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ABSTRACT

In this study, we propose AID-purifier that can boost the robustness of
adversarially-trained networks by purifying their inputs. AID-purifier is an auxil-
iary network that works as an add-on to an already trained main classifier. To keep
it computationally light, it is trained as a discriminator with a binary cross-entropy
loss. To obtain additionally useful information from the adversarial examples, the
architecture design is closely related to the information maximization principle
where two layers of the main classification network are piped into the auxiliary
network. To assist the iterative optimization procedure of purification, the aux-
iliary network is trained with AVmixup. AID-purifier can be also used together
with other purifiers such as PixelDefend for an extra enhancement. Because input
purification has been studied relative less when compared to adversarial train-
ing or gradient masking, we conduct extensive attack experiments to validate
AID-purifier’s robustness. The overall results indicate that the best performing
adversarially-trained networks can be enhanced further with AID-purifier.

1 INTRODUCTION

Deep neural networks are vulnerable to adversarial examples generated by adding imperceptible
adversarial perturbations to the original examples (Szegedy et al., 2013). To address this problem,
various adversarial defense schemes have been proposed, where a vast majority of them can be
grouped into three categories. The first category is gradient masking (Xiao et al., 2020; Athalye
et al., 2018), where the gradient of the classifier is hidden or obfuscated to obstruct gradient-based
adversarial attacks. The second category is adversarial training (Madry et al., 2017; Zhang et al.,
2019; Lee et al., 2020), where the training dataset is augmented with adversarial examples. The
third category is adversarial purification (Samangouei et al., 2018; Song et al., 2018; Meng & Chen,
2017; Shi et al., 2021), where a purification procedure is applied before the input example is passed
to the main classifier.

Although gradient masking is an effective method against gradient-based adversarial attacks, a few
critical limitations have been identified. Athalye et al. (2018) showed that defenses relying on ob-
fuscated gradients can be circumvented. Papernot et al. (2017) demonstrated that black-box attacks
often perform better than white-box attacks when the defense is a gradient-based method. Com-
pared to gradient masking, adversarial training turned out to be much more robust against known
adversarial attacks. Robustness is due to the inherent improvement in generalization over adversar-
ial examples, and adversarial training is considered to be the most effective adversarial defense as
of today. Madry et al. (2017) exploited a projected gradient descent (PGD) attack to augment the
training dataset, Zhang et al. (2019) minimized the trade-off between the natural and robust errors
when training, and Lee et al. (2020) suggested a soft-labeled data augmentation, called AVmixup,
for improving adversarially robust generalization.

In this study, we focus on the third category, adversarial purification. Our objective is to develop a
computationally light and easily attachable purifier such that it can be utilized as an add-on. Specif-
ically, we show that we can boost the performance of Madry et al. (2017); Zhang et al. (2019), and
Lee et al. (2020) with a light auxiliary network named AID-Purifier. AID-Purifier utilizes AVmixup,
Information maximization principles, and Discriminative task as the underlying foundations. Before
describing AID-Purifier, we first summarize previous works on adversarial purification methods.
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(a) Denoising Purifier (b) Generative Purifier (c) Generative Purifier (d) SSL-based Purifier
(MagNet (Meng & Chen, 2017)) (Defense-GAN (Samangouei et al., 2018)) (PixelDefend (Song et al., 2018)) (SOAP (Shi et al., 2021))

Figure 1: Summary of four existing purifiers. The upper diagrams show algorithm overviews. We
denote main classification network as C, auxiliary network as Aux, network with frozen weights
in gray, and network to be trained in green. The lower diagrams show the conceptual relationships
between xclean, xadv , and xpur.

Adversarial purification modifies input examples to increase adversarial robustness, and four well-
known purification methods are shown in Figure 1. In (a), a denoising purifier, MagNet (Meng
& Chen, 2017), is shown. It uses an auto-encoder, called a reformer, as an auxiliary network for
denoising adversarial perturbations. It is a straightforward approach in that its objective is to return
an adversarial example xadv back to the original clean example xclean. The resulting network as
a whole, however, becomes just another feedforward network that is vulnerable to auxiliary-aware
white-box attacks (Tramer et al., 2020). In (b), a generative purifier, Defense-GAN (Samangouei
et al., 2018), is shown. It uses an independently trained GAN to project xadv to a purified ex-
ample xpur that belongs to the clean distribution pdata(x). Unlike denoising purifiers, there is no
known auxiliary-aware attack that is effective. Defense-GAN, however, is not easy to train, and its
performance is worse than that of another well-known generative purifier. In (c), another genera-
tive purifier, PixelDefend (Song et al., 2018), is shown. Its performance is much better than that
of Defense-GAN, especially for more complex datasets. PixelDefend, however, is computationally
heavy owing to its pixel-wise operation. In (d), a self-supervised-learning-based purifier, SOAP (Shi
et al., 2021), is shown. It is similar to generative purifiers, but it projects xadv to a purified example
xpur belonging to a low LSSL region. SOAP yields competitive robust accuracy against state-of-
the-art adversarial training and purification methods, but it needs to be jointly trained with the main
classifier C. Of the four purification methods in Figure 1, SOAP is the only one that requires joint
training and thus cannot be used as an add-on.

Figure 2: Algorithm overview and conceptual relation-
ship of AID-Purifier. D is the discriminator network.

We herein propose a discriminative puri-
fier named AID-Purifier, as shown in Fig-
ure 2. To the best of our knowledge, this
is the first successful purification method
based on a discrimination task. AID-
Purifier uses an auxiliary discriminator
networkD to project xadv to a purified ex-
ample xpur that belongs to a low padv(x)
region. Compared to the four methods in
Figure 1, AID-Purifier is distinct because
it has all the advantages of the four meth-
ods. Unlike denoising purifiers, it is robust
against auxiliary-aware attacks. Unlike generative purifiers, it requires light computation and is easy
to train. Unlike SOAP, it is an add-on that can be attached to any frozen state-of-the-art network.
AID-Purifier is an effective stand-alone defense method; however, it can also create synergies with
adversarially-trained networks or other purifier networks such as PixelDefend. For all the experi-
ments we have performed under four strong white-box attacks, AID-Purifier was able to boost the
robustness of the state-of-the-art adversarial training and purification methods. Furthermore, we
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show that AID-Purifier is robust against a variety of adaptive attacks, including auxiliary-aware
attack as a strong adaptive attack, and also against two representative black-box attacks.

2 RELATED WORKS

2.1 DETECTING ADVERSARIAL EXAMPLES WITH AN AUXILIARY NETWORK

For humans, it is difficult to tell the difference between a clean example and its adversarial example.
The difference, however, can be detected well by training a binary classification network (Gong
et al., 2017; Metzen et al., 2017). A standard binary cross-entropy (BCE) loss can be used for
training, where the loss is interpreted as the probability of an adversarial example. Gong et al. (2017)
demonstrated that an independent and simple adversarial detector can be trained using a labeled
dataset comprising clean and adversarial examples. Furthermore, they showed that the detector is
robust to a second-round adversarial attack, similar to the auxiliary-aware attack in our work. Metzen
et al. (2017) considered a small subnetwork and concluded that a reliable adversarial detector could
be trained. The subnetwork is essentially an auxiliary network attached to the main classification
network C(x), and it utilizes one of the hidden layers’ representation as the input. Even though
such detectors clearly prove that the difference between pclean(x) and padv(x) is large enough that
a detector can be trained, they are limited in that they cannot improve the adversarial robustness.
In this study, we extend the idea of adversarial detector and show that a light auxiliary network can
improve the adversarial robustness. To the best of our knowledge, this is the first study to propose a
purifier with a BCE loss over clean and adversarial examples.

