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Spherical Embeddings for Atomic Relation Projection Reaching
Complex LogicalQuery Answering

Anonymous Author(s)

ABSTRACT
Projecting knowledge graph queries into an embedding space using

geometric models (points, boxes and spheres) can help to answer

queries for large incomplete knowledge graphs. In this work, we

propose a symbolic learning-free approach using fuzzy logic to

address the shape-closure problem that restricted geometric-based

embedding models to only a few shapes (e.g. ConE) for answering
complex logical queries. The use of symbolic approach facilitates

non-closure geometric models (e.g. point, box) to handle logical

operators (including negation). This enabled our newly proposed

spherical embeddings (SpherE) in this work to use a polar coordi-

nate system to effectively represent hierarchical relation. Results

show that the SpherE model can answer existential positive first-

order logic and negation queries. We show that SpherE significantly

outperforms the point and box embeddings approaches while gen-

erating semantically meaningful hierarchy-aware embeddings.
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1 INTRODUCTION
Research in query embedding techniques have received growing at-

tention because of their demonstrable abilities in Complex Logical
QueryAnswering (CLQA) over large incomplete knowledge graphs

[30, 41]. Complex queries are decomposed into atomic ones, which

are connected via logical operators into a computation graph, as

illustrated in the top diagram of Figure 1. With nodes and relations

in the computation graph as learnable vectors, knowledge graph

reasoning can be realized through parameter estimation. Down-
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Figure 1: (Top): A complex query in a computation graph
“What is profession of someone who speaks English and is
friend of a celebrity?”, has several atomic queries: “Who
speaks English?”, “Who is a celebrity?” and “Who is friend of
the celebrity?”, and “What is profession of this person?”. (Bot-
tom): Illustration of the hierarchical structure in the query
using a polar coordinate system, adapted from HAKE [48].

stream tasks of CLQA can be applied to question answering [39]

and recommender systems [15, 16, 35].

Different mathematical interpretations of the vector space lead to

several recent state-of-the-art query embedding models. Geometric

interpretations are among the most popular, e.g. a query embedding

as a point [14], a box [31] and a cone [28, 49]. A key factor for

their success is the intuitive modelling of the logical operators:

conjunction, disjunction and negation as set intersection, union and

complement of the corresponding shapes, respectively.

However, such modelling has its own challenges. Taking the

common shapes (e.g. point, box) as examples, neither point em-

beddings nor boxes embeddings by default can answer negation

queries [32]. The complement of a point or a box is no longer a

point or a box [32, 49]. The geometric-based approach limits to

utilizing a few special shapes like cone embeddings [49] to resolve

the issue. For example, ‘the closure of complement of a cone is still a
cone’ [49]. In other words, the geometric approach is challenging in

representing the query using many valid geometric shapes due to

the need of shape-closure. This approach suggests a necessary con-

dition of closed complement (for answering negation queries) and

closed intersection (for answering conjunctive queries) in shapes.

Probabilistic reasoning and fuzzy logic [21, 22] interpretations

of the embedding vectors can address the non-geometric closure

challenge while capturing the uncertain nature of such vector rep-

resentations. Recent methods in probabilistic interpretations use

distributions, e.g. beta [32]; gamma [46]; Gaussian [9, 43]), but still

rely on the neural learning approaches to handle some logical oper-

ators (AND, OR). Recent works apply fuzzy logic in complex logical

query answering from a query optimization perspective [1, 4], or

1
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fuzzy sets viewpoint [51]. These fuzzy logic based symbolic ap-

proaches are shown to be effective in reducing the dependency on

deep learning to model logical operators in complex queries, and is

empirically useful in uncertainness and vagueness.

We first make a contribution in this research by proposing a

unified solution to enable CLQA of geometric-based embeddings

for non-closure shapes, such as point embeddings [14] and box em-

beddings [31]. The geometric embeddings are trained using atomic

relation projection (1p) only, while a learning-free symbolic ap-

proach makes uses of fuzzy t-norms and t-conorms for logical oper-

ators to answer complex queries. Notice that point embeddings [14]

and box embeddings [31] though cannot can handle negation but

they can model conjunction and disjunction operators by default.

This aspect can reduce the necessity of using the fuzzy symbolic

approach in handling these logical operators but not negation.

This realization leads us to the next contribution of this research.

We propose Spherical Embeddings (SpherE), which considers a

central point in polar coordinate system in a similar fashion as

HAKE [48], for answering atomic queries in origin or handling

atomic relation projection operator only. Modelling negation, con-

junction and disjunction operators using SpherE is challenging as

the complement of a sphere, the intersection and union of spheres

are no longer of the same spherical shape. Hence, the SpherE is

the most limited geometric model compared to point and box em-

beddings. However, we demonstrate that the symbolic fuzzy logic

realization of logical operators enables SpherE to generalize to

CLQA, making SpherE achieve the full ability as ConE [49].

SpherE elegantly makes use of the symbolic approach to circum-

vent the non-closure problem of the spherical shape while being

capable of learning hierarchy-aware vector representations. De-

spite the potential ability to capture hierarchical relationships using

polar coordinates (as shown in the bottom diagram of Figure 1),

there is little work on spherical representation on the task of CLQA.

Extensive empirical results verify that SpherE in addition to point

and box embeddings can generalize to CLQA when augmenting

with the symbolic approach even though these geometric models

are trained on atomic queries only. This observation highlights the

vital role of atomic relation projection in CLQA. Moreover, results

show that using the symbolic approach over atomic projection can

negate the necessary condition in shape-closure for existing geo-

metric models in CLQA. Our results show that combining the visual

intuitions of geometric embeddings with the logical intuitions of

fuzzy set theory provides a promising approach towards a perfor-

mant and explainable model for complex logical query answering.

2 RELATEDWORKS
CLQA using geometry and probabilistic distributions. The geomet-

ric embeddings approaches include GQE [14] (vectors as points),

Query2Particles [3] (particles), Query2Box [31] and Newlook [24]

(hyper-boxes), HypE [10] (hyperboloids), ConE [49] (cones) with

SConE [28] (simplified cones), CylE [27] (unbounded cylinders),

HaLk [42] (arcs), RELG [50] (torus). The distribution-based ap-

proaches include BetaE [32] (Beta distributions) followed by its

variant LinE [17], GammaE [46] (Gamma distributions), PERM [9]

(Gaussian distributions), and NMP-QEM [25] and Query2GMM [43]

(mixture of Gaussian distributions). A common strategy in these

works is to interpret the process of logical reasoning (conjunction)

in embedded queries through intersection of object or distribution

shapes.

Spheres as an obvious candidate shape have been used for other

tasks. For example, SEPA [13] uses hyper-sphere embeddings (in

both Euclidean and Hyperbolic spaces), but for the link predic-

tion task. Similarly, JoSE [26] uses spheres (in Euclidean space)

but for the text similarity and clustering task. Besides, DGS [18]

uses complex non-Euclidean geometric space to model two-view

KGs: ‘instance-view entities’ for cyclic structures and ‘ontology-view
concepts’ for hierarchical structures. DGS works on triple comple-

tion and entity typing tasks which can answer atomic queries. In

this work, we use spherical embeddings for the task of answering

atomic and complex query. Note that the central point of spherical

embeddings in our representation is in the polar coordinate system,

compared to the central point of box embeddings BoxTaxo [19]

where this system is not available.

