
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SALF & TALF: OPTIMIZED LOSS FUNCTION AND
DRAFTING FOR TREE-BASED SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding (SpD) has emerged as a promising approach to accelerate the
slow autoregressive inference of large language models (LLMs). SpD leverages
a lightweight draft model to propose candidate tokens, which are then verified
in parallel by the target LLM. Recent advances in tree-based SpD significantly
improve efficiency by drafting token trees, enabling the verification of multiple
sequences at once. Given its strong empirical performance reported across nu-
merous studies, tree-based SpD is rapidly becoming dominant. However, existing
draft model training methods overlook the tree structure when defining the training
objectives, causing their training and inference distributions to become misaligned.
We address this limitation with a tree-aware loss function (TALF) that explicitly
incorporates the tree structure into draft model training. Using trees generated by
the target LLM, TALF aligns the draft model’s predictions with the target across all
branches, mitigating the misalignment. Further, we improve the tree construction
process in drafting with stopping at low further gains (SALF). As drafting iterations
search for potential high-probability tokens to add to the tree, we estimate aggregate
probability gains. This estimate guides the stopping criterion for drafting, enabling
us to balance computational cost against draft quality for maximum performance.
Together, SALF & TALF deliver 15.6–39.4% and 6.5–24.4% end-to-end speedups
over state-of-the-art SpD methods, EAGLE-2 and HASS, without altering the draft
model architecture.

1 INTRODUCTION

As large language models (LLMs) become integral to numerous real-world services, it is of great
social, economic, and environmental importance to perform LLM inference both rapidly and ef-
ficiently. LLMs generate tokens in an autoregressive manner, producing one token per decoding
iteration, which is then used to generate the next. Each iteration requires loading hundreds of billions
of parameters (Brown et al., 2020) from memory. This is especially problematic for edge devices
or similar environments with limited batching; without batching to amortize the memory load costs,
hardware utilization is severely damaged due to the memory bandwidth bottleneck (Park et al., 2024).

As an effective solution to this problem, speculative decoding (SpD) (Leviathan et al., 2023; Chen
et al., 2023) has been proposed. At a high level, SpD employs a lightweight draft model to speculate
the output of the target LLM. First, multiple autoregressive iterations are performed with the draft
model to create a short sequence of tokens (i.e., draft). Then, the draft is verified by the target LLM,
which decides whether to accept each token in the draft, in a single forward pass. As multiple tokens
can be generated per draft-verify, SpD enables generation of the same output sequence with fewer
target LLM iterations. Using orders of magnitude smaller draft models, substantial reductions in the
end-to-end LLM inference latency can be achieved.

Among various SpD approaches (see §5), EAGLE (Li et al., 2024b) and its successors (Li et al.,
2024a; Zhang et al., 2024b) show notable speedups and are widely integrated into mainstream LLM
serving frameworks, such as vLLM (Kwon et al., 2023), TensorRT-LLM (NVIDIA, 2025), and
SGLang (Zheng et al., 2024). Two key techniques constitute EAGLE. The former is its draft model
architecture with a single Transformer decoder (Vaswani et al., 2017) layer. Recent work, including
HASS (Zhang et al., 2025) and Griffin (Hu et al., 2025), further refines the training objectives to
better train the EAGLE draft model (detailed in §2.2).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The latter is the adoption of tree-based SpD (Miao et al., 2024). Instead of producing a single linear
sequence of candidate tokens, the draft model generates a tree that captures multiple branching
hypotheses. This draft tree can still be verified in a single forward pass by replacing the standard
attention (Vaswani et al., 2017) in the target LLM with tree attention (Miao et al., 2024). As a
single tree encompasses multiple probable sequences in a compact form, it significantly increases the
number of tokens generated per draft-verify (τ). Following work, EAGLE-2 (Li et al., 2024a), further
introduces a dynamic tree construction algorithm that leverages token probabilities from the draft
model, modifying the tree structure to incorporate more high-probability tokens in the tree.

While tree-based SpD is becoming a standard technique as evidenced by numerous related stud-
ies (Zhang et al., 2025; Hu et al., 2025; Li et al., 2024b;a; Miao et al., 2024; Chen et al., 2024a;
Spector & Re, 2023; Sun et al., 2023; Ankner et al., 2024; Cai et al., 2024; Svirschevski et al.,
2024), previous approaches fall short of exploiting its full potential in both training and inference.
In particular, prior draft model training methods only focus on the most probable tokens, whereas
tree-based SpD demands exploring alternative token candidates.

To address this, we introduce a tree-aware loss function (TALF) for SpD. An ideal draft model
would generate the same tree as the target LLM. Therefore, we make the target LLM construct a tree
dynamically during training. At each tree node (token), we compute a cross-entropy loss between the
next-token probability distributions of the draft and target models. We then aggregate this loss over
the entire tree, guiding the draft model to generate target-aligned trees.

We also propose a novel dynamic draft tree construction algorithm with a conditional stopping
criterion, named stopping at low further gains (SALF). We develop methods to predict further gains
from continuing drafting and to stop when the gains fall below a configurable SALF threshold. SALF
offers speedups over existing dynamic tree construction methods by delivering a balanced solution
that trades off tree optimality (Svirschevski et al., 2024) with drafting overhead. SALF and TALF
together result in 2.16–3.48× end-to-end speedups for Llama-based models (Touvron et al., 2023;
Llama Team, AI @ Meta, 2024; Deepseek-AI, 2025) in various tasks, improving upon EAGLE-2 and
HASS by 15.6–39.4% and 6.5–24.4%, respectively.

2 BACKGROUND

T denotes the target LLM and D denotes a small draft model imitating T. Values derived from D are
marked with a superscript ·(d). At a time step s, we try to generate a token xs+1 from the previous
tokens x1:s. For notational convenience, we ignore the initial prefix prepared for each text generation.

2.1 SPECULATIVE DECODING (SPD)

First SpD constructions by Chen et al. (2023) and Leviathan et al. (2023) used a lightweight draft
model (e.g., a 4B LLM) to generate a short sequence of candidate tokens (x(d)

s+1, x
(d)
s+2, · · ·) following

x1:s through multiple autoregressive drafting iterations. The candidates are verified with the target
LLM (e.g., a 70B LLM) through parallel processing of ps+1←T(x1:s), ps+2←T([x1:s, x

(d)
s+1]), · · · ,

computed together in a single forward pass. Based on the probability distributions (ps+1, ps+2, · · ·),
we decide whether to accept each candidate token. For example, when ps+1(x

(d)
s+1) is likely but

ps+2(x
(d)
s+2) is not, xs+1 ← x

(d)
s+1, xs+2 is sampled from ps+2, and the verification ends. Two key

metrics are used to evaluate SpD: 1) end-to-end latency of LLM inference, including times spent with
T and D, and 2) mean generation length (τ), the average number of tokens generated per verification.

