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ABSTRACT

Speculative decoding (SpD) has emerged as a promising approach to accelerate the
slow autoregressive inference of large language models (LLMs). SpD leverages
a lightweight draft model to propose candidate tokens, which are then verified
in parallel by the target LLM. Recent advances in tree-based SpD significantly
improve efficiency by drafting token trees, enabling the verification of multiple
sequences at once. Given its strong empirical performance reported across nu-
merous studies, tree-based SpD is rapidly becoming dominant. However, existing
draft model training methods overlook the tree structure when defining the training
objectives, causing their training and inference distributions to become misaligned.
We address this limitation with a tree-aware loss function (TALF) that explicitly
incorporates the tree structure into draft model training. Using trees generated by
the target LLM, TALF aligns the draft model’s predictions with the target across all
branches, mitigating the misalignment. Further, we improve the tree construction
process in drafting with stopping at low further gains (SALF). As drafting iterations
search for potential high-probability tokens to add to the tree, we estimate aggregate
probability gains. This estimate guides the stopping criterion for drafting, enabling
us to balance computational cost against draft quality for maximum performance.
Together, SALF & TALF deliver 15.6–39.4% and 6.5–24.4% end-to-end speedups
over state-of-the-art SpD methods, EAGLE-2 and HASS, without altering the draft
model architecture.

1 INTRODUCTION

As large language models (LLMs) become integral to numerous real-world services, it is of great
social, economic, and environmental importance to perform LLM inference both rapidly and ef-
ficiently. LLMs generate tokens in an autoregressive manner, producing one token per decoding
iteration, which is then used to generate the next. Each iteration requires loading hundreds of billions
of parameters (Brown et al., 2020) from memory. This is especially problematic for edge devices
or similar environments with limited batching; without batching to amortize the memory load costs,
hardware utilization is severely damaged due to the memory bandwidth bottleneck (Park et al., 2024).

As an effective solution to this problem, speculative decoding (SpD) (Leviathan et al., 2023; Chen
et al., 2023) has been proposed. At a high level, SpD employs a lightweight draft model to speculate
the output of the target LLM. First, multiple autoregressive iterations are performed with the draft
model to create a short sequence of tokens (i.e., draft). Then, the draft is verified by the target LLM,
which decides whether to accept each token in the draft, in a single forward pass. As multiple tokens
can be generated per draft-verify, SpD enables generation of the same output sequence with fewer
target LLM iterations. Using orders of magnitude smaller draft models, substantial reductions in the
end-to-end LLM inference latency can be achieved.

Among various SpD approaches (see §5), EAGLE (Li et al., 2024b) and its successors (Li et al.,
2024a; Zhang et al., 2024b) show notable speedups and are widely integrated into mainstream LLM
serving frameworks, such as vLLM (Kwon et al., 2023), TensorRT-LLM (NVIDIA, 2025), and
SGLang (Zheng et al., 2024). Two key techniques constitute EAGLE. The former is its draft model
architecture with a single Transformer decoder (Vaswani et al., 2017) layer. Recent work, including
HASS (Zhang et al., 2025) and Griffin (Hu et al., 2025), further refines the training objectives to
better train the EAGLE draft model (detailed in §2.2).
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The latter is the adoption of tree-based SpD (Miao et al., 2024). Instead of producing a single linear
sequence of candidate tokens, the draft model generates a tree that captures multiple branching
hypotheses. This draft tree can still be verified in a single forward pass by replacing the standard
attention (Vaswani et al., 2017) in the target LLM with tree attention (Miao et al., 2024). As a
single tree encompasses multiple probable sequences in a compact form, it significantly increases the
number of tokens generated per draft-verify (τ ). Following work, EAGLE-2 (Li et al., 2024a), further
introduces a dynamic tree construction algorithm that leverages token probabilities from the draft
model, modifying the tree structure to incorporate more high-probability tokens in the tree.

While tree-based SpD is becoming a standard technique as evidenced by numerous related stud-
ies (Zhang et al., 2025; Hu et al., 2025; Li et al., 2024b;a; Miao et al., 2024; Chen et al., 2024a;
Spector & Re, 2023; Sun et al., 2023; Ankner et al., 2024; Cai et al., 2024; Svirschevski et al.,
2024), previous approaches fall short of exploiting its full potential in both training and inference.
In particular, prior draft model training methods only focus on the most probable tokens, whereas
tree-based SpD demands exploring alternative token candidates.

To address this, we introduce a tree-aware loss function (TALF) for SpD. An ideal draft model
would generate the same tree as the target LLM. Therefore, we make the target LLM construct a tree
dynamically during training. At each tree node (token), we compute a cross-entropy loss between the
next-token probability distributions of the draft and target models. We then aggregate this loss over
the entire tree, guiding the draft model to generate target-aligned trees.

We also propose a novel dynamic draft tree construction algorithm with a conditional stopping
criterion, named stopping at low further gains (SALF). We develop methods to predict further gains
from continuing drafting and to stop when the gains fall below a configurable SALF threshold. SALF
offers speedups over existing dynamic tree construction methods by delivering a balanced solution
that trades off tree optimality (Svirschevski et al., 2024) with drafting overhead. SALF and TALF
together result in 2.16–3.48× end-to-end speedups for Llama-based models (Touvron et al., 2023;
Llama Team, AI @ Meta, 2024; Deepseek-AI, 2025) in various tasks, improving upon EAGLE-2 and
HASS by 15.6–39.4% and 6.5–24.4%, respectively.

2 BACKGROUND

T denotes the target LLM and D denotes a small draft model imitating T. Values derived from D are
marked with a superscript ·(d). At a time step s, we try to generate a token xs+1 from the previous
tokens x1:s. For notational convenience, we ignore the initial prefix prepared for each text generation.

