
Attention for Compositional Modularity

Oleksiy Ostapenko123 Pau Rodríguez3 Alexandre Lacoste3 Laurent Charlin145

1Mila - Quebec AI Institute, 2Université de Montréal, 3ServiceNow, 4HEC Montréal,
5Canada CIFAR AI Chair

Abstract

Modularity and compositionality are promising inductive biases for addressing
longstanding problems in machine learning such as better systematic generalization,
as well as better transfer and lower forgetting in the context of continual learning.
Here we study how attention-based module selection can help achieve composi-
tonal modularity – i.e. decomposition of tasks into meaningful sub-tasks which are
tackled by independent architectural entities that we call modules. These sub-tasks
must be reusable and the system should be able to learn them without additional
supervision. We design a simple experimental setup in which the model is trained
to solve mathematical equations with multiple math operations applied sequentially.
We study different attention-based module selection strategies, inspired by the
principles introduced in the recent literature. We evaluate the method’s ability to
learn modules that can recover the underling sub-tasks (operation) used for data
generation, as well as the ability to generalize compositionally. We find that mean-
ingful module selection (i.e. routing) is the key to compositional generalization.
Further, without access to the privileged information about which part of the input
should be used for module selection, the routing component performs poorly for
samples that are compositionally out of training distribution. We find that the
the main reason for this lies in the routing component, since many of the tested
methods perform well OOD if we report the performance of the best performing
path at test time. Additionally, we study the role of the number of primitives, the
number of training points and bottlenecks for modular specialization.

1 Introduction

Modularity and compositionality are appealing inductive biases for addressing several long-standing
problems of machine learning such as generalization under distribution shift, a.k.a out of distribution
(OOD) generalization [19, 7] and continual learning (CL) [6, 20, 17]. Given a set of modules the goal
is to find a decomposition of knowledge into these modules s.t. a new task can be solved efficiently
through recombination of modules (compositionality), addition of new, or/and fast adaptation of
existing modules.

Achieving compositionality presents a number of challenges. These include (a) decomposing tasks
into reusable modules. While related to sub-task discovery [14, 23], this has a promise of improving
sample complexity through positive transfer and improved OOD generalization [19]. (b) Routing
samples through a set of modules. The latter is especially challenging when the routing procedure
can be subject to forgetting as is the case continual learning. Additional challenges not addressed in
this work include e.g. pruning and addition of new modules to ensure enough capacity when new
tasks must be learned.

Different forms of attention have been proven useful for achieving meaningful modularity in the
mixture-of-experts (MoE) setup [21, 7, 10, 9, 22]. Here we are interested in compositional modularity
— the training tasks should be decomposed into meaningful and reusable sub-tasks that can be executed
in parallel or sequentially. In our instantiation each such subtask is assigned to an architectural entity

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

M1 M2 M3 …

X1

X2

X3

X4

Functional Output

…

Query
Key

…

OOD score

0.12

+

-0.48

sin

sin(0.12+(0.48))

Input e.g.

signature

(a) Cross Attention

M1 M2 M3 …

X1

X2

X3

X4

Functional Output

…

Query
Key

…

OOD score

Layer 1

Layer 2

(b) Structural Oracle

X1

X2

X3

X4

…

Query

KeyE
ncoder /

C
oncatenation

M1 M2 M3 ……

…

(c) Attention with encoder

Layer signatures

X1

X2

X3

X4

…

E
ncoder /

C
oncatenation

M1 M2 M3 ……

…

…
L=1
L=2

Query

Key

(d) Attn. + encoder + Sbtl.

Figure 1: Different attention-based module selection mechanisms. (a) Cross attention where each
input is encoded separately into a key which is matched to module signatures encoded into queries.
(b) Structural oracle that is given the privileged information about which variable is relevant for
module selection at each layer. (c) Module selection mechanism where inputs are first pre-processed
using a learnable encoder, or a concatenation function. (d) A cross-attention like selection bottleneck
is added to select one variable that will be used for matching with modules.

— a module, and the network is dynamically constructed for each input sample through a sequence
of module selection & application steps. In contrast to the MoE, where the supervision is provided
after each module’s application, in compositional modularity the supervision is provided after the
final selection step — i.e. after the desired depth of the modular network is achieved. While MoE
is only limited to parallel sub-task execution, the main advantage of compositional modularity is
that it can decompose a task into sub-tasks, where the sub-tasks are executed both sequentially or in
parallel. For example, given a task of solving additions and subtractions (e.g. 4 + 5− 3 = 6), a MoE
would learn a single module (i.e. expert) to execute the whole expression, while a compositional
system should be able to learn a module specialized on "+" and a module specialized on "-" executing
both sub-tasks sequentially. This can allow such system to achieve better compositional OOD [4, 22]
generalization and efficient adaptation to new tasks in CL [25].

