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ABSTRACT

Estimating the Conditional Average Treatment Effect (CATE) is often constrained
by the high cost of obtaining outcome measurements, making active learning es-
sential. However, conventional active learning strategies suffer from a fundamental
objective mismatch. They are designed to reduce uncertainty in model parameters
or in observable factual outcomes, failing to directly target the unobservable causal
quantities that are the true objects of interest. To address this misalignment, we
introduce the principle of causal objective alignment, which posits that acquisition
functions should target unobservable causal quantities, such as the potential out-
comes and the CATE, rather than indirect proxies. We operationalize this principle
through the Causal-EPIG framework, which adapts the information-theoretic cri-
terion of Expected Predictive Information Gain (EPIG) to explicitly quantify the
value of a query in terms of reducing uncertainty about unobservable causal quanti-
ties. From this unified framework, we derive two distinct strategies that embody
a fundamental trade-off: a comprehensive approach that robustly models the full
causal mechanisms via the joint potential outcomes, and a focused approach that
directly targets the CATE estimand for maximum sample efficiency. We provide
theoretical justification for our framework, establishing a formal link between our
information-theoretic objective and the minimization of CATE estimation error.
Extensive experiments demonstrate that our strategies consistently outperform stan-
dard baselines, and crucially, reveal that the optimal strategy is context-dependent,
contingent on the base estimator and data complexity. Our framework thus provides
a principled guide for sample-efficient CATE estimation in practice.

1 INTRODUCTION

Understanding the causal effects of interventions is central to reliable decision-making in complex
domains. Causal inference provides a principled framework for this purpose by modeling the
underlying dependencies in real-world data (Pearl, 2009; Hernan & Robins, 2023; Wager, 2024). Its
importance is evident across domains such as healthcare (Foster et al., 2011), economics (Heckman,
2000), and recommendation systems (Gao et al., 2024a), where accurately assessing the impact of
actions is critical for designing effective policies and delivering personalized interventions. Estimating
the Conditional Average Treatment Effect (CATE) is a key problem in this context, as it captures how
treatment effects vary across individuals (Künzel et al., 2019). While randomized controlled trials
remain the gold standard for causal inference, they are often impractical due to prohibitive costs and
ethical barriers (Benson & Hartz, 2017). Consequently, researchers increasingly rely on observational
data, which scale more readily but introduce the additional challenge of controlling for confounding
to ensure valid causal conclusions (Imbens & Rubin, 2015; Chernozhukov et al., 2024).

Beyond the challenge of controlling for confounding, a critical practical constraint in observational
studies is the acquisition of ground-truth outcome data. This typically requires a costly process,
such as expert annotation or long-term patient follow-up, to obtain a reliable outcome for each
subject (Nwankwo et al., 2025). Consequently, in many real-world scenarios, this process is expensive,
logistically demanding, and subject to privacy or ethical restrictions (Gao et al., 2024b; Kallus &
Mao, 2025; Tipton & Mamakos, 2025). In healthcare, for example, measuring outcomes may require
costly diagnostic tests or invasive procedures such as biopsies and large-scale tumor imaging, where
the resulting label scarcity can severely impact the accuracy of CATE estimation (Bi et al., 2019; Wen
et al., 2025). In economics and the social sciences, outcomes such as long-term income trajectories
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Figure 1: (Left) Illustrates the pool-based active learning pipeline for CATE estimation. (Middle)
Highlights the fundamental proxy-target disconnect: the goal is to learn the CATE, the data consist
only of single factual outcomes as indirect proxies. (Right) Shows the challenge of target distribution
shift, where the sampling pool differs from the target population.

or behavioral changes often require extensive, costly follow-up (McKenzie, 2012). These resource
constraints are further compounded when the study population differs systematically from the target
population of interest (Kern et al., 2024). For instance, a health maintenance organization in California
might need to rely on evidence from a study conducted years prior in Switzerland, whose participants
fail to reflect the heterogeneity of the local population (Kallus et al., 2018). This challenge of
generalizing findings across populations, formally known as ensuring external validity (Rothwell,
2005) or, more specifically, transportability (Bareinboim & Pearl, 2013; Pearl & Bareinboim, 2022),
critically undermines the real-world utility of causal estimates. To address the dual challenges of
resource scarcity and population shift, effective methods must be both sample-efficient and robustly
target-aware to ensure CATE estimates generalize beyond the study cohort.

Challenges. Active learning (AL) offers a principled framework for maximizing estimation accuracy
under a fixed budget, yet its application to CATE estimation is hindered by a fundamental challenge.
Standard AL methods are built for a world of factual observations, designed to reduce uncertainty
about observable outcomes or model parameters. The objective of CATE estimation, however, is to
precisely quantify an unobservable counterfactual difference. This misalignment between a fact-based
acquisition process and a counterfactual-based goal is the primary obstacle, leading to inefficient data
selection that fails to reduce uncertainty where it matters most: in the treatment effect itself.

Existing literature has made valuable progress in adapting conventional AL paradigms for CATE
estimation. Seminal works (Jesson et al., 2021; Wen et al., 2025) have explored criteria like factual
outcome uncertainty or information gain about model parameters. Detailed related work are provided
in App. B. While an important step, these approaches largely inherit the foundational misalignment.
Optimizing for such proxies, rather than the CATE itself, limits their effectiveness. This is com-
pounded by a vulnerability to distribution shift, as their acquisition criteria typically evaluate utility
over the sampling pool, which may not represent the target population. Consequently, a critical gap
persists: the need for a causally-aligned acquisition strategy designed to directly target treatment
effect uncertainty while remaining robust to the distributional shifts common in causal inference.

Contributions. To address the critical gap in the literature, this paper makes the following contri-
butions. A New Principle. We introduce the principle of causal objective alignment, arguing that
the structural disconnect between observable data and the causal estimand mandates acquisition
functions that are explicitly designed for the final causal goal (Sec. 3). A Novel Information-Theoretic
Framework. We develop Causal-EPIG, a novel information-theoretic framework that operationalizes
our principle (Sec. 4.1). From this unified framework, we derive two distinct, principled acquisition
strategies: one that models the foundational potential outcomes, and a second that directly targets the
final CATE estimand. Broad Model Compatibility. We demonstrate that Causal-EPIG is a flexible
framework that naturally accommodates a range of popular Bayesian CATE estimators (Sec. 4.2),
including Gaussian Process (GP)-based models like Causal Multi-task GP (Alaa & Van Der Schaar,
2017) and Non-Stationary GP (Alaa & Schaar, 2018), as well as the tree-based Bayesian Causal
Forests (Hahn et al., 2020). Theoretical Justification. We provide a formal theoretical justification
for our framework (Sec. 4.4), establishing a rigorous link between our acquisition objective and
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the minimization of CATE estimation error (Prop. 1), proving the theoretical superiority of our
prediction-oriented utilities over parameter-based baselines (Prop. 2), and providing a novel conver-
gence analysis that bounds the posterior uncertainty under our greedy acquisition strategy (Thm. 1).
Extensive Empirical Validation. We conduct comprehensive experiments showing that both strategies
derived from our framework significantly outperform a wide array of baselines (Sec. 5). Crucially,
our results validate our central hypothesis that the choice between the comprehensive and focused
strategies embodies a context-dependent trade-off, providing nuanced evidence that the optimal form
of causal alignment depends on the interplay between the base model and the problem’s nature.

2 PRELIMINARIES AND PROBLEM SETUP

Potential Outcomes and CATE Estimation. Our analytical framework is grounded in the Neyman-
Rubin potential outcomes model (Rubin, 2005). We define the random variables x, t, and y to
represent the covariates, treatment, and outcome, respectively, with domains X , {0,1}, and Y . We
denote realizations by x, t, and y. The two potential outcomes are y(0) and y(1), corresponding
to the outcome under control and treatment. The propensity score is π(x) = p(t = 1∣x = x). Our
primary goal is to estimate the CATE, defined as τ(x) ∶= E[y(1) − y(0) ∣ x = x]. For a detailed
summary of our notation, see App. C. To ensure identifiability, we impose the following assumptions.

Assumption 1 Unconfoundedness: Given the covariates x, treatment assignment t is independent
of the potential outcomes, i.e., (y(1),y(0)) á t∣x. This implies that x captures all common causes
of treatment and outcome. Positivity (Common Support): For any covariates x, the probability
of receiving any given treatment is non-zero: 0 < π(x) < 1. SUTVA (Stable Unit Treatment
Value): An individual’s potential outcomes are unaffected by the treatment assignments of others
(No Interference), and the observed outcome is the potential outcome corresponding to the treatment
received, i.e., y = ty(1) + (1 − t)y(0) (Consistency).

Under Ass. 1, the CATE becomes identifiable as the difference in the conditional expectations of the
observed outcome, which we denote f(x, t) ∶= E[y∣x = x, t = t]. This is expressed as:

τ(x) = f(x,1) − f(x,0) = E[y∣x = x, t = 1] −E[y∣x = x, t = 0]. (1)

2.1 POOL-BASED ACTIVE ESTIMATION OF CATE

In this setting, we begin with a large unlabeled pool of instances DP = {(xi, ti)}nP

i=1 and a small,
often initially empty, labeled training set DT = {(xi, ti, yi)}nT

i=1. The active learning loop proceeds
iteratively: a model trained on the current DT informs an acquisition function, which selects a batch
of nb instances from DP to be labeled. These are added to DT , and the process repeats until a budget
of nB labels is exhausted (Jesson et al., 2021; Qin et al., 2021). Our objective is to learn a CATE
model, τ̂(x), that is accurate over a specific target distribution of interest, ptar(x), which may differ
from the distribution of the sampling pool ppool(x). To formalize this, we evaluate performance
using the square root of the Precision in Estimating Heterogeneous Effects (

√
ϵPEHE) (Hill, 2011).

This metric is defined as the root mean squared error over the target distribution and is empirically
estimated using a finite target set Xtar drawn from ptar(x):

√
ϵPEHE[τ̂] ∶=

√
Eptar(x) [(τ̂(x) − τ(x))2] ≈

¿
ÁÁÀ 1

∣Xtar∣
∑

x∈Xtar

(τ̂(x) − τ(x))2. (2)

Remark 1 (Observational Constraint vs. Experimental Design) A key constraint in our setup is
that we operate on observational data, even during acquisition. For any instance (xi, ti), we can only
query its pre-existing outcome yi(ti) and cannot intervene to assign a new treatment and observe
the counterfactual. This limitation distinguishes our problem from adaptive experimental design,
which requires the freedom to assign treatments (Toth et al., 2022; Kato et al., 2024; Cha & Lee,
2025; Klein et al., 2025; Zhang et al., 2025). This constraint is common in sensitive domains like
healthcare and social sciences, where treatment assignment is governed by external factors. A more
detailed discussion of the related literature on adaptive experimental design is provided in App. B.3.
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n Key Objective. In this problem setup, the central challenge is to design a principled utility
function, U(⋅), that quantifies the informativeness of any single candidate data point (x, t) from
the pool. The acquisition strategy is then to select the candidate, denoted (xs, ts), that is deemed
most valuable by maximizing this function:

(xs, ts) = argmax
(x,t)∈DP

U(x, t ∣DT ,Xtar). (3)

While this defines the selection of a single instance, this process is typically extended to the batch
setting by greedily selecting the nb candidates that yield the highest utility scores.

3 ALIGNING ACTIVE LEARNING WITH CAUSAL OBJECTIVES

This section analyzes the unique structure of active outcome acquisition for CATE estimation,
revealing a fundamental misalignment with standard AL paradigms. We show that this misalignment
points toward a core principle, Causal Objective Alignment (COA), that should guide the design of
principled and sample-efficient acquisition strategy within this domain.

From Indirect Proxies to the Causal Estimand. In standard AL, the path from query to knowledge
is direct. The learning objective is aligned with the data-generating process: one queries a point xi

to observe a label yi, which is a direct (though noisy) signal for the target function f(xi). Naïve
applications of this paradigm to CATE estimation simply adopt these standard targets: they might
focus on the uncertainty of the observable response surface, f(x, t), or on the uncertainty of the
model’s internal parameters, θ. However, this creates a fundamental mismatch, as illustrated in Fig. 1.
Both the data we can acquire (factual outcomes) and the model’s parameters are only indirect proxies
for our true inferential goal. This goal is to understand the complete unobservable causal mechanism,
which is characterized by the two potential outcome surfaces, y(0) and y(1), and the CATE function,
τ(x), derived from them, as shown in Eq. 1. This profound disconnect between indirect proxies and
the unobservable causal quantities that truly matter motivates our core design principle:

Principle 1 (Causal Objective Alignment) An effective acquisition strategy for active CATE es-
timation should be causally aligned. Its utility function should quantify the value of a query by
targeting unobservable causal quantities, such as the potential outcomes or the CATE itself, to ensure
alignment with the final inferential goal, rather than indirect proxies.

The COA principle’s requirement that utility be quantified relative to a fixed target population, Xtar,
naturally frames active CATE estimation as a transductive learning problem (a connection detailed in
App. B.2.1). This shift in perspective from a general inductive model to one tailored for a specific
set of individuals illuminates a conceptual spectrum of acquisition strategies. This spectrum ranges
from naïve approaches targeting indirect proxies (e.g., factual uncertainty) to sophisticated, causally-
aligned strategies. Within these aligned approaches, the principle reveals a powerful dichotomy:
strategies that target the foundational components of the causal mechanism (the potential outcome
surfaces), versus those that directly target the final causal effect itself. The importance of this
alignment is amplified under distribution shift (ptar(x) ≠ ppool(x)), where misaligned objectives
may fail entirely to reduce uncertainty for the target population. This unified perspective, grounding
the problem in both causal alignment and a transductive objective, provides the robust conceptual
foundation for the Causal-EPIG framework we now introduce.

4 ACTIVE CATE ESTIMATION VIA CAUSAL-EPIG

This section operationalizes the COA principle by introducing the Causal-EPIG framework: a
unified, information-theoretic approach to designing acquisition functions. Instead of proposing
a single “best” criterion, we demonstrate that this framework naturally gives rise to two distinct
and principled strategies, embodying a fundamental trade-off between modeling robustness and
directness, the optimal balance of which may depend on both the underlying CATE estimator and the
data-generating process. We first present the formal definitions of these strategies and discuss their
conceptual differences. We then demonstrate the framework’s compatibility with advanced Bayesian
CATE estimators. Further implementation details are provided in App. E.
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Table 1: Comparison of information-theoretic acquisition functions for active CATE estimation. For
brevity, D′T denotes the training set augmented with a candidate point: D′T =DT ∪ {(x, t)}.

