Under review as a conference paper at ICLR 2026

SALF & TALF: OPTIMIZED LLOSS FUNCTION AND
DRAFTING FOR TREE-BASED SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding (SpD) has emerged as a promising approach to accelerate the
slow autoregressive inference of large language models (LLMs). SpD leverages
a lightweight draft model to propose candidate tokens, which are then verified
in parallel by the target LLM. Recent advances in tree-based SpD significantly
improve efficiency by drafting token trees, enabling the verification of multiple
sequences at once. Given its strong empirical performance reported across nu-
merous studies, tree-based SpD is rapidly becoming dominant. However, existing
draft model training methods overlook the tree structure when defining the training
objectives, causing their training and inference distributions to become misaligned.
We address this limitation with a tree-aware loss function (TALF) that explicitly
incorporates the tree structure into draft model training. Using trees generated by
the target LLM, TALF aligns the draft model’s predictions with the target across all
branches, mitigating the misalignment. Further, we improve the tree construction
process in drafting with stopping at low further gains (SALF). As drafting iterations
search for potential high-probability tokens to add to the tree, we estimate aggregate
probability gains. This estimate guides the stopping criterion for drafting, enabling
us to balance computational cost against draft quality for maximum performance.
Together, SALF & TALF deliver 15.6-39.4% and 6.5-24.4% end-to-end speedups
over state-of-the-art SpD methods, EAGLE-2 and HASS, without altering the draft
model architecture.

1 INTRODUCTION

As large language models (LLMs) become integral to numerous real-world services, it is of great
social, economic, and environmental importance to perform LLM inference both rapidly and ef-
ficiently. LLMs generate tokens in an autoregressive manner, producing one token per decoding
iteration, which is then used to generate the next. Each iteration requires loading hundreds of billions
of parameters (Brown et al.,2020) from memory. This is especially problematic for edge devices
or similar environments with limited batching; without batching to amortize the memory load costs,
hardware utilization is severely damaged due to the memory bandwidth bottleneck (Park et al., [2024).

As an effective solution to this problem, speculative decoding (SpD) (Leviathan et al.,[2023; |Chen
et al., [2023) has been proposed. At a high level, SpD employs a lightweight draft model to speculate
the output of the rarget LLM. First, multiple autoregressive iterations are performed with the draft
model to create a short sequence of tokens (i.e., draft). Then, the draft is verified by the target LLM,
which decides whether to accept each token in the draft, in a single forward pass. As multiple tokens
can be generated per draft-verify, SpD enables generation of the same output sequence with fewer
target LLM iterations. Using orders of magnitude smaller draft models, substantial reductions in the
end-to-end LLM inference latency can be achieved.

Among various SpD approaches (see §[§I), EAGLE (L1 et al., [2024b)) and its successors (L1 et al.,
2024al,|Zhang et al.l 2024b)) show notable speedups and are widely integrated into mainstream LLM
serving frameworks, such as vVLLM (Kwon et al., [2023)), TensorRT-LLM (NVIDIA| 2025), and
SGLang (Zheng et al.,[2024). Two key techniques constitute EAGLE. The former is its draft model
architecture with a single Transformer decoder (Vaswani et al.,|2017) layer. Recent work, including
HASS (Zhang et al.l [2025) and Griffin (Hu et al.| 2025), further refines the training objectives to
better train the EAGLE draft model (detailed in §2.2).

Under review as a conference paper at ICLR 2026

The latter is the adoption of tree-based SpD (Miao et al.| [2024). Instead of producing a single linear
sequence of candidate tokens, the draft model generates a tree that captures multiple branching
hypotheses. This draft tree can still be verified in a single forward pass by replacing the standard
attention (Vaswani et al 2017) in the target LLM with tree attention (Miao et al., 2024). As a
single tree encompasses multiple probable sequences in a compact form, it significantly increases the
number of tokens generated per draft-verify (7). Following work, EAGLE-2 (Li et al.,|2024a), further
introduces a dynamic tree construction algorithm that leverages token probabilities from the draft
model, modifying the tree structure to incorporate more high-probability tokens in the tree.

While tree-based SpD is becoming a standard technique as evidenced by numerous related stud-
ies (Zhang et al., 2025} [Hu et al.l [2025; |Li et al., 2024bZa; [Miao et al., [2024; |Chen et al., [2024a}
Spector & Rel 2023} [Sun et al., 2023} |Ankner et al., [2024; |Cai et al.l 2024} [Svirschevski et al.}
2024)), previous approaches fall short of exploiting its full potential in both training and inference.
In particular, prior draft model training methods only focus on the most probable tokens, whereas
tree-based SpD demands exploring alternative token candidates.

To address this, we introduce a tree-aware loss function (TALF) for SpD. An ideal draft model
would generate the same tree as the target LLM. Therefore, we make the target LLM construct a tree
dynamically during training. At each tree node (token), we compute a cross-entropy loss between the
next-token probability distributions of the draft and target models. We then aggregate this loss over
the entire tree, guiding the draft model to generate target-aligned trees.

We also propose a novel dynamic draft tree construction algorithm with a conditional stopping
criterion, named stopping at low further gains (SALF). We develop methods to predict further gains
from continuing drafting and to stop when the gains fall below a configurable SALF threshold. SALF
offers speedups over existing dynamic tree construction methods by delivering a balanced solution
that trades off tree optimality (Svirschevski et al., 2024) with drafting overhead. SALF and TALF
together result in 2.16-3.48 x end-to-end speedups for Llama-based models (Touvron et al., [2023};
Llama Team, Al @ Metal 2024} Deepseek-AlL [2025)) in various tasks, improving upon EAGLE-2 and
HASS by 15.6-39.4% and 6.5-24.4%, respectively.

2 BACKGROUND

T denotes the target LLM and D denotes a small draft model imitating T'. Values derived from D are
marked with a superscript -(9. At a time step s, we try to generate a token z,; from the previous
tokens x1.s. For notational convenience, we ignore the initial prefix prepared for each text generation.

2.1 SPECULATIVE DECODING (SPD)

First SpD constructions by |Chen et al.| (2023)) and |[Leviathan et al.|(2023)) used a lightweight draft
model (e.g., a 4B LLM) to generate a short sequence of candidate tokens (xi‘i)l, xi'i)% - - -) following
x1.s through multiple autoregressive drafting iterations. The candidates are verified with the target
LLM (e.g., a 70B LLM) through parallel processing of ps11 < T (21.s), ps+2 T ([21:s, :cii)l]), e
computed together in a single forward pass. Based on the probability distributions (pst1, Ps+2, -),

we decide whether to accept each candidate token. For example, when ps+1(xgi)1) is likely but
p5+2(x£‘22) isnot, Tg41 xi‘i)l, Tsyo 1s sampled from pg, o, and the verification ends. Two key

metrics are used to evaluate SpD: 1) end-to-end latency of LLM inference, including times spent with
T and D, and 2) mean generation length (7), the average number of tokens generated per verification.