The main question we study here is how compositional modularity can be achieved. To this end we
first design an experimental setup based on math equations. This naturally compositional domain
provides the possibility to generate simple compositional problems for fast experimentation. We study
a wide range of key-value attention [3] based module selection mechanisms in the compositional
modularity setting. We find that only the structural oracle baseline — a baseline which is given the
privileged information about which part of the input should be used for module selection, can reliably
achieve modular specialization and reduce the compositional OOD loss. Further, we find that the
main reason for the poor OOD performance lies in the pure quality of the routing component, which
we demonstrate through the excellent OOD performance of modular baselines in the test-time oracle
setting — a setting where we report the OOD loss of the best module selection path after checking
all possible paths. Finally, we discuss the role of task diversity, number of samples per primitive
operation, as well as the role of bottlenecks for preventing modular collapse.

2 Models

Here we describe the modular systems used in this work. Similarly to neural production systems
(NPS) [9], we aim to learn a set of modules, where each module learns a simple function that can be
applied to the input variables. In contrast to NPS and similarly to [22], we want the modules to form
a chain (modules are applied in superposition to each other), where the supervision is only applied at
the end of the chain.

Input data. Similarly to [9], we assume that the input variables represent some meaningful entities of
the real world. In general terms, these entities can correspond to, e.g., objects in vision, words in NLP,
or even to other high level variables. The task of extracting such variables from high-dimensional
input data is considered external to the system that we study here and can be accomplished by any
method built for extracting object-centric representations [8, 15, 16]. We assume that input data is
given as a set of N variables {X1, X2, . . . XN}, hence a sample x = {x1, x2, . . . , xN} consists of
values of each of the N underlying variables, s.t. each xn ∈ Rd is a d-dimensional vector.

2

Module selection. We test several approaches for module selection. These approaches share the
following module selection principle, that differ in detail. We consider a set of M modules, each
module is equipped with a signature vector sm ∈ Rr. Additionally, we consider a modular system
with L layers (we use l to index these layers). At each layer the system must select a module to
apply to the input of the current layer l conditioned on this input. The pool of possible modules is
shared across layers. Module selection is performed in the following 2 steps using key-value attention
mechanism:

km = W
(k)
l sm, q = W

(q)
l Eηl

(x) (1)

pl(m|x) ∝ ek
T
mq, (2)

where W
(k)
l ∈ Rp×r, W (q)

l ∈ Rp×d′
are learnable parameters and pl(m|·) is the probability of

the mth module at lth layer. E is an encoder that is optionally applied to the input x. As detailed
next, encoder can be a learnable function such as neural net, in which case it is parameterized with
ηl. Encoder can also represent a simple concatenation operation. The encoder projects x into d′

dimensional space. We use θ
(st)
m := (W (k),W (q), ηm) to refer to structural parameters. Next, we

describe four variations of the above mechanism used in this paper.

(1) Cross-attention: in this case, the projector E is an identity function, i.e x = E(x). Additionally,
we encode each xn separately with a shared set of weights W (q)

l , which gives a separate query qn per
input variable. As visualized in Fig. 1a), we use dot-product to calculate the attention score matrix
R ∈ RN×M , s.t. Rn,m = kTmqn.

(2) Concatenation: the projector E performs a concatenation operation producing a single vector
x′ = E(x) = concat(x) ∈ Rd′

(d′ = dn here). Queries are then produced using Eq. 1. The score
matrix R ∈ R1×M , s.t. R1,m = kTmq (Fig. 1c).

(3) Transf. Encoder: in this case E is an encoder neural net parameterized with ηl, whose goal
is to summarize information present in all variables in x into a single vector x′ = E(x; ηm) ∈
R1xd′

, where d′ < dn (Fig. 1c). In our experiments, E is instantiated with a transformer encoder
network [24]. The score matrix R ∈ R1×M , s.t. R1,m = kTmq.

(4) Structural Oracle: the model has privileged information about which of the N input variables is
relevant for module selection at each layer. E.g. for the math expression (0.4 + 0.01) ∗ 0.4, instead
of having to learn which input variable to use for module selection at each layer (one of the real
numbers or one of the two operations), this baseline will use operation “+” for selecting module at
layer l = 0 and “∗” at layer l = 1 (Fig. 1b).

We use the straight-through Gumbel softmax trick [13] to perform differential hard-module selection
over the score matrix R. In our experiments we always perform hard selection at test time. At train
time, we additionaly consider a baseline (“+all path”) that, instead of a hard selection, checks every
possible path in the modular system and weights the training loss of each path with it’s probability.
A path probability can be calculated as an exponential of the sum of the log-probabilities of each
module in a given path, where module’s activation probability is calculated as in Eq. 1.

Module application and functional bottleneck. The selected module m∗ receives all N input
variables. Similarly to NPS [9] we instantiate another bottleneck for the number of variables that
can be processed by the functional component of each module – the functional bottleneck. More
specifically, we only allow two variables to be processed by the module’s functional parameters. This
design decision is motivated by the math equations domain as detailed in Sec. 3. This bottleneck can
be learned using another attention mechanism (query coming from each variable and key coming
from the selected module’s signature). As we demonstrate in Sec. 4.2, the functional bottleneck is
essential to prevent module collapse.

