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Abstract

Modern machine learning models are becoming increasingly expensive to train for real-
world image and text classification tasks, where massive web-scale data is collected in a
streaming fashion. To reduce the training cost, online batch selection techniques have been
developed to choose the most informative datapoints. However, these techniques can suffer
from poor worst-class generalization performance due to class imbalance and distributional
shifts. This work introduces REDUCR, a robust and efficient data downsampling method
that uses class priority reweighting. REDUCR reduces the training data while preserving
worst-class generalization performance. REDUCR assigns priority weights to datapoints
in a class-aware manner using an online learning algorithm. We demonstrate the data
efficiency and robust performance of REDUCR on vision and text classification tasks. On
web-scraped datasets with imbalanced class distributions, REDUCR achieves significant
test accuracy boosts for the worst-performing class (but also on average), surpassing state-
of-the-art methods by around 14%.

Keywords: Class Robustness, Online Batch Selection, Robust Machine Learning, Train-
ing Efficiency, Data Downsampling, Class Imbalance

1. Introduction

The abundance of data has had a profound impact on machine learning (ML), both posi-
tive and negative. On the one hand, it has enabled ML models to achieve unprecedented
performance on a wide range of tasks, such as image and text classification (Kuznetsova
et al., 2020; He et al., 2015; Brown et al., 2020; Tran et al., 2022; Anil et al., 2023). On the
other hand, training models on such large datasets can be computationally expensive and
time-consuming (Kaddour et al., 2023), making it unsustainable in some situations (Ben-
der et al., 2021; Patterson et al., 2021). Additionally, the high speed at which streaming
data is collected can make it infeasible to train on all of the data before deployment. To
tackle these issues, various methods have emerged to selectively choose training data, either
through pre-training data pruning (Sorscher et al., 2022; Bachem et al., 2017) or online
batch selection techniques (Loshchilov and Hutter, 2016; Mindermann et al., 2022), ulti-
mately reducing data requirements, improving training efficiency, and enabling ML models
to handle otherwise unmanageable large and complex datasets.

∗. Co-senior authors.
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Figure 1: REDUCR starts by initializing weights of classes. At each timestep t, the
model receives a batch of datapoints Bt. REDUCR computes the selection scores for
each datapoint based on its usefulness to the model and the class weights, and selects
new datapoints bt ⊂ Bt that achieve the highest selection scores. After the model takes
gradient steps on the selected datapoints, REDUCR adjusts the weights to reflect increased
priorities on underperforming classes.

In real-world settings, a variety of factors can affect the selection of datapoints, such as
noise (Xiao et al., 2015) and class-imbalance in the data (Van Horn et al., 2018; Philip and
Chan, 1998; Radivojac et al., 2004). Online selection methods can exacerbate these problems
by further reducing the number of datapoints from underrepresented classes, which can
degrade the performance of the model on those classes (Buda et al., 2018; Cui et al., 2019).
Moreover, distributional shift (Koh et al., 2021) between training and test time can lead to
increased generalization error if classes with poor generalization error are overrepresented
at test time.
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Figure 2: REDUCR significantly
improves worst-lass test accuracy on
Clothing1M.

In this work, we introduce REDUCR, which is a
new online batch selection method that is robust
to noise, imbalance, and distributional shifts.
REDUCR employs multiplicative weights up-
date to reweight and prioritize classes that are
performing poorly during online batch selection.
Figure 1 illustrates the intuition on how the
method works. REDUCR can effectively reduce
the training data and improve training efficiency
while preserving the worst-class generalization
performance of the model. For example, on the
Clothing1M dataset (Xiao et al., 2015), Figure 2
shows that, compared to the best performing online batch selection methods, REDUCR
achieves around a 15% boost in performance for the worst-class test accuracy.

2. Background

We consider a C-way classification task and denote a model as p(y | x, θ), where x denotes an
input, y ∈ [C] corresponds to a class, and the model is parameterized by θ. For any training
dataset D = {(xi, yi)}Ni=1 with N datapoints, we use a point estimate of θ to approximate
the posterior model as p(y | x,D) ≈ p(y | x, θ̂). This estimate θ̂ can be obtained by running
stochastic gradient descent (SGD) to optimize the cross-entropy loss over training dataset D.
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3. Problem Formulation

In this work, we introduce the robust data downsampling problem, where the goal is to select
a training dataset DT of size T such that worst-class generalisation error is optimized. We
write this objective in terms of a separate holdout dataset Dho = {(xho,i, yho,i)}Nho

i=1 , where

the holdout dataset with class c ∈ [C] is D
(c)
ho = {(x, y) ∈ Dho | y ≡ c} = {(x(c)ho,i, y

(c)
ho,i)}

N
(c)
ho

i=1 .
We can write the objective of robust data downsampling as

DT = argmax
D⊂D,|D|=T

min
c∈[C]

log p(y
(c)
ho | x

(c)
ho , D), (1)

where x
(c)
ho = [x

(c)
ho,i]

N
(c)
ho

i=1 and y
(c)
ho = [y

(c)
ho,i]

N
(c)
ho

i=1 correspond to the collections of inputs and

labels in the class-specific holdout dataset D
(c)
ho . Solving Equation (1) is known to be NP-

hard. Robust online batch selection approximates the robust data downsampling problem
by taking into account the practical limitations of data operation. Namely, we assume a
streaming setting where the model observes training data subset Bt ⊂ D at each timestep t.
The goal is to select a small batch bt ⊂ Bt to compute gradients for model training with SGD,
such that the model obtains top performance for the worst-class. A standard approach is to
design selection scoring functions that can be used to score the utility of the small batch bt.