2.2 DRAFT MODEL TRAINING: EAGLE & HASS

EAGLE (Li et al.| 2024b) designs a small draft model with a single Transformer decoder (Vaswani
et al.| [2017) block to accelerate SpD. During inference, features produced from the last decoder
block of the target LLM (f1.s—1) as well as x5 (rather than z7.5 so that |x2.s| = |f1.s—1|) are
fed into the draft model. The draft model performs autoregressive iterations with these inputs;

i~e-, pgi)p S(d) — D('T2:S7f1:871)’ then p‘(ga_?Qvfs(j-)l <~ D([$2:57$Si)1]a [fl:sflvfx‘gd)]) with $£CQ1

sampled from the speculated probability distribution pi‘i)l, and so on. Verification of the candidate
tokens are handled in the same way.

Under review as a conference paper at ICLR 2026

Training sequence generation with the target model (T) [precomputed] D training — TALF
g seq g [¢] g
Tree generation with T — TALF [precomputed]
T language \ :p_gﬁl'—> Lo _‘f{_’—> Lny
model head ZN oo N =
ode \ ode \
T embedding . . : @ If3 s

& T decoders

) < N
\ - m L ~
- i - . Node 2 fi| x| 1y, | %3 S e
m L . ‘\ 22
~N \ v
. . s=2 : "\ fi[x

\
N ,
Draft model (D) training — EAGLE D training — HASS \‘ Y :p-,(;I 2
4 n2
(d)l—) Les Ip,gdll* 'E; 1 Las !Eidl Las \ Y I '(‘;L
T language -T' -T' I' BT
model head i —-—= . _ , _ O B S
Tem(tj:eddlljng "' = = . = .. \ |_fz_ .
& D decoder SN s S \ -
S~ S~ fi]x2
szz |fz xsl |f1 le ![z(_d A L
fi|x2 fi | x2 £s ZHL" '
Computed together
s=2 s=3 s=2 s=2 using tree attention

T
Token : | Feature Probability distribution 1 I fi and p; derived fromD L Loss Computation i Sampling ' Copying
ki ; bability distrib f(d)pld) d p; derived fi . !

Figure 1: Draft model training process of EAGLE (Li et al., 2024b)), HASS (Zhang et al., [2025)), and
TALF. With the precomputed training sequence x1.r,, training is performed for time steps 1 < s < L.

During training, EAGLE aligns the draft model with the target LLM for features (f§d) with f) as well

as the probability distributions (piﬂlr)l with pg1). First, the target LLM produces a training sequence
1.1, their corresponding features (f1.7,—1), and probability distributions (p1.r) through autoregressive

iterations. Using them as soft labels, a drafting iteration (ps+1» I s(d) +— D(za.s, f1:5—1)), a loss
calculation, and a gradient-based draft model update are performed for each time step s.

Despite numerous SpD proposals, most rely on standard knowledge distillation (Hinton et al., [2015)
as their training objective, using the target LLM’s output as soft labels. Similarly, EAGLE trains its
draft model using a combination of two loss functions:

* Regression loss to align the features: Lyeq = || fs — fs(d)Hl.

* Classification loss to align the probability distributions: L = —), pst1(v) - log pg +)1().

HASS (Zhang et al.| [2025)) identifies a misalignment between training and inference in EAGLE.

During inference, speculated features (fs(d) ,+++) produced from the draft model are added to the
inputs since the second drafting iteration. By contrast, EAGLE’s drafting iteration during training
only involves inputs produced by the target model (z2.5 and f1.5—1). To mitigate this, HASS modifies
the training process and its loss function. The draft model follows through a short target LLM output
sequence (e.g., T1. S — Tsp1 — Tsy2 — DPst3), While feeding feature speculations generated by

itself (fs) and fot (@) 1) back as input (see Figure. Then, for this sequence, HASS gathers L., and
L5 losses comparing features and probability distributions generated by the draft model with those
from the target LLM. In this way, HASS reflects the feature-related inference behavior of the draft
model in the training objective. HASS also introduces a top-K (e.g., K = 10) distillation loss, which
can be orthogonally applied to L5 to put more emphasis on K highest-probability tokens.

2.3 TREE-BASED SPD & DYNAMIC TREE CONSTRUCTION: EAGLE-2 & SPECEXEC

Tree-based SpD (Miao et al., [2024) goes beyond verifying one sequence; it organizes multiple draft

sequences into a tree structure and verifies the entire tree at once, effectively increasing the mean

acceptance length (7). As a number of tokens can show high probabilities in pg‘i)l, we sample multiple

tokens from pg‘i)l and continue the next drafting iterations each with a different xi'i)l. Repeating

such will create a tree of candidate tokens, where each path from the root node (z) to a leaf node
represents a draft sequence. The entire tree can be verified by the target LLM in a single forward pass
with little overhead by using tree attention (Miao et al., 2024)).

Under review as a conference paper at ICLR 2026

Proportion of

each rank 065 Accuracy 1 010 ECE |

03 0.60 0.08
0.4 Method
0 0.55 0.06 EAGLE
. HASS
02 0.50 0.04 m— TALF
0.0 = 0.40 000 M

1st 2nd 3rd 4th =5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

(a) (b)

Figure 2: (a) Proportion of candidate tokens, which constitute the draft tree during inference, by
rank on the probability distribution. (b) Top-1 accuracy and expected calibration error (ECE) for a
draft model trained with EAGLE, HASS, and TALF when self-conditioned on a token ranked n-th
(n =1,2,3,4, and 5) on the previous speculated probability distribution.

EAGLE-2 (Li et al} [2024a)) constructs the tree dynamically during inference. It utilizes the spec-
ulated probability distribution (p(®) to compute Pr(z(?) | x,.,) for each token (node) =(?) in the
tree. EAGLE-2 performs a simple beam search (Ow & Morton, |1988)) to find high-probability
nodes with little drafting overhead. Meanwhile, the optimal tree construction approach from
SpecExec (Svirschevski et al.| 2024) has attempted to maximize the sum of the probabilities for a
given number of nodes (/V). However, this “optimal” approach involves a large search space, poten-
tially damaging the end-to-end performance with increased drafting overhead. Refer to Appendix
for more details on prior dynamic tree construction methods.

