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Abstract
Large language models (LLMs) demonstrate significant potential
in various applications; however, they are susceptible to generat-
ing hallucinations, which can lead to the spread of misinformation
online. Existing studies address hallucination detection by (1) em-
ploying reference-based methods that consult external resources for
verification or (2) utilizing reference-free methods that mainly esti-
mate answer uncertainty based on LLM’s internal states. However,
reference-based methods incur significant costs and can be infea-
sible for obtaining reliable external references. Besides, existing
uncertainty estimation (UE) methods often overlook the impact of
scenario backgrounds inherited from the query’s lexical resources,
leading to noise in UE. In almost all real-world applications, users
care about the uncertainty concerning semantics or facts instead of
the query’s scenario information. Therefore, we argue that mitigat-
ing scenario-related noise and focusing on semantic information
can yield amore desirable UE. In this paper, we introduce a plug-and-
play scenario-independent framework to enhance unsupervised
UE in LLMs by removing scenario-related noise and focusing on
semantic information. This framework is compatible with most
existing UE methods, as it leverages only the existing UE meth-
ods’ outputs. Specifically, we design a scenario-specific sampling
to paraphrase queries, maintaining their common semantics while
diversifying the scenario distribution. Subsequently, to estimate the
contribution of the common semantics, we design a factor analysis
(FA) model to disentangle the UE score obtained from the given
UE method into a combination of multiple latent factors, which
represent the contribution of the common semantics and scenario-
related noise. By solving the FA model, we decompose the impact of
the most significant factor to approximate the uncertainty caused
by the common semantics, thus achieving scenario-independent
UE. Extensive experiments and analysis across multiple models and
datasets demonstrate the effectiveness of our approach.

CCS Concepts
• Computing methodologies → Natural language generation.
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Large Language Models, Hallucination, Uncertainty Estimation
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1 Introduction
Large language models (LLMs) show potential in extensive appli-
cations across various domains [22]; however, they are prone to
generating hallucinations, leading to the dissemination of factually
incorrect contents across the Internet [6]. Detecting and mitigat-
ing LLM-generated hallucinations are important to building a re-
sponsible and trustworthy internet. Particularly, for online service
providers of LLMs, such as OpenAI, it is crucial to avoid misleading
users with misinformation.

Efforts to detect such hallucinations are categorized into two
main directions [22]. (1) Initially, researchers delved into reference-
based methods, which rely on consulting evidence from external
resources to verify the accuracy of the information generated by
LLMs [7, 18, 55]. Min et al. [40] deconstructs an LLM generation into
a sequence of atomic facts and calculates the percentage of those
facts that are grounded by a reliable knowledge source. Wan et al.
[53] mitigate hallucinations by verifying and minimizing knowl-
edge inconsistency between external knowledge and the intrinsic
knowledge embedded in LLMs. Although these methods are effec-
tive and explainable, obtaining reliable external resources in specific
tasks incurs significant costs and is sometimes inaccessible [36].
(2) Consequently, researchers explore reference-free methods that
detect hallucinations by estimating the LLM’s confidence in the
correctness of its output. While a few researchers try to achieve
this by observing LLM behaviors [27, 49] (e.g. LLM debate), a more
prevalent approach is to analyze the internal states of LLMs, a
concept known as uncertainty estimation (UE) [36].

The research community studies UE in both supervised and un-
supervised manners. Some researchers train LLMs with carefully
crafted data to achieve UE with human supervision to output uncer-
tainty scores. Amayuelas et al. [1] construct a dataset containing
known-unknown questions and fine-tune an LLM-based detector
to distinguish between known and unknown queries. Cheng et al.
[9] fine-tune an LLM-based detector to leverage external tools with
hallucination detection trajectory data. However, these supervised
approaches are costly and have been demonstrated to be sensi-
tive to distribution shifts of the tuned detector, meaning that these
methods may malfunction in applications whose data distribution
is different from that of the trained detector [32]. Another group
of researchers study unsupervised UE without additional super-
vised training. These methods freeze LLM parameters and leverage
values of the model’s activations or outputs to calculate token
similarity [16, 34], semantics [14, 32, 46], or entropy [38] for uncer-
tainty estimation. Duan et al. [14] distinguish semantics-relevant
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Figure 1: The idea of our method. Black dashed lines in
both subfigures indicate the UE scores obtained with (right)
and without (left) applying our method. (A) The traditional
scenario-dependent UE method contains both semantic in-
formation (the blue area) and various kinds of noise (the gray
area). (B) Our method extracts the shared common semantic
information across diverse scenarios, thus alleviating the in-
fluence of scenario-related noise (the green and yellow area)
on UE.

keywords and highlight their token entropy in UE. Kuhn et al.
[32] cluster answers with similar semantics and aggregate their
generation entropy to eliminate lexical influence. These studies pri-
marily concentrate on enhancing UE by exploiting model-intrinsic
information such as token probabilities, relational coherence, and
semantic consistency, while often overlooking the impact of the
background or scenario in which the QA is presented.

Intuitively, when a query is expressed in a different background
or conversational scenario (e.g., debate or casual conversation),
the human perception of the answer’s uncertainty varies.1 Given
that LLMs easily capture strong style biases unrelated to factual
content during training [59], we argue that similar to humans,
the perception of LLMs’ uncertainty may be heavily influenced
by the scenario-related noise (e.g., language style, wording, and
syntax). In nearly all real-world situations, users care more about
how confident the LLM is about the semantics of their query, such as
the meaning, facts, or knowledge involved. They are less concerned
about the model’s uncertainty of the conversational scenario or
speaking background. Therefore, alleviating the impact of scenario
backgrounds in UE and focusing mainly on the contained semantics
can lead to a more desirable estimation of the LLM’s uncertainty
for real-world applications.