2.2 INFORMATION MAXIMIZATION PRINCIPLES

Following the principle of maximum information preservation in (Linsker, 1988) and the informa-
tion maximization approach in (Bell & Sejnowski, 1995), Hjelm et al. (2019) demonstrated that un-
supervised learning of representations is possible by maximizing mutual information between an in-
put and the output of a deep neural network. For the main classifier network in our study, we consider
a lower layer’s representation hlow(x) and a higher layer’s representation hhigh(x) for a given input
image x. Subsequently, the information maximization principles state that there should be a strong
information theoretic relationship between hlow(x) and hhigh(x). The relationship, however, is
likely to be weaker or different for adversarial examples because the network has not seen adversar-
ial examples during training. With this motivation, we select two layers from the main classification
network and pass their representations hlow(x) and hhigh(x) to the auxiliary network. According
to the information maximization principles, it would be natural to maximize the mutual informa-
tion between hlow(x) and hhigh(x). Unfortunately, the precise estimation of mutual information is
known to be difficult (McAllester & Stratos, 2020; Song & Ermon, 2020). A known workaround
for this problem is to evaluate BCE loss or Jensen-Shannon divergence between the positive exam-
ple pairs of (hlow(xi), hhigh(xi)) and the negative example pairs of (hlow(xi), hhigh(xj)) (Hjelm
et al., 2019; Brakel & Bengio, 2017; Veličković et al., 2019; Ravanelli & Bengio, 2018), known
as contrastive learning (Hadsell et al., 2006). In our AID-Purifier, we also use a BCE loss but we
discriminate between (hlow(xadv), hhigh(xadv)) and (hlow(xclean), hhigh(xclean)) instead. This
can be a natural choice for adversarial defense, because the information theoretic relationship be-
tween hlow(x) and hhigh(x) should be different for clean examples and adversarial examples. In
particular, the perturbation of features induced by xadv increases gradually as it passes through the
network (Guo et al., 2017; Liao et al., 2018; Xie et al., 2019). The auxiliary network is denoted as
D(hlow(x), hhigh(x)).

2.3 AVMIXUP

Zhang et al. (2018) proposed mixup that is a data augmentation scheme with linearly interpolated
training examples for regularizing deep networks. Mixup can be considered as a derivative of label
smoothing (Szegedy et al., 2016). As a variant of the mixup, Lee et al. (2020) proposed AVmixup
for performing data augmentation of adversarial examples. In AVmixup, a virtual example called
an Adversarial Vertex (AV) is first defined. For a given pair of a clean example and the correspond-
ing adversarial example, their AV lies in the same direction as the adversarial example, but γ times
farther away from the clean example. By controlling γ, the effect of data augmentation can be con-
trolled. Once an AV example is defined, AVmixup extends the training distribution via linear inter-
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polations of the clean example and the corresponding AV example. While AVmixup was shown to be
effective for the adversarial training of the main classification network C(x), we apply AVmixup to
train the auxiliary discriminator network D(hlow(x), hhigh(x)). This data augmentation with linear
interpolation plays a pivotal role in training AID-Purifier. As a basic iterative procedure is applied at
the inference time for purification, the discriminator needs to learn how to purify not only a strong
adversarial example but also a weak adversarial example. Ideally, we would like the discriminator
to learn a continuous path for purifying an adversarial example with an iterative procedure.

3 AID-PURIFIER

3.1 DISCRIMINATOR: D(hlow(x), hhigh(x))

A diagram of AID-Purifier is shown in Figure 3. The main classification network C(x) can be any
naturally or adversarially-trained network. The main network was frozen before attaching our aux-
iliary discriminator network D(hlow(x), hhigh(x)). Following the information maximization prin-
ciples, a lower layer representation hlow(x) and a higher layer representation hhigh(x) are passed
from classifier C to discriminator D. In contrast to the work in (Hjelm et al., 2019), we apply global
average pooling as the first operation in the discriminator. Despite the loss of spatial resolution in
each feature map, global average pooling is helpful for making D computationally light for two
reasons. First, the size of the representation is significantly reduced by averaging the spatial di-
mensions where purification can still enforce spatial variations over the channels. Second, as the
resulting representations are invariant to spatial translations (Lin et al., 2013), we can simply use a
fully connected network of a small size as the discriminator. When C(x) is a typical CNN network,
the lower layer has fewer number of channels than the higher layer as illustrated in Figure 3. Fully
connected layers follow the global average pooling. The discriminator is trained with a standard
BCE loss over adversarial and clean examples, and the loss function is as follow:

LD = −t log(D(hlow(x), hhigh(x)))− (1− t) log(1−D(hlow(x), hhigh(x))), (1)

where x is the input example and t is the corresponding binary label (adversarial or clean). See
Appendix A for the architecture details.

3.2 TRAINING: AVMIXUP

To train the discriminator, we apply AVmixup (Lee et al., 2020) such that the discriminator learns
how to purify any strength of adversarial example. As explained in Section 2.3, this is an essential
requirement for the iterative purification procedure to work well. The details of the AVmixup train-
ing are shown in Algorithm 1. We use only PGD to generate adversarial examples because PGD is
the worst case attack for most scenarios. In Appendix G.2, we have investigated the sensitivity to
the choice of attack type for training. The results indicate that PGD training outperforms others.

Figure 3: AID-Purifier. An auxiliary network D is attached to the main classification network C.
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Algorithm 1 AVmixup training of discriminator
Input: Dataset S, input example x, label y, main

classifier C with weights θC , scaling factor γ,
learning rate lr, tclean , 0, tadv , 1

Output: Discriminator D with weights θD
1: Freeze θC , initialize θD
2: for epoch=1, . . . , E do
3: for mini-batch {x, y}Bi=1 ∼ S do
4: δ ← PGD(x, y; θC)
5: AVmixup:
6: xAV ← x+ γ · δ
7: u ∼ Uniform(0, 1)
8: x̂← u · x+ (1− u) · xAV
9: t̂← u · tclean + (1− u) · tadv

10: Model update:
11: l← LD(D(hlow(x̂), hhigh(x̂)), t̂)
12: θD ← θD − lr · 1

BΣBi=1∇θD l
13: end for
14: end for

Algorithm 2 Purification at inference time
Input: Main classifier C, discriminator D,

input example x, number of iterations N ,
step size α, epsilon ε

Output: Purified example xpur
1: xpur ← x
2: for n=1, . . . , N do
3: padv ← D(hlow(xpur), hhigh(xpur))
4: xpur ← xpur − α · sign(∇xpur

padv)
5: xpur ← clip(xpur, x− ε, x+ ε)
6: xpur ← clip(xpur, 0, 1)
7: end for

3.3 INFERENCE: ITERATIVE PURIFICATION

For inference, the auxiliary discriminator network D is used to purify x into xpur. The purification
is applied to any x including both clean and adversarial examples. As in the PGD attack, a basic
iterative procedure is applied, and the purification is summarized in Algorithm 2. Specifically, an
iterative gradient sign method is applied with the goal of reducing the probability of an adversarial
attack, padv(x). We constrain the algorithm to keep the purified image xpur within the ε-ball of x,
because an xpur far from x might alter the class output of the main classification network C(x).