We use spherical embeddings, point and box embeddings to

learn the task of atomic relation projection. Then, leveraging the

same fuzzy symbolic approach over scoring values obtained from

any of these geometric models can help to answer complex logical

queries. Hence, the complex logical query answering relies on the

basic learning of the early task of atomic relation projection. Other

geometric-based embedding spaces can achieve this task, which

therefore suggests to open research for future works to ease the

selection of many geometric models.

Table 1: Comparison of backbonemodels when generalizing
to CLQA using the symbolic fuzzy approach.

Backbone AQA Model CLQA Model
Approach

GNN-QE [51]

Graph Neural Networks

N/A(R-GCNs [33], CompGCN [38],

NBFNet [52])

LMPNN [40]

Knowledge graph embeddings

N/A

(RESCAL [29], TransE [6],

DistMult [45], ComplEx [37],

ConvE [12], RotatE [34])

CQD
A

[2]

Knowledge graph embeddings

N/A

(ComplEx [37])

QTO [4]

Knowledge graph embeddings

N/A

(TransE [6], ComplEx [37],

RotatE [34])

Ours

SpherE, GQE [14], Query2Box [31],

(GQE) [14], (Query2Box) [31], BetaE [32], ConE[49]

Logic-based approach for CLQA. The logic-based approaches in-

clude these models: CQD [1], CQD
A

[2], QTO [4], LMPNN [40],

FIT [47], GNN-QE [51] and FuzzQE [8]. These use symbolic fuzzy

logic to allow backbone models such as Knowledge Graph Embed-

dings KGEs (e.g. ComplEx [37]) or Graph Neural Networks GNNs

(e.g. NBFNet [52]) to answer complex logical queries. Nevertheless,

little work takes advantage of the symbolic approach to achieve the

logical reasoning ability beyond object shapes (e.g. points, boxes
and hyper-spheres) for negation, conjunction and disjunction.

2
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A common thing of the backbone models in existing logic-based

approaches is that these backbones (e.g., RESCAL [29], TransE [6],

DistMult [45], ComplEx [37], ConvE [12], RotatE [34]) are first used

for link prediction or knowledge graph completion task which can

answer atomic queries. Our approach, on the other hand, use a

range of backbones models as shown in Table 1, including those

for answering atomic queries and those for answering complex

logical queries by default. These models provide a broader view

of generalizing atomic query answering (AQA) to CLQA than the

existing approaches when augmenting with fuzzy logic.

3 PRELIMINARIES
3.1 Knowledge graphs
A knowledge graph (G) is a set of triples with head, tail entity

connected through relations. Let’s denote the collection of entities

as a set (E), where E = {. . . , 𝑒𝑖 , . . .} and 𝑒𝑖 ∈ E. The collection

of relations is denoted as R, where R = {. . . , 𝑟𝑖 , . . .} and 𝑟𝑖 ∈
R. A binary relation function 𝑟 (i.e. an atomic formula) defines

whether there is a connection between a pair of entities 𝑒 and 𝑣 ,

where 𝑟 (𝑒, 𝑣) = True if a relation 𝑟 exists between 𝑒 and 𝑣 , and

𝑟 (𝑒, 𝑣) = False otherwise. Knowledge graph queries are expected

to be expressed in logical form, precisely in existential first-order

logic form as defined in as follows.

3.2 Existential first-order logic EFOL queries
Following the notation of Disjunctive Normal Form (DNF) [11]

in [32], an existential first-order logic (EFOL) query in DNF as a

disjunction of 𝑛 conjunctive queries is defined by:

𝑞(𝑣) = 𝑣 · ∃𝑣𝑖 ∈ E : 𝑞1 ∨ . . . ∨ 𝑞𝑛 (1)

where the conjunctive query is 𝑞𝑖 = (𝑎1
𝑖
∧ . . . ∧ 𝑎𝑚

𝑖
). An atomic

formula 𝑎 or atom [7] is defined by: 𝑎
𝑗
𝑖
= 𝑟 (𝑒, 𝑣) or ¬𝑟 (𝑒, 𝑣) for

𝑟 ∈ R, where entity 𝑒 is either constant 𝑐 or variable 𝑣 , an answer 𝑣?
is free variable, and 𝑒, 𝑐, 𝑣𝑖 , 𝑣? ∈ E. EFOL operators are there exists

(∃), conjunction (∧), disjunction (∨), negation (¬). Figure 1 (Top)
shows an EFOL query as a compound of atomic queries, connected

using (∧).

3.3 Problem formulation
We hereby subscribe to a fuzzy logic interpretation of conjunction,

disjunction and negation according to [21, 22].

Definition 3.1. A triangular norm (t-norm) (⊤) is a function of

two fuzzy variables, each represents a fuzzy membership value and

⊤(𝑥,𝑦): [0, 1] × [0, 1] → [0, 1] and its dual t-conorm (⊥) is that
function given by ⊥(𝑥,𝑦) = 1 − ⊤(1 − 𝑥, 1 − 𝑦) [21, 22].

Given a relation (𝑟 ) between a source entity (𝑒) and a target

entity (𝑣), we use fuzzy truth value 𝑇𝑞 ∈ [0, 1] as mentioned in [4]

to represent atomic query 𝑞 = 𝑟 (𝑒, 𝑣), which suggests whether

there is a link 𝑟 between (𝑒, 𝑣). The truth value 𝑇𝑞 (𝑣) can be given

with respect to a variable 𝑣 , where 𝑞 = 𝑟 (𝑣 ′, 𝑣) ∧ 𝑞′(𝑣 ′) and may

be defined recursively. To generalize the atomic queries to answer

complex queries, we use EFOL operators (∃,¬,∧,∨) over the truth
values: We follow query computation tree optimization QTO in [4]

to use fuzzy logic via t-norm (⊤) by Definition 3.1, to model these

EFOL operators.

𝑇 ∃𝑣
′ ·𝑞 (𝑣) = max

𝑣∈E
𝑇𝑞 (𝑣, 𝑣 ′), (2)

𝑇¬𝑞 (𝑣) = 1 −𝑇𝑞 (𝑣), (3)

𝑇𝑞∧𝑞′ (𝑣) = ⊤
(
𝑇𝑞 (𝑣),𝑇𝑞′ (𝑣)

)
. (4)

For disjunction (∨), we use t-conorm based on De Morgan’s law:

𝑇𝑞 (𝑣) = ⊥
1≤𝑖≤𝑘

𝑇𝑞′ (𝑣𝑖 )
DM

:=
law

⊤
1≤𝑖≤𝑘

𝑇𝑞′ (𝑣𝑖 ), (5)

where (𝑥) is negation (¬𝑥). The problem defined in Eq. (1) can be

reformulated using truth values:

𝑞(𝑣) = ∃𝑣 · argmax

𝑣∈E
𝑟 (𝑣 ′, 𝑣) ⊤ 𝑇𝑞′ (𝑣 ′),

= argmax

𝑣∈E
⊤
(
𝑇𝑞𝑖 (𝑣), · · · ,𝑇𝑞𝑛 (𝑣)

)
. (6)

