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Abstract

Aligning LLMs behaviour with human intent001
is critical for future AI. An important yet of-002
ten overlooked aspect of this alignment is the003
perceptual alignment. Perceptual modalities004
like touch are more multifaceted and nuanced005
compared to other sensory modalities such as006
vision. This work investigates how well LLMs007
align with human touch experiences. We cre-008
ated an interaction in which participants were009
given two textile samples to handle without010
seeing them and describe the differences be-011
tween them to the LLM. Using these descrip-012
tions, the LLM attempted to identify the target013
textile by assessing similarity within its high-014
dimensional embedding space. Our results sug-015
gest that a degree of perceptual alignment ex-016
ists, however varies significantly among dif-017
ferent textile samples. Moreover, participants018
didn’t perceive their textile experiences closely019
matched by the LLM predictions. We discuss020
possible sources of this alignment variance, and021
how better human-AI perceptual alignment can022
benefit future everyday tasks.023

1 Introduction024

Several studies in human-AI alignment research025

have discussed the imperative for AI models to026

“align” by having robustness, interpretability, con-027

trollability, and ethicality (Askell et al., 2021;028

Hendrycks et al., 2020; Dafoe et al., 2020, 2021).029

Those are important requirements especially as AI030

products and services are increasingly embedded031

in everyday life interactions, such as self-driving032

cars, smart home applications, and online shopping033

solutions (Elliott, 2019; Shneiderman, 2020).034

A critical but often overlooked necessity to en-035

suring AI models general alignment with human036

lies in their perceptual alignment. Here, we define037

perceptual alignment as the agreement between038

AI assessments and human subjective judgments039

across different sensory modalities, such as vision,040

hearing, taste, touch, and smell. However, percep- 041

tual modalities vary in their explicitness and ease 042

of evaluation (Dienes and Berry, 1997; Lynott and 043

Connell, 2013). For instance, vision, relying on 044

the human retina, can be effectively captured by 045

cameras and is more straightforward to evaluate 046

and quantify. In contrast, the sense of touch poses 047

greater challenges, both with regards to measuring 048

and describing touch sensations (Lynott and Con- 049

nell, 2013). In this work, we are exploring how 050

well LLMs can achieve perceptual alignment with 051

humans in a textile hand task. In other words, we 052

explored how well LLMs can predict the textile 053

the human is handling based on the descriptions of 054

their touch experiences. 055

To investigate the perceptual alignment between 056

humans and AI for touch, We designed a "Guess 057

What Textile" interaction experience and conducted 058

an in-person user study. We focused on the con- 059

cept of “textiles hand” – the describing the feel of 060

textiles through touch (Behery, 2005), because it 061

reflects an integral everyday task, where a good per- 062

ceptual alignment would be very desirable. To the 063

best of our knowledge, this study is the first explo- 064

ration of the level of alignment between human 065

touch experiences and LLMs. We analyzed the 066

model accuracy (i.e., success rate), as well as the 067

participants’ validity and similarity ratings. Our ap- 068

proach emphasizes the importance of using compar- 069

ative measures like validity and similarity, which 070

encompass human subjective judgment in an inter- 071

active experience. Our observations indicate that 072

LLMs exhibit perceptual biases across various tex- 073

tiles–showing significantly greater alignment with 074

human perception for certain textiles compared to 075

others (e.g., silk satin being better aligned than cot- 076

ton denim). While we focused on the sensory expe- 077

rience of textiles, this interactive task can also be 078

used in other everyday sensory interactions, such 079

as selection of foods (e.g. choice between sweet 080

fruits) or perfumes (e.g. different fragrances). 081
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2 Related Work082