3 METHOD

3.1 TRAINING-INFERENCE MISALIGNMENT FOR TREE-BASED SPD

We observe that, although inference relies on tree-based SpD, prior draft model training methods still
use token sequences—rather than trees—generated by the target model as references. This creates a
training-inference mismatch: the accuracy (7) of the draft model depends on how well its entire draft
tree aligns with the target model, yet sequence-based training overlooks the opportunity to improve
the draft model’s ability to explore alternative tree nodes with fairly high probabilities.

For quantification, we evaluate how the draft models trained with EAGLE and HASS perform when
self-conditioned on a lower-probability token. We used the setup described in §4.T|over a held-out test
set Dyey, each element of which is an input sequence x.. After the first drafting iteration producing
pg‘i)l < D(wa.s, f1.5s—1), we simulated inference by feeding the draft model’s own prediction a:gi)l

sampled from pgi)l back as input to itself. We observed how the choice of xi‘i)l in pi‘i)l affects the

next drafting iteration result (pgi)Q), where xii)l isranked n-th (n = 1,2, 3,4, 5) in pg‘i)l. Meanwhile,

we also made the target LLM predict the (s + 2)-th token &2 when conditioned on our xi‘i)l choice.

We measured how well p() predicts 2,45 according to the choice of 2! +)1 using accuracy and

expected calibration error (ECE) (Guo et al., 2017) as metrics (detailed in Appendlx@

While HASS improves both ECE and accuracy when conditioned on 1st-ranked tokens, the gains are
marginal or even negative for lower-ranked tokens (see Figure 2[b)), suggesting that draft models
trained with HASS underperform on tree nodes outside the best draft sequence. Empirically, although
Ist-ranked tokens possess the largest portion (roughly 55%) in the final draft tree, lower-ranked tokens
are not negligible, where those ranked 5th or lower account for over 10% (see Figure |Zka)).

3.2 TRAINING WITH A TREE-AWARE L0OSS FUNCTION (TALF)

These observations motivate us to propose a tree-aware loss function (TALF), which aggregates cross-
entropy loss terms over dynamic draft tree nodes, effectively reflecting the inference behavior of the

Under review as a conference paper at ICLR 2026

Algorithm 1 TALF Training Procedure
Require: Target model T, draft model D, the number of nodes NV
1: for all training sequence do
2: T builds a tree G with IV nodes using a dynamic tree construction algorithm

3 for all tree node n in G do
4 Let x[,,) be the sequence of tokens represented by the node n
5: Dehild(n) < T(:L‘[,,L]) > Precomputed during tree generation
6 pigi)l d(n) — D(x[n]) > Optimize with tree attention (input features omitted for brevity)
7 Compute cross-entropy loss
_ (d)
Ly =— Z Pchild(n) (U) IOg pchild(n) (U)
v € Vocab

8: Backpropagate D with £ =) - L,

draft model in the training objective. Compared to HASS, TALF yields only marginal improvements
in the 1st-ranked case, but achieves 5% accuracy gains and 0.05 ECE drops for lower-ranked cases
(see Figure[2[b)).

The training procedure with TALF is shown in Algorithm[T]and Figure[I] We first make the target
model generate a tree dynamically, setting each token in a training sequence as the root node
(zs — ps4+1 node). We make the draft model follow through the path from the root node to each node
(n) of the tree, while feeding f(?) back as input as in HASS. We compute cross-entropy loss between

the speculated (pél‘fi)l d(n)) and the target (Pepiia(n)) probability distributions for the token following n.

Per-node losses are aggregated to compute the final loss.

Before training, the tree shape and the soft labels at each node (i.e., next-token predictions) are
preprocessed by the target model. Making the draft model dynamically construct the tree at training
time would generate a different tree structure for each training epoch, requiring multiple target model
invocations. As this would incur prohibitively high computational cost, we make the target model fix
the tree structure in advance, which can be reused for multiple training epochs.

As shown in Figure|l] we process multiple nodes on the same tree depth together using tree attention,
which significantly accelerates the training process of TALF. We modify the attention-masking
technique of HASS, which was originally designed for sequential inputs, to support tree structures.
While any dynamic tree construction algorithms can be used, we employ the simple beam search
method of EAGLE-2 for training. Sophisticated algorithms, such as the one used in SpecExec (see
§2.3), would cause an increase in the preprocessing cost due to additional data structures that require
complex handling (e.g., Q@ and D in Algorithm [2)).

Unlike EAGLE and HASS, TALF does not use a regression loss for feature alignment. In our
experiments, training solely on the token probability distributions across multiple nodes was sufficient
for the model to learn to use features in an autoregressive manner, yielding better performance.

3.3 STOPPING AT LOW FURTHER GAINS (SALF) IN DYNAMIC TREE CONSTRUCTION

Existing dynamic tree construction methods either fail to include some high-probability tokens in
the tree (e.g., beam search from EAGLE-2) or require a lot of drafting overhead to search for all
possible high-probability tokens (e.g., optimal tree search from SpecExec). We develop Algorithm [2]
to address these issues with a balanced dynamic tree construction method.

We extend the optimal tree search method by introducing stopping at low further gains (SALF), a
conditional criterion for efficient drafting. For constructing a tree with [V nodes, we use a priority
queue Q with a fixed capacity of V. Q keeps high-probability nodes that have not yet been expanded,
i.e., they have not been processed by the draft model to generate their child nodes. Per iteration, we
pick B highest-probability nodes from Q for expansion, move them to the output tree G, and insert
their child nodes into Q. If we repeat this (Algorithm [2] without the red blocks), it is guaranteed to
find the highest-probability nodes for the draft tree (see Appendix [B]for the proof).

Under review as a conference paper at ICLR 2026

Algorithm 2 Dynamic Tree Construction with SALF

Require: Draft model D, the number of nodes NV, batch size B (< N), SALF threshold th < 1

Ensure: Tree G containing the top-/V high-probability nodes
1: G + {(pr = 1,n =root node)} > G contains up to N nodes with high pr
2: Init a capacity-IV priority queue Q <— G > Q contains up to N non-expanded nodes with high pr
3: while true do
Init an empty list D
for bin 0..B do > Select B nodes to expand
if Q.empty() then break

(pr,n) < Q.pop()

G.push((pr, n))
9: D.append((pr,n))

10: e < min{pr | (pr,n) €G}
11: if |G| < N thene < 0

A A

12: D+ {(pr,n)eD|pr>e} > Ignore nodes that cannot go into G due to low pr
13: if Z(pm)eD pr < th then break

14: for all (pr,n) € D do > Optimize with batched tree expansion
15: Let Z[n] be the sequence of tokens represented by the node n

16: pé}clli)l a(n) < D(zp,) > (input features omitted for brevity)
17: for all v € Vocab do

18: Let n’ be a child node of n representing the next token v

19: pr’ + pr- pégi)l d(n) (v) > Probability product calculation
20: Q.push((pr’,n")) > Q automatically discards low-pr entries when (# of entries) > N

However, the final goal of SpD is not to search for the highest-probability nodes but to minimize the
end-to-end latency. We observe that the aforementioned process incurs excessive drafting overhead at
deeper tree depths due to the large number of nodes with modest probabilities.