2.1 SPECULATIVE DECODING (SPD)

First SpD constructions by Chen et al. (2023) and Leviathan et al. (2023) used a lightweight draft
model (e.g., a 4B LLM) to generate a short sequence of candidate tokens (x(d)

s+1, x
(d)
s+2, · · · ) following

x1:s through multiple autoregressive drafting iterations. The candidates are verified with the target
LLM (e.g., a 70B LLM) through parallel processing of ps+1←T(x1:s), ps+2←T([x1:s, x

(d)
s+1]), · · · ,

computed together in a single forward pass. Based on the probability distributions (ps+1, ps+2, · · · ),
we decide whether to accept each candidate token. For example, when ps+1(x

(d)
s+1) is likely but

ps+2(x
(d)
s+2) is not, xs+1 ← x

(d)
s+1, xs+2 is sampled from ps+2, and the verification ends. Two key

metrics are used to evaluate SpD: 1) end-to-end latency of LLM inference, including times spent with
T and D, and 2) mean generation length (τ ), the average number of tokens generated per verification.

2.2 DRAFT MODEL TRAINING: EAGLE & HASS

EAGLE (Li et al., 2024b) designs a small draft model with a single Transformer decoder (Vaswani
et al., 2017) block to accelerate SpD. During inference, features produced from the last decoder
block of the target LLM (f1:s−1) as well as x2:s (rather than x1:s so that |x2:s| = |f1:s−1|) are
fed into the draft model. The draft model performs autoregressive iterations with these inputs;
i.e., p(d)s+1, f

(d)
s ← D(x2:s, f1:s−1), then p

(d)
s+2, f

(d)
s+1 ← D([x2:s, x

(d)
s+1], [f1:s−1, f

(d)
s ]) with x

(d)
s+1

sampled from the speculated probability distribution p
(d)
s+1, and so on. Verification of the candidate

tokens are handled in the same way.
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Figure 1: Draft model training process of EAGLE (Li et al., 2024b), HASS (Zhang et al., 2025), and
TALF. With the precomputed training sequence x1:L, training is performed for time steps 1 < s < L.

During training, EAGLE aligns the draft model with the target LLM for features (f (d)
s with fs) as well

as the probability distributions (p(d)s+1 with ps+1). First, the target LLM produces a training sequence
x1:L, their corresponding features (f1:L−1), and probability distributions (p1:L) through autoregressive
iterations. Using them as soft labels, a drafting iteration (p(d)s+1, f

(d)
s ← D(x2:s, f1:s−1)), a loss

calculation, and a gradient-based draft model update are performed for each time step s.

Despite numerous SpD proposals, most rely on standard knowledge distillation (Hinton et al., 2015)
as their training objective, using the target LLM’s output as soft labels. Similarly, EAGLE trains its
draft model using a combination of two loss functions:

• Regression loss to align the features: Lreg = ∥fs − f
(d)
s ∥1.

• Classification loss to align the probability distributions: Lcls = −
∑

v ps+1(v) · log p(d)s+1(v).

HASS (Zhang et al., 2025) identifies a misalignment between training and inference in EAGLE.
During inference, speculated features (f (d)

s , · · · ) produced from the draft model are added to the
inputs since the second drafting iteration. By contrast, EAGLE’s drafting iteration during training
only involves inputs produced by the target model (x2:s and f1:s−1). To mitigate this, HASS modifies
the training process and its loss function. The draft model follows through a short target LLM output
sequence (e.g., x1:s → xs+1 → xs+2 → ps+3), while feeding feature speculations generated by
itself (f (d)

s and f
(d)
s+1) back as input (see Figure 1). Then, for this sequence, HASS gathers Lreg and

Lcls losses comparing features and probability distributions generated by the draft model with those
from the target LLM. In this way, HASS reflects the feature-related inference behavior of the draft
model in the training objective. HASS also introduces a top-K (e.g., K = 10) distillation loss, which
can be orthogonally applied to Lcls to put more emphasis on K highest-probability tokens.

2.3 TREE-BASED SPD & DYNAMIC TREE CONSTRUCTION: EAGLE-2 & SPECEXEC

Tree-based SpD (Miao et al., 2024) goes beyond verifying one sequence; it organizes multiple draft
sequences into a tree structure and verifies the entire tree at once, effectively increasing the mean
acceptance length (τ ). As a number of tokens can show high probabilities in p

(d)
s+1, we sample multiple

tokens from p
(d)
s+1 and continue the next drafting iterations each with a different x(d)

s+1. Repeating
such will create a tree of candidate tokens, where each path from the root node (xs) to a leaf node
represents a draft sequence. The entire tree can be verified by the target LLM in a single forward pass
with little overhead by using tree attention (Miao et al., 2024).
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Figure 2: (a) Proportion of candidate tokens, which constitute the draft tree during inference, by
rank on the probability distribution. (b) Top-1 accuracy and expected calibration error (ECE) for a
draft model trained with EAGLE, HASS, and TALF when self-conditioned on a token ranked n-th
(n = 1, 2, 3, 4, and 5) on the previous speculated probability distribution.

EAGLE-2 (Li et al., 2024a) constructs the tree dynamically during inference. It utilizes the spec-
ulated probability distribution (p(d)) to compute Pr(x(d) | x1:s) for each token (node) x(d) in the
tree. EAGLE-2 performs a simple beam search (Ow & Morton, 1988) to find high-probability
nodes with little drafting overhead. Meanwhile, the optimal tree construction approach from
SpecExec (Svirschevski et al., 2024) has attempted to maximize the sum of the probabilities for a
given number of nodes (N ). However, this “optimal” approach involves a large search space, poten-
tially damaging the end-to-end performance with increased drafting overhead. Refer to Appendix B
for more details on prior dynamic tree construction methods.

3 METHOD

3.1 TRAINING-INFERENCE MISALIGNMENT FOR TREE-BASED SPD

We observe that, although inference relies on tree-based SpD, prior draft model training methods still
use token sequences—rather than trees—generated by the target model as references. This creates a
training-inference mismatch: the accuracy (τ ) of the draft model depends on how well its entire draft
tree aligns with the target model, yet sequence-based training overlooks the opportunity to improve
the draft model’s ability to explore alternative tree nodes with fairly high probabilities.