Representation alignment refers to the extent to083

which the internal representations of two or more084

information processing systems are aligned (Su-085

cholutsky et al., 2023). While we see advances086

in human-AI perceptual alignment, they are still087

mostly limited to vision, such as recent efforts by088

Boggust et. al (Boggust et al., 2022), Lee et.al (Lee089

et al., 2023), Kawakita (Kawakita et al., 2023). Ex-090

tending the exploration of Human-AI alignment091

into sensory judgments, Marjieh et al. (Marjieh092

et al., 2023) displayed the same pair of colours (red093

and blue) to both humans and GPT models1, re-094

questing each to rate the similarity score, and then095

comparing the resulting scores, i.e. inter-rater reli-096

ability (IRR). They demonstrated that GPT-4 can097

effectively interpret certain human sensory judg-098

ments (e.g., colour, sound and taste). Despite IRRs099

can measure agreement levels, they do not ade-100

quately capture deeper nuances in the perceptual101

alignment. Our research extends beyond these stud-102

ies by integrating semantic embeddings with tex-103

tual sensory information, focused on touch.104

3 Method105

We chose textile hand task to evaluate the percep-106

tual alignment between Human and LLMs. First, it107

is an everyday activity that people are familiar with.108

Second, textile descriptions are widely used in fash-109

ion retail websites, catalogues and books, serving110

as training data for web-scale models like GPTs111

(Radford et al., 2019). We examine the LLM’s be-112

haviors by analysing their embeddings. In our par-113

ticular case, similar textiles based on their descrip-114

tors should cluster in proximity. In other words,115

we examine whether LLMs grasp the concept of a116

“softer textile” by checking whether such textiles117

cluster closely in the LLM’s embedding space.118

To facilitate human-in-the-loop evaluation, we119

have developed an interactive AI guessing task120

named “Guess What Textile” (Figure 1, Sec 3.1) for121

our in-person user study. The study is designed as122

a comparative description task that requires contin-123

uous verbal Human-AI interaction. The system is124

embedded into an user interface to deliver feedback125

in both text and audio. The text feedback serves126

as a backup for participants to double-check the127

replies while rate the validity score (see Sec 3.2).128

1Given that GPT models lack the ability to "see" colour
hex codes are provided as textual inputs for LLM’s "vision".

Assigned with 2 textiles
 (referece and target)

Decribe
difference

ASR

Correct

Incorrect

AI Guessing
System

Mission
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Receive predict textile
as a new reference

within 5 attempt

5 Attempt Reached
Human Rate

Validity & Similarity

voice text

Figure 1: The overall design of the “Guess What Tex-
tile" task. Participants touch two assigned textiles (a
target and a reference textile) placed inside a box to
hide any visual influences. The AI guessing system
knows only the reference textile and is required to make
a prediction of the target textile based on participants’
descriptions. The task is iterative, and stops only when
a correct prediction is made or when the maximum num-
ber of five attempts is reached.

3.1 “Guess What Textile” System Design 129

We developed an interactive AI guessing task, 130

“Guess What Textile”, as shown in Figure 1. For 131

the AI to make a prediction of the target textile 132

sample, we first encode the possible textiles into 133

LLM embeddings. The study selected 20 textile 134

samples based on the TextileNet taxonomy (Zhong 135

et al., 2023). Each sample, made from 100% single 136

material, was selected from a diverse collection 137

of over 100 samples to represent a broad range 138

of textures and physical properties. The descrip- 139

tions of these samples were developed based on 140

Textilepedia (Fashionary, 2020) and commercial 141

sample books, following consultations with domain 142

experts. This expert involvement ensured that our 143

descriptions adhered to industry standards and com- 144

prehensively represented the textile properties. We 145

provide a full list of descriptions in our Appendix. 146

We used the 20 textiles descriptions to gen- 147

erate 20 unique vectors ( Etextiles) encoded by 148

OpenAI’s text-embedding-3-small (Neelakan- 149

tan et al., 2022) to create our embeddings. These 150

embeddings are generated once and used repeat- 151

edly in the vector search process during each hu- 152

man input throughout the user study as illustrated in 153

Figure 2. In the study, participant provide compara- 154

tive descriptions by articulating the differences they 155

perceive while handling two textiles. These descrip- 156

tions were processed by ASR (Radford et al., 2023) 157

and then feed into encoder to form a vector (vquery) 158

that joins the vector search to predict target tex- 159

tile. The user interface is then provide an informed 160

prediction of the target textile from the output of 161

the vector search. It is important to note that the 162

(vquery) is not replaced but appended with subse- 163
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Figure 2: An overview of the AI Guessing System,
i.e. "Guess What Textile?". The vector search process
uses pre-built embeddings for 20 textile samples and
compares them with a user query-generated vector to
identify the best matching textile ID.