Compositional modular systems vs. MoE. In our experiments we consider compositional modular
systems. Its main difference to MoE is that the number of module applications L is greater than
1, whereas in MoE L = 1. Here, we refer to a single application of modules as a modular layers,
where at each layer a module is selected from the same pool of modules. Vanilla MoE system has the
disadvantage of not being able to compositionally generalize to unseen combinations of attributes.

Parameter sharing. Unless stated otherwise, modules at each layer share structural parameters W (q)
l

as well as ηl (if applicable). Motivated by the CL use case, where less parameter sharing can reduce

3

forgetting, we ablate the role of sharing of W (k)
l in Sec. 4. Note, not sharing W

(k)
l between modules

is essentially equivalent to instantiating sm ∈ Rp and learning it directly. Similarly to NPS, the inputs
are pre-processed by a simple MLP encoder (before application of each of the modular layers), which
is also shared across all modules and layers.

Training. We derive our training objective by treating the optimal module selection path as a hidden
variable denoted as z. We consider a single path through the modular system as a sequence of L
consecutive module selection and application steps. The number of possible paths is ML. We first
derive a lower bound for the log-likelihood as (cf. App. A for details):

log p(y|x) ≥ Eq

(
log

p(y|x, y)
q(z)

)
= Eq log p(y|x, z) +Hq, (3)

where Hq denotes the entropy of the distribution over paths q(z). Our training objective is to find
parameters θ∗ = {θ(st), θ(f)}∗ that maximize the right-hand side in the Eq. 4, that is:

θ∗ = argmax
θ

1

|Dtr|
∑

x,y∈Dtr

(∑
z

q(z; θ(st)) log p(y|x, z; θ(f), θ(st))−
∑
z

q(z; θ(st)) log q(z; θ(st))
)
,

(4)

where Dtr is the training dataset. By default, in our experiments we ignore the entropy term and
approximate the expected log-likelihood with a single sample of z obtained by sampling modules
at each layer from the Gumbel-softmax distribution parameterized with score matrix R. We also
consider baselines where loss is computed exactly by checking every possible path for a given pool of
modules. This is not a scalable solution in a general case, as the number of paths grows as O(ML).

3 Data generation

Math equation tasks. Here we consider the input data to be comprised of a set of N at-
tributes X1...Nx

paired with labels Y . Both are sampled from a joint distribution p(Y,X1...N) =
p(Y |X1...Nx

)pt(X1...Nx
). We instantiate this setting in the math equations domain similar to [9, 19]

with N = 5. We select this domain due to it’s simplicity, which enables fast experimentation, as well
as the compositional nature of this domain.

Specifically, X1, X2 ∈ R[−1,1] follow a uniform distribution U([−1, 1]) over the domain of real
numbers between −1 and 1. Variables X3,4, represent the primitive math operations to be performed
on the first two variables, X5 is a constant. Hence, pX3,4

= U(S), where S is a set of all possible
operators (e.g."+", "-", "sin" etc., the list of operations is in App. B). The dependant variable y is
generated by applying sampled operations x3 and x4 to the inputs x1 and x2 sequentially, i.e. the
result of one operation becomes the input to the next: in the reverse polish notation “x1 x2 x3 x1 x4”
(e.g. ".1 .04 + .1 *" evaluates to .014).

In this setup, given L = 2, at each step the modular system has to learn to select modules given
all the samples of all five input variables X1...N . The information about which module to select is
encoded in X3 for the first layer and in X4 for the second. The privileged information about which
variable to use for selection (X3 or X4) is only provided to the structural oracle baseline. The goal is
to minimize the MSE loss by learning the mechanism p(Y |X1...Nx

).

Data generation. The training data Dtr is generated by considering all possible combinations of
length L = 2 of |S| math operations, i.e. |S|L combinations. In the follwoing, we refer to one such
combination as a task, and an underlying math operations as primitive, sub-task or mechanisms. For
each sample we first randomly select 1 task out of |S|L tasks that can be composed with L = 2
operations encoded in input variables X3 and X4. To generate y, we first sample x1, x2 ∼ U([−1, 1])
and x3, x4 ∼ U(S). We then apply the operations x3 and x4 as described above. We sample the total
of (|S|L ∗C)/(|S| ∗L)) points, where C defines the expected number of training points to be seen by
the algorithm per operation1. Out of |S|L tasks, we select |S| tasks for the compositional OOD test set
(i.e. one task per primitive operation), which are excluded from the training data. In our experiments
we use C ∈ [150, 500, 1000, 5000, 10000, 20000] for the training dataset. We use C = 200 for the
in-distribution (ID) test set and a larger C = 2000 for the OOD test set.