In this paper, we propose a plug-and-play scenario-independent
framework to augment unsupervised UE for LLM, which disentan-
gles the semantic information and scenario-specific information
via factor analysis and focuses on semantic information for UE
while ignoring scenario-specific noises2. The plug-and-play de-
sign means that our method is adaptive to almost all existing UE
methods, including black-box LLMs (i.e. GPT-4) based UE methods,
since our method only uses the traditional UE’s outputs instead
of accessing its model structure. Specifically, given any existing
UE model, to capture that model’s output distribution in various
scenarios, we design a scenario-specific sampling approach for a
1For the question “Is drinking eight glasses of water a day necessary for good health?”,
humans may be less certain about their answer when in the scenario of an academic
symposium than in a daily chit-chat.
2Our code is available at: anonymous.4open.science/r/WWW551.

given QA pair to generate multiple paraphrases containing the
shared common semantics while differing in their scenario back-
grounds (see the demonstration of our intuition in Figure 1). Sub-
sequently, we propose a factor analysis (FA) model to disentangle
the given UE model’s outputs into a combination of multiple latent
factors, representing the contribution of the common semantics
and scenario-related noise. By solving the FA model, we decom-
pose the impact of the most influential latent factor to approximate
the uncertainty that originates from the common semantics, thus
achieving a scenario-independent UE. Extensive empirical evidence
verifies the effectiveness and robustness of our framework.

Our contributions are as follows: (1) To the best of our knowl-
edge, we are the first to consider scenario information to enhance
uncertainty estimation for detecting the hallucinations in LLMs; (2)
We model scenario-independent uncertainty estimation with factor
analysis and disentangle the semantic information from scenario-
related noise to improve UE; (3) Our method achieves SOTA per-
formance across multiple datasets and model families. Empirical
evidence verifies the effectiveness of our proposed approach.

2 Related Work
2.1 Reference-based Hallucination Detection
Reference-based hallucination detection uses external references
(e.g., Documents [7], knowledge graph [44]) to compare the gener-
ated outputs from LLMs with known facts, thus determining the
presence of hallucinations. Huo et al. [23] combine the question
with the LLM’s generated answer to retrieve supporting evidence
from a corpus, thereby improving the detection of hallucinations in
their responses. Sansford et al. [44] introduce GraphEval and lever-
age knowledge graphs to provide well-structured, interpretable
evaluations and corrections for hallucination detection. Min et al.
[40] introduce FACTSCORE, a fine-grained evaluation metric for
factual precision in long-form text generation by decomposing text
into atomic facts and assessing their veracity against reliable knowl-
edge sources. Chern et al. [10] propose a versatile framework for
detecting factual errors across multiple tasks and domains by lever-
aging external tools, such as Google Search. These approaches rely
on high-quality external references to ensure that the generated
outputs are aligned with verified facts.

2.2 Hallucination Detection via Uncertainty
Estimation

UE assesses the likelihood that the LLM-generated content is factual
without relying on external references, which can be categorized
into two types based on the need for supervision [32, 36].

2.2.1 Supervised Approach for Uncertainty Estimation. Supervised
approaches train the LLM to generate a confidence score alongside
its responses [1, 56] or train an additional detector [8, 9, 11, 48]
to recognize hallucinations in the LLM’s output. Zhang et al. [57]
introduce an automated approach for creating synthetic data to
train hallucination detectors, enhancing detection accuracy and la-
tency without manual annotations. Ji et al. [26] propose an iterative
self-training framework that progressively scales hallucination an-
notation datasets, thereby improving the accuracy of hallucination
annotators in LLMs. Chen et al. [8] suggest training a discriminator
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on bilingual QA datasets to more effectively detect hallucinations
in LLMs’ generated answers. These supervised approaches require
additional training data and computational resources. They are also
sensitive to distribution shifts.

2.2.2 Unsupervised Approach for Uncertainty Estimation. Unsuper-
vised methods do not require additional training and typically rely
on internal signals from the LLM [5, 14, 25, 32, 46] to estimate the
certainty of its outputs. Researchers explore various strategies us-
ing entropy [38], similarity [16, 34], semantic features [14, 32, 46],
and information from logits or hidden states [5, 30, 42, 48] to derive
uncertainty metrics [36]. Vazhentsev et al. [52] propose modeling
the conditional dependency between multiple generation steps,
adjusting the current generation step’s uncertainty based on the
previous step’s uncertainty. Chuang et al. [11] identify contextual
hallucinations by analyzing the ratio of attention weights between
context and generated tokens. Da et al. [13] introduce a directional
entailment graph and claim-level response augmentation for quanti-
fying uncertainty, considering both semantic and logical directional
information. Chen et al. [5] leverage the internal states of LLMs to
detect hallucinations using an EigenScore metric from the sentence
embeddings of multiple responses. When dealing with black-box
models, whose internal signals are inaccessible, researchers ap-
proximate these metrics by sampling multiple outputs from the
LLMs [35, 38, 39]. Manakul et al. [39] evaluate factual consistency
among multiple sampled outputs. Zhang et al. [58] enhance hallu-
cination detection performance in commonsense QA by checking
response consistency across different models.

Aside from UE, researchers also try to detect hallucination by
observing LLM behavior [27, 49]. Sun et al. [49] propose a Markov
Chain-based multi-agent debate framework to improve hallucina-
tion detection accuracy. Cohen et al. [12] leverage interactions
between two LLMs where an “examiner” LLM questions an “exami-
nee” LLM, aiming to unveil inconsistencies of responses through
multi-round conversations.While some previouswork also employs
query paraphrasing [60], they overlook the influence of scenario
information on the hallucination detection results.

Our approach belongs to unsupervised UEmethods.We explicitly
consider diverse scenario information during paraphrasing and
construct a factor analysis model to eliminate scenario-related noise,
thus achieving a more accurate uncertainty estimation.

3 Method
3.1 Overview
We first construct a unified framework to identify the impact of
scenario information on uncertainty estimation (UE) methods and
then implement our algorithm. Our framework comprises two mod-
ules (see Figure 2). First, we perform scenario-specific paraphrase
sampling of the query, using a scenario-dependent UE method to
obtain scenario-dependent UE scores. Then, we propose a factor
analysis (FA) model to achieve scenario-independent UE by disen-
tangling and decomposing the contribution of common semantics
from scenario-specific noise.

3.2 Plug-and-play Scenario-independent
Uncertainty Estimation Framework

We propose a scenario-independent UE framework to identify the
impact of scenario information on traditional UE and then mitigate
its effect. Traditional UE methods 𝑔(𝑥,𝑦) predict the probability of
an LLM’s answer 𝑦 being correct to the query 𝑥 . However, when
using any lexical representation 𝑥 to express the semantic 𝑠 of a
query, the choice of lexical resources in 𝑥 is inherently influenced
by scenario information 𝑐 : 𝑥 ∼ 𝑝 (𝑥 | 𝑐, 𝑠). Here, 𝑐 is associated with
the background in which 𝑥 is posed (e.g., social media, academic
conferences, etc.). Note that users typically care about the uncer-
tainty of the semantic 𝑠 rather than the uncertainty of 𝑐 . However,
existing (scenario-dependent) UE suffers from the noise brought by
this scenario-related noise (we observe that scenario information
has a significant impact on existing UE algorithms in Sec. 4.3).