2.2 DRAFT MODEL TRAINING: EAGLE & HASS

EAGLE (Li et al., 2024b) designs a small draft model with a single Transformer decoder (Vaswani
et al., 2017) block to accelerate SpD. During inference, features produced from the last decoder
block of the target LLM (f1:s−1) as well as x2:s (rather than x1:s so that |x2:s| = |f1:s−1|) are
fed into the draft model. The draft model performs autoregressive iterations with these inputs;
i.e., p(d)s+1, f

(d)
s ← D(x2:s, f1:s−1), then p

(d)
s+2, f

(d)
s+1 ← D([x2:s, x

(d)
s+1], [f1:s−1, f

(d)
s]) with x

(d)
s+1

sampled from the speculated probability distribution p
(d)
s+1, and so on. Verification of the candidate

tokens are handled in the same way.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝑥1 𝑥𝐿−2

𝐓 language

model head

𝐓 embedding

& 𝐓 decoders
𝑥1 𝑥2

𝑓1

𝑝2

𝑓2

𝑝3

𝑥𝐿−1

𝑓𝐿−1

𝑝𝐿

𝑥𝐿

⋯

𝑥2𝑓1

𝑥2𝑓1

𝑓2
(d)

𝐃 training – HASS

𝑠 = 2

𝑥3𝑓2
(d)

𝑓3
(d)

𝑥2𝑓1

𝑥2𝑓1

𝐓 embedding

& 𝐃 decoder

𝐓 language

model head

𝑓2
(d)

𝑝3
𝑑

𝑥3𝑓2

𝑓3
(d)

𝑝4
𝑑

⋯
ℒreg

𝑓2

ℒcls

Draft model (𝐃) training – EAGLE

𝑝3

𝑠 = 2 𝑠 = 3

Training sequence generation with the target model (𝐓) [precomputed]

Tree generation with 𝐓 – TALF [precomputed]

⋮

𝑥2
𝑝3 𝑥3

𝑝4

𝑥3
′ 𝑝4

′

𝑥4
𝑝5

𝑥4
′ 𝑝5

′

⋮

𝑥4
′′ 𝑝5

′′

⋮

⋯

𝐃 training – TALF

𝑠 = 2⋮

Node 0 Node 1

Node 2

ℒ =෍
𝑛
ℒ𝑛

𝑥2𝑓1

𝑓2
(d)

𝑠 = 2

𝑥1
𝑝2

𝑝3
𝑑

𝑥2𝑓1

𝑥3𝑓2
(d)

𝑓3
(d)

𝑝4
𝑑 ℒ𝑛1

𝑝4

𝑥2𝑓1

𝑥3
′𝑓2

(d)

𝑓3
′(d)

𝑝4
′ 𝑑 ℒ𝑛2

𝑝4
′

ℒ𝑛0

𝑝3

⋯

⋯

⋮
Computed together

using tree attention

𝑥𝑖 Token 𝑓𝑖 Feature 𝑝𝑖 𝑓𝑖
(d)

𝑝𝑖
𝑑Probability distribution 𝑓𝑖 and 𝑝𝑖 derived from 𝐃 ℒ Loss Computation Sampling Copying

𝑝4
𝑑𝑝3

𝑑 ℒcls

𝑝4

ℒreg

𝑓3

ℒcls

𝑝3

ℒreg

𝑓2

⋯

Figure 1: Draft model training process of EAGLE (Li et al., 2024b), HASS (Zhang et al., 2025), and
TALF. With the precomputed training sequence x1:L, training is performed for time steps 1 < s < L.

During training, EAGLE aligns the draft model with the target LLM for features (f (d)
s with fs) as well

as the probability distributions (p(d)s+1 with ps+1). First, the target LLM produces a training sequence
x1:L, their corresponding features (f1:L−1), and probability distributions (p1:L) through autoregressive
iterations. Using them as soft labels, a drafting iteration (p(d)s+1, f

(d)
s ← D(x2:s, f1:s−1)), a loss

calculation, and a gradient-based draft model update are performed for each time step s.

Despite numerous SpD proposals, most rely on standard knowledge distillation (Hinton et al., 2015)
as their training objective, using the target LLM’s output as soft labels. Similarly, EAGLE trains its
draft model using a combination of two loss functions:

• Regression loss to align the features: Lreg = ∥fs − f
(d)
s ∥1.

• Classification loss to align the probability distributions: Lcls = −
∑

v ps+1(v) · log p(d)s+1(v).

HASS (Zhang et al., 2025) identifies a misalignment between training and inference in EAGLE.
During inference, speculated features (f (d)

s , · · ·) produced from the draft model are added to the
inputs since the second drafting iteration. By contrast, EAGLE’s drafting iteration during training
only involves inputs produced by the target model (x2:s and f1:s−1). To mitigate this, HASS modifies
the training process and its loss function. The draft model follows through a short target LLM output
sequence (e.g., x1:s → xs+1 → xs+2 → ps+3), while feeding feature speculations generated by
itself (f (d)

s and f
(d)
s+1) back as input (see Figure 1). Then, for this sequence, HASS gathers Lreg and

Lcls losses comparing features and probability distributions generated by the draft model with those
from the target LLM. In this way, HASS reflects the feature-related inference behavior of the draft
model in the training objective. HASS also introduces a top-K (e.g., K = 10) distillation loss, which
can be orthogonally applied to Lcls to put more emphasis on K highest-probability tokens.

2.3 TREE-BASED SPD & DYNAMIC TREE CONSTRUCTION: EAGLE-2 & SPECEXEC

Tree-based SpD (Miao et al., 2024) goes beyond verifying one sequence; it organizes multiple draft
sequences into a tree structure and verifies the entire tree at once, effectively increasing the mean
acceptance length (τ). As a number of tokens can show high probabilities in p

(d)
s+1, we sample multiple

tokens from p
(d)
s+1 and continue the next drafting iterations each with a different x(d)

s+1. Repeating
such will create a tree of candidate tokens, where each path from the root node (xs) to a leaf node
represents a draft sequence. The entire tree can be verified by the target LLM in a single forward pass
with little overhead by using tree attention (Miao et al., 2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1st 2nd 3rd 4th 5th
0.0

0.1

0.2

0.3

0.4

0.5

(a)

Proportion of
each rank

1st 2nd 3rd 4th 5th
0.40

0.45

0.50

0.55

0.60

0.65

(b)

Accuracy

1st 2nd 3rd 4th 5th
0.00

0.02

0.04

0.06

0.08

0.10 ECE

Method
EAGLE
HASS
TALF

Figure 2: (a) Proportion of candidate tokens, which constitute the draft tree during inference, by
rank on the probability distribution. (b) Top-1 accuracy and expected calibration error (ECE) for a
draft model trained with EAGLE, HASS, and TALF when self-conditioned on a token ranked n-th
(n = 1, 2, 3, 4, and 5) on the previous speculated probability distribution.