1In this process we see an expected number of (|S| ∗ L)/|S|L operations per task, resulting in the expected
number of samples per operation indeed to be C = [(|S| ∗ L)/|S|L] ∗ [(|S|L ∗ C)/(|S| ∗ L))].

4

4 Experiments

In this section we investigate how different module selection approaches can achieve compositionality.
We first present the baselines and metrics we use.

Baselines. We consider the following baselines. Cross-Attention (X-Attn.) baseline separately
encodes each input variable and performs cross-attention operation to obtain an N × M matrix
of scores, it selects the module with the highest score (Fig. 1a). Structural Oracle (Str.Oracle):
similar to the X-Attn. baselines, but it is given the information about which variable to use for module
selection at each step (i.e. x3 at layer 1 and x4 at layer 2). Transformer Encoder (Trans.): processes
the input variables with a transformer encoder, producing one encoding vector that is then matched
with the modules’ signatures using key-value attention. This encoding incorporates information
about all input variables but can become selective throughout the learning process.2 Concatenation
+ Attention (C-Attn) baseline simply concatenates all the input variables and performs key-value
matching with the resulted concatenated vector. Functional Oracle: only learns the structural
parameters of the modules and uses a set of modules with a hard-coded ability to perform perfectly
one of the mechanisms (math operations) used for data generation. For all modular architectures
we use modules with functional component being an MLP of width 300, depth 2, and a ReLU [2]
activation. Unless stated otherwise, we fix the number of modules to 30 in all cases independently
from the number of primitives |S|. We use two modular layers, i.e. L = 2, which is equal to the
number of primitive operations per sample in our experiments. Monolithic baseline represents an
MLP with 2 layers and the width of 9000 (30 times the width of each module in modular case). This
baselines receives as input a concatenation of all input variables (i.e. no functional bottleneck).

We ablate the importance of sharing W
(k)
L between modules at a layer in Figs. 8a and 8d and come

to the conclusion that sharing these weights does not result in performance improvement, and in
many cases it actually results in performance decrease. For this reason, in our experiments modular
baselines do not share W

(k)
l between modules in a layer unless stated otherwise.

By default, modular baselines described above only apply the most likely module at each layer.
Hence, at test time the most likely module corresponds to the module with the highest score in R; at
training time, the module index is samples from the Gumbel-softmax distribution parameterized with
the score matrix R. Additionally, we consider a version of the modular baselines that optimizes the
objective in Eq. 4 exactly. Here, the final loss (MSE) is calculated by weighting the losses obtained
with each possible module combination (i.e. path) with the probability of this particular path. The
probability of each path is calculated as an exponential of the sum of the log probabilities of each
module selected in a given path. These baselines are marked with +all.pth..

We optionally add another hard attention layer to select which input variable to use as input to
the module selection mechanism (as illustrated in Fig. 1d). This additional selection bottleneck is
signaled with +Sbtl.. Here, instead of passing all variables to the selection mechanism at each layer,
we only pass a single variable selected through matching it with layer signatures using cross-attention.
We include this baseline as it results in slight performance improvements in some cases. The intuition
is that in this way the model can easier learn the structure of the underlying math expressions – i.e.
x3 always encodes operations applied first and x4 always encodes the operations applied thereafter.

Metrics. We use the following metrics in this section: (1) ID loss – in-distribution test loss; (2)
Compositional OOD loss (OOD loss) — loss on the compositional OOD test set containing novel
combinations of operations not seen during training; (3) Specialization score – consider an activation
matrix AR×M , s.t. Ai,j is proportional to the probability that module j activates if the input contains
operation i. We define specialization score as inverse average normalized entropy of each the rows of
A, i.e. 1 − 1

R

∑R
i=1

1
log(M)H(Ai,:). A specialization score of 1 signifies that the module selection

mechanism could assign each primitive operation in the data generative process to a single module.
This module, however, can be potentially the same module for all primitives. To control for this, we
consider the collapse score. (4) Collapse score: consider a⃗ =

∑R
i=1 Ai,: — a vector representing

unnormalized module activation distribution. We define collapse as the normalized entropy of a⃗, i.e.
1

log(M)H(⃗a). Lower collapse score means that many operations activate the same modules. An ideal

2Only this selection mechanism worked in MoE context, cf. Fig. 6, where an expert must be selected based
on a combination of x3 and x4, selecting experts based on only of the two would result in higher training error.

5

0.0

0.2

0.4

0.6

O
O

D
 lo

ss

Str. Oracle C-Atn. Transf. + Sbtl. X-Atn. + Sbtl.