Therefore, we propose a plug-and-play framework 𝐺 (𝐶,𝑔(𝑥,𝑦))
to achieve scenario-independent UE, where 𝐶 = {𝑐1, . . . , 𝑐𝑚} de-
notes a set of different scenarios. We first employ a scoring function
for an LLM-based task (e.g. QA) that evaluates the quality of the gen-
erated response 𝑓 (·, ·) : Y ×Y → [0, 1]. For each pair of (𝑥,𝑦), the
evaluation function rates the response with the score 𝑓 (𝑦𝑡𝑟𝑢𝑒 , 𝑦),
where𝑦 is the LLM response for the query 𝑥 and𝑦𝑡𝑟𝑢𝑒 is the ground
truth. A larger score represents a more reliable answer.𝐺 approxi-
mates the value of 𝑓 (𝑦true, 𝑦) without relying on the ground truth
𝑦true, as shown in Eq. 1. The goal of 𝐺 is to minimize the predic-
tion error relative to the true evaluation function, considering the
scenarios 𝐶 and UE’s output 𝑔(𝑥,𝑦):

𝐺 (𝐶,𝑔(𝑥,𝑦)) ≈ 𝑓 (𝑦true, 𝑦),

min
𝐺

E(𝑥,𝑦,𝑦true )∼D
����𝐺 (𝐶,𝑔(𝑥,𝑦)) − 𝑓 (𝑦true, 𝑦)

����2
2 . (1)

Our framework 𝐺 can build upon any scenario-dependent UE
method in a plug-and-play fashion because it is agnostic to the
implementation of 𝑔(𝑥,𝑦), relying solely on its output. 𝐺 consid-
ers multiple possible scenarios for a given QA pair to remove the
scenario-related noise and achieve a more reliable UE. We realize
𝐺 is in Sec. 3.3 and Sec. 3.4.

3.3 Scenario-specific Sampling for Query
Paraphrases

We conduct a scenario-specific sampling to diversify the scenario
distribution among paraphrases while retaining the query’s se-
mantics. Each paraphrased sentence corresponds to each scenario.
Specifically, we instruct GPT-4o-mini [41] to generate various scenario-
specific paraphrases of the query. First, we pre-define𝑚 diverse
scenarios based on various real-world situations, ensuring a signifi-
cant divergence between them, such as chatting on social media
and reporting at academic conferences, etc. To ensure that each syn-
thesized paraphrase 𝑥𝑖 retains the semantic meaning of the original
query 𝑥 while only altering information related to the correspond-
ing scenario 𝑐𝑖 , we explicitly constrain this in the instruction:

𝑥𝑖 ∼ 𝑃𝐿𝐿𝑀 (𝑥𝑖 |𝑥, 𝑐𝑖 ), ∀𝑖 ∈ {1, 2, . . . ,𝑚} (2)
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Semantic
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Figure 2: The overview of our framework. For a query 𝑥 with an answer 𝑦 given by the target model, GPT-4 paraphrases 𝑥
considering 3 different scenarios, resulting in QA pairs (𝑋,𝑦). Given any scenario-dependent UE algorithm 𝑔, our framework
disentangles its output sample matrix 𝑈 into multiple common factors (the row vectors of 𝐹 ). Then, we decompose the
contribution of common semantic information (the blue row vector) from noise information (green and yellow vectors) to
produce the final UE score.

Our instruction template is: You need to rewrite the provided
sentences into the scenario: [SCENARIO]. Here are three examples:
[EXAMPLES]. You need to paraphrase this sentence: [SENTENCE].
“[EXAMPLES]” represents the few-shot examples and response for-
mat we show, “[SENTENCE]” represents the given query that needs
to be paraphrased, and “[SCENARIO]” is the scenario for paraphras-
ing.

Finally, for each sample (𝑥,𝑦) in the dataset D = {(𝑥𝑖 , 𝑦true𝑖
) |

𝑖 = 1, 2, . . . , 𝑁 }, we instruct the LLM to paraphrase the input query
𝑥 based on each scenario, resulting in a set of scenario-specific para-
phrases 𝑋 = {𝑥1, . . . , 𝑥𝑚}. By maintaining the semantics during
scenario-specific sampling, we ensure that the underlying seman-
tics are the core of the information they have in common. Besides,
by diversifying the scenario backgrounds, we reduce the similar-
ity of different types of scenario-related noise information among
paraphrases, thereby making it easier to separate them from the
core semantic information (see demonstration in Fig 1).

3.4 Disentanglement of Common Semantic via
Factor Analysis

Based on factor analysis, our method disentangles the common
semantics and scenario-related noise information within UE scores.
Factor analysis is a statistical technique that identifies underlying
latent variables or factors. These factors explain the relationships
among observed variables by expressing them as linear combina-
tions of multiple latent variables. As we maintain the same seman-
tics while making the noise more dissimilar in scenario-specific
sampling, the contribution of the shared semantics in the common
factor is larger than that of common noise. Therefore, it is natural
to assume that these paraphrases’ most significant common factor

is their shared semantics. Consequently, by disentangling the pro-
portion of the most influential factor in uncertainty scores from
others, we can distill UE to concentrate on semantics.

Specifically, our algorithm consists of three stages. We first con-
duct scenario-dependent UE for paraphrases obtained in Sec. 3.3
and then disentangle the UE scores into multiple latent factors.
Finally, we decompose the contribution of semantic information
from scenario-related noise to achieve scenario-independent UE.

(1) Uncertainty estimation for paraphrases.We first feed the
query 𝑥 into the target LLM for an answer 𝑦. We then apply a
scenario-dependent (traditional) UE algorithm 𝑔(𝑥,𝑦) for each
group of scenario-specific paraphrases {(𝑥𝑖 , 𝑦) |𝑥𝑖 ∈ 𝑋 }, to ob-
tain their corresponding UE scores, which we organize into a
vector: 𝑢 = [𝑔(𝑥1, 𝑦), . . . , 𝑔(𝑥𝑚, 𝑦)]𝑇 . This process allows us to
compile a sample matrix 𝑈𝑚×𝑛 = [𝑢1, ..., 𝑢𝑛], where 𝑛 is the
number of data samples and𝑚 is the number of scenarios.

