

000 001 002 003 004 005 006 007 008 009 010 CAUSAL-EPIG: A PREDICTION-ORIENTED ACTIVE 002 LEARNING FRAMEWORK FOR CATE ESTIMATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

009 ABSTRACT 010

011 Estimating the Conditional Average Treatment Effect (CATE) is often constrained
012 by the high cost of obtaining outcome measurements, making active learning es-
013 sential. However, conventional active learning strategies suffer from a fundamental
014 objective mismatch. They are designed to reduce uncertainty in model parameters
015 or in observable factual outcomes, failing to directly target the unobservable causal
016 quantities that are the true objects of interest. To address this misalignment, we
017 introduce the principle of causal objective alignment, which posits that acquisition
018 functions should target unobservable causal quantities, such as the potential out-
019 comes and the CATE, rather than indirect proxies. We operationalize this principle
020 through the Causal-EPIG framework, which adapts the information-theoretic cri-
021 terion of Expected Predictive Information Gain (EPIG) to explicitly quantify the
022 value of a query in terms of reducing uncertainty about unobservable causal quanti-
023 ties. From this unified framework, we derive two distinct strategies that embody
024 a fundamental trade-off: a comprehensive approach that robustly models the full
025 causal mechanisms via the joint potential outcomes, and a focused approach that
026 directly targets the CATE estimand for maximum sample efficiency. **We provide**
027 **theoretical justification for our framework, establishing a formal link between our**
028 **information-theoretic objective and the minimization of CATE estimation error.**
029 Extensive experiments demonstrate that our strategies consistently outperform stan-
030 dard baselines, and crucially, reveal that the optimal strategy is context-dependent,
031 contingent on the base estimator and data complexity. Our framework thus provides
032 a principled guide for sample-efficient CATE estimation in practice.

033 1 INTRODUCTION 034

035 Understanding the causal effects of interventions is central to reliable decision-making in complex
036 domains. Causal inference provides a principled framework for this purpose by modeling the
037 underlying dependencies in real-world data (Pearl, 2009; Hernan & Robins, 2023; Wager, 2024). Its
038 importance is evident across domains such as healthcare (Foster et al., 2011), economics (Heckman,
039 2000), and recommendation systems (Gao et al., 2024a), where accurately assessing the impact of
040 actions is critical for designing effective policies and delivering personalized interventions. Estimating
041 the Conditional Average Treatment Effect (CATE) is a key problem in this context, as it captures how
042 treatment effects vary across individuals (Künzel et al., 2019). While randomized controlled trials
043 remain the gold standard for causal inference, they are often impractical due to prohibitive costs and
044 ethical barriers (Benson & Hartz, 2017). Consequently, researchers increasingly rely on observational
045 data, which scale more readily but introduce the additional challenge of controlling for confounding
046 to ensure valid causal conclusions (Imbens & Rubin, 2015; Chernozhukov et al., 2024).

047 Beyond the challenge of controlling for confounding, a critical practical constraint in observational
048 studies is the acquisition of ground-truth outcome data. This typically requires a costly process,
049 such as expert annotation or long-term patient follow-up, to obtain a reliable outcome for each
050 subject (Nwankwo et al., 2025). Consequently, in many real-world scenarios, this process is expensive,
051 logistically demanding, and subject to privacy or ethical restrictions (Gao et al., 2024b; Kallus &
052 Mao, 2025; Tipton & Mamakos, 2025). In healthcare, for example, measuring outcomes may require
053 costly diagnostic tests or invasive procedures such as biopsies and large-scale tumor imaging, where
054 the resulting label scarcity can severely impact the accuracy of CATE estimation (Bi et al., 2019; Wen
055 et al., 2025). In economics and the social sciences, outcomes such as long-term income trajectories

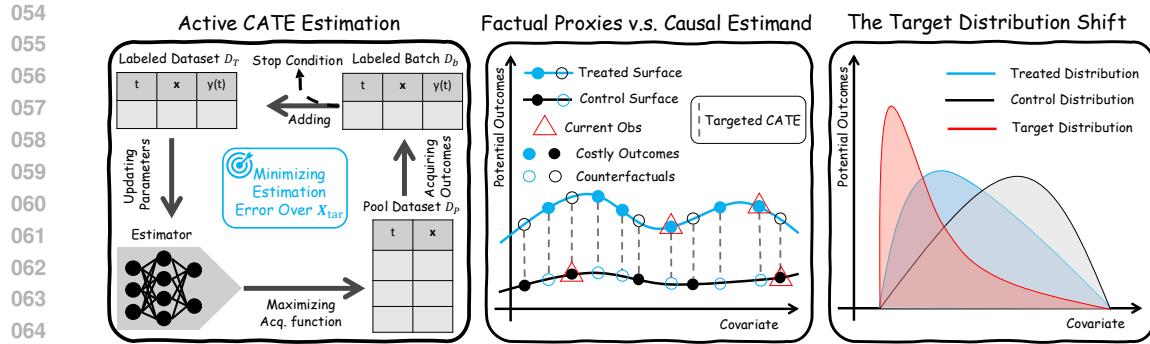


Figure 1: **(Left)** Illustrates the pool-based active learning pipeline for CATE estimation. **(Middle)** Highlights the fundamental proxy-target disconnect: the goal is to learn the CATE, the data consist only of single factual outcomes as indirect proxies. **(Right)** Shows the challenge of target distribution shift, where the sampling pool differs from the target population.

or behavioral changes often require extensive, costly follow-up (McKenzie, 2012). These resource constraints are further compounded when the study population differs systematically from the target population of interest (Kern et al., 2024). For instance, a health maintenance organization in California might need to rely on evidence from a study conducted years prior in Switzerland, whose participants fail to reflect the heterogeneity of the local population (Kallus et al., 2018). This challenge of generalizing findings across populations, formally known as ensuring external validity (Rothwell, 2005) or, more specifically, transportability (Bareinboim & Pearl, 2013; Pearl & Bareinboim, 2022), critically undermines the real-world utility of causal estimates. To address the dual challenges of resource scarcity and population shift, effective methods must be both sample-efficient and robustly target-aware to ensure CATE estimates generalize beyond the study cohort.

Challenges. Active learning (AL) offers a principled framework for maximizing estimation accuracy under a fixed budget, yet its application to CATE estimation is hindered by a fundamental challenge. Standard AL methods are built for a world of factual observations, designed to reduce uncertainty about observable outcomes or model parameters. The objective of CATE estimation, however, is to precisely quantify an unobservable counterfactual difference. This misalignment between a fact-based acquisition process and a counterfactual-based goal is the primary obstacle, leading to inefficient data selection that fails to reduce uncertainty where it matters most: in the treatment effect itself.

Existing literature has made valuable progress in adapting conventional AL paradigms for CATE estimation. Seminal works (Jesson et al., 2021; Wen et al., 2025) have explored criteria like factual outcome uncertainty or information gain about model parameters. [Detailed related work are provided in App. B](#). While an important step, these approaches largely inherit the foundational misalignment. Optimizing for such proxies, rather than the CATE itself, limits their effectiveness. This is compounded by a vulnerability to distribution shift, as their acquisition criteria typically evaluate utility over the sampling pool, which may not represent the target population. Consequently, a critical gap persists: *the need for a causally-aligned acquisition strategy designed to directly target treatment effect uncertainty while remaining robust to the distributional shifts common in causal inference*.

Contributions. To address the critical gap in the literature, this paper makes the following contributions. *A New Principle.* We introduce the principle of causal objective alignment, arguing that the structural disconnect between observable data and the causal estimand mandates acquisition functions that are explicitly designed for the final causal goal (Sec. 3). *A Novel Information-Theoretic Framework.* We develop Causal-EPIG, a novel information-theoretic framework that operationalizes our principle (Sec. 4.1). From this unified framework, we derive two distinct, principled acquisition strategies: one that models the foundational potential outcomes, and a second that directly targets the final CATE estimand. *Broad Model Compatibility.* We demonstrate that Causal-EPIG is a flexible framework that naturally accommodates a range of popular Bayesian CATE estimators (Sec. 4.2), including Gaussian Process (GP)-based models like Causal Multi-task GP (Alaa & Van Der Schaar, 2017) and Non-Stationary GP (Alaa & Schaar, 2018), as well as the tree-based Bayesian Causal Forests (Hahn et al., 2020). *Theoretical Justification.* We provide a formal theoretical justification for our framework (Sec. 4.4), establishing a rigorous link between our acquisition objective and

108 the minimization of CATE estimation error (Prop. 1), proving the theoretical superiority of our
 109 prediction-oriented utilities over parameter-based baselines (Prop. 2), and providing a novel conver-
 110 gence analysis that bounds the posterior uncertainty under our greedy acquisition strategy (Thm. 1).
 111 *Extensive Empirical Validation.* We conduct comprehensive experiments showing that both strategies
 112 derived from our framework significantly outperform a wide array of baselines (Sec. 5). Crucially,
 113 our results validate our central hypothesis that the choice between the comprehensive and focused
 114 strategies embodies a context-dependent trade-off, providing nuanced evidence that the optimal form
 115 of causal alignment depends on the interplay between the base model and the problem’s nature.

2 PRELIMINARIES AND PROBLEM SETUP

119 **Potential Outcomes and CATE Estimation.** Our analytical framework is grounded in the Neyman-
 120 Rubin potential outcomes model (Rubin, 2005). We define the random variables \mathbf{x} , t , and y to
 121 represent the covariates, treatment, and outcome, respectively, with domains \mathcal{X} , $\{0, 1\}$, and \mathcal{Y} . We
 122 denote realizations by \mathbf{x} , t , and y . The two potential outcomes are $y(0)$ and $y(1)$, corresponding
 123 to the outcome under control and treatment. The propensity score is $\pi(\mathbf{x}) = p(t = 1 | \mathbf{x} = \mathbf{x})$. Our
 124 primary goal is to estimate the CATE, defined as $\tau(\mathbf{x}) := \mathbb{E}[y(1) - y(0) | \mathbf{x} = \mathbf{x}]$. For a detailed
 125 summary of our notation, see App. C. To ensure identifiability, we impose the following assumptions.

126 **Assumption 1 Unconfoundedness:** *Given the covariates \mathbf{x} , treatment assignment t is independent
 127 of the potential outcomes, i.e., $(y(1), y(0)) \perp\!\!\!\perp t | \mathbf{x}$. This implies that \mathbf{x} captures all common causes
 128 of treatment and outcome.* **Positivity (Common Support):** *For any covariates \mathbf{x} , the probability
 129 of receiving any given treatment is non-zero: $0 < \pi(\mathbf{x}) < 1$.* **SUTVA (Stable Unit Treatment
 130 Value):** *An individual’s potential outcomes are unaffected by the treatment assignments of others
 131 (No Interference), and the observed outcome is the potential outcome corresponding to the treatment
 132 received, i.e., $y = ty(1) + (1 - t)y(0)$ (Consistency).*

133 Under Ass. 1, the CATE becomes identifiable as the difference in the conditional expectations of the
 134 observed outcome, which we denote $f(\mathbf{x}, t) := \mathbb{E}[y | \mathbf{x} = \mathbf{x}, t = t]$. This is expressed as:

$$\tau(\mathbf{x}) = f(\mathbf{x}, 1) - f(\mathbf{x}, 0) = \mathbb{E}[y | \mathbf{x} = \mathbf{x}, t = 1] - \mathbb{E}[y | \mathbf{x} = \mathbf{x}, t = 0]. \quad (1)$$

2.1 POOL-BASED ACTIVE ESTIMATION OF CATE

140 In this setting, we begin with a large unlabeled pool of instances $D_P = \{(\mathbf{x}_i, t_i)\}_{i=1}^{n_P}$ and a small,
 141 often initially empty, labeled training set $D_T = \{(\mathbf{x}_i, t_i, y_i)\}_{i=1}^{n_T}$. The active learning loop proceeds
 142 iteratively: a model trained on the current D_T informs an acquisition function, which selects a batch
 143 of n_b instances from D_P to be labeled. These are added to D_T , and the process repeats until a budget
 144 of n_B labels is exhausted (Jesson et al., 2021; Qin et al., 2021). Our objective is to learn a CATE
 145 model, $\hat{\tau}(\mathbf{x})$, that is accurate over a specific target distribution of interest, $p_{\text{tar}}(\mathbf{x})$, which may differ
 146 from the distribution of the sampling pool $p_{\text{pool}}(\mathbf{x})$. To formalize this, we evaluate performance
 147 using the square root of the Precision in Estimating Heterogeneous Effects ($\sqrt{\epsilon_{\text{PEHE}}}$) (Hill, 2011).
 148 This metric is defined as the root mean squared error over the target distribution and is empirically
 149 estimated using a finite target set \mathbf{X}_{tar} drawn from $p_{\text{tar}}(\mathbf{x})$:

$$\sqrt{\epsilon_{\text{PEHE}}}[\hat{\tau}] := \sqrt{\mathbb{E}_{p_{\text{tar}}(\mathbf{x})}[(\hat{\tau}(\mathbf{x}) - \tau(\mathbf{x}))^2]} \approx \sqrt{\frac{1}{|\mathbf{X}_{\text{tar}}|} \sum_{\mathbf{x} \in \mathbf{X}_{\text{tar}}} (\hat{\tau}(\mathbf{x}) - \tau(\mathbf{x}))^2}. \quad (2)$$

154 **Remark 1 (Observational Constraint vs. Experimental Design)** *A key constraint in our setup is
 155 that we operate on observational data, even during acquisition. For any instance (\mathbf{x}_i, t_i) , we can only
 156 query its pre-existing outcome $y_i(t_i)$ and cannot intervene to assign a new treatment and observe
 157 the counterfactual. This limitation distinguishes our problem from adaptive experimental design,
 158 which requires the freedom to assign treatments (Toth et al., 2022; Kato et al., 2024; Cha & Lee,
 159 2025; Klein et al., 2025; Zhang et al., 2025). This constraint is common in sensitive domains like
 160 healthcare and social sciences, where treatment assignment is governed by external factors. A more
 161 detailed discussion of the related literature on adaptive experimental design is provided in App. B.3.*

162
163
164
165
166

167 **Key Objective.** In this problem setup, the central challenge is to design a principled utility
168 function, $U(\cdot)$, that quantifies the informativeness of any single candidate data point (\mathbf{x}, t) from
169 the pool. The acquisition strategy is then to select the candidate, denoted (\mathbf{x}_s, t_s) , that is deemed
170 most valuable by maximizing this function:
171

$$(\mathbf{x}_s, t_s) = \arg \max_{(\mathbf{x}, t) \in D_P} U(\mathbf{x}, t \mid D_T, \mathbf{X}_{\text{tar}}). \quad (3)$$

172 While this defines the selection of a single instance, this process is typically extended to the batch
173 setting by greedily selecting the n_b candidates that yield the highest utility scores.
174

3 ALIGNING ACTIVE LEARNING WITH CAUSAL OBJECTIVES

175 This section analyzes the unique structure of active outcome acquisition for CATE estimation,
176 revealing a fundamental misalignment with standard AL paradigms. We show that this misalignment
177 points toward a core principle, Causal Objective Alignment (COA), that should guide the design of
178 principled and sample-efficient acquisition strategy within this domain.
179

180 **From Indirect Proxies to the Causal Estimand.** In standard AL, the path from query to knowledge
181 is direct. The learning objective is aligned with the data-generating process: one queries a point \mathbf{x}_i
182 to observe a label y_i , which is a direct (though noisy) signal for the target function $f(\mathbf{x}_i)$. Naïve
183 applications of this paradigm to CATE estimation simply adopt these standard targets: they might
184 focus on the uncertainty of the observable response surface, $f(\mathbf{x}, t)$, or on the uncertainty of the
185 model’s internal parameters, θ . However, this creates a fundamental mismatch, as illustrated in Fig. 1.
186 Both the data we can acquire (factual outcomes) and the model’s parameters are only indirect proxies
187 for our true inferential goal. This goal is to understand the complete unobservable causal mechanism,
188 which is characterized by the two potential outcome surfaces, $y(0)$ and $y(1)$, and the CATE function,
189 $\tau(\mathbf{x})$, derived from them, as shown in Eq. 1. This profound disconnect between indirect proxies and
190 the unobservable causal quantities that truly matter motivates our core design principle:
191

192 **Principle 1 (Causal Objective Alignment)** *An effective acquisition strategy for active CATE es-
193 timation should be causally aligned. Its utility function should quantify the value of a query by
targeting unobservable causal quantities, such as the potential outcomes or the CATE itself, to ensure
alignment with the final inferential goal, rather than indirect proxies.*
194

195 The COA principle’s requirement that utility be quantified relative to a fixed target population, \mathbf{X}_{tar} ,
196 naturally frames active CATE estimation as a transductive learning problem (a connection detailed in
197 App. B.2.1). This shift in perspective from a general inductive model to one tailored for a specific
198 set of individuals illuminates a conceptual spectrum of acquisition strategies. This spectrum ranges
199 from naïve approaches targeting indirect proxies (e.g., factual uncertainty) to sophisticated, causally-
200 aligned strategies. Within these aligned approaches, the principle reveals a powerful dichotomy:
201 strategies that target the foundational components of the causal mechanism (the potential outcome
202 surfaces), versus those that directly target the final causal effect itself. The importance of this
203 alignment is amplified under distribution shift ($p_{\text{tar}}(\mathbf{x}) \neq p_{\text{pool}}(\mathbf{x})$), where misaligned objectives
204 may fail entirely to reduce uncertainty for the target population. This unified perspective, grounding
205 the problem in both causal alignment and a transductive objective, provides the robust conceptual
206 foundation for the Causal-EPIG framework we now introduce.
207

4 ACTIVE CATE ESTIMATION VIA CAUSAL-EPIG

209 This section operationalizes the COA principle by introducing the Causal-EPIG framework: a
210 unified, information-theoretic approach to designing acquisition functions. Instead of proposing
211 a single “best” criterion, we demonstrate that this framework naturally gives rise to two distinct
212 and principled strategies, embodying a fundamental trade-off between modeling robustness and
213 directness, the optimal balance of which may depend on both the underlying CATE estimator and the
214 data-generating process. We first present the formal definitions of these strategies and discuss their
215 conceptual differences. We then demonstrate the framework’s compatibility with advanced Bayesian
CATE estimators. Further implementation details are provided in App. E.
216

216 Table 1: Comparison of information-theoretic acquisition functions for active CATE estimation. For
 217 brevity, D'_T denotes the training set augmented with a candidate point: $D'_T = D_T \cup \{(\mathbf{x}, t)\}$.
 218