Non-Causal-Aware Causal-Aware

EIG I(y; θ ∣D′T ) (µ-BALD) I(y; θτ ∣D′T ) (Causal-EIG)

EPIG Eppool(x∗,t∗)[I(y; y∗ ∣ (x∗, t∗),D′T )]
Eptar(x∗) [I(y; (y∗(0), y∗(1)) ∣ x∗,D′T )] (PO-based)

Eptar(x∗)[I(y; τ(x∗) ∣ x∗,D′T )] (CATE-based)

4.1 CAUSAL-EPIG: AN INFORMATION-THEORETIC ACQUISITION FUNCTION

Our framework is grounded in the information-theoretic concept of mutual information (MI). Formally
denoted as I(a;b) = H(a) −H(a ∣ b), where H(⋅) represents entropy, MI quantifies the information
that a random variable a provides about another variable b. Equivalently, it measures the expected
reduction in uncertainty about b gained from observing a. The design of Causal-EPIG is best
motivated by a direct contrast with these standard AL criteria, as illustrated in Tab. 1. As defined
above, methods like EIG/BALD are parameter-focused, aiming to reduce uncertainty over the model
parameters (θ). This objective is indirect; reducing global parameter uncertainty does not guarantee a
targeted reduction in CATE uncertainty (Houlsby et al., 2011; Jesson et al., 2021). This limitation
persists even for causal adaptations. For instance, in models like BCF that adopt a separable structure,
f(x, t) = µ(x) + t ⋅ τ(x), with parameters θ = (θµ, θτ). In such models, one could target the CATE
parameters θτ specifically. However, this still focuses on the model’s internal representation rather
than its final predictive output (Fawkes et al., 2025). Standard EPIG elevates the objective by targeting
a future prediction (y∗), but it remains tethered to a single factual outcome. This is insufficient
because CATE is inherently a comparative quantity, τ(x) = E[y(1) − y(0)∣x]. A data point that is
highly informative for one potential outcome might offer little information about the other, and thus
may not efficiently reduce uncertainty about their difference (Smith et al., 2023).

¬ A Comprehensive Strategy: Targeting the Causal Mechanism (Causal-EPIG-µ). A direct
application of our COA principle is to target the complete causal mechanism for a target individual,
which is fully described by the joint distribution of their potential outcomes, (y∗(0), y∗(1)). This
comprehensive approach correctly accounts for the inherent dependence between the two outcomes.
This leads to our Potential Outcome-based (PO-based) strategy, Causal-EPIG-µ:

Causal-EPIG-µ(x, t) ∶= Eptar(x∗) [I(y; (y∗(0), y∗(1)) ∣ x∗,D′T )] . (4)
By seeking data that maximally reduces uncertainty over this joint distribution, Causal-EPIG-µ aims
to build a holistic and robust statistical model of the foundational surfaces from which the CATE
is derived. The objective of this strategy is to obtain a more complete and nuanced picture of the
underlying individual-level mechanism. A potential consequence is that some acquisition budget may
inevitably be dedicated to resolving uncertainty in the prognostic baseline (i.e., the average outcome)
rather than exclusively clarifying the contrast between the potential outcomes. For completeness, we
also discuss a simpler, additive variant in App. F.2, which approximates this broader objective.

¬ A Focused Strategy: Directly Targeting the Causal Estimand (Causal-EPIG-τ ). In contrast
to the comprehensive strategy, an alternative approach is to focus the entire acquisition budget on
the final inferential goal itself: the CATE function τ(x∗). This focused strategy is designed to yield
maximum sample efficiency for CATE estimation when the causal effect is a sufficiently learnable
signal, by prioritizing data points that most directly resolve uncertainty in this causal estimand.
Formally, we define the Causal-EPIG-τ utility as the expected information gain about the CATE:

Causal-EPIG-τ(x, t) ∶= Eptar(x∗)[I(y; τ(x∗) ∣ x∗,D′T )]. (5)

The mutual information term represents the expected reduction in CATE posterior entropy. An
equivalent and computationally useful formulation uses the KL divergence to frame this utility as the
expected belief update about the CATE, τ(x∗), after a potential observation y:

Causal-EPIG-τ(x, t) = Eptar(x∗)

⎡
⎢
⎢
⎢
⎢
⎣

KL(p(y, τ(x∗) ∣ x∗,D′T ) ∣∣ p(y ∣D
′

T )p(τ(x
∗

) ∣ x∗,D′T ))

⎤
⎥
⎥
⎥
⎥
⎦

. (6)
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Intuitively, a high utility score signifies that an observation at (x, t) is expected to significantly change
our beliefs about the CATE in the target population, marking it as a highly informative candidate.

Positioning the Causal-EPIG Framework. Our Causal-EPIG framework is distinguished from
related methods, particularly the Causal-BALD family (Jesson et al., 2021), by its fundamentally
prediction-focused objective. This distinction is crucial: while a method like τ -BALD calculates the
information a CATE prediction provides about the model’s internal parameters, our Causal-EPIG-τ
calculates the information a future factual observation provides about a target CATE prediction. Our
approach thus bypasses the parameters to directly target the final quantity of interest. A second key
design axis lies within our framework, concerning how information gain across the target population
is aggregated. The mean-marginal formulation, which we adopt in this work, approximates the total
gain by averaging the information for each target point independently. In practice, this expectation is
estimated via a simple sum over a finite target set. In contrast, a more theoretically complete global
formulation would compute the mutual information with the entire vector of target predictions jointly,
I(y;τ ), thereby directly leveraging all inter-target dependencies (Hübotter et al., 2024). Our choice
represents a pragmatic trade-off between computational scalability and theoretical completeness. We
provide a detailed taxonomy of these formulations in App. F.2.

The Comprehensiveness-Focus Trade-off. The choice between the comprehensive and focused
strategies is not absolute; rather, it ultimately depends on the problem context. The optimal approach
is determined by the inductive biases of the base estimator: models that directly parameterize the
CATE function, such as BCF, may benefit from the focused Causal-EPIG-τ , while models that instead
characterize the outcome surfaces, such as Gaussian Processes, may gain more from the robustness
of Causal-EPIG-µ. The complexity of the data distribution also matters: a simple, low-noise CATE
function is well aligned with the CATE-based strategy, whereas a more complex causal signal may
be more reliably captured as a natural byproduct of the robust surface modeling encouraged by the
PO-based strategy. Ultimately, our framework does not claim a universally superior solution but
instead provides principled tools whose effectiveness remains inherently context-dependent.

4.2 REALIZATION WITH BAYESIAN CATE ESTIMATORS

While model-agnostic, the Causal-EPIG framework’s practical implementation varies by CATE
estimator. We outline realization strategies for two major classes of Bayesian models.

Exact Realization with GP Models. For CATE estimators based on GPs, such as CMGP (Alaa &
Van Der Schaar, 2017) and NSGP (Alaa & Schaar, 2018), the joint posterior predictive distribution
over any set of points is, by construction, a multivariate Gaussian. Consequently, the required
predictive variances and covariances can be extracted directly from the GP’s analytical posterior
covariance matrix. In this ideal setting, the mutual information has an exact closed-form solution.
For example, for two jointly Gaussian variables, this is given by:

I(a;b) = 1

2
log

Var[a]Var[b]
Var[a]Var[b] −Cov[a,b]2 . (7)

This allows for a highly efficient and exact implementation of Causal-EPIG with GP-based models.

Approximate Realization for General Bayesian Models. For more complex models where the
posterior is analytically intractable and represented by samples, such as with the MCMC output
of Bayesian regression tree (Hill, 2011) and BCF (Hahn et al., 2020), a direct computation of the
mutual information is infeasible. To make Causal-EPIG tractable for this broad class of models, we
employ a computationally efficient Gaussian approximation, following prior work (Kirsch, 2023;
Jesson et al., 2021). This strategy involves fitting a multivariate Gaussian to the posterior draws, with
the mean vector and covariance matrix estimated empirically from the set of nM posterior samples.
For instance, when applying this to BCF, the crucial covariance term is computed from its MCMC
draws as Cov[y, τ(x∗)] = Cov({f(x, t∣θj)}nM

j=1 ,{τ(x∗∣θj)}
nM

j=1). Once this approximation is made,
we can reuse the convenient closed-form solution for mutual information (Eq. 7). This approach
provides a versatile recipe for pairing Causal-EPIG with a wide range of sample-based Bayesian
models, bypassing the need for expensive nested Monte Carlo simulations.
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4.3 BUDGETED ACQUISITION ALGORITHM

The Causal-EPIG utility serves as our acquisition function for selecting the most informative data
points. We employ this utility in an iterative active learning strategy designed to estimate the CATE
under a fixed budget (Qin et al., 2021; Jesson et al., 2021). This process, shown in Fig. 1 and detailed
in Alg. 1 (App. E.1), begins with a warm-start phase where a small, random batch of data is labeled.
Subsequently, in each round, the algorithm computes the Causal-EPIG utility for all candidates in the
unlabeled pool. A batch of points with the highest utility scores is then selected and their outcomes
are queried. The CATE model is subsequently retrained on the newly expanded labeled set. This
cycle of scoring, acquiring, and retraining continues until the budget is exhausted.

4.4 THEORETICAL ANALYSIS

We now provide a theoretical justification for our Causal-EPIG framework. Since conducting a fully
general analysis for arbitrary Bayesian CATE estimators is challenging, we focus on joint GP-based
models, which our acquisition strategies are designed to accommodate. We first show that the optimal
Bayesian AL objective for CATE estimation reduces to minimizing the posterior CATE variance. We
then analyze the convergence behavior of our Causal-EPIG strategy under this objective.

4.4.1 OBJECTIVE: CATE ERROR VS. JOINT VARIANCE

The following result connects the CATE estimation error to a tractable model-based criterion and
shows that the relevant acquisition objective is the posterior joint variance of the CATE.

Proposition 1 Assume f(x,0) and f(x,1) are modeled by a joint GP, and the CATE estimator is
the posterior mean τ̂s(x) = Es[τ(x)]. For pool-based active CATE estimation, the optimal choice
to minimize the expected model-based estimation error, Es+1[ϵMPEHE(τ̂s+1)], simplifies under the GP
assumption to minimizing the integrated posterior CATE variance:

argmin
(x,t)∈DP

Es+1[ϵMPEHE(τ̂s+1)] = argmin
(x,t)∈DP

Eptar(x)[Vars+1[τ(x)]] , (8)

where Vars+1[τ(x)] is the posterior variance of the Bayesian random variable τ(x), which explicitly
retains the joint posterior structure:

Vars+1[τ(x)] = Vars+1[f(x,1)] +Vars+1[f(x,0)] − 2Covs+1(f(x,1), f(x,0)). (9)

A detailed proof is provided in App. G.6.

4.4.2 CONVERGENCE OF POSTERIOR UNCERTAINTY

Prop. 1 shows that our acquisition strategy should aim to reduce the joint CATE variance Var[τ(x)].
To analyze its convergence, we examine the behavior of the underlying potential outcome components.
We map this component-level problem to the transductive active learning (TAL) framework (Hübotter
et al., 2024) by modeling the potential outcomes ft(x) as a single GP f(x̃) over an augmented
input space X̃ = X × {0,1} with a multitask kernel. As detailed in App. G.1, this construction
induces an augmented target space X̃tar (potential outcomes) and an augmented pool space D̃P

(factual observations), making our objective equivalent to reducing posterior uncertainty over X̃tar by
querying from D̃P . Our convergence analysis focuses on the global, joint PO-based strategy, denoted
Causal-EPIG-µ-G (discussed in App. F.2), as it is a direct instantiation of the Global Information
Theoretic Learning (ITL) strategy from the TAL framework (Hübotter et al., 2024, Eq. 2). To analyze
its convergence, we adapt the Global ITL analysis (Hübotter et al., 2024, Thm. 3.3) from the TAL
framework and first define two key quantities.

Definition 1 Let X̃tar and D̃P be defined as above. The global information capacity γnB
from nB

observations, and the irreducible uncertainty η2DP
(x̃∗) for a target f(x̃∗) = f(x∗, t), are:

γnB

def= max
X̃⊆D̃P , ∣X̃ ∣≤nB

I(fX̃tar
;yX̃), η2DP

(x̃∗) def= Var[f(x̃∗) ∣ DP ]. (10)

To prove convergence, the TAL framework requires the utility function to be submodular. We
formalize this in our context:
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Figure 2: Comparison of
√

PEHE on two simulation datasets of three CATE estimators (BCF, CMGP
and NSGP, arranged by row) on the CausalBALD and Hahn (linear) simulation datasets. The columns
represent the experimental setup for each dataset: regular and a distributional shift setting.

Assumption 2 The utility function for the Causal-EPIG-µ-G strategy, defined as the joint information
gain ψX̃tar

(X̃) def= I(fX̃tar
;yX̃), is a submodular set function.

This assumption is essential for the greedy Causal-EPIG-µ-G strategy to provide a constant-factor
approximation of the optimal information gain, which is a key component of the TAL convergence
proof. A detailed discussion of this assumption and its validity is provided in App. G.3. We now
bound the marginal variance under this assumption.

Theorem 1 Suppose the data acquisition follows the greedy Causal-EPIG-µ-G strategy and let
nB denote the total number of acquired outcomes from DP . Under standard GP assumptions and
Ass. 2, there exists a constant C > 0 such that for any nB ≥ 1 and for each target potential outcome
x̃∗ ∈ X̃tar, the marginal variance satisfies:

Var[f(x̃∗) ∣ DT ] ≤ η2DP
(x̃∗) + C(γnB

/√nB). (11)

The convergence analysis proof for this acquisition strategy is presented in App. G.3.

5 EXPERIMENTAL RESULTS

To assess the sample efficiency of our Causal-EPIG framework, we conduct extensive experiments on
several benchmarks. These include synthetic datasets based on the data-generating processes (DGPs)
from Causal-BALD (Jesson et al., 2021) and Hahn et al. (2020), as well as two well-established
semi-synthetic benchmarks: the Infant Health and Development Program (IHDP) (Hill, 2011) and
AIDS Clinical Trials Group Study 175 (ACTG-175) (Hammer et al., 1996). Full details regarding the
DGPs, dataset characteristics, and partitioning for each benchmark are available in App. D.

Base Bayesian CATE Estimators, Baselines, and Metrics. To demonstrate the flexibility of our
framework, we implement Causal-EPIG with three distinct and well-established Bayesian CATE
estimators: BCF, CMGP, and NSGP. These models are natural partners for our information-theoretic
acquisition functions, as they provide the necessary posterior uncertainty over the CATE. For brevity,
the main text focuses on these primary models; comprehensive results for all setups, including an
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Figure 3: Average relative improvement of acquisition functions over Random acquisition on five
datasets: CausalBALD, Hahn (linear), Hahn (nonlinear), IHDP, and ACTG-175.

additional estimator from the Causal-BALD study, are provided in App. H. For our baselines, we
compare against a range of acquisition functions, including Random, γ-acquisition (S-type error
rate control) (Sundin et al., 2019), coreset selection (Qin et al., 2021), Causal-EIG (Fawkes et al.,
2025), and the suite of methods from Causal-BALD (Jesson et al., 2021). Detailed implementations
for all methods are available in App. E. Our primary evaluation metric is the Root PEHE (

√
ϵ̂PEHE

or
√

PEHE for short; Eq. 2), computed on the target set Xtar. All results are reported as the
mean and standard deviation across 10 independent runs. In addition to performance curves, we
report the relative Root PEHE improvement over the Random baseline for a holistic summary of
sample efficiency. This metric is calculated at each acquisition step k as (

√
PEHERandom(k) −√

PEHEMethod(k))/
√

PEHERandom(k). Finally, we aggregate these point-wise improvements across
all steps to visualize the distribution of performance gains for each method, offering insight into its
consistency throughout the active learning process.

5.1 SYNTHETIC DATA

Results. Fig. 2 presents our main findings on the synthetic datasets, demonstrating the strong
performance of the strategies derived from our Causal-EPIG framework. On these benchmarks, the
focused strategy, Causal-EPIG-τ (red curve), proves particularly effective, consistently establishing
a new state of the art in sample efficiency. Across all three base estimators (BCF, CMGP, and NSGP)
and in settings both with and without distribution shift, it is either the top-performing method or
among the very best, rapidly converging to a lower error than all baselines. The comprehensive
strategy, Causal-EPIG-µ (blue curve), also proves to be highly effective, significantly outperforming
most baseline methods. We note one insightful interaction with the base model: its performance is
slightly attenuated when paired with BCF. We hypothesize this is because BCF models the prognostic
effect (µ) and the treatment effect (τ ) separately; therefore, predicting the potential outcomes required
by Causal-EPIG-µ may accumulate estimation errors from both components of the BCF model.
These trends are summarized in Fig. 3, which aggregates the performance gains and confirms that
Causal-EPIG-τ achieves the highest average improvement. Overall, these results provide strong
empirical validation for our COA principle, demonstrating that in these synthetic settings where the
CATE function is well-specified, the directness of the focused Causal-EPIG-τ strategy yields superior
performance. Comprehensive results, detailed analyses, and ablation studies on stability (varying
initializations, pool sizes, batch sizes, and the Deep-GP estimator) are provided in App. H.1, H.2, H.5.

