y+1
2

(
1− (y+1

2)n
) 1

n

1−y
T

> 2 .

and so 1−y
T < S

y+1
2

(
1− (y+1

2)n
) 1

n

. Thus, setting y∗ = max{ 1
2 , y

′, y′′} we obtain that the interval(
1−y∗
T , S

y∗+1
2

(
1 − (y

∗+1
2)n

) 1
n
)

is not empty and upper bounded by x∗. Additionally, for any

y ∈ (y∗, y
∗+1
2) the following holds:

y∗ < y =⇒ 1− y∗

T
>

1− y

T
,

y∗ + 1

2
> y =⇒ S

y∗+1
2

(
1− (

y∗ + 1

2
)n
) 1

n

<
S

y
(1− yn)

1
n .

Hence the interval
(

1−y∗
T , S

y∗+1
2

(
1− (y

∗+1
2)n

) 1
n
)

is contained within the interval
(

1−y
T , Sy (1−

(yn)
1
n

)
. Noting that y

∗+1
2 < 1, we complete the proof by setting

q1 =
1− y∗

T
, w1 =

S
y∗+1

2

(
1− (

y∗ + 1

2
)n
) 1

n

and

q2 = y∗ , w2 =
y∗ + 1

2
.

I Further Experimental Results

In this appendix we provide additional experimental results omitted from Section 4.

I.1 Dynamical Characterization

The experiments in Section 4.1 corroborate our dynamical characterization (Section 3.1) by demon-
strating that greedy low rank learning of the state transition matrix A occurs under some, but not all,
choices of training sequences. This appendix reports the following additional experiments.

• Figure 3 extends the experiments reported in Figure 2 to longer training sequences.
• Figures 4 to 6 include experiments similar to those in Figure 2, where the training sequences

are labeled by teachers of higher dimensions.
• Figures 7 and 8 report the results achieved with different random seeds in the settings of

Figures 2 and 3, respectively.
• A classical continuous surrogate for the matrix rank is the effective rank [67]. Figures 9

to 15 present the effective rank of the transition matrix A throughout optimization in the
settings of Figures 2 to 8, respectively, underlining the low effective rank caused by greedy
low rank learning.

• Figures 16 to 19 report the values of γ(0)(t) (as defined in Proposition 1) observed during
optimization in the settings of Figures 2, 3, 7, and 8, respectively, showcasing that larger
absolute values of γ(0)(t) do not correspond to greedy low rank learning, whereas lower
absolute values do.

78

0 2 4 6
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
with special sequences

0 2 4
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 3: Demonstration of the dynamical characterization derived in Proposition 1—optimization of an SSM,
trained individually or as part of a non-linear neural network, implicitly induces greedy learning of the (diagonal)
entries of the state transition matrix A under some, but not all, choices of training sequences. This figure is
identical to Figure 2, except that the sequences used to train the models were longer, namely, of sequence length
10 as opposed to 6. For further details see Figure 2 as well as Appendix J.1.

0.0 2.5 5.0 7.5
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 6,
with special sequences

0 1 2 3
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 10,
with special sequences

Figure 4: Demonstration of the dynamical characterization derived in Proposition 1—optimization of an
individually trained SSM implicitly induces greedy learning of the (diagonal) entries of the state transition
matrix A under some, but not all, choices of training sequences. First two plots (left) and last two plots are
identical to the first two plots in Figures 2 and 3 respectively, except that the teacher used to label the training
sequences is of dimension d∗ = 2 (as opposed to d∗ = 1). For further details see Figures 2 and 3 as well as
Appendix J.1.

I.2 Synthetic Clean-Label Poisoning

The experiments in Table 1 corroborate the theoretical results of Section 3.2 by showcasing synthetic
regimes in which SSMs are susceptible to clean-label poisoning. Table 3 supplements the experiments
of Table 1 by including results in which the SSMs were trained on longer sequences. Tables 4 and 5
report the standard deviations of the quantities presented in Tables 1 and 3 respectively.

Table 3: Demonstration of clean-label poisoning of SSMs. The table is identical to Table 1, except that the
sequences used to train the models were longer, namely, of sequence length 10 as opposed to 6. Notice that
across all settings, special training sequences significantly deteriorate generalization. For further details see
Table 1 as well as Appendix J.2.

Setting Without special sequences With special sequences

Per Theorem 1 7.34× 10−3 3.51× 10−2

Standalone SSM beyond Theorem 1 1.22× 10−1 1.2
SSM in non-linear neural network 4.67× 10−2 8.93× 10−2

I.3 Real-World Clean-Label Poisoning

The experiments in Table 2 corroborate the theoretical results of Section 3.2 by demonstrating clean-
label poisoning of SSM-based neural networks in real-world settings. Table 6 provides additional
context to the experiments of Table 2 by reporting the training performance of the trained models,
before and after the inclusion of cleanly labeled poisonous examples. Tables 7 and 8 report the
standard deviations of the quantities presented in Tables 2 and 6 respectively.