	Non-Causal-Aware		Causal-Aware	
EIG	$I(y; \theta D'_T)$ (μ -BALD)		$I(y; \theta_\tau D'_T)$ (Causal-EIG)	
EPIG	$\mathbb{E}_{p_{\text{pool}}(\mathbf{x}^*, t^*)} [I(y; y^* (\mathbf{x}^*, t^*), D'_T)]$		$\mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [I(y; (y^*(0), y^*(1)) \mathbf{x}^*, D'_T)]$ (PO-based) $\mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [I(y; \tau(\mathbf{x}^*) \mathbf{x}^*, D'_T)]$ (CATE-based)	

227 4.1 CAUSAL-EPIG: AN INFORMATION-THEORETIC ACQUISITION FUNCTION

228 Our framework is grounded in the information-theoretic concept of mutual information (MI). Formally
 229 denoted as $I(a; b) = H(a) - H(a | b)$, where $H(\cdot)$ represents entropy, MI quantifies the information
 230 that a random variable a provides about another variable b . Equivalently, it measures the expected
 231 reduction in uncertainty about b gained from observing a . The design of Causal-EPIG is best
 232 motivated by a direct contrast with these standard AL criteria, as illustrated in Tab. 1. As defined
 233 above, methods like EIG/BALD are *parameter-focused*, aiming to reduce uncertainty over the model
 234 parameters (θ). This objective is indirect; reducing global parameter uncertainty does not guarantee a
 235 targeted reduction in CATE uncertainty (Houlsby et al., 2011; Jesson et al., 2021). This limitation
 236 persists even for causal adaptations. For instance, in models like BCF that adopt a separable structure,
 237 $f(\mathbf{x}, t) = \mu(\mathbf{x}) + t \cdot \tau(\mathbf{x})$, with parameters $\theta = (\theta_\mu, \theta_\tau)$. In such models, one could target the CATE
 238 parameters θ_τ specifically. However, this still focuses on the model’s internal representation rather
 239 than its final predictive output (Fawkes et al., 2025). Standard EPIG elevates the objective by targeting
 240 a future prediction (y^*), but it remains tethered to a single *factual* outcome. This is insufficient
 241 because CATE is inherently a comparative quantity, $\tau(\mathbf{x}) = \mathbb{E}[y(1) - y(0) | \mathbf{x}]$. A data point that is
 242 highly informative for one potential outcome might offer little information about the other, and thus
 243 may not efficiently reduce uncertainty about their difference (Smith et al., 2023).
 244

245 **👉 A Comprehensive Strategy: Targeting the Causal Mechanism (Causal-EPIG- μ).** A direct
 246 application of our COA principle is to target the complete causal mechanism for a target individual,
 247 which is fully described by the joint distribution of their potential outcomes, $(y^*(0), y^*(1))$. This
 248 comprehensive approach correctly accounts for the inherent dependence between the two outcomes.
 249 This leads to our Potential Outcome-based (PO-based) strategy, Causal-EPIG- μ :

$$250 \text{Causal-EPIG-}\mu(\mathbf{x}, t) := \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [I(y; (y^*(0), y^*(1)) | \mathbf{x}^*, D'_T)]. \quad (4)$$

251 By seeking data that maximally reduces uncertainty over this joint distribution, Causal-EPIG- μ aims
 252 to build a holistic and robust statistical model of the foundational surfaces from which the CATE
 253 is derived. The objective of this strategy is to obtain a more complete and nuanced picture of the
 254 underlying individual-level mechanism. A potential consequence is that some acquisition budget may
 255 inevitably be dedicated to resolving uncertainty in the prognostic baseline (i.e., the average outcome)
 256 rather than exclusively clarifying the contrast between the potential outcomes. For completeness, we
 257 also discuss a simpler, additive variant in App. F.2, which approximates this broader objective.
 258

259 **👉 A Focused Strategy: Directly Targeting the Causal Estimand (Causal-EPIG- τ).** In contrast
 260 to the comprehensive strategy, an alternative approach is to focus the entire acquisition budget on
 261 the final inferential goal itself: the CATE function $\tau(\mathbf{x}^*)$. This focused strategy is designed to yield
 262 maximum sample efficiency for CATE estimation when the causal effect is a sufficiently learnable
 263 signal, by prioritizing data points that most directly resolve uncertainty in this causal estimand.
 264 Formally, we define the Causal-EPIG- τ utility as the expected information gain about the CATE:
 265

$$266 \text{Causal-EPIG-}\tau(\mathbf{x}, t) := \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [I(y; \tau(\mathbf{x}^*) | \mathbf{x}^*, D'_T)]. \quad (5)$$

267 The mutual information term represents the expected reduction in CATE posterior entropy. An
 268 equivalent and computationally useful formulation uses the KL divergence to frame this utility as the
 269 expected belief update about the CATE, $\tau(\mathbf{x}^*)$, after a potential observation y :

$$270 \text{Causal-EPIG-}\tau(\mathbf{x}, t) = \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} \left[\text{KL} \left(p(y, \tau(\mathbf{x}^*) | \mathbf{x}^*, D'_T) \| p(y | D'_T) p(\tau(\mathbf{x}^*) | \mathbf{x}^*, D'_T) \right) \right]. \quad (6)$$

270 Intuitively, a high utility score signifies that an observation at (\mathbf{x}, t) is expected to significantly change
 271 our beliefs about the CATE in the target population, marking it as a highly informative candidate.
 272

273 **Positioning the Causal-EPIG Framework.** Our Causal-EPIG framework is distinguished from
 274 related methods, particularly the Causal-BALD family (Jesson et al., 2021), by its fundamentally
 275 prediction-focused objective. This distinction is crucial: while a method like τ -BALD calculates the
 276 information a CATE prediction provides about the model’s internal parameters, our Causal-EPIG- τ
 277 calculates the information a future factual *observation* provides about a target CATE prediction. Our
 278 approach thus bypasses the parameters to directly target the final quantity of interest. A second key
 279 design axis lies within our framework, concerning how information gain across the target population
 280 is aggregated. The mean-marginal formulation, which we adopt in this work, approximates the total
 281 gain by averaging the information for each target point independently. In practice, this expectation is
 282 estimated via a simple sum over a finite target set. In contrast, a more theoretically complete global
 283 formulation would compute the mutual information with the entire vector of target predictions jointly,
 284 $I(y; \tau)$, thereby directly leveraging all inter-target dependencies (Hübotter et al., 2024). Our choice
 285 represents a pragmatic trade-off between computational scalability and theoretical completeness. We
 286 provide a detailed taxonomy of these formulations in App. F.2.

287 **The Comprehensiveness-Focus Trade-off.** The choice between the comprehensive and focused
 288 strategies is not absolute; rather, it ultimately depends on the problem context. The optimal approach
 289 is determined by the inductive biases of the base estimator: models that directly parameterize the
 290 CATE function, such as BCF, may benefit from the focused Causal-EPIG- τ , while models that instead
 291 characterize the outcome surfaces, such as Gaussian Processes, may gain more from the robustness
 292 of Causal-EPIG- μ . The complexity of the data distribution also matters: a simple, low-noise CATE
 293 function is well aligned with the CATE-based strategy, whereas a more complex causal signal may
 294 be more reliably captured as a natural byproduct of the robust surface modeling encouraged by the
 295 PO-based strategy. Ultimately, our framework does not claim a universally superior solution but
 296 instead provides principled tools whose effectiveness remains inherently context-dependent.

297 4.2 REALIZATION WITH BAYESIAN CATE ESTIMATORS

298 While model-agnostic, the Causal-EPIG framework’s practical implementation varies by CATE
 299 estimator. We outline realization strategies for two major classes of Bayesian models.
 300

301 **Exact Realization with GP Models.** For CATE estimators based on GPs, such as CMGP (Alaa &
 302 Van Der Schaar, 2017) and NSGP (Alaa & Schaar, 2018), the joint posterior predictive distribution
 303 over any set of points is, by construction, a multivariate Gaussian. Consequently, the required
 304 predictive variances and covariances can be extracted directly from the GP’s analytical posterior
 305 covariance matrix. In this ideal setting, the mutual information has an exact closed-form solution.
 306 For example, for two jointly Gaussian variables, this is given by:
 307

$$308 I(a; b) = \frac{1}{2} \log \frac{\text{Var}[a]\text{Var}[b]}{\text{Var}[a]\text{Var}[b] - \text{Cov}[a, b]^2}. \quad (7)$$

312 This allows for a highly efficient and exact implementation of Causal-EPIG with GP-based models.
 313

314 **Approximate Realization for General Bayesian Models.** For more complex models where the
 315 posterior is analytically intractable and represented by samples, such as with the MCMC output
 316 of Bayesian regression tree (Hill, 2011) and BCF (Hahn et al., 2020), a direct computation of the
 317 mutual information is infeasible. To make Causal-EPIG tractable for this broad class of models, we
 318 employ a computationally efficient Gaussian approximation, following prior work (Kirsch, 2023;
 319 Jesson et al., 2021). This strategy involves fitting a multivariate Gaussian to the posterior draws, with
 320 the mean vector and covariance matrix estimated empirically from the set of n_M posterior samples.
 321 For instance, when applying this to BCF, the crucial covariance term is computed from its MCMC
 322 draws as $\text{Cov}[y, \tau(\mathbf{x}^*)] = \text{Cov}(\{f(\mathbf{x}, t|\theta_j)\}_{j=1}^{n_M}, \{\tau(\mathbf{x}^*|\theta_j)\}_{j=1}^{n_M})$. Once this approximation is made,
 323 we can reuse the convenient closed-form solution for mutual information (Eq. 7). This approach
 324 provides a versatile recipe for pairing Causal-EPIG with a wide range of sample-based Bayesian
 325 models, bypassing the need for expensive nested Monte Carlo simulations.

324 4.3 BUDGETED ACQUISITION ALGORITHM
325

326 The Causal-EPIG utility serves as our acquisition function for selecting the most informative data
327 points. We employ this utility in an iterative active learning strategy designed to estimate the CATE
328 under a fixed budget (Qin et al., 2021; Jesson et al., 2021). This process, shown in Fig. 1 and detailed
329 in Alg. 1 (App. E.1), begins with a warm-start phase where a small, random batch of data is labeled.
330 Subsequently, in each round, the algorithm computes the Causal-EPIG utility for all candidates in the
331 unlabeled pool. A batch of points with the highest utility scores is then selected and their outcomes
332 are queried. The CATE model is subsequently retrained on the newly expanded labeled set. This
333 cycle of scoring, acquiring, and retraining continues until the budget is exhausted.
334

335 4.4 THEORETICAL ANALYSIS
336

337 We now provide a theoretical justification for our Causal-EPIG framework. Since conducting a fully
338 general analysis for arbitrary Bayesian CATE estimators is challenging, we focus on joint GP-based
339 models, which our acquisition strategies are designed to accommodate. We first show that the optimal
340 Bayesian AL objective for CATE estimation reduces to minimizing the posterior CATE variance. We
341 then analyze the convergence behavior of our Causal-EPIG strategy under this objective.
342

343 4.4.1 OBJECTIVE: CATE ERROR VS. JOINT VARIANCE
344

345 The following result connects the CATE estimation error to a tractable model-based criterion and
346 shows that the relevant acquisition objective is the posterior joint variance of the CATE.
347

348 **Proposition 1** *Assume $f(\mathbf{x}, 0)$ and $f(\mathbf{x}, 1)$ are modeled by a joint GP, and the CATE estimator is
349 the posterior mean $\hat{\tau}_s(\mathbf{x}) = \mathbb{E}_s[\tau(\mathbf{x})]$. For pool-based active CATE estimation, the optimal choice
350 to minimize the expected model-based estimation error, $\mathbb{E}_{s+1}[\epsilon_{\text{PEHE}}^{\mathcal{M}}(\hat{\tau}_{s+1})]$, simplifies under the GP
351 assumption to minimizing the integrated posterior CATE variance:*

$$352 \arg \min_{(\mathbf{x}, t) \in \mathcal{D}_P} \mathbb{E}_{s+1}[\epsilon_{\text{PEHE}}^{\mathcal{M}}(\hat{\tau}_{s+1})] = \arg \min_{(\mathbf{x}, t) \in \mathcal{D}_P} \mathbb{E}_{p_{\text{tar}}(\mathbf{x})}[\text{Var}_{s+1}[\tau(\mathbf{x})]], \quad (8)$$

353 where $\text{Var}_{s+1}[\tau(\mathbf{x})]$ is the posterior variance of the Bayesian random variable $\tau(\mathbf{x})$, which explicitly
354 retains the joint posterior structure:
355

$$\text{Var}_{s+1}[\tau(\mathbf{x})] = \text{Var}_{s+1}[f(\mathbf{x}, 1)] + \text{Var}_{s+1}[f(\mathbf{x}, 0)] - 2 \text{Cov}_{s+1}(f(\mathbf{x}, 1), f(\mathbf{x}, 0)). \quad (9)$$

356 A detailed proof is provided in App. G.6.
357

358 4.4.2 CONVERGENCE OF POSTERIOR UNCERTAINTY
359

360 Prop. 1 shows that our acquisition strategy should aim to reduce the joint CATE variance $\text{Var}[\tau(\mathbf{x})]$.
361 To analyze its convergence, we examine the behavior of the underlying potential outcome components.
362 We map this component-level problem to the transductive active learning (TAL) framework (Hübotter
363 et al., 2024) by modeling the potential outcomes $f_t(\mathbf{x})$ as a single GP $f(\tilde{\mathbf{x}})$ over an augmented
364 input space $\tilde{\mathcal{X}} = \mathcal{X} \times \{0, 1\}$ with a multitask kernel. As detailed in App. G.1, this construction
365 induces an augmented target space $\tilde{\mathcal{X}}_{\text{tar}}$ (potential outcomes) and an augmented pool space $\tilde{\mathcal{D}}_P$
366 (factual observations), making our objective equivalent to reducing posterior uncertainty over $\tilde{\mathcal{X}}_{\text{tar}}$ by
367 querying from $\tilde{\mathcal{D}}_P$. Our convergence analysis focuses on the global, joint PO-based strategy, denoted
368 Causal-EPIG- μ -G (discussed in App. F.2), as it is a direct instantiation of the Global Information
369 Theoretic Learning (ITL) strategy from the TAL framework (Hübotter et al., 2024, Eq. 2). To analyze
370 its convergence, we adapt the Global ITL analysis (Hübotter et al., 2024, Thm. 3.3) from the TAL
371 framework and first define two key quantities.
372

373 **Definition 1** *Let $\tilde{\mathcal{X}}_{\text{tar}}$ and $\tilde{\mathcal{D}}_P$ be defined as above. The global information capacity γ_{n_B} from n_B
374 observations, and the irreducible uncertainty $\eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*)$ for a target $f(\tilde{\mathbf{x}}^*) = f(\mathbf{x}^*, t)$, are:*

$$375 \gamma_{n_B} \stackrel{\text{def}}{=} \max_{\tilde{\mathcal{X}} \subseteq \tilde{\mathcal{D}}_P, |\tilde{\mathcal{X}}| \leq n_B} I(f_{\tilde{\mathcal{X}}_{\text{tar}}}; \mathbf{y}_{\tilde{\mathcal{X}}}), \quad \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) \stackrel{\text{def}}{=} \text{Var}[f(\tilde{\mathbf{x}}^*) | \mathcal{D}_P]. \quad (10)$$

376 To prove convergence, the TAL framework requires the utility function to be submodular. We
377 formalize this in our context:
378

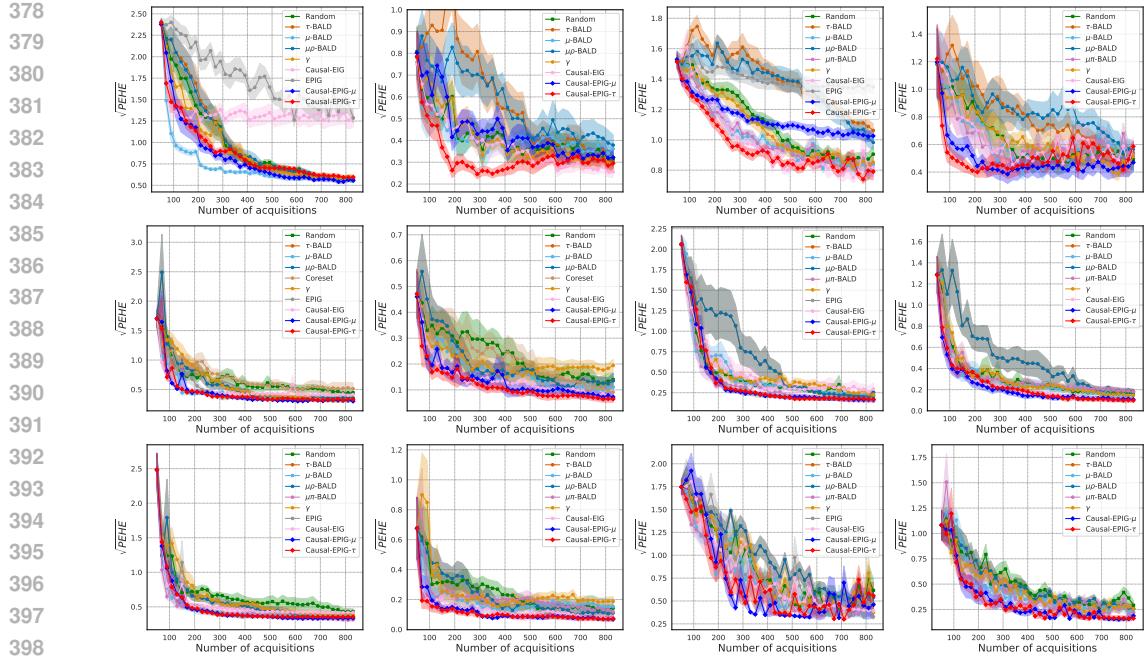


Figure 2: Comparison of $\sqrt{\text{PEHE}}$ on two simulation datasets of three CATE estimators (BCF, CMGP and NSGP, arranged by row) on the CausalBALD and Hahn (linear) simulation datasets. The columns represent the experimental setup for each dataset: regular and a distributional shift setting.

Assumption 2 *The utility function for the Causal-EPIC- μ -G strategy, defined as the joint information gain $\psi_{\tilde{\mathbf{X}}_{\text{tar}}}(\tilde{\mathbf{X}}) \stackrel{\text{def}}{=} I(f_{\tilde{\mathbf{X}}_{\text{tar}}}; \mathbf{y}_{\tilde{\mathbf{X}}})$, is a submodular set function.*

This assumption is essential for the greedy Causal-EPIC- μ -G strategy to provide a constant-factor approximation of the optimal information gain, which is a key component of the TAL convergence proof. A detailed discussion of this assumption and its validity is provided in App. G.3. We now bound the marginal variance under this assumption.