EAGLE-2 (Li et al., 2024a) constructs the tree dynamically during inference. It utilizes the spec-
ulated probability distribution (p(d)) to compute Pr(x(d) | x1:s) for each token (node) x(d) in the
tree. EAGLE-2 performs a simple beam search (Ow & Morton, 1988) to find high-probability
nodes with little drafting overhead. Meanwhile, the optimal tree construction approach from
SpecExec (Svirschevski et al., 2024) has attempted to maximize the sum of the probabilities for a
given number of nodes (N). However, this “optimal” approach involves a large search space, poten-
tially damaging the end-to-end performance with increased drafting overhead. Refer to Appendix B
for more details on prior dynamic tree construction methods.

3 METHOD

3.1 TRAINING-INFERENCE MISALIGNMENT FOR TREE-BASED SPD

We observe that, although inference relies on tree-based SpD, prior draft model training methods still
use token sequences—rather than trees—generated by the target model as references. This creates a
training-inference mismatch: the accuracy (τ) of the draft model depends on how well its entire draft
tree aligns with the target model, yet sequence-based training overlooks the opportunity to improve
the draft model’s ability to explore alternative tree nodes with fairly high probabilities.

For quantification, we evaluate how the draft models trained with EAGLE and HASS perform when
self-conditioned on a lower-probability token. We used the setup described in §4.1 over a held-out test
set Dtest, each element of which is an input sequence x1:s. After the first drafting iteration producing
p
(d)
s+1 ← D(x2:s, f1:s−1), we simulated inference by feeding the draft model’s own prediction x

(d)
s+1

sampled from p
(d)
s+1 back as input to itself. We observed how the choice of x(d)

s+1 in p
(d)
s+1 affects the

next drafting iteration result (p(d)s+2), where x(d)
s+1 is ranked n-th (n = 1, 2, 3, 4, 5) in p

(d)
s+1. Meanwhile,

we also made the target LLM predict the (s+2)-th token x̃s+2 when conditioned on our x(d)
s+1 choice.

We measured how well p(d)s+1 predicts x̃s+2 according to the choice of x(d)
s+1 using accuracy and

expected calibration error (ECE) (Guo et al., 2017) as metrics (detailed in Appendix A).

While HASS improves both ECE and accuracy when conditioned on 1st-ranked tokens, the gains are
marginal or even negative for lower-ranked tokens (see Figure 2(b)), suggesting that draft models
trained with HASS underperform on tree nodes outside the best draft sequence. Empirically, although
1st-ranked tokens possess the largest portion (roughly 55%) in the final draft tree, lower-ranked tokens
are not negligible, where those ranked 5th or lower account for over 10% (see Figure 2(a)).

3.2 TRAINING WITH A TREE-AWARE LOSS FUNCTION (TALF)

These observations motivate us to propose a tree-aware loss function (TALF), which aggregates cross-
entropy loss terms over dynamic draft tree nodes, effectively reflecting the inference behavior of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 TALF Training Procedure
Require: Target model T, draft model D, the number of nodes N

1: for all training sequence do
2: T builds a tree G with N nodes using a dynamic tree construction algorithm
3: for all tree node n in G do
4: Let x[n] be the sequence of tokens represented by the node n
5: pchild(n) ← T(x[n]) ▷ Precomputed during tree generation

6: p
(d)
child(n) ← D(x[n]) ▷ Optimize with tree attention (input features omitted for brevity)

7: Compute cross-entropy loss

Ln = −
∑

v∈Vocab

pchild(n)(v) log p
(d)
child(n)(v)

8: Backpropagate D with L =
∑

n∈G Ln

draft model in the training objective. Compared to HASS, TALF yields only marginal improvements
in the 1st-ranked case, but achieves 5% accuracy gains and 0.05 ECE drops for lower-ranked cases
(see Figure 2(b)).

The training procedure with TALF is shown in Algorithm 1 and Figure 1. We first make the target
model generate a tree dynamically, setting each token in a training sequence as the root node
(xs → ps+1 node). We make the draft model follow through the path from the root node to each node
(n) of the tree, while feeding f (d) back as input as in HASS. We compute cross-entropy loss between
the speculated (p(d)child(n)) and the target (pchild(n)) probability distributions for the token following n.
Per-node losses are aggregated to compute the final loss.

Before training, the tree shape and the soft labels at each node (i.e., next-token predictions) are
preprocessed by the target model. Making the draft model dynamically construct the tree at training
time would generate a different tree structure for each training epoch, requiring multiple target model
invocations. As this would incur prohibitively high computational cost, we make the target model fix
the tree structure in advance, which can be reused for multiple training epochs.

As shown in Figure 1, we process multiple nodes on the same tree depth together using tree attention,
which significantly accelerates the training process of TALF. We modify the attention-masking
technique of HASS, which was originally designed for sequential inputs, to support tree structures.
While any dynamic tree construction algorithms can be used, we employ the simple beam search
method of EAGLE-2 for training. Sophisticated algorithms, such as the one used in SpecExec (see
§2.3), would cause an increase in the preprocessing cost due to additional data structures that require
complex handling (e.g., Q and D in Algorithm 2).

Unlike EAGLE and HASS, TALF does not use a regression loss for feature alignment. In our
experiments, training solely on the token probability distributions across multiple nodes was sufficient
for the model to learn to use features in an autoregressive manner, yielding better performance.

3.3 STOPPING AT LOW FURTHER GAINS (SALF) IN DYNAMIC TREE CONSTRUCTION

Existing dynamic tree construction methods either fail to include some high-probability tokens in
the tree (e.g., beam search from EAGLE-2) or require a lot of drafting overhead to search for all
possible high-probability tokens (e.g., optimal tree search from SpecExec). We develop Algorithm 2
to address these issues with a balanced dynamic tree construction method.

We extend the optimal tree search method by introducing stopping at low further gains (SALF), a
conditional criterion for efficient drafting. For constructing a tree with N nodes, we use a priority
queueQ with a fixed capacity of N . Q keeps high-probability nodes that have not yet been expanded,
i.e., they have not been processed by the draft model to generate their child nodes. Per iteration, we
pick B highest-probability nodes from Q for expansion, move them to the output tree G, and insert
their child nodes into Q. If we repeat this (Algorithm 2 without the red blocks), it is guaranteed to
find the highest-probability nodes for the draft tree (see Appendix B for the proof).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Dynamic Tree Construction with SALF

Require: Draft model D, the number of nodes N , batch size B (≤ N), SALF threshold th ≤ 1

Ensure: Tree G containing the top-N high-probability nodes
1: G ← {(pr = 1, n = root node)} ▷ G contains up to N nodes with high pr
2: Init a capacity-N priority queue Q ← G ▷ Q contains up to N non-expanded nodes with high pr
3: while true do
4: Init an empty list D
5: for b in 0..B do ▷ Select B nodes to expand
6: if Q.empty() then break
7: (pr, n)← Q.pop()
8: G.push((pr, n))
9: D.append((pr, n))

10: ϵ← min{ pr | (pr, n) ∈ G }
11: if |G| < N then ϵ← 0

12: D ← { (pr, n) ∈ D | pr > ϵ } ▷ Ignore nodes that cannot go into G due to low pr

13: if
∑

(pr,n)∈D pr < th then break
14: for all (pr, n) ∈ D do ▷ Optimize with batched tree expansion
15: Let x[n] be the sequence of tokens represented by the node n

16: p
(d)
child(n) ← D(x[n]) ▷ (input features omitted for brevity)

17: for all v ∈ Vocab do
18: Let n′ be a child node of n representing the next token v

19: pr′ ← pr · p(d)child(n)(v) ▷ Probability product calculation

20: Q.push((pr′, n′)) ▷ Q automatically discards low-pr entries when (# of entries) > N

However, the final goal of SpD is not to search for the highest-probability nodes but to minimize the
end-to-end latency. We observe that the aforementioned process incurs excessive drafting overhead at
deeper tree depths due to the large number of nodes with modest probabilities.