4 EXPERIMENTS

It is certainly possible to use a purifier as a stand-alone defense, but some of the purifiers can be
also used as an add-on defense for boosting the performance of another adversarial defense. In this
section, we investigate the performance of AID-Purifier as a stand-alone and as an add-on.

We perform the experiments over four datasets - SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky
& Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), and TinyImageNet (Le & Yang, 2015).
As in other studies (Madry et al., 2017; Zhang et al., 2019), we use a 10-widen Wide-ResNet-34
(Zagoruyko & Komodakis, 2016) as the main classification network C(x). For the white-box ad-
versarial attack, we consider PGD (Madry et al., 2017), C&W (Carlini & Wagner, 2017), DeepFool
(DF) (Moosavi-Dezfooli et al., 2016), and MIM (Dong et al., 2018). Additional details can be found
in Appendix A.

4.1 COMPARISON WITH OTHER ADVERSARIAL PURIFIERS

Among the four adversarial purifiers in Figure 1, we exclude MagNet (Meng & Chen, 2017) (a
denoising purifier) and SOAP (Shi et al., 2021) (a SSL-based purifier) from our experiments. As
explained in Section 1, MagNet is vulnerable to auxiliary-aware attack and SOAP cannot be used as
an add-on. Thus, we only focus on Defense-GAN (Samangouei et al., 2018) and PixelDefend (Song
et al., 2018). As with AID-Purifier, both are robust against auxiliary-aware attack and can be
used as an add-on. For the baseline adversarial training models of add-on experiments, we use
Madry (Madry et al., 2017), Zhang (Zhang et al., 2019), and Lee (Lee et al., 2020) as the most
representative set of defense models.

Robust accuracy: The robust accuracy results for SVHN are shown in Table 1. Defense-GAN
performs well as a stand-alone, but its performance as an add-on is inferior to the other purifiers. In
fact, as an add-on, it usually undermines the baseline performance for complex datasets as shown in
Appendix B. For this reason, Defense-GAN is not investigated any further in Subsection 4.2.
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Table 1: Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown
for the worst white-box attack. SVHN dataset is evaluated below, and the results for other datasets
can be found in Appendix B.

Stand-alone Add-on

Natural training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.01 22.63 36.72 46.17
Defense-GAN 41.89 28.42 38.60 43.42
PixelDefend 23.34 52.83 55.42 64.14
AID-Purifier (Ours) 29.10 49.85 44.76 62.70
PixelDefend + AID-Purifier (Ours) 42.67 64.35 56.68 65.61

Table 2: Computational load: Purification time (i.e., inference time) and training time of the ad-
versarial purifiers. Purification time was measured with batch size one. The reported values were
measured with a single RTX2080ti, except for the training time of PixelDefend’s TinyImageNet that
was measured with four RTX2080ti’s due to the memory requirement.

SVHN CIFAR-10 CIFAR-100 TinyImageNet

Purification Training Purification Training Purification Training Purification Training
time time time time time time time time

(sec/img) (min) (sec/img) (min) (sec/img) (min) (sec/img) (min)

Defense-GAN 0.14 205 0.13 197 0.14 198 0.31 1385
PixelDefend 41.97 1185 40.54 1056 40.96 1056 166.31 5131
AID-Purifier (Ours) 0.29 23 0.29 15 0.29 16 0.30 147

Both of PixelDefend and AID-Purifier show positive improvements as a stand-along defense, but the
performance is far from being impressive. When both are utilized together, however, they achieve
42.67% of robust accuracy that is better than Madry or Zhang as a stand-alone. As an add-on,
each of PixelDefend and AID-Purifier creates large improvements over all three adversarial training
models. In fact, the best performance is achieved when both are utilized together. This synergy is due
to the diversity between PixelDefend and AID-Purifier, and the diversity will be discussed further in
Section 6. In Table 1, PixelDefend tends to perform better than AID-Purifier as an individual model.
An exhaustive comparison will be provided in Subsection 4.2.

Finally, we note that the stand-alone performances for complex datasets tend to be marginal for
all of PixelDefend, AID-Purifier, and PixelDefend+AID-Purifier. Therefore, the purifiers will be
more valuable as an add-on as long as they can consistently improve the baseline defense models of
Madry, Zhang, and Lee. This is exactly what we will show in Subsection 4.2.

Computational load: For a high-throughput application such as an API service or a real-time
object detection by an autonomous vehicle, it can be critical for an adversarial defense to have a
minimum impact on the inference time. Training time is also important as explained in (Shafahi
et al., 2019; Wong et al., 2020). For a defense based on an adversarial training, the increase in
training time is generally known to be large but the increase in inference time is negligible or zero.
For a defense based on an adversarial purification, however, the increase in inference time (i.e.,
purification time) can be significant.

We have measured the purification time and training time of the purifiers, and the results are shown
in Table 2. For the purification time, both defense-GAN and AID-Purifier perform well but Pix-
elDefend is up to 554 times slower than AID-Purifier. This is due to the pixel-wise operation of
PixelDefend, and the slow speed can be a critical limitation for certain applications. For the training
time, AID-Purifier is definitely faster than the other two purifiers. Training of AID-Purifier is fast
because a binary cross-entropy loss is used and because the training is typically completed within
one epoch. The result includes the time for generating adversarial examples. The other two purifiers
are trained as generative models and the training is slow. In fact, training of a generative model can
be tricky in general.

4.2 BOOSTING PERFORMANCE AS AN ADD-ON

As a deep dive, we provide exhaustive add-on experiment results for PixelDefend and AID-Purifier
in Table 3. The most important finding is that each of the two adversarial purifiers provides a pos-
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Table 3: Robust accuracy: Exhaustive experiment results for PixelDefend and AID-Purifier are
shown for SVHN, CIFAR-10, CIFAR-100, and TinyImageNet datasets. As an add-on, each of Pix-
elDefend and AID-Purifier provides a positive improvement for almost any individual combination
of dataset and attack method. Worst in the last column denotes the worst robustness among Clean,
PGD, C&W, DF, and MIM. By inspecting the worst performance column of each dataset, it can be
observed that PixelDefend+AID-Purifier achieves the best performance for three datasets and AID-
Purifier achieves the best performance for TinyImageNet, which is the most complex dataset in our
experiments.