Theorem 1 *Suppose the data acquisition follows the greedy Causal-EPIC- μ -G strategy and let n_B denote the total number of acquired outcomes from \mathcal{D}_P . Under standard GP assumptions and Ass. 2, there exists a constant $C > 0$ such that for any $n_B \geq 1$ and for each target potential outcome $\tilde{\mathbf{x}}^* \in \tilde{\mathbf{X}}_{\text{tar}}$, the marginal variance satisfies:*

$$\text{Var}[f(\tilde{\mathbf{x}}^*) | \mathcal{D}_T] \leq \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + C(\gamma_{n_B} / \sqrt{n_B}). \quad (11)$$

The convergence analysis proof for this acquisition strategy is presented in App. G.3.

5 EXPERIMENTAL RESULTS

To assess the sample efficiency of our Causal-EPIC framework, we conduct extensive experiments on several benchmarks. These include synthetic datasets based on the data-generating processes (DGPs) from Causal-BALD (Jesson et al., 2021) and Hahn et al. (2020), as well as two well-established semi-synthetic benchmarks: the Infant Health and Development Program (IHDP) (Hill, 2011) and AIDS Clinical Trials Group Study 175 (ACTG-175) (Hammer et al., 1996). Full details regarding the DGPs, dataset characteristics, and partitioning for each benchmark are available in App. D.

Base Bayesian CATE Estimators, Baselines, and Metrics. To demonstrate the flexibility of our framework, we implement Causal-EPIC with three distinct and well-established Bayesian CATE estimators: BCF, CMGP, and NSGP. These models are natural partners for our information-theoretic acquisition functions, as they provide the necessary posterior uncertainty over the CATE. For brevity, the main text focuses on these primary models; comprehensive results for all setups, including an

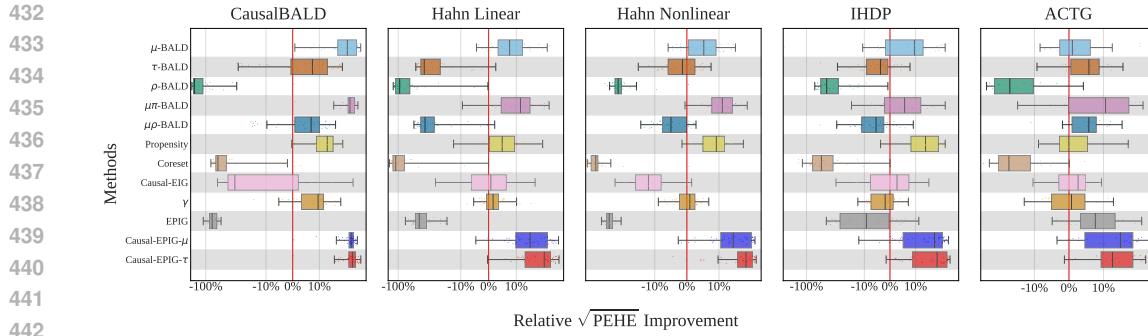


Figure 3: Average relative improvement of acquisition functions over *Random acquisition* on five datasets: CausalBALD, Hahn (linear), Hahn (nonlinear), IHDP, and ACTG-175.

additional estimator from the Causal-BALD study, are provided in App. H. For our baselines, we compare against a range of acquisition functions, including Random, γ -acquisition (S-type error rate control) (Sundin et al., 2019), coresnet selection (Qin et al., 2021), Causal-EIG (Fawkes et al., 2025), and the suite of methods from Causal-BALD (Jesson et al., 2021). Detailed implementations for all methods are available in App. E. Our primary evaluation metric is the Root PEHE ($\sqrt{\epsilon_{\text{PEHE}}}$ or $\sqrt{\text{PEHE}}$ for short; Eq. 2), computed on the target set \mathcal{X}_{tar} . All results are reported as the mean and standard deviation across 10 independent runs. In addition to performance curves, we report the relative Root PEHE improvement over the Random baseline for a holistic summary of sample efficiency. This metric is calculated at each acquisition step k as $(\sqrt{\text{PEHE}}_{\text{Random}}(k) - \sqrt{\text{PEHE}}_{\text{Method}}(k)) / \sqrt{\text{PEHE}}_{\text{Random}}(k)$. Finally, we aggregate these point-wise improvements across all steps to visualize the distribution of performance gains for each method, offering insight into its consistency throughout the active learning process.

5.1 SYNTHETIC DATA

Results. Fig. 2 presents our main findings on the synthetic datasets, demonstrating the strong performance of the strategies derived from our Causal-EPIG framework. On these benchmarks, the focused strategy, **Causal-EPIG- τ** (red curve), proves particularly effective, consistently establishing a new state of the art in sample efficiency. Across all three base estimators (BCF, CMGP, and NSGP) and in settings both with and without distribution shift, it is either the top-performing method or among the very best, rapidly converging to a lower error than all baselines. The comprehensive strategy, **Causal-EPIG- μ** (blue curve), also proves to be highly effective, significantly outperforming most baseline methods. We note one insightful interaction with the base model: its performance is slightly attenuated when paired with BCF. We hypothesize this is because BCF models the prognostic effect (μ) and the treatment effect (τ) separately; therefore, predicting the potential outcomes required by Causal-EPIG- μ may accumulate estimation errors from both components of the BCF model. These trends are summarized in Fig. 3, which aggregates the performance gains and confirms that Causal-EPIG- τ achieves the highest average improvement. Overall, these results provide strong empirical validation for our COA principle, demonstrating that in these synthetic settings where the CATE function is well-specified, the directness of the focused Causal-EPIG- τ strategy yields superior performance. Comprehensive results, detailed analyses, and ablation studies on stability (varying initializations, pool sizes, batch sizes, and the Deep-GP estimator) are provided in App. H.1, H.2, H.5.

Computational Considerations. The superior sample efficiency of our Causal-EPIG framework comes at the cost of a more computationally intensive acquisition function compared to simpler baselines. This represents a deliberate trade-off. The effectiveness of our approach is therefore most pronounced in settings where the cost of labeling is the dominant factor in the data acquisition pipeline, such as in clinical trials or industrial experiments where acquiring each new label can be time-consuming and expensive. In these common real-world scenarios, the marginal computational overhead is typically negligible compared to the cost of labeling, making the trade-off highly favorable. A detailed breakdown of the per-sample runtimes is provided in App. F.3.

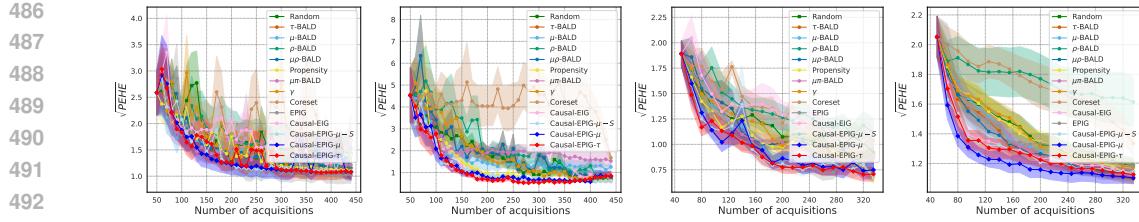


Figure 4: Comparison of $\sqrt{\text{PEHE}}$ on IHDP and ACTG-175 datasets. (1) CMGP on IHDP, (2) CMGP on IHDP under target shift, (3) CMGP on ACTG-175, and (4) BCF on ACTG-175.

5.2 SEMI-SYNTHETIC DATA

Benchmarks. We evaluate our framework on two well-established semi-synthetic benchmarks designed to mimic challenges of real-world observational studies. The first, the IHDP (Hill, 2011), simulates selection bias by removing a non-random subset of the treated group from a randomized trial. The second, ACTG-175 (Hammer et al., 1996), constructs an observational cohort by excluding participants based on their enrollment symptoms.

Results and Analysis. The results on these more realistic semi-synthetic benchmarks (Fig. 4 and Fig. 3) highlight the practical effectiveness of our Causal-EPG framework and showcase the nuances of the trade-off between its two strategies. Across both the IHDP and ACTG datasets, both Causal-EPG- μ and Causal-EPG- τ consistently deliver top-tier performance, demonstrating the overall strength of our causally-aligned, prediction-focused approach. The strong performance of the comprehensive Causal-EPG- μ strategy is particularly noteworthy, suggesting that its robust approach of modeling the entire causal mechanism is highly effective in these complex, lower signal-to-noise settings. Furthermore, these results underscore our thesis that the optimal acquisition strategy is context-dependent. On the IHDP benchmark, which is defined by significant selection bias, we observe that propensity-based baselines also perform competitively. This finding is expected and reinforces our core argument: specialized methods excel when the problem conditions match their design assumptions. The key advantage of the Causal-EPG framework, therefore, is not that one of its strategies is universally dominant, but that it provides practitioners with *two distinct, powerful, and generally reliable strategies* that achieve better sample efficiency across different and challenging conditions. Full results are provided in App. H.3, H.4.

6 DISCUSSIONS

Conclusion. This work addressed the fundamental misalignment between standard active learning and CATE estimation by introducing the principle of causal objective alignment. We operationalized this principle with the Causal-EPG framework, a flexible information-theoretic approach that yields two distinct acquisition strategies: a comprehensive strategy targeting the full potential outcome mechanism and a focused strategy targeting the CATE itself. Our extensive experiments confirmed that both of our causally-aligned strategies significantly outperform strong baselines, and more importantly, validated our central hypothesis that the choice between them embodies a context-dependent trade-off. This key finding provides strong empirical evidence for our principle: while aligning the acquisition objective with the causal goal is crucial, the optimal strategy is itself context-dependent. By providing a framework that navigates this trade-off, our work enables more cost-effective and reliable CATE estimation in critical domains.

Limitations and Future Work. Causal-EPG currently assumes the absence of unobserved confounding and relies on well-calibrated posterior uncertainty from the base CATE model, which may be unreliable in low-data regimes (Zhang et al., 2025). While our framework is model-agnostic, its overall effectiveness is fundamentally bounded by the performance of the underlying CATE estimator. A promising direction is to integrate more powerful and well-calibrated models, such as CausalPFN (Balazadeh et al., 2025), to further enhance sample efficiency. Key future directions include extending the method to account for hidden confounding (Li et al., 2023), and adapting our framework for adaptive experimental design, shifting the focus from selecting which existing data to label to deciding which new interventions to perform.

540 ETHICS STATEMENT
541

542 This research does not include human or animal subjects, nor does it rely on sensitive or proprietary
543 personal data. All datasets employed are publicly available and commonly used in the community.
544 The work poses no risks related to privacy, security, fairness, discrimination, or potential harmful
545 applications. We have adhered to the ICLR Code of Ethics, and all aspects of this study were
546 conducted with a commitment to integrity, transparency, and responsible research practices.
547

548 REPRODUCIBILITY STATEMENT
549

550 We have made extensive efforts to ensure the reproducibility of this work. App. D provides detailed
551 information on the datasets and preprocessing procedures. App. E reports the full implementation
552 details, including model architectures, training protocols, baselines, and the corresponding hyper-
553 parameter configurations. Further experimental results and analyses are presented in App. H. To
554 promote transparency and reproducibility, we will make our source code publicly available upon
555 acceptance of the paper.
556

557 REFERENCES
558

559 Raghavendra Addanki, David Arbour, Tung Mai, Cameron Musco, and Anup Rao. Sample con-
560 strained treatment effect estimation. In *Advances in Neural Information Processing Systems*,
561 volume 35, pp. 5417–5430, 2022.

562 Ahmed Alaa and Mihaela Schaar. Limits of estimating heterogeneous treatment effects: Guidelines
563 for practical algorithm design. In *International Conference on Machine Learning*, pp. 129–138.
564 PMLR, 2018.

565 Ahmed M Alaa and Mihaela Van Der Schaar. Bayesian inference of individualized treatment effects
566 using multi-task gaussian processes. In *Advances in neural information processing systems*,
567 volume 30, 2017.

569 Vahid Balazadeh, Hamidreza Kamkari, Valentin Thomas, Bingru Li, Junwei Ma, Jesse C. Cresswell,
570 and Rahul Krishnan. CausalPFN: Amortized causal effect estimation via in-context learning. In
571 *ICML 2025 Workshop on Scaling Up Intervention Models*, 2025.

572 Elias Bareinboim and Judea Pearl. A general algorithm for deciding transportability of experimental
573 results. *Journal of causal Inference*, 1(1):107–134, 2013.

575 Kjell Benson and Arthur J Hartz. A comparison of observational studies and randomized, controlled
576 trials. In *Research ethics*, pp. 213–221. Routledge, 2017.

577 Wenya Linda Bi, Ahmed Hosny, Matthew B Schabath, Maryellen L Giger, Nicolai J Birkbak,
578 Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christopher Abbosh, Ian F Dunn, et al. Artificial
579 intelligence in cancer imaging: clinical challenges and applications. *CA: a cancer journal for*
580 *clinicians*, 69(2):127–157, 2019.

582 Taehun Cha and Donghun Lee. Abc3: Active bayesian causal inference with cohn criteria in
583 randomized experiments. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
584 volume 39, pp. 26769–26777, 2025.

585 Victor Chernozhukov, Christian Hansen, Nathan Kallus, Martin Spindler, and Vasilis Syrgkanis.
586 Applied causal inference powered by ml and ai. *arXiv preprint arXiv:2403.02467*, 2024.

588 Thomas Cook, Alan Mishler, and Aaditya Ramdas. Semiparametric efficient inference in adaptive
589 experiments. In *Causal Learning and Reasoning*, pp. 1033–1064. PMLR, 2024.

590 Bradley Efron. Forcing a sequential experiment to be balanced. *Biometrika*, 58(3):403–417, 1971.

592 Jake Fawkes, Lucile Ter-Minassian, Desi R Ivanova, Uri Shalit, and Christopher C Holmes. Is
593 merging worth it? securely evaluating the information gain for causal dataset acquisition. In
594 *International Conference on Artificial Intelligence and Statistics*, pp. 1423–1431. PMLR, 2025.

594 Jared C Foster, Jeremy MG Taylor, and Stephen J Ruberg. Subgroup identification from randomized
 595 clinical trial data. *Statistics in medicine*, 30(24):2867–2880, 2011.
 596

597 Chen Gao, Yu Zheng, Wenjie Wang, Fuli Feng, Xiangnan He, and Yong Li. Causal inference in
 598 recommender systems: A survey and future directions. *ACM Transactions on Information Systems*,
 599 42(4):1–32, 2024a.

600 Erdun Gao and Dino Sejdinovic. ActiveCQ: Active estimation of causal quantities. *arXiv preprint*
 601 *arXiv:2509.24293*, 2025.
 602

603 Erdun Gao, Howard Bondell, Wei Huang, and Mingming Gong. A variational framework for
 604 estimating continuous treatment effects with measurement error. In *The Twelfth International*
 605 *Conference on Learning Representations*, 2024b.

606 Mehrdad Ghadiri, David Arbour, Tung Mai, Cameron Musco, and Anup B Rao. Finite population
 607 regression adjustment and non-asymptotic guarantees for treatment effect estimation. *Advances in*
 608 *Neural Information Processing Systems*, 36:74180–74212, 2023.
 609

610 Jinyong Hahn, Keisuke Hirano, and Dean Karlan. Adaptive experimental design using the propensity
 611 score. *Journal of Business & Economic Statistics*, 29(1):96–108, 2011.

612 P Richard Hahn, Jared S Murray, and Carlos M Carvalho. Bayesian regression tree models for causal
 613 inference: Regularization, confounding, and heterogeneous effects (with discussion). *Bayesian*
 614 *Analysis*, 15(3):965–1056, 2020.
 615

616 Scott M Hammer, David A Katzenstein, Michael D Hughes, Holly Gundacker, Robert T Schooley,
 617 Richard H Haubrich, W Keith Henry, Michael M Lederman, John P Phair, Manette Niu, et al. A
 618 trial comparing nucleoside monotherapy with combination therapy in hiv-infected adults with cd4
 619 cell counts from 200 to 500 per cubic millimeter. *New England Journal of Medicine*, 335(15):
 620 1081–1090, 1996.

621 Christopher Harshaw, Fredrik Sävje, Daniel A Spielman, and Peng Zhang. Balancing covariates in
 622 randomized experiments with the gram–schmidt walk design. *Journal of the American Statistical*
 623 *Association*, 119(548):2934–2946, 2024.
 624

625 James J Heckman. Causal parameters and policy analysis in economics: A twentieth century
 626 retrospective. *The Quarterly Journal of Economics*, 115(1):45–97, 2000.

627 M.A. Hernan and J.M. Robins. *Causal Inference: What If*. Chapman & Hall/CRC Monographs on
 628 Statistics & Applied Probab. CRC Press, 2023. ISBN 9781420076165.
 629

630 Jennifer L Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational*
 631 *and Graphical Statistics*, 20(1):217–240, 2011.
 632

633 Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
 634 classification and preference learning. *arXiv preprint arXiv:1112.5745*, 2011.

635 Jonas Hübotter, Lenart Treven, Yarden As, and Andreas Krause. Transductive active learning:
 636 Theory and applications. In *Advances in Neural Information Processing Systems*, volume 37, pp.
 637 124686–124755, 2024.
 638

639 Guido W Imbens and Donald B Rubin. *Causal inference in statistics, social, and biomedical sciences*.
 640 Cambridge university press, 2015.

641 Andrew Jesson, Panagiotis Tigas, Joost van Amersfoort, Andreas Kirsch, Uri Shalit, and Yarin
 642 Gal. Causal-bald: Deep bayesian active learning of outcomes to infer treatment-effects from
 643 observational data. In *Advances in Neural Information Processing Systems*, volume 34, pp.
 644 30465–30478, 2021.
 645

646 Nathan Kallus and Xiaojie Mao. On the role of surrogates in the efficient estimation of treatment
 647 effects with limited outcome data. *Journal of the Royal Statistical Society Series B: Statistical*
Methodology, 87(2):480–509, 2025.

648 Nathan Kallus, Aahlad Manas Puli, and Uri Shalit. Removing hidden confounding by experimental
 649 grounding. *Advances in neural information processing systems*, 31, 2018.
 650

651 Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval estimation of individual-level causal effects
 652 under unobserved confounding. In *The 22nd international conference on artificial intelligence and*
 653 *statistics*, pp. 2281–2290. PMLR, 2019.

654 Masahiro Kato, Takuya Ishihara, Junya Honda, and Yusuke Narita. Efficient adaptive experimental
 655 design for average treatment effect estimation. *arXiv preprint arXiv:2002.05308*, 2020.
 656

657 Masahiro Kato, Kenichiro McAlinn, and Shota Yasui. The adaptive doubly robust estimator and
 658 a paradox concerning logging policy. *Advances in neural information processing systems*, 34:
 659 1351–1364, 2021.

660 Masahiro Kato, Akihiro Oga, Wataru Komatsubara, and Ryo Inokuchi. Active adaptive experimental
 661 design for treatment effect estimation with covariate choice. In *International Conference on*
 662 *Machine Learning*. PMLR, 2024.