Computational Considerations. The superior sample efficiency of our Causal-EPIG framework
comes at the cost of a more computationally intensive acquisition function compared to simpler
baselines. This represents a deliberate trade-off. The effectiveness of our approach is therefore
most pronounced in settings where the cost of labeling is the dominant factor in the data acquisition
pipeline, such as in clinical trials or industrial experiments where acquiring each new label can be
time-consuming and expensive. In these common real-world scenarios, the marginal computational
overhead is typically negligible compared to the cost of labeling, making the trade-off highly favorable.
A detailed breakdown of the per-sample runtimes is provided in App. F.3.
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Figure 4: Comparison of
√

PEHE on IHDP and ACTG-175 datasets. (1) CMGP on IHDP, (2) CMGP
on IHDP under target shift, (3) CMGP on ACTG-175, and (4) BCF on ACTG-175.

5.2 SEMI-SYNTHETIC DATA

Benchmarks. We evaluate our framework on two well-established semi-synthetic benchmarks
designed to mimic challenges of real-world observational studies. The first, the IHDP (Hill, 2011),
simulates selection bias by removing a non-random subset of the treated group from a randomized
trial. The second, ACTG-175 (Hammer et al., 1996), constructs an observational cohort by excluding
participants based on their enrollment symptoms.

Results and Analysis. The results on these more realistic semi-synthetic benchmarks (Fig. 4
and Fig. 3) highlight the practical effectiveness of our Causal-EPIG framework and showcase the
nuances of the trade-off between its two strategies. Across both the IHDP and ACTG datasets, both
Causal-EPIG-µ and Causal-EPIG-τ consistently deliver top-tier performance, demonstrating the
overall strength of our causally-aligned, prediction-focused approach. The strong performance of the
comprehensive Causal-EPIG-µ strategy is particularly noteworthy, suggesting that its robust approach
of modeling the entire causal mechanism is highly effective in these complex, lower signal-to-noise
settings. Furthermore, these results underscore our thesis that the optimal acquisition strategy is
context-dependent. On the IHDP benchmark, which is defined by significant selection bias, we
observe that propensity-based baselines also perform competitively. This finding is expected and
reinforces our core argument: specialized methods excel when the problem conditions match their
design assumptions. The key advantage of the Causal-EPIG framework, therefore, is not that one of
its strategies is universally dominant, but that it provides practitioners with two distinct, powerful,
and generally reliable strategies that achieve better sample efficiency across different and challenging
conditions. Full results are provided in App. H.3, H.4.

6 DISCUSSIONS

Conclusion. This work addressed the fundamental misalignment between standard active learning
and CATE estimation by introducing the principle of causal objective alignment. We operationalized
this principle with the Causal-EPIG framework, a flexible information-theoretic approach that yields
two distinct acquisition strategies: a comprehensive strategy targeting the full potential outcome
mechanism and a focused strategy targeting the CATE itself. Our extensive experiments confirmed
that both of our causally-aligned strategies significantly outperform strong baselines, and more
importantly, validated our central hypothesis that the choice between them embodies a context-
dependent trade-off. This key finding provides strong empirical evidence for our principle: while
aligning the acquisition objective with the causal goal is crucial, the optimal strategy is itself
context-dependent. By providing a framework that navigates this trade-off, our work enables more
cost-effective and reliable CATE estimation in critical domains.

Limitations and Future Work. Causal-EPIG currently assumes the absence of unobserved con-
founding and relies on well-calibrated posterior uncertainty from the base CATE model, which may
be unreliable in low-data regimes (Zhang et al., 2025). While our framework is model-agnostic,
its overall effectiveness is fundamentally bounded by the performance of the underlying CATE
estimator. A promising direction is to integrate more powerful and well-calibrated models, such as
CausalPFN (Balazadeh et al., 2025), to further enhance sample efficiency. Key future directions
include extending the method to account for hidden confounding (Li et al., 2023), and adapting our
framework for adaptive experimental design, shifting the focus from selecting which existing data to
label to deciding which new interventions to perform.
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surface-level editing tasks, such as correcting typographical errors, improving grammar, and refining
phrasing. They were not used for research design, scientific analysis, generation of results. All
scientific ideas, methodologies, analyses, and conclusions are solely the responsibility of the authors.

B ADDITIONAL RELATED WORKS AND DISCUSSIONS

B.1 ACTIVE CATE ESTIMATION

Our work addresses active outcome acquisition for CATE estimation: a setting where treatment
assignments are observational, but outcome measurements are costly (Nwankwo et al., 2025). The
goal is to intelligently select which outcomes to query from an existing cohort to best improve a
CATE model. Existing literature in this area has primarily adapted standard active learning heuristics.
One line of work focuses on diversity-based sampling, such as coreset selection, which seeks a
representative subset of the covariate space (Qin et al., 2021; Wen et al., 2025). Another focuses
on controlling specific causal error types rather than the overall estimation error (Sundin et al.,
2019). While valuable, these methods rely on indirect proxies, such as geometric diversity or specific
error metrics, that are not explicitly aligned with the primary goal of reducing CATE uncertainty.
More closely related are information-theoretic approaches from Bayesian active learning. These
methods are parameter-focused, but differ in their precise objective. Causal-EIG (Fawkes et al.,
2025), for instance, directly targets the information gain about the CATE-specific parameters (θτ ).
Causal-BALD (Jesson et al., 2021) takes a different approach, targeting the information a specific
causal prediction (e.g., τ(x)) provides about the full set of model parameters (θ). While both are
advanced causal-aware criteria, they remain focused on model-internal proxies rather than the final
predictive estimand itself. Our work bridges this final gap by introducing the Causal-EPIG framework,
a prediction-focused approach based on EPIG (Smith et al., 2023). It directly targets the expected
information gain about the causal estimand, ensuring maximal alignment between the acquisition
process and the end goal. We provide a more comprehensive review of related literature, including
the distinct lines of work on active experimental design and transductive active learning, in App. B.

B.2 INDUCTIVE AND TRANSDUCTIVE GOALS IN ACTIVE LEARNING

Active Learning (AL) is typically framed by two distinct objectives: inductive and transductive
learning. The classic inductive goal, mirroring standard supervised learning, is to train a model
that generalizes to unseen data. Most prior AL research has followed this inductive tradition,
which fundamentally relies on the assumption that data is independent and identically distributed
(IID) (Settles, 2009). In contrast, the transductive goal is to optimize performance on a specific,
known set of unlabeled target instances. Pool-based AL exhibits a fascinating duality here. Its
mechanism is inherently transductive, as acquisition functions leverage the entire unlabeled pool to
make decisions. However, its ultimate goal is usually inductive: to use the pool as a resource to build
a generalizable model. However, a critical challenge arises when the distribution of the sampling pool
(ppool) differs from the target population’s distribution (ptar), a problem known as distribution shift.
In this more challenging setting, the transductive selection mechanism must be explicitly directed
to serve an inductive goal on the out-of-distribution target set. Recent work has begun to develop
such target-aware strategies (MacKay, 1992; Hübotter et al., 2024; Smith et al., 2023), providing a
foundation upon which our causally-aligned framework is built.

B.2.1 WHAT IS THE CONNECTION BETWEEN ACTIVE CATE ESTIMATION AND TAL?

Active CATE estimation can be understood as a unique and compelling instance of transductive
learning, which we term structural transduction. This perspective clarifies why acquisition functions
should be defined with respect to a specific target population, even in the absence of covariate
distribution shift, saying ppool(x) = ptar(x). In TAL (Hübotter et al., 2024), the objective is to infer
labels for a pre-defined, fixed set of unlabeled points, A. The learner actively selects queries from a
sampling pool, S (where S is not necessarily a subset of A), to maximize accuracy specifically on
the set A. The key idea is that knowledge of the full set A from the outset can guide a more efficient
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querying strategy than a purely inductive approach, which aims to learn a model that generalizes to the
entire data distribution. At first glance, the connection to active CATE estimation is straightforward:
the target population, Xtar, for which we want to estimate the CATE, is analogous to the unlabeled
set A. However, a subtle distinction arises that complicates this analogy. One might argue that if
the covariate distributions of the sampling pool and the target set are identical (ppool(x) = ptar(x),
and Xpool =Xtar), the task is simply to learn the function τ(x) inductively. The resolution lies in
recognizing that the transductive nature of active CATE estimation is not primarily distributional, but
structural. This stems from a fundamental gap between the data we can observe and the quantity we
aim to estimate:

• The Observation Space. Through experiments, we can only ever observe individual factual
outcomes. A single query at (xi, ti) yields a noisy observation of one point on the response surface,
f(xi, ti).

• The Target Inferential Space. Our ultimate goal is to infer the CATE, τ(xi) = f(xi,1) −
f(xi,0), for every individual xi ∈Xtar. This requires knowledge of a pair of potential outcomes,
(f(xi,0), f(xi,1)), for each individual. This paired set is our true, albeit unobservable, target.

While the positivity assumption guarantees that information about both f(x,0) and f(x,1) exists
within the sampling pool for any x in the population, it does not resolve the core challenge: any
single observation only reveals one of the two quantities required for an individual’s CATE. The
essence of structural transduction, therefore, is the process of inferring the complete, paired set of
potential outcomes for the entire target population, {(f(xi,0), f(xi,1))}xi∈Xtar , from a sequence
of sparse, unpaired factual observations.

Then, let us discuss the more challenging and realistic setting where the sampling pool and target
populations differ (ppool(x) ≠ ptar(x)). Our central argument for structural transduction remains
fully intact, as the fundamental mismatch between observing single factual outcomes and inferring
paired potential outcomes is a structural property of the CATE estimand, independent of the data
distribution. However, this distribution shift introduces a second, more conventional reason for the
problem’s transductive nature. Even if one were to focus solely on learning the function τ(x), the
task is no longer simply inductive. The goal becomes optimizing the estimate of τ(x) specifically
for the known, fixed target set Xtar, using data from a different distribution ppool(x). To bridge
this gap efficiently, the acquisition strategy must leverage knowledge of the target set’s features, for
instance, to up-weight the importance of acquiring samples in regions of high target density. This act
of tailoring the learning process to a specific target set is the very definition of transduction. Thus,
under distribution shift, active CATE estimation is transductive for a twofold reason: it is structurally
transductive due to the nature of the causal estimand, and distributionally transductive due to the
target-aware objective.

Therefore, even in the absence of covariate shift, active CATE estimation task remains transductive.
Knowledge of the full target set Xtar is essential because the utility of any candidate query must
be evaluated based on how it facilitates this complex inferential leap from the observable to the
unobservable causal estimand for the specific population of interest. This perspective provides
the foundational justification for our Causal Objective Alignment perspective in Sec. 3 and the
Causal-EPIG framework in Sec. 4, which explicitly operationalizes this transductive objective.

B.3 ADAPTIVE EXPERIMENTAL DESIGN

A significant body of work in active causal learning/inference focuses on active/adaptive experimental
design, where the primary goal is to optimize the treatment assignment policy itself and also target at
minimizing the predictive performance. (1) One major research line involves adaptive sampling/ran-
domization, where treatment probabilities are updated based on accumulating data to minimize the
variance of an estimator like the ATE. This area is built on firm theoretical foundations (van der
Laan, 2008; Hahn et al., 2011), with recent works proposing refined designs that use online estimates
of nuisance components and exploit martingale structures for valid inference (Kato et al., 2021;
Tabord-Meehan, 2023), alongside specialized estimators like A2IPW (Kato et al., 2020) tailored for
such adaptive data (Cook et al., 2024). (2) A complementary line of work considers design choices
for a fixed, finite pool of individuals. This research ranges from foundational analyses of the tradeoff
between covariate balance and robustness (Efron, 1971) to modern active sampling frameworks with
finite-sample guarantees, such as those based on leverage score sampling (Addanki et al., 2022;
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Ghadiri et al., 2023) or the Gram-Schmidt Walk (Harshaw et al., 2024). (3)A related line of research
approaches CATE estimation from the perspective of Bayesian experimental design. Within this
domain, recent advances have focused on incorporating real-world complexities. For instance, some
methods integrate regulatory constraints (Klein et al., 2025) or structural uncertainty from causal
discovery (Toth et al., 2022) into the design process. Others have developed GP-based acquisition
functions to minimize the posterior variance of the CATE estimator (Cha & Lee, 2025), or provided
finite-sample theoretical guarantees for their estimators in settings like social networks (Zhang et al.,
2025).

Our work addresses a fundamentally different scenario. While active experimental design asks,
Who should we treat?, our setting of active outcome acquisition for observational data asks, Whose
outcome should we measure? This is critical in domains like healthcare where treatments are already
assigned due to ethical or practical constraints, but the resources for acquiring costly outcomes
(e.g., biopsies, genetic sequencing) are scarce. The challenge shifts from designing interventions to
efficiently allocating measurement resources. Although the action spaces differ, both fields share the
goal of allocating a limited resource to reduce causal uncertainty. This suggests that our core principle
of a target-aware strategy could inform future work in adaptive experimental design, pointing to a
promising direction for bridging these two research areas.

C FURTHER PRELIMINARIES

This section provides supplementary material to support the main text. We begin by presenting a
comprehensive table of notations used throughout the paper for easy reference. Following this, we
review fundamental concepts from information theory that form the theoretical basis for our proposed
acquisition function, Causal-EPIG.

C.1 NOTATIONS

Tab. 2 provides a consolidated summary of the key mathematical notations used in this work, organized
by their conceptual domain.

Table 2: Table of Notations

Symbol Description

General Mathematical Notations
a, a A scalar value and its corresponding random variable.
a,a A vector and its corresponding random vector.

Core Causal Inference Variables
x, t,y Random variables for covariates, treatment, and outcome.
x, t, y Specific realizations of the covariates, treatment, and outcome.
X ,{0,1},Y The domains (support) for covariates, treatment, and outcomes, respectively.
y(0),y(1) Potential outcomes under the control (t = 0) and treatment (t = 1) conditions.
π(x) The propensity score: the probability of receiving treatment given covariates,

p(t = 1∣x = x).
CATE and Evaluation Metrics
τ(x) The Conditional Average Treatment Effect (CATE), the primary quantity of

interest, defined as E[y(1) − y(0) ∣ x = x].
τ̂(x) The estimated CATE function produced by a model.√
ϵPEHE Root PEHE at the population level, i.e., the square root of the mean integrated

squared error between the true and estimated CATE.√
ϵ̂PEHE Empirical root PEHE, i.e., the square root of the mean squared error over a

finite evaluation set Xtar. Sometimes, we use
√

PEHE for short.
ppool(x) The probability distribution of covariates for the target population of interest.
ptar(x) The probability distribution of covariates for the target population of interest.
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Symbol Description

Active Learning Setting
DP The unlabeled pool of instances available for querying.
DT The labeled training set, which is iteratively augmented with new data.
nP , nT The number of instances in the pool (DP ) and training set (DT ), respectively.
XP ,XT The sets of covariates (features) in the pool and training datasets, respectively.
Xtar A representative set of samples from the target distribution, used for evaluating

the PEHE.
nb The batch size: the number of instances selected from the pool in each acquisi-

tion step.
nB The total budget for labeling, representing the maximum size of DT .