(2) Disentanglement of common factors.We construct a factor
analysis model𝑈 = 𝐴𝑚×𝑚𝐹𝑚×𝑛 to disentangle the uncertainty
scores into a linear combination of a series of common factors.
We denote 𝐹 = [𝑓1, . . . , 𝑓𝑚]𝑇 , where each 𝑓𝑖 describes a com-
mon factor’s scores across 𝑛 samples. The columns of loading
matrix 𝐴 represents the loading weights of common factors,
and their weighted sum yields the uncertainty scores 𝑈 un-
der different scenarios. The larger the weights in 𝐴, the more
its corresponding factor contributes to UE. It consists of the
following two steps:

• Calculating the loading matrix 𝐴.We first consider the UE
scores across these𝑚 scenarios as the observed variables𝑈 and
compute its covariance matrix:

𝑅𝑚×𝑚 =
1

𝑛 − 1
𝑈𝑈𝑇 , (3)

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scenario-independent Uncertainty Estimation for LLM-basedQuestion Answering via Factor Analysis WWW’25, April 28–May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

which measures the pairwise correlation between each sce-
nario. Inspired by the PCA algorithm that reduces the dimen-
sionality of the original data using eigen decomposition, we
perform spectral decomposition [47] on the sample covariance
matrix 𝑅 to obtain the loading matrix 𝐴: 𝑅 = 𝐴𝑚×𝑚𝐴𝑇𝑚×𝑚 ,
where 𝐴 = [

√
𝜆1𝑒1, . . . ,

√
𝜆𝑚𝑒𝑚] (eigenvalues 𝜆s are arranged

in descending order corresponding to the𝑚 common factors
from most to least influential). The advantage of using the FA
model is that it allows us to preserve the correlation information
among UE scores from different perspectives while ensuring
that different factors are orthogonal. Besides, FA helps rank the
contribution of obtained factors, with larger eigenvalues in 𝐴

indicating greater importance of corresponding factors in 𝐹 ,
thereby extracting the most significant information from 𝑈 , i.e.
common semantics.

• Calculating the common factorsmatrix 𝐹 . Since the loading
matrix 𝐴 is invertible (full rank), we derive the common factor
matrix 𝐹 according to our FA model𝑈 = 𝐴𝐹 as follows:

𝐹 = 𝐴−1𝑈 . (4)

In this way, we map the original UE scores to common factors
of varying importance based on their eigenvalues. The value of
each 𝑓 quantifies the amount of common information across all
scenarios from different perspectives. The larger the eigenvalue
corresponding to 𝑓 , the more critical 𝑓 is in describing the
shared information among paraphrases.

(3) Decomposition of common semantic information. We
consider the common factor 𝑓1 (i.e. the first row vector in 𝐹 ),
corresponding to the largest eigenvalue, as representing the
shared information across all sampled paraphrases for UE. Since
the eigenvalue quantifies the contribution of common factors,
and common semantics is the most significant factor affect-
ing different paraphrases, 𝑓1 can be used to measure the con-
tribution of common semantics to the UE scores. Below, we
decompose the common semantic information based on 𝑓1 as
shown in Eq.5. Specifically, we decompose the matrix𝑈 into a
product of column vectors of 𝐴 and row vectors of 𝐹 . Further,
We consider𝑈 to comprise two components: (1) the product of
common semantic information 𝑓1 with its corresponding load-
ing weights

√
𝜆1𝑒1 that quantifies the proportion of 𝑓1 under

different scenarios; (2) the non-semantic noise information Φ
that is unhelpful in UE.

𝑈 =

𝑚∑︁
𝑖

𝐴(:,𝑖 )𝐹 (𝑖,:)

= 𝐴(:,1)𝐹 (1,:) +𝐴(:,2:𝑚)𝐹 (2:𝑚,:)

=
√︁
𝜆1𝑒1 𝑓

𝑇
1 + Φ. (5)

In this way, we derive the scenario-independent UE score 𝑓1,
which mainly considers the semantic information for each sam-
ple, to evaluate the quality of the model’s responses.
Our framework can be applied in a plug-and-play manner to

any unsupervised UE method. In our framework, we first apply
scenario-specific sampling on the query across diverse scenarios
(Sec.3.3). Next, we estimate the uncertainty for these paraphrases
with arbitrary scenario-dependent UE algorithms in a plug-and-
play fashion (the first step in Sec.3.4). Based on factor analysis, we

then disentangle the UE scores across different scenarios into a
combination of multiple common factors with varying weights (the
second step in Sec.3.4). Finally, we decompose the uncertainty in-
formation related to semantics (the one with the largest eigenvalue)
from scenario-related noise information (the final step in Sec.3.4).
This ultimately achieves scenario-independent UE.

4 Experiments
4.1 Experimental Setting
Implementation Details.We conduct our experiments on a single
A100 40GB GPU, using LLaMA-3 [15] 8B model and Qwen2 [2]
models (0.5B, 1.5B, and 7B) as the target LLMs for uncertainty esti-
mation. We set the number of scenarios𝑚 as 6 and ask GPT-4o-mini
to paraphrase the query based on the following scenarios: Chat,
Academic, Research, Report, Podcast, Informal. See detailed expla-
nations for each scenario in App. E.1. In our experiments, we use
greedy decoding for the target LLM to generate the most probable
answers and compare them with the gold answers to evaluate their
correctness. For different UE applied in our method, we keep other
hyperparameters consistent with those in their original papers. In
inference, we apply 5-shot prompting for the target LLM to answer
the given question. We select the first 5 samples from each dataset
as demonstrations, which are not included in the testing set. See
details in App. F.