J Implementation Details

We provide implementation details omitted from Section 4 and Appendix I. Code for reproducing our
experiments can be found at https://github.com/YoniSlutzky98/imp-bias-ssm-poison.

79

https://github.com/YoniSlutzky98/imp-bias-ssm-poison

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 6,
with special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 10,
with special sequences

Figure 5: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 4 except that the teacher used to label the training sequences is of dimension d∗ = 3. For further details
see Figure 4 and Appendix J.1.

0 2 4
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0
En

try
 m

ag
ni

tu
de

SSM length 6,
with special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM length 10,
with special sequences

Figure 6: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 4 except that the teacher used to label the training sequences is of dimension d∗ = 4. For further details
see Figure 4 and Appendix J.1.

J.1 Dynamical Characterization

In this appendix we provide implementation details for the experiments of Section 4.1 and Ap-
pendix I.1. All experiments were implemented using Keras [10] and carried out on a single Nvidia
RTX 2080 Ti GPU.

J.1.1 Standalone SSM

Models. In the experiments reported in Figures 2, 3, 7, and 8 where a standalone SSM was trained,
we used a teacher SSM of dimension d∗ = 1 with parameters

A∗ = 1 , B∗ = 1 , C∗ = 1 .

All parameters of the student SSM (i.e., A, B and C) were trained. We set the student SSM dimension
to d = 10 for Figures 2 and 7 and to d = 20 for Figures 3 and 8.

Next, we detail the models used in the experiments with teachers of higher dimensions (Figures 4
to 6). In the experiments reported in Figure 4 we used a teacher SSM model of dimension 2 that was
set with the parameters:

A∗ =

(
0.99 0
0 0.8

)
, B∗ = 1 , C∗ = 1⊤ .

In the experiments reported in Figure 5 we used a teacher SSM model of dimension 3 that was set
with the parameters

A∗ =

(
0.99 0 0
0 0.8 0
0 0 0.5

)
, B∗ = 1 , C∗ = 1⊤ .

In the experiments reported in Figure 6 we used a teacher SSM model of dimension 3 that was set
with the parameters

A∗ =

0.99 0 0 0
0 0.8 0 0
0 0 0.5 0
0 0 0 0.3

 , B∗ = 1 , C∗ = 1⊤ .

We used student SSM models whose input and output matrices B(·) and C(·) were fixed at 1 and 1⊤

respectively (due to computational limitations). The student models had dimension d = 10 in the

80

0 2 4
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
with special sequences

0.0 0.5 1.0
Iteration ×105

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 7: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 2 except that a different random seed was used.

0.00 0.25 0.50 0.75 1.00
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0
En

try
 m

ag
ni

tu
de

SSM,
with special sequences

0 1 2 3
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0.0

0.5

1.0

En
try

 m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 8: Demonstration of the dynamical characterization derived in Proposition 1. This figure is identical to
Figure 3 except that a different random seed was used.

experiments of shorter sequence length and dimension d = 20 in the experiments of longer sequence
length.

Data. In all experiments we used the respective teachers to generate the labels for training sequences.
Additionally, we used training sequences of one of two types, referred to as “baseline“ and “special“,
where each type had designated indices of non-zero entries. Table 9 specifies which non-zero indices
were present in each sequence type for each experiment. Training sequences of both types had their
non-zero entries sampled i.i.d. from N (0, 1). Table 10 specifies how many training sequences of
each type were used in each experiment.

Initialization. In all experiments we initialized the student’s A, B and C parameter matrices in a
manner that was inspired by the initialization set I of Theorem 1.

To initialize (the diagonal) A in each experiment we first sampled d i.i.d. entries from N (0, sd_A),
took their absolute values and then arranged them in descending order. Then, we set the second
entry to have the first entry’s value minus a constant diff. This was done to reflect the near zero
initialization on the one hand and the proximity to the reference trajectory on the other hand. In the
experiments reported in Figures 5 and 6 we naturally extended this procedure by setting the third
entry to have the first entry’s value minus 1.01 · diff in both experiments, and the fourth entry to
have the first entry’s value minus 1.05 · diff in the latter. Table 11 report the values of sd_A and
diff used in each experiment.