For quantification, we evaluate how the draft models trained with EAGLE and HASS perform when
self-conditioned on a lower-probability token. We used the setup described in §4.1 over a held-out test
set Dtest, each element of which is an input sequence x1:s. After the first drafting iteration producing
p
(d)
s+1 ← D(x2:s, f1:s−1), we simulated inference by feeding the draft model’s own prediction x

(d)
s+1

sampled from p
(d)
s+1 back as input to itself. We observed how the choice of x(d)

s+1 in p
(d)
s+1 affects the

next drafting iteration result (p(d)s+2), where x(d)
s+1 is ranked n-th (n = 1, 2, 3, 4, 5) in p

(d)
s+1. Meanwhile,

we also made the target LLM predict the (s+2)-th token x̃s+2 when conditioned on our x(d)
s+1 choice.

We measured how well p(d)s+1 predicts x̃s+2 according to the choice of x(d)
s+1 using accuracy and

expected calibration error (ECE) (Guo et al., 2017) as metrics (detailed in Appendix A).

While HASS improves both ECE and accuracy when conditioned on 1st-ranked tokens, the gains are
marginal or even negative for lower-ranked tokens (see Figure 2(b)), suggesting that draft models
trained with HASS underperform on tree nodes outside the best draft sequence. Empirically, although
1st-ranked tokens possess the largest portion (roughly 55%) in the final draft tree, lower-ranked tokens
are not negligible, where those ranked 5th or lower account for over 10% (see Figure 2(a)).

3.2 TRAINING WITH A TREE-AWARE LOSS FUNCTION (TALF)

These observations motivate us to propose a tree-aware loss function (TALF), which aggregates cross-
entropy loss terms over dynamic draft tree nodes, effectively reflecting the inference behavior of the

4
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Algorithm 1 TALF Training Procedure
Require: Target model T, draft model D, the number of nodes N

1: for all training sequence do
2: T builds a tree G with N nodes using a dynamic tree construction algorithm
3: for all tree node n in G do
4: Let x[n] be the sequence of tokens represented by the node n
5: pchild(n) ← T(x[n]) ▷ Precomputed during tree generation

6: p
(d)
child(n) ← D(x[n]) ▷ Optimize with tree attention (input features omitted for brevity)

7: Compute cross-entropy loss

Ln = −
∑

v∈Vocab

pchild(n)(v) log p
(d)
child(n)(v)

8: Backpropagate D with L =
∑

n∈G Ln

draft model in the training objective. Compared to HASS, TALF yields only marginal improvements
in the 1st-ranked case, but achieves 5% accuracy gains and 0.05 ECE drops for lower-ranked cases
(see Figure 2(b)).

The training procedure with TALF is shown in Algorithm 1 and Figure 1. We first make the target
model generate a tree dynamically, setting each token in a training sequence as the root node
(xs → ps+1 node). We make the draft model follow through the path from the root node to each node
(n) of the tree, while feeding f (d) back as input as in HASS. We compute cross-entropy loss between
the speculated (p(d)child(n)) and the target (pchild(n)) probability distributions for the token following n.
Per-node losses are aggregated to compute the final loss.

Before training, the tree shape and the soft labels at each node (i.e., next-token predictions) are
preprocessed by the target model. Making the draft model dynamically construct the tree at training
time would generate a different tree structure for each training epoch, requiring multiple target model
invocations. As this would incur prohibitively high computational cost, we make the target model fix
the tree structure in advance, which can be reused for multiple training epochs.

As shown in Figure 1, we process multiple nodes on the same tree depth together using tree attention,
which significantly accelerates the training process of TALF. We modify the attention-masking
technique of HASS, which was originally designed for sequential inputs, to support tree structures.
While any dynamic tree construction algorithms can be used, we employ the simple beam search
method of EAGLE-2 for training. Sophisticated algorithms, such as the one used in SpecExec (see
§2.3), would cause an increase in the preprocessing cost due to additional data structures that require
complex handling (e.g., Q and D in Algorithm 2).

Unlike EAGLE and HASS, TALF does not use a regression loss for feature alignment. In our
experiments, training solely on the token probability distributions across multiple nodes was sufficient
for the model to learn to use features in an autoregressive manner, yielding better performance.

3.3 STOPPING AT LOW FURTHER GAINS (SALF) IN DYNAMIC TREE CONSTRUCTION

Existing dynamic tree construction methods either fail to include some high-probability tokens in
the tree (e.g., beam search from EAGLE-2) or require a lot of drafting overhead to search for all
possible high-probability tokens (e.g., optimal tree search from SpecExec). We develop Algorithm 2
to address these issues with a balanced dynamic tree construction method.

We extend the optimal tree search method by introducing stopping at low further gains (SALF), a
conditional criterion for efficient drafting. For constructing a tree with N nodes, we use a priority
queueQ with a fixed capacity of N . Q keeps high-probability nodes that have not yet been expanded,
i.e., they have not been processed by the draft model to generate their child nodes. Per iteration, we
pick B highest-probability nodes from Q for expansion, move them to the output tree G, and insert
their child nodes into Q. If we repeat this (Algorithm 2 without the red blocks), it is guaranteed to
find the highest-probability nodes for the draft tree (see Appendix B for the proof).

