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ABSTRACT

We focus on controllable disentangled representation learning (C-Dis-RL), where
users can control the partition of the disentangled latent space to factorize dataset
attributes (concepts) for downstream tasks. Two general problems remain under-
explored in current methods: (1) They lack comprehensive disentanglement con-
straints, especially missing the minimization of mutual information between dif-
ferent attributes across latent and observation domains. (2) They lack convexity
constraints in disentangled latent space, which is important for meaningfully manip-
ulating specific attributes for downstream tasks. To encourage both comprehensive
C-Dis-RL and convexity simultaneously, we propose a simple yet efficient method:
Controllable Interpolation Regularization (CIR), which creates a positive loop
where the disentanglement and convexity can help each other. Specifically, we
conduct controlled interpolation in latent space during training and ’reuse’ the
encoder to help form a ’perfect disentanglement’ regularization. In that case, (a)
disentanglement loss implicitly enlarges the potential ’understandable’ distribu-
tion to encourage convexity; (b) convexity can in turn improve robust and precise
disentanglement. CIR is a general module and we merge CIR with three different
algorithms: ELEGANT, I2I-Dis, and GZS-Net to show the compatibility and effec-
tiveness. Qualitative and quantitative experiments show improvement in C-Dis-RL
and latent convexity by CIR. This further improves downstream tasks: controllable
image synthesis, cross-modality image translation and zero-shot synthesis. More
experiments demonstrate CIR can also improve other downstream tasks, such as
new attribute value mining, data augmentation, and eliminating bias for fairness.

1 INTRODUCTION

Disentangled representation learning empowers models to learn an orderly latent representation, in
which each separate set of dimensions is responsible for one semantic attribute (Higgins et al., 2016;
Chen et al., 2016; Zheng et al., 2019). If we categorize different disentangled representation methods
by whether they could control the partition of the obtained disentangled latent representation (e.g.,
explicitly assign first 10 dimensions to be responsible for face attribute), there are two main threads:

(1) Uncontrollable disentangled methods, such as Variational Autoencoders (VAEs) (Kingma &
Welling, 2014; Higgins et al., 2017; Tran et al., 2017), add prior (e.g., Gaussian distribution) con-
straints in latent space to implicitly infer a disentangled latent code. Most of them are unsupervised
methods that can easily generalize to different datasets and extract latent semantic factors. Yet,
they struggle to obtain controllable disentanglement because the unsupervised latent encoding does
not map onto user-controllable attributes. (2) Controllable disentangled methods, which explicitly
control the partition of the disentangled latent space and the corresponding mapping to semantic
attributes by utilizing dataset attribute labels or task domain knowledge. Because users can precisely
control and design their task-driven disentangled latent representation, controllable disentanglement
methods are widely used in various downstream tasks: in cross-modality image-to-image translation,
I2I-Dis (Lee et al., 2018) disentangle content and attribute to improve image translation quality;
In controllable image synthesis, ELEGANT (Xiao et al., 2018) and DNA-GAN (Xiao et al., 2017)
disentangle different face attributes to achieves face attribute transfer by exchanging certain part of
their latent encoding across images. In group supervised learning, GZS-Net (Ge et al., 2020a) uses
disentangled representation learning to simulate human imagination and achieve zero-shot synthesis.
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Figure 1: (a-c) Intuitive understanding of Controllable Interpolation Regularization (CIR). (a) Only
encourage controllable disentangled representation with general Mutual Information (MI) constrain
method: maximize the MI between the same attribute across latent and observation domains while
minimizing the MI between the different attribute across latent and observation domains. (b) Only
encourage convexity with interpolation and image quality evaluation. (c) A simple yet efficient
method, CIR, encourages both controllable disentanglement and convexity in latent representation.
CIR consists of a Controllable Interpolation (CI) module and a Reuse Encoder Regularization (RER)
module. (d-e) CIR compatible to different models. (d) GZS-Net (Ge et al., 2020a) + CIR (e)
ELEGANT (Xiao et al., 2018) + CIR. (f) I2I-Dis (Lee et al., 2018) + CIR

However, controllable disentangled methods suffer from 2 general problems: 1) The constraints on
disentanglement are partial and incomplete, they lack comprehensive disentanglement constraints.
For example, while ELEGANT enforces that modifying the part of the latent code assigned to an
attribute (e.g., hair color) will affect that attribute, it does not explicitly enforce that a given attribute
will not be affected when the latent dimensions for other attributes are changed. 2) Most of the
above-mentioned downstream tasks require manipulating specific attribute-related dimensions in
the obtained disentangled representation, for instance, changing only the style while preserving
the content in an image-to-image translation task. For such manipulation, the convexity of each
disentangled attribute representation (i.e., interpolation within that attribute should give rise to
meaningful outputs) is not guaranteed by current methods. Further, convexity demonstrates an
ability to ”generalize”, which implies that the autoencoder structure has not simply memorized the
representation of a small collection of data points. Instead, the model uncovered some structure
about the data and has captured it in the latent space (Berthelot et al., 2018). How to achieve both
comprehensive disentanglement, and convexity in the latent space, is under-explored.

To solve the above problems, we first provide a definition of controllable disentanglement with the
final goals of perfect controllable disentanglement and of convexity in latent space. Then, we use
information theory and interpolation to analyze different ways to achieve disentangled and convex
representation learning, respectively. To optimize them together, based on the definition and analysis,
we use approximations to create a positive loop where disentanglement and convexity can help each
other. We propose Controllable Interpolation Regularization (CIR), a simple yet effective general
method that compatible with different algorithms to encourage both controllable disentanglement and
convexity in the latent space. Specifically, previous methods use a general autoencoder structure and
pre-assign latent code dimensions to specific attributes or concepts to obtain controllable disentangled
latent space. CIR first conducts controllable interpolation, i.e., controls which attribute to interpolate
and how in the disentangled latent space, then ’reuses’ the encoder to ’re-obtain’ the latent code
and add regularization to explicitly encourage perfect controllable disentanglement and implicitly
boost convexity. We show that this iterative approximation approach converges towards perfect
disentanglement and convexity in the limit of infinite interpolated samples.