663

664 Christoph Kern, Michael P Kim, and Angela Zhou. Multi-accurate cate is robust to unknown covariate
 665 shifts. *Transactions on Machine Learning Research*, 2024.

666

667 Andreas Kirsch. Black-box batch active learning for regression. *Transactions on Machine Learning*
 668 *Research*, 2023. ISSN 2835-8856. Expert Certification.

669

670 Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
 671 acquisition for deep bayesian active learning. In *Advances in neural information processing*
 672 *systems*, volume 32, 2019.

673

674 Andreas Kirsch, Sebastian Farquhar, Parmida Atigehchian, Andrew Jesson, Frédéric Branchaud-
 675 Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning.
 676 *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. Expert Certification.

677

678 Omer Noy Klein, Alihan Hüyük, Ron Shamir, Uri Shalit, and Mihaela van der Schaar. Towards
 679 regulatory-confirmed adaptive clinical trials: Machine learning opportunities and solutions. In
 680 *International Conference on Artificial Intelligence and Statistics*, pp. 4969–4977. PMLR, 2025.

681

682 Nikolay Krantsevich, Jingyu He, and P Richard Hahn. Stochastic tree ensembles for estimating
 683 heterogeneous effects. In *International Conference on Artificial Intelligence and Statistics*, pp.
 684 6120–6131. PMLR, 2023.

685

686 Sören R Küntzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
 687 neous treatment effects using machine learning. *Proceedings of the national academy of sciences*,
 688 116(10):4156–4165, 2019.

689

690 Fan Li, Peng Ding, and Fabrizia Mealli. Bayesian causal inference: a critical review. *Philosophical*
 691 *Transactions of the Royal Society A*, 381(2247):20220153, 2023.

692

693 David JC MacKay. Information-based objective functions for active data selection. *Neural Computa-
 694 tion*, 4(4):590–604, 1992.

695

696 David McKenzie. Beyond baseline and follow-up: The case for more t in experiments. *Journal of*
 697 *development Economics*, 99(2):210–221, 2012.

698

699 Ezinne Nwankwo, Lauri Goldkind, and Angela Zhou. Batch-adaptive annotations for causal inference
 700 with complex-embedded outcomes. *arXiv preprint arXiv:2502.10605*, 2025.

701

702 J Pearl. *Causality*. Cambridge university press, 2009.

703

704 Judea Pearl and Elias Bareinboim. External validity: From do-calculus to transportability across
 705 populations. In *Probabilistic and causal inference: The works of Judea Pearl*, pp. 451–482. 2022.

706

707 Tian Qin, Tian-Zuo Wang, and Zhi-Hua Zhou. Budgeted heterogeneous treatment effect estimation.
 708 In *International Conference on Machine Learning*, pp. 8693–8702. PMLR, 2021.

702 Peter M Rothwell. External validity of randomised controlled trials:“to whom do the results of this
 703 trial apply?”. *The Lancet*, 365(9453):82–93, 2005.
 704

705 Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. *Journal
 706 of the American Statistical Association*, 100(469):322–331, 2005.
 707

708 Burr Settles. Active learning literature survey. 2009.
 709

710 Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam Foster, and Tom
 711 Rainforth. Prediction-oriented bayesian active learning. In *International Conference on Artificial
 Intelligence and Statistics*, pp. 7331–7348. PMLR, 2023.
 712

713 Iiris Sundin, Peter Schulam, Eero Siivola, Aki Vehtari, Suchi Saria, and Samuel Kaski. Active
 714 learning for decision-making from imbalanced observational data. In *International conference on
 715 machine learning*, pp. 6046–6055. PMLR, 2019.
 716

717 Max Tabord-Meehan. Stratification trees for adaptive randomisation in randomised controlled trials.
Review of Economic Studies, 90(5):2646–2673, 2023.
 718

719 Elizabeth Tipton and Michalis Mamakos. Designing randomized experiments to predict unit-specific
 720 treatment effects. *Statistics and Public Policy*, (just-accepted):1–35, 2025.
 721

722 Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peherz, and
 723 Julius Von Kügelgen. Active bayesian causal inference. *Advances in Neural Information Processing
 Systems*, 35:16261–16275, 2022.
 724

725 Mark J van der Laan. The construction and analysis of adaptive group sequential designs. 2008.
 726 Stefan Wager. Causal inference: A statistical learning approach, 2024.
 727

728 Hechuan Wen, Tong Chen, Mingming Gong, Li Kheng Chai, Shazia Sadiq, and Hongzhi Yin.
 729 Enhancing treatment effect estimation via active learning: A counterfactual covering perspective.
 730 In *International Conference on Machine Learning*, 2025.
 731

732 Zhiheng Zhang, Haoxiang Wang, Haoxuan Li, and Zhouchen Lin. Active treatment effect estimation
 via limited samples. In *Forty-second International Conference on Machine Learning*, 2025.
 733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757
758
759
760
761
762

Appendix

Table of Contents

763	A Acknowledgment of LLM Usage	16
764		
765	B Additional Related Works and Discussions	16
766	B.1 Active CATE Estimation	16
767	B.2 Inductive and Transductive Goals in Active Learning	16
768	B.3 Adaptive Experimental Design	17
769		
770	C Further Preliminaries	18
771	C.1 Notations	18
772	C.2 Information Theory Preliminaries	19
773		
774	D Datasets	20
775	D.1 CausalBALD Synthetic Dataset	20
776	D.2 Hahn Synthetic Dataset	20
777	D.3 IHDP Semi-Synthetic Dataset	21
778	D.4 ACTG-175 Semi-Synthetic Dataset	22
779	D.5 AL Process Datasets Setup	22
780		
781	E Model Details	22
782	E.1 Active CATE Estimation Loop	23
783	E.2 Implementations of Different Acquisition Functions	24
784	E.3 Bayesian Causal Forests	26
785	E.4 Gaussian Process Models	29
786	E.5 Deep Kernel Learning for Ablation	30
787		
788	F Interpretations and Derivations	30
789	F.1 Detailed Derivation and Estimation of Causal-EPIG	30
790	F.2 A Taxonomy of Information-Theoretic Acquisition Functions	32
791	F.3 Computational Complexity and Runtime Analysis	33
792		
793		
794	G Theoretical Analysis Details	34
795	G.1 Framework Mapping to TAL	34
796	G.2 Approximate Markov Boundary	35
797	G.3 Proof of Thm. 1	35
798	G.4 Implications of the LMC Kernel Structure	37
799	G.5 Connections to Other Causal Strategies	37
800	G.6 Proof of Prop. 1	38
801	G.7 Efficiency comparisons between Causal-EPIG and Causal-BALD	39
802		
803	H Further Experimental Results	41
804	H.1 CausalBLAD Dataset	41
805	H.2 Hahn Dataset	42
806	H.3 IHDP Dataset	45
807	H.4 ACTG-175 Dataset	45
808	H.5 Ablation Studies	46
809		

810 A ACKNOWLEDGMENT OF LLM USAGE
811812 Large language models were employed exclusively as writing assistants. Their role was limited to
813 surface-level editing tasks, such as correcting typographical errors, improving grammar, and refining
814 phrasing. They were not used for research design, scientific analysis, generation of results. All
815 scientific ideas, methodologies, analyses, and conclusions are solely the responsibility of the authors.
816817 B ADDITIONAL RELATED WORKS AND DISCUSSIONS
818819 B.1 ACTIVE CATE ESTIMATION
820821 Our work addresses *active outcome acquisition for CATE estimation*: a setting where treatment
822 assignments are observational, but outcome measurements are costly (Nwankwo et al., 2025). The
823 goal is to intelligently select which outcomes to query from an existing cohort to best improve a
824 CATE model. Existing literature in this area has primarily adapted standard active learning heuristics.
825 One line of work focuses on diversity-based sampling, such as coresnet selection, which seeks a
826 representative subset of the covariate space (Qin et al., 2021; Wen et al., 2025). Another focuses
827 on controlling specific causal error types rather than the overall estimation error (Sundin et al.,
828 2019). While valuable, these methods rely on indirect proxies, such as geometric diversity or specific
829 error metrics, that are not explicitly aligned with the primary goal of reducing CATE uncertainty.
830 More closely related are information-theoretic approaches from Bayesian active learning. These
831 methods are parameter-focused, but differ in their precise objective. Causal-EIG (Fawkes et al.,
832 2025), for instance, directly targets the information gain about the CATE-specific parameters (θ_τ).
833 Causal-BALD (Jesson et al., 2021) takes a different approach, targeting the information a specific
834 causal prediction (e.g., $\tau(\mathbf{x})$) provides about the full set of model parameters (θ). While both are
835 advanced causal-aware criteria, they remain focused on model-internal proxies rather than the final
836 predictive estimand itself. Our work bridges this final gap by introducing the Causal-EPIG framework,
837 a prediction-focused approach based on EPIG (Smith et al., 2023). It directly targets the expected
838 information gain about the causal estimand, ensuring maximal alignment between the acquisition
839 process and the end goal. We provide a more comprehensive review of related literature, including
840 the distinct lines of work on active experimental design and transductive active learning, in App. B.841 B.2 INDUCTIVE AND TRANSDUCTIVE GOALS IN ACTIVE LEARNING
842843 Active Learning (AL) is typically framed by two distinct objectives: inductive and transductive
844 learning. The classic inductive goal, mirroring standard supervised learning, is to train a model
845 that generalizes to unseen data. Most prior AL research has followed this inductive tradition,
846 which fundamentally relies on the assumption that data is independent and identically distributed
847 (IID) (Settles, 2009). In contrast, the transductive goal is to optimize performance on a specific,
848 known set of unlabeled target instances. Pool-based AL exhibits a fascinating duality here. Its
849 mechanism is inherently transductive, as acquisition functions leverage the entire unlabeled pool to
850 make decisions. However, its ultimate goal is usually inductive: to use the pool as a resource to build
851 a generalizable model. However, a critical challenge arises when the distribution of the sampling pool
852 (p_{pool}) differs from the target population's distribution (p_{tar}), a problem known as distribution shift.
853 In this more challenging setting, the transductive selection mechanism must be explicitly directed
854 to serve an inductive goal on the out-of-distribution target set. Recent work has begun to develop
855 such target-aware strategies (MacKay, 1992; Hübotter et al., 2024; Smith et al., 2023), providing a
856 foundation upon which our causally-aligned framework is built.857 B.2.1 WHAT IS THE CONNECTION BETWEEN ACTIVE CATE ESTIMATION AND TAL?
858859 Active CATE estimation can be understood as a unique and compelling instance of transductive
860 learning, which we term **structural transduction**. This perspective clarifies why acquisition functions
861 should be defined with respect to a specific target population, even in the absence of covariate
862 distribution shift, saying $p_{\text{pool}}(\mathbf{x}) = p_{\text{tar}}(\mathbf{x})$. In TAL (Hübotter et al., 2024), the objective is to infer
863 labels for a pre-defined, fixed set of unlabeled points, \mathcal{A} . The learner actively selects queries from a
864 sampling pool, \mathcal{S} (where \mathcal{S} is not necessarily a subset of \mathcal{A}), to maximize accuracy specifically on
865 the set \mathcal{A} . The key idea is that knowledge of the full set \mathcal{A} from the outset can guide a more efficient

864 querying strategy than a purely inductive approach, which aims to learn a model that generalizes to the
 865 entire data distribution. At first glance, the connection to active CATE estimation is straightforward:
 866 the target population, \mathbf{X}_{tar} , for which we want to estimate the CATE, is analogous to the unlabeled
 867 set \mathcal{A} . However, a subtle distinction arises that complicates this analogy. One might argue that if
 868 the covariate distributions of the sampling pool and the target set are identical ($p_{\text{pool}}(\mathbf{x}) = p_{\text{tar}}(\mathbf{x})$),
 869 and $\mathbf{X}_{\text{pool}} = \mathbf{X}_{\text{tar}}$), the task is simply to learn the function $\tau(\mathbf{x})$ inductively. The resolution lies in
 870 recognizing that the transductive nature of active CATE estimation is not primarily distributional, but
 871 **structural**. This stems from a fundamental gap between the data we can observe and the quantity we
 872 aim to estimate:

873 • **The Observation Space.** Through experiments, we can only ever observe individual *factual*
 874 outcomes. A single query at (\mathbf{x}_i, t_i) yields a noisy observation of one point on the response surface,
 875 $f(\mathbf{x}_i, t_i)$.
 876 • **The Target Inferential Space.** Our ultimate goal is to infer the CATE, $\tau(\mathbf{x}_i) = f(\mathbf{x}_i, 1) -$
 877 $f(\mathbf{x}_i, 0)$, for every individual $\mathbf{x}_i \in \mathbf{X}_{\text{tar}}$. This requires knowledge of a *pair* of potential outcomes,
 878 $(f(\mathbf{x}_i, 0), f(\mathbf{x}_i, 1))$, for each individual. This paired set is our true, albeit unobservable, target.
 879

880 While the positivity assumption guarantees that information about both $f(\mathbf{x}, 0)$ and $f(\mathbf{x}, 1)$ exists
 881 within the sampling pool for any \mathbf{x} in the population, it does not resolve the core challenge: *any*
 882 *single observation only reveals one of the two quantities required for an individual’s CATE. The*
 883 *essence of structural transduction, therefore, is the process of inferring the complete, paired set of*
 884 *potential outcomes for the entire target population, $\{(f(\mathbf{x}_i, 0), f(\mathbf{x}_i, 1))\}_{\mathbf{x}_i \in \mathbf{X}_{\text{tar}}}$, from a sequence*
 885 *of sparse, unpaired factual observations.*

886 Then, let us discuss the more challenging and realistic setting where the sampling pool and target
 887 populations differ ($p_{\text{pool}}(\mathbf{x}) \neq p_{\text{tar}}(\mathbf{x})$). Our central argument for **structural transduction** remains
 888 fully intact, as the fundamental mismatch between observing single factual outcomes and inferring
 889 paired potential outcomes is a structural property of the CATE estimand, independent of the data
 890 distribution. However, this distribution shift introduces a second, more conventional reason for the
 891 problem’s transductive nature. Even if one were to focus solely on learning the function $\tau(\mathbf{x})$, the
 892 task is no longer simply inductive. The goal becomes optimizing the estimate of $\tau(\mathbf{x})$ specifically
 893 for the *known, fixed target set* \mathbf{X}_{tar} , using data from a different distribution $p_{\text{pool}}(\mathbf{x})$. To bridge
 894 this gap efficiently, the acquisition strategy must leverage knowledge of the target set’s features, for
 895 instance, to up-weight the importance of acquiring samples in regions of high target density. This act
 896 of tailoring the learning process to a specific target set is the very definition of transduction. Thus,
 897 under distribution shift, active CATE estimation is transductive for a twofold reason: it is **structurally**
 898 transductive due to the nature of the causal estimand, and **distributionally** transductive due to the
 899 target-aware objective.

900 Therefore, even in the absence of covariate shift, active CATE estimation task remains transductive.
 901 Knowledge of the full target set \mathbf{X}_{tar} is essential because the utility of any candidate query must
 902 be evaluated based on how it facilitates this complex inferential leap from the observable to the
 903 unobservable causal estimand for the specific population of interest. This perspective provides
 904 the foundational justification for our Causal Objective Alignment perspective in Sec. 3 and the
 905 Causal-EPIG framework in Sec. 4, which explicitly operationalizes this transductive objective.

906 B.3 ADAPTIVE EXPERIMENTAL DESIGN

907 A significant body of work in active causal learning/inference focuses on active/adaptive experimental
 908 design, where the primary goal is to optimize the treatment assignment policy itself and also target at
 909 minimizing the predictive performance. (1) One major research line involves adaptive sampling/randomization,
 910 where treatment probabilities are updated based on accumulating data to minimize the
 911 variance of an estimator like the ATE. This area is built on firm theoretical foundations (van der
 912 Laan, 2008; Hahn et al., 2011), with recent works proposing refined designs that use online estimates
 913 of nuisance components and exploit martingale structures for valid inference (Kato et al., 2021;
 914 Tabord-Meehan, 2023), alongside specialized estimators like A2IPW (Kato et al., 2020) tailored for
 915 such adaptive data (Cook et al., 2024). (2) A complementary line of work considers design choices
 916 for a fixed, finite pool of individuals. This research ranges from foundational analyses of the tradeoff
 917 between covariate balance and robustness (Efron, 1971) to modern active sampling frameworks with
 918 finite-sample guarantees, such as those based on leverage score sampling (Addanki et al., 2022;

918 [Ghadiri et al., 2023](#)) or the Gram-Schmidt Walk ([Harshaw et al., 2024](#)). (3) A related line of research
 919 approaches CATE estimation from the perspective of Bayesian experimental design. Within this
 920 domain, recent advances have focused on incorporating real-world complexities. For instance, some
 921 methods integrate regulatory constraints ([Klein et al., 2025](#)) or structural uncertainty from causal
 922 discovery ([Toth et al., 2022](#)) into the design process. Others have developed GP-based acquisition
 923 functions to minimize the posterior variance of the CATE estimator ([Cha & Lee, 2025](#)), or provided
 924 finite-sample theoretical guarantees for their estimators in settings like social networks ([Zhang et al.,](#)
 925 [2025](#)).

926 Our work addresses a fundamentally different scenario. While active experimental design asks,
 927 *Who should we treat?*, our setting of active outcome acquisition for observational data asks, *Whose*
 928 *outcome should we measure?* This is critical in domains like healthcare where treatments are already
 929 assigned due to ethical or practical constraints, but the resources for acquiring costly outcomes
 930 (e.g., biopsies, genetic sequencing) are scarce. The challenge shifts from designing interventions to
 931 efficiently allocating measurement resources. Although the action spaces differ, both fields share the
 932 goal of allocating a limited resource to reduce causal uncertainty. This suggests that our core principle
 933 of a target-aware strategy could inform future work in adaptive experimental design, pointing to a
 934 promising direction for bridging these two research areas.

935 C FURTHER PRELIMINARIES

938 This section provides supplementary material to support the main text. We begin by presenting a
 939 comprehensive table of notations used throughout the paper for easy reference. Following this, we
 940 review fundamental concepts from information theory that form the theoretical basis for our proposed
 941 acquisition function, Causal-EPIG.

942 C.1 NOTATIONS

944 Tab. 2 provides a consolidated summary of the key mathematical notations used in this work, organized
 945 by their conceptual domain.