5
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Algorithm 2 Dynamic Tree Construction with SALF

Require: Draft model D, the number of nodes N , batch size B (≤ N ), SALF threshold th ≤ 1

Ensure: Tree G containing the top-N high-probability nodes
1: G ← {(pr = 1, n = root node)} ▷ G contains up to N nodes with high pr
2: Init a capacity-N priority queue Q ← G ▷ Q contains up to N non-expanded nodes with high pr
3: while true do
4: Init an empty list D
5: for b in 0..B do ▷ Select B nodes to expand
6: if Q.empty() then break
7: (pr, n)← Q.pop()
8: G.push((pr, n))
9: D.append((pr, n))

10: ϵ← min{ pr | (pr, n) ∈ G }
11: if |G| < N then ϵ← 0

12: D ← { (pr, n) ∈ D | pr > ϵ } ▷ Ignore nodes that cannot go into G due to low pr

13: if
∑

(pr,n)∈D pr < th then break
14: for all (pr, n) ∈ D do ▷ Optimize with batched tree expansion
15: Let x[n] be the sequence of tokens represented by the node n

16: p
(d)
child(n) ← D(x[n]) ▷ (input features omitted for brevity)

17: for all v ∈ Vocab do
18: Let n′ be a child node of n representing the next token v

19: pr′ ← pr · p(d)child(n)(v) ▷ Probability product calculation

20: Q.push((pr′, n′)) ▷ Q automatically discards low-pr entries when (# of entries) > N

However, the final goal of SpD is not to search for the highest-probability nodes but to minimize the
end-to-end latency. We observe that the aforementioned process incurs excessive drafting overhead at
deeper tree depths due to the large number of nodes with modest probabilities.

SALF (highlighted in red in Algorithm 2) addresses this problem by stopping when further drafting
iterations is unlikely to increase the overall probability of the tokens included in the tree. Concretely,
we stop drafting if the nodes in D, whose entries are extracted from the top-B highest-probability
nodes in Q, have a low probability sum. The probability sum monotonically decreases for each
iteration (Theorem 1, see Appendix C for the proof), allowing us to precisely identify the point at
which the expected benefit of further drafting falls below a configurable SALF threshold (th). SALF
achieves significant speedups due to reduced drafting overhead.

Theorem 1 (monotonically decreasing probability sum). Let Di denote the value of D at the early-
stopping check (line 13) in the i-th iteration of the main loop in Algorithm 2. Define the sum of the
probabilities of the entries inDi as Si =

∑
(pr,n)∈Di

pr. Then, given that B < |Vocab|, the sequence
{Si} is monotonically decreasing:

∀i ≥ 2, Si > Si+1

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models. We used Llama-2-7B-Chat (Llama2-7B) (Touvron et al., 2023), Llama-3.1-8B-Instruct
(Llama3-8B) (Llama Team, AI @ Meta, 2024), and DeepSeek-R1-Distill-Llama-8B (Deepseek-AI,
2025) for evaluation.

Tasks. We used test datasets with varying characteristics: MT-bench (Zheng et al., 2023), Hu-
maneval (Chen et al., 2021), GSM8k (Cobbe et al., 2021), Alpaca (Taori et al., 2023), and CNN/Daily
Mail (Nallapati et al., 2016). We set the inference batch size to one, following EAGLE and HASS.
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Table 1: Mean SpD speedup (vs. execution without SpD) for various models, tasks, and temperatures.
Relative mean improvements of SALF & TALF compared to EAGLE-2 and HASS are also shown.

Model Method MT-bench HumanEval GSM8K Alpaca CNN/DM Mean

Temperature = 0 (Greedy)

Llama2-7B
EAGLE-2 2.71× 3.09× 2.81× 2.59× 2.26× 2.68× (+15.6%)
HASS 2.95× 3.39× 3.00× 2.75× 2.51× 2.91× (+06.5%)
SALF & TALF 3.11× 3.48× 3.19× 3.02× 2.72× 3.09×

Llama3-8B
EAGLE-2 2.10× 2.44× 2.21× 2.11× 1.82× 2.13× (+35.0%)
HASS 2.33× 2.89× 2.58× 2.35× 2.05× 2.42× (+18.4%)
SALF & TALF 2.79× 3.25× 2.99× 2.81× 2.56× 2.87×

Deepseek-R1-
Distill-Llama-8B

EAGLE-2 1.94× 2.09× 2.11× 1.84× 1.69× 1.93× (+28.0%)
HASS 2.02× 2.21× 2.23× 1.91× 1.72× 2.01× (+22.9%)
SALF & TALF 2.48× 2.64× 2.66× 2.40× 2.19× 2.47×

Temperature = 1 (Non-Greedy)

Llama2-7B
EAGLE-2 2.52× 2.94× 2.72× 2.42× 2.20× 2.55× (+18.0%)
HASS 2.78× 3.10× 2.96× 2.76× 2.36× 2.78× (+08.1%)
SALF & TALF 2.96× 3.25× 3.19× 3.00× 2.67× 3.01×

Llama3-8B
EAGLE-2 1.54× 2.20× 1.90× 1.73× 1.56× 1.77× (+39.4%)
HASS 1.68× 2.53× 2.15× 2.00× 1.73× 2.00× (+23.7%)
SALF & TALF 2.14× 2.94× 2.65× 2.46× 2.23× 2.47×

Deepseek-R1-
Distill-Llama-8B

EAGLE-2 1.70× 1.94× 2.01× 1.70× 1.58× 1.78× (+28.4%)
HASS 1.79× 2.02× 2.09× 1.74× 1.59× 1.84× (+24.4%)
SALF & TALF 2.22× 2.46× 2.54× 2.21× 2.03× 2.28×

Training. We trained the draft models with a ShareGPT (Aeala, 2023) dataset containing 68,000
dialogues. For Llama2-7B and Llama3-8B, we first trained the draft model for ten epochs using the
original EAGLE loss. The trained draft model is used for evaluating EAGLE and EAGLE-2, which
only differ in drafting. Then, we performed additional training with the ten-epoch-trained draft model
using either HASS or TALF as a loss function for three epochs. For, Deepseek-R1-Distill-Llama-8B,
we took a different approach to account for longer training time required for training with HASS or
TALF. We trained each model (EAGLE, HASS, and TALF) for the same amount of time (24 hours on
a system with two H100 80GB GPUs), which allows a fair comparison regarding the training cost.

Hyperparameters. For EAGLE and HASS, we set the classification loss weight and the top-10
distillation loss weight 10× higher than the feature regression loss weight (λcls = λdistil = 10, λreg =
1). We set the sequence/tree depth to three for HASS/TALF and used k = 4 to construct the tree
when training with TALF. More training details are described in Appendix D.