Dataset. We apply our method on two datasets: EntityQues-
tions [45] and TriviaQA [28], to evaluate its performance in en-
hancing UE on QA tasks. EntityQuestions is a closed-book QA
dataset comprising approximately 221k QA pairs, with the test set
consisting of around 22k samples. The dataset consists of 24 sub-
sets covering various knowledge types, such as places of birth, city
locations, and music genres. The gold answers are typically unique
and consist of a single word or phrase3. We evaluate our method on
the test set. TriviaQA is an open-book QA dataset primarily derived
fromWikipedia and theWeb, containing about 95k samples. Follow-
ing Kuhn et al. [32] and Welbl et al. [54], we evaluate our approach
on the validation set with approximately 17k samples. The dataset
typically contains gold answers in the form of a word, phrase, or
short sentence, along with aliases that are also considered correct4.

Metric. We adopt the widely adopted AUROC[20, 29, 32] to
evaluate the performance of our method in measuring LLM uncer-
tainty. See its calculation details in App. A. Following the common
practice [17, 32, 46], we apply a DeBERTa-based [21] natural lan-
guage inference (NLI) model5 to evaluate whether the LLM response
aligns with the gold answer. It categorizes the relationship between
two sentences as either entailment, neutrality, or contradiction. We
consider an LLM response to align with the gold answer if it entails
the gold answer and vice versa.

Baseline. Our baselines consist of two parts. The first part con-
sists of existing scenario-dependent UE algorithms that calculate
scenario-dependent UE scores. The second part contains baselines
we use to integrate the obtained UE scores. we compare our method
with the second part to demonstrate its performance.
3For example, for question “Who is Birgit Rosengren married to?”, the answer is “Elof
Ahrle”.
4For example, for the question “In which country was the inventor of the machine
gun Hiram Maxim born?”, gold answers include “America”, “the U.S.”, and “the USA”.
5huggingface.co/microsoft/deberta-large-mnli
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Table 1: The performance (AUROC) of different integration strategies with various scenario-dependent baselines. The second
row shows the scenario-dependent baselines we use to calculate the UE score, and the second column displays the integrated
baselines we compare with ours. , the results in bold indicate the best-performing strategies. Our improvements are significant
under the t-test with 𝑝 < 0.01 (see details in App. C).

Dataset Method UE for White-box LLM UE for Black-box LLM
Answer
PPL P (True) SE-UE

SE-UE
(unnormalized) PE-UE

PE-UE
(unnormalized) Self-Detect

EntityQuestions

Mean 0.779 0.705 0.787 0.783 0.789 0.825 0.668
PPL Re-weighting 0.787 0.743 0.825 0.821 0.797 0.835 0.726

MDS 0.549 0.575 0.512 0.585 0.519 0.529 0.514
Isomap 0.646 0.675 0.665 0.713 0.606 0.784 0.776
Our 0.797 0.778 0.842 0.839 0.807 0.844 0.836

TriviaQA

Mean 0.826 0.659 0.787 0.785 0.829 0.824 0.711
PPL Re-weighting 0.832 0.700 0.868 0.867 0.835 0.827 0.736

MDS 0.558 0.534 0.519 0.532 0.565 0.532 0.537
Isomap 0.547 0.527 0.710 0.535 0.561 0.715 0.822
Our 0.846 0.762 0.884 0.882 0.848 0.837 0.836

Scenario-dependent UE Baselines. We apply our method to the
following diverse scenario-dependent UE algorithms to evaluate
our effectiveness in augmenting their UE reliability. (1) Inspired
by Kadavath et al. [29], P (True) directly asks the LLM to output the
probability of whether the QA pair is true. (2) Following perplexity-
based approaches, Answer PPL [24] estimates the model’s uncer-
tainty on the query by calculating the perplexity of the response
generated by the LLM. In addition, PE-UE [29] (predict entropy)
samples multiple times to estimate the average perplexity instead
of calculating by the greedy decoding response like PPL (“unnor-
malized" means not normalizing based on the token length of the
output answer). (3) Following Kuhn et al. [32], SE-UE (semantic en-
tropy) clusters the LLM’s responses and calculates the probability of
each cluster for UE (“unnormalized" means not normalizing based
on the token length of the output answer). (4) Following Zhao et al.
[60], we use Self-Detect to verify our method is also suitable for
black-box UE methods. It estimates the uncertainty by considering
the diversity of responses.

Integrated Baselines.We compare our method with other base-
lines by integrating UE scores from scenario-dependent methods
across different scenarios to validate our method’s efficiency. (1)
Mean. Inspired by Kadavath et al. [29], we calculate the mean
of uncertainty scores for different scenarios for a given scenario-
dependent UE algorithm. (2)PPLRe-weighting. Inspired by Zhang
and Wu [59], we calculate the final UE score by re-weighting and
summing the UE scores of different styles based on the perplexity
of the query under each scenario. (3) Inspired by Chan et al. [4], the
patterns extracted by FA may not necessarily be the most helpful
for UE [33, 50]. Thus, we compare our method with two similar
dimensionality reduction algorithms for pattern extraction: 1) Mul-
tidimensional Scaling (MDS) [51] aims to extract the Euclidean dis-
tances among all samples and 2) Isometric Mapping (Isomap) [50],
which preserves the geodesic distances (curved surface distances)
information.

4.2 Overall Performance
We analyze the effectiveness of our method in LLM uncertainty
estimation for QA tasks by comparing it with multiple baselines on

LLaMA 3 8B model [15]. In addition, we evaluate Self-Detect’s per-
formance through GPT-4o-mini [41] to verify that our method also
applies to black-box LLMs. First, we use GPT-4o-mini [41] to gener-
ate six additional queries in different scenarios. Then, we select the
answer generated by the target LLM and use the NLI model to eval-
uate their correctness. Subsequently, we estimate the UE scores for
paraphrases with various scenario-dependent UE baselines outlined
in Sec. 4.1. Finally, we integrate the UE scores using our method
alongside other baselines in Sec. 4.1 to obtain the final UE scores
and evaluate their performance using AUROC. Table 1 shows the in-
tegration performance of different scenario-dependent UE methods
under diverse scenarios using various integration methods.

Mean directly uses the average of UE scores for all scenarios,
resulting in the worst performance, except for the baselines related
to dimensionality reduction. It suggests that averaging UE scores
across different scenarios does not effectively eliminate noise and
then reveal the common semantics. Answer PPL uses query per-
plexities to re-weight UE scores. It shows a significant improvement
compared to Mean, suggesting that perplexity can evaluate noise
intensity by measuring sentence fluency. However, Answer PPL
only measures individual sentences’ perplexity while failing to ad-
equately analyze the correlations among queries across different
scenarios. This insufficiency in removing noise may account for its
relative underperformance compared to our method.