Our contributions are: (i) Describe a new abstract framework for perfect controllable disentanglement
and convexity in the latent space, and use information theory to summarize potential optimization
methods. (ii) Propose Controllable Interpolation Regularization (CIR), a general module compatible
with different algorithms, to encourage both controllable disentanglement and convex in latent
representation by creating a positive loop to make them help each other. CIR is shown to converge
towards perfect disentanglement and convexity for infinite interpolated samples. (iii) Demonstrate
that better disentanglement and convexity are achieved with CIR on various tasks: controllable image
synthesis, cross-domain image-to-image translation and group supervised learning. (iv) Demonstrate
how CIR with the encouraged controllable disentangled and convexity representation learning can
improve the performance of more downstream tasks: new semantic attribute mining, controllable
data augmentation, and eliminating dataset bias for fairness.
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2 RELATED WORK

Controllable Disentangled Representation Learning (Controllable-Dis-RL) is different from Un-
controllable Dis-RL (such as VAEs (Kingma & Welling, 2014; Higgins et al., 2017; Chen et al., 2018)),
which implicitly achieves disentanglement by incorporating a distance measure into the objective,
encouraging the latent factors to be statistically independent. However, these methods and not able to
freely control the relationship between attribute and latent dimensions. Controllable Dis-RL learns a
partition control of the disentanglement from semantic attribute labels in the latent representation and
boosts the performance of various tasks: ELEGANT (Xiao et al., 2018) and DNA-GAN (Xiao et al.,
2017) for face attribute transfer; I2I-Dis (Lee et al., 2018) for diverse image-to-image translation;
DGNet (Zheng et al., 2019) and IS-GAN (Eom & Ham, 2019) for person re-identification; GZS-Net
(Ge et al., 2020a) for controllable zero-shot synthesis with group-supervised learning. However,
their constraints on disentanglement are implicit and surrogate by image quality loss, which also
misses the constraint between different attributes across latent and observation. As a general module,
CIR is compatible and complementary with different Controllable Dis-RL algorithms by directly
constraining disentanglement while focusing on minimizing the mutual information between different
attributes across latent and observation.
Convexity of Latent Space is defined as a set in which the line segment connecting any pair of points
will fall within the rest of the set (Sainburg et al., 2018). Linear interpolations in a low-dimensional
latent space often produce comprehensible representations when projected back into high-dimensional
space (Engel et al., 2017; Ge et al., 2020b). However, linear interpolations are not necessarily justified
in many controllable disentanglement models because latent-space projections are not trained explic-
itly to form a convex set. VAEs overcome non-convexity by forcing the latent representation into a
pre-defined distribution, which may be a suboptimal representation of the high-dimensional dataset.
GAIN (Sainburg et al., 2018) adds interpolation in the generator in the middle latent space and
uses a discriminative loss on a GAN structure to help optimize convexity. Our method controls the
interpolation in a subspace of the disentangled latent space and uses disentanglement regularization
to encourage a convex latent space for each semantic attribute.

3 CONTROLLABLE INTERPOLATION REGULARIZATION

3.1 MUTUAL INFORMATION FOR Perfect CONTROLLABLE DISENTANGLEMENT

A general autoencoder structure (D ◦E) : X → X is composed of an encoder network E : X → Rd,
and a decoder network D : Rd → X . Rd is a latent space, compared with the original input
space X (e.g., image space). The disentanglement is a property of latent space Rd where each
separate set of dimensions is responsible for one semantic attribute of given dataset. Formally, a
dataset (e.g., face dataset) contains n samples D = {x(i)}ni=1, each accompanied by m attributes
Da = {(a(i)1 , a

(i)
2 , . . . a

(i)
m )}ni=1. Each attribute aj ∈ Aj can be either binary (two attribute values,

e.g., A1 may denote wearing glass or not; A1 = {wear glass, not wear glass}), or a multi-class
attribute, which contains a countable set of attribute values (e.g., A2 may denote hair-colors A2 =
{black, gold, red, . . . }). Controllable disentangled representation learning (Controllable Dis-RL)
methods have two properties: (1) Users can explicitly control the partition of the disentangled latent
space Rd and (2) Users can control the semantic attributes mapping between Rd to input space X . To
describe the ideal goal for all Controllable Dis-RL, we define a perfect controllable disentanglement
property in latent space Rd and the autoencoder.
Definition 1 perfect CONTROLLABLE DISENTANGLEMENT (perfect-C-D)(E,D,D): Given a gen-
eral encoder E : X → Rd, a decoder D : Rd → X , and a dataset D with m independent semantic
attributesA, we say the general autoencoder achieve perfect controllable disentanglement for dataset
D if the following property is satisfied: (1) For encoder E, if one attribute Ai of input x was specif-
ically modified, transforming x into x̂, after computing latent codes z = E(x) and ẑ = E(x̂), the
difference between z and ẑ should be zero for all latent dimensions except those that represent the
modified attribute. (2) Similarly, for decoder D, the latent space change should only influence the
corresponding attribute expression in the output (e.g., image) space.
To encourage a general autoencoder structure model to obtain perfect controllable disentanglement
property, we propose an information-theoretic regularization with two perspectives (Fig. 1(a)): (1)
Maximize the mutual information between the same attribute across latent space Rd and observation
input space X ; and (2) Minimize the mutual information between the different attributes across latent
Rd and observation input space X . Formally:
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Figure 2: (a) Directly use Controllable Interpolation in GZS-Net (b) Architecture of GZS-Net + CIR
(c) Convexity optimization with Linear Interpolation (middle) and Boundary Random Interpolation.

max
E,D

[
I(xAi , E(x)Ai) + I(E(x)Ai , D(E(x))Ai)

]
; i ∈ [1..m],

min
E,D

[
I(xAi

, E(x)Aj
) + I(E(x)Ai

, D(E(x))Aj
)

]
; i, j ∈ [1..m], i 6= j.

(1)

where xAi and D(E(x))Ai represent the observation of attribute Ai in X domain (e.g., hair color in
human image); E(x)Ai

represents the dimensions in Rd that represent attribute Ai.