Inference. We performed end-to-end LLM inference using the Hugging Face Transformers library
with a PyTorch backend. For EAGLE-2 and HASS, we used their respective open-source implemen-
tations. We set N = 60, k = 10, and depth = 7 for beam search (used in EAGLE-2 and HASS). For
SALF, we used Algorithm 2 with N = 60, B = 10, and a SALF threshold of th = 0.6 by default.
All inference experiments were executed on a system with a single NVIDIA A100 80GB GPU (PCIe).
Speedups relative to the baseline LLM inference without SpD were measured.

4.2 END-TO-END SPEEDUP

SALF & TALF outperform existing methods across every model and dataset we tested. Table 1
summarizes the end-to-end speedups (vs. execution without SpD) achieved by using SALF &
TALF. Compared to EAGLE-2 and HASS, SALF & TALF achieve consistent mean improvements
of 1.16–1.39× and 1.07–1.24×, respectively, under both greedy (temperature = 0) and non-greedy
(temperature = 1) sampling cases. Furthermore, benefits of using SALF & TALF become more
pronounced when stronger target LLMs (e.g., Deepseek-R1-Distill-Llama-8B) are employed. This
stems from the greater difficulty draft models face in aligning with stronger target LLMs, a challenge
that SALF & TALF address more effectively by enabling optimized tree-based SpD.
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Table 2: Comparison of speedup and mean generation length (τ ) for various (tree construction
method, loss) combinations. The target LLM is Deepseek-R1-Distill-Llama-8B.

Tree
constr.
method

Loss MT-bench HumanEval GSM8K Alpaca CNN/DM Mean

Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Beam
search

EAGLE-2 1.76× 3.42 1.91× 3.76 1.95× 3.80 1.66× 3.21 1.51× 2.98 1.75× 3.44
HASS 1.84× 3.61 2.03× 3.98 2.09× 4.04 1.75× 3.39 1.55× 3.06 1.84× 3.62
TALF 1.98× 3.87 2.16× 4.23 2.26× 4.42 1.85× 3.59 1.66× 3.28 1.97× 3.88

Optimal
tree
search

EAGLE-2 1.94× 3.54 2.09× 3.87 2.11× 3.88 1.84× 3.36 1.69× 3.13 1.93× 3.56
HASS 2.02× 3.70 2.21× 4.08 2.23× 4.10 1.91× 3.47 1.72× 3.17 2.01× 3.70
TALF 2.19× 3.98 2.34× 4.30 2.44× 4.49 2.04× 3.71 1.84× 3.40 2.16× 3.98

SALF
EAGLE-2 2.31× 3.33 2.44× 3.68 2.39× 3.58 2.26× 3.18 2.07× 2.93 2.29× 3.34
HASS 2.41× 3.60 2.55× 3.99 2.52× 3.96 2.30× 3.39 2.12× 3.09 2.37× 3.61
TALF 2.48× 3.73 2.64× 4.07 2.66× 4.16 2.40× 3.50 2.19× 3.20 2.47× 3.73

4.3 INDIVIDUAL BENEFITS OF SALF & TALF

We measured speedups and mean generation lengths (τ ) for different combinations of loss functions
and tree-construction methods to isolate the benefits of SALF and TALF (see Table 2).

TALF vs. prior loss functions. When using the same tree construction method for all three loss
functions, TALF improves τ over EAGLE-2 and HASS by 12.9/11.8/11.7% and 7.2/7.3/3.5% under
beam/optimal/SALF tree search circumstances, respectively. These improvements are consistent
across all benchmarks, showing that aligning the training objective with SpD drafting generalizes
beyond any single task suite.

SALF vs. prior tree construction methods. For any loss function, moving from beam search
to optimal tree search increases τ . Per-benchmark deltas are consistently positive, indicating that
the candidate token set from simple beam search is suboptimal, and that globally selecting the
acceptance-maximizing tree provides additional gains beyond the loss function. When SALF is
added to optimal tree search, τ decreases by 6.2%, 2.4%, and 6.3% for EAGLE-2, HASS, and TALF,
respectively, while end-to-end performance increases by 18.6%, 17.9%, and 14.4%. As the model
trained with TALF is better calibrated on lower-ranked branches, it has fewer wasteful nodes that are
ignored with SALF, yielding smaller incremental speedups than the cases with EAGLE-2 or HASS.

4.4 PARAMETER SENSITIVITY

Table 3: Mean generation length (τ ) with different top-k settings for training TALF. The tree size
used for training increases for larger k. The target LLM is Deepseek-R1-Distill-Llama-8B.

Loss (top-k) MT-bench HumanEval GSM8K

HASS (top-1) 3.70 4.08 4.10
TALF (top-1) 3.71 4.08 4.31
TALF (top-2) 3.83 4.23 4.48
TALF (top-4) 3.98 4.30 4.49

Top-k for training. Table 3 reports τ on three benchmarks as we vary k, which decides how wide
we will look to construct the tree during training; up to k-th-ranked tokens will be included in the
tree. TALF with k = 1 is almost the same as HASS. As we increase k, more lower-ranked tokens are
considered, enhancing τ . We chose to use k = 4 as our default setting to obtain higher τ .

SALF threshold (th) for drafting. We measured the impact of using different SALF thresholds
(th) across three benchmarks. For lower th, we get closer to generating a draft tree with highest-
probability tokens, leading to higher τ . However, when th is too low, the actual end-to-end latency
may increase due to excessive drafting overhead. Using th = 0.5 yields the highest mean speedup
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Table 4: Performance with various SALF thresholds (th) used for tree construction during drafting.
The target LLM is Deepseek-R1-Distill-Llama-8B.