SALF (highlighted in red in Algorithm 2) addresses this problem by stopping when further drafting
iterations is unlikely to increase the overall probability of the tokens included in the tree. Concretely,
we stop drafting if the nodes in D, whose entries are extracted from the top-B highest-probability
nodes in Q, have a low probability sum. The probability sum monotonically decreases for each
iteration (Theorem 1, see Appendix C for the proof), allowing us to precisely identify the point at
which the expected benefit of further drafting falls below a configurable SALF threshold (th). SALF
achieves significant speedups due to reduced drafting overhead.

Theorem 1 (monotonically decreasing probability sum). Let Di denote the value of D at the early-
stopping check (line 13) in the i-th iteration of the main loop in Algorithm 2. Define the sum of the
probabilities of the entries inDi as Si =

∑
(pr,n)∈Di

pr. Then, given that B < |Vocab|, the sequence
{Si} is monotonically decreasing:

∀i ≥ 2, Si > Si+1

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models. We used Llama-2-7B-Chat (Llama2-7B) (Touvron et al., 2023), Llama-3.1-8B-Instruct
(Llama3-8B) (Llama Team, AI @ Meta, 2024), and DeepSeek-R1-Distill-Llama-8B (Deepseek-AI,
2025) for evaluation.

Tasks. We used test datasets with varying characteristics: MT-bench (Zheng et al., 2023), Hu-
maneval (Chen et al., 2021), GSM8k (Cobbe et al., 2021), Alpaca (Taori et al., 2023), and CNN/Daily
Mail (Nallapati et al., 2016). We set the inference batch size to one, following EAGLE and HASS.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Mean SpD speedup (vs. execution without SpD) for various models, tasks, and temperatures.
Relative mean improvements of SALF & TALF compared to EAGLE-2 and HASS are also shown.

Model Method MT-bench HumanEval GSM8K Alpaca CNN/DM Mean

Temperature = 0 (Greedy)

Llama2-7B
EAGLE-2 2.71× 3.09× 2.81× 2.59× 2.26× 2.68× (+15.6%)
HASS 2.95× 3.39× 3.00× 2.75× 2.51× 2.91× (+06.5%)
SALF & TALF 3.11× 3.48× 3.19× 3.02× 2.72× 3.09×

Llama3-8B
EAGLE-2 2.10× 2.44× 2.21× 2.11× 1.82× 2.13× (+35.0%)
HASS 2.33× 2.89× 2.58× 2.35× 2.05× 2.42× (+18.4%)
SALF & TALF 2.79× 3.25× 2.99× 2.81× 2.56× 2.87×

Deepseek-R1-
Distill-Llama-8B

EAGLE-2 1.94× 2.09× 2.11× 1.84× 1.69× 1.93× (+28.0%)
HASS 2.02× 2.21× 2.23× 1.91× 1.72× 2.01× (+22.9%)
SALF & TALF 2.48× 2.64× 2.66× 2.40× 2.19× 2.47×

Temperature = 1 (Non-Greedy)

Llama2-7B
EAGLE-2 2.52× 2.94× 2.72× 2.42× 2.20× 2.55× (+18.0%)
HASS 2.78× 3.10× 2.96× 2.76× 2.36× 2.78× (+08.1%)
SALF & TALF 2.96× 3.25× 3.19× 3.00× 2.67× 3.01×

Llama3-8B
EAGLE-2 1.54× 2.20× 1.90× 1.73× 1.56× 1.77× (+39.4%)
HASS 1.68× 2.53× 2.15× 2.00× 1.73× 2.00× (+23.7%)
SALF & TALF 2.14× 2.94× 2.65× 2.46× 2.23× 2.47×

Deepseek-R1-
Distill-Llama-8B

EAGLE-2 1.70× 1.94× 2.01× 1.70× 1.58× 1.78× (+28.4%)
HASS 1.79× 2.02× 2.09× 1.74× 1.59× 1.84× (+24.4%)
SALF & TALF 2.22× 2.46× 2.54× 2.21× 2.03× 2.28×

Training. We trained the draft models with a ShareGPT (Aeala, 2023) dataset containing 68,000
dialogues. For Llama2-7B and Llama3-8B, we first trained the draft model for ten epochs using the
original EAGLE loss. The trained draft model is used for evaluating EAGLE and EAGLE-2, which
only differ in drafting. Then, we performed additional training with the ten-epoch-trained draft model
using either HASS or TALF as a loss function for three epochs. For, Deepseek-R1-Distill-Llama-8B,
we took a different approach to account for longer training time required for training with HASS or
TALF. We trained each model (EAGLE, HASS, and TALF) for the same amount of time (24 hours on
a system with two H100 80GB GPUs), which allows a fair comparison regarding the training cost.

Hyperparameters. For EAGLE and HASS, we set the classification loss weight and the top-10
distillation loss weight 10× higher than the feature regression loss weight (λcls = λdistil = 10, λreg =
1). We set the sequence/tree depth to three for HASS/TALF and used k = 4 to construct the tree
when training with TALF. More training details are described in Appendix D.

Inference. We performed end-to-end LLM inference using the Hugging Face Transformers library
with a PyTorch backend. For EAGLE-2 and HASS, we used their respective open-source implemen-
tations. We set N = 60, k = 10, and depth = 7 for beam search (used in EAGLE-2 and HASS). For
SALF, we used Algorithm 2 with N = 60, B = 10, and a SALF threshold of th = 0.6 by default.
All inference experiments were executed on a system with a single NVIDIA A100 80GB GPU (PCIe).
Speedups relative to the baseline LLM inference without SpD were measured.

4.2 END-TO-END SPEEDUP

SALF & TALF outperform existing methods across every model and dataset we tested. Table 1
summarizes the end-to-end speedups (vs. execution without SpD) achieved by using SALF &
TALF. Compared to EAGLE-2 and HASS, SALF & TALF achieve consistent mean improvements
of 1.16–1.39× and 1.07–1.24×, respectively, under both greedy (temperature = 0) and non-greedy
(temperature = 1) sampling cases. Furthermore, benefits of using SALF & TALF become more
pronounced when stronger target LLMs (e.g., Deepseek-R1-Distill-Llama-8B) are employed. This
stems from the greater difficulty draft models face in aligning with stronger target LLMs, a challenge
that SALF & TALF address more effectively by enabling optimized tree-based SpD.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of speedup and mean generation length (τ) for various (tree construction
method, loss) combinations. The target LLM is Deepseek-R1-Distill-Llama-8B.