3.2 CONVEXITY CONSTRAINT WITH INTERPOLATION

A convex latent space has the property that the line segment connecting any pair of points will fall
within the rest of the space (Sainburg et al., 2018). As shown in Fig. 2(a), the dark blue region
represents the 2D projection of the latent representation of one attribute for a dataset. This distribution
would be non-convex, because the light blue point, though between two points in the distribution
(the red and green points), falls in the space that does not correspond to the data distribution. This
non-convexity may cause that the projection back into the image space does not correspond to a proper
semantically meaningful realistic image. This limitation makes disentanglement vulnerable and
hinders potential latent manipulation in downstream tasks. The result of Fig. 4 and 5in experiments
illustrate this problem.
To encourage a convex data manifold, the usefulness of interpolation has been explored in the context
of representation learning (Bengio et al., 2013) and regularization (Verma et al., 2018). As is shown
in Fig. 1(b), we summarize the constraint of convexity in the latent space: we use a dataset-related
quality evaluation function Q() to evaluate the ”semantic meaningfulness” of input domain samples;
a higher value means high quality and more semantic meaning. After interpolation in latent space Rd,
we want the projection back into the original space to have a high Q() score. Formally:

max
E,D

{
Ex1,x2∈D

[
Q(D(αE(x1) + (1− α)E(x2)))

]}
(2)

where x1 and x2 are two data samples and α ∈ [0..1] controls the latent code interpolation in
Rd. Fig. 2 (c) shows two kinds of interpolation: Linear Interpolation (LI) and Boundary Random
Interpolation (BRI). (More discussion in Appendix Sec.C.1)

The dataset-related quality evaluation function Q() also has different implementations: (Sainburg
et al., 2018) utilizes additional discriminator and training adversarially on latent interpolations;
(Berthelot et al., 2018) uses a critic network as a surrogate which tries to recover the mixing
coefficient from interpolated data.

3.3 CIR: ENCOURAGE BOTH CONTROLLABLE DIS-RL AND CONVEXITY

Our goal is to encourage a controllable disentangled representation, and, for each semantic attribute-
related latent dimension, the created space should be as convex as possible. Specifically, we want to
optimize both controllable disentanglement (Eq. 1) and convexity (Eq. 2) for each semantic attribute.
In practice, each mutual information term in Eq. 1 is hard to optimize directly as it requires access
to the posterior. Most of the current methods use approximation to obtain the lower bound for
optimizing the maximum (Chen et al., 2016; Belghazi et al., 2018) or upper bound for optimizing
minimum (Kingma & Welling, 2014). However, it is hard to approximate so many (2m(m−1)+2m)
different mutual information terms in Eq. 1) simultaneously, not to mention considering the convexity
of m latent space (Eq. 2) as well. To optimize them together, we propose to use a controllable
disentanglement constraint to help the optimization of convexity and in turn, use convexity constraint
to help a more robust optimization of the controllable disentanglement. In other words, we create a
positive loop between controllable disentanglement and convexity, to help each other. Specifically, as
shown in Fig. 1(c), we propose a simple yet efficient regularization method, Controllable Interpolation
Regularization (CIR), which consists of two main modules: a Controllable Interpolation (CI) module
and a Reuse Encoder Regularization (RER) module. It works as follows: an input sample x goes
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through E to obtain latent code z = E(x). Because our goal is controllable disentanglement, on
each iteration we only focus on one attribute. CI module first selects one attribute Ai among all
m attributes, and then interpolates along the Ai related latent space in z while preserving the other
unselected attributes, yielding zAi

. After D translates the interpolated latent zAi
back to image

space, the RER module takes D(zAi
) as input and reuses the encoder to get the latent representation

zreAi
= E(D(zAi

)). RER then adds a reconstruction loss on the unmodified latent space as a
regularization:

Lreg = ||z−Ai − zre−Ai
||l1 (3)

where z−Ai
and zre−Ai

denote the all latent dimensions of zAi
and zreAi

respectively, except those that
represent the modified attribute Ai. Eq. 3 explicitly optimizes Eq. 1: in each iteration, if the modified
latent region zAi

only influences the expression of xAi
, then, after reusingE, the unmodified region in

E(D(zAi
)) should remain as is (min E, D in Eq. 1). On the one hand, for those unselected attributes,

their information should be preserved in the whole process (max E, D in Eq. 1). Eq. 3 also implicitly
optimizes Eq. 2: if the interpolated latent code is not ’understandable’ by E and D, the RER module
does not work and the Lreg would be large. Fig. 2 (a) and (b) abstractly demonstrate the latent space
convexity difference before and after adding CIR to GZS-Net (Ge et al., 2020a). Convexity and
disentanglement are dual tasks in the sense that one can help enhance the other’s performance. On the
other hand, the reconstruction loss towards perfect controllable disentanglement implicitly encourages
a convex attribute latent space; The more convex the latent space, the more semantically meaningful
samples synthesized by interpolation will help the optimization of controllable disentanglement,
which encourages a more robust C-Dis-RL. From the perspectives of loss function and optimization,
if the reconstruction loss could decrease to zero for a given dataset augmented by many interpolated
samples, then perfect disentanglement and convexification are achieved. That is, CIR forces, in the
limit of infinite interpolated samples, the disentangled latent representation of every attribute to be
convex, where every interpolation along every attribute is guaranteed to be meaningful.

4 QUALITATIVE EXPERIMENTS
We qualitatively evaluated the effectiveness of our CIR as a general module to encouraging both
C-Dis-RL and the convexity in latent space. We merged it into three baseline models on three different
tasks: Sec. 4.1 for multiple face attributes transfer with ELEGANT (Xiao et al., 2018), Sec. 4.2 for
cross-modality image-to-image translation with I2I-Dis (Lee et al., 2018) and Sec. 4.3 for zero-shot
synthesis through group-supervised learning with GZS-Net (Ge et al., 2020a). They all contain a
general autoencoder structure and their performance highly depends on the C-Dis-RL latent space.

4.1 CIR + ELEGANT (XIAO ET AL., 2018) FOR MULTIPLE FACE ATTRIBUTES TRANSFER

We conduct the same face attribute transfer tasks as in ELEGANT (Xiao et al., 2018) paper with
CelebA (Liu et al., 2015). Task 1: taking two face images with the opposite attribute as input and
generate new face images which exactly transfer the opposite attribute between each other. Task 2:
generate different face images with the same style of the attribute in the reference images. Both of
the two tasks require a robust controllable disentangled latent space to swap the attributes of interest
to synthesize new images and the convexity of latent space influences image quality.

For training, we inherit the network structure of ELEGANT (Xiao et al., 2018), which adopts the
U-Net (Ronneberger et al., 2015) structure to generate high-resolution images with exemplars. In this
way, the output of the encoder is the latent code of disentangled attributes and the context information
is contained in the output of the intermediary layer of the encoder. ELEGANT adopts an iterative
training strategy: training the model with respect to a particular attribute each time. We use the same
training strategy except for adding our regularization loss term Eq. 3. As described in Sec. 3.3 and
Fig. 1 (e), to encourage the disentanglement and convexity of attributeAi, CIR interpolatesAi-related
dimensions in latent code and constrains the other latent dimensions to remain unchanged after D
and reused E. Specifically, when training ELEGANT about the Ai attribute Eyeglasses at a given
iteration, we obtain the latent code zA = E(A) and zB = E(B) with E for each pair of images A
andB with oppositeAi attribute value. The disentangled latent code is partitioned into z+Ai

for latent
dimensions related to Ai, and z−Ai

for unrelated dimensions. We interpolate in z+Ai
with zA and

zB while keeping the other dimensions z−Ai
as is to obtain interpolated latent code zAAi

and zBAi
.