4 METHODOLOGY
We describe an overview of this section in three stages: (1) learn-

ing atomic queries or atomic relation projection using spherical

embeddings (4.1), (2) generating atomic query matrix (4.2), and (3)

generalizing to complex logical query using the fuzzy symbolic

approach (4.3) as shown in Figure 2. In the first stage, the task of

learning to answer atomic queries can be achieved by using these

geometric models (GQE, Q2B). However, these backbone models

can handle complex logical queries in original setting. We propose

SpherE as a basic model that can learn to answer atomic queries

only rather than complex logical queries. This approach is vital to

show the necessity of using the symbolic fuzzy approach to gen-

eralize to complex logical query answering in a later stage. After

training a model for answering atomic queries, in the second stage,

we can obtain the scoring values of all pairs of entities in the KG

given a relation. Notice that the scoring value is calculated based on

a distance between two entities given a relation, using a pre-trained

model from the first stage (e.g. spherical embeddings). The scoring

values are then converted to the truth values to generate the atomic

query matrix of all entities for a relation. For all relations, we there-

fore obtain the atomic query tensor. In the third stage, we interpret

fuzzy logic to generalize to complex logical queries through truth

value vectors. Given an atomic query matrix and an atomic query

tensor, the truth value vectors are calculated based on the product

t-norm system for handling FOL logical operators (∃,¬,∧,∨). We

describe the details in the following:

4.1 Spherical embeddings for atomic queries
Definition 4.1. A 𝑘-sphere is a hypersphere that is a set of (𝑘 +1)-

dimensional points, each has a constant distance (called radius) to

a central point.

We represent an entity and an atomic query as the (𝑑−1)-sphere
using a pair of two variables (c, 𝜏) by Definition 4.1 as those in [13],

where (c ∈ R2𝑑 ) is the central point and (𝜏 ∈ R+) is the radius.
Figure 3 shows examples of different (𝑑 − 1)-spheres, where a

0-sphere is a point when (𝜏 = 0, 𝑑 = 1), 1-sphere is a 2D circle

when (𝜏 > 0, 𝑑 = 2) and 2-sphere is a surface of 3D ball when

(𝜏 > 0, 𝑑 = 3). We adapt representation learning of HAKE [48] to

consider the central point (c) in the polar coordinate system. Thus,

3
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Who are the Nobel Prize winners?
𝑞 = 𝑣

?
· ∃𝑣

?
:Win(NobelPrize, 𝑣

?
)

Nobel
Prize v𝑖

𝑣?

v𝑗

Win−1

r

Atomic Relation Projection: 𝑓 (v𝑖 , r)
Backbone (GQE, Q2B, SpherE, etc.)

(1) Geometric Embeddings
for Atomic Queries (Section 4.1)

𝜙 (v𝑖 , v𝑗 )
Scoring values

𝑟 (v𝑖 , v𝑗 )
Truth values A𝑟

(a relation)
A

(all relations)

(2) Atomic Query Matrix Generation
(Section 4.2)

T𝑞 (𝑣) = 𝑓 (A𝑟 )
Truth Value Vector

∃,¬ : Eq. (13), (14)
∧,∨ : Eq. (15), (16)

Fuzzy Logic
(product t-norm)

Nobel
Prize

Australia

𝑣?Win−1
∃

Citizen−1
∃ Uni

∃∧

Complex Logical Query

(3) Symbolic Approach for Generalizing
Complex Queries (Section 4.3)

Figure 2: An overview of methodology for the use of symbolic fuzzy approach to enable geometric models to answer complex
logical queries. In stage 3, a query is that “In which universities do the Nobel Prize winners who are Australian citizens grad-
uate?” with the corresponding FOL query “𝑞 = 𝑣? · ∃𝑣 :Win(NobelPrize, 𝑣) ∧ Citizen(Australia, 𝑣) ∧ University(𝑣?, 𝑣)” [28]. This
complex query has an atomic query as displayed in stage 1.

0-sphere

c
𝜏

1-sphere

c
𝜏

2-sphere

c
𝜏

Figure 3: A point, a circle and a ball surface.

we use a pair of variables: radial coordinate (or modulus part) and

angular coordinate (or phase part) to represent coordinate of the

central point. Note that we use subscripts (c𝑚 ∈ R𝑑 , c𝑝 ∈ R𝑑 )
to denote the modulus and phase part respectively. In general,

spherical embeddings are therefore (c𝑚, c𝑝 , 𝜏) ∈ R2𝑑+1.

Relation projection. We model a relation projection from a head

entity e = (e𝑚, e𝑝 , 𝜏𝑒 ) to a tail entity as an atomic query q =

(q𝑚, q𝑝 , 𝜏𝑞) via a relation r = (r𝑚, r𝑝 , 𝜏𝑟 ) using a relation projection
function 𝑓 : (e, r) → q:

q = 𝑓 (e, r). (7)

Figure 1 (Bottom) shows an example of 𝑓 (e, r) to a target entity

v = (v𝑚, v𝑝 , 𝜏𝑣) using spherical embeddings for only central points
on a polar coordinate system. Radial coordinate is to distinguish

entities at different hierarchical levels, angular coordinate is to

distinguish entities at the similar levels. More specifically, we adapt

HAKE [48] to interpret the function 𝑓 (.) for relation projection.

Distance functions. Given an atomic query q = (q𝑚, q𝑝 , 𝜏𝑞) and
a target entity v = (v𝑚, v𝑝 , 𝜏𝑣), we calculate the distance 𝑑 (q, v) as
that in [48] as follows:

𝑑 (q, v) = 𝜆𝑚𝑑 (q𝑚, v𝑚) + 𝜆𝑝𝑑 (q𝑝 , v𝑝 ), (8)

𝑑 (q, v) ← 𝑑 (q, v) − 𝜆𝜏 ∥𝜏𝑞 + 𝜏𝑣 ∥1, (9)

where 𝑑 (q, v) in Eq.(8) is the original distance between the two

central points of corresponding hyper-spheres. (𝜆𝑚, 𝜆𝑝 ∈ R+) are
hyper-parameters for modulus distance 𝑑 (q𝑚, q𝑝 ) and phase dis-

tance 𝑑 (q𝑝 , v𝑝 ) respectively, which are as follows:

𝑑 (q𝑚, v𝑚) = ∥q𝑚 − v𝑚 ∥2,
𝑑 (q𝑝 , v𝑝 ) = ∥sin

(
(q𝑝 − v𝑝 )/2

)
∥1,

where ∥·∥1,2 is the 𝐿1,2 norm.We adjust the original distance 𝑑 (q, v)
by subtracting a sum of radius using a hyper parameter (𝜆𝜏 ∈ R+)

2-sphere

c1

𝜏1 𝑑 (c1, c2)
−𝜆𝜏 ∥𝜏1 + 𝜏2 ∥1

2-sphere

c2

𝜏2

Figure 4: Illustration of distance between two 2-sphere: one
for an atomic query and another for a target entity.

in Eq. (9) to control the outside and inside distance w.r.t. borders

of spheres as shown in Figure 4. We use the similar loss as [49] to

train the model during the optimization process:

L = − log𝜎
(
𝛾 − 𝑑 (q, v)

)
− 1

𝑛

𝑛∑
𝑘=1

log𝜎
(
𝑑 (q, v′

𝑘
) − 𝛾

)
,

where 𝜎 (·) is an activation function (e.g. sigmoid), (𝛾 ∈ N+) is
a hyper-parameter, (v′

𝑘
) is the 𝑘-th negative answer and (𝑛) is a

number of negative sampling answers [28].