947 Table 2: Table of Notations

949 Symbol	950 Description
951 General Mathematical Notations	
952 a, a	A scalar value and its corresponding random variable.
953 \mathbf{a}, \mathbf{a}	A vector and its corresponding random vector.
955 Core Causal Inference Variables	
956 $\mathbf{x}, \mathbf{t}, \mathbf{y}$	Random variables for covariates, treatment, and outcome.
957 x, t, y	Specific realizations of the covariates, treatment, and outcome.
958 $\mathcal{X}, \{0, 1\}, \mathcal{Y}$	The domains (support) for covariates, treatment, and outcomes, respectively.
959 $y(0), y(1)$	Potential outcomes under the control ($t = 0$) and treatment ($t = 1$) conditions.
960 $\pi(\mathbf{x})$	The propensity score: the probability of receiving treatment given covariates, $p(t = 1 \mathbf{x} = \mathbf{x})$.
962 CATE and Evaluation Metrics	
963 $\tau(\mathbf{x})$	The Conditional Average Treatment Effect (CATE), the primary quantity of $\text{interest, defined as } \mathbb{E}[y(1) - y(0) \mathbf{x} = \mathbf{x}]$.
964 $\hat{\tau}(\mathbf{x})$	The estimated CATE function produced by a model.
965 $\sqrt{\epsilon_{\text{PEHE}}}$	Root PEHE at the population level, i.e., the square root of the mean integrated $\text{squared error between the true and estimated CATE.}$
966 $\sqrt{\hat{\epsilon}_{\text{PEHE}}}$	Empirical root PEHE, i.e., the square root of the mean squared error over a $\text{finite evaluation set } \mathbf{X}_{\text{tar}}$. Sometimes, we use $\sqrt{\text{PEHE}}$ for short.
967 $p_{\text{pool}}(\mathbf{x})$	The probability distribution of covariates for the target population of interest.
968 $p_{\text{tar}}(\mathbf{x})$	The probability distribution of covariates for the target population of interest.

972	Symbol	Description	
973	Active Learning Setting		
974	D_P	The unlabeled pool of instances available for querying.	
975	D_T	The labeled training set, which is iteratively augmented with new data.	
976	n_P, n_T	The number of instances in the pool (D_P) and training set (D_T), respectively.	
977	$\mathbf{X}_P, \mathbf{X}_T$	The sets of covariates (features) in the pool and training datasets, respectively.	
978	\mathbf{X}_{tar}	A representative set of samples from the target distribution, used for evaluating the PEHE.	
979	n_b	The batch size: the number of instances selected from the pool in each acquisition step.	
980	n_B	The total budget for labeling, representing the maximum size of D_T .	
981	Acquisition Function and Optimization		
982	$U(\cdot)$	The utility function (or acquisition function) that scores candidate data points for labeling.	
983	(\mathbf{X}_b, t_b)	The optimal batch of instances chosen by maximizing the utility function $U(\cdot)$.	
984	θ	A general representation of model parameters.	
985	θ_τ	The specific subset of model parameters that define the CATE function, $\tau(\mathbf{x})$.	
986	\mathbf{x}^*	A random covariate vector drawn from the target distribution $p_{\text{tar}}(\mathbf{x})$, representing a target location for CATE estimation.	

994 C.2 INFORMATION THEORY PRELIMINARIES

996 We then briefly reviews the information-theoretic concepts used in our acquisition functions.

998 **Entropy and Mutual Information.** The differential entropy of a continuous random variable \mathbf{a} with probability density function (PDF) $p_{\mathbf{a}}(\mathbf{a})$ measures its uncertainty:

$$1001 \quad H(\mathbf{a}) = - \int_{\mathcal{A}} p_{\mathbf{a}}(\mathbf{a}) \log p_{\mathbf{a}}(\mathbf{a}) d\mathbf{a}. \quad (12)$$

1004 The mutual information, $I(\mathbf{a}; \mathbf{b})$, quantifies the reduction in uncertainty about \mathbf{a} that results from observing another random variable \mathbf{b} . It is defined as the difference between the marginal and conditional entropies:

$$1007 \quad I(\mathbf{a}; \mathbf{b}) = H(\mathbf{a}) - H(\mathbf{a} | \mathbf{b}). \quad (13)$$

1008 In active learning, this quantity provides a principled measure of the expected information gain from 1009 a new observation.

1011 **The Multivariate Gaussian Case.** These concepts admit closed-form expressions for the multivariate 1012 Gaussian distribution, which is central to many Bayesian models. For a random vector $\mathbf{a} \in \mathbb{R}^d$ 1013 following a multivariate normal distribution $\mathcal{N}(\mu, \Sigma)$, the differential entropy is determined by the 1014 determinant of its covariance matrix, $|\Sigma|$:

$$1016 \quad H(\mathbf{a}) = \frac{1}{2} \log ((2\pi e)^d |\Sigma|). \quad (14)$$

1018 Furthermore, for two jointly Gaussian random vectors (\mathbf{a}, \mathbf{b}) with a joint distribution, the mutual 1019 information has the analytical form:

$$1021 \quad I(\mathbf{a}; \mathbf{b}) = \frac{1}{2} \log \left(\frac{|\Sigma_{aa}| |\Sigma_{bb}|}{|\Sigma|} \right), \quad (15)$$

1024 where $|\Sigma_{aa}|$, $|\Sigma_{bb}|$, and $|\Sigma|$ are the determinants of the marginal and joint covariance matrices, 1025 respectively. This closed-form solution is crucial for the efficient computation of information gain in models like Gaussian Processes.

1026 **D DATASETS**
 1027

1028 Our evaluation of Causal-EPIG is conducted on four datasets: two fully synthetic benchmarks and
 1029 two semi-synthetic benchmarks derived from the real-world covariates of the IHDP and ACTG-
 1030 175 studies. While the fully synthetic settings provide controlled environments, the semi-synthetic
 1031 datasets introduce the complex covariate distributions characteristic of real-world applications. It
 1032 is important to note that for all datasets, the data-generating process for outcomes and treatments
 1033 is known. Consequently, the ground-truth CATE can be precisely calculated, allowing for accurate
 1034 performance assessment across all settings. To further test for generalization and robustness, we also
 1035 evaluate on the IHDP, Hahn, and CausalBALD datasets under a covariate shift scenario.

1036 **Experimental Protocol** Before detailing the specific data-generating processes, we outline the
 1037 standardized experimental protocol applied to all synthetic benchmarks. For each, we generate a pool
 1038 set (D_P) of 2000 instances, a validation set of 200 instances for model tuning, and a separate test set
 1039 of 2000 instances. To rigorously evaluate the acquisition functions, we conduct experiments under
 1040 two distinct scenarios designed to probe different learning properties:

- 1042 • **Standard (IID) Setting:** This scenario assesses the classic *inductive* learning objective, where
 1043 the goal is to learn a general model of the underlying data distribution. During active learning,
 1044 the acquisition function’s target set is the pool itself ($X_{\text{tar}} = X_P$). We evaluate the final model’s
 1045 performance on both the pool set (to measure in-distribution learning) and the held-out test set. The
 1046 performance on the test set is critical as it validates the generalization capability of the strategy.
- 1047 • **Distribution Shift Setting:** This scenario is designed to assess the *transductive* property of an
 1048 acquisition function, its ability to strategically select data from a source distribution to optimize
 1049 performance on a specific, known target distribution. Here, the target set for the acquisition function
 1050 is explicitly set to the test set ($X_{\text{tar}} = X_{\text{test}}$). While we report performance on both the pool and test
 1051 sets, the primary metric is the performance on the test set, as it directly measures how effectively
 1052 the acquisition function handles the distribution shift.

1053 **D.1 CAUSALBALD SYNTHETIC DATASET**
 1054

1055 We first use a fully synthetic dataset adapted from the simulation in the CausalBALD paper (Jesson
 1056 et al., 2021), which is adapted from Kallus et al. (2019), which allows for precise evaluation against a
 1057 known ground truth.

1058 **Standard Setting.** In the standard (no-shift) scenario, the data-generating process is defined as
 1059 follows. The one-dimensional covariate x is drawn from a standard normal distribution, $x \sim \mathcal{N}(0, 1)$.
 1060 The treatment assignment t is a random variable drawn from a Bernoulli distribution, where the
 1061 probability of receiving treatment ($t = 1$) is given by the propensity score $\pi(x)$:

$$1063 t \mid x \sim \text{Bern}(\pi(x)), \quad \text{where } \pi(x) = \text{sigmoid}(2x + 0.5). \quad (16)$$

1064 The observed outcome y is then generated based on x and t with additive standard normal noise,
 1065 $\epsilon \sim \mathcal{N}(0, 1)$. This process implicitly defines the mean potential outcome functions:

$$1066 \mu_0(x) = 1 + 2 \sin(2x), \\ 1067 \mu_1(x) = 2x + 3 - 2 \sin(2x). \quad (17)$$

1068 This results in the true CATE function: $\tau(x) = \mu_1(x) - \mu_0(x) = 2x + 2 - 4 \sin(2x)$.

1069 **Covariate Shift Setting.** To evaluate model robustness, we introduce a covariate shift scenario.
 1070 In this setting, the training and pool data are generated exactly as described above, with covariates
 1071 drawn from $x \sim \mathcal{N}(0, 1)$. However, the testing set or the target set, used for evaluation, is drawn
 1072 from a different distribution where the covariate follows a uniform distribution, $x_{\text{test}} \sim \mathcal{U}(0.2, 0.5)$.
 1073 The underlying potential outcome functions and the CATE function remain unchanged across both
 1074 settings, isolating the effect of the covariate shift.

1075 **D.2 HAHN SYNTHETIC DATASET**
 1076

1077 Our second synthetic dataset is based on the simulation design from (Hahn et al., 2020), featuring a
 1078 five-dimensional covariate vector $x \in \mathbb{R}^5$.

1080
 1081 **Standard Setting.** The covariates are generated as follows: three continuous variables from a
 1082 standard normal distribution ($\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \sim \mathcal{N}(0, 1)$), one binary variable from a Bernoulli distribution
 1083 ($\mathbf{x}_4 \sim \text{Bernoulli}(0.5)$), and one categorical variable from a uniform distribution over three levels
 1084 ($\mathbf{x}_5 \sim \mathcal{U}\{1, 2, 3\}$). Following the original paper, we use the "nonlinear" prognostic function and the
 1085 "heterogeneous" treatment effect function. The prognostic score $\mu(\mathbf{x})$ is defined as:
 1086

$$\mu(\mathbf{x}) = -6 + g(\mathbf{x}_5) + 6|\mathbf{x}_3 - 1|, \quad (18)$$

1087 where $g(\cdot)$ is a helper function mapping the categorical covariate to a scalar offset: $g(1) = 2$,
 1088 $g(2) = -1$, and $g(3) = -4$. The true CATE function $\tau(\mathbf{x})$ is defined by an interaction term:
 1089

$$\tau(\mathbf{x}) = 1 + 2\mathbf{x}_2\mathbf{x}_4. \quad (19)$$

1090 We construct the propensity score $\pi(\mathbf{x})$ with an intentional deviation from the original design
 1091 in (Hahn et al., 2020) to create a more challenging evaluation scenario. Our formulation utilizes the
 1092 non-monotonic Gaussian PDF instead of the original's CDF, and models the influence of the covariate
 1093 \mathbf{x}_1 as an external additive term. This modification induces a more complex relationship between
 1094 covariates and treatment assignment, providing a more rigorous test of the active learning strategies
 1095 under evaluation. To define the score, the prognostic score is first scaled as $\tilde{\mu}(\mathbf{x}) = 3\mu(\mathbf{x})/\sigma_\mu$, where
 1096 σ_μ is the standard deviation of $\mu(\mathbf{x})$ across the population. The propensity score is then defined as:
 1097

$$\pi(\mathbf{x}) = 0.8 \cdot \phi(\tilde{\mu}(\mathbf{x})) - 0.5\mathbf{x}_1 + \xi, \quad (20)$$

1098 where $\phi(\cdot)$ denotes the standard normal probability density function and $\xi \sim \mathcal{U}(0.05, 0.15)$ is a
 1099 random noise term. Treatment is assigned via $t \sim \text{Bernoulli}(\pi(\mathbf{x}))$. The final observed outcome y
 1100 is generated by adding Gaussian noise to the expected outcome, $y = \mu(\mathbf{x}) + t \cdot \tau(\mathbf{x}) + \epsilon$, where the
 1101 noise is scaled to achieve a signal-to-noise ratio of 3.
 1102

1103 **Covariate Shift Setting.** For the corresponding covariate shift scenario, the training and pool data
 1104 are generated as above. For the test set, however, the three continuous covariates are drawn from a
 1105 uniform distribution, $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \sim \mathcal{U}(0.2, 0.5)$, instead of a standard normal. The distributions of the
 1106 discrete covariates ($\mathbf{x}_4, \mathbf{x}_5$) and the underlying functional forms for $\mu(\mathbf{x})$ and $\tau(\mathbf{x})$ remain the same.
 1107

D.3 IHDP SEMI-SYNTHETIC DATASET

1109 We use the well-known Infant Health and Development Program (IHDP) dataset within the semi-
 1110 synthetic framework of (Hill, 2011). This setup uses real-world covariates from 747 subjects (139
 1111 treated, 608 control), comprising 6 continuous and 19 binary variables, but simulates the outcomes to
 1112 provide a known ground truth. The 747 subjects are split into a training/pool set of 523 and a test set
 1113 of 224. All continuous covariates are standardized.
 1114

1115 **Standard Setting.** In the standard scenario, a sparse coefficient vector β_B is generated by sam-
 1116 pling each element from the set $\{0.0, 0.1, 0.2, 0.3, 0.4\}$ with probabilities $\{0.6, 0.1, 0.1, 0.1, 0.1\}$,
 1117 respectively. The mean potential outcomes are then generated as:
 1118

$$\begin{aligned} \mu_0(\mathbf{x}) &= \exp((\mathbf{x} + 0.5)\beta_B), \\ \mu_1(\mathbf{x}) &= (\mathbf{x} + 0.5)\beta_B - \omega_B, \end{aligned} \quad (21)$$

1119 where the offset ω_B is calculated to fix the true Average Treatment Effect on the Treated (ATT)
 1120 to 4. Potential outcomes are formed by adding standard normal noise, $y_0(\mathbf{x}) = \mu_0(\mathbf{x}) + \epsilon$ and
 1121 $y_1(\mathbf{x}) = \mu_1(\mathbf{x}) + \epsilon$, with $\epsilon \sim \mathcal{N}(0, 1)$. The final observed outcome is $y = (1 - t) \cdot y_0(\mathbf{x}) + t \cdot y_1(\mathbf{x})$.
 1123

1124 **Covariate Shift Setting.** For the covariate shift scenario, the training data is generated as described
 1125 above. On the test set, however, the first two continuous covariates (birth weight and head circumfer-
 1126 ence) are resampled from a uniform distribution, $\mathcal{U}(0, 0.5)$. Furthermore, the outcome-generating
 1127 mechanism is altered. The coefficient vector β_B is sampled as before, but the first two coefficients
 1128 (corresponding to the shifted covariates) are set to zero. The mean potential outcomes are then
 1129 redefined as:
 1130

$$\begin{aligned} \mu_0(\mathbf{x}) &= \exp((\mathbf{x} + 0.5)\beta_B), \\ \mu_1(\mathbf{x}) &= \exp((\mathbf{x} + 0.5)\beta_B) + 3 \cdot \mathbf{x}_{\text{bw}} \cdot \mathbf{x}_{\text{b,head}}. \end{aligned} \quad (22)$$

1131 This induces a new ground-truth CATE, $\tau(\mathbf{x}) = 3 \cdot \mathbf{x}_{\text{bw}} \cdot \mathbf{x}_{\text{b,head}}$, creating a challenging scenario where
 1132 the model must generalize to both a different covariate distribution and a new functional form for the
 1133 treatment effect.
 1134

1134 D.4 ACTG-175 SEMI-SYNTHETIC DATASET
1135

1136 Our final semi-synthetic exercise uses the AIDS Clinical Trials Group Study 175 (ACTG-175)
1137 dataset (Hammer et al., 1996). The original data comes from a randomized trial, from which an
1138 observational study is recreated by removing a non-random subset of patients, specifically, those not
1139 showing symptomatic HIV infection. The resulting dataset consists of 813 subjects and 12 covariates
1140 (3 continuous and 9 binary), as described in Tab. 3. The design is slightly unbalanced, with 281
1141 individuals in the treated group and 532 in the control. The dataset is partitioned into a training/pool
1142 set (70%, 569 subjects) and a test set (30%, 244 subjects). The continuous covariates are standardized,
1143 and outcomes are simulated using a process with non-linearities and interactions.