Tree
constr.
method

Loss MT-bench HumanEval GSM8K Alpaca CNN/DM Mean

Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Beam
search

EAGLE-2 1.76× 3.42 1.91× 3.76 1.95× 3.80 1.66× 3.21 1.51× 2.98 1.75× 3.44
HASS 1.84× 3.61 2.03× 3.98 2.09× 4.04 1.75× 3.39 1.55× 3.06 1.84× 3.62
TALF 1.98× 3.87 2.16× 4.23 2.26× 4.42 1.85× 3.59 1.66× 3.28 1.97× 3.88

Optimal
tree
search

EAGLE-2 1.94× 3.54 2.09× 3.87 2.11× 3.88 1.84× 3.36 1.69× 3.13 1.93× 3.56
HASS 2.02× 3.70 2.21× 4.08 2.23× 4.10 1.91× 3.47 1.72× 3.17 2.01× 3.70
TALF 2.19× 3.98 2.34× 4.30 2.44× 4.49 2.04× 3.71 1.84× 3.40 2.16× 3.98

SALF
EAGLE-2 2.31× 3.33 2.44× 3.68 2.39× 3.58 2.26× 3.18 2.07× 2.93 2.29× 3.34
HASS 2.41× 3.60 2.55× 3.99 2.52× 3.96 2.30× 3.39 2.12× 3.09 2.37× 3.61
TALF 2.48× 3.73 2.64× 4.07 2.66× 4.16 2.40× 3.50 2.19× 3.20 2.47× 3.73

4.3 INDIVIDUAL BENEFITS OF SALF & TALF

We measured speedups and mean generation lengths (τ) for different combinations of loss functions
and tree-construction methods to isolate the benefits of SALF and TALF (see Table 2).

TALF vs. prior loss functions. When using the same tree construction method for all three loss
functions, TALF improves τ over EAGLE-2 and HASS by 12.9/11.8/11.7% and 7.2/7.3/3.5% under
beam/optimal/SALF tree search circumstances, respectively. These improvements are consistent
across all benchmarks, showing that aligning the training objective with SpD drafting generalizes
beyond any single task suite.

SALF vs. prior tree construction methods. For any loss function, moving from beam search
to optimal tree search increases τ . Per-benchmark deltas are consistently positive, indicating that
the candidate token set from simple beam search is suboptimal, and that globally selecting the
acceptance-maximizing tree provides additional gains beyond the loss function. When SALF is
added to optimal tree search, τ decreases by 6.2%, 2.4%, and 6.3% for EAGLE-2, HASS, and TALF,
respectively, while end-to-end performance increases by 18.6%, 17.9%, and 14.4%. As the model
trained with TALF is better calibrated on lower-ranked branches, it has fewer wasteful nodes that are
ignored with SALF, yielding smaller incremental speedups than the cases with EAGLE-2 or HASS.

4.4 PARAMETER SENSITIVITY

Table 3: Mean generation length (τ) with different top-k settings for training TALF. The tree size
used for training increases for larger k. The target LLM is Deepseek-R1-Distill-Llama-8B.

Loss (top-k) MT-bench HumanEval GSM8K

HASS (top-1) 3.70 4.08 4.10
TALF (top-1) 3.71 4.08 4.31
TALF (top-2) 3.83 4.23 4.48
TALF (top-4) 3.98 4.30 4.49

Top-k for training. Table 3 reports τ on three benchmarks as we vary k, which decides how wide
we will look to construct the tree during training; up to k-th-ranked tokens will be included in the
tree. TALF with k = 1 is almost the same as HASS. As we increase k, more lower-ranked tokens are
considered, enhancing τ . We chose to use k = 4 as our default setting to obtain higher τ .

SALF threshold (th) for drafting. We measured the impact of using different SALF thresholds
(th) across three benchmarks. For lower th, we get closer to generating a draft tree with highest-
probability tokens, leading to higher τ . However, when th is too low, the actual end-to-end latency
may increase due to excessive drafting overhead. Using th = 0.5 yields the highest mean speedup

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance with various SALF thresholds (th) used for tree construction during drafting.
The target LLM is Deepseek-R1-Distill-Llama-8B.

MT-bench HumanEval GSM8K Mean

Threshold (th) Speedup τ Speedup τ Speedup τ Speedup τ

0.0 2.19× 3.98 2.34× 4.30 2.44× 4.49 2.32× 4.26
0.1 2.25× 3.99 2.36× 4.31 2.46× 4.49 2.36× 4.26
0.2 2.37× 3.97 2.46× 4.31 2.56× 4.49 2.46× 4.26
0.3 2.45× 3.94 2.58× 4.30 2.63× 4.45 2.55× 4.23
0.4 2.49× 3.90 2.62× 4.26 2.64× 4.38 2.58× 4.18
0.5 2.52× 3.82 2.65× 4.17 2.69× 4.29 2.62× 4.10
0.6 2.48× 3.73 2.64× 4.07 2.66× 4.16 2.59× 3.99
0.7 2.47× 3.59 2.63× 3.92 2.65× 3.99 2.58× 3.83
0.8 2.39× 3.38 2.54× 3.72 2.59× 3.78 2.51× 3.63
0.9 2.27× 3.11 2.43× 3.40 2.43× 3.44 2.37× 3.32

for Deepseek-R1-Distill-Llam-8B (2.62×) based on Table 4. However, we observed more consistent
performance improvements for the tested target LLMs when th = 0.6 (default). Tuning th based on
the model or adapting it dynamically during inference is a potential direction for future work.

5 RELATED WORK

While the draft-verify paradigm of SpD can be attributed to blockwise decoding (Stern et al., 2018),
Leviathan et al. (2023) and Chen et al. (2023) developed a verification method based on rejection
sampling, which allows an exact simulation of the target LLM’s output probability distribution.
Tree-based SpD, first proposed in SpecInfer (Miao et al., 2024), exploits tree attention to verify
a draft tree in a single forward pass. Tree attention adds a tree attention mask, which represents
the causality (edges) within the tree, to a regular attention (Vaswani et al., 2017) layer. Numerous
following studies (Zhang et al., 2025; Hu et al., 2025; Li et al., 2024b;a; Miao et al., 2024; Chen
et al., 2024a; Spector & Re, 2023; Sun et al., 2023; Ankner et al., 2024; Cai et al., 2024; Svirschevski
et al., 2024) have adopted tree-based SpD. While early work has used a fixed (e.g., Sequoia (Chen
et al., 2024a)) tree structure, recent studies (Li et al., 2024a; Svirschevski et al., 2024; Zhang et al.,
2025; Hu et al., 2025) dynamically construct the tree during drafting. Further improvements, such as
dynamically adjusting the tree depth in AdaEagle (Zhang et al., 2024b), have also been proposed.