quent trial within a single task round. This happens164

when the AI system makes an incorrect predic-165

tion and the user proceeds to another trial. Here,166

previous queries are retained and the new query167

is appended, along with an added prompt stating,168

“[previous query] You were asked to guess with the169

following additional information because your pre-170

vious answer was wrong. [new query]". This de-171

sign enables the AI model to maintain awareness172

of past information within the interactive structure.173

This iterative process continues until the AI cor-174

rectly identifies the textile or reaches the maximum175

of five attempts. This approach necessitates the AI176

system to possess a more nuanced understanding177

of how humans describe sensory perceptions than178

is needed for direct textile identification.179

3.2 Measuring Matrix180

To measure the degree of perceptual alignment be-181

tween the human and LLM, we used the following182

three evaluation metrics (1) AI Success Rate in the183

"Guess What Textile?" task; (2) Validity Score by184

participants as a subjective assessment (3) Similar-185

ity Score by participants as a subjective assessment.186

If the AI correctly identified the target textile within187

five attempts, we considered it as a success. The188

two additional subjective measures (validity and189

similarity scores) captured the participants’ sub-190

jective judgement of the AI’s performance, as the191

accuracy (i.e., success rate) alone does not fully192

capture the human-AI alignment. For instance, AI193

might make an incorrect prediction, yet it is still194

closely aligned with human input. In such cases,195

we rely on human judgments to gauge the degree196

of error. A slightly incorrect answer could still in-197

dicate strong alignment if the human judges it to198

be valid and similar. This combination of objective199

and subjective metrics is unique to our approach,200

Figure 3: Distribution of Similarity and Validity Scores.

as prior works mainly rely on AI accuracy without 201

human validation. 202

4 Results and Discussion 203

We analyzed 80 "Guess What Textile" tasks with 204

362 attempts (avg 4.53 attempts per task, std = 205

1.41) completed by 40 participants. 206

4.1 Overall Alignment Performance 207

The primary performance indicators for alignment 208

are based on the AI’s success rates across 80 com- 209

pleted tasks. The success rate is measured by count- 210

ing the number of AI’s successful predictions of a 211

textile and dividing this number by the total tasks 212

completed. The AI correctly predicted the target 213

textile in 18 out of the 80 completed tasks, resulting 214

in an overall accuracy rate of 22.5%. For the tasks 215

where the AI succeed, an average of 3 attempts 216

(std=1.20) is needed to make a correct prediction. 217

The distribution of validity and similarity scores 218

are shown in Figure 3. If AI made a correct predic- 219

tion, this means the prediction is completely valid 220

(10) and completely similar (10). Therefore, we 221

focus only on attempts where the AI failed to make 222

correct predictions, and ask human to provide their 223

subjective judgements on validity and similarity of 224

the AI’s answers. In essence, these two metrics 225

function as a gauge through which humans assess 226

the degree of inaccuracy in the AI’s predictions. 227

The AI’s predictions received an average valid- 228

ity score of 5.25 (std=1.71), indicating a moder- 229

ate level of validity as evaluated by the partici- 230

pants. Regarding the similarity ratings, the average 231

similarity score across all comparisons was 4.77 232

(std=1.67). There appears to be a correlation be- 233

tween validity and similarity scores, with the high- 234

est frequency at a score of 1 and the second-highest 235

at a score of 8. A significant number of partici- 236

pants rated both validity and similarity at 1 in the 237

failed attempts, indicating that the AI’s guesses 238

were perceived as highly inaccurate. 239
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Figure 4: Textile-specific success rates; average validity
and similarity scores per textile.