SVHN CIFAR-10

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 96.19 0.01 44.98 0.57 0.04 0.01 95.44 0.00 2.98 0.01 0.00 0.00
Madry et al. (2017) 67.39 38.17 59.08 28.34 22.63 22.63 88.72 51.64 84.75 54.81 52.45 51.64
Zhang et al. (2019) 94.98 36.72 93.61 62.15 40.46 36.72 84.49 55.32 80.73 57.68 56.14 55.32
Lee et al. (2020) 97.29 55.64 94.00 52.45 46.17 46.17 90.46 46.44 86.41 54.14 49.32 46.44

Natural training + PixelDefend 88.46 37.70 83.68 82.89 23.34 23.34 85.45 40.41 82.13 81.97 29.41 29.41
Madry et al. (2017) + PixelDefend 74.56 52.83 72.66 74.29 55.77 52.83 87.31 54.75 85.63 72.71 54.88 54.75
Zhang et al. (2019) + PixelDefend 93.03 55.42 91.73 90.30 58.14 55.42 83.41 56.68 81.61 68.39 56.89 56.68
Lee et al. (2020) + PixelDefend 94.03 64.14 92.71 89.66 73.92 64.14 89.01 51.83 87.29 69.26 53.29 51.83

Natural training + AID-Purifier (Ours) 78.33 37.25 67.62 67.83 29.10 29.10 87.84 2.15 78.36 79.55 1.35 1.35
Madry et al. (2017) + AID-Purifier (Ours) 89.20 49.85 88.98 87.63 52.98 49.85 88.28 52.65 86.87 72.00 53.08 52.65
Zhang et al. (2019) + AID-Purifier (Ours) 93.04 45.73 91.78 82.77 44.76 44.76 84.59 56.05 83.07 69.19 56.57 56.05
Lee et al. (2020) + AID-Purifier (Ours) 95.28 62.70 94.00 88.91 70.41 62.70 89.59 49.13 88.04 67.29 51.24 49.13

Natural training + PixelDefend + AID-Purifier (Ours) 71.32 49.76 67.44 67.75 42.67 42.67 76.27 41.81 73.25 72.97 35.82 35.82
Madry et al. (2017) + PixelDefend + AID-Purifier (Ours) 88.71 64.35 88.39 87.34 72.27 64.35 86.66 55.07 85.28 72.07 55.10 55.07
Zhang et al. (2019) + PixelDefend + AID-Purifier (Ours) 90.28 56.68 87.51 84.35 58.80 56.68 83.50 57.22 82.06 69.75 57.67 57.22
Lee et al. (2020) + PixelDefend + AID-Purifier (Ours) 93.04 65.61 91.44 89.07 74.23 65.61 87.85 53.33 86.34 69.67 54.32 53.33

CIFAR-100 TinyImageNet

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 78.17 0.02 3.23 0.04 0.05 0.02 64.98 0.02 20.91 0.00 0.31 0.00
Madry et al. (2017) 64.69 25.09 58.31 43.08 25.91 25.09 58.46 20.74 52.71 38.27 21.41 20.74
Zhang et al. (2019) 56.90 29.59 51.68 39.89 29.98 29.59 50.28 23.81 45.46 33.48 24.08 23.81
Lee et al. (2020) 74.56 27.07 65.40 54.80 29.91 27.07 65.09 26.75 57.91 46.90 27.72 26.75

Natural training + PixelDefend 61.19 29.95 58.23 58.73 20.78 20.78 56.23 0.68 45.35 51.33 0.66 0.66
Madry et al. (2017) + PixelDefend 62.90 27.34 59.64 46.80 27.69 27.34 57.65 21.81 54.93 41.00 22.29 21.81
Zhang et al. (2019) + PixelDefend 55.43 30.61 52.53 42.36 30.85 30.61 49.53 24.21 47.51 35.61 24.34 24.21
Lee et al. (2020) + PixelDefend 69.87 30.84 67.75 57.32 32.13 30.84 58.17 29.82 57.11 49.46 30.15 29.82

Natural training + AID-Purifier (Ours) 67.15 0.52 60.27 63.27 0.35 0.35 58.00 0.26 45.41 52.73 0.40 0.26
Madry et al. (2017) + AID-Purifier (Ours) 63.94 26.34 61.11 46.77 26.92 26.34 58.69 21.15 55.11 41.36 21.73 21.15
Zhang et al. (2019) + AID-Purifier (Ours) 56.40 30.37 54.12 42.87 30.59 30.37 50.26 24.24 47.41 36.40 24.37 24.24
Lee et al. (2020) + AID-Purifier (Ours) 69.32 30.36 67.38 64.07 31.31 30.36 60.97 31.05 59.28 56.67 30.54 30.54
Natural training + PixelDefend + AID-Purifier (Ours) 54.56 27.36 52.47 52.23 23.06 23.06 50.22 3.26 43.47 46.64 2.02 2.02
Madry et al. (2017) + PixelDefend + AID-Purifier (Ours) 61.92 28.05 59.46 46.52 28.33 28.05 58.02 21.84 55.22 41.76 22.23 21.84
Zhang et al. (2019) + PixelDefend + AID-Purifier (Ours) 54.79 30.74 52.59 42.56 30.94 30.74 49.79 24.42 47.71 36.94 24.57 24.42
Lee et al. (2020) + PixelDefend + AID-Purifier (Ours) 66.55 33.10 64.78 57.76 33.32 33.10 59.13 30.52 58.02 50.88 30.48 30.48

itive enhancement for almost any individual combination of dataset and attack method. For the
worst performance column, which can be considered as the overall conclusion for each dataset,
PixelDefend+AID-Purifier achieves 42.11% (46.17 to 65.61), 3.43% (55.32 to 57.22), 11.86%
(29.59 to 33.10), and 13.94% (26.75 to 30.48) of performance boosting for SVHN, CIFAR-10,
CIFAR-100, and TinyImageNet, respectively. AID-Purifier alone, which requires only a light in-
crease in the computational load, also achieves 35.80% (46.17 to 62.70), 1.32% (55.32 to 56.05),
2.64% (29.59 to 30.37), and 14.17% (26.75 to 30.54) of performance boosting.

5 PERFORMANCE AGAINST ADAPTIVE ATTACKS AND BLACK-BOX ATTACKS

Because adversarial purification is a relatively less explored approach when compared to gradient
masking or adversarial training approaches, it is essential to investigate as many attack types as
possible. We first address the possibility of designing a direct adaptive attack for purifiers. Among
the purifiers shown in Figure 2, denoising purifier can be easily attacked because the auxiliary net-
work and the main network are directly cascaded and the overall gradient can be calculated in a
straightforward way. The gradient calculation for other purifiers in Figure 2, however, is practically
impossible because of the iterative nature of purification procedure (as in the PGD attack procedure)
and because of the use of local gradients (Hessian is needed for an attack). The same is true for AID-
purifier. A direct attack of AID-purifier needs to be based on the equation in line 4 of Algorithm 2,
where gradient is already involved in the equation. Solving the equation as an adaptive attack re-
quires a differentiation with respect to xpur, and therefore Hessian needs to be calculated. Also, an
iterative attack procedure needs to be designed to cope with the iterative nature of purification. Ad-
ditionally, the sign() and clip() functions in Algorithm 2 need to be addressed. Overall, we believe
a direct adaptive attack that fully utilizes the details of Algorithm 2 is an intractable problem even
with iterative approximations. Instead, we perform an extensive investigation over the applicable
attack methods.
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Figure 4: Robust accuracy against auxiliary-
aware PGD attacks. When λ is large (red
circle), the attack successfully generates ex-
amples that cannot be purified, but the attack
to main network becomes weak. When λ is
small (green circle), the main network attack
is strong but the purification remains effective.
The evaluation is over Madry for SVHN.