Also, various approaches have been proposed for drafting, such as using a smaller model from the
same LLM family (Sun et al., 2023; Chen et al., 2024b; Spector & Re, 2023; Leviathan et al., 2023;
Chen et al., 2023; He et al., 2024), employing an independent fine-tuned model (Kim et al., 2023;
Miao et al., 2024; Liu et al., 2024b; Zhou et al., 2024), inserting additional heads for drafting into the
target LLM (Cai et al., 2024; Ankner et al., 2024; Stern et al., 2018), and reusing the target LLM
while skipping some of its layers during drafting (Zhang et al., 2024a; Elhoushi et al., 2024; Liu et al.,
2024a; Xia et al., 2025). EAGLE (Li et al., 2024b) is a hybrid approach employing a fine-tuned draft
model that also leverages features from the target LLM, extending the additional-head approach.

6 CONCLUSION

We have identified a fundamental mismatch between how existing tree-based SpD methods are trained
and how they are used at inference. To address this, we introduced TALF, a novel loss function and its
training procedure that aligns the draft model’s output distribution over the entire expansion tree with
that of the target LLM. We further developed a systematic approach for building the tree dynamically
through SALF with a provable monotonicity guarantee, reducing unnecessary drafting computations
during inference. Experiments on various benchmarks show that the combined use of SALF & TALF
consistently outperforms state-of-the-art SpD solutions, EAGLE-2 and HASS, yielding 1.16–1.39×
and 1.07–1.24× wall-clock speedups without any generation quality degradation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All code used for data preprocessing, model training, evaluation, and figure generation is provided
in the supplementary materials, including scripts such as preprocess.py, train.py, evaluate.py, cali-
bration.py, and graph.py. Detailed descriptions of the experimental setup, model architectures, and
hyperparameters are included in §4.1 and §D. The datasets used in our experiments are either publicly
available or described in detail, with data processing steps documented in the supplementary materials.
For theoretical results, all assumptions and complete proofs are provided in the §B and §C.

REFERENCES

Aeala. ShareGPT. https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_
unfiltered, 2023.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-Dependent Draft Heads for Medusa Decoding.
arXiv preprint arXiv:2402.05109, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Conference on Neural Information
Processing Systems, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
MEDUSA: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads. In
International Conference on Machine Learning, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating Large Language Model Decoding with Speculative Sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating Large
Language Models Trained on Code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yu-Hsun Huang, Max Ryabinin, Zhihao Jia,
and Beidi Chen. Sequoia: Scalable and Robust Speculative Decoding. In Conference on Neural
Information Processing Systems, 2024a.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chen-Chuan Chang, and Jie Huang.
Cascade Speculative Drafting for Even Faster LLM Inference. In Conference on Neural Information
Processing Systems, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Deepseek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. arXiv preprint arXiv:2501.12948, 2025.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, and
Carole-Jean Wu. LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding. In
Annual Meeting of the Association for Computational Linguistics, 2024.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration of Modern Neural
Networks. In International Conference on Machine Learning, 2017.

10

https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. REST: Retrieval-Based Speculative
Decoding. In Conference of the North American Chapter of the Association for Computational
Linguistics, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 2015.

Shijing Hu, Jingyang Li, Xingyu Xie, Zhihui Lu, Kim-Chuan Toh, and Pan Zhou. GRIFFIN: Effective
Token Alignment for Faster Speculative Decoding. arXiv preprint arXiv:2502.11018, 2025.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative Decoding with Big Little Decoder. In Conference on
Neural Information Processing Systems, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Symposium on Operating Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers via Speculative
Decoding. In International Conference on Machine Learning, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster Inference of Language
Models with Dynamic Draft Trees. In Empirical Methods in Natural Language Processing, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative Sampling Requires
Rethinking Feature Uncertainty. In International Conference on Machine Learning, 2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Duyu Tang, Kai Han, and Yunhe Wang.
Kangaroo: Lossless Self-Speculative Decoding for Accelerating LLMs via Double Early Exiting.
In Conference on Neural Information Processing Systems, 2024a.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online Speculative Decoding. In International Conference on Machine Learning, 2024b.

Llama Team, AI @ Meta. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International
Conference on Learning Representations, 2019.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. SpecInfer: Accelerating Large Language Model
Serving with Tree-based Speculative Inference and Verification. In International Conference on
Architectural Support for Programming Languages and Operating Systems, 2024.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gu̇lçehre, and Bing Xiang. Abstrac-
tive Text Summarization using Sequence-to-Sequence RNNs and Beyond. In Conference on
Computational Natural Language Learning, pp. 280–290, 2016.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2025.

Peng Si Ow and Thomas E Morton. Filtered Beam Search in Scheduling. The International Journal
Of Production Research, 26(1):35–62, 1988.

Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk Kwon, Nam Sung
Kim, and Jung Ho Ahn. AttAcc! Unleashing the Power of PIM for Batched Transformer-
based Generative Model Inference. In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2024.

Benjamin Spector and Chris Re. Accelerating LLM Inference with Staged Speculative Decoding.
arXiv preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise Parallel Decoding for Deep Autore-
gressive Models. In Conference on Neural Information Processing Systems, 2018.

11

https://github.com/NVIDIA/TensorRT-LLM

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
SpecTr: Fast Speculative Decoding via Optimal Transport. In Conference on Neural Information
Processing Systems, 2023.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
SpecExec: Massively Parallel Speculative Decoding For Interactive LLM Inference on Consumer
Devices. In Conference on Neural Information Processing Systems, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An Instruction-following LLaMA Model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Foundation
and Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Conference on Neural Information
Processing Systems, 2017.

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. SWIFT: On-the-Fly Self-Speculative
Decoding for LLM Inference Acceleration. In International Conference on Learning Representa-
tions, 2025.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding. In Annual
Meeting of the Association for Computational Linguistics, 2024a.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning Harmonized Representations
for Speculative Sampling. In International Conference on Learning Representations, 2025.

Situo Zhang, Hankun Wang, Da Ma, Zichen Zhu, Lu Chen, Kunyao Lan, and Kai Yu. AdaEAGLE:
Optimizing Speculative Decoding via Explicit Modeling of Adaptive Draft Structures. arXiv
preprint arXiv:2412.18910, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P Xing, et al. Judging LLM-as-a-judge with MT-bench and
Chatbot Arena. In Conference on Neural Information Processing Systems, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. SGLang:
Efficient Execution of Structured Language Model Programs. In Conference on Neural Information
Processing Systems, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. DistillSpec: Improving Speculative
Decoding via Knowledge Distillation. In International Conference on Learning Representations,
2024.