SALF (highlighted in red in Algorithm [2) addresses this problem by stopping when further drafting
iterations is unlikely to increase the overall probability of the tokens included in the tree. Concretely,
we stop drafting if the nodes in D, whose entries are extracted from the top-B highest-probability
nodes in Q, have a low probability sum. The probability sum monotonically decreases for each
iteration (Theorem[I] see Appendix [C]|for the proof), allowing us to precisely identify the point at
which the expected benefit of further drafting falls below a configurable SALF threshold (th). SALF
achieves significant speedups due to reduced drafting overhead.

Theorem 1 (monotonically decreasing probability sum). Let D; denote the value of D at the early-
stopping check (line[T3)) in the i-th iteration of the main loop in Algorithm[2} Define the sum of the
probabilities of the entries in D; as S; = Z(W nyep; - Then, given that B < |Vocab|, the sequence

{S;} is monotonically decreasing:

Vi>2, S;>Siq1

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models. We used Llama-2-7B-Chat (Llama2-7B) (Touvron et al., [2023), Llama-3.1-8B-Instruct
(Llama3-8B) (Llama Team, Al @ Meta, [2024)), and DeepSeek-R1-Distill-Llama-8B (Deepseek-All
2025)) for evaluation.

Tasks. We used test datasets with varying characteristics: MT-bench (Zheng et al., [2023)), Hu-
maneval (Chen et al.| [2021]), GSM8k (Cobbe et al.,2021), Alpaca (Taori et al.|[2023)), and CNN/Daily
Mail (Nallapati et al., 2016). We set the inference batch size to one, following EAGLE and HASS.

Under review as a conference paper at ICLR 2026

Table 1: Mean SpD speedup (vs. execution without SpD) for various models, tasks, and temperatures.
Relative mean improvements of SALF & TALF compared to EAGLE-2 and HASS are also shown.

Model Method MT-bench HumanEval GSM8K Alpaca CNN/DM Mean
Temperature = 0 (Greedy)
EAGLE-2 2.71x 3.09x 281x 2.59x 226x 2.68% (+15.6%)
Llama2-7B HASS 2.95x% 3.39% 3.00x 2.75x 251x 291X (+ 6.5%)
SALF & TALF 3.11x 3.48x 3.19%x 3.02x 2.72x 3.09x%
EAGLE-2 2.10x 2.44 % 221x 2.11x 1.82x 2.13x (+35.0%)
Llama3-8B HASS 2.33x% 2.89% 2.58x 235x 2.05x 242X (+18.4%)
SALF & TALF 2.79x 3.25x% 299%x 2.81x 256x 2.87x
Deepseek-R1- EAGLE-2 1.94x 2.09% 2.11x 1.84x 1.69x 1.93x (+28.0%)
p HASS 2.02x 221 223x 191x 1.72x 2.01x (+22.9%)

Disill-Llama-8B g1 F & TALF 248x 264x 2.66x 240x 2.19x 247x

Temperature = 1 (Non-Greedy)

EAGLE-2 2.52x 2.94x 272x 242x 220x 2.55% (+18.0%)

Llama2-7B HASS 2.78% 3.10% 296x 2.76x 236x 278X (+ 8.1%)
SALF & TALF 2.96x 3.25x% 3.19x 3.00x 2.67x 3.01x

EAGLE-2 1.54x 2.20x 1.90x 1.73x 1.56x 1.77x (+39.4%)

Llama3-8B HASS 1.68x 2.53x% 2.15x 2.00x 1.73x 2.00x (+23.7%)
SALF & TALF 2.14x 2.94x 2.65x 246x 223x 247x

Deepseek-R1- EAGLE-2 1.70x 1.94x 201x 1.70x 1.58x 1.78x (+28.4%)

p HASS 1.79x 2.02x 2.09%x 1.74x 1.59x 1.84x (+24.4%)

Distill-Llama-8B ¢ \y b o TALF 222x 246x 2.54x 221x 2.03x 228

Training. We trained the draft models with a ShareGPT (Aealal [2023)) dataset containing 68,000
dialogues. For Llama2-7B and Llama3-8B, we first trained the draft model for ten epochs using the
original EAGLE loss. The trained draft model is used for evaluating EAGLE and EAGLE-2, which
only differ in drafting. Then, we performed additional training with the ten-epoch-trained draft model
using either HASS or TALF as a loss function for three epochs. For, Deepseek-R1-Distill-Llama-8B,
we took a different approach to account for longer training time required for training with HASS or
TALF. We trained each model (EAGLE, HASS, and TALF) for the same amount of time (24 hours on
a system with two H100 80GB GPUs), which allows a fair comparison regarding the training cost.

Hyperparameters. For EAGLE and HASS, we set the classification loss weight and the top-10
distillation loss weight 10x higher than the feature regression loss weight (Acis = Adisiit = 10, Areg =
1). We set the sequence/tree depth to three for HASS/TALF and used k = 4 to construct the tree
when training with TALF. More training details are described in Appendix [D]

Inference. We performed end-to-end LLM inference using the Hugging Face Transformers library
with a PyTorch backend. For EAGLE-2 and HASS, we used their respective open-source implemen-
tations. We set N = 60, k£ = 10, and depth = 7 for beam search (used in EAGLE-2 and HASS). For
SALF, we used Algorithmwith N =60, B = 10, and a SALF threshold of th = 0.6 by default.
All inference experiments were executed on a system with a single NVIDIA A100 80GB GPU (PCle).
Speedups relative to the baseline LLM inference without SpD were measured.

4.2 END-TO-END SPEEDUP

SALF & TALF outperform existing methods across every model and dataset we tested. Table [I]
summarizes the end-to-end speedups (vs. execution without SpD) achieved by using SALF &
TALF. Compared to EAGLE-2 and HASS, SALF & TALF achieve consistent mean improvements
of 1.16-1.39x and 1.07-1.24 X, respectively, under both greedy (temperature = 0) and non-greedy
(temperature = 1) sampling cases. Furthermore, benefits of using SALF & TALF become more
pronounced when stronger target LLMs (e.g., Deepseek-R1-Distill-Llama-8B) are employed. This
stems from the greater difficulty draft models face in aligning with stronger target LLMs, a challenge
that SALF & TALF address more effectively by enabling optimized tree-based SpD.