After D and reuse E, we get the reconstructed latent representation zAre
Ai

= E(D(zAAi
, zA)) and

zBre
Ai

= E(D(zBAi , zB)). The reconstruction loss as a regularization is:

Lreg = ||zA−Ai − zAre
−Ai
||l2 + ||zB−Ai − zBre

−Ai
||l2 (4)
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Figure 3: ELEGANT + CIR performance of (a) task 1 for two images face attribute transfer and (b)
task 2 for face image generation by exemplars. (More results in Appendix Sec. B.1)

The overall generative loss of ELEGANT + CIR is:

L(G) = Lreconstruction + Ladv + λCIRLreg (5)

where Lreconstruction and Ladv are ELEGANT original loss terms, λCIR > 0 control the relative
importance of the loss terms. we keep the discriminative loss. (More details in Appendix Sec. A.1)

Fig. 3(a) shows the task 1 performance on two images face attribute transfer. Take Eyeglasses
as an example attribute to swap: C and D should keep all other attributes unmodified except for
Eyeglasses. ELEGANT generated C and D have artifacts in Eyeglasses-unrelated regions, which
means ELEGANT cannot disentangle well in latent space. After adding CIR, the generated C and D
better preserve the irrelevant regions during face attribute transfer, which demonstrates that CIR helps
encourage a more convex and disentangled latent space. The Eyebrow and Beard attribute results also
show the improvement from CIR. Fig. 3(b) shows the task 2 performance on face image generation
by exemplars. Similarly, ELEGANT generated new images with artifacts in Eyeglasses-unrelated
regions that cannot disentangle well. Synthesis is also inferior in the glasses region, which we posit is
due to non-convexity in the eyeglass-related latent space. With the help of CIR, the generated images
improve both Eyeglass quality and irrelevant region preservation.

4.2 CIR + I2I-DIS (LEE ET AL., 2018) FOR CROSS MODALITY IMAGE TRANSLATION

We conduct the same image-to-image translation task as in I2I-Dis (Lee et al., 2018) paper with
cat2dog dataset (Lee et al., 2018). There are two image domains X (cat) and Y (dog), I2I-Dis embeds
input images onto a shared content space C with specific encoders (Ec

X and Ec
Y ), and domain-specific

attribute spaces AX and AY with specific encoders (Ea
X and Ea

Y ) respectively. After that, new
images can be synthesized by transferring the shared content attribute cross-domain (between cat
and dog), such as generating unseen dogs with the same content attribute value (pose and outline)
as the reference cat. Domain-specific attribute AX and AY already been constraint by adding a
KL-Divergence loss with Gaussian distribution; thus, we can freely sample in Gaussian for synthesis.
The shared content space C could be encouraged as a more convex and disentangled space by CIR.

We use the same network architecture and training strategy as I2I-Dis (Lee et al., 2018). except
for adding our regularization loss term Eq. 1. As described in Sec. 3.2 and Fig. 1 (f), during each
training iteration, a cat image x and a dog image y go through corresponding encoders and each of
them produce latent codes of domain (zxa = Ea

X (x), zya = Ea
Y(y) ) and content (zxc = Ec

X (x),
zyc = Ec

Y(y)). Then a interpolated content attribute latent code zxyc (between zxc and zyc)
concatenates with the domain attribute latent code of cat image zxa and dog image zya respectively
and forms two new latent codes, and decoders turns them into new images u = GX (zxa, zxyc),
v = GY(zya, zxyc). To encourage the disentanglement and convexity of the content attribute, we
reuse Ea

X and Ea
Y to get the reconstructed domain attribute latent representations zxrea = Ea

X (u),
zyrea = Ea

Y(v) and add the reconstruction loss as a regularization:

Lreg = ||zxrea − zxa||l1 + ||zyrea − zya||l1 (6)

The overall loss of I2I-Dis + CIR is
L =λcontent

adv Lc
adv + λcc

1 L
cc
1 + λdomain

adv Ldomain
adv +

λrecon
1 Lrecon

1 + λlatent
1 Llatent

1 + λKLLKL + λCIRLreg

(7)

where content and domain adversarial loss Lc
adv L

domain
adv , cross-cycle consistency loss Lcc

1 , self-
reconstruction loss Lrecon

1 , latent regression loss Llatent
1 and KL loss LKL are I2I-Dis original loss

terms, λ > 0 control the relative importance of the loss terms. (More details in Appendix Sec. A.2).
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Figure 4: (a) I2I-Dis + CIR performance of diverse image-to-image translation; (b) GZS-Net + CIR
performance of interpolation-based attribute controllable synthesis

Fig. 4 (a) shows the image-to-image translation performance. (a-1) We fix the identity (domain)
latent code and change the content latent code by interpolation; generated images should keep the
domain attribute (belong to the same dog). I2I-Dis generated dog images have artifacts, which means
the non-convex latent space cannot ’understand’ the interpolated content code. After adding CIR,
the generated images have both better image quality and consistency of the same identity. (a-2) We
fix the content latent code and change the identity by sampling; generated images should keep the
same content attribute (pose and outline). Cat images generated by I2I-Dis have large pose variance
(contain both left and right pose), and large face outline variance (ear positions/sizes). After adding
CIR, the generated images have smaller pose and outline variance. (More results in Appen. Sec. B.2)

4.3 CIR + GZS-NET (GE ET AL., 2020A) FOR ZERO-SHOT SYNTHESIS

We use the same architecture of autoencoders as GZS-Net (Ge et al., 2020a) and Fonts dataset
(Ge et al., 2020a). The latent feature after encoder E is a 100-dim vector, and each of the five
Fonts attributes (content, size, font color, background color, font) covers 20-dim. The decoder D,
symmetric to E, takes the 100-dim vector as input and outputs a synthesized sample. We use the
same Group-Supervised learning training strategy as GZS-Net except for adding our regularization
loss term Eq. 1, which is exactly the same as the one described in Sec. 3.3 and Fig. 1 (d). Besides the
reconstruction loss Lr, swap reconstruction loss Lsr and cycle swap reconstruction loss Lcsr which
are same as GSL, we add a regularization reconstruction loss Lreg. The total loss function is:

L(E,D) = Lr + λsrLsr + λcsrLcsr + λCIRLreg (8)

where λsr, λcsr, λCIR > 0 control the relative importance of the loss terms.