12

https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A METRICS USED IN §3.1

For the experimental setup detailed in §3.1, we use the following two metrics to assess how well
p
(d)
s+2 predicts x̃s+2 for a test set Dtest:

• Top-1 accuracy (higher is better):

Acc(Dtest) =
1

|Dtest|
∑

x1:s∈Dtest

1
{
arg max

v∈Vocab

(
p
(d)
s+2(v)

)
= x̃s+2

}
• Expected calibration error (ECE) (lower is better) quantitatively measures statistical

calibration by comparing accuracy and confidence (Guo et al., 2017):

ECE =

M∑
m=1

|Bm|
|Dtest|

∣∣Acc(Bm)− Conf(Bm)
∣∣,

where Dtest is binned into M equisized bins Bm by the confidence (p(d)s+2(x̃s+2)) value and

Conf(Bm) =
1

|Bm|
∑

x1:s∈Bm

p
(d)
s+2(x̃s+2).

B DYNAMIC TREE CONSTRUCTION ALGORITHMS

Dynamic tree construction algorithms in speculative decoding aim to efficiently select high-probability
tokens by dynamically expanding a tree structure based on probability products. EAGLE-2 (Li et al.,
2024a) employs a dynamic tree construction method that expands only the top-k nodes at the deepest
tree depth according to their global acceptance probabilities Vi. Concretely, the global acceptance
probability Vn for a node n is computed as the product of the acceptance probabilities along the path
from the root node nroot to n:

Vn =
∏

n′∈path(nroot,n)\{nroot}

Pr(n′ | parent(n′)) ≈
∏

n′∈path(nroot,n)\{nroot}

p
(d)
child(parent(n′))(n

′).

The true probability distributions are unknown at inference time and, thus, are approximated by the
probability distributions produced by the draft model.

BEAM SEARCH

The tree search algorithm (illustrated in Figure 4(a)) of EAGLE-2 Li et al. (2024a) is based on a
simple beam search and consists of two phases:

1. Tree expansion (k and depth are parameters): At each expansion step, top-k nodes from
the deepest tree depth are selected. Each node is expanded by processing with the draft
model to generate up to k child nodes belonging to the next depth. This iterative expansion
process continues until the tree reaches a predefined depth.

2. Re-ranking (N is a parameter): After tree expansion, retain only top-N tokens with the
highest Vn values in the tree for verification.

However, this strategy is suboptimal; as it selects the next nodes to expand only in the deepest
tree depth, it may overlook higher-probability nodes elsewhere in the tree. For an exemplar tree in
Figure 3, a truly optimal tree expansion would prioritize the yellow nodes with higher Vn over the
pink nodes, which would be selected by EAGLE-2.

OPTIMAL TREE SEARCH

Our algorithm builds upon the optimal tree search method (Svirschevski et al., 2024). Specifically,
we provide the formulation of the optimal tree search problem as follows:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

How can

I
(1.0)

Make
(0.5)

Help
(0.2)

A
(0.25)

Our
(0.15)

With
(0.08)

You
(0.1)

Cake
(0.05)

Pen
(0.05)

Today
(0.03)

With
(0.02)

0.5 0.2

0.5 0.3

0.20.2

0.4 0.5

0.3 0.2

Figure 3: Tree expansion process with EAGLE-2 (k = 2). Numbers in parentheses indicate global
acceptance probabilities (Vn) approximated by using the draft model.

expand TopK V1

expand TopK V23

2

1 expand TopK V0

expand TopNU1

expand TopNU23

2

1 expand TopNU0
V0

V1

V2

U0

U1

U2

⋯

⋯⋯

⋯ ⋯draft TopN V0 ~ Vd-1d

tN⋯tℓ⋯t1t0
✓ ✓ ✓ x xx

T𝑖 = TopNU𝑖
expand tℓ ~ t𝑛

c𝑀⋯c1c0
TopN		T$ ∪ 𝐶(𝑇$)

𝐶(𝑇!)

t’N⋯t’ℓ′⋯t’1t’0

✓ ✓ ✓ x x✓

T!"# = TopNU!"#

(a) EAGLE-2 tree construction (b) Optimal tree construction

✓: expanded x: not expanded

Figure 4: Tree expansion strategies: EAGLE-2 expands from deepest nodes, while optimal tree
construction expands across all depth.

Definition B.1 (Optimal tree Gopt). Given maximum tree depth d and size N , the optimal tree Gopt
consists of exactly N nodes, each nodes with depth≤ d, maximizing the sum of global acceptance
probabilities.
Definition B.2 (TopN operator). Let G be a rooted tree with nodes n having a value v(n) and depth
depth(n) (number of edges from the root). Define subset Ui = {n ∈ G | depth(n) ≤ i}. For a set
X ⊆ G, TopN(X) selects the N nodes with highest value:

TopN (X) := argmax S⊆X
|S|=N

∑
n∈S

v(n).

Definition B.3 (Monotonic Tree). A tree G is monotonic if each node n ∈ G satisfies

∀c ∈ child(n), v(c) < v(n),

where child(n) denotes the child nodes of n.

Definition B.1 imposes two critical constraints on the search algorithm: the maximal tree depth and the
fixed number of candidate nodes. First, the depth constraint reflects the cost of draft model inference
and also the diminishing returns associated with deeper searches; intuitively, the potential maximum
gain decreases as the depth i increases, bounded by N − i. Second, due to the computational expense
of target model inference, it is crucial to batch only a limited number of candidate tokens efficiently.

Figure 4(b) illustrates the optimal tree search process employed in algorithm 2. In summary, at
iteration i, the algorithm seeks to expand TopN (Ui). Due to exponential growth of Ui, with increasing
depth i, directly managing the set is impractical. Thus, the algorithm maintains a fixed size priority
queue Ti with capacity N , updating it iteratively according to

Ti+1 = TopN (Ti ∪ child(Ti)).

We now present Theorems 2 and 3, establishing the correctness of Algorithm 2 (without early
stopping) in identifying the optimal tree.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Theorem 2 (Loop Invariant). For every i ≥ 0,

Ti = TopN
(
Ui

)
.

Proof. We proceed by induction on i.

Base case (i = 0). Since U0 contains only the root node, it trivially follows that: T0 = TopN (U0).

Inductive step. Assume Tk = TopN (Uk) holds for some k ≥ 0. Note that:

Uk+1 = Uk ∪ Vk+1, Vk+1 = {n | depth(n) = k + 1} =
⋃

p∈Vk

child(p).

Because of monotonicity, any node p ∈ Uk \ Tk satisfies

v(p) ≤ min
n∈Tk

v(n) ≤ min
n∈Tk+1

v(n).

Hence, all its children c ∈ child(p) have lower values and cannot enter TopN (Uk+1). Therefore, the
only valid new candidates at depth k + 1 are children of nodes in Tk, i.e. Ck+1. Thus,

TopN (Uk+1) = TopN
(
Tk ∪ Ck+1

)
= Tk+1,

completing the induction.

Theorem 3 (Termination). When the algorithm halts, the final set T equals TopN (T), the N
highest-value nodes in the entire tree.

Proof. Let
d = max{depth(n) | n ∈ TopN (T)}.