4. REDUCR for Robust Online Batch Selection

We propose REDUCR, a robust and efficient data downsampling method using class priority
reweighting to solve the robust online batch selection problem in Section 3. The selection
scoring function of REDUCR relates the effect of training on a batch of candidate points b

to the generalization error of a specific class in the holdout dataset, log p(y
(c)
ho |x

(c)
ho ,Dt ∪ b).

4.1 Online Learning

To solve Equation (1) in an online manner, we propose to use class priority reweighting, a
variant of the multiplicative weight update method (Cesa-Bianchi and Lugosi, 2006). At
the beginning of training we initialise a weight vector w0 over a C dimensional simplex,
∆ = {w = [wc]

C
c=1 ∈ RC |

∑C
c=1wc = 1}. Each element of w0 is initialised to be w0,c = 1/C.

For each iteration t, small batch bt ⊂ Bt is chosen by maximising the weighted sum of C
different class-specific scoring functions,

bt = argmax
b⊂Bt

C∑
c=1

wt,c

(
log p(y

(c)
ho |x

(c)
ho ,Dt ∪ b)

)
, (2)

where Dt =
⋃t−1

τ=1 bτ , wt = [wt,c]
C
c=1 ∈ ∆, and

wt,c = wt−1,c

exp
(
−η log p(y

(c)
ho |x

(c)
ho ,Dt)

)
∑C

j=1 wt−1,j exp
(
−η log p(y

(j)
ho |x

(j)
ho ,Dt)

) . (3)

In the previous alternating procedure, class-weights are updated multiplicatively according
to how well they perform given the selected batch (they increase for poorly performing
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Algorithm 1 REDUCR for robust online batch selection

1: Input: data pool D, holdout data Dho =
⋃

c∈C D
(c)
ho , learning rate η ∈ (0,∞), small

batch size k, total timesteps T/k
2: Initialize class weights w1 =

1
C1C

3: Use Dho to train C amortised class irreducible loss models to obtain ϕc

4: for t ∈ [T/k] do
5: Receive batch Bt ⊂ D
6: bt = argmax

b⊂Bt:|b|=k

∑
(x,y)∈b

∑
c∈C wt,cmax (0,L[y|x, θt]− L[y|x, ϕc])

7: Compute the objective value for every class c ∈ C:

αc ←
∑

(x,y)∈bt

(
max(0,L[y|x, θt]− L[y|x, ϕc])− L[y(c)

ho |x
(c)
ho , θt]

)

8: Update class weights for every class c ∈ C: wt+1,c = wt,c
exp(−ηαc)∑

j∈C wt,j exp(−ηαj)

9: θt+1 ← SGD(θt, bt)
10: end for

classes and decrease otherwise). In Equation (3), η is a learning rate that adjusts how con-
centrated the probability mass is in the resulting distribution. Figure 1 shows an intuitive
illustration of how reweighting works in practice where classes that perform badly have low
data likelihoods and are thus upweighted by Equation (3). We next introduce how to com-

pute the likelihoods for class-specific holdout sets, i.e., p(y
(c)
ho |x

(c)
ho ,Dt ∪ b) in Equation (2).

4.2 Computing selection scores

Given the current dataset Dt at timestep t and additional datapoints b ⊂ Bt, we would like
to compute the likelihood of the holdout dataset that belongs to class c. For simplicity,
we consider the case where the small batch to be selected only includes a single datapoint,
i.e., b = {(x, y)}. We express the objective using the Bayesian perspective introduced in
Section 2, i.e.,

log p(y
(c)
ho | x

(c)
ho ,Dt ∪ {(x, y)}) ≈ L[y|x, θt]︸ ︷︷ ︸

model loss

− L[y|x, θ(c)t ]︸ ︷︷ ︸
class-irreducible loss

−L[y(c)
ho |x

(c)
ho , θt]︸ ︷︷ ︸

class-holdout loss

. (4)

Where we use L[y|x, θ] = − log p(y |x, θ) to denote the cross-entropy loss. The derivation of
Equation (4) can be found in Appendix A.2. Computing Equation (4) involves two models:
(1) the target model with parameters θt, which is trained on the cumulative training dataset
Dt =

⋃t−1
τ=1 bτ ; (2) a class-irreducible loss model (following the terminology from Minder-

mann et al. (2022)) with parameters θ
(c)
t , which is trained on Dt and class-specific holdout

data D(c)
ho . The target model is what we are interested in for the classification task. We name

the three terms in Equation (4) the model loss, class-irreducible loss and class-holdout loss,
respectively. The class-irreducible loss and the class-holdout loss both depend on the class c.
Computing Equation (4) is far more tractable than naively re-training a new model (i.e.,

log p(y
(c)
ho |x

(c)
ho ,Dt ∪ {(x, y)})) for each possible candidate point (x, y). The model loss and

the class-holdout loss only require evaluating the cross-entropy losses of some datapoints
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on the target model. More generaly, if batch b can include more than one point, we can
simply change the x and y to a list of inputs and labels instead. We further improve the

efficiency of REDUCR by approximating the class-irreducible loss model weights θ
(c)
t ≈ ϕc,

full details are given in Appendix A.3.

4.3 REDUCR as a practical algorithm

We use the selection objective in Equation (4) along with the amortised class-irreducible loss
model approximation (Appendix A.3) and the online algorithm (Section 4.1) to reweight
the worst performing class during training and select points that improve its performance.
See Algorithm 1 for a full description of the REDUCR method.

At each iteration, the top k points are selected (Line 6) according to the weighted sum of
Equation (4) for each class c ∈ C, thus efficiently approximating the combinatorial problem
from Equation (2). As the class-holdout loss does not depend on the selected points bt and
we sum over the classes, we can remove this term from the weighted sum of the selection
scores and only apply it when updating the weights wt (in Line 7 and 8). We calculate
the average class-holdout loss to remove any dependence of the term upon the size of the
classes in the holdout dataset. We find that clipping the excess loss improves the stability
of the algorithm in practice. We test this heuristic empirically in Appendix C.5 and provide
an intuitive explanation for why this is the case in Appendix C.5.1.