Under review as a conference paper at ICLR 2026

Table 2: Comparison of speedup and mean generation length (7) for various (tree construction
method, loss) combinations. The target LLM is Deepseek-R1-Distill-Llama-8B.

Tree MT-bench HumanEval GSMSK Alpaca CNN/DM Mean

constr. Loss

method Speedup 7 Speedup 7 Speedup 7 Speedup 7 Speedup T Speedup T

Beam EAGLE-2 1.76x 342 191x 376 195x 3.80 1.66x 321 1.51x 298 1.75x 3.44

search HASS 1.84x 3.61 2.03x 398 2.09x 4.04 1.75x 3.39 1.55x 3.06 1.84x 3.62
TALF 1.98x 3.87 2.16x 423 2.26x 442 1.85x 359 1.66x 3.28 1.97x 3.88

Optimal EAGLE-2 1.94x 3.54 2.09x 3.87 2.11x 3.88 1.84x 336 1.69x 3.13 1.93x 3.56
tree HASS 2.02x 370 221x 4.08 223x 410 191x 3.47 1.72x 3.17 2.01x 3.70
search TALF 2.19x 398 234x 430 244x 449 2.04x 371 1.84x 340 2.16x 3.98

EAGLE-2 231x 3.33 244x 3.68 239x 358 226x 3.18 2.07x 293 2.29x 3.34
SALF HASS 241x 3.60 2.55x 3.99 2.52x 396 230x 339 2.12x 3.09 237x 3.61
TALF 248x 3.73 2.64x 4.07 2.66x 4.16 2.40x 3.50 2.19x 3.20 247x 3.73

4.3 INDIVIDUAL BENEFITS OF SALF & TALF

We measured speedups and mean generation lengths (7) for different combinations of loss functions
and tree-construction methods to isolate the benefits of SALF and TALF (see Table[2)).

TALF vs. prior loss functions. When using the same tree construction method for all three loss
functions, TALF improves 7 over EAGLE-2 and HASS by 12.9/11.8/11.7% and 7.2/7.3/3.5% under
beam/optimal/SALF tree search circumstances, respectively. These improvements are consistent
across all benchmarks, showing that aligning the training objective with SpD drafting generalizes
beyond any single task suite.

SALF vs. prior tree construction methods. For any loss function, moving from beam search
to optimal tree search increases 7. Per-benchmark deltas are consistently positive, indicating that
the candidate token set from simple beam search is suboptimal, and that globally selecting the
acceptance-maximizing tree provides additional gains beyond the loss function. When SALF is
added to optimal tree search, 7 decreases by 6.2%, 2.4%, and 6.3% for EAGLE-2, HASS, and TALF,
respectively, while end-to-end performance increases by 18.6%, 17.9%, and 14.4%. As the model
trained with TALF is better calibrated on lower-ranked branches, it has fewer wasteful nodes that are
ignored with SALF, yielding smaller incremental speedups than the cases with EAGLE-2 or HASS.

4.4 PARAMETER SENSITIVITY

Table 3: Mean generation length (7) with different top-k settings for training TALF. The tree size
used for training increases for larger k. The target LLM is Deepseek-R1-Distill-Llama-8B.

Loss (top-k) MT-bench HumanEval GSMS8K

HASS (top-1) 3.70 4.08 4.10
TALF (top-1) 3.71 4.08 431
TALF (top-2) 3.83 4.23 4.48
TALF (top-4) 3.98 4.30 4.49

Top-k for training. Table 3| reports 7 on three benchmarks as we vary k, which decides how wide
we will look to construct the tree during training; up to k-th-ranked tokens will be included in the
tree. TALF with k£ = 1 is almost the same as HASS. As we increase k, more lower-ranked tokens are
considered, enhancing 7. We chose to use £ = 4 as our default setting to obtain higher 7.

SALF threshold (th) for drafting. We measured the impact of using different SALF thresholds
(th) across three benchmarks. For lower th, we get closer to generating a draft tree with highest-
probability tokens, leading to higher 7. However, when th is too low, the actual end-to-end latency
may increase due to excessive drafting overhead. Using th = 0.5 yields the highest mean speedup

Under review as a conference paper at ICLR 2026

Table 4: Performance with various SALF thresholds (th) used for tree construction during drafting.
The target LLM is Deepseek-R 1-Distill-Llama-8B.

MT-bench HumanEval GSMSK Mean

Threshold (th) Speedup 7 Speedup 7 Speedup 7 Speedup 7

0.0 2.19x 398 234x 430 244x 449 232x 426
0.1 2.25% 399 2.36x 431 2.46x 449 2.36x 4.26
0.2 2.37x 397 246x 4.31 2.56 % 449 2.46x 4.26
0.3 245x 394 258x 430 2.63x 445 255x 423
0.4 2.49x 390 2.62x 426 2.64x 438 2.58x 4.18
0.5 2.52x 3.82 2.65x 417 2.69x 429 2.62x 4.10
0.6 248x 373 264x 407 2.66x 416 259x 3.99
0.7 247x 359 263x 392 265x 399 258x 3383
0.8 239x 338 254x 372 259x 378 251x 3.63
0.9 227x 3.1 243x 340 243x 344 237x 332

for Deepseek-R1-Distill-Llam-8B (2.62x) based on Table |4 However, we observed more consistent
performance improvements for the tested target LLMs when th = 0.6 (default). Tuning ¢/ based on
the model or adapting it dynamically during inference is a potential direction for future work.

5 RELATED WORK

While the draft-verify paradigm of SpD can be attributed to blockwise decoding (Stern et al., 2018)),
Leviathan et al.| (2023)) and |Chen et al.| (2023)) developed a verification method based on rejection
sampling, which allows an exact simulation of the target LLM’s output probability distribution.
Tree-based SpD, first proposed in Speclnfer (Miao et al.l [2024)), exploits tree attention to verify
a draft tree in a single forward pass. Tree attention adds a tree attention mask, which represents
the causality (edges) within the tree, to a regular attention (Vaswani et al.,|2017) layer. Numerous
following studies (Zhang et al., 2025} [Hu et al., 2025} [Li et al., [2024bga; Miao et al.| [2024; [(Chen
et al.| 2024a; Spector & Re, [2023; |Sun et al., 2023} |Ankner et al., 2024} |Cai et al.| 2024} [Svirschevski
et al.,2024) have adopted tree-based SpD. While early work has used a fixed (e.g., Sequoia (Chen
et al.| 2024a)) tree structure, recent studies (Li et al.}[2024a}; |Svirschevski et al.| 2024} |[Zhang et al.|
2025 |Hu et al.,[2025) dynamically construct the tree during drafting. Further improvements, such as
dynamically adjusting the tree depth in AdaEagle (Zhang et al.||2024b), have also been proposed.