To initialize B in each experiment we first sampled d i.i.d. entries from N (0, sd_B_C), took their
absolute values and then arranged them in descending order. Then, we set the second entry to have
the first entry’s value minus a constant diff. This was done to reflect the near zero initialization
on the one hand and the proximity to the reference trajectory on the other hand. In the experiments
reported in Figures 5 and 6 we naturally extended this procedure by setting the third entry to have
the first entry’s value minus 1.01 · diff in both experiments, and the fourth entry to have the first
entry’s value minus 1.05 · diff in the latter. To initialize C we followed the same procedure, without
modifying the second to potentially fourth entries. Note that in the experiments reported in Figures 4
to 6 the input and output matrices B(·) and C(·) were not trained. Table 11 report the values of
sd_B_C used in each experiment.

Optimization. In all of the experiments we trained using the empirical mean squared error as a loss
function and optimized over full batches of the training sets. In order to facilitate more efficient
experimentation in the experiments where a standalone SSM is trained, we optimized using gradient
descent with an adaptive learning rate scheme, where at each iteration a base learning rate is divided
by the square root of an exponential moving average of squared gradient norms (see appendix D.2 in
Razin et al. [66] for more details). We used a weighted average coefficient of β = 0.8 and a softening
constant of 10−6. Note that only the learning rate (step size) is affected by this scheme, not the
direction of movement. Comparisons between the adaptive scheme and optimization with a fixed

81

0.0 0.5 1.0 1.5
Iteration ×104

0

2

4

6

Ef
fe

ct
iv

e
ra

nk

SSM,
without special sequences

0 2 4
Iteration ×103

0

2

4

6

Ef
fe

ct
iv

e
ra

nk

SSM,
with special sequences

0 1 2
Iteration ×104

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
without special sequences

0 2 4
Iteration ×103

0

5

10

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
with special sequences

Figure 9: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A—introduction of special sequences to the tranining set results in significantly larger effective
rank, in compliance with the disruption of greedy low rank learning. Each plot shows the effective rank of A
during the training process reported in Figure 2.

0 2 4
Iteration ×104

0

2

4

6

Ef
fe

ct
iv

e
ra

nk

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
ra

nk
SSM,

with special sequences

0.0 0.5 1.0
Iteration ×105

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
without special sequences

0 2 4
Iteration ×103

0

5

10

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
with special sequences

Figure 10: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 7.

learning rate showed no significant difference in terms of the dynamics, while run times of the former
were considerably shorter. Table 12 specifies the base learning rate used in each experiment.

J.1.2 SSM in a Non-Linear Neural Network

Models. In the experiments reported in Figures 2, 3, 7, and 8 where an SSM was trained as a part of
a non-linear neural network, we used neural networks comprised of an SSM module whose output
was fed to a 2 hidden layers MLP module. Overall, the models used realize the following function:

Dout · σ
(
Dhidden · σ

(
Din · ϕA,B,C(x)

))
where dh ∈ N is the hidden MLP width, Din ∈ Rdh,1, Dhidden ∈ Rdh,dh and Dout ∈ R1,dh are
the MLP’s parameter matrices, σ(x) := max{0, x} is the MLP’s activation function and ϕA,B,C(x)
is the output of an SSM with the parameter matrices A,B,C. All teacher models used had SSM
modules of dimension d∗ = 1 that were set with the parameters

A∗ = 1 , B∗ = 1 , C∗ = 1 .

The teacher models in Figures 2 and 7 had hidden MLP width of d∗h = 15 while the teacher models
in Figures 3 and 8 had hidden MLP width of d∗h = 25. In both cases, the teacher models had MLP
modules that were set with the following parameter matrices:

D∗
in = 1 , D∗

hidden = Id∗h , D∗
out =

1

2
· 1⊤ .

We trained all of the SSM and MLP parameter matrices of our student models. The student models in
Figures 2 and 7 had SSM dimension of d = 10 and hidden MLP width of dh = 15, while the student
models in Figures 3 and 8 had SSM dimension of d = 20 and hidden MLP width of dh = 25.

Data. Data for the experiments were generated in the same manner as in Appendix J.1.1. Table 9
specifies which non-zero indices were present in each sequence type for each experiment. Training
sequences of both types had their non-zero entries sampled i.i.d. from N (0, 1). Table 10 specifies
how many training sequences of each type were used in each experiment.

Initialization. In all experiments we initialized the student’s A, B and C parameter matrices
identically to the standalone SSM experiments (Appendix J.1.1). Table 11 report the values of sd_A,
sd_B_C and diff used in each experiment.

To initialize the MLP layers, we initialized all parameter matrices by sampling i.i.d. values from
N (0, sd_D). We used sd_D = 0.03 in the original experiments (Figures 2 and 7) and sd_D = 0.1 in
the experiments with longer sequences (Figures 3 and 8).