Fig. 4(b) shows the interpolation-based controllable synthesis performance on background, size, and
font attributes. Take background interpolation synthesis as an example: we obtain background latent
codes by interpolating between the left and right images, and each of them concatenates with the
unselected 80-dim latent code from the left image. Generated images should keep all other attributes
unmodified except for the background. GZS-Net generated images have artifacts in background-
unrelated regions, i.e., GZS-Net cannot disentangle well in latent space. After adding our CIR, the
generated images better preserve the irrelevant areas during synthesis. The size and font attribute
results also show improvement from CIR. (More results in Appendix. Sec. B.3)

5 QUANTITATIVE EXPERIMENTS

We conduct five quantitative experiments to evaluate the performance of CIR on controllable disen-
tanglement and convexity.
Controllable Disentanglement Evaluation by Attribute Co-prediction. Can latent features of
one attribute predict the attribute value? Can it also predict values for other attributes? Under
perfect controllable disentanglement, we should answer always for the first and never for the second.
We quantitatively assess disentanglement by calculating a model-based confusion matrix between
attributes. We evaluate GZS-Net (Ge et al., 2020a) + CIR with the Fonts (Ge et al., 2020a) dataset
(latent of ELEGANT and I2I-Dis are not suitable). Each image in Fonts contains an alphabet letter
rendered using 5 independent attributes: content (52 classes), size (3), font color (10), background
color (10), and font (100). We take the test examples and split them 80:20 for trainDR:testDR. For
each attribute pair j, r ∈ [1..m]× [1..m], we train a classifier (3 layer MLP) from gj of trainDR to the
attribute values of r, then obtain the accuracy of each attribute by testing with gj of testDR. Fig. 5(a)
compares how well features of each attribute (row) can predict an attribute value (column): perfect
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ELEGANT ELEGANT + CIRGZS-Net GZS-Net + CIR

(a) (b)

Figure 5: (a) c-Dis-RL analysis. Diagonals are bolded. (b) c-Dis-RL Evaluation by Correlation Coef-
ficient. Intra-attribute correlation increases with CIR (GZS-Net (top): 7.2%, ELEGANT (bottom):
3.2%) while inter-attribute decreases (GZS-Net: 60.9%, ELEGANT: 3.1%).

should be as close as possible to Identity matrix, with off-diagonal entries close to random (i.e., 1
/ |Ar|). The off-diagonal values of GZS-Net show the limitation of disentanglement performance;
with CIR’s help, the co-prediction value shows a nearly perfect disentanglement.
Controllable Disentanglement Evaluation by Correlation Coefficient. For each method, we col-
lect 10,000 images from the corresponding dataset (ELEGANT (Xiao et al., 2018) with CelebA
(Liu et al., 2015), GZS-Net with Fonts (Ge et al., 2020a)) and obtain 10,000 latent codes by Es, we
calculate the correlation coefficient matrix between dimensions in latent space. A perfect disentan-
glement should yield high intra-attribute correlation but low inter-attribute correlation. ELEGANT
disentangles two attributes: eyeglasses and mustache, each of which covers 256-dimensions. GZS-
Net disentangles five attributes: content, size, font color, background color, and font; each covers
20-dimensions. Fig. 5 shows that CIR improves the disentanglement in latent space, as demonstrated
by higher intra-attribute and lower inter-attribute correlations (More details in Appendix Sec. C.2).
Convexity Evaluation with Image Quality Score. To evaluate the overall convexity in latent space,

we use an image quality classifier to evaluate the quality of images generated by interpolating in latent
space. We train a specific image quality classifier for each baseline algorithm and corresponding
dataset. Take ELEGANT as an instance: To train a classifier for ELEGANT and ELEGANT + CIR,
we use 3000 CelebA original images as positive, high-quality images. To collect negative images, we
first randomly interpolate the latent space of both ELEGANT and ELEGANT + CIR and generate
interpolated images for negative low-quality images; then, we manually select 3000 low-quality
images (artifact, non-sense, fuzzy ...) and form a 6000 images training set. After training an image
quality classifier, we test it on 1500 images generated by interpolation-based attribute controllable
synthesis as Exp. 4.1. Table 2 shows the average probability of high-quality images (higher is better).
The training and testing for I2I-Dis (+ CIR) and GZS-Net (+ CIR) are similar.
Controllable Disentanglement Evaluation with Perceptual Path Length Metric. StyleGAN (Kar-
ras et al., 2019) proposes the perceptual path length metric to quantify the latent space entanglement
through interpolation. We conduct these experiments and the results are shown in Table. 2 (Lower
value represents better disentanglement latent space. More details in Appendix Sec. C.3).

Algorithms Train images Test images High quality probability
ElEGANT 6000 1500 12%

ElEGANT + CIR 60%
I2I-Dis 1500 1500 18%

I2I-Dis + CIR 33%
GZS-Net 6000 1000 13%

GZS-Net + CIR 40%

Table 1: Convexity Evaluation with Image Quality
Score

Algorithms I2I-Dis I2I-Dis + CIR ElEGANT ElEGANT + CIR
MSE 29 21 1.23 0.68

Table 2: Disentanglement Evaluation with
StyleGAN Perceptual Path Length Metric

Perfect Disentanglement Property Evaluation. As we defined in Sec. 3.3, Perfect disentanglement
property can be evaluated by the difference of the unmodified attribute related dimensions in Rd after
modifying a specific attribute Ai in image space. For the two methods in each column (Table 3) and
corresponding datasets, we modify one attribute valueAi of each input x and get x̂, then obtain latent
codes (z = E(x), ẑ = E(x̂)) with two methods’ encoders respectively. After we normalized the
latent codes from two methods into the same scale, we calculate the Mean Square Error (MSE) of the
unmodified region MSE(z−Ai

, ẑ−Ai
) between z and ẑ (lower is better). Table 3 shows that after

adding CIR, we obtain a lower MSE, which means CIR encourages a better disentangled latent space.