Also, various approaches have been proposed for drafting, such as using a smaller model from the
same LLM family (Sun et al.| 2023} |Chen et al.| 2024b} |[Spector & Re} 2023} [Leviathan et al.| 2023}
Chen et al.,[2023; He et al., 2024)), employing an independent fine-tuned model (Kim et al., 2023}
Miao et al., [2024; [Liu et al.l |2024b; Zhou et al., 2024), inserting additional heads for drafting into the
target LLM (Cai et al.| 2024} |/Ankner et al., |2024; [Stern et al., [2018)), and reusing the target LLM
while skipping some of its layers during drafting (Zhang et al.l|2024a; Elhoushi et al.,2024; [Liu et al.}
2024a; Xia et al., [2025). EAGLE (Li et al.,[2024b) is a hybrid approach employing a fine-tuned draft
model that also leverages features from the target LLM, extending the additional-head approach.

6 CONCLUSION

We have identified a fundamental mismatch between how existing tree-based SpD methods are trained
and how they are used at inference. To address this, we introduced TALF, a novel loss function and its
training procedure that aligns the draft model’s output distribution over the entire expansion tree with
that of the target LLM. We further developed a systematic approach for building the tree dynamically
through SALF with a provable monotonicity guarantee, reducing unnecessary drafting computations
during inference. Experiments on various benchmarks show that the combined use of SALF & TALF
consistently outperforms state-of-the-art SpD solutions, EAGLE-2 and HASS, yielding 1.16-1.39x
and 1.07-1.24 x wall-clock speedups without any generation quality degradation.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All code used for data preprocessing, model training, evaluation, and figure generation is provided
in the supplementary materials, including scripts such as preprocess.py, train.py, evaluate.py, cali-
bration.py, and graph.py. Detailed descriptions of the experimental setup, model architectures, and
hyperparameters are included in §4.T)and §D] The datasets used in our experiments are either publicly
available or described in detail, with data processing steps documented in the supplementary materials.
For theoretical results, all assumptions and complete proofs are provided in the §B]and §C]

REFERENCES

Aeala. ShareGPT. https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_|
unfiltered, 2023.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-Dependent Draft Heads for Medusa Decoding.
arXiv preprint arXiv:2402.05109, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Conference on Neural Information
Processing Systems, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads. In
International Conference on Machine Learning, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating Large Language Model Decoding with Speculative Sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating Large
Language Models Trained on Code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yu-Hsun Huang, Max Ryabinin, Zhihao Jia,
and Beidi Chen. Sequoia: Scalable and Robust Speculative Decoding. In Conference on Neural
Information Processing Systems, 2024a.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chen-Chuan Chang, and Jie Huang.
Cascade Speculative Drafting for Even Faster LLM Inference. In Conference on Neural Information
Processing Systems, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Deepseek-Al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv preprint arXiv:2501.12948, 2025.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, and
Carole-Jean Wu. LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding. In
Annual Meeting of the Association for Computational Linguistics, 2024.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration of Modern Neural
Networks. In International Conference on Machine Learning, 2017.

10

https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered

Under review as a conference paper at ICLR 2026

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. REST: Retrieval-Based Speculative
Decoding. In Conference of the North American Chapter of the Association for Computational
Linguistics, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 2015.

Shijing Hu, Jingyang Li, Xingyu Xie, Zhihui Lu, Kim-Chuan Toh, and Pan Zhou. GRIFFIN: Effective
Token Alignment for Faster Speculative Decoding. arXiv preprint arXiv:2502.11018, 2025.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative Decoding with Big Little Decoder. In Conference on
Neural Information Processing Systems, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Symposium on Operating Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative
Decoding. In International Conference on Machine Learning, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster Inference of Language
Models with Dynamic Draft Trees. In Empirical Methods in Natural Language Processing, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative Sampling Requires
Rethinking Feature Uncertainty. In International Conference on Machine Learning, 2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Duyu Tang, Kai Han, and Yunhe Wang.
Kangaroo: Lossless Self-Speculative Decoding for Accelerating LLMs via Double Early Exiting.
In Conference on Neural Information Processing Systems, 2024a.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online Speculative Decoding. In International Conference on Machine Learning, 2024b.

Llama Team, Al @ Meta. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International
Conference on Learning Representations, 2019.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. SpecInfer: Accelerating Large Language Model
Serving with Tree-based Speculative Inference and Verification. In International Conference on
Architectural Support for Programming Languages and Operating Systems, 2024.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulgehre, and Bing Xiang. Abstrac-
tive Text Summarization using Sequence-to-Sequence RNNs and Beyond. In Conference on
Computational Natural Language Learning, pp. 280-290, 2016.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2025.

Peng Si Ow and Thomas E Morton. Filtered Beam Search in Scheduling. The International Journal
Of Production Research, 26(1):35-62, 1988.

Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk Kwon, Nam Sung
Kim, and Jung Ho Ahn. AttAcc! Unleashing the Power of PIM for Batched Transformer-
based Generative Model Inference. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2024.

Benjamin Spector and Chris Re. Accelerating LLM Inference with Staged Speculative Decoding.
arXiv preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise Parallel Decoding for Deep Autore-
gressive Models. In Conference on Neural Information Processing Systems, 2018.

11

https://github.com/NVIDIA/TensorRT-LLM

Under review as a conference paper at ICLR 2026

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
SpecTr: Fast Speculative Decoding via Optimal Transport. In Conference on Neural Information
Processing Systems, 2023.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
SpecExec: Massively Parallel Speculative Decoding For Interactive LLM Inference on Consumer
Devices. In Conference on Neural Information Processing Systems, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An Instruction-following LLaMA Model.
https://github.com/tatsu—-lab/stanford_alpacal 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Foundation
and Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Conference on Neural Information
Processing Systems, 2017.

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. SWIFT: On-the-Fly Self-Speculative
Decoding for LLM Inference Acceleration. In International Conference on Learning Representa-
tions, 2025.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding. In Annual
Meeting of the Association for Computational Linguistics, 2024a.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning Harmonized Representations
for Speculative Sampling. In International Conference on Learning Representations, 2025.

Situo Zhang, Hankun Wang, Da Ma, Zichen Zhu, Lu Chen, Kunyao Lan, and Kai Yu. AdaEAGLE:
Optimizing Speculative Decoding via Explicit Modeling of Adaptive Draft Structures. arXiv
preprint arXiv:2412.18910, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P Xing, et al. Judging LLM-as-a-judge with MT-bench and
Chatbot Arena. In Conference on Neural Information Processing Systems, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. SGLang:
Efficient Execution of Structured Language Model Programs. In Conference on Neural Information
Processing Systems, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-Frangois Kagy, and Rishabh Agarwal. DistillSpec: Improving Speculative
Decoding via Knowledge Distillation. In International Conference on Learning Representations,
2024.