4.2 Atomic query matrix generation
Definition 4.2. Given a knowledge graph (G), the scoring value

between a pair of entities (𝑣𝑖 , 𝑣 𝑗 ) is 1 if they are truly connected

and 0 otherwise:

𝑟 (𝑣𝑖 , 𝑣 𝑗 ) =
{
1, if (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∈ G,
0, otherwise (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∉ G.

After having a pre-trained model using SpherE as described

in the previous section, we can generate an atomic query matrix
A𝑟 ∈ [0, 1] |E |×|E | 1 for all entities given a relation as that in [4].

Each element of the matrix is score of atom 𝑟 (𝑣𝑖 , 𝑣 𝑗 ) whether there
is a relation (𝑟 ∈ R) between two entities (𝑣𝑖 , 𝑣 𝑗 ), assuming the

matrix locates the 𝑖-th row and 𝑗-th column. Overall, a tensor

A ∈ [0, 1] |R |×|E |×|E | fills scoring values for all relations. More

specifically, a scoring function 𝜙 (v𝑖 , v𝑗 ) ∈ R outputs the scoring

value for a pair of entities over the entity set. This function can

be a distance or similarity score in geometric models (GQE, Q2B,

SpherE) for the AQA or CLQA tasks, which is taken from one of

1
This is a.k.a. neural adjacency or neural relation matrix.
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these pre-trained models. For example, we use SpherE to obtain the

scoring value as follows:

𝜙 (v𝑖 , v𝑗 ) = 𝛾 − 𝑑 (v𝑖 , v𝑗 ) = 𝛾 − 𝑑 (q𝑖 , v𝑗 ), (10)

where 𝛾 is a non-negative margin, (q, v) are spherical embeddings

of an atomic query and a target entity respectively. We rewrite

𝑑 (v𝑖 , v𝑗 ) to𝑑 (q𝑖 , v𝑗 ), as the atomic query has only one source entity

(head or tail) (see Eq. (8) & (9) for 𝑑 (q𝑖 , v𝑗 )) (see Appendix A.1 for
further details of scoring functions in other CLQA models).

Normalization. We convert real scoring values to truth values

𝑟 (v𝑖 , v𝑗 ) ∈ [0, 1] using a monotonically non-decreasing function

𝜎 (𝑥) ∈ [0, 1] such as softmax function:

𝑟 (v𝑖 , v𝑗 ) = 𝜎
(
𝜙 (v𝑖 , v𝑗 )

)
· 𝑛𝑖 =

exp

(
𝜙 (v𝑖 , v𝑗 )

)∑ |E |
𝑗

exp

(
𝜙 (v𝑖 , v𝑗 )

) · 𝑛𝑖 , (11)

where (𝑛𝑖 ) is the number of tail entities (𝑣 𝑗 ) that are reached by

head entities (𝑣𝑖 ). This is due to the fact that a head can have

multiple tails [4]: (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∈ G|𝑣 ∈ E. To ensure the truth values

are in between [0, 1], we set a threshold (𝑡 = 0.0001) to assign

those greater than one to (1 − 𝑡) by definition 4.2: 𝑟 (v𝑖 , v𝑗 ) ←
min

(
𝑟 (v𝑖 , v𝑗 ), 1 − 𝑡

)
.

Non-zero values. The truth values should be equal to one by

Definition 4.2 if edges exist. Besides, the relation projection process

can efficiently be done by considering non-zero values. As the

atomic query matrix (A𝑟 ) is sparse and the tensor (A) has space
complexity |E |2× |R| w.r.t. the number of entities and relations. We

apply a tiny threshold (𝜖) as suggested by [4] to store and load the

matrix A𝑟 (or the tensor A) efficiently in a single GPU, by setting

truth values less than the threshold to zero:

𝑟 (v𝑖 , v𝑗 ) =


1, if (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) ∈ G,
0, if 𝑟 (v𝑖 , v𝑗 ) < 𝜖,

𝑟 (v𝑖 , v𝑗 ), otherwise.

(12)

4.3 Symbolic approach for generalizing
complex queries

We outline a computation approach based on QTO [4] of EFOL

operators in a complex logical query, which may be defined recur-

sively, using product t-norm system by Definition 3.1 to interpret

conjunction: ⊤
prod
(𝑥,𝑦) = 𝑥 · 𝑦 where 𝑥,𝑦 ∈ [0, 1]. Other systems

such as G¥odel and Łukasiewicz [21] can be used in this situation.

Existential quantifier (∃) and Negation (¬). Given the atomic

query matrix A𝑟 , we define T𝑞 (𝑣) ∈ [0, 1]1×|E | the embeddings

of truth value 𝑇𝑞 (𝑣) or truth value vector, which can model (∃)
operator as follows:

T𝑞 (𝑣) =

(A𝑟 )𝑖 , if constant,

max

𝑗

(
A𝑟 ⊙ T𝑇 (𝑣 ′)

)
, if variable,

(13)

where (.)𝑇 is matrix transpose operator, ⊙ denotes element-wise op-

erator (Hadamard product) in all sections. For negation (¬), T𝑞 (𝑣)
is calculated using fuzzy negator over the atomic query matrix:

T𝑞 (𝑣) =

(1 − A𝑟 )𝑖 , if constant,
max

𝑗

(
(1 − A𝑟 ) ⊙ T𝑇 (𝑣 ′)

)
.

(14)

Conjunction (∧) and Disjunction (∨). Assuming the intersection

of truth values satisfies the associativity and/or commutativity, the
computation of truth values for conjunction and disjunction are:

T𝑞 (𝑣) =
∏

1≤𝑖≤𝑘
T𝑞
′
(𝑣𝑖 ), (15)

T𝑞 (𝑣) = 1 −
∏

1≤𝑖≤𝑘

(
1 − T𝑞

′
(𝑣𝑖 )

)
. (16)

Solution of the EFOL query problem.

𝑇𝑞 (𝑣∗) = max

𝑣∈E

{
T𝑞 (𝑣)

}
, (17)

𝑞(𝑣∗) = argmax

𝑣∈E

(
T𝑞 (𝑣∗)

)
. (18)

5 EXPERIMENTS
5.1 Experimental setups

Datasets. Weuse three benchmark datasets, pre-processed by [32],

for query embeddings: FB15k [5], FB15k-237 [36] and NELL995 [44]

to evaluate the atomic and complex logical query answering tasks

(see Appendix B.1).

Each dataset has 14 query structures: 9 existential positive first-

order logic (EPFOL) (1p, 2p, 3p, 2i, 3i, ip, pi, 2u, up) and 5 negation

types (2in, 3in, inp, pin, pni) (see Appendix B.2 for the visualization

of these query structures).

Baselines. We use GQE [14] and Query2Box (Q2B) [31] as base-

line models. They are geometric models using translation for the

relation projection. These models limit their abilities in handling

EPFOL queries only (i.e. unable to handle negation queries). How-

ever, using symbolic approach as proposed by QTO [4] enables

their abilities of answering negation queries.

Evaluationmetrics. Following the evaluation protocol of Q2B [31],

each query in the test/valid set has easy and hard answers. The

easy answers are obtained from the training/valid graph where the

hard answers are obtained from predicted links in the valid/test

graph. Given the hard answers, we evaluate model performance

using Mean Reciprocal Rank (MRR).

Implementation details. We train SpherE using atomic queries

only (1p) and evaluate performance on path queries (1p, 2p, 3p).