0.00

0.03

0.05

0.08

0.10

0.13

ID
 lo

ss

0.50

0.60

0.70

0.80

0.90

1.00

S
pe

ci
al

iz
at

io
n

(a) Functional Oracle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
O

D
 lo

ss

Str. Oracle + all.pth. C-Atn. + all.pth. Transf. + all.pth. + Sbtl. X-Atn. Monolithic

0.0

0.0

0.1

0.1

0.1

0.1

ID
 lo

ss

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
pe

ci
al

iz
at

io
n

(b) End-2-end training

Figure 2: (a) Functional Oracle, (b) End-2-end training. For both we show compositional OOD
test loss (↓), ID test loss (↓) and specialization (↑) for selected module selection strategies. We use
M = 30. Variation in (a) is due to 5 seeds, 4 different |S| ∈ [5, 7, 10, 15], C = 10000, in (b) – 5
seeds, |S| ∈ [5, 7, 10, 15], C ∈ [1000, 5000, 10000, 20000]. Detailed view in Fig. 8

system should have specialization and collapse scores equal to 1. We note that, as shown in Fig. 8(c),
none of the tested baseline severely suffers from module collapse (c.f. discussion in sec. 4.2).

4.1 Results

Functional Oracle setting. We first assess different module selection strategies in a functional oracle
setup. We present consolidated view of selection strategies in Fig. 2a. We observe that even in the
functional oracle setting only the structural oracle baseline can achieve perfect specialization, which
is also reflected in low comp. OOD loss. Second best is the “Trans. + Sbtl.” baseline which can
achieve reasonably low OOD loss on average as well as good specialization. This result demonstrates
that even if the knowledge about the sub-tasks is already perfectly encoded in the modules, learning
how to combine these sub-task modules to solve the global task is a difficult problem on its own.

0.000

0.005

0.010

0.015

0.020

O
O

D
 lo

ss

Str. Oracle
C-Atn. + all.pth.
Transf. + all.pth. + Sbtl.
X-Atn.

Figure 3: End-2-end training
of test-time oracle.

Only the structural oracle minimizes compositional OOD loss.
Results are shown for the end-2-end learning setting in Fig. 2b. This
is inline with [18], who use one-hot task descriptors identifying
which module to use for each task (our oracle only get information
about which variable to use for module selection, the latter is still
learned, and not told directly which module to use). The good perfor-
mance of Str. Oracle can be attributed ton the perfect specialization
as shown in Fig. 2b (right). The second best selection strategy is
X-Atn., which also achieves second best OOD loss. All modular
methods achieved OOD loss lower than that of the Monolithic base-
line, which proofs the utility of modular solutions. We consider the loss (↓) of the monolithic
baselines as an upper bound for good performance.

Poor OOD performance in end-2-end setting is due to sub-optimal module selection. To find
why modular methods fail to generalize compositionally OOD in the end-2-end regime we measure
the compositional OOD loss in the so-called test-time oracle regime. In this regime we check every
possible path in the modular network during the test time and report the minimal loss. This testing
strategy assumes the ground truth knowledge for the test set. In Fig. 3 we see that for all modular
solutions we can achieve very small loss in this regime. This suggests that functional components in
these models have learned meaningful information and that the reason for bad performance in the
non-oracle settings lies in the structural components responsible for routing. Given that good OOD
loss can be achieved purely through recombination of existing modules, this approach can be useful
for meta-learning and continual meta-learning settings like OSAKA [5].

Better performance of +all.pth. As expected, we observe in Fig. 8(a) that performing training in the
+ all.pth. regime, where each possible path is checked during each training step, results in better ID
for all methods (with exception of the Str. Oracle).

Bad specialization of Transf. baselines. We observe in Fig. 8(c), that good OOD performance gen-
erally goes along with high specialization score, c.f. X-Atn. and Str. Oracle baselines. Nevertheless,
there is a clear exception: Transf. + all.pth. baseline reaches OOD loss comparable to that of the
X-Atn. + all.pth. baseline, while the later one reaches specialization score double as high. In fact, we
observe that both Transf. + all.pth. and Transf. baselines tend to have very bad specialization while

6

0 5000 10000 15000 20000

C

0.0

0.2

0.4

O
O

D
 lo

ss

(a)

Str. Oracle X-Atn. Transf. + all.pth. + Sbtl. C-Atn. + all.pth. Transf. + all.pth. Monolithic

0 5000 10000 15000 20000

C

0.2

0.4

0.6

0.8

1.0

S
pe

ci
al

iz
at

io
n

(b)

4 6 8 10 12 14

| |

0.2

0.4

0.6

0.8

1.0

S
pe

ci
al

iz
at

io
n

(c)

4 6 8 10 12 14
| |

0

1

2

3

4

O
O

D
 lo

ss

(d)

5 7 10 15
| |

0.0

0.1

0.2

0.3

0.4

O
O

D
 lo

ss

(e)

0 5000 10000 15000 20000
C

0

1

2

O
O

D
 lo

ss

(f)

| |
3
5
7

10
15

Figure 4: The role of number of points per operation C and number of primitive operations |S|.For
ease of exposition, we reduced noise in the plots by using Grubbs’ [11] test to remove outlier runs
per application mode, C and |S|.

maintaining a high collapse score. After analysing the module activation patterns (c.f. examples
Fig. 9) of these methods, we observe that these two methods activate modules much less sparsely than
other methods making decision about which module to activate not only based on operations (vars
x3 and x4) but also based on the digits (x1 and x2). This can be attributed to the fact that module
selection is strongly over-parameterized for these baselines and misses any bottleneck. Hence, simply
adding a selection bottleneck (+Sbtl.) improves specialization considerably.