A strong adaptive attack: SSL-based purifier
was proposed by Shi et al. (2021). In their work,
a new attack method called auxiliary-aware attack
was provided where it is broadly applicable to any
purifier that utilizes an auxiliary network. The basic
idea of the attack is to find an adversarial example
that is unlikely to be affected by the auxiliary net-
work’s purification while simultaneously being an
effective attack to the main network. The auxiliary-
aware attack can be considered as a strong adap-
tive attack because it is a complete white-box attack
where both the main classification network and the
auxiliary network are known to and utilized by the
attacker. For AID-purifier, an auxiliary-aware at-
tack is generated as
xadv ← argmax

xadv∈N (x)

(1− λ) · LC − λ · LD, (2)

where λ is a trade-off parameter between the main
cross-entropy loss LC and the auxiliary discrimi-
nator loss LD. The results are shown in Figure 4.
When λ is large, the attack successfully generates
examples that cannot be purified, but instead the strength of the main network attack becomes weak.
When λ is small, the main network attack is strong but instead the purification remains effective.
Overall, λ = 0 turns out to be the optimal attack for minimizing robust accuracy, and the AID-
purification is effective for improving robust accuracy. Additional results for natural training, Zhang
et al. (2019), and Lee et al. (2020) are shown in Appendix D.1.

Other adaptive attacks: Several well-known adaptive attacks have been developed for general
validation of defense methods. Tramer et al. (2020) and Dong et al. (2020) showed that evaluating
defense methods across different attack configurations (attack iterations or epsilon) is important.
Croce & Hein (2020) proposed AutoAttack that can achieve state-of-the-art attack performance and
argued that it should be tested for any new defense. Hendrycks & Dietterich (2019) proposed new
corruption datasets for testing robustness of classifiers. As shown in Appendix D, we have evaluated
AID-Purifier over all of the aforementioned adaptive attacks. We have confirmed that AID-purifier
can improve robustness even under attack configuration adjustments and AutoAttack. Additionally,
AID-Purifier didn’t show any significant performance drop for the corruption datasets.

Black-box attacks: We evaluated robustness against black-box attacks. In general, black-box
attacks are much less effective than white-box attacks because of the lack of target classifier infor-
mation. Despite this disadvantage, Athalye et al. (2018) showed that the defense methods that utilize
target classifier’s gradient can be vulnerable to black-box attacks.

For AID-Purifier, we consider two representative black-box attacks; Square attack as a score-based
attack (Andriushchenko et al., 2020) and a transfer-based attack (Papernot et al., 2017). For transfer-
based attacks, we test the robustness using two source networks. One of them is a 10-Wideresnet-34,
the same as the target network, and the other is a VGG-19 (Simonyan & Zisserman, 2014). As shown
in Table 4, the black-box attacks are not effective to the AID-Purifier.

6 DISCUSSIONS

Ablation and sensitivity studies: To verify that the key features of AID-Purifier are effective,
we have performed ablation studies and the results are shown in Appendix E. In Table 14 of Ap-
pendix E.1, all of the three key features are found to be helpful, where the choice of mutual informa-
tion related architecture design, the choice of binary cross-entropy loss, and the choice of AVmixup
augmentation are crucial for AID-Purifier’s performance. In Table 15 of Appendix E.2, the number
and choice of the layers to be connected to the discriminatorD are investigated. We have limited the
choice of candidate layers to avoid tuning effects, where only four candidates are considered. The
best performance was observed for {10th block, 15th block}, but we have chosen {1st Conv, 15th
block} because its performance is on par with the best and because it is more in line with our design
principle. Competitiveness of connecting to two layers was confirmed as well.
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Table 4: Robust accuracy under a score-based attack (Square attack) and transfer-based black-box
attacks. (S=T) denotes the source model (Wideresnet-34) is the same as the target model and (S 6=T)
denotes the source model (VGG-19) is different from the target model. PGD, C&W, DF, and MIM
attacks are used to evaluate the transfer-based attacks, and the results for the worst attacks are shown
in the table. The results are shown for SVHN.

Score-based Tranfer-based (S=T) Transfer-based (S 6=T)

Natural training 0.213 11.955 38.55
Natural training+AID-Purifier 51.625 43.178 43.32

Madry et al. (2017) 16.745 40.731 87.31
Madry et al. (2017)+AID-Purifier 84.668 55.025 86.42

In addition to the ablation studies, we have investigated the sensitivity to the defense epsilon and the
number of iterations N at the time of purification defense. The results are shown in Appendix G.1
where AID-purifier’s robustness is confirmed.

Mutual information: A fundamental design principle of AID-purifier is the assumption that a
smaller mutual information value between hlow(x) and hhigh(x) should be observed for adver-
sarial examples when compared to the clean examples. To confirm that the assumption is indeed
true, we have measured the mutual information of clean examples and PGD examples (results in
Appendix H). For both natural training and adversarial training, we have confirmed that mutual in-
formation is significantly larger for clean examples than for adversarial examples (0.622 vs 0.114
for natural training, 0.868 vs 0.478 for adversarial training).

Adversarial purifiers as performance boosters: In Section 4.2, it was shown that AID-Purifier
and PixelDefend can be highly useful as add-on defenders that can be used in addition to a high-
performance defender such as Madry, Zhang, and Lee. Not only that, AID-Purifier and PixelDefend
can be used together for an extra improvement in robust accuracy. The extra improvement is due
to the diversity between the two purifiers. PixelDefend’s purification is based on the distribution
pdata(x) that is learned by PixelCNN. AID-Purifier’s purification is based on the distributions pclean
and padv that are learned by the discriminator.

To investigate if AID-Purifier can create a positive synergy with purifiers other than PixelDefend,
we have carried out an extra experiment. In Appendix C, NRP (Naseer et al., 2020) instead of Pix-
elDefend is used to create a table in the same form as Table 3. NRP is a type of adversarial purifier,
that trains a conditional GAN to learn an optimal input processing function that enhances model
robustness. For NRP, the results in Table 10 of Appendix C are similar to PixelDefend’s results -
AID-Purifier and NRP can create positive synergies. For the case of Defense-GAN, we have shown
in Appendix B that it can have negative effects for CIFAR-10, CIFAR-100, and TinyImageNet. In
any case, we have tried using AID-Purifier together with Defense-GAN, and we have found that the
loss by Defense-GAN can be mitigated by AID-Purifier as shown in Appendix F.

Even though we have considered only adversarially-trained models as the base models to improve,
the base model does not need to be limited in such a way. As long as a purifier is light in computation
and attachable to frozen networks, it can be used as an add-on to boost any adversarial defense
network. In general, it remains as a future work to answer if adversarial purifiers should be always
included as the last step add-on.

7 CONCLUSION

In this study, we have proposed AID-Purifier, a light auxiliary network for purifying adversarial
examples. To the best of our knowledge, AID-Purifier is the first successful purification method
that is based on a simple discriminator. It has a quite different characteristics from the previously
known purifiers in terms of the purification objective, where a purified image xpur is allowed to lie
in an out-of-distribution region. It can consistently boost the performance of adversarially-trained
networks, and it can create synergies with other adversarial purifiers such as PixelDefend and NRP.
Whether adversarially-trained networks should be always used with one or more adversarial purifiers
remains as an open question.
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Ethics statement: Our study may increase privacy and security concerns by improving attackers’
understanding on adversarial defense methods. However, we believe our study will contribute to the
knowledge of the research community and be used in positive directions. Besides the privacy and
security concerns, we believe our study does not contribute toward any other potential concerns.