82

0 2 4 6
Iteration ×103

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM,
without special sequences

0 2 4
Iteration ×103

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM,
with special sequences

0 2 4
Iteration ×104

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0

10

20

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
with special sequences

Figure 11: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 3.

0.00 0.25 0.50 0.75 1.00
Iteration ×104

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM,
without special sequences

0 2 4
Iteration ×103

0

5

10

15
Ef

fe
ct

iv
e

ra
nk

SSM,
with special sequences

0 1 2 3
Iteration ×104

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0

10

20

Ef
fe

ct
iv

e
ra

nk

SSM + MLP,
with special sequences

Figure 12: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 8.

Optimization. To speed up the optimization we trained using the default Keras implementation of
Adam [36] with its default hyperparameters. Table 12 report the base learning rates used in each of
the experiments.

J.2 Synthetic Clean-Label Poisoning

In this appendix we provide implementation details for the synthetic experiments provided in Sec-
tion 4.2 and Appendix I.2. All experiments were implemented using Keras [10] and were carried out
using a single Nvidia RTX 2080 Ti GPU.

J.2.1 SSM Per Theorem 1

The main goal of the experiments in the first poisoning setting (standalone SSM per Theorem 1) was
to approximate the solution to the system of ODEs induced by gradient flow (Equation (4)) in order to
demonstrate the results of Theorem 1. To do so we employed the use of the odeint function of SciPy
[84] which is a numerical solver for systems of ODEs based on lsoda from the FORTRAN library
odepack [31]. odeint’s arguments are the initial point in parameter space A(0), the timestamps at
which the solution is required, and a function which specifies the system by intaking a timestamp t
and a point in parameter space A and outputting the derivative in time t at A. odeint outputs a set
of numerical approximations for the solution of the system at the required timestamps.

Models. We use teacher and student models according to the setting described in Section 3.2. We
used a teacher SSM of dimension d∗ = 2 that was set with the parameters

A∗ =

(
1 0
0 0

)
, B∗ =

(
1

√
d− 1

)⊤
, C∗ =

(
1

√
d− 1

)
.

We used student SSM models whose input and output matrices B(·) and C(·) were fixed at 1 and
1⊤ respectively. The student models had dimension d = 10 in the original poisoning experiments
(Table 1), and dimension d = 20 when training over longer sequences (Table 3).

Data. In all experiments we used the respective teachers to generate the labels for all training
sequences. Per Theorem 1, we trained using a single “baseline” sequence of the form e1 ∈ Rκ and
a single “special” sequence of the form eκ−1 ∈ Rκ. The relevant experiments reported in Tables 1
and 3 were trained using sequences of lengths 7 and 9 respectively.

Initialization. We initialized the student’s diagonal matrix A in a manner that was inspired by the
initialization set I of Theorem 1. In each experiment we first sampled d i.i.d. entries from N (0, sd_A)
and then arranged them in descending order. We then set the second entry to have the first’s value
minus a constant diff. This was done to reflect the near zero initialization on the one hand and the

83

0.0 2.5 5.0 7.5
Iteration ×103

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
ra

nk

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0

5

10

Ef
fe

ct
iv

e
ra

nk

SSM length 6,
with special sequences

0 1 2 3
Iteration ×103

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0

10

20

Ef
fe

ct
iv

e
ra

nk

SSM length 10,
with special sequences

Figure 13: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 4.

0.0 0.5 1.0 1.5 2.0
Iteration ×104

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
ra

nk

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0

5

10
Ef

fe
ct

iv
e

ra
nk

SSM length 6,
with special sequences

0 2 4
Iteration ×103

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0

10

20

Ef
fe

ct
iv

e
ra

nk

SSM length 10,
with special sequences

Figure 14: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 5.

proximity to the reference trajectory on the other hand. Table 13 reports the values of sd_A and diff
used in each experiment.

Optimization. We input odeint a custom function which computes −∇ℓS(A) (Equation (4)) given
the point A to be used for derivative computations. Table 14 reports the timestamps simulated in each
experiment. All experiments reached training loss values of less than 10−5 and stable generalization
errors.

Generalization evaluation. Generalization errors were measured via impulse responses of length
40 as defined in Definition 1, divided by the ℓ∞ norm of the teacher’s length 40 impulse response
(such that the zero mapping has error of one). The same evaluation procedures were used in both the
original experiments (Table 1) and in the longer experiments (Table 3).

J.2.2 SSM Beyond Theorem 1

Models. We used the same teacher models as described in Appendix J.1.1. We used student SSM
models that were trained end to end (i.e. B(·) and C(·) were not fixed). The student models had
dimension d = 10 in the original poisoning experiments (Table 1), and dimension d = 20 in the
experiments with longer sequences (Table 3).