The role of the number of primitives |S| and training points per operation C. We now turn our
attention to the role of the number of primitives |S| and the number of training points per primitive C.
We start with two hypotheses: (1) Increasing the number of primitives results in better compositional
generalization ability of modular methods due to the increase in the number of tasks (i.e. number of
combinations in which each primitive is seen); (2) Increasing number of training points per task can
have a harmful effect on the compositional generalization ability. Intuitively, for large number of
samples per operation, the bias towards solutions with specialized and reusable modules is weak. This
is because enough training samples are given for achieving low training loss even when a separate
module per primitive per task (as opposed to only per primitive) is learned. On the other hand, when
the number of samples per primitive is limited, the number of training points may be not enough for
achieving low training loss with solution without sharing, and hence, sharing modules across tasks
can result in lower training loss and more bias towards learning reusable and sharing sub-tasks.

Regarding our first hypothesis, indeed in Fig. 4(d) we observe a reduction in the OOD loss as we
increase the number of primitives |S| from 3 to 5 consistently for all methods emphasizing the
importance of diversity of tasks for specialization and compositional generalization. Interestingly,
for |S| > 5 the effect of |S| is insignificant, and as we show in Fig. 4(e), OOD loss of some methods
actually rises as more primitives are introduced, with only Str. Oracle reliably performing well. This
can be attributed to the fact that increasing |S| also leads to more OOD tasks (unique combinations of
primitves) in the OOD test set, which makes the OOD problem harder. Furthermore, in Fig. 4(c) we
observe that increasing |S| can result in decrease in specialization score, a trend especially pronounced
for |S| between 10 and 15 (except Str. Oracle). Hence, disentangling sub-tasks into specialized
modules becomes harder when more sub-tasks are present in the underlying data.

We now turn our attention to the second hypothesis regarding the role of the number of training
samples per operation C. We make the following observations in Fig. 4. (a) First, even for the
monolithic architecture, that has no inductive bias favouring specialization and OOD generalization,
increasing C results in decreased OOD loss. This is inline with observations made in the context of
large scale training [12, 1], where good amount of generalization and transfer is achieved through
simply increasing the amount of training data3. (b) For Str. Oracle and X-Atn. we observe in Fig. 4(b)

3In many of these works however, it is not clear whether generalization is really compositional/systematic
due to possibility of an overlap between the training and test set

7

that modular specialization improves as we increase C (this is against our hypothesis), which is
reflected in the tendency of decreasing OOD loss for larger C (Fig. 4(a)). For the C-Atn., Transf. +
all.pth. and Transf. + all.path. +Sbtl. baselines, that generally do not result in good specialization
and OOD loss, we observe an opposite trend: i.e. larger C leads to worse specialization, and only
for C-Atn. we observe the tendency to larger OOD loss with increased C (Fig. 4(a)). (c) In Fig. 4(f)
only for small |S| we observe the overall trend of growing IID loss with increased C (in line with
out hypothesis). This again emphasizes the point that if the data is not diverse enough (is the case
for |S| = 3), increasing C worsens the performance. Overall, from observation (b) and (c) we can
conclude that keeping C low does not result into enough bias towards specialized solution, hence
the main source of such bias must originate from the architectural/algorithm choice. On the other
hand, if the algorithm under consideration does not provide enough inductive biases (e.g. in form of
bottlenecks) towards specialized solution, increasing C indeed worsens the performance.

4.2 Ablation: the role of functional bottleneck

None Attention Oracle
0.9

1.0

co
lla

ps
e

Str.Oracle

None Attention Oracle
0

1

co
lla

ps
e

Trans.

None Attention Oracle
Func. bottleneck

0.5

1.0

co
lla

ps
e

X-Atn.

Figure 5: Ablation: func-
tional bottleneck.

Central to our modular methods to work is the functional module bot-
tleneck: each module can only take a subset of variables as input which
prevents collapse as we show next. In the experiments above, for the sake
of simplicity we manually selected only x1 and x2 (i.e. the input digits) as
inputs to the functional parts of the modules. Here we show that, similarly
to NPS [9], this bottleneck can also be learned. In Fig. 5 we plot the col-
lapse score (↑) for three application options (Str. Oracle, Transf., X-Attn).
We test three types of functional bottlenecks: the “oracle” knowledge that
only x1 and x2 should be selected as input to the functional component,
a learned attention bottleneck that selects which two variable to take as
input, and without the functional bottleneck at all. We find that across all
three application modes, both oracle and attention bottlenecks perform
similarly in terms of collapse. This shows that the functional bottleneck
can be instantiated with a learnable key-value attention. Removing this
bottleneck results in increasing collapse in all application modes.