4.2 Textile-Specific Performance240

Figure 4 shows the success rate, validity, and sim-241

ilarity scores for each textile. We arranged the242

textile samples in descending order of success rate243

and plotted their corresponding average validity244

and similarity scores. The results suggest that there245

is a significant perceptual bias across various tex-246

tiles on all metrics evaluated.247

Textile-specific Success Rate The success rate248

varies significantly across textiles, suggesting that249

the AI found some textiles easier to guess than oth-250

ers. Some textiles yield significantly higher success251

rates: 100% for silk satin, and 0% for many other252

textiles, resulting in a highly skewed distribution253

for success rates. This could be due to various254

factors, on both the AI and the user sides, such255

as the specificity of user descriptions for certain256

items or inherent characteristics of the items make257

them more distinguishable. This result supported258

the claim that there exhibits a significant bias in259

perceptual alignment across textiles.260

Validity and Similarity Scores The average261

validity scores also show considerable variation262

across textiles. This suggests that the context or the263

relevance of the AI’s guesses fluctuated, with some264

guesses being more contextually valid than others,265

when the humans are making judgements. Similar266

to the validity score, the average similarity varies267

by textiles. This indicates that for some items, the268

AI’s guesses were closer to the target in terms of269

similarity, possibly because these items had more270

distinctive features or were described more accu-271

rately and precisely by users.272

Additionally, while the distributions of average273

validity and similarity scores are less skewed, they274

still exhibit considerable variance across different275

textiles. This is even true for the textiles which276

have a success rate value of zeros. For instance, 277

in Figure 4, linen plain (id 3) shows significantly 278

larger validity and similarity scores compared to 279

pu faux leather (id 19). 280

4.3 Variables Influencing LLM Alignment 281

Although measured differently, Marjieh et al (Mar- 282

jieh et al., 2023) suggest that LLMs have good per- 283

ceptual alignment in common modalities such as 284

vision. For instance, they experimented on colors 285

and observed high alignment measured by inter- 286

rater reliability scores. We, however, observed the 287

exact opposite for the sense of touch on textile 288

experience. We hypothesize that this significant 289

difference origins from the training data. We thus 290

conducted a simple experiment that is to traverse 291

the common training datasets WikiText-103 (Mer- 292

ity et al., 2016) and BookCorpus (Zhu et al., 2015). 293

The former is a collection articles on Wikipedia, 294

and the later is a large collection of novel books 295

(Zhu et al., 2015). 296

We then take a list of keywords for textiles, 297

which are basically words and subwords from 298

the 20 textile sample names. We also built an- 299

other list of keywords that contains common col- 300

ors 2. We observed that 0.15% and 0.04% of the 301

words in WikiText-103 and BookCorpus respec- 302

tively contain color keywords, while only 0.0033% 303

and 0.0018% are observed for textiles. It is there- 304

fore reasonable to suggest that variations in the 305

training data could contribute to the varying levels 306

of alignment observed. 307

5 Conclusion and Future Work 308

In this paper, we explored human-AI, specifically 309

human-LLM, perceptual alignment using the tex- 310

tile hand concept. We developed a “Guess What 311

Textile" interactive task and conducted an in-person 312

user study with 40 participants. Our results suggest 313

some level of perceptual alignment, however we 314

observed a bias of the LLM across various textiles. 315

We observed that there is significantly greater align- 316

ment with human perception for certain textiles 317

compared to others (e.g., silk satin versus cotton 318

denim). In our discussion of this exploratory work, 319

we highlight that LLMs are still in their infancy 320

concerning sensory judgment, particularly in the 321

realm of tactile perception. 322

2We considered "red", "orange", "yellow", "green", "blue",
"purple", "pink", "brown", "black", "gray" and "white"

4



6 Limitations323

While we contributed initial insights into the under-324

standing of human-AI touch alignment, we have to325

also acknowledge some limitations. First, subjec-326

tive sensory judgement inherently can vary widely327

among individuals (Stevens, 1960). Conveying and328

interpreting tactile experiences through language329

poses significant challenges due to the inherent330

ambiguity in semantic descriptions (Rosenkranz331

and Altinsoy, 2020; Atkinson et al., 2016). The332

ambiguity in conveying sensory experience stems333

from cultural, social, and linguistic differences that334

influence our sensory perception (Marques et al.,335

2022). This diversity has long presented challenges336

in standardizing evaluations and design metrics that337

precisely encapsulate the depth of subjective expe-338

riences. Hence, this also affects our alignment mea-339

sures. We have added new measures, especially340

the validity score, to our study, extending prior341

works; yet additional qualitative measures would342

shed light on the quality differences in subjective343

touch experiences.344

Second, our study was confined to a limited se-345

lection of 20 textile samples, focusing specifically346

on tasks related to the feel of textiles. While this347

sample was selected out of a set of originally 100348

samples, there is still scope to extend the choices349

to enrich the embedding space.350

Furthermore, the advent of Multimodal Large351

Language Models (MLLMs), such as KOSMOS-1352

(Huang et al., 2023), represents a major leap in353

emerging multimodal learning—including multi-354

modal dialogue, image captioning, visual question355

answering, and vision tasks. While our study ex-356

plores perceptual alignment in foundational lan-357

guage models, MLLMs’ ability to process multi-358

modal inputs offers a richer information landscape.359

Future research can now investigate the potential360

of MLLMs to enhance human-AI perceptual align-361

ment, exploring how these advanced models can362

enhance our understanding of multimodal human-363

AI interaction for everyday tasks, where AI prod-364

ucts and services are increasingly embedded into365

many devices, beyond choosing clothing.366

7 Ethics367

A total of 40 participants (30 female, 10 male; aged368

18-39, mean = 25.79, std = 4.12) were recruited for369

the in-person user study. None of the participants370

had any sensory or motor impairments that would371

affect their perception and handling of the textile372

samples. Participants had a diverse range of back- 373

grounds, including psychology students, computer 374

scientists, designers, artists, researchers, and uni- 375

versity lecturers. All participants were either native 376

English speakers or highly proficient in English. 377

All participants provided written informed consent 378

before participating in the study and were compen- 379

sated with a gift voucher for their participation in 380

a 30-minutes study. The study was approved by 381

the local University Research Ethics Committee 382

(Ethics number anonymous). 383
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