5. Experiments

In this section, we present empirical results to showcase the performance of REDUCR on
large-scale vision and text classification tasks.

Datasets. We train and test REDUCR on image and text datasets. We use CIFAR10
(Krizhevsky et al., 2012), CINIC10 (Darlow et al., 2018), Clothing1M (Xiao et al., 2015),
the Multi-Genre Natural Language Interface (MNLI), and Quora Question Pairs (QQP)
from the GLUE NLP benchmark (Wang et al., 2019). We simulate the streaming setting
by randomly sampling batch Bt from dataset D at each timestep.

Models. For the experiments on image datasets (CIFAR10, CINIC10 and Clothing1M)
all models use a ResNet-18 model architecture (He et al., 2016). For the MNLI dataset we
use the bert-base-uncased (Devlin et al., 2019) model from HuggingFace (Wolf et al., 2020).

Baselines. We benchmark our method against the state-of-the-art RHO-Loss, Train
Loss and Uniform (Mindermann et al., 2022; Loshchilov and Hutter, 2016). For full
experiment details see Appendix B.

5.1 Key results and Conclusion
The worst-class and average test accuracy for REDUCR and the best baseline model are
shown in Table 1. Across all datasets, REDUCR outperforms the baselines in terms of the
worst-class accuracy and matches or even outperforms the average test accuracy of the next
best baseline within one standard deviation. This is also surprising because the primary
goal of REDUCR is not to optimize the overall average (over classes) performance.

REDUCR performs particularly strongly on the Clothing1M dataset: Table 1 shows RE-
DUCR improves the worst-class test accuracy by around 14% when compared to Train
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Dataset
Worst-Class Test Accuracy Average Test Accuracy
Best Baseline REDUCR Best Baseline REDUCR

CIFAR10 (10 runs) 78.80 ± 2.09 83.29 ± 0.84 90.00 ± 0.33 90.02 ± 0.44
CINIC10 (10 runs) 69.39 ± 3.56 75.30 ± 0.85 82.09 ± 0.30 81.68 ± 0.47
Clothing1M (5 runs) 40.37 ± 3.58 53.91 ± 2.42 71.07 ± 0.46 72.69 ± 0.42
MNLI (5 runs) 76.74 ± 0.93 79.45 ± 0.39 80.89 ± 0.31 80.28 ± 0.33
QQP (5 runs) 79.96 ± 2.34 86.61 ± 0.49 86.88 ± 0.31 86.99 ± 0.49

Table 1: The results are provided as percentages with ± 1 std. REDUCR outperforms the
next best baseline in terms of the worst-class test accuracy across all datasets. REDUCR
matches or outperforms the average test accuracy across all datasets despite not optimizing
the overall performance.
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Figure 3: REDUCR improves the average (left) and worst-class (right) test accuracy on
the Clothing1M dataset when compared with the RHO-Loss, Train Loss and Uniform
baselines.

Loss, the next best-performing baseline. Section 5.1 shows that REDUCR also achieves
this performance in a more data efficient manner than the comparable baselines, achieving
a mean worst-class test accuracy of 40% within the first 10k training steps. The Cloth-
ing1M dataset also sees a distribution shift between the training and test dataset. In the
test dataset, the worst performing class is much more prevalent than in the training dataset
and as such improvements to its performance impact the average test accuracy significantly.
Section 5.1 shows the impact of this distribution shift as the improved performance of the
model on the worst class results in an improved average test accuracy when compared to the
next best baseline, RHO-Loss. We present more detailed results and further experiments
in Appendix C. In summary, we identified the problem of class-robust data downsampling
and proposed a new method, REDUCR. Our experimental results indicate that REDUCR
significantly enhances data efficiency during training, achieving superior test accuracy for
the worst-performing class and frequently surpassing state-of-the-art methods in terms of
average test accuracy. REDUCR excels in setting where the available data is imbalanced
by prioritising the selection of points from underrepresented classes.
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Appendix A.

A.1 Online Batch Selection

The goal of data downsampling is to select a dataset DT ⊂ D of size T (≪ N) for train-
ing such that the generalisation error of the resulting model is minimised. We write this
objective in terms of a separate holdout dataset Dho = {(xho,i, yho,i)}Nho

i=1 as follows:

DT = argmax
D⊂D,|D|=T

log p(yho|xho, D), (5)

where the inputs and their labels are xho = [xi,ho]
Nho
i=1 and yho = [yi,ho]

Nho
i=1 , respectively.

Here, the likelihood of the holdout dataset is used as a proxy for the generalisation error.
The problem is computationally prohibitive due to its combinatorial nature. Moreover, for
a massive (or streaming) training dataset D, it is not computationally possible to load D
all at once and it is common to loop through the data by iteratively loading subsets.

Online batch selection is a practical streaming setup to approximate the data downsam-
pling problem, where at each timestep t, the model observes a training data subset Bt ⊂ D,
and the goal is to iteratively select a small batch bt ∈ Bt for the model to take gradient
steps. A standard solution to this problem is to design selection scoring functions that take
into account the labels of the data. The selection scoring function can then be used to score
the utility of the small batch bt, see Algorithm 2.

Reducible Holdout Loss (RHO-Loss) (Mindermann et al., 2022) is an online batch
selection method that uses the performance on a holdout dataset as the selection scores for
small batches. More precisely, for each timestep t, RHO-Loss selects

bt = argmax
b⊂Bt

log p(yho | xho,Dt ∪ b), (6)

where Dt =
⋃t−1

τ=1 bτ is the cumulative training data the model has encountered until itera-
tion t.

Algorithm 2.