Then, we use QTO [4] to enable SpherE to answer complex logi-

cal queries so as to evaluate model performance on the 14 query

structures. We also train GQE (𝑑 = 800) and Q2B (𝑑 = 400) under
this setting, denoted by GQE1𝑝 and Q2B1𝑝 , along with the original

versions of GQE and Q2B that are trained in 5 EPFOL queries (1p,

2p, 3p, 2i, 3i). In Appendix B.3, Table 8 shows the training queries

using SpherE, GQE, Q2B, compared to those using BetaE, ConE and

CylE.

We report main results of SpherE (𝑑 = 256) with scaling radius

(𝜆𝜏 = 0.02) in Section 5.2. We report other results of SpherE us-

ing different embedding dimensions and hyper-parameters (𝜆𝜏 ) in
Section 5.3. During the generation of atomic query matrices (A𝑟 ),
we use a small threshold (𝜖) to filter all scoring values below (𝜖).
We found that the threshold is to efficiently store the matrices in a

single GPU as described in [4] for the FB15k and FB15k-237 datasets.

In the NELL995 dataset, we apply (𝜖) with a technique to efficiently

store the matrix in a GPU, save it in the storage drive, and load it

5
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Table 2: The average MRR (%) of answering complex logical queries before and after using fuzzy logic from QTO [4]. GQE and
Q2B results are taken from [32], while (GQE) and (Q2B) are trained in atomic queries (1p) only. Bold result is the best for each
dataset. Indicator ↑ or ↓ is the increase or the decrease of performance after using QTO for each model.

Dataset Model AVG𝑝 AVG𝑛 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k

GQE 28.0 - 54.6 15.3 10.8 39.7 51.4 19.1 27.6 22.1 11.6 - - - - -

GQE + QTO 33.5↑ 14.6↑ 50.3 ↓ 21.1↑ 15.6↑ 45.9↑ 57.7↑ 31.1↑ 40.7↑ 23.3↑ 15.8↑ 18.5↑ 25.0↑ 10.1↑ 11.0↑ 8.5↑
GQE1𝑝 - - 73.7 16.6 11.3 - - - - - - - - - - -

GQE1𝑝 + QTO 44.3↑ 23.9↑ 70.0↓ 31.5↑ 23.8↑ 55.3↑ 65.5↑ 42.4↑ 49.0↑ 36.5↑ 24.4↑ 30.4↑ 34.6↑ 18.2↑ 20.8↑ 15.5↑
Q2B 38.0 - 68.0 21.0 14.2 55.1 66.5 26.1 39.4 35.1 16.7 - - - - -

Q2B + QTO 41.9↑ 18.3↑ 66.8↓ 27.9↑ 18.0↑ 54.6↓ 65.3↓ 40.5↑ 48.6↑ 35.1 20.3↑ 25.6↑ 26.7↑ 14.0↑ 13.0↑ 12.2↑
Q2B1𝑝 - - 78.5 13.8 7.6 - - - - - - - - - -

Q2B1𝑝 + QTO 44.4↑ 21.8↑ 74.7↓ 30.8↑ 19.1↑ 56.7↑ 64.3↑ 43.4↑ 50.7↑ 37.7↑ 22.0↑ 29.4↑ 29.1↑ 19.2↑ 16.8↑ 14.3↑
SpherE - - 83.1 15.8 7.4 - - - - - - - - - - -

SpherE + QTO 54.8↑ 29.9↑ 79.8↓ 43.9↑ 31.8↑ 65.1↑ 71.1↑ 54.5↑ 59.0↑ 52.1↑ 35.5↑ 39.4↑ 37.3↑ 27.9↑ 26.5↑ 18.5↑

FB15k

-237

GQE 16.3 - 35.0 7.2 5.3 23.3 34.6 10.7 16.5 8.2 5.7 - - - - -

GQE + QTO 19.0↑ 6.2↑ 33.9↓ 8.2↑ 6.1↑ 27.9↑ 42.4↑ 14.2↑ 23.4↑ 8.8↑ 6.5↑ 6.9↑ 13.0↑ 4.7↑ 4.4↑ 2.2↑
GQE1𝑝 - - 41.6 7.9 5.6 - - - - - - - - - - -

GQE1𝑝 + QTO 21.4↑ 7.8↑ 40.7↓ 10.2↑ 8.0↑ 29.6↑ 42.5↑ 16.4↑ 24.8↑ 12.1↑ 8.7↑ 9.1↑ 14.3↑ 6.5↑ 6.1↑ 3.1↑
Q2B 20.1 - 40.6 9.4 6.8 29.5 42.3 12.6 21.2 11.3 7.6 - - - - -

Q2B + QTO 20.3↓ 7.1↑ 40.4↓ 9.0↓ 5.5↓ 28.8↓ 41.8↓ 15.5↑ 24.0↑ 11.5↑ 6.6↓ 8.9↑ 13.9↑ 5.1↑ 4.7↑ 2.9↑
Q2B1𝑝 - - 42.6 6.8 4.7 - - - - - - - - - - -

Q2B1𝑝 + QTO 21.0↑ 7.2↑ 41.9↓ 8.8↑ 6.2↑ 29.5↑ 43.2↑ 16.0↑ 24.8↑ 11.6↑ 6.8↑ 8.8↑ 13.8↑ 5.6↑ 5.0↑ 3.0↑
SpherE - - 43.3 6.9 3.6 - - - - - - - - - - -

SpherE + QTO 21.7↑ 8.3↑ 42.0↓ 10.6↑ 9.1↑ 29.9↑ 40.8↑ 16.5↑ 25.0↑ 12.1↑ 9.2↑ 9.4↑ 15.2↑ 7.0↑ 6.4↑ 3.3↑

NELL

995

GQE 18.6 - 32.8 11.9 9.6 27.5 35.2 14.4 18.4 8.5 8.8 - - - - -

GQE + QTO 18.5↓ 5.5↑ 31.4↓ 11.3↓ 9.9↑ 27.6↑ 34.6↓ 15.2↑ 20.1↑ 8.5 7.8↓ 5.6↑ 10.1↑ 6.1↑ 3.6↑ 2.1↑
GQE1𝑝 - - 47.7 13.3 9.7 - - - - - - - - - - -

GQE1𝑝 + QTO 22.5↑ 7.4↑ 44.1↓ 14.1↑ 11.4↑ 30.6↑ 37.7↑ 18.3↑ 23.7↑ 12.5↑ 9.9↑ 8.1↑ 11.9↑ 8.7↑ 4.8↑ 3.3↑
Q2B 22.9 - 42.2 14.0 11.2 33.3 44.5 16.8 22.4 11.3 10.3 - - - - -

Q2B + QTO 21.3↓ 6.5↑ 40.5↓ 13.2↓ 10.8↓ 30.1↓ 37.5↓ 17.6↑ 22.3↓ 10.8↓ 8.9↓ 7.3↑ 10.9↑ 7.7↑ 4.0↑ 2.7↑
Q2B1𝑝 - - 47.7 12.6 8.8 - - - - - - - - - - -

Q2B1𝑝 + QTO 23.3↑ 7.4↑ 46.2↓ 14.2↑ 11.2↑ 32.3↑ 39.6↑ 19.3↑ 24.6↑ 12.6↑ 9.8↑ 8.3↑ 12.1↑ 8.7↑ 4.8↑ 3.3↑
SpherE - - 60.2 15.0 9.6 - - - - - - - - - - -

SpherE + QTO 24.6↑ 9.2↑ 53.6↓ 15.3↑ 13.8↑ 30.8↑ 37.6↑ 19.5↑ 24.2↑ 15.1↑ 11.2↑ 10.0↑ 13.7↑ 12.1↑ 6.1↑ 4.1↑

in the GPU for each relation instead of all relations at once. Due

to small values in atomic query matrix, we also apply negation

scaling (𝜖𝑛) as it in QTO when generalizing atomic queries to nega-

tion queries. For further details of SpherE, please see Appendix B.4

(hyper-parameter settings) and Appendix B.5 (error bars).