1144 Table 3: Description of Covariates from the ACTG-175 Dataset.
1145

1146 Variable	1147 Description
1148 age	Numeric: age in years
1149 wtkg	Numeric: weight in kilograms
1150 hemo	Binary: history of haemophilia (1 = yes)
1151 homo	Binary: homosexual activity (1 = yes)
1152 drugs	Binary: history of intravenous drug use (1 = yes)
1153 oprior	Binary: non-zidovudine antiretroviral therapy prior to study (1 = yes)
1154 z30	Binary: zidovudine use in the 30 days prior to study (1 = yes)
1155 preanti	Numeric: number of days of prior antiretroviral therapy
1156 race	Binary: race (0 = White, 1 = non-white)
1157 gender	Binary: gender (0 = female, 1 = male)
1158 str2	Binary: antiretroviral history (0 = naive, 1 = experienced)
1159 karnof_hi	Binary: Karnofsky score (0 = score < 100, 1 = score = 100)

1159 The prognostic score $\mu(\mathbf{x})$ and the CATE function $\tau(\mathbf{x})$ are defined as:
1160

$$\begin{aligned} 1161 \mu(\mathbf{x}) &= 6 + 0.3\mathbf{x}_{\text{wtkg}}^2 - \sin(\mathbf{x}_{\text{age}}) \cdot (\mathbf{x}_{\text{gender}} + 1) + 0.6\mathbf{x}_{\text{hemo}} \cdot \mathbf{x}_{\text{race}} - 0.2\mathbf{x}_{\text{z30}}, \\ 1162 \tau(\mathbf{x}) &= 1 + 1.5 \sin(\mathbf{x}_{\text{wtkg}}) \cdot (\mathbf{x}_{\text{karnof_hi}} + 1) + 2\mathbf{x}_{\text{age}}. \end{aligned} \quad (23)$$

1163 The mean potential outcomes are constructed as $\mu_0(\mathbf{x}) = \mu(\mathbf{x})$ and $\mu_1(\mathbf{x}) = \mu(\mathbf{x}) + \tau(\mathbf{x})$. The
1164 potential outcomes are then formed by adding Gaussian noise, $y_0(\mathbf{x}) = \mu_0(\mathbf{x}) + \epsilon$ and $y_1(\mathbf{x}) =$
1165 $\mu_1(\mathbf{x}) + \epsilon$. The observed outcome is $y = (1 - t) \cdot y_0(\mathbf{x}) + t \cdot y_1(\mathbf{x})$, where the noise ϵ is drawn
1166 from $\mathcal{N}(0, \sigma_y^2)$ with the standard deviation σ_y set to one-eighth of the prognostic score's range, i.e.,
1167 $\sigma_y = (\max(\mu) - \min(\mu))/8$.
1168

1169 D.5 AL PROCESS DATASETS SETUP
1170

1171 Across all datasets, we follow a consistent experimental protocol to ensure fair comparisons. To
1172 account for randomness in data splits and model initialization, all results are averaged over 10
1173 independent trials. The active learning process for each trial begins with a *warm-start phase*, where
1174 an initial labeled training set D_T is created by randomly selecting 50 instances from the unlabeled
1175 pool D_P . Following this, the iterative acquisition process begins. In each step, the acquisition
1176 function selects a new batch of instances from the remaining pool to be labeled and added to D_T .
1177 The parameters for this process vary by dataset. For the synthetic datasets (Hahn and CausalBALD),
1178 we perform 40 acquisition steps with a batch size of 20 (800 total acquisitions). For the IHDP dataset,
1179 we perform 40 steps with a batch size of 10 (400 total acquisitions). Finally, for the ACTG-175
1180 dataset, we perform 20 steps with a batch size of 15 (300 total acquisitions). This process results in
1181 final training sets of size 850 (Hahn, CausalBALD), 450 (IHDP), and 350 (ACTG-175), respectively.
1182

1183 E MODEL DETAILS
1184

1185 In this section, we provide implementation details for the models and methods used in our study.
1186 We begin by presenting the overarching algorithm for the active CATE estimation loop in Alg. 1.
1187 The subsequent subsections delve into the components of this algorithm, first describing our three
1188 primary Bayesian CATE estimators: BCF (Hahn et al., 2020), CMGP (Alaa & Van Der Schaar,
1189

1188, and NSGP (Alaa & Schaar, 2018). We also briefly discuss other models used for ablation
 1189 studies. Finally, we detail the acquisition functions evaluated within this framework, including
 1190 Random, Causal-BALD (Jesson et al., 2021), Coreset (Qin et al., 2021), EPIG (Smith et al., 2023),
 1191 Causal-EIG (Fawkes et al., 2025), and our proposed Causal-EPIG- μ and Causal-EPIG- τ .
 1192
 1193

1194 **E.1 ACTIVE CATE ESTIMATION LOOP**
 1195

1196 Here, we formalize the pipeline for active CATE estimation used throughout our experiments. The
 1197 procedure, detailed in Alg. 1, outlines a general batch acquisition strategy for improving a CATE
 1198 estimator, $\hat{\tau}(\cdot)$. The pipeline begins with a random warm-start, followed by an iterative loop: the
 1199 acquisition function scores candidates from the pool based on their expected utility for CATE
 1200 estimation, a batch of the most informative points is acquired, and the CATE model is retrained on
 1201 the newly augmented dataset.
 1202
 1203

1204 **Algorithm 1** Budgeted Batch Active Learning for CATE Estimation

1205 **Require:** Unlabeled pool D_P , Target set \mathbf{X}_{tar} , Utility function U , Batch size n_b , Max budget n_B .

1206 **Ensure:** Final labeled set D_T and final CATE estimator $\hat{\tau}(\cdot)$.

1207 1: Initialize labeled set $D_T \leftarrow \emptyset$.
 1208 *// – Warm-start Phase –*
 1209 2: Select an initial random batch $D_{\text{init}} \subset D_P$ of size n_b .
 1210 3: Query factual outcomes for all $(\mathbf{x}, t) \in D_{\text{init}}$.
 1211 4: Update $D_T \leftarrow D_T \cup D_{\text{init}}$ and $D_P \leftarrow D_P \setminus D_{\text{init}}$.
 1212 5: Train initial CATE estimator $\hat{\tau}(\cdot)$ on D_T .
 1213 *// – Main Active Learning Loop –*
 1214 6: **while** $|D_T| < n_B$ **and** $D_P \neq \emptyset$ **do**
 1215 7: Compute utility scores for all candidates in the pool:
 1216 8: $S \leftarrow \{U(\mathbf{x}_i, t_i \mid D_T, \mathbf{X}_{\text{tar}}) \mid (\mathbf{x}_i, t_i) \in D_P\}$.
 1217 9: Select batch D_b corresponding to the n_b highest scores in S .
 1218 10: Query factual outcomes for all $(\mathbf{x}, t) \in D_b$.
 1219 11: Update $D_T \leftarrow D_T \cup D_b$ and $D_P \leftarrow D_P \setminus D_b$.
 1220 12: Retrain or update estimator $\hat{\tau}(\cdot)$ on the new D_T .
 1221 13: **end while**
 1222 14: **return** $D_T, \hat{\tau}(\cdot)$

1223
 1224
 1225 **Batch Acquisition Strategy** The procedure outlined in Alg. 1 involves acquiring a batch of n_b new
 1226 outcomes in each round of active learning. The simplest method for this is to score all candidates in
 1227 the pool, rank them by their utility, and select the top- n_b points. However, this approach can lead
 1228 to selecting a batch with redundant information. More sophisticated methods, such as the greedy
 1229 selection strategy proposed in BatchBALD (Kirsch et al., 2019), aim to select a diverse batch by
 1230 accounting for information overlap, but this comes at a significant computational cost.

1231 To balance performance and efficiency, a practical approximation was introduced in prior work (Kirsch
 1232 et al., 2023) and subsequently used by CausalBALD (Jesson et al., 2021). This strategy, sometimes
 1233 referred to as *softmax-BALD*, re-normalizes the utility scores of all candidates using a softmax
 1234 function before selecting the top- n_b points. This was shown to approximate the performance of the
 1235 more expensive greedy methods while remaining computationally fast.

1236 For the baselines adapted from CausalBALD, we adhere to the established practice of using a softmax-
 1237 based stochastic acquisition. However, for our proposed Causal-EPIG methods, we empirically found
 1238 that this strategy did not yield a discernible performance advantage over a simpler top- n_b approach.
 1239 This is demonstrated in Fig. 5, where the zero-temperature setting ($T = 0$), which is equivalent to a
 1240 deterministic top- n_b selection, performs on par with tempered stochastic selections. Therefore, to
 1241 maximize computational efficiency without compromising performance, we adopt the direct top- n_b
 selection strategy for all Causal-EPIG variants.

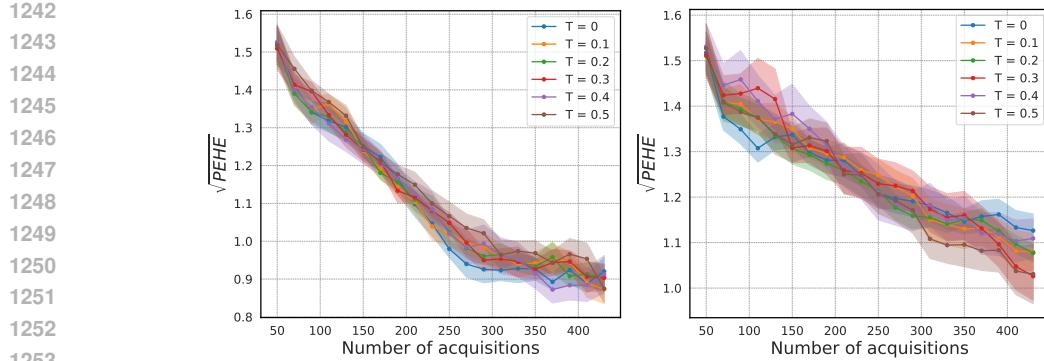


Figure 5: Ablation study of the temperature parameter for Causal-EPIG- μ , with performance measured by $\sqrt{\text{PEHE}}$. The left panel (Causal-EPIG- τ) serves as a reference, while the right panel (Causal-EPIG- μ) illustrates the effect of varying the temperature.

E.2 IMPLEMENTATIONS OF DIFFERENT ACQUISITION FUNCTIONS

The core component of the active CATE estimation loop is the acquisition function, which quantifies the utility of each candidate (\mathbf{x}, t) in the unlabeled pool D_P . This utility score guides the selection of the most informative instances for labeling. In our experiments, we compare our proposed Causal-EPIG strategies against several well-established baseline methods. This subsection provides the implementation details for each of these acquisition functions. For all methods, batch acquisition is performed by selecting the n_b candidates with the highest utility scores.

Random Acquisition. This is the simplest baseline, involving no active selection strategy. At each acquisition step, a batch of n_b candidates is selected uniformly at random from the remaining unlabeled pool D_P . The utility score for every candidate can be considered a random variable drawn from a uniform distribution, $U(\mathbf{x}, t) \sim \mathcal{U}(0, 1)$. This method serves as a lower bound on performance, representing data collection without model guidance.

Causal-BALD Variants. We include the full suite of acquisition functions from the Causal-BALD framework (Jesson et al., 2021) as information-theoretic baselines. This framework adapts the standard BALD objective to the causal setting by calculating the expected information gain about the model parameters θ . We benchmark against all variants proposed in the original work:

- **τ -BALD**, which is defined as the mutual information between the $\tau(\mathbf{x})$ and the mode parameters θ , saying $I(y(1) - y(0), \theta | D'_T)$.
- **μ -BALD**, which is defined as the mutual information between the corresponding potential outcome and the model parameters, saying $I(y(t), \theta | D_T \cup (\mathbf{x}, t))$.
- **Propensity** (Propensity-based), which targets the propensity score function (π).
- Combined variants, such as $\mu\pi$ -BALD and $\mu\rho$ -BALD, that target a weighted sum of the information gain from multiple components.

A fundamental distinction separates our Causal-EPIG framework from the Causal-BALD family. Causal-BALD variants are **parameter-focused**, aiming to reduce uncertainty over the model’s internal representation (θ). In contrast, our framework is **prediction-focused**, directly targeting uncertainty about the causal quantities themselves. For instance, while τ -BALD maximizes information gain about the CATE parameters (θ_τ), our Causal-EPIG- τ maximizes the information a factual observation provides about the CATE function ($\tau(\mathbf{x}^*)$). Similarly, μ -BALD reduces uncertainty over the potential outcome parameters, whereas our Causal-EPIG- μ reduces predictive uncertainty about the potential outcome values themselves ($y^*(t^*)$). For all experiments, we utilize the official implementation provided by the authors¹.

¹<https://github.com/OATML/causal-bald>

1296 **Sign Ambiguity BALD (Adapted from Sundin et al.).** This baseline is an information-theoretic
 1297 strategy, inspired by the work of Sundin et al. (Sundin et al., 2019) and the Causal-BALD frame-
 1298 work (Jesson et al., 2021), that focuses acquisition on points where the **sign of the CATE** is most
 1299 ambiguous. The utility is the BALD objective (mutual information) applied to a conceptual Bernoulli
 1300 variable representing the sign of the effect. For our Bayesian CATE estimators, which yield K
 1301 posterior samples for the CATE, $\{\tau_k(\mathbf{x})\}_{k=1}^K$, we approximate the mutual information via Monte
 1302 Carlo. First, for each posterior sample $\tau_k(\mathbf{x})$, we compute a sign-related probability, using the overall
 1303 posterior standard deviation $\sigma_\tau(\mathbf{x}) = \text{std}(\{\tau_k(\mathbf{x})\})$ as a measure of uncertainty:

$$\gamma_k(\mathbf{x}) := \Phi\left(-\frac{|\tau_k(\mathbf{x})|}{\sigma_\tau(\mathbf{x})}\right), \quad (24)$$

1304 where $\Phi(\cdot)$ is the standard normal CDF. The final utility is then the estimated mutual information:
 1305

$$\text{Sundin}(\mathbf{x}) := H(\text{Bernoulli}(\bar{\gamma}(\mathbf{x}))) - \frac{1}{K} \sum_{k=1}^K H(\text{Bernoulli}(\gamma_k(\mathbf{x}))), \quad (25)$$

1311 where $\bar{\gamma}(\mathbf{x})$ is the mean of the $\gamma_k(\mathbf{x})$ samples. This score is maximized for candidates where the
 1312 ensemble of posterior samples is most conflicted about the sign of the CATE.

1313 **Coreset Selection (QHTE).** We implement the coresnet-based acquisition strategy from QHTE (Qin
 1314 et al., 2021)². The core idea of this method is to select a representative subset of data points that
 1315 "cover" the input space for both the treated and control groups independently. The strategy operates
 1316 in two stages. First, it partitions the unlabeled pool D_P into a treated pool $D_P^1 = \{(\mathbf{x}, t=1)\}$ and a
 1317 control pool $D_P^0 = \{(\mathbf{x}, t=0)\}$. Then, it applies the coresnet selection algorithm separately within
 1318 each of these two pools. For each candidate \mathbf{x} in a given pool (e.g., D_P^1), its utility is defined as its
 1319 minimum distance to any point already in the corresponding labeled set (e.g., X_T^1):
 1320

$$\text{QHTE}(\mathbf{x}, t) := \min_{\mathbf{x}' \in X_T^t} d(\mathbf{x}, \mathbf{x}'), \quad \text{for } t \in \{0, 1\}. \quad (26)$$

1323 The distance metric $d(\mathbf{x}_i, \mathbf{x}_j)$ is derived from the posterior covariance of the model's predictions,
 1324 as available in both GP and BCF models. After calculating these utility scores for all candidates
 1325 in both pools, the scores are combined, and the top n_b candidates overall are selected for labeling.
 1326 This two-pronged approach ensures that the selected batch contains representative samples from both
 1327 treatment arms.

1328 **Causal-EIG.** Causal-EIG is a method originally proposed for the task of prospective causal effect
 1329 estimation (Fawkes et al., 2025), which aims to evaluate the utility of an entire dataset before it is
 1330 acquired. We adapt this method for our pool-based active learning setting. The original approach
 1331 calculates the EIG that a new dataset provides about the causal model's parameters. To apply it to our
 1332 task, we treat each candidate data point (\mathbf{x}, t) as a potential dataset of size one. The resulting utility
 1333 function is trying to maximize the information gain about the parameters of the CATE function, θ_τ :

$$\text{Causal-EIG}(\mathbf{x}, t) := I(y; \theta_\tau | \mathbf{x}, t, D_T). \quad (27)$$

1334 Following the original paper, we implement this acquisition function using both BCF and CMGP as
 1335 the base CATE estimators and utilize the official code provided by the authors³.
 1336

1337 **EPIG (Expected Predictive Information Gain).** EPIG (Smith et al., 2023) is an information-
 1338 theoretic acquisition function that addresses a key limitation of BALD. Instead of focusing on the
 1339 indirect objective of reducing uncertainty over model parameters (θ), EPIG directly quantifies the
 1340 expected reduction in predictive uncertainty on other unseen data points. The utility of a candidate
 1341 point (\mathbf{x}, t) is defined as the expected mutual information between its unknown label y and the label
 1342 y^* of a randomly chosen point (\mathbf{x}^*, t^*) from the data distribution:
 1343

$$\text{EPIG}(\mathbf{x}, t) := \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*, t^*)} [I(y; y^*(t^*) | (\mathbf{x}^*, t^*), D_T')]. \quad (28)$$

1344 Intuitively, EPIG prioritizes points that are expected to be most informative about the labels of other
 1345 points in the dataset.

1346 ²<https://github.com/Qcer17/QHTE>

1347 ³https://github.com/LucileTerminassian/causal_prospective_merge

1350 E.3 BAYESIAN CAUSAL FORESTS
1351

1352 Our first estimator, BCF, leverages tree ensembles with a careful reparameterization and orthogonal-
1353 ization strategy to provide robust CATE estimates (Hahn et al., 2020). To improve computational
1354 efficiency, we utilize its accelerated extension, XBCF (Krantsevich et al., 2023). As BCF is built
1355 upon Bayesian Additive Regression Trees (BART) (Hill, 2011), we begin with an overview of this
1356 foundational method.

1357

1358 E.3.1 THE BART FOUNDATION
1359

1360 BART models an unknown function $f(\mathbf{x})$ as a sum-of-trees ensemble:

1361
1362
$$f(\mathbf{x}) = \sum_{l=1}^L g_l(\mathbf{x}; T_l, M_l), \quad (29)$$

1363

1364 where each g_l is a regression tree defined by its structure T_l and leaf parameters $M_l = \{\mu_{l1}, \dots, \mu_{lb_l}\}$.
1365 To prevent overfitting, BART imposes regularizing priors on the tree structure (favoring shallow trees)
1366 and the leaf parameters (shrinking predictions towards zero). Posterior inference is performed via
1367 MCMC backfitting, which iteratively samples each tree conditional on the others.