Our method disentangles semantic information from scenario-
related noise via FA and achieves the SOTA performance across all
evaluation datasets and baselines (see examples in App. E). MDS
and Isomap aim to reduce the UE scores across all scenarios to one
dimension by minimizing changes in Euclidean and geodesic dis-
tances, respectively. Both methods yield the poorest results across
almost all baselines, indicating that without a proper perspective,
merely reducing dimensions is insufficient to derive semantic in-
formation to help UE. In addition, we also observe that Isomap
performs significantly better than MDS in several baselines, which
suggests that different scenarios of UE scores may exhibit manifold
characteristics rather than linear correlations in high-dimensional
space, which is counterintuitive. Furthermore, our method demon-
strates more remarkable improvements in baselines that utilize the
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Table 2: Ablation study on the key components in our method. − Scenario ignores the requirement of diverse scenarios when
paraphrasing. − FA indicates removing FA when integrating the scenario-dependent UE results. − Denosing means using
insignificant factors that include noise.

Dataset Model Variant Answer
PPL P (True) SE-UE

SE-UE
(unnormalized) PE-UE

PE-UE
(unnormalized) Self-Detect

Entity
Question

− Scenario 0.788 0.759 0.826 0.822 0.798 0.834 0.817
− FA 0.775 0.705 0.787 0.776 0.789 0.829 0.668
− Denosing 0.534 0.520 0.534 0.534 0.508 0.528 0.504

Ours 0.797 0.778 0.842 0.839 0.807 0.844 0.836

TriviaQA

− Style 0.841 0.742 0.868 0.864 0.843 0.831 0.809
− FA 0.825 0.661 0.788 0.786 0.831 0.823 0.711
− Denosing 0.509 0.522 0.534 0.522 0.501 0.526 0.543

Ours 0.846 0.762 0.884 0.882 0.848 0.837 0.836

diversity of answers compared to others with approximately the
same AUROC score. Specifically, SE-UE shows a more significant
enhancement than both Answer PPL and PE-UE, while Self-Detect
exhibits notable improvements over P (True).

4.3 Ablation Study
We conduct an ablation study on our proposed method to verify
each component’s importance in improving uncertainty estimation
accuracy (as shown in Table 2). − Scenario asks the model to para-
phrase the original query under the same scenario and achieves
suboptimal results in our experiment. Without the constraint of the
scenario, the restated sentences are highly similar. Consequently,
FA may erroneously interpret common noise as common semantics,
thus risking the pollution of the distilled common semantics by
such noise. Paraphrasing the original query into different scenarios
reduces common noise and thus effectively enhances performance.
In − FA, we randomly select a scenario’s UE score for each test case
instead of using the factor analysis model to estimate the common
semantics. Compared to our full method, it integrates arbitrary
scenario data and exhibits subpar performance. It indicates that
scenario information harms UE but can be eliminated by our factor
analysis model, thereby improving performance. In − Denoising,
we select the common factors without the largest eigenvalue, which
means that the patterns related to scenario noise are the major con-
tributors to the final UE score. This approach receives the poorest
results among all model variants, with AUROC values consistently
ranging between 0.5 and 0.54. It indicates that these non-semantic
common factors almost randomly distinguish between reliable and
unreliable LLM responses. It aligns with our expectation of noise
behavior and our belief that, unlike common semantic information,
scenario-related noise information does not aid UE.

4.4 Analysis of the Selection of Common Factor
We analyze the correlation between common factors and scenario-
dependent UE score to verify that the common factor correspond-
ing to the largest eigenvalue can approximate the contribution of
semantics while the other factors are noise. We use box plots to
demonstrate the correlation coefficients according to the order of
eigenvalue size. As Figure 3 shows, the first common factor corre-
lates strongly with the original UE results across multiple scenarios,
with correlation coefficients generally exceeding 0.8. This suggests

Figure 3: The correlation between the common factors with
each scenario-dependent UE baseline. The horizontal axis
represents the descending order of eigenvalue ranks, while
the vertical axis displays the correlation value.

it captures the most prevalent information among paraphrases,
i.e., the common semantics (refer to Sec. 3). Excluding the factor
corresponding to the largest eigenvalue, the Pearson correlation
coefficients of the remaining factors with the original scenario-
dependent UE scores are mostly under 0.4, which indicates a weak
correlation between non-first common factors and the original data.
The characteristics of the remaining factors align with scenario
noise, echoing the findings in Sec. 4.3 (the poor performance of −
Denoising) that the common factors corresponding to noise could
hardly distinguish between correct and incorrect answers.

4.5 Uncertainty Estimation with Different
Numbers of Scenarios

To study the impact of the number of scenarios on our method, we
adjust the number of additional scenarios𝑚 in our framework from
1 to 6 and conduct experiments following the steps in Sec 4.2. As in
Figure 4, the improvement of our method on all scenario-dependent
UE algorithms exhibits a positive correlation with the number of
scenarios. The improvement is particularly noticeable in cases with
few scenario samples, where adding just one or two scenarios can
substantially enhance performance.
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Table 3: The performance of Qwen2 models with different parameter scales. The numbers in parentheses indicate the improve-
ment of our method over the Mean baseline.

Method Model Size Answer
PPL P (True) SE-UE

SE-UE
(unnormalized) PE-UE

PE-UE
(unnormalized)

EntityQuestions
0.5B 0.742 (+0.013) 0.807 (+0.078) 0.835 (+0.038) 0.817 (+0.041) 0.762 (+0.013) 0.804 (+0.010)
1.5B 0.780 (+0.015) 0.761 (+0.060) 0.841 (+0.065) 0.805 (+0.075) 0.781 (+0.030) 0.763 (+0.046)
7B 0.777 (+0.010) 0.824 (+0.070) 0.862 (+0.049) 0.843 (+0.055) 0.785 (+0.022) 0.806 (+0.043)

TriviaQA
0.5B 0.666 (+0.013) 0.578 (+0.037) 0.773 (+0.059) 0.741 (+0.063) 0.657 (+0.020) 0.630 (+0.024)
1.5B 0.578 (+0.005) 0.617 (+0.022) 0.685 (+0.044) 0.667 (+0.044) 0.578 (+0.010) 0.555 (+0.010)
7B 0.834 (+0.020) 0.821 (+0.079) 0.885 (+0.048) 0.883 (+0.054) 0.830 (+0.031) 0.786 (+0.037)

Figure 4: Our performance on two datasets increases with the
number of additional scenarios.We change the number of ad-
ditional scenarios and measure the changes in our method’s
performance. The horizontal axis shows the number of addi-
tional scenarios, and the vertical axis shows AUROC.