Acquisition Function and Optimization
U(⋅) The utility function (or acquisition function) that scores candidate data points

for labeling.
(Xb, tb) The optimal batch of instances chosen by maximizing the utility function U(⋅).
θ A general representation of model parameters.
θτ The specific subset of model parameters that define the CATE function, τ(x).
x∗ A random covariate vector drawn from the target distribution ptar(x), represent-

ing a target location for CATE estimation.

C.2 INFORMATION THEORY PRELIMINARIES

We then briefly reviews the information-theoretic concepts used in our acquisition functions.

Entropy and Mutual Information. The differential entropy of a continuous random variable a
with probability density function (PDF) pa(a) measures its uncertainty:

H(a) = −∫
A
pa(a) log pa(a)da. (12)

The mutual information, I(a;b), quantifies the reduction in uncertainty about a that results from
observing another random variable b. It is defined as the difference between the marginal and
conditional entropies:

I(a;b) = H(a) −H(a ∣ b). (13)

In active learning, this quantity provides a principled measure of the expected information gain from
a new observation.

The Multivariate Gaussian Case. These concepts admit closed-form expressions for the multivari-
ate Gaussian distribution, which is central to many Bayesian models. For a random vector a ∈ Rd

following a multivariate normal distribution N(µ,Σ), the differential entropy is determined by the
determinant of its covariance matrix, ∣Σ∣:

H(a) = 1
2
log ((2πe)d ∣Σ∣) . (14)

Furthermore, for two jointly Gaussian random vectors (a,b) with a joint distribution, the mutual
information has the analytical form:

I(a;b) = 1
2
log( ∣Σaa∣ ∣Σbb∣

∣Σ∣ ) , (15)

where ∣Σaa∣, ∣Σbb∣, and ∣Σ∣ are the determinants of the marginal and joint covariance matrices,
respectively. This closed-form solution is crucial for the efficient computation of information gain in
models like Gaussian Processes.
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D DATASETS

Our evaluation of Causal-EPIG is conducted on four datasets: two fully synthetic benchmarks and
two semi-synthetic benchmarks derived from the real-world covariates of the IHDP and ACTG-
175 studies. While the fully synthetic settings provide controlled environments, the semi-synthetic
datasets introduce the complex covariate distributions characteristic of real-world applications. It
is important to note that for all datasets, the data-generating process for outcomes and treatments
is known. Consequently, the ground-truth CATE can be precisely calculated, allowing for accurate
performance assessment across all settings. To further test for generalization and robustness, we also
evaluate on the IHDP, Hahn, and CausalBALD datasets under a covariate shift scenario.

Experimental Protocol Before detailing the specific data-generating processes, we outline the
standardized experimental protocol applied to all synthetic benchmarks. For each, we generate a pool
set (DP ) of 2000 instances, a validation set of 200 instances for model tuning, and a separate test set
of 2000 instances. To rigorously evaluate the acquisition functions, we conduct experiments under
two distinct scenarios designed to probe different learning properties:

• Standard (IID) Setting: This scenario assesses the classic inductive learning objective, where
the goal is to learn a general model of the underlying data distribution. During active learning,
the acquisition function’s target set is the pool itself (Xtar =XP ). We evaluate the final model’s
performance on both the pool set (to measure in-distribution learning) and the held-out test set. The
performance on the test set is critical as it validates the generalization capability of the strategy.

• Distribution Shift Setting: This scenario is designed to assess the transductive property of an
acquisition function, its ability to strategically select data from a source distribution to optimize
performance on a specific, known target distribution. Here, the target set for the acquisition function
is explicitly set to the test set (Xtar =Xtest). While we report performance on both the pool and test
sets, the primary metric is the performance on the test set, as it directly measures how effectively
the acquisition function handles the distribution shift.

D.1 CAUSALBALD SYNTHETIC DATASET

We first use a fully synthetic dataset adapted from the simulation in the CausalBALD paper (Jesson
et al., 2021), which is adapted from Kallus et al. (2019), which allows for precise evaluation against a
known ground truth.

Standard Setting. In the standard (no-shift) scenario, the data-generating process is defined as
follows. The one-dimensional covariate x is drawn from a standard normal distribution, x ∼ N(0,1).
The treatment assignment t is a random variable drawn from a Bernoulli distribution, where the
probability of receiving treatment (t = 1) is given by the propensity score π(x):

t ∣ x ∼ Bern(π(x)), where π(x) = sigmoid(2x + 0.5). (16)
The observed outcome y is then generated based on x and t with additive standard normal noise,
ϵ ∼ N(0,1). This process implicitly defines the mean potential outcome functions:

µ0(x) = 1 + 2 sin(2x),
µ1(x) = 2x + 3 − 2 sin(2x).

(17)

This results in the true CATE function: τ(x) = µ1(x) − µ0(x) = 2x + 2 − 4 sin(2x).

Covariate Shift Setting. To evaluate model robustness, we introduce a covariate shift scenario.
In this setting, the training and pool data are generated exactly as described above, with covariates
drawn from x ∼ N(0,1). However, the testing set or the target set, used for evaluation, is drawn
from a different distribution where the covariate follows a uniform distribution, xtest ∼ U(0.2,0.5).
The underlying potential outcome functions and the CATE function remain unchanged across both
settings, isolating the effect of the covariate shift.

D.2 HAHN SYNTHETIC DATASET

Our second synthetic dataset is based on the simulation design from (Hahn et al., 2020), featuring a
five-dimensional covariate vector x ∈ R5.
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Standard Setting. The covariates are generated as follows: three continuous variables from a
standard normal distribution (x1,x2,x3 ∼ N(0,1)), one binary variable from a Bernoulli distribution
(x4 ∼ Bernoulli(0.5)), and one categorical variable from a uniform distribution over three levels
(x5 ∼ U{1,2,3}). Following the original paper, we use the "nonlinear" prognostic function and the
"heterogeneous" treatment effect function. The prognostic score µ(x) is defined as:

µ(x) = −6 + g(x5) + 6∣x3 − 1∣, (18)

where g(⋅) is a helper function mapping the categorical covariate to a scalar offset: g(1) = 2,
g(2) = −1, and g(3) = −4. The true CATE function τ(x) is defined by an interaction term:

τ(x) = 1 + 2x2x4. (19)

We construct the propensity score π(x) with an intentional deviation from the original design
in (Hahn et al., 2020) to create a more challenging evaluation scenario. Our formulation utilizes the
non-monotonic Gaussian PDF instead of the original’s CDF, and models the influence of the covariate
x1 as an external additive term. This modification induces a more complex relationship between
covariates and treatment assignment, providing a more rigorous test of the active learning strategies
under evaluation. To define the score, the prognostic score is first scaled as µ̃(x) = 3µ(x)/σµ, where
σµ is the standard deviation of µ(x) across the population. The propensity score is then defined as:

π(x) = 0.8 ⋅ ϕ(µ̃(x)) − 0.5x1 + ξ, (20)

where ϕ(⋅) denotes the standard normal probability density function and ξ ∼ U(0.05,0.15) is a
random noise term. Treatment is assigned via t ∼ Bernoulli(π(x)). The final observed outcome y
is generated by adding Gaussian noise to the expected outcome, y = µ(x) + t ⋅ τ(x) + ϵ, where the
noise is scaled to achieve a signal-to-noise ratio of 3.

Covariate Shift Setting. For the corresponding covariate shift scenario, the training and pool data
are generated as above. For the test set, however, the three continuous covariates are drawn from a
uniform distribution, x1,x2,x3 ∼ U(0.2,0.5), instead of a standard normal. The distributions of the
discrete covariates (x4,x5) and the underlying functional forms for µ(x) and τ(x) remain the same.

D.3 IHDP SEMI-SYNTHETIC DATASET

We use the well-known Infant Health and Development Program (IHDP) dataset within the semi-
synthetic framework of (Hill, 2011). This setup uses real-world covariates from 747 subjects (139
treated, 608 control), comprising 6 continuous and 19 binary variables, but simulates the outcomes to
provide a known ground truth. The 747 subjects are split into a training/pool set of 523 and a test set
of 224. All continuous covariates are standardized.

Standard Setting. In the standard scenario, a sparse coefficient vector βB is generated by sam-
pling each element from the set {0.0,0.1,0.2,0.3,0.4} with probabilities {0.6,0.1,0.1,0.1,0.1},
respectively. The mean potential outcomes are then generated as:

µ0(x) = exp((x + 0.5)βB),
µ1(x) = (x + 0.5)βB − ωB ,

(21)

where the offset ωB is calculated to fix the true Average Treatment Effect on the Treated (ATT)
to 4. Potential outcomes are formed by adding standard normal noise, y0(x) = µ0(x) + ϵ and
y1(x) = µ1(x) + ϵ, with ϵ ∼ N(0,1). The final observed outcome is y = (1 − t) ⋅ y0(x) + t ⋅ y1(x).

Covariate Shift Setting. For the covariate shift scenario, the training data is generated as described
above. On the test set, however, the first two continuous covariates (birth weight and head circumfer-
ence) are resampled from a uniform distribution, U(0,0.5). Furthermore, the outcome-generating
mechanism is altered. The coefficient vector βB is sampled as before, but the first two coefficients
(corresponding to the shifted covariates) are set to zero. The mean potential outcomes are then
redefined as:

µ0(x) = exp((x + 0.5)βB),
µ1(x) = exp((x + 0.5)βB) + 3 ⋅xbw ⋅xb.head.

(22)

This induces a new ground-truth CATE, τ(x) = 3 ⋅xbw ⋅xb.head, creating a challenging scenario where
the model must generalize to both a different covariate distribution and a new functional form for the
treatment effect.
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D.4 ACTG-175 SEMI-SYNTHETIC DATASET

Our final semi-synthetic exercise uses the AIDS Clinical Trials Group Study 175 (ACTG-175)
dataset (Hammer et al., 1996). The original data comes from a randomized trial, from which an
observational study is recreated by removing a non-random subset of patients, specifically, those not
showing symptomatic HIV infection. The resulting dataset consists of 813 subjects and 12 covariates
(3 continuous and 9 binary), as described in Tab. 3. The design is slightly unbalanced, with 281
individuals in the treated group and 532 in the control. The dataset is partitioned into a training/pool
set (70%, 569 subjects) and a test set (30%, 244 subjects). The continuous covariates are standardized,
and outcomes are simulated using a process with non-linearities and interactions.

Table 3: Description of Covariates from the ACTG-175 Dataset.

Variable Description
age Numeric: age in years
wtkg Numeric: weight in kilograms
hemo Binary: history of haemophilia (1 = yes)
homo Binary: homosexual activity (1 = yes)
drugs Binary: history of intravenous drug use (1 = yes)
oprior Binary: non-zidovudine antiretroviral therapy prior to study (1 = yes)
z30 Binary: zidovudine use in the 30 days prior to study (1 = yes)
preanti Numeric: number of days of prior antiretroviral therapy
race Binary: race (0 = White, 1 = non-white)
gender Binary: gender (0 = female, 1 = male)
str2 Binary: antiretroviral history (0 = naive, 1 = experienced)
karnof_hi Binary: Karnofsky score (0 = score < 100, 1 = score = 100)

The prognostic score µ(x) and the CATE function τ(x) are defined as:

µ(x) = 6 + 0.3x2
wtkg − sin(xage) ⋅ (xgender + 1) + 0.6xhemo ⋅xrace − 0.2xz30,

τ(x) = 1 + 1.5 sin(xwtkg) ⋅ (xkarnof_hi + 1) + 2xage.
(23)

The mean potential outcomes are constructed as µ0(x) = µ(x) and µ1(x) = µ(x) + τ(x). The
potential outcomes are then formed by adding Gaussian noise, y0(x) = µ0(x) + ϵ and y1(x) =
µ1(x) + ϵ. The observed outcome is y = (1 − t) ⋅ y0(x) + t ⋅ y1(x), where the noise ϵ is drawn
from N(0, σ2

y) with the standard deviation σy set to one-eighth of the prognostic score’s range, i.e.,
σy = (max(µ) −min(µ))/8.

D.5 AL PROCESS DATASETS SETUP

Across all datasets, we follow a consistent experimental protocol to ensure fair comparisons. To
account for randomness in data splits and model initialization, all results are averaged over 10
independent trials. The active learning process for each trial begins with a warm-start phase, where
an initial labeled training set DT is created by randomly selecting 50 instances from the unlabeled
pool DP . Following this, the iterative acquisition process begins. In each step, the acquisition
function selects a new batch of instances from the remaining pool to be labeled and added to DT .
The parameters for this process vary by dataset. For the synthetic datasets (Hahn and CausalBALD),
we perform 40 acquisition steps with a batch size of 20 (800 total acquisitions). For the IHDP dataset,
we perform 40 steps with a batch size of 10 (400 total acquisitions). Finally, for the ACTG-175
dataset, we perform 20 steps with a batch size of 15 (300 total acquisitions). This process results in
final training sets of size 850 (Hahn, CausalBALD), 450 (IHDP), and 350 (ACTG-175), respectively.

E MODEL DETAILS

In this section, we provide implementation details for the models and methods used in our study.
We begin by presenting the overarching algorithm for the active CATE estimation loop in Alg. 1.
The subsequent subsections delve into the components of this algorithm, first describing our three
primary Bayesian CATE estimators: BCF (Hahn et al., 2020), CMGP (Alaa & Van Der Schaar,
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2017), and NSGP (Alaa & Schaar, 2018). We also briefly discuss other models used for ablation
studies. Finally, we detail the acquisition functions evaluated within this framework, including
Random, Causal-BALD (Jesson et al., 2021), Coreset (Qin et al., 2021), EPIG (Smith et al., 2023),
Causal-EIG (Fawkes et al., 2025), and our proposed Causal-EPIG-µ and Causal-EPIG-τ .

E.1 ACTIVE CATE ESTIMATION LOOP

Here, we formalize the pipeline for active CATE estimation used throughout our experiments. The
procedure, detailed in Alg. 1, outlines a general batch acquisition strategy for improving a CATE
estimator, τ̂(⋅). The pipeline begins with a random warm-start, followed by an iterative loop: the
acquisition function scores candidates from the pool based on their expected utility for CATE
estimation, a batch of the most informative points is acquired, and the CATE model is retrained on
the newly augmented dataset.

Algorithm 1 Budgeted Batch Active Learning for CATE Estimation

Require: Unlabeled pool DP , Target set Xtar, Utility function U , Batch size nb, Max budget nB .
Ensure: Final labeled set DT and final CATE estimator τ̂(⋅).

1: Initialize labeled set DT ← ∅.
// – Warm-start Phase –

2: Select an initial random batch Dinit ⊂DP of size nb.
3: Query factual outcomes for all (x, t) ∈Dinit.
4: Update DT ←DT ∪Dinit and DP ←DP ∖Dinit.
5: Train initial CATE estimator τ̂(⋅) on DT .

// – Main Active Learning Loop –
6: while ∣DT ∣ < nB and DP ≠ ∅ do
7: Compute utility scores for all candidates in the pool:
8: S ← {U(xi, ti ∣DT ,Xtar) for each (xi, ti) ∈DP }.
9: Select batch Db corresponding to the nb highest scores in S.