Data. Data for the experiments were generated in the same manner as in Appendix J.1.1. Table 15
specifies which non-zero indices were present in each sequence type for each experiment. Training
sequences of both types had their non-zero entries sampled i.i.d. from N (0, 1). Table 16 specifies
how many training sequences of each type were used in each experiment.

Initialization. To speed up optimization we modified the initialized employed in Appendix J.1.1 by
adding a small constant of 10−1 to all entries of A and B at initialization. This modification showed
no significant differences in terms of the generalization error achieved by the models when compared
to without it, while run times of the former were considerably shorter. Table 17 report the values of
sd_A, sd_B_C and diff used in each experiment.

Optimization. We followed a training scheme identical to Appendix J.1.1. Table 18 report the base
learning rates used in each of the experiments.

We optimized all models to reach a training loss under 0.01. To verify the generalization errors
we report were stable, we trained for additional iterations after reaching sub 0.01 training loss. We
trained the standalone SSM models for 1500 more iterations, and the models with additional layers
for 5000 more iterations.

Generalization evaluation. Generalization errors were measured via impulse responses of length
40 as defined in Definition 1, divided by the ℓ∞ norm of the teacher’s length 40 impulse response

84

0 2 4
Iteration ×104

0.0

2.5

5.0

7.5
Ef

fe
ct

iv
e

ra
nk

SSM length 6,
without special sequences

0 2 4
Iteration ×103

0

5

10

Ef
fe

ct
iv

e
ra

nk

SSM length 6,
with special sequences

0 2 4
Iteration ×103

0

5

10

15

Ef
fe

ct
iv

e
ra

nk

SSM length 10,
without special sequences

0 1 2 3 4
Iteration ×103

0

10

20

Ef
fe

ct
iv

e
ra

nk

SSM length 10,
with special sequences

Figure 15: Demonstration of the dynamical characterization derived in Proposition 1 through the lens of the
effective rank of A. This figure is identical to Figure 9 except that the setting considered is that of Figure 6.

0.0 0.5 1.0 1.5
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0
Ga

m
m

a
m

ag
ni

tu
de

SSM,
with special sequences

0 1 2
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
without special sequences

0 2 4
Iteration ×103

2

0

2

4

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 16: Evolution of γ(0)(t) (as defined in Proposition 1) during training. Each plot shows the values of
γ(0)(t) during optimization in the setting of Figure 2. As can be seen, in compliance with our interpretation of
Proposition 1, larger absolute values of γ(0)(t) do not correspond to greedy low rank learning, whereas lower
absolute values do.

(such that the zero mapping has error of one). The same evaluation procedures were used in both the
original experiments (Table 1) and in the longer experiments (Table 3).

J.2.3 SSM in Non-Linear Neural Network

Models. We used the same teacher models as described in Appendix J.1.2. We used student SSM
models that were trained end to end (i.e. B(·) and C(·) were not fixed). The student models had
dimension d = 10 in the original poisoning experiments (Table 1), and dimension d = 20 in the
experiments with longer sequences (Table 3).

Data. The data used is identical to that of Appendix J.2.2. Table 16 specify how many training
sequences of each type were used in each experiment.

Initialization. We initialized the student models identically to Appendix J.1.2. To speed up optimiza-
tion we modified the initialized employed in Appendix J.1.2 by adding a small constant of 10−3 to
all entries of A and B at initialization. This modification showed no significant differences in terms
of the generalization error achieved by the models when compared to without it, while run times of
the former were considerably shorter. Table 17 report the values of sd_A, sd_B_C and diff used in
each experiment.

Optimization. We followed a training scheme identical to Appendix J.1.2. Table 18 report the base
learning rates used in each of the experiments.

We optimized all models to reach a training loss under 0.01. To verify the generalization errors
we report were stable, we trained for additional iterations after reaching sub 0.01 training loss. We
trained the standalone SSM models for 1500 more iterations, and the models with additional layers
for 5000 more iterations.

Generalization evaluation. Generalization errors were measured via the root mean square error
of a held-out test set of 2000 correctly labeled sequences of length 40, divided by the ℓ2 norm of
the teacher’s outputs vector (such that the zero mapping has error of one). The same evaluation
procedures were used in both the original experiments (Table 1) and in the longer experiments
(Table 3).

J.3 Real-World Clean-Label Poisoning

In this appendix we provide implementation details for the real-world experiments provided in
Section 4.2 and Appendix I.3. All experiments were implemented using PyTorch [60] and were
carried out using a cluster of 8 Nvidia RTX A6000 GPUs. All experiments consist of three stages: (i)

85

0 2 4
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0
0.2
0.4
0.6
0.8

Ga
m

m
a

m
ag

ni
tu

de

SSM,
with special sequences

0.0 0.5 1.0
Iteration ×105

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
without special sequences

0 2 4
Iteration ×103

0

5

10

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 17: Evolution of γ(0)(t) (as defined in Proposition 1) during training. This figure is identical to Figure 16
except that the setting considered is that of Figure 7.