Algorithm 2 Online batch selection

1: Input: data pool D, number of training steps T , stochastic gradient descent algorithm
SGD, a loss function L

2: for t = 1 to T do
3: Sample batch Bt randomly from D
4: bt = SelectBatch(Bt, θt)
5: L =

∑
(xi,yi)∈bt L[yi|xi, θt]

6: θt+1 = SGD(L, θt)
7: end for

A.2 Derivation of Selection Scoring Function

The robust setting motivates the development of novel selection scoring functions that con-
sider how each datapoint affects the generalization error on the worst-case class of inputs,
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rather than just the overall generalization error. We present the derivation for the RE-
DUCR selection rule as shown in Equation (4),

log p(y
(c)
ho |x

(c)
ho ,Dt ∪ {(x, y)}) = log

p(y|x,D(c)
ho ,Dt)p(y

(c)
ho |x(c)

ho ,x,Dt)

p(y|x,x(c)
ho ,Dt)

= log
p(y|x,D(c)

ho ,Dt)p(y
(c)
ho |x(c)

ho ,Dt)

p(y|x,Dt)

= − log p(y |x,Dt) + log p(y |x,Dt,D(c)
ho ) + log p(y

(c)
ho |x

(c)
ho ,Dt). (7)

Equation (7) follows from the application of the Bayes rule and the conditional independence

of x and x
(c)
ho with y

(c)
ho and y, respectively. The posterior terms in Equation (7) can be

approximated with point estimates of model parameters (see §2).
Finally we define the term excess loss as the difference of the model loss and class-irreducible
losses from Equation (4)(the first two terms in Equation (7)). The excess loss is the im-

provement in loss for point (x, y) by observing more data from class c (i.e., D(c)
ho ).

A.3 Class-Irreducible Loss Models

For each selected batch bt under the current selection rule in Equation (4), we need to update
C class-irreducible loss models to compute the class-irreducible losses. We propose to ap-
proximate these models using amortised class-irreducible loss models, which are trained for
each class at the beginning of REDUCR and do not need to be updated at future timesteps.

We interpret the class irreducible loss term as an expert model at predicting the label of
points from a specific class c due to the extra data from the holdout dataset this term has
available. To create an approximation of this expert model, we train the amortised class-
irreducible loss models using an adjusted loss function in which points with a label from
the class c are up-weighted by a parameter γ ∈ (0,+∞) (set in Section 5):

ϕc = argmin
ϕ

∑
(x,y)∈Dho

(1 + γ I[c ≡ y])L[y|x, ϕ]. (8)

Here we define I[·] as the indicator function. Equation (8) optimizes over the parameters of

the amortised class-irreducible loss model for class c, and obtain ϕc to approximate θ
(c)
t in

Equation (4), i.e., L[y|x, θ(c)t ] ≈ L[y|x, ϕc]. We detail the pseudo-code for training the class
irreducible loss model in Algorithm 3.

Algorithm 3 Class Reference Model Training

1: Input: holdout dataset Dho, number of training steps T , stochastic gradient descent
algorithm SGD, a loss function L, a specific class c

2: for t = 1 to T do
3: Bho ∼ Uniform(Dho)
4: L =

∑
(xi,yi)∈Bho

(1 + γI[c = y])L[yi|xi, ϕt]
5: ϕt+1 = SGD(L, ϕt)
6: end for
7: return Class-irreducible loss model parameters ϕT
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A.4 The Effect of the Class-Holdout Loss on the Selection of Points

The class-holdout loss only affects the selection of points at each iteration t through the
selection of the weights wt. As the term does not depend upon the candidate point (x, y) ∈
Bt and the weights are normalised∑
c∈C

wt,c log p(y
(c)
ho |x

(c)
ho ,Dt∪({x, y})) = L[y|x, θt]−

∑
c∈C

wt,c(L[y|x, θ(c)t ])−
∑
c∈C

wt,c(L[y(c)
ho |x

(c)
ho , θt]),

(9)
it is simply an added constant in the argmax. Likewise, as the model loss does not depend
upon the class c and the weights wt are normalised the model loss is unchanged. For this
reason we simplify the notation of Algorithm 1 by removing the class-holdout loss term
from the argmax selection of points.

A.5 REDUCRs Intuition

When comparing REDUCR to other online batch selection methods, we observe distinct
batch selection patterns. When the dataset is class-imbalanced, the underrepresented classes
tend to perform worse because of the lack of training data from those classes. RHO-Loss
may struggle to select points from the underrepresented classes as they have less effect
on the loss of the holdout dataset. Selection rules that select points with high training
loss (Loshchilov and Hutter, 2016; Kawaguchi and Lu, 2020; Jiang et al., 2019) might
select points from the underrepresented classes but have no reference model to determine
which of these points are learnable given more data and thus noisy or task-irrelevant points
may be selected. In contrast, REDUCR addresses both of these issues by identifying
underrepresented classes and using the class-irreducible loss model to help to determine
which points from these classes should be selected.
Even when the dataset is not imbalanced, certain classes might be difficult to learn; for
example, due to noise sources in the data collection processes. Via Equation (3), REDUCR
is able to re-weight the selection scores such that points that are harder to learn from
worse-performing classes are selected over points that are easier to learn from classes that
are already performing well. This is in contrast to RHO-Loss which will always select
points that are easier to learn. We empirically demonstrate this on class balanced datasets
in Section 5.

Appendix B. Experiment Details

We provide the full code base anonymised for review purposes at:
https://anonymous.4open.science/r/REDUCR-24D3.
Each dataset is split into a labelled training, validation and test dataset, the validation
dataset is used to train the class-irreducible loss models and evaluate the class-holdout loss
during training. All experiments are run multiple times and the mean and standard de-
viation across runs calculated. Unless stated otherwise at each batch selection step 10%
of batch Bt is selected as the small batch bt, we set η = 1e − 4, and γ = 9 is used when
training each of the amortised class-irreducible loss models. We study the impact of γ and
η on REDUCR further in Appendix C.7. We now provide an overview of how each dataset
is processed, the models used and more details on the baselines used.
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CIFAR10 used half the training dataset (25k points) as a holdout validation dataset for
training the amortised class-irreducible loss models and calculating the class-holdout loss
during the robust online batch selection. We used the remaining 25k points as a training
dataset and the provided test dataset (10k) for testing.