10: Query factual outcomes for all (x, t) ∈Db.
11: Update DT ←DT ∪Db and DP ←DP ∖Db.
12: Retrain or update estimator τ̂(⋅) on the new DT .
13: end while
14: return DT , τ̂(⋅)

Batch Acquisition Strategy The procedure outlined in Alg. 1 involves acquiring a batch of nb new
outcomes in each round of active learning. The simplest method for this is to score all candidates in
the pool, rank them by their utility, and select the top-nb points. However, this approach can lead
to selecting a batch with redundant information. More sophisticated methods, such as the greedy
selection strategy proposed in BatchBALD (Kirsch et al., 2019), aim to select a diverse batch by
accounting for information overlap, but this comes at a significant computational cost.

To balance performance and efficiency, a practical approximation was introduced in prior work (Kirsch
et al., 2023) and subsequently used by CausalBALD (Jesson et al., 2021). This strategy, sometimes
referred to as softmax-BALD, re-normalizes the utility scores of all candidates using a softmax
function before selecting the top-nb points. This was shown to approximate the performance of the
more expensive greedy methods while remaining computationally fast.

For the baselines adapted from CausalBALD, we adhere to the established practice of using a softmax-
based stochastic acquisition. However, for our proposed Causal-EPIG methods, we empirically found
that this strategy did not yield a discernible performance advantage over a simpler top-nb approach.
This is demonstrated in Fig. 5, where the zero-temperature setting (T = 0), which is equivalent to a
deterministic top-nb selection, performs on par with tempered stochastic selections. Therefore, to
maximize computational efficiency without compromising performance, we adopt the direct top-nb
selection strategy for all Causal-EPIG variants.
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Figure 5: Ablation study of the temperature parameter for Causal-EPIG-µ, with performance mea-
sured by

√
PEHE. The left panel (Causal-EPIG-τ ) serves as a reference, while the right panel

(Causal-EPIG-µ) illustrates the effect of varying the temperature.

E.2 IMPLEMENTATIONS OF DIFFERENT ACQUISITION FUNCTIONS

The core component of the active CATE estimation loop is the acquisition function, which quantifies
the utility of each candidate (x, t) in the unlabeled pool DP . This utility score guides the selection
of the most informative instances for labeling. In our experiments, we compare our proposed Causal-
EPIG strategies against several well-established baseline methods. This subsection provides the
implementation details for each of these acquisition functions. For all methods, batch acquisition is
performed by selecting the nb candidates with the highest utility scores.

Random Acquisition. This is the simplest baseline, involving no active selection strategy. At
each acquisition step, a batch of nb candidates is selected uniformly at random from the remaining
unlabeled pool DP . The utility score for every candidate can be considered a random variable drawn
from a uniform distribution, U(x, t) ∼ U(0,1). This method serves as a lower bound on performance,
representing data collection without model guidance.

Causal-BALD Variants. We include the full suite of acquisition functions from the Causal-BALD
framework (Jesson et al., 2021) as information-theoretic baselines. This framework adapts the
standard BALD objective to the causal setting by calculating the expected information gain about the
model parameters θ. We benchmark against all variants proposed in the original work:

• τ -BALD, which is defined as the mutual information between the τ(x) and the mode parameters
θ, saying I(y(1) − y(0), θ∣D′T ).

• µ-BALD, which is defined as the mutual information between the corresponding potential outcome
and the model parameters, saying I(y(t), θ∣DT ∪ (x, t)).

• Propensity (Propensity-based), which targets the propensity score function (π).

• Combined variants, such as µπ-BALD and µρ-BALD, that target a weighted sum of the information
gain from multiple components.

A fundamental distinction separates our Causal-EPIG framework from the Causal-BALD family.
Causal-BALD variants are parameter-focused, aiming to reduce uncertainty over the model’s internal
representation (θ). In contrast, our framework is prediction-focused, directly targeting uncertainty
about the causal quantities themselves. For instance, while τ -BALD maximizes information gain
about the CATE parameters (θτ ), our Causal-EPIG-τ maximizes the information a factual observation
provides about the CATE function (τ(x∗)). Similarly, µ-BALD reduces uncertainty over the potential
outcome parameters, whereas our Causal-EPIG-µ reduces predictive uncertainty about the potential
outcome values themselves (y∗(t∗)). For all experiments, we utilize the official implementation
provided by the authors1.

1https://github.com/OATML/causal-bald
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Sign Ambiguity BALD (Adapted from Sundin et al.). This baseline is an information-theoretic
strategy, inspired by the work of Sundin et al. (Sundin et al., 2019) and the Causal-BALD frame-
work (Jesson et al., 2021), that focuses acquisition on points where the sign of the CATE is most
ambiguous. The utility is the BALD objective (mutual information) applied to a conceptual Bernoulli
variable representing the sign of the effect. For our Bayesian CATE estimators, which yield K
posterior samples for the CATE, {τk(x)}Kk=1, we approximate the mutual information via Monte
Carlo. First, for each posterior sample τk(x), we compute a sign-related probability, using the overall
posterior standard deviation στ(x) = std({τk(x)}) as a measure of uncertainty:

γk(x) ∶= Φ(−
∣τk(x)∣
στ(x)

) , (24)

where Φ(⋅) is the standard normal CDF. The final utility is then the estimated mutual information:

Sundin(x) ∶= H(Bernoulli(γ̄(x))) − 1

K

K

∑
k=1

H(Bernoulli(γk(x))), (25)

where γ̄(x) is the mean of the γk(x) samples. This score is maximized for candidates where the
ensemble of posterior samples is most conflicted about the sign of the CATE.

Coreset Selection (QHTE). We implement the coreset-based acquisition strategy from QHTE (Qin
et al., 2021)2. The core idea of this method is to select a representative subset of data points that
"cover" the input space for both the treated and control groups independently. The strategy operates
in two stages. First, it partitions the unlabeled pool DP into a treated pool D1

P = {(x, t = 1)} and a
control pool D0

P = {(x, t = 0)}. Then, it applies the coreset selection algorithm separately within
each of these two pools. For each candidate x in a given pool (e.g., D1

P ), its utility is defined as its
minimum distance to any point already in the corresponding labeled set (e.g., X1

T ):

QHTE(x, t) ∶= min
x′∈Xt

T

d(x,x′), for t ∈ {0,1}. (26)

The distance metric d(xi,xj) is derived from the posterior covariance of the model’s predictions,
as available in both GP and BCF models. After calculating these utility scores for all candidates
in both pools, the scores are combined, and the top nb candidates overall are selected for labeling.
This two-pronged approach ensures that the selected batch contains representative samples from both
treatment arms.

Causal-EIG. Causal-EIG is a method originally proposed for the task of prospective causal effect
estimation (Fawkes et al., 2025), which aims to evaluate the utility of an entire dataset before it is
acquired. We adapt this method for our pool-based active learning setting. The original approach
calculates the EIG that a new dataset provides about the causal model’s parameters. To apply it to our
task, we treat each candidate data point (x, t) as a potential dataset of size one. The resulting utility
function is trying to maximize the information gain about the parameters of the CATE function, θτ :

Causal-EIG(x, t) ∶= I(y; θτ ∣ x, t,DT ). (27)

Following the original paper, we implement this acquisition function using both BCF and CMGP as
the base CATE estimators and utilize the official code provided by the authors3.

EPIG (Expected Predictive Information Gain). EPIG (Smith et al., 2023) is an information-
theoretic acquisition function that addresses a key limitation of BALD. Instead of focusing on the
indirect objective of reducing uncertainty over model parameters (θ), EPIG directly quantifies the
expected reduction in predictive uncertainty on other unseen data points. The utility of a candidate
point (x, t) is defined as the expected mutual information between its unknown label y and the label
y∗ of a randomly chosen point (x∗, t∗) from the data distribution:

EPIG(x, t) ∶= Eptar(x∗,t∗)[I(y; y∗(t∗) ∣ (x∗, t∗),D′T )]. (28)

Intuitively, EPIG prioritizes points that are expected to be most informative about the labels of other
points in the dataset.

2https://github.com/Qcer17/QHTE
3https://github.com/LucileTerminassian/causal_prospective_merge
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E.3 BAYESIAN CAUSAL FORESTS

Our first estimator, BCF, leverages tree ensembles with a careful reparameterization and orthogonal-
ization strategy to provide robust CATE estimates (Hahn et al., 2020). To improve computational
efficiency, we utilize its accelerated extension, XBCF (Krantsevich et al., 2023). As BCF is built
upon Bayesian Additive Regression Trees (BART) (Hill, 2011), we begin with an overview of this
foundational method.

E.3.1 THE BART FOUNDATION

BART models an unknown function f(x) as a sum-of-trees ensemble:

f(x) =
L

∑
l=1
gl(x;Tl,Ml), (29)

where each gl is a regression tree defined by its structure Tl and leaf parameters Ml = {µl1, . . . , µlbl}.
To prevent overfitting, BART imposes regularizing priors on the tree structure (favoring shallow trees)
and the leaf parameters (shrinking predictions towards zero). Posterior inference is performed via
MCMC backfitting, which iteratively samples each tree conditional on the others.

E.3.2 BCF FOR CAUSAL INFERENCE

BCF adapts BART to causal inference by modeling the conditional outcome as E[y∣x, t] =
µ(x) + τ(x)t, where µ(x) (prognostic function) and τ(x) (CATE function) are independent BART
ensembles. We use the accelerated reparameterization from Krantsevich et al. (2023):

fθ(x, t) = a µ̃bcf(x) + bt τ̃bcf(x), (30)

where a, bt are scaling factors and the CATE is given by (b1 − b0)τ̃bcf(x). A key feature is or-
thogonalization, where µ̃bcf is fit on the treatment-residualized outcome y − btτ̃bcf(x), forcing it to
capture variation independent of the treatment effect and leading to more robust CATE estimates. The
posterior distribution of the CATE is constructed from MCMC samples. For each posterior draw s, a
sample of the CATE is τ (s)(x∗) = (b(s)1 − b

(s)
0 ) ⋅ τ̃

(s)
bcf (x∗). While collecting these samples provides

the marginal posterior p(τ(x∗) ∣ DT ), information-based acquisition requires the joint predictive
posterior p(y, τ(x∗) ∣ (x, t),x∗,DT ). We approximate this as a multivariate Gaussian (Kirsch,
2023; Jesson et al., 2021), estimating its parameters from the S posterior draws. For each draw s, we
compute the pair (f (s), τ (s)), where f (s) is the expected outcome. The Gaussian’s mean vector is
the sample mean of these pairs. Its covariance matrix is the sample covariance of the pairs.

BCF Posterior Distribution Analysis. While this approximation is unlikely to hold perfectly in
practice, it is crucial to assess its plausibility and understand the nature of any potential violations.
Therefore, we investigate the degree to which this assumption holds across our five experimental
data-generating processes: CausalBALD, Hahn (linear and nonlinear), IHDP, and ACTG. In the first
step, we visualize the posterior of different quantities for all these datasets we used in the paper and
the results are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, and Fig. 10. Then, as might be expected for a
simplifying approximation, the formal statistical tests presented in Tab. 4 reject the null hypothesis of
perfect normality for all five datasets at the α = 0.05 significance level. However, these tests are more
useful in helping us quantify the nature and severity of the deviation. The results show a clear pattern:
the semi-synthetic datasets, ACTG and IHDP, exhibit more modest deviations. They have the lowest
Henze-Zirkler statistics and Mardia’s kurtosis values (8.407 and 8.868, respectively) that are closest
to the theoretical value of 8 for a bivariate normal distribution. In contrast, the synthetic datasets
show more pronounced violations, primarily due to heavy tails (leptokurtosis), with CausalBALD
showing the most significant departure (Mardia’s kurtosis of 11.430). In summary, this analysis
confirms that while the Gaussian posterior is indeed an approximation, the violations are not uniform
across data types. For the more realistic semi-synthetic datasets, the deviations from normality are
relatively contained. This suggests that using a multivariate normal approximation is a justifiable and
reasonable trade-off for the significant computational tractability it provides, rather than an overly
strong assumption that would undermine the method’s validity.
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Figure 6: Posterior distribution analysis for the BCF model on the CausalBALD Dataset.

Figure 7: Posterior distribution analysis for the BCF model on the Hahn linear Dataset.

Table 4: Multivariate normality tests for the joint posterior of (ŷ, τ̂)

Dataset Q-Q corr χ2 GoF p-value HZ stat Mardia kurtosis
CausalBALD 0.974 <1e-10 0.210 11.430
Hahn (linear) 0.981 <1e-10 0.189 9.655
Hahn (nonlinear) 0.993 <1e-10 0.194 9.878
IHDP 0.989 1.45e-3 0.173 8.868
ACTG 0.989 6.94e-3 0.167 8.407
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Figure 8: Posterior distribution analysis for the BCF model on the Hahn non-linear Dataset.

Figure 9: Posterior distribution analysis for the BCF model on the IHDP Dataset.
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Figure 10: Posterior distribution analysis for the BCF model on the ACTG Dataset.

E.4 GAUSSIAN PROCESS MODELS

Our other two primary estimators are based on Gaussian Processes. GP models are a natural fit for
Causal-EPIG because they provide a closed-form, analytic posterior for the CATE, which in turn
allows for the highly efficient computation of the acquisition function. We consider two distinct GP
formulations.

E.4.1 CAUSAL MULTITASK GAUSSIAN PROCESSES (CMGP)

CMGP treats potential outcome estimation as a multitask learning problem, enabling the model to
borrow statistical strength across treatment arms (Alaa & Van Der Schaar, 2017). It places a joint GP
prior over the vector [f0(x), f1(x)]⊺ using a 2 × 2 matrix-valued kernel Kη, typically constructed
via a Linear Model of Coregionalization (LMC). The observed outcomes yi are noisy realizations of
the latent function fti(xi), i.e., yi ∣ xi, ti ∼ N(fti(xi), σ2

n).
Given the GP prior and Gaussian likelihood, the posterior over [f0(x), f1(x)] is also a GP. The
posterior for the CATE, τ(x∗) = f1(x∗)−f0(x∗), is therefore also Gaussian, with mean and variance
derived analytically from the posterior of the potential outcomes:

τ̂(x∗) ∼ N(e⊺µpost(x∗), e⊺Σpost(x∗,x∗)e), (31)

where e = [−1,1]⊺, and µpost and Σpost are the posterior mean and covariance from standard GP
regression conditioned on the training data DT .

E.4.2 NON-STATIONARY GAUSSIAN PROCESS (NSGP)

Our third estimator is the NSGP, which models potential outcomes by defining a single GP over an
augmented input space X × {0,1} (Alaa & Schaar, 2018). This is achieved by placing a GP prior
over a function f(x, t), where the treatment indicator t is an input. The model’s key feature is its
non-stationary kernel:

Kβ((x, t), (x′, t′)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kβ0(x,x′) if t = t′ = 0
kβ1(x,x′) if t = t′ = 1
kβ0(x,x′) + kβ1(x,x′) if t ≠ t′

(32)

where kβ0 and kβ1 are standard Matérn kernels with their own hyperparameters. This allows the
response surfaces for the control and treatment arms, f0 and f1, to exhibit different properties
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(e.g., smoothness), capturing complex heterogeneity. Posterior inference for the CATE, τ(x∗) =
f(x∗,1) − f(x∗,0), follows the same logic as in CMGP, yielding a closed-form Gaussian posterior
derived from the joint posterior of the potential outcomes.