0 2 4 6
Iteration ×103

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0
0.5
1.0
1.5
2.0

Ga
m

m
a

m
ag

ni
tu

de

SSM,
with special sequences

0 2 4
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

20

0

20

40

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 18: Evolution of γ(0)(t) (as defined in Proposition 1) during training. This figure is identical to Figure 16
except that the setting considered is that of Figure 3.

training the attacked model from scratch on a set of 20000 randomly chosen CIFAR-10 train examples,
(ii) generating poisonous noise added to a random subset of 10000 train examples using an adapted
version of the Gradient Matching method [18] provided in https://github.com/JonasGeiping/
poisoning-gradient-matching, and (iii) retraining the model on the 30000-examples poisoned
train set consisting of the original 10000 examples used for poison generation in their clean form
and in their poisoned form, as well as the remaining 10000 original examples. Due to computational
limitations, the poison generation process was targeted to disrupt the classification of 3000 randomly
chosen test instances, and the poisoning effect carried over to the entire CIFAR-10 test set.

To allow for poisoning of the entirety of the test set, we adapted the Gradient Matching method by
strategically partitioning the poisoning budget—namely, 5000 examples were used to poison the
1000 correctly-classified test instances for which the original model’s loss was the highest, and the
remaining 5000 examples were used to poison the remaining 2000 test instances. Additionally, in
order to make poisoning more precise we further split the poisoning examples into groups such that
the noise trained for each group’s examples targets 50 test instances and ignores the rest. Our adapted
approach also included: (a) reshaping the CIFAR-10 image input into a compatible sequence format,
(b) introducing regularization that encourages the last elements of an injected noise sequence to be
relatively large 15, and (c) using the untargeted-cross-entropy target criterion and a pbatch
value of 500. Apart from the above adaptations, all hyperparameters were kept at their default values.

The SSM-based S4 neural network adheres to the implementation provided in https://github.
com/state-spaces/s4, utilizing the “minimalist S4“ configuration available in s4d.py and
s4.py. The SSM-based Mamba-2 neural network is an adaptation of the minimal implementa-
tion provided in https://github.com/tommyip/mamba2-minimal. The SSM-based LRU neural
network is a python adaptation of the JAX-implementation provided in https://github.com/
NicolasZucchet/minimal-LRU. We trained all models using the AdamW optimizer and the
CosineAnnealingLR scheduler over 100 epochs. To ensure the models before and after poisoning
were comparable, we kept training the latter until reaching the training loss of the former (but no
longer than 300 total epochs). Table 19 details the hyperparameters used for each of the models.

15Regularization comprised weight decay of 32− i applied to the noise entries corresponding to the ith row of
an input image across all three channels, where i ∈ [32] (recall that CIFAR-10 images are of size 3× 32× 32).

86

https://github.com/JonasGeiping/poisoning-gradient-matching
https://github.com/JonasGeiping/poisoning-gradient-matching
https://github.com/state-spaces/s4
https://github.com/state-spaces/s4
https://github.com/tommyip/mamba2-minimal
https://github.com/NicolasZucchet/minimal-LRU
https://github.com/NicolasZucchet/minimal-LRU

0.00 0.25 0.50 0.75 1.00
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM,
without special sequences

0 2 4
Iteration ×103

0.0

0.5

1.0

Ga
m

m
a

m
ag

ni
tu

de

SSM,
with special sequences

0 1 2 3
Iteration ×104

0.05

0.00

0.05

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
without special sequences

0.0 0.5 1.0 1.5 2.0
Iteration ×104

50

25

0

25

Ga
m

m
a

m
ag

ni
tu

de

SSM + MLP,
with special sequences

Figure 19: Evolution of γ(0)(t) (as defined in Proposition 1) during training. This figure is identical to Figure 16
except that the setting considered is that of Figure 8.

Table 4: Standard deviations of the quantities presented in Table 1. For further details see Table 1 and Appen-
dices I.2 and J.2.

Setting Without special sequences With special sequences

Per Theorem 1 8.2× 10−5 3.54× 10−3

Standalone SSM beyond Theorem 1 0.195 9.56
SSM in non-linear neural network 1.88× 10−3 3.83× 10−2

Table 5: Standard deviations of the quantities presented in Table 3. For further details see Table 3 and Appen-
dices I.2 and J.2.