5.2 Results
Table 2 shows the average (MRR %) of performance on answering

negation queries (AVG𝑛) and answering EPFOL queries (AVG𝑝 ).

Answering negation queries (AVG𝑛). Without fuzzy logic, GQE

and Q2B in default setting and in limited setting as that of SpherE

(models trained on atomic queries 1p) cannot answer negation

queries. However, using fuzzy logic unlocks the ability of handling

negation queries for all geometric models in our experiments as

shown in the last 5 columns in Table 2. Specifically, SpherE achieves

the best performance (AVG𝑛) using the three datasets. Empirical

results of models trained on atomic queries are to emphasize on the

importance of atomic relation projection on generalizing to CLQA.

Answering EPFOL queries (AVG𝑝 ). Since the default versions of
GQE and Q2B can answer the EPFOL queries, using the fuzzy sym-

bolic approach (QTO) is not necessary in this scenario. However,

Table 2 shows significant improvements in the performance of an-

swering EPFOL queries (AVG𝑝 ), before and after implementing

the symbolic approach, using the FB15k and FB15k-237 dataset

(for GQE and Q2B). There are slight drops in model performance

(AVG𝑝 ) using the NELL995 dataset (for GQE and Q2B), but the gap

is minimal. With regard to the limited versions in GQE1𝑝 and Q2B1𝑝

(trained on 1p queries), which are similar to SpherE, using fuzzy

logic is necessary to enable the abilities of answering EPFOL in

these models. Specially, SpherE (modelling the relation projection

operator only) achieves the best performance of answering EPFOL

queries (AVG𝑝 ) using the three datasets, compared to GQE and Q2B

(modelling both the relation projection and the conjunction).
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Recap. Using fuzzy logic as QTO shows a promising direction of

linking atomic queries to complex logical query answering, though

there is consistently a slight drop of performance in answering 1p

queries of a model with and without QTO (see Table 2, column

5). This problem is due to an effect of a filtering threshold 𝜖 (as

mentioned in Eq. (12) and Section 4.2) that neglects tiny truth values

below it during the generation of atomic query matrix for the 1p.

5.3 Quantitative analysis
Table 3 shows average MRR (%) of SpherE in atomic query answer-

ing (AQA) and CLQA tasks using different embedding dimensions

(𝑑) but the same scaling radius (𝜆𝜏 ).

Table 3: Performance (MRR %) of SpherE with embedding
dimensions. (∗) are for main results in Table 2.

Model/
Dataset Dim 1p AVG𝑝 AVG𝑛 #Params(origin) (QTO) (QTO)

GQE 𝑑 = 800
∗

54.6 33.5 14.6 15.4M

Q2B 𝑑 = 400
∗

68.0 41.9 18.3 8.8M

SpherE
(𝜆𝜏 = .02)
FB15k

𝑑 = 32 46.9 21.1 6.3 1.2M

𝑑 = 64 69.7 36.4 15.1 2.4M

𝑑 = 128 79.0 47.8 24.5 4.9M

𝑑 = 256
∗

83.1 54.8 29.9 9.7M

𝑑 = 512 84.3 57.6 32.4 19.5M

GQE 𝑑 = 800
∗

35.0 19.0 6.2 13.3M

Q2B 𝑑 = 400
∗

40.6 20.3 7.1 6.8M

SpherE
(𝜆𝜏 = .02)
FB15k-237

𝑑 = 32 28.6 13.6 4.0 1.0M

𝑑 = 64 37.9 18.4 6.3 2.0M

𝑑 = 128 41.6 20.6 7.7 3.9M

𝑑 = 256
∗

43.3 21.7 8.3 7.8M

𝑑 = 512 44.3 22.3 8.7 15.6M

50 200 400 600 800
Embedding dimension

28
30
32
34
36
38
40
42
44

1p

SpherE
GQE
Q2B

(a)

28 30 32 34 36 38 40 42 44
1p

14

16

18

20

22

A
VG

_p

SpherE

(b)

28 30 32 34 36 38 40 42 44
1p

4

5

6

7

8

A
VG

_n

SpherE

(c)

Figure 5: Correlation of performance (MRR%) of embedding
dimension andAQA, and ofAQAandCLQAusing the FB15k-
237 dataset.

Effect of embedding dimension on answering atomic queries. In
general, there is a correlation between the size of embedding dimen-

sion and model performance (MRR %) on AQA and CLQA. Without

QTO, when increasing (𝑑) from 32 to 512, model performance on

AQA (1p) significantly rises by nearly 80% (using the FB15k dataset)

and by around 55% (using the FB15k-237 dataset). However, the

average MRR (1p) reaches a critical point at a high embedding di-

mension. Figure 5a demonstrates the increasing trend, which is

convergent after around (𝑑 = 400).

Effect of atomic queries on generalizing complex logical queries.
Table 3 also shows a correlation between model performance on

AQA and CLQA, particularly between the average MRR (%) in

atomic queries (1p) and that in EPFOL queries (AVG𝑝 ). Figure 5b

illustrates the correlation using the FB15k-237 dataset. Similarly,

Figure 5c illustrates a correlation between the average MRR of 1p

queries and that of negation queries (AVG𝑛). These correlations

suggest a key role of atomic query in affecting the ability of CLQA

using fuzzy logic in SpherE. Moreover, using Sphere (𝑑 = 128) has
lower number of parameters than baselines in GQE and Q2B, but

can achieve better performance of AQA and CLQA than baselines.

Effect of radius on AQA. Figure 6 shows the average MRR (%)

results of SpherE in the AQA task using different scales (𝜆𝜏 ∈
{0.0, 0.02, 0.1, 0.2, 0.4, 1.0} contributing to the adjusted distance func-
tion in Eq. (9)) but the same embeddings dimension (𝑑 = 256).When

this hyper-parameter is zero, the total distance of an embedded

query and an embedded target answer is equal to the distance be-

tween their central points. When this hyper-parameter is one, the

total distance is equal to the distance between their borders (see

Figure 4 to recall a visualization this distance). In each dataset, by

selecting a critical scaling hyper-parameter, we can have the best

version of SpherE sufficiently performing AQA task (1p).

0.0 0.2 0.4 0.6 0.8 1.0
r

82.5
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85.5
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(a) FB15k
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r

43.1
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(b) FB15k-237
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60.1
60.2

1p

(c) NELL995

Figure 6: Performance (MRR %) of SpherE using different ra-
dius scales (𝜆𝜏 ) on answering atomic queries.

Illustration of semantic hierarchy. Figure 7 visualizes example

pairs of embedded entities, each pair is (ℎ, 𝑡) given a relation (𝑟 )
based on visualization technique of HAKE [48]. The top (Figure 7a,

7b), the middle (Figure 7c, 7d), the bottom (Figure 7e, 7f) each shows

respectively when the head concept is at the lower level of entity

semantic hierarchies than the tail; at similar levels and when the

head is at a higher level than the tail. In the top and bottom, there

are clear separations between the embeddings where higher level

concepts are consistently represented in the outer sides, compared

to the similar level concepts in the middle. These observations show

SpherE’s ability of modeling semantic hierarchies as those in HAKE.