CINIC10 used the provided validation dataset for both the class holdout loss and amor-
tised class irreducible loss models.

Clothing1M. The dataset consists of 1 million images labelled automatically using the
keywords in its surrounding text. The dataset consists of 72k ’clean’ images whose labels
have been hand checked, 50k, 13k and 9k are respectively sorted into a clean training,
validation, and test sub-dataset. To train the amortised class irreducible loss models we
use 100k points randomly sampled from the union of the validation, clean and noisy train-
ing datasets. We calculate the class-holdout loss term and validation performance during
training using the clean validation dataset.

MNLI. The dataset Williams et al. (2018) consists of 412k labeled sentence pairs; similarly
to Sagawa et al. (2020) we split these sentence pairs into a train (206k), validation (164k),
and labelled test (41k) dataset.

QQP. The dataset consists of 431k labeled sentence pairs; we remove points from class 1
to further imbalance the dataset resulting in 22% of the dataset labelled class 1. We split
the remaining points into a train (148k), validation (67k), and labelled test (40k) dataset.
We do not adjust the balance of the test dataset.

Models The ResNet-18 model used for the Clothing1M experiments is the pretrained model
available via the Torchvision (Marcel and Rodriguez, 2010) model library. For the CIFAR10
and CINIC10 experiments we use the adapted ResNet-18 architecture detailed in Minder-
mann et al. (2022) Appendix B. The networks are optimised with AdamW (Loshchilov and
Hutter, 2019) and the default Pytorch hyperparameters are used for all methods except
CINIC10 for which the weight decay is set to a value of 0.1.

Train Loss baseline is taken from Loshchilov and Hutter (2016) where points from the
large batch Bt are sampled with probability

pi ∝
1

exp(log(s)/|Bt|)i
. (10)

Here pi is the point with the ith highest training loss in the large batch. We set the selection
pressure parameter se = 100 and do not vary this during training as per the Experiments
in Section 6. of Loshchilov and Hutter (2016).

Uniform baseline is taken from Mindermann et al. (2022). At iteration t, points are
sampled at random from Bt to create the small training batch bt.

Compute. All models were trained on NVIDIA Tesla T4 GPUs.

Data Augmentation was applied to the training dataset during online batch selection
and validation dataset during the training of the amortised class-irreducible loss model. We
apply a random crop and random flip to the images.
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Appendix C. Additional Experimental Results

C.1 Full Results

The full comparison of REDUCR against the other baseline methods is presented in tables
Table 2 and Table 3.

Dataset
Worst-Class Test Accuracy (%) ±1 std

Uniform Train Loss RHO-Loss REDUCR

CIFAR10 (10 runs) 75.01 ± 1.37 76.1 ± 2.31 78.80 ± 2.09 83.29 ± 0.84
CINIC10 (10 runs) 64.70 ± 2.45 64.83 ± 4.75 69.39 ± 3.56 75.30 ± 0.85
Clothing1M (5 runs) 39.23 ± 5.41 40.37 ± 3.58 27.77 ± 10.16 53.91 ± 2.42
MNLI (5 runs) 74.70 ± 1.26 74.56 ± 1.44 76.74 ± 0.93 79.45 ± 0.39
QQP (5 runs) 73.21 ± 2.04 79.96 ± 2.34 78.21 ± 1.95 86.61 ± 0.49

Table 2: REDUCR outperforms RHO-LOSS (the best overall baseline) in terms of the
worst-class test accuracy on Clothing1M, CINIC10 and CIFAR10 by at least 5-26%. On
MNLI, REDUCR matches the performance of RHO-LOSS. Across all baselines, REDUCR
gains about 15% more accuracy on the noisy and imbalanced Clothing1M dataset as shown
in Figure 2.

Dataset
Average Test Accuracy (%) ±1 std

Uniform Train Loss RHO-Loss REDUCR

CIFAR10 (10 runs) 85.09 ± 0.52 88.86 ± 0.22 90.00 ± 0.33 90.02 ± 0.44
CINIC10 (10 runs) 79.51 ± 0.30 79.25 ± 0.33 82.09 ± 0.30 81.68 ± 0.47
Clothing1M (5 runs) 69.60 ± 0.85 69.63 ± 0.30 71.07 ± 0.46 72.69 ± 0.42
MNLI (5 runs) 79.19 ± 0.53 76.85 ± 0.14 80.89 ± 0.31 80.28 ± 0.33
QQP (5 runs) 85.05 ± 0.43 86.30 ± 0.41 86.88 ± 0.31 86.99 ± 0.49

Table 3: REDUCRmatches or outperforms the average test accuracy of the best competing
baseline across all datasets. Note that optimizing the average test accuracy is not the
objective of REDUCR. These results, together with Table 2, demonstrate the significant
advantage of REDUCR to improve the worst-class accuracy while maintaining the strong
average-case performance.