E.5 DEEP KERNEL LEARNING FOR ABLATION

For a targeted ablation study, we also include the DUE (Deep Uncertainty Estimation) estimator used
in Causal-BALD (Jesson et al., 2021). DUE represents a significant architectural departure from
our primary models. It is a deep learning model that uses deep kernel learning to define a sparse
variational GP over high-dimensional features learned by a neural network. This end-to-end approach
is highly flexible but lacks the strong inductive biases for causal modeling present in BCF and the
other GP methods. Its distinct architecture makes it a valuable case for testing the robustness of our
acquisition function.

F INTERPRETATIONS AND DERIVATIONS

This section provides the detailed derivations for the information-theoretic acquisition functions
discussed in this paper. As all these methods are instantiations of entropy gain—which is equivalently
represented by the mutual information principle (see App. C), their mathematical derivations share a
common structure. We focus our detailed step-by-step derivation on Causal-EPIG-τ , as it represents
the most direct application of our framework’s principle. The derivation for Causal-EPIG-µ follows
the same fundamental steps, differing only in the dimensionality of the target variable (a 2D vector
vs. a 1D scalar).

F.1 DETAILED DERIVATION AND ESTIMATION OF CAUSAL-EPIG

Step-by-Step Derivation. We begin with the definition of information gain and show its equivalence
to the mutual information and KL divergence forms. The information gain in the CATE at a target
point x∗, denoted τ(x∗), that results from observing a new outcome y for a candidate point (x, t) in
the pool dataset is the reduction in the entropy of the CATE posterior:

IG((x, t), y,x∗) = H(τ(x∗) ∣DT ) −H(τ(x∗) ∣DT ∪ {(x, t, y)}). (33)

The Causal-EPIG is then the expectation of this information gain over both the unknown outcome y
and the unknown target point x∗. The derivation proceeds as follows:

Causal-EPIG(x, t) ∶= Eptar(x∗)Ep(y∣x,t,DT )[IGτ((x, t), y,x∗)] (34)

= Eptar(x∗)Ep(y∣x,t,DT )[H(τ(x∗) ∣DT ) −H(τ(x∗) ∣DT ∪ {(x, t, y)})]
(Expand IG definition)

= Eptar(x∗)Ep(y,τ(x∗)∣x,t,DT ) [log
p(τ(x∗) ∣DT , y,x, t)

p(τ(x∗) ∣DT )
]

(Combine expectations and logs)

= Eptar(x∗)Ep(y,τ(x∗)∣x,t,DT ) [log
p(y, τ(x∗) ∣ x, t,DT )/p(y ∣ x, t,DT )

p(τ(x∗) ∣DT )
]

(Use def. of conditional prob.)

= Eptar(x∗)Ep(y,τ(x∗)∣x,t,DT ) [log
p(y, τ(x∗) ∣ x, t,DT )

p(y ∣ x, t,DT )p(τ(x∗) ∣DT )
]

(Rearrange terms)

= Eptar(x∗)[I(y; τ(x∗) ∣ (x, t),DT )]. (Equivalent to Mutual Information)

The final line above is the definition presented in Eq. 5. It is also equivalent to the expected KL
Divergence form presented in Eq. 6. The final expressions reveal the core of our method. The mutual
information form, Eptar(x∗)[I(y; τ(x∗) ∣ (x, t),DT )], frames the utility as the answer to the question:
"On average, across all target points x∗, how much will observing a new outcome y reduce our
uncertainty about the CATE τ(x∗)?"
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Realization with Specific CATE Models. Without a closed-form solution, estimating this mu-
tual information would require expensive nested Monte Carlo simulations. However, this general
procedure can be made highly efficient for certain model classes.

• GP Models (CMGP, NSGP): For GP-based models, the joint predictive posterior p(y, τ(x∗) ∣
(x, t),DT ) is a multivariate Gaussian. In this case, the mutual information has a closed-form
analytical solution based on the posterior predictive variances and covariance.

• BCF: The BCF posterior is represented by MCMC samples. To make Causal-EPIG computationally
feasible, we adopt the approximation strategy from Sec. 4.2, fitting a multivariate Gaussian to
the joint posterior samples of (y, τ(x∗)). This allows us to again use the closed-form solution,
bypassing the need for nested sampling.

F.1.1 ANALYTICAL FORM OF CAUSAL-EPIG FOR GAUSSIAN MODELS

A key advantage of our framework is that when the underlying CATE estimator has a Gaussian
posterior predictive distribution (such as GP models), the mutual information term in the Causal-EPIG
objective has a closed-form analytical solution. Here, we provide a step-by-step derivation.

Assumption: Gaussian Predictive Distribution. We assume that for a candidate point (x, t) and
a target point x∗, the joint posterior predictive distribution of the potential outcome y and the CATE
τ(x∗) is a bivariate Gaussian. All distributions are implicitly conditioned on the existing data DT .

p(y, τ(x∗) ∣ x, t,x∗,DT ) = N (µ,Σ) (35)

where the covariance matrix Σ is given by:

Σ = ( Var[y] Cov[y, τ(x∗)]
Cov[τ(x∗), y] Var[τ(x∗)] ) (36)

The marginal distributions for y and τ(x∗) are also Gaussian, with variances corresponding to the
diagonal elements of Σ.

Derivation. We begin with the definition of mutual information in terms of differential entropies:

I(y; τ(x∗)) = H(y) +H(τ(x∗)) −H(y, τ(x∗)) (by definition)
(37)

For a univariate Gaussian variable z with variance σ2, the differential entropy is H(z) = 1
2
log(2πeσ2).

For a k-dimensional multivariate Gaussian with covariance matrix Σ, the joint entropy is H(z) =
1
2
log ((2πe)k det(Σ)). Applying these formulas to our bivariate case (k = 2):

I(y; τ(x∗)) = (1
2
log(2πeVar[y])) + (1

2
log(2πeVar[τ(x∗)])) − (1

2
log ((2πe)2 det(Σ)))

(substitute Gaussian entropies)

= 1

2
[log(2πeVar[y]) + log(2πeVar[τ(x∗)]) − log((2πe)2 det(Σ))] (38)

= 1

2
[log ((2πe)2Var[y]Var[τ(x∗)]) − log ((2πe)2 det(Σ))] (combine log terms)

= 1

2
log(Var[y]Var[τ(x∗)]

det(Σ) ) (cancel terms)

(39)

Now, we substitute the determinant of the 2x2 covariance matrix, det(Σ) = Var[y]Var[τ(x∗)] −
Cov[y, τ(x∗)]2:

I(y; τ(x∗)) = 1

2
log( Var[y]Var[τ(x∗)]

Var[y]Var[τ(x∗)] −Cov[y, τ(x∗)]2 ) . (substitute determinant)

This is the closed-form solution for the mutual information under the Gaussian assumption.
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Final Causal-EPIG-τ Formulation. The final Causal-EPIG utility is the expectation of this
analytical term over the target distribution ptar(x∗). In practice, this expectation is approximated by
the empirical average over the finite target set Xtar:

Causal-EPIG − τ(x, t) = Eptar(x∗) [I(y; τ(x∗))]

≈ 1

∣Xtar∣
∑

x∗∈Xtar

1

2
log( Var[y]Var[τ(x∗)]

Var[y]Var[τ(x∗)] −Cov[y, τ(x∗)]2 ) ,
(40)

where the variances and covariance are computed for each candidate-target pair (x,x∗).

F.2 A TAXONOMY OF INFORMATION-THEORETIC ACQUISITION FUNCTIONS

Our proposed Causal-EPIG framework is part of a broader family of information-theoretic acquisition
functions. To clarify its specific contributions and design choices, it is useful to deconstruct the
landscape of these methods along four key axes. Tab. 5 provides a detailed taxonomy that informs
the following discussion.

Table 5: A Taxonomy of Information-Theoretic Acquisition Functions for active CATE Estimation.
The table distinguishes methods along several key axes, including their core target (parameters vs.
predictions) and their formulation (mean-marginal vs. global).

Family Target of Information Gain Mean-Marginal Formulation Global / Full Formulation

EIG Model Parameters (θ) I(y; θτ ∣ (x, t),DT ) or I(y; θ ∣ (x, t),DT )

EPIG /
ITL

Factual Outcome (y∗) Eppool(x∗,t∗)[I(y; y∗ ∣ (x, t), (x∗, t∗),DT )] I(y;y∗ ∣ (x, t),DT )

Potential Outcomes (y∗(t∗))
Eptar(x∗) [∑t∗ I(y; y∗(t∗))] (Additive Approx.)
Eptar(x∗) [I(y; (y∗(0), y∗(1)))] (Joint PO) I(y;y∗PO ∣ (x, t),DT )

CATE (τ(x∗)) Eptar(x∗)[I(y; τ(x∗))] I(y;τ ∣ (x, t),DT )

Axis 1: Parameters vs. Predictions. The most fundamental distinction is the target of the
information gain. The EIG family (which includes Causal-EIG and Causal-BALD) is parameter-
focused. These methods aim to reduce uncertainty over the model’s internal representation, such as
the CATE-specific parameters θτ or the full parameter set θ. In contrast, the entire EPIG/ITL family,
including our work, is prediction-focused, directly targeting uncertainty in the model’s outputs. This
is generally preferred for function estimation tasks, as it concentrates effort on the final quantity of
interest.

Axis 2: The Hierarchy of Predictive Targets. Within the prediction-focused family, a clear
hierarchy emerges based on the causal relevance of the target:

• Factual EPIG: Targets a future factual outcome y∗, which is insufficient as it does not actively
pursue counterfactual knowledge.

• Potential Outcomes (PO-based): Targets the foundational components of the causal effect, y∗(0)
and y∗(1). This is a robust causal objective.

• CATE-based: Targets the final causal estimand, τ(x∗), itself. This is the most direct causal
objective.

Axis 3: Formulating the PO-based Objective. Once potential outcomes are chosen as the target,
there are two primary ways to formulate the mutual information objective:

• Additive Formulation: The simpler approach approximates the information gain by summing
the MI for each potential outcome separately: I(y; y∗(0)) + I(y; y∗(1)). This is computationally
efficient but ignores the dependency structure between the potential outcomes. This is the "simpler,
additive variant" we refer to in the main text. In the App. H, we mark this method as Causal-EPIG-
µ-S, which means Separation.
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Figure 11: Performance comparison on the Hahn (linear) dataset with distribution shift. Panels
show results for different underlying CATE estimators. The summation-based methods consistently
perform on par with or better than their global counterparts.

• Joint Formulation: A more theoretically robust approach is to target the joint distribution of the
potential outcomes, as in I(y; (y∗(0), y∗(1))). This correctly accounts for the correlation between
the two outcomes. This is the formulation we adopt for our primary Causal-EPIG-µ method.

Axis 4: Aggregation Across the Target Population. The final distinction lies in how information
gain is aggregated across the entire target population.

• The Mean-Marginal formulation (left column in Tab. 5) is computationally efficient. It approx-
imates the total information gain by averaging the gains over each target point independently,
ignoring correlations between target predictions (e.g., between τ(x∗1) and τ(x∗2)). Our work
focuses on this formulation for its scalability.

• The Global / Full formulation (right column) is more theoretically complete. It calculates the
information gain with respect to the entire set of target predictions jointly (e.g., I(y;τ )), capturing
all interdependencies but at a significantly higher computational cost. We denote this method with
a −G suffix, where G indicates Global.

Our choice of the mean-marginal formulation for Causal-EPIG represents a pragmatic trade-off
between computational scalability and theoretical completeness.

F.3 COMPUTATIONAL COMPLEXITY AND RUNTIME ANALYSIS

The primary computational cost of the Causal-EPIG acquisition functions is driven by the size of the
candidate pool (nP ), the target set (ntar = ∣Xtar∣), and the number of posterior samples (S).

Theoretical Complexity. A key design choice in our framework is between the summation and
global formulations. The summation approach, which we adopt, is designed for efficiency. The total
complexity to score all nP candidates is O(nP ⋅ ntar ⋅ S), scaling linearly with the pool and target
set sizes. In contrast, the global formulation requires inverting an ntar × ntar covariance matrix for
each candidate, leading to a total complexity of O(nP ⋅ n3tar). This cubic scaling makes the global
approach computationally prohibitive for even moderately large target populations.

Empirical Validation and Comparison. This theoretical trade-off is strongly validated by our
empirical results, presented in Tab. 6. The data confirms that our chosen summation-based methods
are one to two orders of magnitude faster than their global counterparts, justifying our design choice.
For instance, Causal-EPIG-µ is approximately 20 times faster than its global version (0.45s vs.
9.27s).

Having justified our formulation, we next compare its runtime to established baselines in Tab. 7.
While Causal-EPIG-τ (0.44s in Tab. 6) is slower than the fast BALD variants, this represents a
deliberate trade-off. The effectiveness of our approach is most pronounced in settings where the
cost of labeling is the dominant factor, such as in clinical trials. In these scenarios, the marginal
computational overhead is typically negligible compared to the cost of acquiring each new label,
making the superior sample efficiency of Causal-EPIG a highly practical choice.
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Table 6: Average acquisition time (seconds) per batch, comparing summation-based (our choice) vs.
global (-G) formulations. Results are mean ± std across trials.

Estimator Causal-EPIG-µ Causal-EPIG-µ-G Causal-EPIG-τ Causal-EPIG-τ -G

BCF 0.7731 ± 0.0508 16.1392 ± 0.5763 0.5392 ± 0.0342 4.1811 ± 0.1036
CMGP 0.1813 ± 0.0164 4.1814 ± 0.1598 0.4016 ± 0.0289 1.9840 ± 0.0883
NSGP 0.3931 ± 0.0331 7.5014 ± 1.0600 0.3812 ± 0.0334 2.9213 ± 0.4922
Overall 0.4492 ± 0.2999 9.2740 ± 6.1728 0.4406 ± 0.0860 3.0288 ± 1.1025

Table 7: Average running times (in seconds) of Causal-EPIG-τ compared to other baselines.

Methods Random µ-BALD µρ-BALD µπ-BALD Causal-EPIG-τ

Time (s)
(6.5 ± 0.7)
×10−5

(3.6 ± 0.1)
×10−3

(9.6 ± 0.4)
×10−3

(9.6 ± 0.4)
×10−3

(4.4 ± 0.1)
×10−1

G THEORETICAL ANALYSIS DETAILS

G.1 FRAMEWORK MAPPING TO TAL

Our theoretical analysis leverages the framework of TAL (Hübotter et al., 2024), which requires
mapping our CATE estimation problem to their single-task GP setting. The full mapping is as follows:

• Augmented Space X̃ and Kernel k̃: We model the potential outcome surfaces ft(x) as a single GP
f(x̃) over an augmented space X̃ = X × {0,1}, where x̃ = (x, t). The augmented kernel k̃ is a
sum of separable kernels (a standard Linear Mode coregionlization (LMC) construction) (Alaa &
Van Der Schaar, 2017):

k̃((x, t), (x′, t′)) ∶=
Q

∑
q=1
(Bq)t,t′ ⋅ kq(x,x′), (41)

where Bq are 2 × 2 coregionalization matrices and kq are base kernels. We also set Q = 2 in our
paper as that in CMGP.

• Augmented Target Space X̃tar: The set of paired potential outcomes for the target population Xtar,
defined as X̃tar = {(x∗, t) ∣ x∗ ∈Xtar, t ∈ {0,1}}.

• Augmented Pool Space D̃P : This corresponds to the factual observations available in our pool DP ,
defined as D̃P = {(x, t) ∣ (x, t) ∈ DP }. We use this augmented notation for consistency with the
target-space construction.