Table 3: Perfect Disentanglement Property Evaluation
Algorithms ElEGANT I2I-Dis GZS-Net ElEGANT + CIR I2I-Dis + CIR GZS-Net + CIR

MSE 1.9 1.8 3.42 0.38 0.1 0.27

6 MORE DOWNSTREAM TASKS AND APPLICATIONS
We conduct more experiments to demonstrate 3 potential applications with the encouraged control-
lable disentangled and convex latent space by CIR.
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(a) (b)

Figure 6: (a) Bias elimination experiment results. (b) The influence of bias shown by Grad-Cam.

Mining New Attribute Value. We show the performance of novel attribute mining with encouraged
C-Dis-RL and convex latent space. Appendix Fig. 11 shows the new background color and font color
generated through interpolation given only six original colors during training, which shows a better
consistency and disentanglement with the help of CIR. (More details in Appendix Sec. D.1).
Data Augmentation. We design a letter image classification experiment with Fonts (Ge et al., 2020a)
to evaluate how interpolation-based controllable synthesis ability, empowered by CIR, as a data
augmentation method, improves the downstream classification task. We tailored three datasets from
Fonts, each of them has ten letters as labels. The large training set (DL) and testing set (Dtest)
have the same number of images with the same attribute values. We take a subset of DL to form a
small training set DS with fewer attribute values. For data augmentation, we first train the GZS-Net
and GZS-Net + CIR on DS , and then we use the trained models to generate 1000 new images by
interpolation-based attribute controllable synthesis. We combine the synthesized images with DS and
form two augmented training sets DS+G (GZS-Net) and DS+G+C (GZS-Net + CIR), respectively.
All test accuracy shown in (Table 5), which shows an improved data augmentation performance on
downstream tasks with the help of CIR. (more details in Appendix Sec. D.2)

Table 4: Controllable augmentation performance

Attribute
Dataset

DL DS DS+G DS+G+C Dtest

Dataset Size 5400 540 540+1000 540+1000 5400
Test Accuracy 94% 71% 74% 77% N/A

Bias Elimination for Fairness. Dataset bias may influence the model performance significantly.
(Mehrabi et al., 2019) listed lots of bias resources and proved that eliminate bias is significant. A
more convex and disentangled representation with CIR could be a solution to the bias problem by
first disentangle the bias attribute and then remove them in the final decision. We use the Fonts
dataset to simulate the bias problem. We tailored three datasets, a biased training dataset DB, two
unbiased dataset: DUB for training and DT for test. In DB, we entangle the two attributes, letter and
background color, as dataset bias. DB consists of three-part: G1, G2, and G3, where each letter has
1, 3, and 6 background colors, respectively. (more details in Appendix Sec. D.3) Then, we use DB

and DUB to train letter classifier with resnet-18 respectively and test on DT as the control groups.
As is shown in Fig. 6(a), the classifier trained on DB, only gets 81% test accuracy while classifier
trained on DUB obtains 99% test accuracy. As shown in Fig. 6(b), Grad-Cam’s (Selvaraju et al.,
2017) results proved that the classifier would regard background color as essential information if it
entangled with letters. We use the more convex and disentangled representation of CIR to solve the
entangled bias in DB. We first train a GZS-Net + CIR use DB. then we train a letter classifier on the
latent representation instead of image space, where we explicitly drop the background color-related
dimensions (bias attribute) and use the rest of the latent code as input. After training, the accuracy
rose to 98%. Hence, we eliminate the dataset bias with the help of robust disentangled latent by CIR.

7 CONCLUSION
We proposed a general disentanglement module, Controllable Interpolation Regularization (CIR),
compatible with different algorithms to encourage more convex and robust disentangled representation
learning. We show the performance of CIR with three baseline methods ELEGANT, I2I-Dis, and
GZE-Net. CIR first conducts controllable interpolation in latent space and then ’reuses’ the encoder
to form an explicit disentanglement constraint. Qualitative and quantitative experiments show that
CIR improves baseline methods performance on different controllable synthesis tasks: face attribute
transfer, diverse image-to-image transfer, and zero-shot image synthesis with different datasets:
CelebA, cat2dog and Fonts respectively. We also prove that CIR can improve additional downstream
tasks, such as new attribute value mining, data augmentation, and eliminating dataset bias for fairness.
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A NETWORK ARCHITECTURE AND TRAINING DETAILS

A.1 ELEGANT XIAO ET AL. (2018) + CIR

Network Structure

For our ELEGANT + Controllable Interpolation Regularization (CIR), we use the same network
architecture as the original ELEGANT paper Xiao et al. (2018). In addition, we use an autoencoder-
structure generator G with an encoder E and a decoder D. The E and D structures are symmetrical
with an architecture consisting of five convolutional layers. As for the discriminatorD, it adopts multi-
scale discriminators D1 and D2. Both D1 and D2 use a CNN architecture with four convolutional
layers followed by a fully connected layer. The difference between them is that D1 has a larger
fully-connected layer while the one of D2’s is small.

Training Details

We train the ELEGANT and ELEGANT + CIR models on CelebA Liu et al. (2015). The size of input
images is 256× 256. Both generator and discriminator use Adam with β1=0.5 and β2=0.999, batch
size 16, learning rate 0.0002 at first and multiply 0.97 every 3000 epochs.

Hyperparameters in the loss function: For reconstruction loss and Adversarial loss, we use
λreconstruction = 5, λadversarial = 1 unmodified. For Controllable Interpolation Regulariza-
tion loss, we set λCIR = 1 × 107 to make the regularization loss has a similar scale as other loss
terms and balance the training.

Disentangle details: The encoder of generator G maps an image into a latent code with shape
(512 × 8 × 8), and ELEGANT will dynamically allocate these spaces to store information of the
interesting attributes. For instance, suppose the attributes we want to disentangle are eyeglasses
and mustache. Then the input will be [eyeglasses, mustache], and the first half of latent space will
store the information of eyeglasses. In other words, we disentangle the latent space along the first
dimension and both eyeglasses and mustache get (256× 8× 8) latent space.