C.2 Results with worst-class checkpointing

We present results when the Train Loss and RHO-Loss worst-class validation accuracy
are used to checkpoint the model during training. REDUCR still outperforms or matches
the best baseline performance across all dataset.
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Dataset
Worst-Class Test Accuracy (%) ±1 std

Uniform Train Loss RHO-Loss REDUCR

CIFAR10 (10 runs) 75.01 ± 1.37 79.32 ± 1.35 81.23 ± 1.18 83.29 ± 0.84
CINIC10 (10 runs) 70.86 ± 1.23 68.89 ± 0. 86 73.44 ± 1.16 75.30 ± 0.85
Clothing1M (5 runs) 39.23 ± 5.41 49.02 ± 2.32 32.19 ± 9.83 53.91 ± 2.42
MNLI (5 runs) 76.88 ± 1.21 75.75 ± 0.56 78.04 ± 1.73 79.45 ± 0.39
QQP (5 runs) 84.50 ± 0.56 85.49 ± 1.32 82.60 ± 1.12 86.61 ± 0.49

Table 4: Worst-class test accuracy, when the RHO-Loss and Train Loss baselines are
checkpointed using their worst-class validation error during training.

Dataset
Average Test Accuracy (%) ±1 std

Uniform Train Loss RHO-Loss REDUCR

CIFAR10 (10 runs) 85.09 ± 0.52 87.74 ± 0.50 89.43 ± 0.57 90.02 ± 0.44
CINIC10 (10 runs) 79.57 ± 0.75 78.21 ± 0.57 81.28 ± 0.54 81.68 ± 0.47
Clothing1M (5 runs) 69.60 ± 0.85 69.46 ± 0.43 70.63 ± 0.87 72.69 ± 0.42
MNLI (5 runs) 78.85 ± 0.38 78.50 ± 0.33 80.50 ± 0.45 80.28 ± 0.33
QQP (5 runs) 85.23 ± 0.36 86.24 ± 0.26 86.75 ± 0.37 86.99 ± 0.49

Table 5: Average test accuracy, when the RHO-Loss and Train Loss baselines are check-
pointed using their worst-class validation error during training.

C.3 Clothing1M Training Weights

The Clothing1M dataset is imbalanced with respect to class 4. Figure 4 shows that RE-
DUCR is able to consistently identify and weight the underrepresented class across model
runs.
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Figure 4: Clothing1M class weights
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Figure 5: Results on worst-class test accuracy for artificially imbalancing (1) class 3 and (b)
class 5 on CIFAR10, with 1%, 2.5%, 10.0% percent imbalances (percentage of training data
that belong to the imbalanced class). REDUCR significantly reduces the deterioration in
performance, showing that target models trained using our method are more robust to class
imbalance than models trained using the RHO-Loss and Uniform baselines.

C.4 Imbalanced Datasets

In this section, we investigate the performance of models trained using REDUCR on imbal-
anced datasets. We artificially imbalance the CIFAR10 dataset such that a datapoint of the
imbalanced class is sampled with probability p ∈ (0, 1/C] (referred to as the percent imbal-
ance) and datapoints from the remaining classes are sampled with probability (1−p)/(C−1)
during model training. We only artificially imbalance the training and validation sets and
not the test set. We conduct experiments with 1.0%, 2.5% and 10.0% percent imbalances
on classes 3 and 5. Note that a percent imbalance of 10.0% is equivalent to the original
(balanced) CIFAR10 training and validation sets. We repeat the experiments 10 times and
plot the median values in Figure 5, and the error bars denote the best accuracy and the
worst across 10 runs.

We find that the performance of models trained using REDUCR deteriorates less than
those trained with the RHO-Loss or Uniform baselines as the percent imbalance of a
particular class decreases (see Figure 5). For example, when class 3 is imbalanced, in the
most imbalanced case (1.0%) the median performance of REDUCR outperforms that of
RHO-Loss run by 14%. This demonstrates the effectiveness of REDUCR in prioritising
the selection of data points from underrepresented classes.

C.5 Ablation Studies

To further motivate the selection rule in Equation (4), we conduct a series of ablation stud-
ies to show that all the terms are necessary for robust online batch selection. Figure 6a
shows the performance of REDUCR on the CINIC10 dataset when the model loss, amor-
tised class-irreducible loss and class-holdout loss terms of the algorithm were individually
excluded from the selection rule. We note that all three terms in Equation (4) are required
to achieve a strong worst-class test accuracy.

The removal of the class-holdout loss term affects the ability of REDUCR to prioritise the
weights of the model correctly. In Figure 6 we compare the class weights of REDUCR
and an ablation model without the class-holdout loss term. The standard model clearly
prioritises classes 3, 4 and 5 during training across all 5 runs, whilst the ablation model
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Figure 6: a) The worst-class test accuracy decreases when the model loss, class irreducible
loss, and class-holdout loss terms are removed from REDUCR on CINIC10. Comparing
REDUCR with clipping for excess losses (Algorithm 1) and REDUCR (no clip) which
removes the clipping, we observe that REDUCR achieves more stable performance. We
show the class weights w at each training step for b) REDUCR and c) REDUCR with
the class-holdout loss term ablated. The ablation model fails to consistently prioritise the
underperforming classes across multiple runs.

does not consistently weight the same classes across multiple runs. We also conducted an
ablation study on the clipping of the excess loss to motivate its inclusion in the algorithm,
this is also shown in Figure 6a, we note that this stabilises the model performance towards
the end of training and investigate further in Appendix C.5.1.

C.5.1 Clipped Excess Loss Ablation Experiments
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(a) REDUCR Excess Loss
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(b) REDUCR Excess Loss No Clipping

Figure 7: The quantiles of the excess loss of points selected at each training step with (a)
and without clipping (b) of the excess loss term

To further understand the effects of clipping in the algorithm we analyse the selection score
of the selected points with and without clipping. As detailed in Appendix A.4 the class-
holdout loss only affects the selection of points via the weights wt at each time step, as such
we record only the excess loss (the difference between the model loss and class irreducible
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loss). Figure 7 shows the quantiles of the weighted sum of the excess losses of points selected
at each training step for the non-clipped and clipped model respectively. When the excess
loss is clipped, Figure 7a shows the selection scores smoothly decrease throughout training
as the model loss improves. Without clipping the excess loss decreases smoothly at the
beginning of training and then shows unstable behaviour across runs later in training.
In practice we select multiple points per batch by selecting the points with the top k selection
scores. When multiple points have the same score, points are selected at random. We note
that the clipping does not reduce the excess loss of the selected points to zero where points
would be selected randomly to make up the batch.
Intuitively we posit that the clipping reduces the effect of clashing amortised class irre-
ducible loss models in the weighted sum across the |C| selection rules. The amortised class
irreducible loss models are trained such that they are an expert in a specific class c. In
some cases a model being an expert in a specific class c′ may result in it being a poor
predictor of classes C \ c′. Even if this expert has a small weight wt,c′ large losses may still
propagate into the selection of points. Clipping the excess loss prevents a point from being
down-weighted in the weighted by a specific class too much.