Our convergence analysis focuses on the global, joint PO-based strategy, denoted Causal-EPIG-µ-G
(discussed in App. F.2), as it is a direct instantiation of the Global Information Theoretic Learning
(ITL) strategy, defined in Hübotter et al. (2024, Eq. 2). We adapt the proof structure from Hübotter
et al. (2024, Thm. 3.3), which demonstrates convergence for this Global ITL strategy. This proof
relies on the utility function being submodular, which we state in our main paper as Ass. 2. We now
provide the justification for this assumption.

Justification 1 The validity of Ass. 2 depends on the relationship between the augmented target
space X̃tar and the augmented pool space D̃P :

• Case 1: "Regular Setup" (No Distribution Shift over Covariates). In this standard setup, the target
population Xtar and the pool DP are defined over the same set of underlying covariates. As every
factual observation (xi, ti) in S = D̃P corresponds to a target individual xi in Xtar (for which
both outcomes (xi,0) and (xi,1) are in A = X̃tar), we have the relationship S ⊂ A. Under this
condition (S ⊆ A), Hübotter et al. (2024, Lemma C.9) prove that the Global ITL objective is
submodular. Thus, Ass. 2 is guaranteed to hold.
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• Case 2: "Distribution Shift." In this setting, the target population Xtar and the pool DP are defined
over different sets of covariates. Therefore, an observation (x, t) in S = D̃P does not necessarily
correspond to a target x∗ in Xtar. In this general case, S /⊂ A. This is the general transductive
setting where submodularity is not guaranteed, as "synergistic" effects can occur (Hübotter et al.,
2024, Example C.8). In this case, our Thm. 1 relies on an unproven assumption, mirroring the
theoretical gap in the TAL framework itself.

The theoretical implications of using the structured LMC kernel are discussed in Sec. G.4.

G.2 APPROXIMATE MARKOV BOUNDARY

Intuition 1 In our active CATE estimation problem, even if we acquire all the factual outcomes in the
pool D̃P , the uncertainty over a target point x̃∗ ∈ X̃tar may not be zero. This remaining uncertainty
is the irreducible uncertainty η2DP

(x̃∗). The AMB is the smallest subset of the pool D̃P that is "good
enough" to achieve this minimal uncertainty, up to an error ϵ.

Definition 2 (Approximate Markov Boundary (AMB)) For any ϵ > 0, nT ≥ 0, and target point
x̃∗ ∈ X̃tar, we define BnT ,ϵ(x̃∗) as the smallest (multi-)set of D̃P , satisfying:

Var [f(x̃∗) ∣ DT ,yBnT ,ϵ(x̃∗)] ≤ η
2
DP
(x̃∗) + ϵ. (42)

where nT = ∣DT ∣ is the number of observations in DT . We refer to BnT ,ϵ(x̃∗) as the ϵ-approximate
Markov boundary of x̃∗ in D̃P .

The existence and finite size of this set are guaranteed, as shown in Lemma C.16 of (Hübotter et al.,
2024). We restate the consequence here:

Lemma 2 (AMB Existence, adapted from (Hübotter et al., 2024)) Let ϵ > 0 and define r as the
smallest integer satisfying

γr
r
≤
ϵλmin(KD̃P D̃P

)
2∣D̃P ∣σ2

I σ̃
2
I

, (43)

where γr
def= maxX̃⊆D̃P ,∣X̃ ∣≤r I(fD̃P

;yX̃), and σ2
I , σ̃

2
I are variance constants. For any nT ≥ 0 and

x̃∗ ∈ X̃tar, there exists an ϵ-approximate Markov boundary BnT ,ϵ(x̃∗) for x̃∗ within D̃P , with a size
bounded by r.

G.3 PROOF OF THM. 1

To prove Thm. 1, we adapt the analytical framework of Hübotter et al. (2024, Thm. 3.3). This proof
is simpler than that of ActiveCQ (Gao & Sejdinovic, 2025) as we are bounding the variance of a
point prediction f(x̃∗) rather than an integral υx̄.

The proof proceeds in three main steps:

1. We leverage the AMB (Def. 2) to relate the current variance Var[f(x̃∗)∣DT ] to the information
gain of the AMB set B.

2. We bound this AMB information gain by the Global ITL maximal marginal gain ΓnT
(defined in

Step 2).

3. We select a decaying approximation error ϵ and use the convergence rate of ΓnT
(which relies on

Ass. 2) to derive the final rate.

Step 1: Bound Variance by AMB Information Gain. From Lemma C.17 in (Hübotter et al., 2024),
we can bound the current variance of the estimator for any x̃∗ ∈ X̃tar as:

Var[f(x̃∗)∣DT ] ≤ C0 ⋅ I(f(x̃∗);yBnT ,ϵ(x̃∗)∣DT ) + η2DP
(x̃∗) + ϵ. (44)

where C0 is a constant related to the max variance (e.g., 2σ2
I ).
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Step 2: Bound Point Gain by Global ITL Marginal Gain. Next, we bound the mutual information
term from Step 1, I(f(x̃∗);yB ∣DT ), where B ≜BnT ,ϵ(x̃∗) and bϵ ≜ ∣B∣. The derivation proceeds
by first relating the information gain about a single target point f(x̃∗) to the joint information gain
about all target points fX̃tar

, which is the utility function ψX̃tar
(⋅) for our Causal-EPIG-µ-G strategy.

I(f(x̃∗);yB ∣DT ) ≤ I(fX̃tar
;yB ∣DT ) (45)

def= ψX̃tar
(B ∣ DT ) (46)

where Eq. 45 holds because the information about a single component f(x̃∗) cannot exceed the
information about the entire vector fX̃tar

it belongs to. Next, we bound the utility of the set B using
Ass. 2. Submodularity implies that the gain from a set is no more than the sum of the marginal gains
of its individual elements (evaluated without conditioning on each other):

ψX̃tar
(B ∣ DT ) ≤ ∑

x̃i∈B
ψX̃tar

({x̃i} ∣ DT ) (47)

= ∑
x̃i∈B

I(fX̃tar
;yx̃i

∣ DT ) (48)

We now define the maximal marginal gain for the Global ITL strategy at step nT + 1 (i.e., given DT

which has nT points) as:
ΓnT+1

def= max
x̃∈D̃P

I(fX̃tar
;yx̃ ∣ DT ). (49)

By definition, the gain of any individual point x̃i in the sum Eq. 48 is bounded by this maximum:

∑
x̃i∈B

I(fX̃tar
;yx̃i

∣ DT ) ≤
bϵ

∑
i=1

ΓnT+1 (50)

≤ bϵ ⋅ ΓnT
(51)

where Eq. 51 follows if we assume the maximal marginal gain Γk is non-increasing, which is a direct
consequence of Assumption 2 (Hübotter et al., 2024, Thm. D.1).

Combining Step 1 and Step 2 (Eq. Eq. 45 through Eq. 51), we have the intermediate bound:

Var[f(x̃∗)∣DT ] ≤ C0bϵΓnT
+ η2DP

(x̃∗) + ϵ. (52)

Step 3: Substitute Decaying Bounds. Now, we select a specific value for ϵ that decays with nT .
Let ϵ = cγ

√
nT√
nT

, for a constant c. Here, γk ≜ max∣X̃ ∣≤k I(fD̃P
;yX̃) is the pool’s global information

capacity, as defined in Hübotter et al. (2024, Lem. C.16) (which corresponds to γr in our Lem. 2).
From Lemma 2 (which is based on Hübotter et al. (2024, Eq. 18)), this choice of ϵ ensures an AMB
exists with a size bϵ bounded by r. By setting k = r = √nT , the condition γk/k ≤ ϵ ⋅K (where K
is a constant) is satisfied, thus bϵ ≤

√
nT . Substituting bϵ ≤

√
nT and the expression for ϵ into our

intermediate bound, we get:

Var[f(x̃∗)∣DT ] ≤ (C0)
√
nTΓnT

+ η2DP
(x̃∗) + c

γ√nT√
nT

. (53)

The term ΓnT
itself must decay. We use the bound for the Global ITL strategy from Hübotter et al.

(2024, Thm. C.12). Under Ass. 2 (which implies αn ≤ 1), this theorem provides the bound:

ΓnT
≤ γnT

(X̃tar; D̃P )
nT

(54)

where γnT
(X̃tar; D̃P ) is precisely the global information capacity γnT

as defined in our Definition 1.
Substituting this bound for ΓnT

into Eq. 53 resolves the term:

(C0)
√
nTΓnT

≤ (C0)
√
nT (

γnT

nT
) = C0

γnT√
nT

. (55)

Combining all the pieces, the total variance is bounded by:

Var[f(x̃∗)∣DT ] ≤ C0
γnT√
nT
+ η2DP

(x̃∗) + c
γ√nT√
nT

≤ η2DP
(x̃∗) +C γnT√

nT
,

(56)

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

where the final step combines all constants into a single C and leverages the structural properties of
the two capacity terms. Specifically, the term C0

γnT√
nT

captures the uncertainty reduction related to

the transductive objective (A-to-S capacity), while c
γ√nT√

nT
bounds the error introduced by the AMB

approximation (related to the pool capacity). Since both terms decay at the same asymptotic rate
1√
nT

, the final bound is simplified to the form determined by the transductive term γnT
. In the main

paper, we use nB for the total number of acquired samples, which corresponds to nT here. This
completes the proof sketch for Thm. 1.

G.4 IMPLICATIONS OF THE LMC KERNEL STRUCTURE

The convergence rate in Thm. 1 is determined by the global information capacity γnB
. This quantity

is defined by the joint mutual information I(fX̃tar
;yX̃), which is governed by our augmented kernel k̃.

Our augmented kernel, k̃((x, t), (x′, t′)) = ∑Q
q=1(Bq)t,t′ ⋅kq(x,x′), explicitly models the correlation

between the potential outcome surfaces f0 and f1 via the off-diagonal elements of the task-correlation
matrices Bq. This has a direct and crucial consequence on the information capacity γnB

. The
information capacity γnB

is known to be sublinear, and its magnitude depends on the effective
dimensionality of the function space. Let KD̃P

be the kernel matrix for the entire augmented pool
D̃P . This matrix inherits a sum-of-Kronecker-products structure from k̃:

KD̃P
=

Q

∑
q=1

KX ,q ⊗Bq (57)

where KX ,q is the kernel matrix on the covariate space X for the q-th base kernel. The eigenvalues
λ(KD̃P

) are thus a combination of the eigenvalues of the base kernels and the coregionalization
matrices. This structure has a direct, quantifiable impact on the convergence rate:

• Independent Model (Non-Causal-Aware): If we model f0 and f1 independently, this is equivalent
to setting all Aq to be diagonal matrices. The information capacity γindep

nB reflects the complexity of
learning two independent functions.

• LMC Model (Causally-Aware): If f0 and f1 are correlated (i.e., Aq are not diagonal), the off-
diagonal elements (Aq)0,1 are non-zero. This correlation "compresses" the spectrum of KD̃P

and
reduces the effective dimensionality of the problem. For instance, a strong positive correlation
implies that f0 and f1 share a large component, reducing the "new" information needed to learn
both. In Consequence: This reduction in effective dimensionality leads to a smaller information
capacity, γLMC

nB
< γindep

nB . Therefore, our causally-aware LMC model achieves a provably faster
convergence rate (a smaller C (γnB

/√nB) term) than a non-causal-aware approach that models
the potential outcomes independently. This provides a formal theoretical justification for our
causally-aligned, multitask approach.

G.5 CONNECTIONS TO OTHER CAUSAL STRATEGIES

1. Connection to Mean-Marginal (MM-ITL) Strategies. The analysis in Sec. G.1-G.3 provides a
convergence guarantee for the global, joint PO-based strategy (Causal-EPIG-µ-G). This strategy is
theoretically robust as it aligns with the joint Global ITL objective. However, as discussed in App. F.2,
this global strategy can be computationally expensive. A common, more scalable alternative is the
mean-marginal (MM-ITL) strategy, which Causal-EPIG-µ-S instantiates. This strategy approximates
the joint gain as a sum of marginal gains. While we do not provide a convergence proof for this
approximate strategy, Hübotter et al. (2024, Thm. D.1) analyze it. We note that their analysis also
relies on a non-trivial assumption of non-increasing marginal gains (Γk ≥ Γk+1), which, much like
our Ass. 2, is not guaranteed to hold in the general A ≠ S transductive setting.

2. The Non-Intuitive (µ vs. τ ) Relationship. The relationship between the PO-based objective
(Causal-EPIG-µ) and the CATE-based objective (Causal-EPIG-τ ) is not straightforward. This
relationship can be formally understood using the Data Processing Inequality. Let (f0, f1) be the
joint potential outcomes for a target x∗, and τ = f1 − f0 be the CATE. The CATE is a function (a
simple subtraction) of the joint potential outcomes. This creates an information-processing Markov
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chain yx̃ → (f0, f1) → τ . The Data Processing Inequality states that information cannot be created
by post-processing. Therefore, for any query yx̃:

I(yx̃; (f0, f1)) ≥ I(yx̃; τ) (58)

This inequality provides the formal basis for the "comprehensiveness-focus" trade-off:

• The µ-strategy (LHS) always optimizes an information quantity that is greater than or equal to the
τ -strategy (RHS).

• This is "non-intuitive" because a query yx̃ might be highly informative about the prognostic part of
the joint distribution (e.g., f0) but provide little information about the difference (τ ).

• The µ-strategy would (correctly) assign high value to this query, as it reduces uncertainty about the
full causal mechanism. The τ -strategy would (also correctly for its objective) assign low value,
focusing only on the estimand of interest.

This confirms that neither strategy is universally superior; the choice is context-dependent, as
concluded in the main paper.

G.6 PROOF OF PROP. 1

Proof 1 Let Fs denote the information available after s acquisition steps. Our objective, as defined
in Prop. 1, is to choose (x, t) ∈DP to minimize the expected model-based PEHE, Es+1[ϵMPEHE(τ̂s+1)].
We use Es+1[⋅] to denote the pre-posterior expectation Ey∼p(y∣x,t,Fs)[⋅].

argmin
(x,t)∈DP

Es+1[ϵMPEHE(τ̂s+1)] (59)

The model-based error ϵMPEHE measures the squared error against the oracle posterior mean τ̂Ω(x)
(i.e., the posterior mean given all data, E[τ(x) ∣DP ]).

Es+1[ϵMPEHE(τ̂s+1)] = Es+1[Eptar(x) [(τ̂s+1(x) − τ̂Ω(x))
2]] (60)

= Eptar(x)[Es+1 [(τ̂s+1(x) − τ̂Ω(x))2]] [via Fubini’s theorem]

The inner term Es+1[(τ̂s+1 − τ̂Ω)2] is the expected squared error of the (Bayesian) oracle estimator.
This can be decomposed using the law of total variance. This objective simplifies to minimizing the
posterior variance of the oracle estimator τ̂Ω(x):

Es+1[(τ̂s+1(x) − τ̂Ω(x))2] = Es+1[Vars+1[τ̂Ω(x)]] (61)

We then apply variance decomposition to the term Vars+1[τ̂Ω(x)]:
Vars+1[τ̂Ω(x)] = Vars+1[τ(x)] −VarΩ[τ(x)] (62)

Here, VarΩ[τ(x)] is the (constant) oracle variance after seeing all data. Substituting this back, our
objective (Eq. 59) becomes:

argmin
(x,t)∈DP

Eptar(x)[Es+1[Vars+1[τ(x)] −VarΩ[τ(x)]]] (63)

Since VarΩ[τ(x)] is a constant term that does not depend on the choice of (x, t), it can be dropped
from the minimization:

argmin
(x,t)∈DP

Eptar(x)[Es+1[Vars+1[τ(x)]]] (64)

For a GP, the posterior variance Vars+1[⋅] is a deterministic function of the query point (x, t) and
the existing data DT . It does not depend on the (random) future outcome y. Therefore, Vars+1[τ(x)]
is a constant with respect to the expectation Es+1 (which is Ey). Applying this to Eq. 64, the inner
expectation Es+1[Vars+1[τ(x)]] simplifies to just Vars+1[τ(x)]. The objective thus simplifies to:

argmin
(x,t)∈DP

Eptar(x)[Vars+1[τ(x)]] (65)

Finally, we expand the variance term using its definition τ(x) = f(x,1) − f(x,0).
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G.6.1 CONNECTION TO THE CAUSAL-EPIG FRAMEWORK

Prop. 1 shows that under the GP and model-based error assumptions, the optimization target simplifies
to minimizing the integrated posterior CATE variance. The Causal-EPIG framework aligns with
the objective from Prop. 1 by providing two principled strategies that correctly account for the joint
posterior structure. Both strategies maximize a proxy objective based on mutual information, which
is equivalent to maximizing the expected reduction in posterior entropy.