5.4 Comparison of SpherE for AQA and those
models for CLQA

Table 4 shows comparisons of model performance using other mod-

els inspired by shapes (ConE [49], CylE [27], BetaE [32]) in the

FB15k-237 dataset with and without symbolic approach. We repro-

duce results of these models, trained using complex queries, then

augment with QTO to analyse whether there are improvement.

Notice that these models have already achieved CLQA without

QTO [4] as shown in Table 4.
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Dataset Model Params AVG𝑝 AVG𝑛 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k

-237

SpherE (𝑑 = 512) 15.6M - - 44.3 7.5 4.0 - - - - - - - - - - -

SpherE + QTO 22.3↑ 8.7↑ 42.4↓ 10.9↑ 9.2↑ 30.8↑ 40.9↑ 17.4↑ 26.3↑ 13.4↑ 9.6↑ 10.2↑ 16.0↑ 7.2↑ 6.7↑ 3.4↑
BetaE (𝑑 = 400) 18.5M 20.9 5.4 39.0 10.9 10.0 28.8 42.5 12.6 22.4 12.4 9.7 5.1 7.9 7.4 3.6 3.4

BetaE + QTO 20.2↓ 8.2 ↑ 38.2↓ 10.1↓ 8.8↓ 27.6↓ 36.8↓ 14.9↑ 24.1↑ 12.5↑ 8.8↓ 9.0↑ 15.2↑ 7.3↓ 6.3↑ 3.1↓
ConE (𝑑 = 800) 23.9M 23.4 5.9 41.8 12.8 11.0 32.6 47.3 14.0 25.5 14.5 10.8 5.4 8.6 7.8 4.0 3.6

ConE + QTO 22.2↓ 8.9↑ 41.2↓ 12.5↓ 10.6↓ 29.7↓ 38.7↓ 17.3↑ 25.7↑ 13.9↓ 10.4↓ 10.1↑ 15.4↑ 8.6↑ 7.1↑ 3.4↓
CylE (𝑑 = 800) 39.7M 24.5 5.7 42.9 13.3 11.3 35.0 49.0 15.7 27.0 15.3 11.2 4.9 8.3 8.2 3.7 3.4

CylE + QTO 23.8↓ 9.8↑ 40.9↓ 13.0↓ 11.0↓ 33.2↓ 42.4↓ 19.1↑ 28.2↑ 15.7↑ 11.1↓ 10.8↑ 17.9↑ 9.0↑ 7.6↑ 3.9↑
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Figure 7: Visualization of entity embeddings in pairs using
SpherE in the FB15k-237 dataset based on HAKE [48]. (Blue
dots): Head. (Orange dots): Tail.

For negation queries, in comparison between those models with

and without the symbolic approach, performance improvements

are observed in all models. This trend is similar to that in SpherE

(Q2B and GQE). For non-negation queries, there is a slight drop in

performance using BetaE, ConE and CylE. Although model perfor-

mance of CLQA using SpherE is not competitive to that in ConE

and CylE, SpherE significantly outperforms BetaE and SpherE uses

less parameters. The results in non-negation queries suggest that

while using fuzzy logic can enable limited geometric models, such

as spherical embeddings, to answer complex queries and improve

model performance, the use of fuzzy logic may not be beneficial for

other models that have already achieved the task of CLQA.

Table 5: The average MRR (%) of SpherE and CLQA models
(BetaE [32], ConE [49], CylE [27]) in AQA.

Model Params 1p

BetaE (𝑑 = 400) 18.5M 39.0

ConE (𝑑 = 800) 23.9M 41.8

CylE (𝑑 = 800) 39.7M 42.9

SpherE (𝑑 = 512) 15.6M 44.3

Table 5 shows results (extracted fromTable 4) in AQAwithout the

symbolic approach. SpherE achieves best results of AQA over other

CLQA models (BetaE, ConE, CylE), but SpherE uses less parameters

than that in these models. Answering atomic queries is essential

as the 1p query dominates in all query structures, SpherE is at the

least example to show the link from AQA to CLQA.

6 CONCLUSIONS
We propose a symbolic approach based on fuzzy logic to enable

embeddings models (motivated by shapes like points, boxes and

spheres) for CLQA. We introduce spherical embeddings SpherE (in

polar coordinate system), and by incorporating fuzzy realisations

of logical operators, we address the extra challenges brought in

by the spherical shapes as compared to the more capable point

and box shapes, and significantly outperforms them in the CLQA

task. Results show that these models can all answer EPFOL and

negation queries when augmenting with the symbolic approach.

This is encouraging as these models on their own cannot handle

negation queries, particularly conjunctive and disjunctive queries

in the case of SpherE. Our findings suggest that fuzzy logic can help

negate the necessity of closed negation and closed intersection of

shapes for geometric-based models; thus highlight the key role of

atomic queries in CLQA.
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A METHODOLOGY
A.1 Atomic query matrix generation -

additional details
Notice that the scoring function 𝜙 () using SpherE in Eq. (10) can be

replaced with another one using CLQA models such as GQE [14],

Q2B [31], ConE [49], BetaE [32], etc., if the atomic relation projec-

tion is learned using these models. Table 6 shows comparisons of

scoring functions using distance-based of AQA models (SpherE)

and CLQAmodels. Hyper-parameter (𝛾) is set to zero for simplicity.

Table 6: Scoring functions of AQA and CLQAmodels. KL de-
notes Kullback-Leibler divergence [23].

Models Scoring function 𝜙 () Representation

SpherE −𝑑 (q, v) q, v ∈ R2𝑑+1

GQE [14] −𝑑 (q, v) q, v ∈ R𝑑

Q2B [31]

−𝑑out (q, v)+
−𝜆𝑑in (q, v)

q = (𝜶 , 𝜷),
v = 𝜶 ,

𝜶 ∈ R𝑑 , 𝜷 ∈ R𝑑+

ConE [49]

−𝑑out (q, v)+
−𝜆𝑑in (q, v)

q = (𝜽𝑎𝑥 , 𝜽𝑎𝑝 ),
v = (𝜽𝑎𝑥 , 0),
𝜽𝑎𝑥 ∈ [−𝜋, 𝜋)𝑑 ,
𝜽𝑎𝑝 ∈ [0, 2𝜋]𝑑

BetaE [32] −KL (v, q) q, v ∈ R2𝑑

B EXPERIMENTAL SETUPS
B.1 Datasets
Table 7 shows statistical description of the three datasets (FB15k [5],

FB15k-237 [36] andNELL995 [44]) which are pre-processed by [32]
2
.

The number of entities in the NELL995 dataset is more than four

times that in the FB15k-237 dataset while both have similar number

of edges. The FB15k dataset has the highest number of edges, which

is more than five times that in the FB15k-237 dataset. The NELL995

has the highest complexity of atomic query matrix |E | × |E| and
tensor |E | × |E| × 2|R |.

B.2 Query structures available in the datasets
Figure 8 demonstrates corresponding 14 EFOL query structures in

computation graphs; where source entities (constants) are in grey

nodes, intermediate entities (variables) are in blue nodes, target

entities (free variables) are in green nodes, relation projections

(∃) are black arrows, relation projections with negation (¬) are
dash red arrows, conjunctive connections (∧) are red arrows and

disjunctive connections (∨) are orange arrows.