5 Conclusion

In this work we studied different attention-based module selection ap-
proaches for compositional modularity. We have shown that information bottlenecks play an important
role for module specialization (functional bottleneck) and module selection (selection bottleneck).
The main take-away is that in our experiments only the structural oracle baseline could reliably
achieve good specialization, resulting in good compositional OOD performance. We also showed
that poor performance of non-oracle solutions can be attributed to attention-based routing failing
to correctly route samples at test time. These findings motivate application of these methods in
settings where a small number of samples are available at test time to adapt the routing mechanism,
or using self-supervised routing mechanisms that would facilitate test-time adaptation. Another
important research direction is identifying and implementing information bottlenecks necessary for
specialization in modular networks.

References
[1] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of large

scale pre-training. arXiv preprint arXiv:2110.02095, 2021.

[2] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and Aaron
Courville. Systematic generalization: What is required and can it be learned? In International Conference
on Learning Representations, 2018.

8

[5] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas Caccia, Issam
Laradji, Irina Rish, Alexande Lacoste, David Vazquez, et al. Online fast adaptation and knowledge
accumulation: a new approach to continual learning. arXiv preprint arXiv:2003.05856, 2020.

[6] Robert M French. Pseudo-recurrent connectionist networks: An approach to the’sensitivity-
stability’dilemma. Connection Science, 9(4):353–380, 1997.

[7] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

[8] Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Sergey Levine, Charles Blundell,
Yoshua Bengio, and Michael Mozer. Object files and schemata: Factorizing declarative and procedural
knowledge in dynamical systems. arXiv preprint arXiv:2006.16225, 2020.

[9] Anirudh Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas Heess,
Michael Mozer, and Yoshua Bengio. Neural production systems. CoRR, abs/2103.01937, 2021. URL
https://arxiv.org/abs/2103.01937.

[10] Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman,
Jonathan Binas, Charles Blundell, Michael Mozer, and Yoshua Bengio. Coordination among neural
modules through a shared global workspace. arXiv preprint arXiv:2103.01197, 2021.

[11] Frank E Grubbs. Procedures for detecting outlying observations in samples. Technometrics, 11(1):1–21,
1969.

[12] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer. arXiv
preprint arXiv:2102.01293, 2021.

[13] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[14] Cam Linke, Nadia M Ady, Martha White, Thomas Degris, and Adam White. Adapting behavior via
intrinsic reward: A survey and empirical study. Journal of Artificial Intelligence Research, 69:1287–1332,
2020.

[15] Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, and Olivier
Bachem. Disentangling factors of variation using few labels. arXiv preprint arXiv:1905.01258, 2019.

[16] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. Advances in
Neural Information Processing Systems, 33:11525–11538, 2020.

[17] Jorge A Mendez and Eric Eaton. Lifelong learning of compositional structures. arXiv preprint
arXiv:2007.07732, 2020.

[18] Jorge A Mendez, Marcel Hussing, Meghna Gummadi, and Eric Eaton. Composuite: A compositional
reinforcement learning benchmark. arXiv preprint arXiv:2207.04136, 2022.

[19] Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough? arXiv preprint
arXiv:2206.02713, 2022.

[20] Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning via local
module composition. Advances in Neural Information Processing Systems, 34, 2021.

[21] Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, and Bernhard Schölkopf. Learning
independent causal mechanisms. In International Conference on Machine Learning, pages 4036–4044.
PMLR, 2018.

[22] Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio, Francesco
Locatello, and Bernhard Schölkopf. Dynamic inference with neural interpreters. Advances in Neural
Information Processing Systems, 34, 2021.

[23] Richard S Sutton, Marlos C Machado, G Zacharias Holland, David Szepesvari Finbarr Timbers, Brian
Tanner, and Adam White. Reward-respecting subtasks for model-based reinforcement learning. arXiv
preprint arXiv:2202.03466, 2022.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[25] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors. arXiv preprint arXiv:2012.12631, 2020.

9

https://arxiv.org/abs/2103.01937

A Modular network training

log p(y|x) = log
∑
Z

p(y|x, z)p(z) =
∑
Z

log p(y|x, y) +
∑
Z

log p(z) =

=
∑
Z

log p(y|x, y)q(z)
q(z)

+
∑
Z

log p(z) =
∑
Z

log p(y|x, y)q(z)
q(z)

+
∑
Z

log p(z) =

= logEq

(p(y|x, y)
q(z)

)
+

∑
Z

log p(z) ≥ Eq

(
log

p(y|x, y)
q(z)

)
=

=
∑
Z

q(z) log p(y|x)− Eq log q(Z) = Eq log p(y|x) +H
(
q(z)

)
(5)

X-Attn. Transf. C-Attn.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
ID

 lo
ss

Figure 6: Ablation MOE on complex task selection: we apply MoE model with attention-based
selection mechanism to tasks, where the information relevant for module selection is encoded in
2 inputs (x3 and x4). As expected, Trans. Encoder baseline outperforms the rest, and X-Attn.
under-performs. This is because X-Atn. baseline encodes each variable separately for selection,
while correct selection decision can only be made based on two vars.