1368

1369 E.3.2 BCF FOR CAUSAL INFERENCE
1370

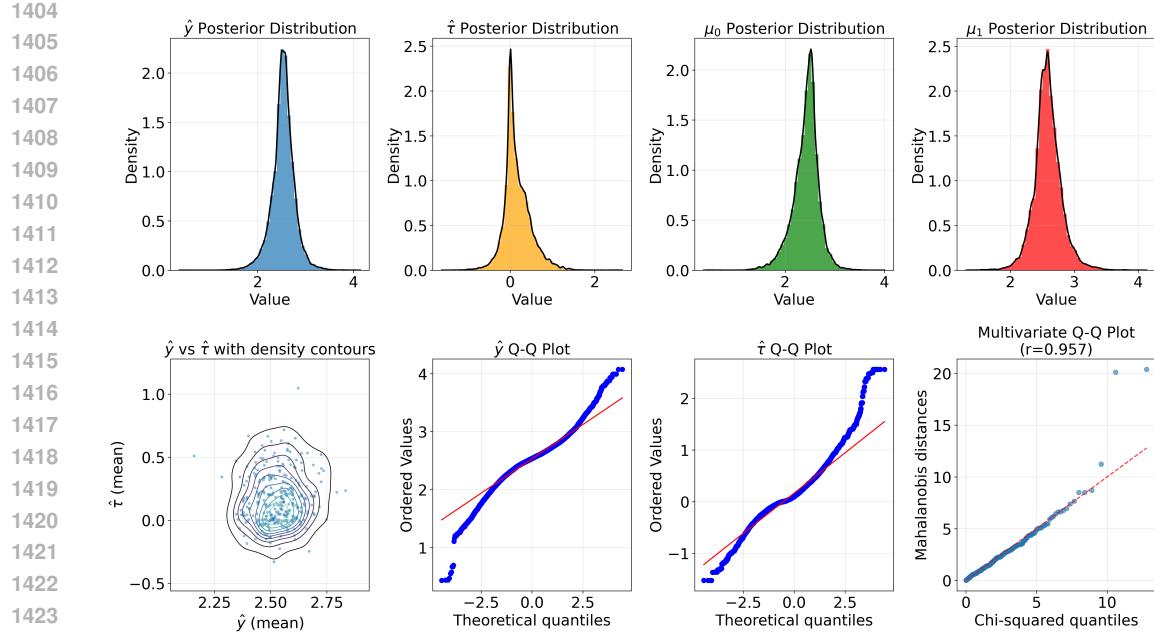
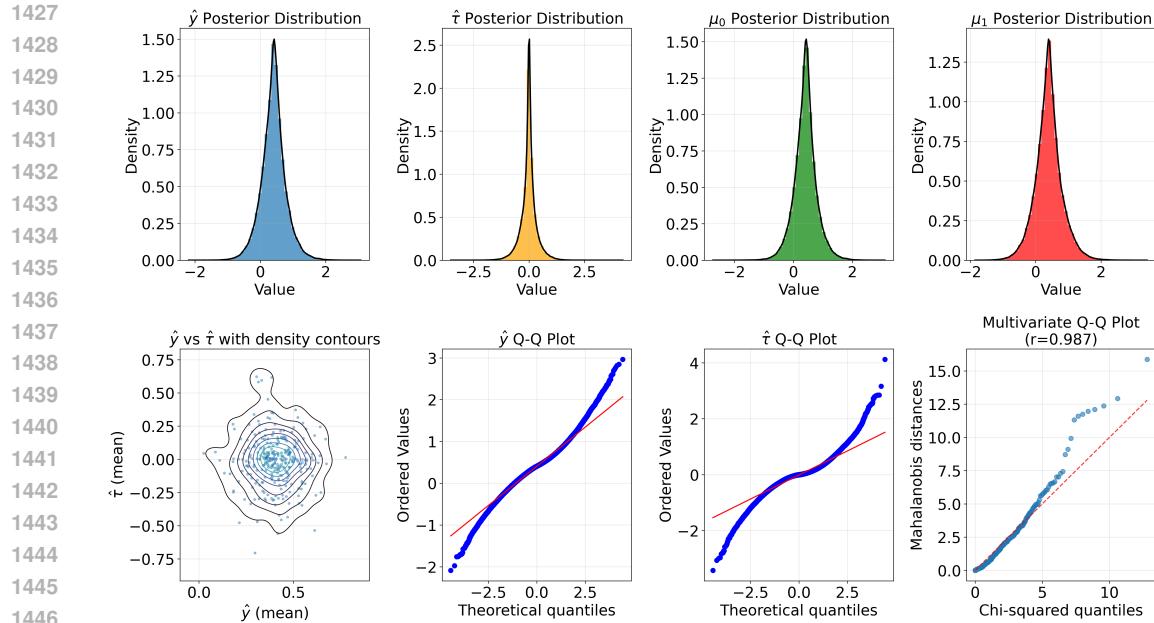
1371 BCF adapts BART to causal inference by modeling the conditional outcome as $\mathbb{E}[y|\mathbf{x}, t] =$
1372 $\mu(\mathbf{x}) + \tau(\mathbf{x})t$, where $\mu(\mathbf{x})$ (prognostic function) and $\tau(\mathbf{x})$ (CATE function) are independent BART
1373 ensembles. We use the accelerated reparameterization from Krantsevich et al. (2023):

1374
1375
$$f_\theta(\mathbf{x}, t) = a \tilde{\mu}_{\text{bcf}}(\mathbf{x}) + b_t \tilde{\tau}_{\text{bcf}}(\mathbf{x}), \quad (30)$$

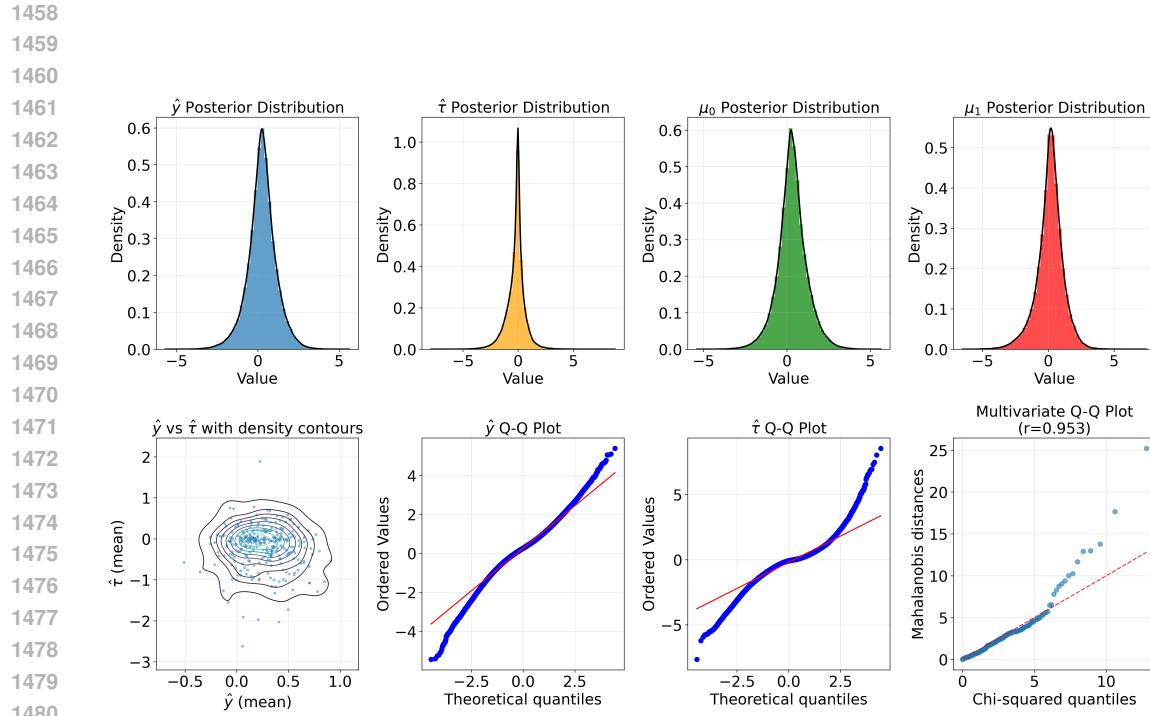
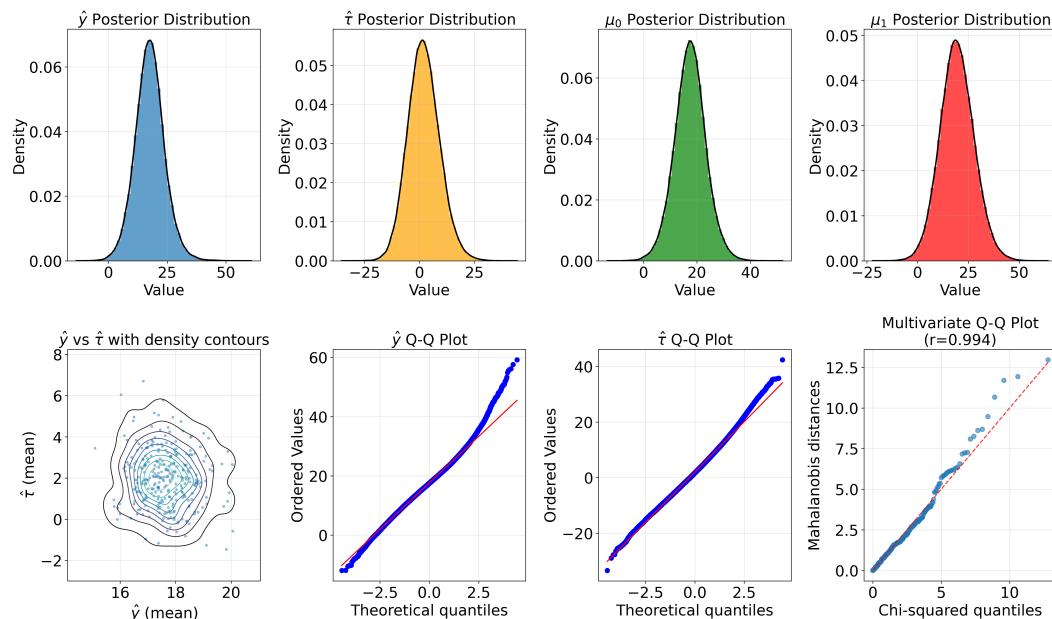
1376 where a, b_t are scaling factors and the CATE is given by $(b_1 - b_0)\tilde{\tau}_{\text{bcf}}(\mathbf{x})$. A key feature is or-
1377 thogonalization, where $\tilde{\mu}_{\text{bcf}}$ is fit on the treatment-residualized outcome $y - b_t \tilde{\tau}_{\text{bcf}}(\mathbf{x})$, forcing it to
1378 capture variation independent of the treatment effect and leading to more robust CATE estimates. The
1379 posterior distribution of the CATE is constructed from MCMC samples. For each posterior draw s , a
1380 sample of the CATE is $\tau^{(s)}(\mathbf{x}^*) = (b_1^{(s)} - b_0^{(s)}) \cdot \tilde{\tau}_{\text{bcf}}^{(s)}(\mathbf{x}^*)$. While collecting these samples provides
1381 the marginal posterior $p(\tau(\mathbf{x}^*) | D_T)$, information-based acquisition requires the joint predictive
1382 posterior $p(y, \tau(\mathbf{x}^*) | (\mathbf{x}, t), \mathbf{x}^*, D_T)$. We approximate this as a multivariate Gaussian (Kirsch,
1383 2023; Jesson et al., 2021), estimating its parameters from the S posterior draws. For each draw s , we
1384 compute the pair $(f^{(s)}, \tau^{(s)})$, where $f^{(s)}$ is the expected outcome. The Gaussian's mean vector is
1385 the sample mean of these pairs. Its covariance matrix is the sample covariance of the pairs.

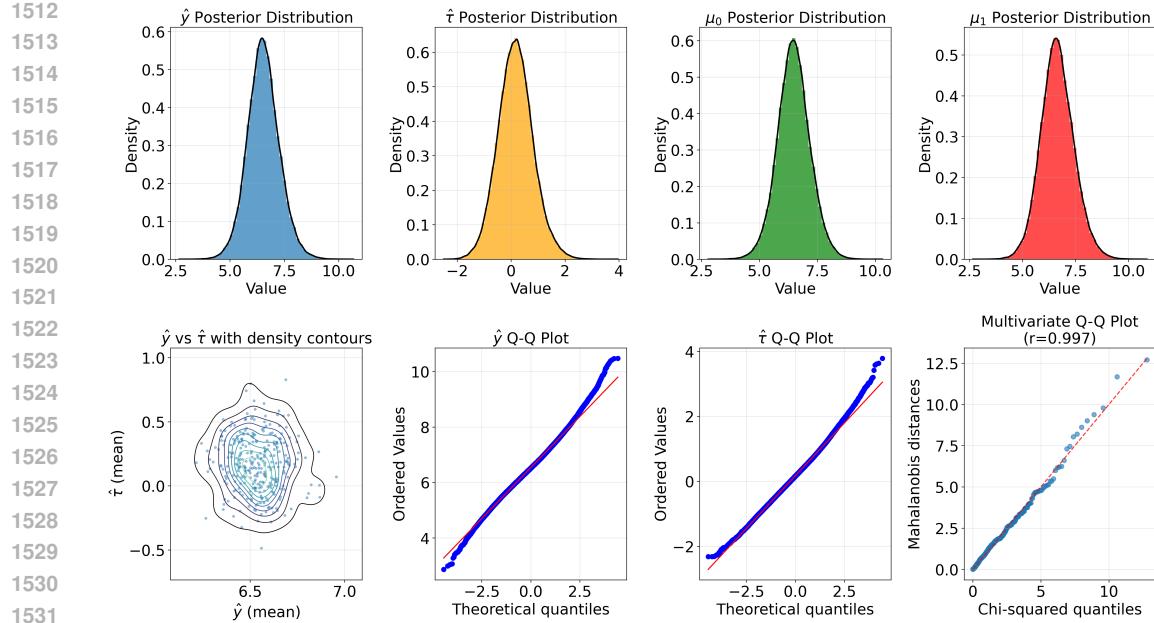
1386

1387 **BCF Posterior Distribution Analysis.** While this approximation is unlikely to hold perfectly in
1388 practice, it is crucial to assess its plausibility and understand the nature of any potential violations.
1389 Therefore, we investigate the degree to which this assumption holds across our five experimental
1390 data-generating processes: CausalBALD, Hahn (linear and nonlinear), IHDP, and ACTG. In the first
1391 step, we visualize the posterior of different quantities for all these datasets we used in the paper and
1392 the results are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, and Fig. 10. Then, as might be expected for a
1393 simplifying approximation, the formal statistical tests presented in Tab. 4 reject the null hypothesis of
1394 perfect normality for all five datasets at the $\alpha = 0.05$ significance level. However, these tests are more
1395 useful in helping us quantify the nature and severity of the deviation. The results show a clear pattern:
1396 the semi-synthetic datasets, ACTG and IHDP, exhibit more modest deviations. They have the lowest
1397 Henze-Zirkler statistics and Mardia's kurtosis values (8.407 and 8.868, respectively) that are closest
1398 to the theoretical value of 8 for a bivariate normal distribution. In contrast, the synthetic datasets
1399 show more pronounced violations, primarily due to heavy tails (leptokurtosis), with CausalBALD
1400 showing the most significant departure (Mardia's kurtosis of 11.430). In summary, this analysis
1401 confirms that while the Gaussian posterior is indeed an approximation, the violations are not uniform
1402 across data types. For the more realistic semi-synthetic datasets, the deviations from normality are
1403 relatively contained. This suggests that using a multivariate normal approximation is a justifiable and
1404 reasonable trade-off for the significant computational tractability it provides, rather than an overly
1405 strong assumption that would undermine the method's validity.

Figure 6: Posterior distribution analysis for the BCF model on the **CausalBALD Dataset**.Figure 7: Posterior distribution analysis for the BCF model on the **Hahn linear Dataset**.Table 4: Multivariate normality tests for the joint posterior of $(\hat{y}, \hat{\tau})$

Dataset	Q-Q corr	χ^2	GoF p-value	HZ stat	Mardia kurtosis
CausalBALD	0.974	<1e-10		0.210	11.430
Hahn (linear)	0.981	<1e-10		0.189	9.655
Hahn (nonlinear)	0.993	<1e-10		0.194	9.878
IHDP	0.989	1.45e-3		0.173	8.868
ACTG	0.989	6.94e-3		0.167	8.407

Figure 9: Posterior distribution analysis for the BCF model on the **IHDP Dataset**.

Figure 10: Posterior distribution analysis for the BCF model on the **ACTG Dataset**.

E.4 GAUSSIAN PROCESS MODELS

Our other two primary estimators are based on Gaussian Processes. GP models are a natural fit for Causal-EPIG because they provide a closed-form, analytic posterior for the CATE, which in turn allows for the highly efficient computation of the acquisition function. We consider two distinct GP formulations.

E.4.1 CAUSAL MULTITASK GAUSSIAN PROCESSES (CMGP)

CMGP treats potential outcome estimation as a multitask learning problem, enabling the model to borrow statistical strength across treatment arms (Alaa & Van Der Schaar, 2017). It places a joint GP prior over the vector $[f_0(\mathbf{x}), f_1(\mathbf{x})]^\top$ using a 2×2 matrix-valued kernel \mathbf{K}_η , typically constructed via a Linear Model of Coregionalization (LMC). The observed outcomes y_i are noisy realizations of the latent function $f_{t_i}(\mathbf{x}_i)$, i.e., $y_i \mid \mathbf{x}_i, t_i \sim \mathcal{N}(f_{t_i}(\mathbf{x}_i), \sigma_n^2)$.

Given the GP prior and Gaussian likelihood, the posterior over $[f_0(\mathbf{x}), f_1(\mathbf{x})]$ is also a GP. The posterior for the CATE, $\tau(\mathbf{x}_*) = f_1(\mathbf{x}_*) - f_0(\mathbf{x}_*)$, is therefore also Gaussian, with mean and variance derived analytically from the posterior of the potential outcomes:

$$\hat{\tau}(\mathbf{x}_*) \sim \mathcal{N}(\mathbf{e}^\top \boldsymbol{\mu}_{\text{post}}(\mathbf{x}_*), \mathbf{e}^\top \boldsymbol{\Sigma}_{\text{post}}(\mathbf{x}_*, \mathbf{x}_*) \mathbf{e}), \quad (31)$$

where $\mathbf{e} = [-1, 1]^\top$, and $\boldsymbol{\mu}_{\text{post}}$ and $\boldsymbol{\Sigma}_{\text{post}}$ are the posterior mean and covariance from standard GP regression conditioned on the training data D_T .

E.4.2 NON-STATIONARY GAUSSIAN PROCESS (NSGP)

Our third estimator is the NSGP, which models potential outcomes by defining a single GP over an augmented input space $\mathcal{X} \times \{0, 1\}$ (Alaa & Schaar, 2018). This is achieved by placing a GP prior over a function $f(\mathbf{x}, t)$, where the treatment indicator t is an input. The model's key feature is its non-stationary kernel:

$$\mathbf{K}_\beta((\mathbf{x}, t), (\mathbf{x}', t')) = \begin{cases} k_{\beta_0}(\mathbf{x}, \mathbf{x}') & \text{if } t = t' = 0 \\ k_{\beta_1}(\mathbf{x}, \mathbf{x}') & \text{if } t = t' = 1 \\ k_{\beta_0}(\mathbf{x}, \mathbf{x}') + k_{\beta_1}(\mathbf{x}, \mathbf{x}') & \text{if } t \neq t' \end{cases} \quad (32)$$

where k_{β_0} and k_{β_1} are standard Matérn kernels with their own hyperparameters. This allows the response surfaces for the control and treatment arms, f_0 and f_1 , to exhibit different properties

(e.g., smoothness), capturing complex heterogeneity. Posterior inference for the CATE, $\tau(\mathbf{x}_*) = f(\mathbf{x}_*, 1) - f(\mathbf{x}_*, 0)$, follows the same logic as in CMGP, yielding a closed-form Gaussian posterior derived from the joint posterior of the potential outcomes.

1570 E.5 DEEP KERNEL LEARNING FOR ABLATION

1572 For a targeted ablation study, we also include the DUE (Deep Uncertainty Estimation) estimator used
 1573 in Causal-BALD (Jesson et al., 2021). DUE represents a significant architectural departure from
 1574 our primary models. It is a deep learning model that uses deep kernel learning to define a sparse
 1575 variational GP over high-dimensional features learned by a neural network. This end-to-end approach
 1576 is highly flexible but lacks the strong inductive biases for causal modeling present in BCF and the
 1577 other GP methods. Its distinct architecture makes it a valuable case for testing the robustness of our
 1578 acquisition function.