MT-bench HumanEval GSM8K Mean

Threshold (th) Speedup τ Speedup τ Speedup τ Speedup τ

0.0 2.19× 3.98 2.34× 4.30 2.44× 4.49 2.32× 4.26
0.1 2.25× 3.99 2.36× 4.31 2.46× 4.49 2.36× 4.26
0.2 2.37× 3.97 2.46× 4.31 2.56× 4.49 2.46× 4.26
0.3 2.45× 3.94 2.58× 4.30 2.63× 4.45 2.55× 4.23
0.4 2.49× 3.90 2.62× 4.26 2.64× 4.38 2.58× 4.18
0.5 2.52× 3.82 2.65× 4.17 2.69× 4.29 2.62× 4.10
0.6 2.48× 3.73 2.64× 4.07 2.66× 4.16 2.59× 3.99
0.7 2.47× 3.59 2.63× 3.92 2.65× 3.99 2.58× 3.83
0.8 2.39× 3.38 2.54× 3.72 2.59× 3.78 2.51× 3.63
0.9 2.27× 3.11 2.43× 3.40 2.43× 3.44 2.37× 3.32

for Deepseek-R1-Distill-Llam-8B (2.62×) based on Table 4. However, we observed more consistent
performance improvements for the tested target LLMs when th = 0.6 (default). Tuning th based on
the model or adapting it dynamically during inference is a potential direction for future work.

5 RELATED WORK

While the draft-verify paradigm of SpD can be attributed to blockwise decoding (Stern et al., 2018),
Leviathan et al. (2023) and Chen et al. (2023) developed a verification method based on rejection
sampling, which allows an exact simulation of the target LLM’s output probability distribution.
Tree-based SpD, first proposed in SpecInfer (Miao et al., 2024), exploits tree attention to verify
a draft tree in a single forward pass. Tree attention adds a tree attention mask, which represents
the causality (edges) within the tree, to a regular attention (Vaswani et al., 2017) layer. Numerous
following studies (Zhang et al., 2025; Hu et al., 2025; Li et al., 2024b;a; Miao et al., 2024; Chen
et al., 2024a; Spector & Re, 2023; Sun et al., 2023; Ankner et al., 2024; Cai et al., 2024; Svirschevski
et al., 2024) have adopted tree-based SpD. While early work has used a fixed (e.g., Sequoia (Chen
et al., 2024a)) tree structure, recent studies (Li et al., 2024a; Svirschevski et al., 2024; Zhang et al.,
2025; Hu et al., 2025) dynamically construct the tree during drafting. Further improvements, such as
dynamically adjusting the tree depth in AdaEagle (Zhang et al., 2024b), have also been proposed.

Also, various approaches have been proposed for drafting, such as using a smaller model from the
same LLM family (Sun et al., 2023; Chen et al., 2024b; Spector & Re, 2023; Leviathan et al., 2023;
Chen et al., 2023; He et al., 2024), employing an independent fine-tuned model (Kim et al., 2023;
Miao et al., 2024; Liu et al., 2024b; Zhou et al., 2024), inserting additional heads for drafting into the
target LLM (Cai et al., 2024; Ankner et al., 2024; Stern et al., 2018), and reusing the target LLM
while skipping some of its layers during drafting (Zhang et al., 2024a; Elhoushi et al., 2024; Liu et al.,
2024a; Xia et al., 2025). EAGLE (Li et al., 2024b) is a hybrid approach employing a fine-tuned draft
model that also leverages features from the target LLM, extending the additional-head approach.

6 CONCLUSION

We have identified a fundamental mismatch between how existing tree-based SpD methods are trained
and how they are used at inference. To address this, we introduced TALF, a novel loss function and its
training procedure that aligns the draft model’s output distribution over the entire expansion tree with
that of the target LLM. We further developed a systematic approach for building the tree dynamically
through SALF with a provable monotonicity guarantee, reducing unnecessary drafting computations
during inference. Experiments on various benchmarks show that the combined use of SALF & TALF
consistently outperforms state-of-the-art SpD solutions, EAGLE-2 and HASS, yielding 1.16–1.39×
and 1.07–1.24× wall-clock speedups without any generation quality degradation.
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REPRODUCIBILITY STATEMENT

All code used for data preprocessing, model training, evaluation, and figure generation is provided
in the supplementary materials, including scripts such as preprocess.py, train.py, evaluate.py, cali-
bration.py, and graph.py. Detailed descriptions of the experimental setup, model architectures, and
hyperparameters are included in §4.1 and §D. The datasets used in our experiments are either publicly
available or described in detail, with data processing steps documented in the supplementary materials.
For theoretical results, all assumptions and complete proofs are provided in the §B and §C.
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A METRICS USED IN §3.1

For the experimental setup detailed in §3.1, we use the following two metrics to assess how well
p
(d)
s+2 predicts x̃s+2 for a test set Dtest:

• Top-1 accuracy (higher is better):

Acc(Dtest) =
1

|Dtest|
∑

x1:s∈Dtest

1
{
arg max

v∈Vocab

(
p
(d)
s+2(v)

)
= x̃s+2

}
• Expected calibration error (ECE) (lower is better) quantitatively measures statistical

calibration by comparing accuracy and confidence (Guo et al., 2017):

ECE =

M∑
m=1

|Bm|
|Dtest|

∣∣Acc(Bm)− Conf(Bm)
∣∣,

where Dtest is binned into M equisized bins Bm by the confidence (p(d)s+2(x̃s+2)) value and

Conf(Bm) =
1

|Bm|
∑

x1:s∈Bm

p
(d)
s+2(x̃s+2).

B DYNAMIC TREE CONSTRUCTION ALGORITHMS

Dynamic tree construction algorithms in speculative decoding aim to efficiently select high-probability
tokens by dynamically expanding a tree structure based on probability products. EAGLE-2 (Li et al.,
2024a) employs a dynamic tree construction method that expands only the top-k nodes at the deepest
tree depth according to their global acceptance probabilities Vi. Concretely, the global acceptance
probability Vn for a node n is computed as the product of the acceptance probabilities along the path
from the root node nroot to n:

Vn =
∏

n′∈path(nroot,n)\{nroot}

Pr(n′ | parent(n′)) ≈
∏

n′∈path(nroot,n)\{nroot}

p
(d)
child(parent(n′))(n

′).