Causal-EPIG-µ (Comprehensive Strategy) This strategy maximizes the joint information gain:

argmaxEptar(x∗)[I(y; (f(x∗,0), f(x∗,1)))]. (66)

This is equivalent to maximizing the expected reduction in the joint entropy H(f(x∗,0), f(x∗,1)).
For Gaussian processes, H ∝ log(det(Σ)). Since det(Σ) depends on the covariance term, this
objective directly targets the full joint uncertainty. It aligns with Prop. 1 by addressing the underlying
components from which Var[τ] is constructed.

Causal-EPIG-τ (Focused Strategy) This strategy maximizes the information gain of the estimand
itself:

argmaxEptar(x∗)[I(y; τ(x∗))]. (67)

This is equivalent to minimizing the expected posterior CATE entropy,
argminEptar(x∗)[Ey[Hs+1(τ(x∗))]]. For Gaussian posteriors, H(τ) ∝ log(Var[τ]). Under
the GP assumption, Vars+1 is deterministic w.r.t. y, so Ey[log(Vars+1)] = log(Vars+1). The
objective for Causal-EPIG-τ therefore simplifies to:

argmin
(x,t)∈DP

Eptar(x)[ log(Vars+1[τ(x)])]. (68)

This is a principled proxy for the objective from Prop. 1, which targets the variance Vars+1 itself, not
its logarithm. While not mathematically equivalent (by Jensen’s inequality), it is a closely related
information-theoretic criterion that minimizes a measure of posterior uncertainty. This strategy aligns
with Prop. 1 by targeting the final quantity of interest. Both Causal-EPIG strategies are principled
and aligned with the true CATE optimization objective derived from Prop. 1. They provide a trade-
off between targeting the full causal mechanism (Causal-EPIG-µ) and directly targeting the final
estimand (Causal-EPIG-τ ).

G.7 EFFICIENCY COMPARISONS BETWEEN CAUSAL-EPIG AND CAUSAL-BALD

Proposition 2 Assume that, for any target covariate x∗, both the potential outcomes (y∗(0), y∗(1))
and the CATE τ(x∗) are deterministic functions of the model parameters (or corresponding parame-
ter subsets). Then the parameter-oriented information utilities upper-bound their prediction-oriented
counterparts:

(a) Causal-BALD − µ(x, t) ≥ Causal-EPIG − µ(x, t), (69)
(b) Causal-EIG(x, t) ≥ Causal-EPIG − τ(x, t). (70)

Both inequalities follow from the Data Processing Inequality (DPI). Equality holds iff the prediction
quantity (y∗(0), y∗(1)) or τ(x∗) is a sufficient statistic for the corresponding parameter; otherwise
the inequalities are strict.

Proof 2 Let the updated training dataset be D′T = DT ∪ {(x, t)}. The four utility function can be
written as

Causal-BALD − µ(x, t) ∶= I(y; θ ∣D′T ),

Causal-EPIG − µ(x, t) ∶= Eptar(x∗)[I(y; (y∗(0), y∗(1)) ∣ x∗,D′T )],

Causal-EIG(x, t) ∶= I(y; θτ ∣D′T ),

Causal-EPIG − τ(x, t) ∶= Eptar(x∗)[I(y; τ(x∗) ∣ x∗,D′T )].
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(a) Proof of Causal-BALD−µ ≥ Causal-EPIG−µ. Since (y∗(0), y∗(1)) is a deterministic function
of θ, conditioning on {x∗,D′T } yields the Markov chain y → θ → (y∗(0), y∗(1)). By the data
processing inequality, we have

I(y; θ ∣ x∗,D′T ) ≥ I(y; (y∗(0), y∗(1)) ∣ x∗,D′T ). (71)

The left-hand side is independent of x∗:

I(y; θ ∣ x∗,D′T ) = I(y; θ ∣D′T ) = Causal-BALD − µ(x, t). (72)

Taking expectation over x∗ ∼ ptar gives

Causal-BALD − µ(x, t) ≥ Causal-EPIG − µ(x, t). (73)

(b) Proof of Causal-EIG ≥ Causal-EPIG − τ .

Since τ(x∗) is a deterministic function of θτ , conditioning on {x∗,D′T } gives the Markov chain
y → θτ → τ(x∗). By the data processing inequality, we have

I(y; θτ ∣ x∗,D′T ) ≥ I(y; τ(x∗) ∣ x∗,D′T ). (74)

Again, the LHS does not depend on x∗:

I(y; θτ ∣ x∗,D′T ) = I(y; θτ ∣D′T ) = Causal-EIG(x, t). (75)

Taking expectation over x∗ ∼ ptar yields

Causal-EIG(x, t) ≥ Causal-EPIG − τ(x, t). (76)
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H FURTHER EXPERIMENTAL RESULTS

In this section, we provide a comprehensive set of supplementary experimental results to complement
our main findings. First, we present additional performance curves and detailed metrics for our
primary experiments on the synthetic (Hahn, Causal-BALD) and semi-synthetic (IHDP, ACTG-175)
benchmarks. Second, we conduct a series of ablation studies to analyze the robustness of our Causal-
EPIG framework. These studies, conducted primarily on the Hahn simulation dataset, evaluate the
impact of varying initial random starts, acquisition batch sizes, and the size of the unlabeled pool.

Analysis of CausalBALD Dataset. The results on the CausalBALD synthetic dataset, presented in
Fig. 12 (regular setup) and Fig. 13 (shift setup), demonstrate the effectiveness of the Causal-EPIG
framework, which shows the top-tier performance compard with all baseline methods.

H.1 CAUSALBLAD DATASET
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Figure 12: Performance comparison on the CausalBALD synthetic dataset with the regular setup.
Each plot shows the

√
PEHE (lower is better) as a function of the number of acquired samples. Rows

distinguish between the training performance (top) and the testing performance (bottom). Columns
correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.
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Figure 13: Performance comparison on the CausalBALD synthetic dataset with the target distribution
shift setup. Each plot shows the

√
PEHE (lower is better) as a function of the number of acquired

samples. Rows distinguish between the training performance (top) and the testing performance
(bottom). Columns correspond to the three different underlying CATE estimators: BCF, CMGP, and
NSGP.
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Figure 14: Performance comparison on the Hahn (linear function) synthetic dataset with the regular
setup. Each plot shows the

√
PEHE (lower is better) as a function of the number of acquired samples.

Rows distinguish between the training performance (top) and the testing performance (bottom).
Columns correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

100 200 300 400 500 600 700 800
Number of acquisitions

0.8

1.0

1.2

1.4

1.6

1.8

2.0

PE
H

E

Random
-BALD
-BALD
-BALD

-BALD
Propensity

-BALD

Coreset
Causal-EIG
Causal-EPIG- S
Causal-EPIG-
Causal-EPIG-

100 200 300 400 500 600 700 800
Number of acquisitions

0.5

1.0

1.5

2.0

PE
H

E

Random
-BALD
-BALD
-BALD

-BALD
Propensity

-BALD

Coreset
Causal-EIG
Causal-EPIG- S
Causal-EPIG-
Causal-EPIG-

100 200 300 400 500 600 700 800
Number of acquisitions

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

PE
H

E

Random
-BALD
-BALD
-BALD

-BALD
Propensity

-BALD

Coreset
Causal-EIG
Causal-EPIG- S
Causal-EPIG-
Causal-EPIG-

100 200 300 400 500 600 700 800
Number of acquisitions

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

PE
H

E

Random
-BALD
-BALD
-BALD

-BALD
Propensity

-BALD

Coreset
Causal-EIG
Causal-EPIG- S
Causal-EPIG-
Causal-EPIG-

100 200 300 400 500 600 700 800
Number of acquisitions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

PE
H

E

Random
-BALD
-BALD
-BALD

-BALD
Propensity

-BALD

Coreset
Causal-EIG
Causal-EPIG- S
Causal-EPIG-
Causal-EPIG-

100 200 300 400 500 600 700 800
Number of acquisitions

0.25

0.50

0.75

1.00

1.25

1.50

1.75

PE
H

E

Random
-BALD
-BALD
-BALD

-BALD
Propensity

-BALD

Coreset
Causal-EIG
Causal-EPIG- S
Causal-EPIG-
Causal-EPIG-

Figure 15: Performance comparison on the Hahn (linear function) synthetic dataset with the target
distribution shift setup. Each plot shows the

√
PEHE (lower is better) as a function of the number

of acquired samples. Rows distinguish between the training performance (top) and the testing
performance (bottom). Columns correspond to the three different underlying CATE estimators: BCF,
CMGP, and NSGP.
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Figure 16: Performance comparison on the Hahn (nonlinear function) synthetic dataset with regular.
Each plot shows the

√
PEHE (lower is better) as a function of the number of acquired samples. Rows

distinguish between the training performance (top) and the testing performance (bottom). Columns
correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.
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Figure 18: Performance comparison on the IHDP semi-synthetic dataset with the regular setup. Each
plot shows the

√
PEHE (lower is better) as a function of the number of acquired samples. Rows

distinguish between the training performance (top) and the testing performance (bottom). Columns
correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.
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Figure 17: Performance comparison on the Hahn (nonlinear function) synthetic dataset with the
target distribution shift setup. Each plot shows the

√
PEHE (lower is better) as a function of the

number of acquired samples. Rows distinguish between the training performance (top) and the testing
performance (bottom). Columns correspond to the three different underlying CATE estimators: BCF,
CMGP, and NSGP.
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H.3 IHDP DATASET
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Figure 19: Performance comparison on the IHDP semi-synthetic dataset with the target distribution
shift setup. Each plot shows the

√
PEHE (lower is better) as a function of the number of acquired

samples. Rows distinguish between the training performance (top) and the testing performance
(bottom). Columns correspond to the three different underlying CATE estimators: BCF, CMGP, and
NSGP.
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Figure 20: Performance comparison on the ACTG-175 semi-synthetic dataset with the standard setup.
Each plot shows the

√
PEHE (lower is better) as a function of the number of acquired samples. Rows

distinguish between the training performance (top) and the testing performance (bottom). Columns
correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.
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H.5 ABLATION STUDIES

H.5.1 DIFFERENT STARTING POINTS
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Figure 21: Ablation study on the impact of the warm-start size. Performance (
√

PEHE) is evaluated
on the Hahn (linear) dataset using the BCF base estimator. Each panel shows the result for a different
number of initial random samples used for the warm-start. From left to right: 50, 100, 200, and 300
initial samples.

Ablation Study: Sensitivity to Warm-Start Size. To assess the robustness of our method to the
size of the initial random batch, we conduct an ablation study on the warm-start phase. We vary the
number of initial samples from 50 to 300 on the Hahn (linear) dataset with the BCF estimator, with
results shown in Fig. 21. The key finding is that the superior performance of Causal-EPIG is robust
to the choice of the warm-start size. Across all four settings, our method consistently outperforms the
included baselines, establishing a clear performance advantage early in the acquisition process and
maintaining it. While a larger warm-start set leads to a better initial model and lower starting PEHE
for all methods, the relative performance ranking remains unchanged. This demonstrates that the
effectiveness of our acquisition strategy is not highly sensitive to this hyperparameter, highlighting its
practical stability.

H.5.2 DIFFERENT POOL SIZES
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Figure 22: Ablation study on the impact of the unlabeled pool size. Performance (
√

PEHE) is
evaluated on the Hahn (linear) dataset using the BCF base estimator. Each panel shows the result for
a different initial size of the unlabeled pool DP . From left to right: ∣DP ∣ = 1000,1500,2000, and
2500.

Ablation Study: Sensitivity to Pool Size. We investigate the sensitivity of our method to the size
of the unlabeled pool from which candidates are selected. In Fig. 22, we vary the initial pool size
∣DP ∣ from 1000 to 2500, while keeping the dataset and base model fixed. The results clearly show
that the performance advantage of Causal-EPIG is robust across different pool sizes. In all four
configurations, our method consistently and significantly outperforms the baselines. We observe
that a larger pool provides a modest performance benefit to all active methods, including our own,
as it increases the diversity of candidates available for selection. Crucially, however, the relative
performance ordering remains stable, and the superiority of Causal-EPIG holds regardless of the
pool size. This study demonstrates that our target-aware selection strategy is a fundamental advantage,
not an artifact of a specific data environment.
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H.5.3 DIFFERENT STEP SIZES
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Figure 23: Ablation study on the impact of the acquisition batch size (nb). Performance (
√

PEHE)
is evaluated on the Hahn (linear) dataset using the BCF base estimator. Each panel shows the result
for a different number of samples acquired per round. From left to right: nb = 5,10,20, and 40.

Ablation Study: Sensitivity to Batch Size. Finally, we analyze the effect of the acquisition
batch size, nb, a key hyperparameter in the active learning loop. Fig. 23 shows the performance
as we vary the number of samples acquired per round from 5 to 40. The primary finding is that
Causal-EPIG consistently outperforms all baselines across every batch size tested, demonstrating
its robust superiority regardless of this hyperparameter choice. We also observe a trend common in
active learning: smaller, more frequent acquisition batches (e.g., nb = 5) tend to yield slightly better
final performance for all active methods. This is because more frequent model updates allow for
more responsive and adaptive sample selection. Nevertheless, the relative performance advantage of
Causal-EPIG is maintained across all settings, confirming the robustness of our approach.

H.5.4 DUE ESTIMATOR
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Figure 24: Performance comparison using the Deep Variational GP estimator from the original
CausalBALD study (Jesson et al., 2021). Each panel shows the

√
PEHE on a different dataset. From

left to right: CausalBALD, CuaslBALD with distribution shift, Hahn (linear), Hahn (linear) with
distribution shift.

Analysis with the DeepGP Base Estimator. To ensure a direct and fair comparison with the
original CausalBALD study, we conduct a final experiment using the specific Deep Variational GP
estimator proposed in their work. The results across our four benchmark datasets (in the standard
setting) are shown in Fig. 24. The findings are remarkably consistent with our main results. Causal-
EPIG demonstrates robustly superior performance across the diverse set of datasets. It achieves the
fastest error reduction on the CausalBALD and IHDP benchmarks and shows a clear advantage on the
Hahn (linear) dataset. While the Hahn (non-linear) setting proves challenging for all methods when
paired with this estimator, Causal-EPIG remains a top-tier performer. This provides compelling
evidence that the effectiveness of Causal-EPIG is not tied to a specific model architecture (such as
the standard GPs or BCF used in our main experiments). Its principled, target-aware design provides
significant performance gains across a variety of Bayesian CATE estimators, confirming its flexibility
and general applicability.
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