C.6 Amortised Class Irreducible Loss Models

In Figure 8 we compare the average expert class test accuracy and non-expert class test
accuracy across different values of γ for the amortised class-irreducible loss model train on
CIFAR10. For the model to be an expert in one class it loses performance in the non-
relevant classes. To avoid the problems described in Appendix C.5.1 we selected γ = 9 for
which the performance of the non-expert class did not suffer too much.
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Figure 8: Class-irreducible loss model test accuracies on the expert class and non-
expert classes. Class-irreducible loss models are trained using gradient weights γ ∈
{0.25, 0.5, 1.0, 4.0, 9.0, 19.0, 49.0, 99.0}.

C.7 Hyper-parameter Tuning

In this section, we perform sensitivity analyses for hyper-parameters introduced by RE-
DUCR. In particular, we investigate the sensitivity of target model performance to the
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learning rate η used for target model training, the gradient weight γ used for class-irreducible
loss model training, the fraction of datapoints selected for target model training nb/nB (for
a constant selected batch size nb), and the frequency with which class hold-out losses are
updated during target model training.

All experiments in this section use the CIFAR10 dataset. We use ResNet-18 target models
(trained using η = 10−4 and with a percent train of 0.10) and ResNet-18 class irreducible
loss models (trained using γ = 9) unless otherwise stated.

We find that REDUCR’s performance is not sensitive to the learning rate η and the fre-
quency of class hold-out loss updating. We find that REDUCR’s performance is sensitive to
the gradient weight γ, though this is because a larger gradient weight increases the variance
of loss gradients and slows model training. REDUCR’s performance is not sensitive to the
gradient weight at smaller gradient weights, for which class irreducible loss model training
losses have converged. Finally, we find that REDUCR’s performance is not sensitive to the
fraction of data points selected for target model training (referred to as the percent train)
for intermediate values of percent train, though performance is poor for very low fractions
and very high fractions (recall a fraction of 1.0 recovers uniform selection).

In summary, REDUCR’s performance is largely insensitive to the values of newly-introduced
hyper-parameters on the CIFAR10 dataset. Sensitivity analyses on additional datasets are
needed to increase the robustness of these findings. However, a gradient weight of γ = 9 and
a percent train of 0.10 perform well without additional hyper-parameter tuning for several
datasets, class irreducible loss model architectures and target model architectures in our
main experiments, which tentatively suggests the robustness of these findings.

C.7.1 Learning Rate η

First, we perform a sensitivity analysis on the learning rate η. We train target models using
REDUCR for each η ∈ {10−4, 10−3, 10−2, 10−1, 100, 101}.
Experimental results demonstrate that smaller values of η result in a faster improvement
in target model performance during training, though final target model performance is
similar for all values of η investigated (see figure). Intuitively, larger values of η result in
more concentrated class weights. REDUCR therefore uses a more concentrated weighted
average of class irreducible losses during datapoint selection, which reduces the quality of
selected datapoints. Larger values of η also result in faster changes in class weights between
training steps, which reduces the coherence of datapoint selection between training steps.

In practice, appropriately small values of η should be used in order to reduce computational
cost. Note that what constitutes an appropriately small value of η depends on the scale of
losses in a particular domain. Initial target model training runs are therefore necessary to
identify a value of η for which class weights do not prematurely concentrate on one class η.

C.7.2 Gradient Weight γ

Next, we perform sensitivity analysis on the gradient weight γ. We train sets of class-
irreducible loss models for each γ ∈ {0.25, 0.5, 1.0, 4.0, 9.0, 19.0, 49.0, 99.0} and train target
models trained using REDUCR for each set of class-irreducible loss models.
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Figure 9: Final average and worst-class test accuracy are not sensitive to the
value of η on the CIFAR10 dataset, though both increase faster during training
when using smaller values of η.
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Figure 10: Average and worst-class test accuracy are sensitive to the value of γ
on the CIFAR10 dataset, though this likely reflects longer convergence times for class-
irreducible loss model training when using larger values of γ.
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Experimental results show that increases in the gradient weight above 9.0 result in faster im-
provement in target model performance early in training, though target model performance
converges to a lower value later in training for larger gradient weights γ ∈ {19.0, 49.0, 99.0}.
Higher gradient weights increases the variance of loss gradients, which requires a greater
number of training epochs for class-irreducible loss model training. In our experiments,
class irreducible loss models trained with gradient weights γ ∈ {19.0, 49.0, 99.0} do not
converge before the end of training. Poor target model performance for larger gradient
weights γ ∈ {19.0, 49.0, 99.0} is therefore the result of pre-convergence class-irreducible loss
models.

This finding highlights the trade-off between fast target model training (which requires
a large gradient weight) and fast class irreducible loss model training (which requires a
smaller gradient weight). Regardless, final target model performance is similar providing
class irreducible loss models reach convergence, as is the case for gradient weights γ ∈
{0.25, 0.5, 1.0, 4.0, 9.0}.