The true probability distributions are unknown at inference time and, thus, are approximated by the
probability distributions produced by the draft model.

BEAM SEARCH

The tree search algorithm (illustrated in Figure 4(a)) of EAGLE-2 Li et al. (2024a) is based on a
simple beam search and consists of two phases:

1. Tree expansion (k and depth are parameters): At each expansion step, top-k nodes from
the deepest tree depth are selected. Each node is expanded by processing with the draft
model to generate up to k child nodes belonging to the next depth. This iterative expansion
process continues until the tree reaches a predefined depth.

2. Re-ranking (N is a parameter): After tree expansion, retain only top-N tokens with the
highest Vn values in the tree for verification.

However, this strategy is suboptimal; as it selects the next nodes to expand only in the deepest
tree depth, it may overlook higher-probability nodes elsewhere in the tree. For an exemplar tree in
Figure 3, a truly optimal tree expansion would prioritize the yellow nodes with higher Vn over the
pink nodes, which would be selected by EAGLE-2.

OPTIMAL TREE SEARCH

Our algorithm builds upon the optimal tree search method (Svirschevski et al., 2024). Specifically,
we provide the formulation of the optimal tree search problem as follows:

13
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How can

I 
(1.0)

Make 
(0.5)

Help 
(0.2)
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(0.15)
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(0.08)

You 
(0.1)
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(0.05)

Pen 
(0.05)

Today 
(0.03)

With 
(0.02)

0.5 0.2

0.5 0.3

0.20.2

0.4 0.5

0.3 0.2

Figure 3: Tree expansion process with EAGLE-2 (k = 2). Numbers in parentheses indicate global
acceptance probabilities (Vn) approximated by using the draft model.

expand TopK V1

expand TopK V23

2

1 expand TopK V0

expand TopNU1

expand TopNU23

2

1 expand TopNU0
V0

V1

V2

U0

U1

U2

⋯

⋯⋯

⋯ ⋯draft TopN V0 ~ Vd-1d

tN⋯tℓ⋯t1t0
✓ ✓ ✓ x xx

T𝑖 = TopNU𝑖
expand tℓ ~ t𝑛

c𝑀⋯c1c0
TopN		T$ ∪ 𝐶(𝑇$)

𝐶(𝑇!)

t’N⋯t’ℓ′⋯t’1t’0

✓ ✓ ✓ x x✓

T!"# = TopNU!"#

(a) EAGLE-2 tree construction (b) Optimal tree construction

✓: expanded x: not expanded

Figure 4: Tree expansion strategies: EAGLE-2 expands from deepest nodes, while optimal tree
construction expands across all depth.

Definition B.1 (Optimal tree Gopt). Given maximum tree depth d and size N , the optimal tree Gopt
consists of exactly N nodes, each nodes with depth≤ d, maximizing the sum of global acceptance
probabilities.
Definition B.2 (TopN operator). Let G be a rooted tree with nodes n having a value v(n) and depth
depth(n) (number of edges from the root). Define subset Ui = {n ∈ G | depth(n) ≤ i}. For a set
X ⊆ G, TopN(X) selects the N nodes with highest value:

TopN (X) := argmax S⊆X
|S|=N

∑
n∈S

v(n).

Definition B.3 (Monotonic Tree). A tree G is monotonic if each node n ∈ G satisfies

∀c ∈ child(n), v(c) < v(n),

where child(n) denotes the child nodes of n.

Definition B.1 imposes two critical constraints on the search algorithm: the maximal tree depth and the
fixed number of candidate nodes. First, the depth constraint reflects the cost of draft model inference
and also the diminishing returns associated with deeper searches; intuitively, the potential maximum
gain decreases as the depth i increases, bounded by N − i. Second, due to the computational expense
of target model inference, it is crucial to batch only a limited number of candidate tokens efficiently.

Figure 4(b) illustrates the optimal tree search process employed in algorithm 2. In summary, at
iteration i, the algorithm seeks to expand TopN (Ui). Due to exponential growth of Ui, with increasing
depth i, directly managing the set is impractical. Thus, the algorithm maintains a fixed size priority
queue Ti with capacity N , updating it iteratively according to

Ti+1 = TopN (Ti ∪ child(Ti)).

We now present Theorems 2 and 3, establishing the correctness of Algorithm 2 (without early
stopping) in identifying the optimal tree.

14
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Theorem 2 (Loop Invariant). For every i ≥ 0,

Ti = TopN
(
Ui

)
.

Proof. We proceed by induction on i.

Base case (i = 0). Since U0 contains only the root node, it trivially follows that: T0 = TopN (U0).

Inductive step. Assume Tk = TopN (Uk) holds for some k ≥ 0. Note that:

Uk+1 = Uk ∪ Vk+1, Vk+1 = {n | depth(n) = k + 1} =
⋃

p∈Vk

child(p).

Because of monotonicity, any node p ∈ Uk \ Tk satisfies

v(p) ≤ min
n∈Tk

v(n) ≤ min
n∈Tk+1

v(n).

Hence, all its children c ∈ child(p) have lower values and cannot enter TopN (Uk+1). Therefore, the
only valid new candidates at depth k + 1 are children of nodes in Tk, i.e. Ck+1. Thus,

TopN (Uk+1) = TopN
(
Tk ∪ Ck+1

)
= Tk+1,

completing the induction.

Theorem 3 (Termination). When the algorithm halts, the final set T equals TopN (T ), the N
highest-value nodes in the entire tree.

Proof. Let
d = max{depth(n) | n ∈ TopN (T )}.

From Theorem 2, after d iterations,

Td = TopN (Ud).

Since all node of depth ≤ d lies in Ud, and no deeper node can surpass their ancestors due to
monotonicity, it follows that TopN (Ud) = TopN (T ). No further changes occur beyond depth d,
thus the algorithm halts with: Tfinal = Td = TopN (T ).