Figure 5: Average noise weight in clusters. We conduct K-
means clustering on loading weights and average them in
different clusters. The horizontal axis shows the cluster ID,
and the vertical axis shows the average noise weight for each
scenario in different clusters. The degree of formality or
informality of a scenario increases in proportion to the in-
tensity of blue or red, respectively.

4.6 Analysis of Scenario-related Noise
As the latent factors do not correspond to our pre-defined scenarios
one-to-one, we use K-Means to cluster noise-related factors and an-
alyze their patterns. Specifically, we normalize the loading weights

(the columns of 𝐴) for each factor which denote each scenario’s
influence, and apply the K-Means algorithm [37] to group factors
into 3 clusters (see the reasons for our choice of cluster number
in App. D). We demonstrate the average loading weights for each
scenario in each cluster in Figure 5.

The loading weights indicate the significance of noise in each
scenario so that we can infer their causes through their distribution.
For Cluster 1, Chat and Informal scenarios exhibit strong positive
correlations. In contrast, all formal scenarios show negative corre-
lations, suggesting that the presence or absence of formality may
be a major noise source. In Cluster 2, informal scenarios generally
have a mild impact, while Research and Report display a strong
opposite impact, indicating that the noise may primarily arise from
variations of written styles within formal expressions. In contrast,
formal scenarios in Cluster 3 have low weights and informal scenar-
ios strongly affect UE in mixed directions. It implies that differences
within informal scenarios are the main reason for noise in Clus-
ter 3. Overall, the clustering of noise reveals that scenario noise
originates from the presence or absence of formality, writing styles
within formal expressions, and differences in informal scenarios.

4.7 Analysis of Robustness Across Model
Families and Parameter Scales

We conduct experiments on the Qwen2 model family to verify our
method’s robustness across different model families and parameter
scales (see results in Table 3). We enhance scenario-dependent UE
baselines with our method on LLM with 0.5B, 1.5B, and 7B param-
eters respectively. Our approach significantly improves across all
model scales and scenario-dependent UE baselines, demonstrating
its strong generalization ability.

5 Conclusion
We propose a plug-and-play unsupervised method to enhance un-
certainty estimation (UE) by eliminating scenario-related noise and
focusing on semantic information. We perform scenario-specific
sampling, which rephrases each query into various stylistic para-
phrases, capturing a range of expressions for the same underlying
semantics. We then design a factor analysis model to decompose
the original UE scores into multiple latent factors. By isolating the
most significant factor, we disentangle the uncertainty caused by
common semantics from scenario-related noise. Experiments on
multiple models and datasets shows the effectiveness of our method,
improving the reliability of existing UE methods.
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A The Calculation Process of AUROC
In this section, we briefly introduce the calculation process of AU-
ROC (Area Under the Receiver Operating Characteristic Curve). As
shown in Eq 6, it is calculated by plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR) at various threshold set-
tings and measuring the area under the resulting curve, where TPR
represents the proportion of actual positives correctly identified
and FPR represents the proportion of actual negatives incorrectly
identified as positives. For a UE algorithm, its AUROC value ranges
from 0 to 1, with a higher value indicating better performance in
distinguishing trustworthy and untrustworthy answers.

AUROC =

∫ 𝑥max

𝑥min

TPR(𝑥)𝑑 (FPR(𝑥)) (6)

B Kaiser-Meyer-Olkin Estimate and Bartlett’s
Test of Sphericity

We use the Kaiser Meyer Olkin (KMO) Measure [31] and Bartlett’s
Test of Sphericity [3] to examine the feasibility of using factor anal-
ysis (FA) in our method. The KMO Test is a method of evaluating
whether data is suitable for factor analysis. It calculates the sum
of the correlation coefficients of each scenario divided by the sum
of the correlation coefficients and partial correlation coefficients
of each scenario. Bartlett’s Sphericity Test measures the degree of
correlation between variables. It first calculates the sample variance
and population variance, then estimates the Bartlett statistic, and
finally combines the degrees of freedom of the data to calculate the
p-value. We examine the scenario-dependent baselines’ UE scores
on the EntityQuestion dataset and TriviaQA dataset. According to
the requirements of using FA [19], our datasets show an impressive
KMO Test result of above 0.8, often nearing 0.9. Moreover, Bartlett’s
Test is less than 0.01, which signifies the mathematical viability of
our approach.

C Significance Test Results
T-test significance testing is a statistical technique for determining if
there is a meaningful difference between the means of two groups.
The t-test result is usually reported with a 𝑝 value, expressing
the likelihood of observing the data or something more extreme
under the null hypothesis (which states that there is no effect or
difference). We use the t-test to examine whether the improvement
of our method is significant. The 𝑝 values in Table 5 are all smaller
than 0.01, demonstrating that our improvement is significant.

D Silhouette Coefficient of K-Means Clustering
We use silhouette coefficients [43] to measure the clustering per-
formance and determine the appropriate number of clusters in
K-Means clustering. The Silhouette coefficient measures the quality
of clustering by evaluating how similar a data point is to its clus-
ter compared to other clusters; the higher the value, the better the
performance of the K-Means. As Figure 6 shows, the silhouette coef-
ficient significantly increases when the number of clusters reaches
three, and then gradually rises until it attains its maximum value
of approximately 0.63 at twenty clusters. To ensure the robustness
of the noise weights within each cluster, it is vital to ensure a sig-
nificant number of samples per cluster. This requires maintaining
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Table 4: The results of Kaiser Meyer Olkin (KMO) Measure and Bartlett’s Test of Sphericity on two datasets

Dataset Method Answer
PPL P(True) SE-UE

SE-UE
(unnormalized) PE-UE

PE-UE
(unnormalized) Self-Detect

TriviaQA KMOMeasure 0.949 0.873 0.939 0.935 0.950 0.911 0.924
Bartlett’s Test 8.791e-125 1.694e-97 6.300e-23 4.722e-22 1.035e-90 0 3.654e-97

EntityQuestion KMOMeasure 0.949 0.904 0.949 0.944 0.947 0.951 0.907
Bartlett’s Test 1.148e-14 8.056e-9 1.993e-4 1.465e-3 3.242e-11 6.39e-260 1.756e-29

Table 5: The 𝑝 values of t-test on our method. The 𝑝 values are all smaller than 0.01.