B Basic operations

We sue the following list of basic expressions for training and testing data generation. For some
input x and y: x+y, x-y, x*y, x*x, y*y, (x+y)*x, min(x,y), max(x,y), (x+y)-x, (x+(2*y)),
sin(x),sin(y), cos(x), cos(y),cos(x+y).

X-A
tn.

X-A
tn.

 +
Sbtl

.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ID
 lo

ss

X-Atn. (a)
shared key

0
1

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ID
 lo

ss

Trans. (b)
shared key

0
1

X-A
tn.

X-A
tn.

 +
Sbtl

.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

O
O

D
 lo

ss

X-Atn. (c)

shared key
0
1

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

O
O

D
 lo

ss

Trans. (d)
shared key

0
1

(a) Ablation shared W
(k)
l functional oracle

X-A
tn.

X-A
tn.

 +
Sbtl

.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ID
 lo

ss

X-Atn. (a)
shared key

0
1

Tra
ns

f. +
 S

btl
.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

Application option

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

ID
 lo

ss

Trans. (b)
shared key

0
1

X-A
tn.

X-A
tn.

 +
Sbtl

.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

O
O

D
 lo

ss

X-Atn. (c)
shared key

0
1

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

O
O

D
 lo

ss

Trans. (d)
shared key

0
1

(b) Ablation shared W
(k)
l end2end

Figure 7: Ablation sharing W
(k)
l in functional oracle (a) and end2end training settings (b). No sharing

tends to result in lower loss. C ∈ [1000, 5000, 10000, 20000], |S| ∈ [5, 7, 10, 15], 5 seeds.

10

X-A
tn.

 +
Sbtl

.

X-A
tn.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

ID
 lo

ss

Cross-Atn.

Str.
Orac

le

Str.
Orac

le
+ a

ll.p
th.

Application option

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Str. Oracle

C-A
tn.

C-A
tn.

 +
all

.pt
h.

Application option

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Concat.+Atn.

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Trnsf. Enc. + Atn.

Mon
oli

thi
c

Application option

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) Detailed view ID loss.

X-A
tn.

 +
Sbtl

.

X-A
tn.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
O

D
 lo

ss

Cross-Atn.

Str.
Orac

le

Str.
Orac

le
+ a

ll.p
th.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Str. Oracle

C-A
tn.

C-A
tn.

 +
all

.pt
h.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Concat.+Atn.

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Trnsf. Enc. + Atn.

Mon
oli

thi
c

Application option

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Monolithic

(b) Detailed view OOD loss.

X-A
tn.

 +
Sbtl

.

X-A
tn.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
pe

ci
al

iz
at

io
n

Cross-Atn.

Str.
Orac

le

Str.
Orac

le
+ a

ll.p
th.

Application option

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Str. Oracle

C-A
tn.

C-A
tn.

 +
all

.pt
h.

Application option

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Concat.+Atn.

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Trnsf. Enc. + Atn.

(c) Detailed view specialization score.

X-A
tn.

 +
Sbtl

.

X-A
tn.

X-A
tn.

 +
all

.pt
h.

+ S
btl

.

X-A
tn.

 +
all

.pt
h.

Application option

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
ol

la
ps

e

Cross-Atn.

Str.
Orac

le

Str.
Orac

le
+ a

ll.p
th.

Application option

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Str. Oracle

C-A
tn.

C-A
tn.

 +
all

.pt
h.

Application option

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Concat.+Atn.

Tra
ns

f. +
 S

btl
.

Tra
ns

f.

Tra
ns

f. +
 al

l.p
th.

 +
Sbtl

.

Tra
ns

f. +
 al

l.p
th.

Application option

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Trnsf. Enc. + Atn.

(d) Detailed view collapse score.

Figure 8: Detailed results for ID (a) and OOD (b) loss for the end2end regime. C ∈
[1000, 5000, 10000, 20000], |S| ∈ [5, 7, 10, 15], 5 seeds.

11

(a) Trans. + all.pth. (end2end) (b) X-Atn. (end2end)

Figure 9: We plot test-time module activation patterns for selected runs and a subset of 10 tasks for
Trans. + all.pth. (a) and X-Atn(b) methods. This runs use |S| = 10. Both runs result in rather high
collapse score (↑), ∼ .91 in (a) and ∼ .98 in (b), meaning that the system does not collapse to using
the same modules for all operations. On the other hand, (a) suffers from low specialization score,
∼ .25 in (a) and ∼ .92 in (b).

12

	Introduction
	Models
	Data generation
	Experiments
	Results
	Ablation: the role of functional bottleneck

	Conclusion
	Modular network training
	Basic operations