C PROOF OF THEOREM 1

Before beginning the proof, if B < |Vocab|, we can observe that Q always has ≥ B elements after
the first iteration; when at least a single node was expanded in the previous iteration, each expanded
node will try to push |Vocab| > B child nodes into Q. In a practical implementation, as Q will only
maintain N (≥ B) elements, we do not need to push all |Vocab| childs but only a few high-probability
childs. Such an implementation detail does not affect the correctness of Algorithm 2 or Theorem 1 as
it will still produce the same Q.

Proof. Partition the sets as follows:

Di = Xi ∪ Yi, Xi ∩ Yi = ∅, Di+1 = Zi+1 ∪ Wi+1, Zi+1 ∩ Wi+1 = ∅,

where

Xi =
{
(pr, n) ∈ Di | ∃ (pr′, n′) ∈ Di+1 : parent(n′) = n

}
, Yi = Di \Xi.

Zi+1 =
{
(pr′, n′) ∈ Di+1 | parent(n′) ∈ Di

}
, Wi+1 = Di+1 \ Zi+1,

For any (pr′, n′) ∈ Zi+1, n′ is a child of only one parent n, where (pr, n) ∈ Xi. Then, for

Zi+1,n = {(pr′, n′) ∈ Zi+1 | parent(n′) = n} ,

15
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{Zi+1,n}(n,pr)∈Xi
is a partition of Zi+1. As |Zi+1,n| ≤ |Di+1| ≤ B < |Vocab| = |child(n)|,∑

(pr′,n′)∈Zi+1

pr′ =
∑

(pr,n)∈Xi

∑
(pr′,n′)∈Zi+1,n

pr′

=
∑

(pr,n)∈Xi

∑
(pr′,n′)∈Zi+1,n

pr · p(d)child(n)(n
′) (probability product)

=
∑

(pr,n)∈Xi

pr ·
∑

(pr′,n′)∈Zi+1,n

p
(d)
child(n)(n

′)

<
∑

(pr,n)∈Xi

pr ·
∑

n′∈child(n)

p
(d)
child(n)(n

′)

=
∑

(pr,n)∈Xi

pr (total probability)

Thus, ∑
(pr,n)∈Di

pr >
∑

(pr′,n′)∈Zi+1

pr′ +
∑

(pr,n)∈Yi

pr.

Also, an element (pr′, n′) ∈ Wi+1 is an element of Q not chosen to be included in Di from the
previous iteration due to its lower priority (pr′). Therefore, for any (pr, n) ∈ Yi ⊂ Di, pr ≥ pr′; i.e.,

∀(pr, n) ∈ Yi, pr ≥ max
(pr′,n′)∈Wi+1

pr′.

Now, we want to show that |Wi+1| ≤ |Yi|. Note that |Zi+1| ≥ |Xi| because an element in |Xi|
has one or more non-overlapping child in |Zi+1|. When |Di| = B, |Wi+1| = |Di+1| − |Zi+1| ≤
|Di| − |Xi| = |Yi| holds.

When |Di| < B, this means that some of the B elements chosen from Qi were smaller than ϵi. Then,
because Wi+1 consists of elements of Qi+1 that has not been expanded in the previous iteration,
they must come from the leftovers of Qi, which are smaller than ϵi. Also, because G only retains
high-probability nodes, ϵi+1 ≥ ϵi holds. Therefore, pr′ < ϵi+1 for any (pr′, n′) ∈ Wi+1, which
means that they must have been discarded in Line 12 of Algorithm 2. This leads to Wi+1 = ∅ and
|Wi+1| ≤ |Yi| trivially holds.

Putting these all together,

∑
(pr,n)∈Di

pr >
∑

(pr′,n′)∈Zi+1

pr′ +
∑

(pr,n)∈Yi

pr

≥
∑

(pr′,n′)∈Zi+1

pr′ + |Yi| max
(pr′,n′)∈Wi+1

pr′

≥
∑

(pr′,n′)∈Zi+1

pr′ + |Wi+1| max
(pr′,n′)∈Wi+1

pr′

≥
∑

(pr′,n′)∈Zi+1

pr′ +
∑

(pr′,n′)∈Wi+1

pr′

=
∑

(pr′,n′)∈Di+1

pr′

Hence, Si > Si+1, proving the monotonic decreasing property of {Si}.

D EXPERIMENTAL DETAILS AND ASSETS USED

We used the same ShareGPT dataset for all training runs, allocating 95 % of the data to training
and 5 % to validation. The maximum sequence length was set to 2,048 tokens, and the tree (or
sequence) depth during training was fixed to three. As in EAGLE and HASS, we built questions
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and answers from a fixed prompt template and trained the draft model to predict the target model’s
outputs. We set the learning rate to 3e-4 and employed a cosine-annealing scheduler with a warm-up
phase. The entire training procedure was designed to finish within one day on two NVIDIA A100
80 GB GPUs. We used the AdamW optimizer with beta = (0.9, 0.95) (Loshchilov & Hutter, 2019).
The core implementation relies on PyTorch and Hugging Face’s Transformers library, while the
optimal-tree construction with SALF logic was written in C++ (using OpenMP and the PyTorch C++
API) and was bound to Python via pybind11.

Inference for each method was performed with the following setting:

• Vanilla (without SpD): We used the Huggingface Transformers library with a PyTorch
backend.

• Beam search: We set the number of total candidate tokens in a tree (N ) to 60, the top-k to
10, and the tree depth to 7.

• SALF: We set the number of total candidate tokens in a tree (N ) to 60, batch size (B) to
10, and the SALF threshold (th) to 0.6. Using a SALF threshold of 0.0 is equivalent to the
optimal tree search method.

E DECLARATION OF LLM USAGE

The authors of this manuscript declare that LLMs were used only for writing, editing, or formatting
purposes and that the LLM usage does not impact the core methodology, scientific rigorousness, or
originality of the research.
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