Reproducibility statement: Our code is available as a supplementary item, and it will be made
available on GitHub. Furthermore, we have included pseudo-codes in Section 3 and implementation
details in Appendix A.
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nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
7503cfacd12053d309b6bed5c89de212-Paper.pdf.

11

https://arxiv.org/abs/1702.04267
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://openreview.net/forum?id=BkJ3ibb0-
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf


Under review as a conference paper at ICLR 2022

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-
supervised learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=_i3ASPp12WS.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1x62TNtDS.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=rJUYGxbCW.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. arXiv preprint arXiv:2002.08347, 2020.
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Supplementary materials for the paper
“AID-Purifier: A Light Auxiliary Network for

Boosting Adversarial Defense”

A EXPERIMENTAL DETAILS

In this appendix, we provide the details of the experiments conducted in our study. We described
benchmark adversarial purifiers and their code sources in Appendix A.1, the detail of our discrim-
inator architecture in Appendix A.2, hyperparameters of our discriminator in Appendix A.3, and
attack hyperparameters in Appendix A.4.

A.1 BENCHMARK ADVERSARIAL PURIFIERS

The purifiers used in this paper are:

• Defense-GAN (Samangouei et al. (2018), Apache License) : https://github.com/
kabkabm/defensegan.

• PixelDefend (Song et al. (2018), MIT License) : https://github.com/
microsoft/PixelDefend.

A.2 AID-PURIFIER : DISCRIMINATOR ARCHITECTURE

For training discriminator, we first apply global average pooling to hlow(x) and hhigh(x). Then, we
pass the results to a fully-connected network described in Table 5. The discriminator architecture
is for SVHN. We use one more linear layer both before and after concatenating for CIFAR-10,
CIFAR-100, and TinyImageNet.

Table 5: Discriminator architecture
Operation Size Activation Output
hlow → Linear 1024 ReLU
Linear 1024 ReLU Output 1
hhigh→ Linear 1024 ReLU
Linear 1024 ReLU Output 2
Concat (Output 1, Output 2) 2048
Linear 1024 ReLU
Linear 512 ReLU
Linear 1
Sigmoid 1

A.3 AID-PURIFIER : DISCRIMINATOR HYPERPARAMETERS

Training hyperparameters: We train the network using SGD with learning rate 0.01, weight
decay 2e−4, and momentum 0.9 for 1 epoch. We use γ = 2 for SVHN and γ = 1.5 for CIFAR-10,
CIFAR-100, and TinyImageNet.

Purification hyperparameters: Hyperparameters used for purification are described in Table 6.

Table 6: Hyperparameters in Algorithm 2
Dataset N ε α

SVHN 10 12/255 3/255
CIFAR-10 10 8/255 2/255
CIFAR-100 10 16/255 2/255
TinyImageNet 10 8/255 2/255
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A.4 ATTACK HYPERPARAMETERS

All attacks are evaluated under the l2 metric for C&W and the l∞ metric for the others. For SVHN,
we use the perturbation size 12/255 and the step size 2/255. For CIFAR-10, CIFAR-100, and Tiny-
ImageNet, we use the perturbation size 8/255 and the step size 1/255. We use Foolbox (Rauber
et al., 2017), a third-party toolbox for evaluating adversarial robustness. All other parameters are set
by Foolbox to be its default values.

B COMPARISON WITH OTHER PURIFIERS ON VARIOUS DATASETS

We repeated the same experiment of Table 1 for CIFAR-10 (Table 7), CIFAR-100 (Table 8), and
TinyImageNet (Table 9).

For CIFAR-10, Defense-GAN performs better than AID-Purifier as a stand-alone, but its perfor-
mance as an add-on is inferior to the other purifiers. PixelDefend performs better than AID-
Purifier as a stand-alone and an add-on. PixelDefend+AID-Purifier performs best as a stand-
alone and an add-on. For CIFAR-100, Defense-GAN performs worst and PixelDefend+AID-
Purifier performs best again. For TinyImageNet, Defense-GAN performs best as a stand-alone,
but PixelDefend+AID-Purifier outperforms other purifiers as an add-on.

Table 7: Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown
for the worst white-box attack. CIFAR-10 dataset is evaluated below.

Stand-alone Add-on

Natural training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.00 51.64 55.32 46.44
Defense-GAN 11.68 18.29 17.99 17.63
PixelDefend 29.41 54.75 56.68 51.83
AID-Purifier 1.35 52.65 56.05 49.13
PixelDefend+AID-Purifier(Ours) 35.82 55.07 57.22 53.33

Table 8: Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown
for the worst white-box attack. CIFAR-100 dataset is evaluated below.

Stand-alone Add-on

Natural training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.02 25.09 29.59 27.07
Defense-GAN 1.16 3.36 3.78 3.67
PixelDefend 20.78 27.34 30.61 30.84
AID-Purifier 0.35 26.34 30.37 30.36
PixelDefend+AID-Purifier(Ours) 23.06 28.05 30.74 33.10

Table 9: Robust accuracy: stand-alone and add-on performances of adversarial purifiers are shown
for the worst white-box attack. TinyImageNet dataset is evaluated below.

Stand-alone Add-on

Natual training Madry et al. (2017) Zhang et al. (2019) Lee et al. (2020)

No purification 0.00 20.74 23.81 26.75
Defense-GAN 2.76 4.95 4.79 4.74
PixelDefend 0.66 21.81 24.21 29.82
AID-Purifier 0.26 21.15 24.24 30.54
PixelDefend+AID-Purifier(Ours) 2.02 21.84 24.42 30.48

C BOOSTING PERFORMANCE AS AN ADD-ON TO NRP

We provide exhaustive add-on experiment results for NRP (Naseer et al., 2020) and AID-Purifier
in Table 10. For the worst performance column, which can be interpreted as the overall conclu-
sion for each dataset, AID-Purifier boosts the robustness in most scenarios. NRP+AID-Purifier
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achieves 34.22% (46.17 to 61.97), 2.37% (55.32 to 56.63), 11.63% (29.59 to 33.03), and 14.43%
(26.75 to 30.61) of performance boosting for SVHN, CIFAR-10, CIFAR-100, and TinyImageNet,
respectively.

Table 10: Robust accuracy: exhaustive experiment results for NRP and AID-Purifier are shown
for SVHN, CIFAR-10, CIFAR-100, and TinyImageNet datasets. As an add-on, each of NRP and
AID-Purifier provides a positive improvement for almost any individual combination of dataset and
attack method. By inspecting the worst performance column of each dataset, it can be observed that
NRP+AID-Purifier achieves the best performance for two datasets, CIFAR-10 and CIFAR-100, and
AID-Purifier achieves the best performance for two datasets, SVHN and TinyImageNet. Results of
stand-alone and add-on using AID-Purifier only are duplicated from Table 3.