12

https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2026

A METRICS USED IN §3.1]

For the experimental setup detailed in §3.1] we use the following two metrics to assess how well

Pg+)2 predicts Z4 o for a test set Diey:

* Top-1 accuracy (higher is better):

1
Acc(Diest) = =—=—— Z 1{ arg max (pgc_ll_)Q(v)) = 5cs+2}

D, vEVocab
‘ teSt‘ 1.5 €Dyt

* Expected calibration error (ECE) (lower is better) quantitatively measures statistical
calibration by comparing accuracy and confidence (Guo et al., [2017):

\
ECE = Z |D::t| |Ace(By,) — Conf(Bm)’

where Dy is binned into M equisized bins B,, by the confidence (p§£22(335+2)) value and

1 -
Conf(B,,) = W Z pi(i)z(xsw)-

1.s€8Bm

B DyYNAMIC TREE CONSTRUCTION ALGORITHMS

Dynamic tree construction algorithms in speculative decoding aim to efficiently select high-probability
tokens by dynamically expanding a tree structure based on probability products. EAGLE-2 (Li et al.|
2024a) employs a dynamic tree construction method that expands only the top-k nodes at the deepest
tree depth according to their global acceptance probabilities V;. Concretely, the global acceptance
probability V,, for a node n is computed as the product of the acceptance probabilities along the path
from the root node 7oy to 1:

d
Vo = H Pr(n’ | parent(n’)) ~ H péhl)ld(pmm(n,»(.
n/epath(nrool7”)\{nrool} "/epath(nmolyn)\{nmot}

The true probability distributions are unknown at inference time and, thus, are approximated by the
probability distributions produced by the draft model.

BEAM SEARCH

The tree search algorithm (illustrated in Figure Eka)) of EAGLE-2 [L1 et al.| (2024a)) is based on a
simple beam search and consists of two phases:

1. Tree expansion (k and depth are parameters): At each expansion step, top-k nodes from
the deepest tree depth are selected. Each node is expanded by processing with the draft
model to generate up to k child nodes belonging to the next depth. This iterative expansion
process continues until the tree reaches a predefined depth.

2. Re-ranking (/V is a parameter): After tree expansion, retain only fop-N tokens with the
highest V;, values in the tree for verification.

However, this strategy is suboptimal; as it selects the next nodes to expand only in the deepest
tree depth, it may overlook higher-probability nodes elsewhere in the tree. For an exemplar tree in
Figure[3] a truly optimal tree expansion would prioritize the yellow nodes with higher V;, over the
pink nodes, which would be selected by EAGLE-2.

OPTIMAL TREE SEARCH

Our algorithm builds upon the optimal tree search method (Svirschevski et al., [2024)). Specifically,
we provide the formulation of the optimal tree search problem as follows:

13

Under review as a conference paper at ICLR 2026

How can
'

|
(1.0)

0502
Make Help
(0.5) (0.2)

0.5 03 04 05
A Our You
(0.25) | (0.15))|_(0.08 (0.1)

0.2 0.2 0.3 0.2

Cake || Pen Today | With
(0.05) J|_(0.05) (0.03) | (0.02)

Figure 3: Tree expansion process with EAGLE-2 (k = 2). Numbers in parentheses indicate global
acceptance probabilities (V,,) approximated by using the draft model.

[V: expanded X: not expanded }
: v v v X X X
Vo expand TopcVo | expand Topy Up / .- T =Topy U,
| !
; dt,~t,
Vy expand Topy V4 | U / + expandt,
1 expand Topy U
! panatom® Leofer] feu] ea
Vv, expand TopcV, | U, @Gl - expand Topy U, \\‘ } Topy T, UC(T)
: v v v v X X
draft Topy Vo~ Vg4 | Tiy1 = TopyUigq

|

(a) EAGLE-2 tree construction (b) Optimal tree construction

Figure 4: Tree expansion strategies: EAGLE-2 expands from deepest nodes, while optimal tree
construction expands across all depth.

Definition B.1 (Optimal tree Gop). Given maximum tree depth d and size N, the optimal tree Gop
consists of exactly N nodes, each nodes with depth< d, maximizing the sum of global acceptance
probabilities.

Definition B.2 (Top 5 operator). Let G be a rooted tree with nodes » having a value v(n) and depth
depth(n) (number of edges from the root). Define subset U; = {n € G | depth(n) < i}. For a set
X C G, Topn(X) selects the N nodes with highest value:

Top (X)) := arg max |§|g:)z(v Z v(n).
nes
Definition B.3 (Monotonic Tree). A tree G is monotonic if each node n € G satisfies

Ve € child(n), wv(c) < v(n),

where child(n) denotes the child nodes of n.

Definition[B-T|imposes two critical constraints on the search algorithm: the maximal tree depth and the
fixed number of candidate nodes. First, the depth constraint reflects the cost of draft model inference
and also the diminishing returns associated with deeper searches; intuitively, the potential maximum
gain decreases as the depth ¢ increases, bounded by N — i. Second, due to the computational expense
of target model inference, it is crucial to batch only a limited number of candidate tokens efficiently.

Figure [d{b) illustrates the optimal tree search process employed in algorithm [2] In summary, at
iteration 4, the algorithm seeks to expand Top y; (U;). Due to exponential growth of U;, with increasing
depth 7, directly managing the set is impractical. Thus, the algorithm maintains a fixed size priority
queue T; with capacity IV, updating it iteratively according to

Ti+1 = Topy (T; U child(T})).

We now present Theorems [2] and [3] establishing the correctness of Algorithm [2] (without early
stopping) in identifying the optimal tree.

14

Under review as a conference paper at ICLR 2026

Theorem 2 (Loop Invariant). For every ¢ > 0,

Proof. We proceed by induction on <.
Base case (i = 0). Since Uy contains only the root node, it trivially follows that: Ty = Top 5 (Up).

Inductive step. Assume Ty, = Top y (U},) holds for some k > 0. Note that:
Ukp1 = Uk U Vig1, Vi1 = {n|depth(n) =k +1} = |] child(p).
PEVE
Because of monotonicity, any node p € Uy, \ T}, satisfies

v(p) < min v(n) < min wv(n).

n€Ty n€ET 41

Hence, all its children ¢ € child(p) have lower values and cannot enter Top y (Ug+1). Therefore, the
only valid new candidates at depth k£ + 1 are children of nodes in T}, i.e. Cj1. Thus,

Topy (Ugt1) = Topy (Tx U Cpp1) = Thet1,
completing the induction. O

Theorem 3 (Termination). When the algorithm halts, the final set 7' equals Topx (7), the N
highest-value nodes in the entire tree.