From Theorem 2, after d iterations,

Td = TopN (Ud).

Since all node of depth ≤ d lies in Ud, and no deeper node can surpass their ancestors due to
monotonicity, it follows that TopN (Ud) = TopN (T). No further changes occur beyond depth d,
thus the algorithm halts with: Tfinal = Td = TopN (T).

C PROOF OF THEOREM 1

Before beginning the proof, if B < |Vocab|, we can observe that Q always has ≥ B elements after
the first iteration; when at least a single node was expanded in the previous iteration, each expanded
node will try to push |Vocab| > B child nodes into Q. In a practical implementation, as Q will only
maintain N (≥ B) elements, we do not need to push all |Vocab| childs but only a few high-probability
childs. Such an implementation detail does not affect the correctness of Algorithm 2 or Theorem 1 as
it will still produce the same Q.

Proof. Partition the sets as follows:

Di = Xi ∪ Yi, Xi ∩ Yi = ∅, Di+1 = Zi+1 ∪ Wi+1, Zi+1 ∩ Wi+1 = ∅,

where

Xi =
{
(pr, n) ∈ Di | ∃ (pr′, n′) ∈ Di+1 : parent(n′) = n

}
, Yi = Di \Xi.

Zi+1 =
{
(pr′, n′) ∈ Di+1 | parent(n′) ∈ Di

}
, Wi+1 = Di+1 \ Zi+1,

For any (pr′, n′) ∈ Zi+1, n′ is a child of only one parent n, where (pr, n) ∈ Xi. Then, for

Zi+1,n = {(pr′, n′) ∈ Zi+1 | parent(n′) = n} ,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

{Zi+1,n}(n,pr)∈Xi
is a partition of Zi+1. As |Zi+1,n| ≤ |Di+1| ≤ B < |Vocab| = |child(n)|,∑

(pr′,n′)∈Zi+1

pr′ =
∑

(pr,n)∈Xi

∑
(pr′,n′)∈Zi+1,n

pr′

=
∑

(pr,n)∈Xi

∑
(pr′,n′)∈Zi+1,n

pr · p(d)child(n)(n
′) (probability product)

=
∑

(pr,n)∈Xi

pr ·
∑

(pr′,n′)∈Zi+1,n

p
(d)
child(n)(n

′)

<
∑

(pr,n)∈Xi

pr ·
∑

n′∈child(n)

p
(d)
child(n)(n

′)

=
∑

(pr,n)∈Xi

pr (total probability)

Thus, ∑
(pr,n)∈Di

pr >
∑

(pr′,n′)∈Zi+1

pr′ +
∑

(pr,n)∈Yi

pr.

Also, an element (pr′, n′) ∈ Wi+1 is an element of Q not chosen to be included in Di from the
previous iteration due to its lower priority (pr′). Therefore, for any (pr, n) ∈ Yi ⊂ Di, pr ≥ pr′; i.e.,

∀(pr, n) ∈ Yi, pr ≥ max
(pr′,n′)∈Wi+1

pr′.

Now, we want to show that |Wi+1| ≤ |Yi|. Note that |Zi+1| ≥ |Xi| because an element in |Xi|
has one or more non-overlapping child in |Zi+1|. When |Di| = B, |Wi+1| = |Di+1| − |Zi+1| ≤
|Di| − |Xi| = |Yi| holds.

When |Di| < B, this means that some of the B elements chosen from Qi were smaller than ϵi. Then,
because Wi+1 consists of elements of Qi+1 that has not been expanded in the previous iteration,
they must come from the leftovers of Qi, which are smaller than ϵi. Also, because G only retains
high-probability nodes, ϵi+1 ≥ ϵi holds. Therefore, pr′ < ϵi+1 for any (pr′, n′) ∈ Wi+1, which
means that they must have been discarded in Line 12 of Algorithm 2. This leads to Wi+1 = ∅ and
|Wi+1| ≤ |Yi| trivially holds.

Putting these all together,

∑
(pr,n)∈Di

pr >
∑

(pr′,n′)∈Zi+1

pr′ +
∑

(pr,n)∈Yi

pr

≥
∑

(pr′,n′)∈Zi+1

pr′ + |Yi| max
(pr′,n′)∈Wi+1

pr′

≥
∑

(pr′,n′)∈Zi+1

pr′ + |Wi+1| max
(pr′,n′)∈Wi+1

pr′

≥
∑

(pr′,n′)∈Zi+1

pr′ +
∑

(pr′,n′)∈Wi+1

pr′

=
∑

(pr′,n′)∈Di+1

pr′

Hence, Si > Si+1, proving the monotonic decreasing property of {Si}.

D EXPERIMENTAL DETAILS AND ASSETS USED

We used the same ShareGPT dataset for all training runs, allocating 95 % of the data to training
and 5 % to validation. The maximum sequence length was set to 2,048 tokens, and the tree (or
sequence) depth during training was fixed to three. As in EAGLE and HASS, we built questions

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and answers from a fixed prompt template and trained the draft model to predict the target model’s
outputs. We set the learning rate to 3e-4 and employed a cosine-annealing scheduler with a warm-up
phase. The entire training procedure was designed to finish within one day on two NVIDIA A100
80 GB GPUs. We used the AdamW optimizer with beta = (0.9, 0.95) (Loshchilov & Hutter, 2019).
The core implementation relies on PyTorch and Hugging Face’s Transformers library, while the
optimal-tree construction with SALF logic was written in C++ (using OpenMP and the PyTorch C++
API) and was bound to Python via pybind11.

Inference for each method was performed with the following setting:

• Vanilla (without SpD): We used the Huggingface Transformers library with a PyTorch
backend.

• Beam search: We set the number of total candidate tokens in a tree (N) to 60, the top-k to
10, and the tree depth to 7.

• SALF: We set the number of total candidate tokens in a tree (N) to 60, batch size (B) to
10, and the SALF threshold (th) to 0.6. Using a SALF threshold of 0.0 is equivalent to the
optimal tree search method.

E DECLARATION OF LLM USAGE

The authors of this manuscript declare that LLMs were used only for writing, editing, or formatting
purposes and that the LLM usage does not impact the core methodology, scientific rigorousness, or
originality of the research.

17

	Introduction
	Background
	Speculative Decoding (SpD)
	Draft Model Training: EAGLE & HASS
	Tree-based SpD & Dynamic Tree Construction: EAGLE-2 & SpecExec

	Method
	Training-Inference Misalignment for Tree-based SpD
	Training with a Tree-Aware Loss Function (TALF)
	Stopping at Low Further Gains (SALF) in Dynamic Tree Construction

	Evaluation
	Experimental Setup
	End-to-End Speedup
	Individual Benefits of SALF & TALF
	Parameter Sensitivity

	Related Work
	Conclusion
	Metrics Used in §3.1
	Dynamic Tree Construction Algorithms
	Proof of Theorem 1
	Experimental Details and Assets Used
	Declaration of LLM Usage