SVHN CIFAR-10

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 96.19 0.01 44.98 0.57 0.04 0.01 95.44 0.00 2.98 0.01 0.00 0.00
Madry et al. (2017) 67.39 38.17 59.08 28.34 22.63 22.63 88.72 51.64 84.75 54.81 52.45 51.64
Zhang et al. (2019) 94.98 36.72 93.61 62.15 40.46 36.72 84.49 55.32 80.73 57.68 56.14 55.32
Lee et al. (2020) 97.29 55.64 94.00 52.45 46.17 46.17 90.46 46.44 86.41 54.14 49.32 46.44

Natural training+NRP 88.42 33.52 80.44 77.81 19.70 19.70 70.95 41.02 62.82 62.79 6.60 6.60
Madry et al. (2017)+NRP 82.29 49.54 81.05 81.44 51.83 49.54 86.08 44.02 84.06 70.69 54.96 44.02
Zhang et al. (2019)+NRP 93.00 52.71 91.68 84.94 50.63 50.63 81.90 55.83 79.69 66.04 56.15 55.83
Lee et al. (2020)+NRP 94.23 62.68 92.71 83.51 65.48 62.68 87.26 52.98 85.60 69.02 54.46 52.98

Natural training+AID-Purifier (Ours) 78.33 37.25 67.62 67.83 29.10 29.10 87.84 2.15 78.36 79.55 1.35 1.35
Madry et al. (2017)+AID-Purifier (Ours) 89.20 49.85 88.98 87.63 52.98 49.85 88.28 52.65 86.87 72.00 53.08 52.65
Zhang et al. (2019)+AID-Purifier (Ours) 93.04 45.73 91.78 82.77 44.76 44.76 84.59 56.05 83.07 69.19 56.57 56.05
Lee et al. (2020)+AID-Purifier (Ours) 95.28 62.70 94.00 88.91 70.41 62.70 89.59 49.13 88.04 67.29 51.24 49.13

Natural training+NRP+AID-Purifier (Ours) 66.89 42.09 62.72 62.59 36.02 36.02 66.38 40.58 61.04 60.86 20.46 20.46
Madry et al. (2017)+NRP+AID-Purifier (Ours) 85.33 53.59 84.62 83.16 56.49 53.59 86.14 46.27 84.53 70.69 55.31 46.27
Zhang et al. (2019)+NRP+AID-Purifier (Ours) 87.02 53.39 83.65 73.59 50.27 50.27 82.22 56.63 81.03 67.26 56.71 56.63
Lee et al. (2020)+NRP+AID-Purifier (Ours) 92.05 61.97 90.35 81.34 65.22 61.97 86.25 53.92 84.40 68.57 55.06 53.92

CIFAR-100 TinyImageNet

Method Clean PGD C&W DF MIM Worst Clean PGD C&W DF MIM Worst

Natural training 78.17 0.02 3.23 0.04 0.05 0.02 64.98 0.02 20.91 0.00 0.31 0.00
Madry et al. (2017) 64.69 25.09 58.31 43.08 25.91 25.09 58.46 20.74 52.71 38.27 21.41 20.74
Zhang et al. (2019) 56.90 29.59 51.68 39.89 29.98 29.59 50.28 23.81 45.46 33.48 24.08 23.81
Lee et al. (2020) 74.56 27.07 65.40 54.80 29.91 27.07 65.09 26.75 57.91 46.90 27.72 26.75

Natural training+NRP 40.25 6.23 35.92 36.44 5.85 5.85 49.28 9.13 43.41 45.71 7.22 7.22
Madry et al. (2017)+NRP 61.50 27.43 58.77 45.69 27.74 27.43 55.70 22.78 53.79 40.21 23.24 22.78
Zhang et al. (2019)+NRP 54.74 30.25 52.58 42.43 30.55 30.25 47.70 23.98 45.80 33.32 24.00 23.98
Lee et al. (2020)+NRP 65.15 32.77 63.43 54.27 33.68 32.77 55.38 29.76 54.52 47.25 30.39 29.76

Natural training+AID-Purifier (Ours) 67.15 0.52 60.27 63.27 0.35 0.35 58.00 0.26 45.41 52.73 0.40 0.26
Madry et al. (2017)+AID-Purifier (Ours) 63.94 26.34 61.11 46.77 26.92 26.34 58.69 21.15 55.11 41.36 21.73 21.15
Zhang et al. (2019)+AID-Purifier (Ours) 56.40 30.37 54.12 42.87 30.59 30.37 50.26 24.24 47.41 36.40 24.37 24.24
Lee et al. (2020)+AID-Purifier (Ours) 69.32 30.36 67.38 64.07 31.31 30.36 60.97 31.05 59.28 56.67 30.54 30.54

Natural training+NRP+AID-Purifier (Ours) 42.73 11.67 39.18 39.48 10.11 10.11 43.77 15.46 39.98 41.75 12.40 12.40
Madry et al. (2017)+NRP+AID-Purifier (Ours) 61.14 27.84 59.41 46.67 27.95 27.84 55.70 22.66 54.02 40.48 23.17 22.66
Zhang et al. (2019)+NRP+AID-Purifier (Ours) 54.76 30.55 52.46 43.07 31.04 30.55 47.90 24.24 46.09 33.93 23.87 23.87
Lee et al. (2020)+NRP+AID-Purifier (Ours) 64.78 33.03 63.13 54.64 33.77 33.03 58.49 30.61 57.28 50.51 30.93 30.61

D ADAPTIVE ATTACK

In this appendix, we evaluate the performance of AID-Purifier under additional adaptive attacks.
We described the robustness under a strong adaptive attack in Appendix D.1, the performance sensi-
tiveness to the attack’s hyper-parameters such as epsilon and iteration in Appendix D.2, to common
corruptions in Appendix D.3, and to a recent strong white-box attack in Appendix D.4.

D.1 A STRONG ADAPTIVE ATTACK:

We evaluate AID-Purifier over the auxiliary-aware PGD attack over natural training, Madry, Zhang,
and Lee for SVHN, and the results are shown in Figure 5. The results are consistent with Figure 4
in the manuscript.

D.2 ATTACK EPSILON AND ATTACK ITERATION

The robust accuracy results for the sensitiveness of attack hyper-parameters are shown in Table 11.
In Table 11-(a), AID-Purifier improves the performance at least 28% until the attack epsilon is
smaller than 32/255. the robust accuracy drops terribly when the attack epsilon is 32/255 because
we fix the defense epsilon as 12/255. In Table 11-(b), the performances are not sensitive to the
attack’s iteration number.
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Figure 5: Robust accuracy before (blue) and after (orange) purification are evaluated against
auxiliary-aware PGD attacks. The evaluation is over natural training, Madry, Zhang, and Lee for
SVHN.

Table 11: Robust accuracy: (SVHN under PGD attack; Madry is used to train the main classification
network) (a) Performance of Madry and Madry+AID-Purifier for varying the attack epsilon of PGD
are shown for SVHN. (b) Performance of Madry and Madry+AID-Purifier for varying the attack
iteration of PGD are shown for SVHN.

Attack eps Madry Madry+AID-Purifier

1/255 57.29 88.20
2/255 49.49 86.92
4/255 42.18 83.82
8/255 34.94 73.14
12/255 (our work) 38.17 49.85
16/255 22.28 28.62
32/255 1.27 1.59

Attack iteration Madry Madry+AID-Purifier

40 (our work) 38.17 49.85
100 35.64 48.60
200 34.86 48.34

(a) (b)

D.3 COMMON CORRUPTION

The CIFAR10-C benchmark (Hendrycks & Dietterich, 2019) consists of 15 diverse corruption types
applied to test images of CIFAR10. The corruptions are drawn from four main categories; noise,
blur, weather, and digital. We investigate the robustness for CIFAR10-C, and the results are shown
in Table 12. Compared to Madry, Madry+AID-Purifier showed a similar performance. The results
show that AID-Purifier is not sensitive to common corruptions.