Proof. Let
d = max{depth(n) | n € Topy(T)}.
From Theorem after d iterations,
Td = TOpN(Ud).

Since all node of depth < d lies in Uy, and no deeper node can surpass their ancestors due to
monotonicity, it follows that Top y (U4) = Topy (7). No further changes occur beyond depth d,
thus the algorithm halts with: T, = Ty = Top (7). O

C PROOF OF THEOREMII

Before beginning the proof, if B < |Vocab|, we can observe that Q always has > B elements after
the first iteration; when at least a single node was expanded in the previous iteration, each expanded
node will try to push |Vocab| > B child nodes into Q. In a practical implementation, as Q will only
maintain N (> B) elements, we do not need to push all [Vocab| childs but only a few high-probability
childs. Such an implementation detail does not affect the correctness of Algorithm [2]or Theorem I]as
it will still produce the same Q.
Proof. Partition the sets as follows:
D;i=X; UY, X; NY;=0, Diy1=2Zip1 U Wigq, Zign N Wig1 =0,
where
X; ={(pr,n) € D; | I(pr',n) € Djy1 : parent(n’) =n}, Y, =D;\ X.
ZH—I = {(p?"/, n/) S Di+1 | parent(n') € DZ}, Wi—i—l = Di+1 \ Zi+1,

For any (pr’,n') € Z;+1, n' is a child of only one parent n, where (pr,n) € X;. Then, for

Ziz1in =A{(pr',n") € Ziy1 | parent(n’) = n},

15

Under review as a conference paper at ICLR 2026

{Zit1,n} (npryex, is apartition of Z; 1. As [Z; 11 n| < |Djy1| < B < [Vocab| = [child(n)|,
SRR VRN S
(pr',n')€EZ; 41 (pryn)eX; (pr',n')€Zit1,n

Z Z pr - pgzi)l i(n) (n’) (probability product)
(pryn)€X; (pr',n')EZiv1,n

Z pr- Z pégi)ld(n) (n')

(pr,n)€X; (pr',n')EZiy1n
d

< Z pr- Z pihi)ld(n)(n/)

(prn)eX; n’ Echild(n)

= > pr (total probability)
(pr,n)€X;

Thus,

DOER R D DI (D DR

(pr,n)€D; (pr',n')EZ; 41 (pr,n)€Y;

Also, an element (pr’,n’) € W, is an element of @ not chosen to be included in D; from the
previous iteration due to its lower priority (pr’). Therefore, for any (pr,n) € Y; C D;, pr > pr'; ie.,

Y(pr,n) €Y;, pr> max pr.
(pr',n")eEW,;41

Now, we want to show that |[W;;1| < |Y;|. Note that |Z; 1| > |X;| because an element in | X|
has one or more non-overlapping child in | Z;;1|. When |D;| = B, |W;t1] = |Dit1| — | Zig1]| <
|D;| — | X;| = |Yi] holds.

When |D;| < B, this means that some of the B elements chosen from Q; were smaller than ¢;. Then,
because W, consists of elements of Q;, that has not been expanded in the previous iteration,
they must come from the leftovers of Q;, which are smaller than ¢;. Also, because G only retains
high-probability nodes, €;11 > ¢; holds. Therefore, pr’ < €;11 for any (pr’,n’) € W;;1, which
means that they must have been discarded in Line[12]of Algorithm[2] This leads to ;1 = 0 and
|[Wit1| < |Y;] trivially holds.

Putting these all together,

Z pr > Z pr’ + Z r

(pryn)€D; (pr',n')€Z;41 (pr,n)€Y;

> Z pr' +1Y;| max pr
(pr',n')EZ;it1 (pr'm)EWina
> Z pr' +|Wiga] max pr'
(pr',n/)EW,;41
(pr',n')EZ; 41
> D it >
(pr',n')E€Z; 41 (pr’',n')EW;11
- Y
(pr',n")ED; 41
Hence, S; > S;1, proving the monotonic decreasing property of {.S;}. O

D EXPERIMENTAL DETAILS AND ASSETS USED

We used the same ShareGPT dataset for all training runs, allocating 95 % of the data to training
and 5 % to validation. The maximum sequence length was set to 2,048 tokens, and the tree (or
sequence) depth during training was fixed to three. As in EAGLE and HASS, we built questions

16

Under review as a conference paper at ICLR 2026

and answers from a fixed prompt template and trained the draft model to predict the target model’s
outputs. We set the learning rate to 3e-4 and employed a cosine-annealing scheduler with a warm-up
phase. The entire training procedure was designed to finish within one day on two NVIDIA A100
80 GB GPUs. We used the AdamW optimizer with beta = (0.9, 0.95) (Loshchilov & Hutter} 2019)).
The core implementation relies on PyTorch and Hugging Face’s Transformers library, while the
optimal-tree construction with SALF logic was written in C++ (using OpenMP and the PyTorch C++
API) and was bound to Python via pybind11.

Inference for each method was performed with the following setting:
* Vanilla (without SpD): We used the Huggingface Transformers library with a PyTorch
backend.

* Beam search: We set the number of total candidate tokens in a tree (V) to 60, the top-k to
10, and the tree depth to 7.

¢ SALF: We set the number of total candidate tokens in a tree (/V) to 60, batch size (B) to
10, and the SALF threshold (th) to 0.6. Using a SALF threshold of 0.0 is equivalent to the
optimal tree search method.

E DECLARATION OF LLM USAGE

The authors of this manuscript declare that LLMs were used only for writing, editing, or formatting
purposes and that the LLM usage does not impact the core methodology, scientific rigorousness, or
originality of the research.

17

	Introduction
	Background
	Speculative Decoding (SpD)
	Draft Model Training: EAGLE & HASS
	Tree-based SpD & Dynamic Tree Construction: EAGLE-2 & SpecExec

	Method
	Training-Inference Misalignment for Tree-based SpD
	Training with a Tree-Aware Loss Function (TALF)
	Stopping at Low Further Gains (SALF) in Dynamic Tree Construction

	Evaluation
	Experimental Setup
	End-to-End Speedup
	Individual Benefits of SALF & TALF
	Parameter Sensitivity

	Related Work
	Conclusion
	Metrics Used in §3.1
	Dynamic Tree Construction Algorithms
	Proof of Theorem 1
	Experimental Details and Assets Used
	Declaration of LLM Usage