Dataset Answer
PPL P (True) SE-UE

SE-UE
(unnormalized) PE-UE

PE-UE
(unnormalized) Self-Detect

TriviaQA 8.432e-3 0.0 1.997e-13 2.762e-15 2.753e-18 0.0 1.040e-29
EntityQuestions 4.268e-28 0.0 8.000e-38 7.940e-49 0.0 0.0 2.885e-42

Table 6: Examples and explanations of queries under different scenarios.

Scenario Name Example Description
Original Which country was The Locker Room created in? The original expression of the dataset
Chat Do you know which country was The Locker Room created in? The scenario of daily chat

Academic Please elaborate on the country that the Locker Room was created. The scenario of academic writing
Research Which geographical region is associated with the creation of The Locker Room? The scenario of academic discussion
Report The Locker Room was created in which country? The scenario of written report
Podcast Can you tell me the country where The Locker Room was founded? The scenario of chat in podcast
Informal What country is home to The Locker Room? The scenario of informal chat

Figure 6: The results of silhouette coefficients under differ-
ent numbers of clusters. The horizontal and vertical axes
denote the number of clusters and silhouette coefficients re-
spectively. The silhouette coefficients first increase and then
decrease with the increase of the number of clusters.

relatively fewer clusters while guaranteeing the reliability of the
clustering results. Consequently, we set the cluster number to 3 as
the silhouette coefficient’s growth began to decelerate to achieve a
trade-off between K-means performance explainability.

E Case Study
E.1 Scenarios Interpret
We provide specific cases to illustrate the meaning of each scenario
in Table 6.

E.2 Cases of AUROC Change

Figure 7: The ROC curves for P (True) (left) and SE-UE (right)
on the TriviaQA dataset. We examine how our method’s ROC
curve changes compared to different scenarios. The hori-
zontal axis represents the proportion of negative instances
incorrectly predicted as positive and the vertical axis repre-
sents the proportion of positive instances correctly predicted
as positive.

As shown in Figure 7, we select a strong baseline (SE-UE) and a
weak baseline (P (True)) to demonstrate the changes in the ROC
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Table 7: Cases of UE scores. The table presents the uncertainty scores for various scenarios under P (True). The column “Score”
represents the uncertainty score in each scenario. UE Result shows the UE prediction results. We consider a UE score exceeding
0.5 as the UE algorithm deeming the answer as TRUE, whereas a value below 0.5 indicates the answer is FALSE (hallucinated).
The results in red indicate that the prediction results are inconsistent with the ground truth UE label.

QA Pair Scenario Score UE Result UE Label
Chat 0.4159 FALSE

Academic 0.4667 FALSE
Research 0.8234 TRUE
Report 0.4867 FALSE
Podcast 0.4870 FALSE
Informal 0.6553 TRUE
Original 0.3297 FALSE

Question: What kind of work does Peter Crisp do?
Gold answer: politician
Target LLM’s answer: politician

Our 0.5025 TRUE

TRUE

Chat 0.7645 TRUE
Academic 0.5948 TRUE
Research 0.5339 TRUE
Report 0.5591 TRUE
Podcast 0.5641 TRUE
Informal 0.5687 TRUE
Original 0.0479 FALSE

Question: What kind of work does Ludwig Huber do?
Gold answer: biologist
Target LLM’s answer: actor

Our 0.4827 FALSE

FALSE

curve of different scenario-dependent algorithms after using our
method.

Overall, the primary cause of our improvement is due to a sig-
nificant reduction in the misclassification of positive examples as
negative ones, while ensuring that as few negative examples as
possible are incorrectly classified as positive. This represents a no-
table advancement over the limitations of previous uncertainty
estimation methods.

E.3 Cases of Estimate UE Score
We provide specific cases to illustrate the effectiveness of our
method. As shown in Tab 7, we show the results of augmenting
the P (True) algorithm with our framework. In Case 1, the LLM
generation is correct, but in most scenarios, the judgments based on
P (True) estimation are incorrect. Our method effectively extracts
semantic information by combining other scenarios through FA
and then evaluates the answer as correct, which is consistent with
the UE label. In Case 2, the LLM generation is incorrect according
to the gold answer, but in most scenarios, the UE results show that
the answer is True. Our method successfully identifies the answer
as False, which is consistent with its UE label.

F Important Instructions
We provide important instructions involved in our experiments in
Tab 8.

G Limitations
Although our approach demonstrates improvements on black-box
LLM (GPT4o), we only run our method on open-source LLMs with
a relatively smaller number of parameters due to limitations of
computational resources. Besides, our method require multiple

paraphrases of the original query, which may incur additional com-
putation cost.

H Future Work
We will try to run our method on more open-source LLMs with
larger sizes. In addition to GPT-4, we will also evaluate our method
on more powerful black-box LLMs, for example, Claude. Besides,
We observed that under certain scenario-dependent baselines, the
UE scores across different scenarios exhibit manifold characteristics
(see Sec. 4.2). We intend to investigate the interpretability of this
finding in our future work.

Received 14 October 2024
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Table 8: Instruction templates in our experiments.

Instruction templates
Scenario-Specific

paraphrase
You need to rewrite the provided sentences into the scenario: [SCENARIO].

Here are three examples: [EXAMPLES]. You need to paraphrase this sentence: [SENTENCE].
Paraphrase
(− Scenario
in Sec. 4.3)

You need to provide six synonymous sentences for the input sentence while maintaining the style
of the original sentence. Here are three examples:[EXAMPLES].

You need to paraphrase this sentence: [SENTENCE].

Sample answers Question: [QUESTION], Answer: [ANSWER]. (repeat 5 times)
Question: [QUESTION], Answer:

P (True)

Question: [QUESTION], Possible answer: [ANSWER]. Is the possible answer:\n (A) True\n (B) False\n
The possible answer is: [LABEL]. (repeat 5 times)

Question: [QUESTION], Possible answer: [ANSWER]. Is the possible answer:\n (A) True\n (B) False\n
The possible answer is:
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