Setting Without special sequences With special sequences

Per Theorem 1 2.71× 10−4 1.69× 10−4

Standalone SSM beyond Theorem 1 4.3× 10−2 0.635
SSM in non-linear neural network 4.67× 10−2 1.99× 10−2

Table 6: Demonstration of clean-label poisoning of SSMs in real-world (non-synthetic) settings comprising
SSM-based neural networks consisting of the S4, Mamba-2 or LRU layers [24, 14, 58] trained on the CIFAR-10
dataset [38]. This table is similar to Table 2, except that it reports the training performance of the trained models,
before and after the inclusion of cleanly labeled poisonous examples. Notice that across all experiments, the
models’ training performance remains consistent before and after the inclusion of cleanly labeled poisonous
examples. Consequently, the drop in test performance reported in Table 2 cannot be attributed to a change in
training performance. For further details see Table 2 and Appendices I.3 and J.3.

SSM-based NN Loss without / with poisoning Accuracy without / with poisoning

S4 [24] 0.316 / 0.316 88.6% / 88.7%
Mamba-2 [14] 6.59× 10−2 / 6.59× 10−2 97.9% / 97.8%
LRU [58] 0.334 / 0.299 89.1% / 90%

Table 7: Standard deviations of the quantities presented in Table 2. For further details see Table 2 and Appen-
dices I.3 and J.3.

SSM-based NN Loss without / with poisoning Accuracy without / with poisoning Noise tail size

S4 [24] 1.47× 10−2 / 1.71× 10−2 0.29% / 0.18% 1.64× 10−2

Mamba-2 [14] 3.97× 10−2 / 4.38× 10−2 1.32% / 0.67% 2.1× 10−2

LRU [58] 4.76× 10−3 / 2.96× 10−2 0.71% / 0.53% 5.52× 10−2

Table 8: Standard deviations of the quantities presented in Table 6. For further details see Table 6 and Appen-
dices I.3 and J.3.

SSM-based NN Loss without / with poisoning Accuracy without / with poisoning

S4 [24] 1.25× 10−2 / 1.35× 10−2 0.45% / 0.61%
Mamba-2 [14] 1.95× 10−2 / 1.98× 10−2 0.75% / 0.68%
LRU [58] 0.62× 10−2 / 0.5× 10−2 2.4% / 1.76%

87

Table 9: Types of sequences used in dynamics experiments (Figures 2 to 8). Last two columns (right) indicate
the non-zero indices for each sequence type.

Setting Length Baseline indices Special indices

SSM / SSM + MLP (Figures 2 and 7) 6 1, 2 5, 6
SSM / SSM + MLP longer (Figures 3 and 8) 10 1, 2, . . . , 7 9, 10
SSM higher dimension (Figures 4 to 6) 6 1, 2 5
SSM higher dimension longer (Figures 4 to 6) 10 1, 2, . . . , 7 9

Table 10: Amount of sequences of each type used in dynamics experiments (Figures 2 to 8).

Setting Baseline amount Special amount

SSM (Figures 2, 3, 7, and 8) 8 10
SSM + MLP (Figures 2, 3, 7, and 8) 20 20
SSM higher dimension (Figures 4 to 6) 8 10

Table 11: Values of sd_A, sd_B_C and diff used in the dynamics experiments (Figures 2 to 8).

Setting sd_A sd_B_C diff

SSM (Figures 2 and 7) 10−2 10−2 0.05× exp
(
20 · log10(sd_A)

)
SSM longer (Figures 3 and 8) 10−3 5× 10−2 0.05× exp

(
20 · log10(sd_A)

)
SSM + MLP (Figure 7) 10−2 10−2 0.05× exp

(
0.5 · log10(sd_A)

)
SSM + MLP longer (Figure 8) 10−3 10−3 0.05× exp

(
2 · log10(sd_A)

)
SSM higher dimension (Figures 4 to 6) 10−2 − 0.05× exp

(
2 · log10(sd_A)

)
SSM higher dimension longer (Figures 4 to 6) 10−2 − 0.05× exp

(
3 · log10(sd_A)

)

Table 12: Base learning rates used in dynamics experiments (Figures 2 to 8). Last two columns (right) indicate
the base learning rate used in the experiments without the addition of “special” sequences and with their addition
respectively.

Setting Without special sequences With special sequences

SSM (Figures 2 and 7) 0.01 0.01
SSM longer (Figures 3 and 8) 0.01 0.01
SSM + MLP (Figures 2 and 7) 0.01 0.001
SSM + MLP longer (Figures 3 and 8) 0.01 5× 10−5

SSM higher dimension (Figures 4 to 6) 0.01 0.001
SSM higher dimension longer (Figures 4 to 6) 0.001 0.001

Table 13: Values of sd_A and diff used in the experiments of the first poisoning setting (Tables 1 and 3).