A.2 I2I-DIS LEE ET AL. (2018) + CIR

Network Structure

We use the same network architecture as the original I2I-Dis paper Lee et al. (2018). For all the
experiments in this section, we use images from the cat2dog dataset with the size of 216 × 216.
There are four modules in I2I-Dis: shared content encoder Ec, domain-specific attribute encoder Ea,
generator G, discriminator D. For the shared content encoder Ec, we use an architecture consisting
of three convolutional layers followed by four residual blocks. For the domain-specific attribute
encoder Ea, we use a CNN architecture with four convolutional layers followed by fully connected
layers. For the generator G, we use an architecture consisting of four residual blocks followed by
three fractionally stridden convolutional layers. For the discriminator D, we use an architecture
consisting of four convolutional layers followed by fully connected layers. Our disentangled latent
code consists of two-part: shared content attribute latent code zc with shape 256 × 54 × 54 and
domain-specific attribute latent code za with shape 8× 1

Training Details

The training of I2I-Dis and I2I-Dis + CIR use Adam optimizer with a batch size of 1, the learning
rate of 0.0001, and exponential decay rates β1 = 0.5, β2 = 0.999.

Hyper-parameters in loss function: For reconstruction loss, we use λrec1 = 10, λcc = 10. For
adversarial loss, we use λcontentadv = 1, λdomain

adv = 1. For latent regression loss, we use λlatent1 = 10.
For KL divergence loss, we use λKL = 0.01. For our controllable interpolation regularization loss,
we use λCIR = 10.

Different interpolation methods Fig. 2 (c) shows two kinds of interpolation: Linear Interpolation
(LI) and Boundary Random Interpolation (BRI). Linear interpolation is easy to implement while
facing two problems: (1) low efficiency, as it only explores along lines while convexification may
require filling whole subspaces. (2) may not fill the whole space (e.g., leave a hole in the middle;
see Fig. 2 (c)). BRI can solve these problems. BRI first collects an image set S (contains s > 2
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images) and obtains the corresponding latent code Sz = {z(i)}si=1. Then it calculates the maximum
and minimum values as the upper and lower bounds of each dimension. After that, we randomly
sample k latent codes in the region created by the boundary. Fig. 2 (c) shows the situation in 2D
space. BRI uses ’small subspaces’ to cover ’big subspaces’.

A.3 GZS-NET GE ET AL. (2020A) + CIR

Network Structure

We use the same network architecture and the same dataset (Fonts Ge et al. (2020a)) as the original
GZS-Net paper Ge et al. (2020a). The input images are of size 128× 128. There are two modules in
GZS-Net: an encoder E and a decoder D. The Fonts dataset has 5 attributes: content, size, font color,
background color, and font. Each attribute takes 20 dimensions in the latent space and thereby sums
up to a 100-dimensional vector. The encoder E is composed of two convolutional layers with stride 2,
followed by three residual blocks. Then it comes with a convolutional layer with stride 2, followed by
a flatten layer that reshapes the response map to a vector. Finally, two fully connected layers output
100-dimensional vectors as the latest feature. The decoder D mirrors the encoder, composed of two
fully connected layers, followed by a cuboid-reshaping layer. The next is a deconvolutional layer
with stride 2, followed by three residual blocks. And finally, two deconvolutional layers with stride 2
produce a synthesized image.

Training Details

We train GZS-Net and GZS-Net + CIR on Fonts Ge et al. (2020a) dataset. We use Adam optimizer
with batch size of 8, learning rate of 0.0001, and exponential decay rates β1 = 0.9, β2 = 0.999.

Hyper-parameters in loss function: For reconstruction loss, we use λrec1 = 1, λcombine = 1. For
our controllable interpolation regularization loss, we use λCIR = 0.0001 at an early stage and
λCIR = 0.01 after 100000 epochs to balance the training.

B MORE QUALITATIVE RESULTS

B.1 ELEGANT XIAO ET AL. (2018) + CIR

Fig. 7 shows more results of the task 1 performance on two images face attribute transfer, which is
similar to the main paper Fig. 3. We offer three rows for each attribute, including a new attribute
(Mouth-Open vs. Mouth-Close).

Fig. 8 shows more results of the task 2 performance on face image generation by exemplars, which is
similar to the main paper Fig. 4 but with bangs as our disentangle attribute. The results show that
CIR can help to overcome the mode collapse problem in ELEGANT.

B.2 I2I-DIS LEE ET AL. (2018) + CIR

Fig. 9 shows more results of the image-to-image translation, which is similar to the main paper Fig. 5.
(a) We generate cat images given fixed identity (domain) attribute latent code and change the ’content’
attribute latent code by interpolation. (b) We generate dog images given fixed content attribute latent
code and change the ’identity’ attribute latent code by sampling.

B.3 GZS-NET GE ET AL. (2020A) + CIR

Fig. 10 shows more results of the interpolation-based controllable synthesis performance on font
color, background color, size, and font attributes.

C QUANTITATIVE EXPERIMENTS DETAILS

C.1 DIFFERENT INTERPOLATION METHODS

Linear interpolation is easy to implement while facing two problems: (1) low efficiency, (2) may not
fill the whole space (e.g., leave a hole in the middle; see Fig. 2 (c)). BRI can solve these problems.
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Figure 7: More examples of ELEGANT+CIR (E+CIR) performance of task 1 for two images face
attribute transfer

Figure 8: ELEGANT + CIR Performance of task 2 for face image generation by exemplars
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Figure 9: I2I-Dis + CIR performance of diverse image-to-image translation

Figure 10: More results of GZS-Net + CIR performance of interpolation-based attribute controllable
synthesis
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BRI first collects an image set S (contains s > 2 images) and obtains the corresponding latent
code Sz = {z(i)}si=1. Then it calculates the maximum and minimum values as the upper and lower
bounds of each dimension. After that, we randomly sample k latent codes in the region created by
the boundary. Fig. 2 (c) shows the situation in 2D space. BRI uses ’small subspaces’ to cover ’big
subspaces’.

C.2 DISENTANGLEMENT EVALUATION BY CORRELATION COEFFICIENT.

We use Spearman’s Rank Correlation for latent space correlation computation. It is computed as:

rs =
cov(rgX , rgY )

σrgXσrgY
(9)

Here rgX and rgY means the rank variables of X and Y . cov is the covariance function. σ denotes
the standard variation.

For ELEGANT + CIR that disentangles eyeglasses and mustache, we collect 10,000 images from
CelebA (Liu et al., 2015) and obtain the same number of (512× 8× 8) latent matrices from encoder.
Then we average the vectors along the 2nd and 3rd dimensions and produce squeezed matrices of
size 512. This preprocessing step is following the interpolation strategy, which helps to display the
intra correlation more clearly.

For GZS-Net + CIR, 10,000 images are fetched from Fonts and corresponding latent vectors with
size 100 are computed. No preprocessing is applied.