Table 12: Robust accuracy results for different corruptions. Results are shown for Madry and
Madry+AID-Purifier on CIFAR10-C.

Noise Blur
Gaussian Shot Speckle Impulse Defocus Gaussian Motion Zoom

Madry 83.11 84.45 84.14 76.77 82.93 80.48 78.82 81.79
Madry+AID-Purifier 83.38 84.56 84.30 76.44 82.52 80.22 78.47 81.16

Weather Digital
Snow Fog Brightness Frost Contrast Elastic Pixelate JPEG Spatter Saturate

Madry 82.87 61.94 85.64 79.87 44.84 81.92 86.38 85.96 83.86 85.46
Madry+AID-Purifier 82.22 63.45 85.05 79.24 45.87 81.48 86.10 85.78 83.48 84.73

D.4 AUTOATTACK

We evaluated AID-Purifier under a recent strong ensemble white-box attack, AutoAttack (Croce &
Hein, 2020), and AID-Purifier significantly improves robust accuracy as shown in Table 13.
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Table 13: Robust accuracy under AutoAttack. The results are shown for SVHN.
Base model Before purification After purification

Natural training 0.004 35.679
Madry 10.134 64.363

E ABLATION STUDY

E.1 KEY FEATURES

AID-Purifier utilizes AVmixup, Information maximization principles, and Discriminative task as
the underlying foundations. We perform ablation experiments over the three key features. In (a) of
Table 14, we demonstrate the importance of the number of h(x). The result shows that the MI-based
architecture (exploiting two h(x) as inputs) outperforms the simple architecture used in adversarial
discriminators (Gong et al., 2017; Metzen et al., 2017) (exploiting one h(x) as an input). In (b) of
Table 14, we explore the effect of training targets. As we mentioned, using BCE loss between clean
and adversarial examples has better performance than contrastive loss. In (c) of Table 14, the result
shows that AVmixup helps the purification performance as we expected.

Table 14: Ablation test results over the key features of AID-Purifier: The evaluations are over Madry,
SVHN, and PGD. The baseline performance of Madry without any add-on is 38.17%. (a) Number
of intermediate layers connected from C(x) to the discriminator. (b) Training targets. (c) Data
augmentation method for training.

Number of h(x) Accuracy (%)

1 48.93
2 49.85

Targets Accuracy (%)

Contrastive 44.87
Clean vs. adv. 49.85

Augmentation Accuracy (%)

None 46.02
AV 47.73
Mixup 48.49
AVmixup 49.85

(a) Number of h(x) (b) Training targets (c) Data augmentation

E.2 INTERMEDIATE LAYERS CONNECTED FROM C(x) TO THE DISCRIMINATOR D

Table 15: Ablation test of the intermediate layers connected from C(x) to the discriminator: The
evaluations are over Madry, SVHN, and PGD. 1st Conv denotes the output of the first convolution
layer and n-th Block denotes the output of the n-th residual block, where downsampling is per-
formed. Check symbols indicate the connected layers. The best performing combination is {10th
block, 15th block}, but we have used {1st Conv, 15th block} in our main experiments because
the combination performs almost equally well and because it is more consistent with our design
principle.

Used intermediate representation Worst white-box attack

Number of h(x) 1st Conv 5th Block 10th Block 15th Block AID-Purifier (Ours)

1

X 48.28
X 48.66

X 48.92
X 48.93

2

X X 44.43
X X 48.97
X X 49.85 (manuscript)

X X 44.51
X X 45.77

X X 50.10

17



Under review as a conference paper at ICLR 2022

The ablation test results of the intermediate layers connected from C(x) to the discriminator D
are presented in Table 15. We have limited the choice of layers to avoid tuning effects (only four
were considered as shown in Table 15), and studied the robust accuracy. The best performance
was observed for {10th block, 15th block}, but we have chosen {1st Conv, 15th block} because its
performance was on par with the best and because it is more in line with our design principle.

While the best performing options are based on two layers, one layer options also perform reason-
ably well. We have also investigated three layers and found that three can be also a reasonable
option in terms of performance. But three-layer provides at most a marginal improvement while
incurring an unnecessary complication. Therefore, we considered the marginal improvement as a
tuning effect. Overall, it looks clear that two layers should be used because it is in line with our
design principle and because it provides the best performance.

F BOOSTING PERFORMANCE OF AID-PURIFIER AS AN ADD-ON TO THE
DEFENSE-GAN

We evaluate the robust accuracy of Defense-GAN+AID-Purifier as an add-on for SVHN in Table 16.
Defense-GAN is actually harmful, but AID-Purifier can recover part of the performance loss created
by Defense-GAN.

Table 16: Robust accuracy results over Madry, SVHN, and PGD.

PGD

Madry 38.17
Madry+Defense-GAN 28.59
Madry+Defense-GAN+AID-Purifier 32.29

G SENSITIVITY STUDIES

G.1 DEFENSE EPSILON AND DEFENSE ITERATION

The results of sensitivity to the defense epsilon are shown in Figure 6, and the robust accuracy is
insensitive to the choice of defense epsilon larger than 0.04.

The results of sensitivity to the number of iterations N at the time of purification defense are shown
in Table 17. In general, the performance improves as N is increased. We have chosen N = 10 in
our work such that the computational load can be kept small as shown in Table 2.

Figure 6: Robust accuracy for Madry+AID-
Purifier is shown with respect to the variations
in the defense epsilon (SVHN under PGD attack;
Madry is used to train the main classification net-
work).

Number of iterations Madry+AID-Purifier

20 50.62
10 (our work) 49.85
5 49.26
4 48.95
2 46.68

Table 17: Robust accuracy for Madry+AID-
Purifier with respect to the variations in the
number of defense iterations (SVHN under
PGD attack; Madry is used to train the main
classification network).
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G.2 ATTACK METHOD FOR TRAINING DISCRIMINATOR D

When training the discriminator, the attack method for generating adversarial examples need to be
decided. The sensitivity study results are shown in Table 18 for SVHN dataset, and we have used
PGD training in our work.

Table 18: Attack method used at the time of training and the resulting robust accuracy (SVHN under
PGD attack; Madry is used to train the main classification network).

PGD C&W DF Worst

PGD training (our work) 37.25 67.62 67.83 37.25
C&W training 11.36 52.27 45.73 11.36
DF training 0.39 74.12 74.65 0.39
PGD + CW training 8.51 54.77 48.85 8.51
PGD + DF training 1.16 68.01 69.74 1.16
CW + DF training 19.14 68.73 64.16 19.14
PGD + CW + DF training 8.73 67.83 62.94 8.73

H MUTUAL INFORMATION ESTIMATION BETWEEN TWO LAYERS

For the estimation, we use MINE (Mutual Information Neural Estimation) (Belghazi et al., 2018).
The results are shown for SVHN in Table 19. As expected, there is a large difference between clean
examples and adversarial examples. For natural training, mutual information is significantly larger
for clean examples (0.622) than for adversarial examples (0.114). For adversarial training, the same
observation holds where the values are 0.868 for clean examples and 0.478 for adversarial examples.

Table 19: Estimation results of mutual information between the two layers (hlow(x) and hhigh(x)).

Natural training Madry et al. (2017)

Clean 0.622 0.868
PGD 0.114 0.478
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