Setting sd_A diff

Per Theorem 1 (Table 1) 10−3 0.05× exp
(
5 · log10(sd_A)

)
Per Theorem 1 longer (Table 3) 5× 10−3 0.05× exp

(
10 · log10(sd_A)

)

Table 14: Timestamps simulated for the experiments of the first poisoning setting (Tables 1 and 3). The
timestamps used for each experiment are the endpoints of intervals obtained by evenly partitioning the range
(0, last_timestamp) into timestamp_amount segments.

Setting last_timestamp timestamp_amount

Per Theorem 1 (Table 1) w/o special 1011 1000
Per Theorem 1 (Table 1) w/ special 104 1000
Per Theorem 1 longer (Table 3) w/o special 1013 10000
Per Theorem 1 longer (Table 3) w/ special 107 1000

88

Table 15: Types of sequences used in the experiments of the second and third poisoning settings (Tables 1 and 3).
Last two columns (right) indicate the non-zero indices for each sequence type.

Setting Length Baseline indices Special indices

2nd and 3rd settings of Table 1 6 1, 2 5
2nd and 3rd settings of Table 3 10 1, 2, . . . , 7 9

Table 16: Amount of sequences of each type used in in the experiments of the second and third poisoning settings
(Tables 1 and 3).

Setting Baseline amount Special amount

Standalone SSM beyond Theorem 1 (Tables 1 and 3) 8 10
SSM in non-linear neural network (Tables 1 and 3) 20 20

Table 17: Values of sd_A, sd_B_C and diff used in the experiments of the second and third poisoning settings
(Tables 1 and 3).

Setting sd_A sd_B_C diff

Standalone SSM beyond Theorem 1 (Table 1) 10−3 10−3 0.05× exp
(
5 · log10(sd_A)

)
Standalone SSM beyond Theorem 1 longer (Table 3) 10−2 10−3 0.05× exp

(
3 · log10(sd_A)

)
SSM in non-linear neural network (Table 1) 10−2 10−2 0.05× exp

(
0.5 · log10(sd_A)

)
SSM in non-linear neural network longer (Table 3) 10−3 10−3 0.05× exp

(
2 · log10(sd_A)

)

Table 18: Base learning rates used in the experiments of the second and third poisoning settings (Tables 1 and 3).
Last two columns (right) indicate the base learning rate used in the experiments without the addition of “special”
sequences and with their addition respectively.

Setting Without special sequences With special sequences

Standalone SSM beyond Theorem 1 (Table 1) 0.01 0.01
Standalone SSM beyond Theorem 1 longer (Table 3) 0.001 0.001
SSM in non-linear neural network (Table 1) 0.01 0.01
SSM in non-linear neural network longer (Table 3) 0.01 5× 10−5

Table 19: Hyperparameters used in the real-world poisoning experiments (Tables 2 and 6).

Model Depth Dropout d_model d_state Base learning rate Weight decay

S4 4 0.1 128 64 10−2 10−2

Mamba-2 4 0.1 128 16 3× 10−3 5× 10−2

LRU 4 0.1 128 64 10−3 5× 10−2

89

	Introduction
	Preliminaries
	Notation
	Structured State Space Models (SSMs)
	Teacher-Student Setting

	Theoretical Analysis
	Dynamical Characterization
	Interpretation

	Clean-Label Poisoning

	Experiments
	Dynamical Characterization
	Clean-Label Poisoning

	Limitations
	Conclusion
	Related Work
	Extensions of result:poison,result:gen
	Low Training Loss with High Generalization Error
	Proof of result:dynamic (Dynamical Characterization)
	Proof of result:gen (Generalization)
	Proof of result:poison (Clean-Label Poisoning)
	Setting and Additional Notation
	Gradient Flow Under S1 Generalizes
	Gradient Flow Over S2 Converges but Does Not Generalize
	Reference Trajectories
	Characterization of Critical Points
	Linearization of Dynamical Systems
	Movement Towards the Saddle s
	Escape From the Saddle s
	Convergence to a Global Minimum
	Overall Divergence From Reference Trajecory

	Initialization Subsets Intersect

	Proof of result:poisonextended
	Auxiliary Theorems and Lemmas
	Further Experimental Results
	Dynamical Characterization
	Synthetic Clean-Label Poisoning
	Real-World Clean-Label Poisoning

	Implementation Details
	Dynamical Characterization
	Standalone SSM
	SSM in a Non-Linear Neural Network

	Synthetic Clean-Label Poisoning
	SSM Per result:poison
	SSM Beyond result:poison
	SSM in Non-Linear Neural Network

	Real-World Clean-Label Poisoning