C.7.3 Fraction of Selected Datapoints

We next perform sensitivity analysis on the fraction of datapoints selected for target model
training nb/nB (referred to as the percent train). In particular, we use a constant selected
batch size nb and vary the original batch size nB in order to vary the fraction of datapoints
selected for target model training. Intuitively, a smaller percent train allows REDUCR to
select from a greater number of candidate datapoints at each training step, which results
in the selection of datapoints with larger weighted reducible loss all else the same. Since
datapoints with larger (weighted) reducible loss are those from which a model can learn
the most (Mindermann et al., 2023), we expect a smaller percent train to result in a faster
improvement in target model performance.

We train target models usingREDUCR for each percent train, batch size pair in {(0.05, 640),
(0.10, 320), (0.15, 216), (0.20, 160), (0.25, 128)} (i.e., we train all target models using a se-
lected batch size of 32). We find that a percent train of 0.05 attains lower final worst-class
and average test accuracy, despite having most candidate datapoints to select from. This
is surprising and is in contradiction with the intuition provided above. Furthermore, per-
cent trains {0.1, 0.15, 0.2, 0.25} attain similar average test accuracy at the end of training,
though larger percent trains attain slightly higher worst-class test accuracy at the end of
training.

Experimental results demonstrate the performance of REDUCR is largely insensitive to
the percent train (for a constant selected batch size) for non-extreme percent trains (recall
uniform selection corresponds to a percent train of 1.0). Therefore, in practice, a selected
batch size nb should first be chosen such that loss gradient estimates have a low variance, and
then a batch size nB should be chosen such that the percent train nb/nB is an intermediate
value (e.g., 0.10).

Experimental results also suggest that selecting datapoints with the very largest weighted
reducible loss for model training may not be most appropriate for improving model perfor-
mance. Instead of top-k selection, some form of soft selection may result in better model
performance.
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Figure 11: Test accuracies are not sensitive to the value of percent train for intermediate
values of percent train. For a percent train of 0.05, the final test accuracy is less than larger
percent trains, and test accuracy increases more slowly during target model training. Plots
show an average and two standard deviations across 10 seeds. Note that at each training
step, targets models have performed the same number of gradient steps, though they have
seen different numbers of candidate datapoints. Since each percent train uses a different
batch size, training epochs consist of a different number of training steps for each percent
train. It is therefore particularly important to compare target models at each training step
instead of training epoch. Test accuracies are computed at the end of each training epoch
using the current target model and plotted at the training step at the end of the training
epoch.
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Figure 12: Test accuracies are not sensitive to the frequency with which class hold-out losses
are updated. Plots show minimums, medians and maximum across 10 seeds.

C.7.4 Frequency of Class Hold-out Loss Updating

In our experiments, class hold-out losses are updated at the end of each training epoch
using the full hold-out set. However, target model performance may improve on some
classes significantly more than others during a training epoch (especially early in training).
We therefore perform a sensitivity analysis on the frequency with which class hold-out losses
are updated.

It is computationally expensive to update class hold-out losses using the full hold-out set. To
reduce the computational cost of more frequent class hold-out loss updating, it is therefore
necessary to update class hold-out losses using only a small subset (e.g., a single batch) of
the full hold-out set at each update. However, class hold-out losses computed using a small
subset of hold-out set datapoints are noisy. We therefore use an exponentially-weighted
moving average of class hold-out losses computed on batches of hold-out set datapoints. In
particular, a batch of size nB is sampled uniformly at random from the hold-out set at each
training step. Losses are then computed for each datapoint in the sampled batch using the
current target model. Finally, for each class c ∈ [C], losses of datapoints of class c in the
sampled batch are averaged and used to update a de-biased exponentially-weighted moving
average with decay parameter a ∈ [0, 1].

We perform experiments using exponentially-weighted moving averages with decay parame-
ters a ∈ 0.9, 0.99 for fast updating of class hold-out losses. Experimental results demonstrate
REDUCR’s performance is not sensitive to the frequency of class hold-out loss updating.
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Figure 13

C.8 Small Class Irreducible Loss Models

We also investigate the use of small CNN (LeCun et al., 1998) (reference) class-irreducible
loss models instead of ResNet-18 class-irreducible loss models in order to reduce the com-
putational cost of REDUCR on the CIFAR10 dataset.

Experimental results demonstrate that target models attain slightly better worst-class and
average-class final test set accuracy when using ResNet-18 class-irreducible loss models than
when using small CNN class-irreducible loss models providing a sufficiently small gradient
weight is used for class-irreducible loss model training (i.e., class-irreducible loss models
reach convergence). However, small CNN class-irreducible loss models struggle more than
ResNet-18 class-irreducible loss models at larger gradient weights.

Therefore, one can significantly reduce the computational cost of REDUCR for the CI-
FAR10 dataset by using small CNN class IL models without a large decrease in target model
performance. This is consistent with Mindermann et al. (2023), which finds that target
models trained using a small irreducible loss model slightly under-perform target models
trained using a large irreducible loss model in the context of RHO-Loss selection.

C.9 Highly Imbalanced Datasets

We also conduct experiments with 0.25% and 0.5% percent imbalances on classes 3 and
5. However, (class) irreducible loss models and target models only receive 6.25 and 12.5
datapoints of the imbalanced class during one training epoch (in expectation) with percent
imbalances of 0.25% and 0.5% (respectively). As a result, too few datapoints of the imbal-
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anced class are seen during model training to achieve good performance on the imbalanced
class.
This demonstrate a failure mode of existing selection methods. During target model train-
ing, datapoint selection cannot improve performance on the imbalanced class in the presence
of severe under-sampling, since datapoints of the imbalanced class are not sampled suffi-
ciently often (before selection). Additionally, for selection methods that use some form of
reference model, severe under-sampling also affects reference model training. An explicit
correction for severe under-sampling is needed during reference model training and target
model training (e.g., an importance sampling correction or a replay buffer similar to that
used in reinforcement learning).
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