All the latent matrices (or vectors) are normalized before putting into Spearman’s Rank Correlation
calculation. The normalization is calculated as:

norm(vi) = (vi − vi) / σvi , ∀ i ∈ {1, 2, ..., |v|} (10)

vi is the value of each dimension i in v. vi is the average of vi and σvi is the standard variance.

C.3 CONTROLLABLE DISENTANGLEMENT EVALUATION WITH PERCEPTUAL PATH LENGTH
METRIC

We use the similar method with the perceptual path length metric proposed by StyleGAN (Karras
et al., 2019). We subdivide a latent space interpolation path into linear segments, the definition of
total perceptual length of this segmented path is the sum of perceptual differences over each segment.
In our experiment, we use a small subdivision epsilon ε = 10−4. We use linear interpolation(lerp) in
our experiment. Thus, The average perceptual path length in latent space Z is

lZ = E
[
1

ε2
d (G (lerp (z1, z2; t)) , G (lerp (z1, z2; t+ ε)))

]
Where z1, z2 is the start point and the end point in latent space. G is the generator in the model, it
can be a decoder in Auto-encoder or generator in a GAN-based model. t ∼ U(0, 1).

D DOWNSTREAM TASKS AND APPLICATIONS DETAILS

D.1 MINING NEW ATTRIBUTE VALUE

To find a good exploration direction and mine new attribute values, we explore the distribu-
tion of each attribute value in the corresponding attribute-convex latent space (e.g., the distri-
bution of different background colors in a convex background color latent space: Aback =
{blue, red, green, yellow, . . . }).
Two common kinds of distribution are considered:
1) Gaussian. For those attributes (object color) whose attribute value (blue color) has slight intra-class
variance (all blues look similar), their distribution can be seen as a Gaussian distribution. We can use
K-means Likas et al. (2003) to find the center of each object color and guide the interpolation and
synthesis.
2) Non-Gaussian. We treat each attribute value as a binary semantic label (e.g., wear glasses or not
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Figure 11: Controllable mining novel background and font color by interpolation in latent space.

Figure 12: Mining new attribute values with UDV

wear glasses ). We assume a hyperplane in the latent space serving as the separation boundary Shen
et al. (2020), and the distance from a sample to this hyperplane is in direct proportion to its semantic
score. We can train an SVM to find this boundary and use the vector orthogonal to the border and the
positive side to represent a Unit Direction Vector (UDV). We can then use the UDVs or a combination
to achieve precise attribute synthesis and find new attribute values. As shown in Fig. 13 (a), we can
find the boundaries and UDVs by SVM for each attribute value. To solve the precision problem in
attribute synthesis, Fig. 13 (c) shows moving towards the z value of the cluster center directly for
Gaussian; Fig. 13 (d) shows moving from the start point, across the boundary, to the target attribute
value, by adding the UDV of the target attribute for non-Gaussian. Fig. 13 (b) shows that we can
combine the UDVs to discover new attribute values.

Figure 13: Towards controllable exploration direction

Here we explore the distribution of disentangled representation and mining the relationship between
movement in high dimension x space and low dimension z space to answer the question: Which
direction of movement can help us to find new attributes?

For each background color, we train a binary color classifier to label interpolated points in the z space
and assign a color score for each of them, then we use SVM to find the boundary and obtain UDV for
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this attribute value. Since the UDV is the most effective direction to change the semantic score of
samples, if we move the z value of the given image towards UDV, its related semantic score would
increase fast. To explore more new attributes, the combination of UDVs may be a good choice. For
instance, if the given picture is green, the new colors may fall in the path from green to blue and the
path from green to red. Thus, it is reasonable to set our move direction as v = vblue + vred − vgreen
(v represents UDV). The 1st row of Fig. 12 shows the results of changing z value with the combine
vector vblue + vred − vgreen. On the contrast, the 2nd row only use vblue and the 3rd row only use
vred. We can find that both the 2nd and the 3rd row only find one color while the 1st row finds more.

D.2 MORE DETAILS OF DATA AUGMENTATION EXPERIMENTS

We design a letter image classification experiment with Fonts (Ge et al., 2020a) to evaluate how
interpolation-based controllable synthesis ability, empowered by CIR, as a data augmentation method,
improves the downstream classification task.

We tailored three datasets from Fonts, each of them has ten letters as labels (Table. 5). The large
training set (DL) and testing set (Dtest) have the same number of images with the same attribute
values. We take a subset of DL to form a small training set DS with fewer attribute values. We first
train the resnet18 classifier on DL and DS , calculating the test accuracy on the test dataset Dtest. For
data augmentation, we first train the GZS-Net and GZS-Net + CIR onDS , and then we use the trained
models to generate 1000 new images by interpolation-based attribute controllable synthesis. We
combine the synthesized images with DS and form two augmented training sets DS+G (GZS-Net)
and DS+G+C (GZS-Net + CIR), respectively. We compare two synthesized datasets by training
classifiers with the same settings and calculating the corresponding testing accuracy (Table 5). The
result shows controllable synthesis can improve downstream tasks as a data augmentation method.

Table 5: Controllable augmentation performance (the ? means that synthesized images with new
attributes are added into the training set)

Attribute
Dataset

DL DS DS+G DS+G+C Dtest

Size 3 2 2? 2? 3
Font Color 6 3 3? 3? 6
Back Color 3 3 3? 3? 3
Fonts 10 3 3? 3? 10
Dataset Size 5400 540 540+1000 540+1000 5400
Train Accuracy 98% 99% 99% 99% N/A
Test Accuracy 94% 71% 74% 77% N/A

D.3 BIAS ELIMINATION FOR FAIRNESS.

We design three datasets, a biased training dataset DB, two unbiased dataset: DUB for training and
DT for test. In DB, we entangle the two attributes letter and background color as dataset bias. DB

consists of three-part: G1, G2, and G3. The details of those datasets can be found in Table. 6. The
number of colors represents the number of background colors for each letter.

For G1 of DB, we randomly select 15 letters. For each letter, we randomly select one background
color. When we add images to G1, only the images with the selected background color can be
added to G1, but font color, size, font are unlimited. For G2, we randomly select 15 letters that are
different from G1. For every letter, we randomly select three background colors and perform the same
collection process as G1. For G3, we use the last 22 letters and every letter has all of 6 background
colors and do the same collection process as G1.

Table 6: Bias elimination dataset setting

Dataset Number of
letters

Number of
colors

DB
G1 15 1
G2 15 3
G3 22 6

DUB 52 6
DT 52 6
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