2
https://github.com/snap-stanford/KGReasoning, licensed under the MIT License.
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Figure 8: EFOL queries in from the BetaE [32] datasets, ‘p’ is projection, ‘i’ is intersection, ‘u’ is union and ‘n’ is negation.

Table 7: Datasets in [32]. Table is adapted from [28].

Statistics FB15k FB15k-237 NELL995

Train Edges 483,142 272,115 114,213

Valid Edges 50,000 17,526 14,324

Testing Edges 59,071 20,438 14,267

Total Edges 592,213 310,079 142,804

Num. Entities |E | 14,951 14,505 63,361

Num. Relations |R | 1,345 237 200

|E | × |E| ≈224 ×106 ≈ 210 ×106 ≈4,015 ×106
|E | × |E| × 2|R | ≈601 ×109 ≈ 100 ×109 ≈1,606 ×109

B.3 Comparison of query structures involving
in the training process using different
models

Table 8: Training query structures in different models.

Model Training Query Structures

SpherE, GQE1𝑝 [14], Q2B1𝑝 [31] 1p

GQE [14], Q2B [31] 1p/2p/3p/2i/3i

BetaE [32], ConE [49], CylE [27] 1p/2p/3p/2i/3i/2in/3in/inp/pin/pni

B.4 Hyper-parameter settings
In terms of model implementation without QTO, we follow the

implementation of BetaE [32]
3
to train and evaluate model per-

formance of SpherE, GQE and Query2Box using either a single

GPU of NVIDIA Tesla V100 or P100 under the PyTorch frame-

work with Adam optimizer [20]. Table 9 shows a comparison of

hyper-parameters settings for reproducing main results of different

models (GQE, Q2B, SpherE). Hyper-parameters of GQE and Q2B

3
https://github.com/snap-stanford/KGReasoning, licensed under the MIT License.

are taken from [32]. In SpherE, we search for the learning rate in

{0.00005, 0.0001, 0.0002, 0.0003, 0.0004}. For ablation studies, we con-

duct experiments using the scaling radius (𝜆𝜏 ) in {0.0, 0.02, 0.1, 0.2,

0.4, 1.0} for the inside distance in Eq. (9) and using the embedding

dimension in {32, 64, 128, 256, 512}.

Table 9: A summary of hyper-parameter of main results us-
ing GQE [14], Q2B [31] and SpherE. Hyper-parameter of
GQE and Q2B are taken from [32].

Dataset Model 𝑛 𝑏 𝑑 𝑚 𝛾 𝑙

Batch
size

Negative
sampling

Embedding
dimension

Max
steps

Positive
margin

Learning
rate

Inside
distance

FB15k

GQE

512 128

800 450k 24 0.0001 -

Q2B 400 450k 24 0.0001 0.02

SpherE 256 750k 36 0.0001 0.02

FB15k-237

GQE

512 128

800 450k 24 0.0001 -

Q2B 400 450k 24 0.0001 0.02

SpherE 256 450k 24 0.0001 0.02

NELL995

GQE

512 128

800 450k 24 0.0001 -

Q2B 400 450k 24 0.0001 0.02

SpherE 256 450k 24 0.0003 0.02

With regard to model implementation using fuzzy logic, we fol-

low the implementation of QTO [4]
4
to enable pre-trained models

to answer complex logical queries using a single NVIDIA Tesla

V100 GPU. Table 11 shows hyper-parameters settings for repro-

ducing main results of models (GQE, Q2B and SpherE). In SpherE,

we search for the negation scaling (𝜖𝑛) in {1.0, 3.0, 6.0} and set the

filtering threshold (𝜖) range from [1 × 10−4, 1 × 10−3].

B.5 Error bars for the main results of SpherE
We conduct experiments of CLQA using SpherE five times with

different random seed numbers in {0, 10, 100, 1000, 10000} for each
dataset to estimate the error bars for the main results in Table 2.

We estimate the error bars in two settings: (1) SpherE without QTO

and (2) SpherE with QTO. Table 10 shows the average of MRR in

five experiments with error bars of the two settings for each dataset.

Overall, the standard deviance for each evaluation metric (MRR %)

4
https://github.com/bys0318/QTO.
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Table 10: Estimating error bars of MRR (in percentage) for the main results of SpherE in Table 2.

Dataset Model AVG𝑝 AVG𝑛 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k

SpherE - - 83.0 15.9 7.5 - - - - - - - - - - -

(std) - - (0.07) (0.08) (0.08) - - - - - - - - - - -

SpherE + QTO 54.6 29.6 79.5 43.8 31.6 64.7 70.9 54.5 58.8 52.4 35.2 39.2 36.8 27.9 25.7 18.4

(std) (0.11) (0.22) (0.31) (0.11) (0.31) (0.23) (0.11) (0.05) (0.13) (0.25) (0.31) (0.21) (0.33) (0.23) (0.46) (0.11)

FB15k-237

SpherE - - 43.2 7.0 3.7 - - - - - - - - - - -

(std) - - (0.05) (0.13) (0.13) - - - - - - - - - - -

SpherE + QTO 21.8 8.3 41.9 10.6 9.2 30.0 40.7 16.7 25.3 12.5 9.3 9.5 15.3 7.1 6.5 3.3

(std) (0.07) (0.06) (0.10) (0.16) (0.10) (0.11) (0.13) (0.21) (0.19) (0.25) (0.13) (0.17) (0.09) (0.08) (0.05) (0.04)

NELL995

SpherE - - 60.2 15.0 9.7 - - - - - - - - - - -

(std) - - (0.04) (0.08) (0.11) - - - - - - - - - - -

SpherE + QTO 24.5 9.2 53.6 15.3 13.7 30.5 37.6 19.5 24.1 15.0 11.1 9.9 13.8 12.2 6.1 4.0

(std) (0.09) (0.04) (0.04) (0.07) (0.13) (0.18) (0.11) (0.15) (0.15) (0.20) (0.14) (0.09) (0.15) (0.08) (0.05) (0.07)

Table 11: A summary of hyper-parameter using QTO [4] for
reproducing main results of GQE [14], Q2B [31] and SpherE.
(.) are for models trained on 1p queries only.

Dataset Model 𝜖𝑛 𝜖 𝑑 𝛾 𝜆𝜏
Negation
scaling

Filtering
threshold

Embedding
dimension

Positive
margin

Inside
distance

FB15k

GQE

3.0

5 × 10−4 800 24 -

GQE1𝑝 5 × 10−4 800 24 -

Q2B 1 × 10−6 400 24 0.02

Q2B1𝑝 1 × 10−5 400 24 0.02

SpherE 1 × 10−3 256 36 0.02

FB15k-237

GQE

1.0

1 × 10−4 800 24 -

GQE1𝑝 1 × 10−4 800 24 -

Q2B 1 × 10−9 400 24 0.02

Q2B1𝑝 1 × 10−6 400 24 0.02

SpherE 3 × 10−4 256 24 0.02

NELL995

GQE

3.0

1 × 10−6 800 24 -

GQE1𝑝 1 × 10−5 800 24 -

Q2B 1 × 10−9 400 24 0.02

Q2B1𝑝 1 × 10−6 400 24 0.02

SpherE 1 × 10−4 256 24 0.02

is within a small range which suggests a stable result for answering

each query structure.
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