1579 F INTERPRETATIONS AND DERIVATIONS

1582 This section provides the detailed derivations for the information-theoretic acquisition functions
 1583 discussed in this paper. As all these methods are instantiations of entropy gain—which is equivalently
 1584 represented by the mutual information principle (see App. C), their mathematical derivations share a
 1585 common structure. We focus our detailed step-by-step derivation on **Causal-EPIG- τ** , as it represents
 1586 the most direct application of our framework’s principle. The derivation for **Causal-EPIG- μ** follows
 1587 the same fundamental steps, differing only in the dimensionality of the target variable (a 2D vector
 1588 vs. a 1D scalar).

1589 F.1 DETAILED DERIVATION AND ESTIMATION OF CAUSAL-EPIG

1591 **Step-by-Step Derivation.** We begin with the definition of information gain and show its equivalence
 1592 to the mutual information and KL divergence forms. The information gain in the CATE at a target
 1593 point \mathbf{x}^* , denoted $\tau(\mathbf{x}^*)$, that results from observing a new outcome y for a candidate point (\mathbf{x}, t) in
 1594 the pool dataset is the reduction in the entropy of the CATE posterior:

$$1595 \text{IG}((\mathbf{x}, t), y, \mathbf{x}^*) = H(\tau(\mathbf{x}^*) | D_T) - H(\tau(\mathbf{x}^*) | D_T \cup \{(\mathbf{x}, t, y)\}). \quad (33)$$

1596 The Causal-EPIG is then the expectation of this information gain over both the unknown outcome y
 1597 and the unknown target point \mathbf{x}^* . The derivation proceeds as follows:

$$\begin{aligned} 1599 \text{Causal-EPIG}(\mathbf{x}, t) &\coloneqq \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} \mathbb{E}_{p(y|\mathbf{x}, t, D_T)} [\text{IG}_\tau((\mathbf{x}, t), y, \mathbf{x}^*)] \\ 1600 &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} \mathbb{E}_{p(y|\mathbf{x}, t, D_T)} [H(\tau(\mathbf{x}^*) | D_T) - H(\tau(\mathbf{x}^*) | D_T \cup \{(\mathbf{x}, t, y)\})] \\ 1601 &\quad \text{(Expand IG definition)} \\ 1602 &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} \mathbb{E}_{p(y, \tau(\mathbf{x}^*)|\mathbf{x}, t, D_T)} \left[\log \frac{p(\tau(\mathbf{x}^*) | D_T, y, \mathbf{x}, t)}{p(\tau(\mathbf{x}^*) | D_T)} \right] \\ 1603 &\quad \text{(Combine expectations and logs)} \\ 1604 &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} \mathbb{E}_{p(y, \tau(\mathbf{x}^*)|\mathbf{x}, t, D_T)} \left[\log \frac{p(y, \tau(\mathbf{x}^*) | \mathbf{x}, t, D_T) / p(y | \mathbf{x}, t, D_T)}{p(\tau(\mathbf{x}^*) | D_T)} \right] \\ 1605 &\quad \text{(Use def. of conditional prob.)} \\ 1606 &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} \mathbb{E}_{p(y, \tau(\mathbf{x}^*)|\mathbf{x}, t, D_T)} \left[\log \frac{p(y, \tau(\mathbf{x}^*) | \mathbf{x}, t, D_T)}{p(y | \mathbf{x}, t, D_T) p(\tau(\mathbf{x}^*) | D_T)} \right] \\ 1607 &\quad \text{(Rearrange terms)} \\ 1608 &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; \tau(\mathbf{x}^*) | (\mathbf{x}, t), D_T)]. \quad \text{(Equivalent to Mutual Information)} \\ 1609 \end{aligned} \quad (34)$$

1610 The final line above is the definition presented in Eq. 5. It is also equivalent to the expected KL
 1611 Divergence form presented in Eq. 6. The final expressions reveal the core of our method. The mutual
 1612 information form, $\mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; \tau(\mathbf{x}^*) | (\mathbf{x}, t), D_T)]$, frames the utility as the answer to the question:
 1613 "On average, across all target points \mathbf{x}^* , how much will observing a new outcome y reduce our
 1614 uncertainty about the CATE $\tau(\mathbf{x}^*)$?"

1620
 1621 **Realization with Specific CATE Models.** Without a closed-form solution, estimating this mu-
 1622 tual information would require expensive nested Monte Carlo simulations. However, this general
 1623 procedure can be made highly efficient for certain model classes.

1624
 1625

- 1626 • **GP Models (CMGP, NSGP):** For GP-based models, the joint predictive posterior $p(y, \tau(\mathbf{x}^*) |$
 $(\mathbf{x}, t), D_T)$ is a multivariate Gaussian. In this case, the mutual information has a closed-form
 1627 analytical solution based on the posterior predictive variances and covariance.
- 1628 • **BCF:** The BCF posterior is represented by MCMC samples. To make Causal-EPIG computationally
 1629 feasible, we adopt the approximation strategy from Sec. 4.2, fitting a multivariate Gaussian to
 1630 the joint posterior samples of $(y, \tau(\mathbf{x}^*))$. This allows us to again use the closed-form solution,
 bypassing the need for nested sampling.

1631
 1632 **F.1.1 ANALYTICAL FORM OF CAUSAL-EPIG FOR GAUSSIAN MODELS**

1633 A key advantage of our framework is that when the underlying CATE estimator has a Gaussian
 1634 posterior predictive distribution (such as GP models), the mutual information term in the Causal-EPIG
 1635 objective has a closed-form analytical solution. Here, we provide a step-by-step derivation.

1636
 1637 **Assumption: Gaussian Predictive Distribution.** We assume that for a candidate point (\mathbf{x}, t) and
 1638 a target point \mathbf{x}^* , the joint posterior predictive distribution of the potential outcome y and the CATE
 1639 $\tau(\mathbf{x}^*)$ is a bivariate Gaussian. All distributions are implicitly conditioned on the existing data D_T .

1640
 1641
$$p(y, \tau(\mathbf{x}^*) | \mathbf{x}, t, \mathbf{x}^*, D_T) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad (35)$$

1642 where the covariance matrix $\boldsymbol{\Sigma}$ is given by:

1643
 1644
$$\boldsymbol{\Sigma} = \begin{pmatrix} \text{Var}[y] & \text{Cov}[y, \tau(\mathbf{x}^*)] \\ \text{Cov}[\tau(\mathbf{x}^*), y] & \text{Var}[\tau(\mathbf{x}^*)] \end{pmatrix} \quad (36)$$

1645 The marginal distributions for y and $\tau(\mathbf{x}^*)$ are also Gaussian, with variances corresponding to the
 1646 diagonal elements of $\boldsymbol{\Sigma}$.

1647 **Derivation.** We begin with the definition of mutual information in terms of differential entropies:

1648
 1649
$$I(y; \tau(\mathbf{x}^*)) = H(y) + H(\tau(\mathbf{x}^*)) - H(y, \tau(\mathbf{x}^*)) \quad (\text{by definition}) \quad (37)$$

1650 For a univariate Gaussian variable z with variance σ^2 , the differential entropy is $H(z) = \frac{1}{2} \log(2\pi e \sigma^2)$.
 1651 For a k -dimensional multivariate Gaussian with covariance matrix $\boldsymbol{\Sigma}$, the joint entropy is $H(\mathbf{z}) =$
 1652 $\frac{1}{2} \log((2\pi e)^k \det(\boldsymbol{\Sigma}))$. Applying these formulas to our bivariate case ($k = 2$):

1653
 1654
$$I(y; \tau(\mathbf{x}^*)) = \left(\frac{1}{2} \log(2\pi e \text{Var}[y]) \right) + \left(\frac{1}{2} \log(2\pi e \text{Var}[\tau(\mathbf{x}^*)]) \right) - \left(\frac{1}{2} \log((2\pi e)^2 \det(\boldsymbol{\Sigma})) \right) \quad (\text{substitute Gaussian entropies})$$

1655
 1656
$$= \frac{1}{2} [\log(2\pi e \text{Var}[y]) + \log(2\pi e \text{Var}[\tau(\mathbf{x}^*)]) - \log((2\pi e)^2 \det(\boldsymbol{\Sigma}))] \quad (38)$$

1657
 1658
$$= \frac{1}{2} [\log((2\pi e)^2 \text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)]) - \log((2\pi e)^2 \det(\boldsymbol{\Sigma}))] \quad (\text{combine log terms})$$

1659
 1660
$$= \frac{1}{2} \log \left(\frac{\text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)]}{\det(\boldsymbol{\Sigma})} \right) \quad (\text{cancel terms})$$

1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

Now, we substitute the determinant of the 2x2 covariance matrix, $\det(\boldsymbol{\Sigma}) = \text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)] - \text{Cov}[y, \tau(\mathbf{x}^*)]^2$:

$$I(y; \tau(\mathbf{x}^*)) = \frac{1}{2} \log \left(\frac{\text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)]}{\text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)] - \text{Cov}[y, \tau(\mathbf{x}^*)]^2} \right). \quad (\text{substitute determinant})$$

This is the closed-form solution for the mutual information under the Gaussian assumption.

1674
 1675 **Final Causal-EPIG- τ Formulation.** The final Causal-EPIG utility is the expectation of this
 1676 analytical term over the target distribution $p_{\text{tar}}(\mathbf{x}^*)$. In practice, this expectation is approximated by
 1677 the empirical average over the finite target set \mathbf{X}_{tar} :

$$\begin{aligned} \text{Causal-EPIG} - \tau(\mathbf{x}, t) &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; \tau(\mathbf{x}^*))] \\ &\approx \frac{1}{|\mathbf{X}_{\text{tar}}|} \sum_{\mathbf{x}^* \in \mathbf{X}_{\text{tar}}} \frac{1}{2} \log \left(\frac{\text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)]}{\text{Var}[y] \text{Var}[\tau(\mathbf{x}^*)] - \text{Cov}[y, \tau(\mathbf{x}^*)]^2} \right), \end{aligned} \quad (40)$$

1681 where the variances and covariance are computed for each candidate-target pair $(\mathbf{x}, \mathbf{x}^*)$.
 1682

1683 F.2 A TAXONOMY OF INFORMATION-THEORETIC ACQUISITION FUNCTIONS 1684

1685 Our proposed Causal-EPIG framework is part of a broader family of information-theoretic acquisition
 1686 functions. To clarify its specific contributions and design choices, it is useful to deconstruct the
 1687 landscape of these methods along four key axes. Tab. 5 provides a detailed taxonomy that informs
 1688 the following discussion.

1689 Table 5: A Taxonomy of Information-Theoretic Acquisition Functions for active CATE Estimation.
 1690 The table distinguishes methods along several key axes, including their core target (parameters vs.
 1691 predictions) and their formulation (mean-marginal vs. global).
 1692

Family	Target of Information Gain	Mean-Marginal Formulation	Global / Full Formulation
EIG	Model Parameters (θ)	$\text{I}(y; \theta_\tau \mid (\mathbf{x}, t), D_T)$ or $\text{I}(y; \theta \mid (\mathbf{x}, t), D_T)$	
EPIG / ITL	Factual Outcome (y^*)	$\mathbb{E}_{p_{\text{pool}}(\mathbf{x}^*, t^*)} [\text{I}(y; y^* \mid (\mathbf{x}, t), (\mathbf{x}^*, t^*), D_T)]$	$\text{I}(y; y^* \mid (\mathbf{x}, t), D_T)$
	Potential Outcomes ($y^*(t^*)$)	$\mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\sum_{t^*} \text{I}(y; y^*(t^*))]$ (Additive Approx.) $\mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; (y^*(0), y^*(1)))]$ (Joint PO)	$\text{I}(y; y_{PO}^* \mid (\mathbf{x}, t), D_T)$
	CATE ($\tau(\mathbf{x}^*)$)	$\mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; \tau(\mathbf{x}^*))]$	$\text{I}(y; \tau \mid (\mathbf{x}, t), D_T)$

1704 **Axis 1: Parameters vs. Predictions.** The most fundamental distinction is the target of the
 1705 information gain. The **EIG** family (which includes Causal-EIG and Causal-BALD) is **parameter-focused**.
 1706 These methods aim to reduce uncertainty over the model’s internal representation, such as
 1707 the CATE-specific parameters θ_τ or the full parameter set θ . In contrast, the entire **EPIG/ITL** family,
 1708 including our work, is **prediction-focused**, directly targeting uncertainty in the model’s outputs. This
 1709 is generally preferred for function estimation tasks, as it concentrates effort on the final quantity of
 1710 interest.

1711 **Axis 2: The Hierarchy of Predictive Targets.** Within the prediction-focused family, a clear
 1712 hierarchy emerges based on the causal relevance of the target:

- 1714 • **Factual EPIG:** Targets a future factual outcome y^* , which is insufficient as it does not actively
 1715 pursue counterfactual knowledge.
- 1716 • **Potential Outcomes (PO-based):** Targets the foundational components of the causal effect, $y^*(0)$
 1717 and $y^*(1)$. This is a robust causal objective.
- 1718 • **CATE-based:** Targets the final causal estimand, $\tau(\mathbf{x}^*)$, itself. This is the most direct causal
 1719 objective.

1721 **Axis 3: Formulating the PO-based Objective.** Once potential outcomes are chosen as the target,
 1722 there are two primary ways to formulate the mutual information objective:

- 1724 • **Additive Formulation:** The simpler approach approximates the information gain by summing
 1725 the MI for each potential outcome separately: $\text{I}(y; y^*(0)) + \text{I}(y; y^*(1))$. This is computationally
 1726 efficient but ignores the dependency structure between the potential outcomes. This is the “simpler,
 1727 additive variant” we refer to in the main text. In the App. H, we mark this method as Causal-EPIG-
 μ -S, which means Separation.

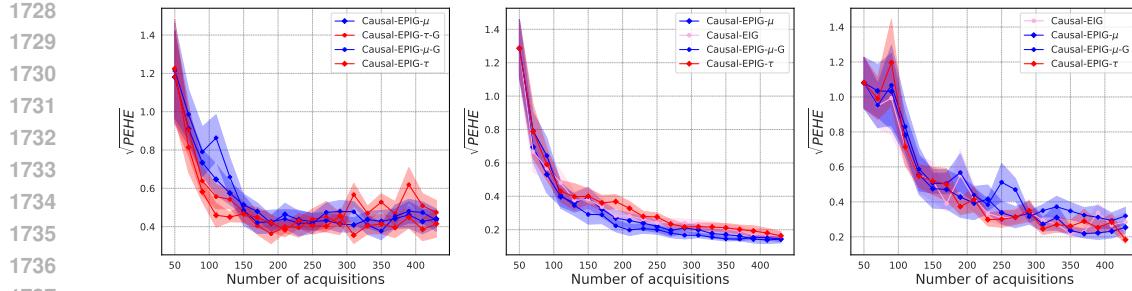


Figure 11: Performance comparison on the Hahn (linear) dataset with distribution shift. Panels show results for different underlying CATE estimators. The summation-based methods consistently perform on par with or better than their global counterparts.

- **Joint Formulation:** A more theoretically robust approach is to target the joint distribution of the potential outcomes, as in $I(y; (y^*(0), y^*(1)))$. This correctly accounts for the correlation between the two outcomes. **This is the formulation we adopt for our primary Causal-EPIG- μ method.**

Axis 4: Aggregation Across the Target Population. The final distinction lies in how information gain is aggregated across the entire target population.

- The **Mean-Marginal** formulation (left column in Tab. 5) is computationally efficient. It approximates the total information gain by averaging the gains over each target point independently, ignoring correlations between target predictions (e.g., between $\tau(x_1^*)$ and $\tau(x_2^*)$). **Our work focuses on this formulation for its scalability.**
- The **Global / Full** formulation (right column) is more theoretically complete. It calculates the information gain with respect to the entire set of target predictions jointly (e.g., $I(y; \tau)$), capturing all interdependencies but at a significantly higher computational cost. We denote this method with a $-G$ suffix, where G indicates Global.

Our choice of the mean-marginal formulation for Causal-EPIG represents a pragmatic trade-off between computational scalability and theoretical completeness.

F.3 COMPUTATIONAL COMPLEXITY AND RUNTIME ANALYSIS

The primary computational cost of the Causal-EPIG acquisition functions is driven by the size of the candidate pool (n_P), the target set ($n_{\text{tar}} = |\mathbf{X}_{\text{tar}}|$), and the number of posterior samples (S).

Theoretical Complexity. A key design choice in our framework is between the **summation** and **global** formulations. The summation approach, which we adopt, is designed for efficiency. The total complexity to score all n_P candidates is $\mathcal{O}(n_P \cdot n_{\text{tar}} \cdot S)$, scaling linearly with the pool and target set sizes. In contrast, the global formulation requires inverting an $n_{\text{tar}} \times n_{\text{tar}}$ covariance matrix for each candidate, leading to a total complexity of $\mathcal{O}(n_P \cdot n_{\text{tar}}^3)$. This cubic scaling makes the global approach computationally prohibitive for even moderately large target populations.

Empirical Validation and Comparison. This theoretical trade-off is strongly validated by our empirical results, presented in Tab. 6. The data confirms that our chosen summation-based methods are one to two orders of magnitude faster than their global counterparts, justifying our design choice. For instance, Causal-EPIG- μ is approximately **20 times faster** than its global version (0.45s vs. 9.27s).

Having justified our formulation, we next compare its runtime to established baselines in Tab. 7. While Causal-EPIG- τ (0.44s in Tab. 6) is slower than the fast BALD variants, this represents a deliberate trade-off. The effectiveness of our approach is most pronounced in settings where the cost of labeling is the dominant factor, such as in clinical trials. In these scenarios, the marginal computational overhead is typically negligible compared to the cost of acquiring each new label, making the superior sample efficiency of Causal-EPIG a highly practical choice.

1782 Table 6: Average acquisition time (seconds) per batch, comparing summation-based (our choice) vs.
 1783 global (-G) formulations. Results are mean \pm std across trials.

1785 Estimator	1786 Causal-EPIG- μ	1787 Causal-EPIG- μ -G	1788 Causal-EPIG- τ	1789 Causal-EPIG- τ -G
1790 BCF	0.7731 \pm 0.0508	16.1392 \pm 0.5763	0.5392 \pm 0.0342	4.1811 \pm 0.1036
1791 CMGP	0.1813 \pm 0.0164	4.1814 \pm 0.1598	0.4016 \pm 0.0289	1.9840 \pm 0.0883
1792 NSGP	0.3931 \pm 0.0331	7.5014 \pm 1.0600	0.3812 \pm 0.0334	2.9213 \pm 0.4922
1793 Overall	0.4492 \pm 0.2999	9.2740 \pm 6.1728	0.4406 \pm 0.0860	3.0288 \pm 1.1025

Table 7: Average running times (in seconds) of Causal-EPIG- τ compared to other baselines.

1794 Methods	1795 Random	1796 μ -BALD	1797 $\mu\rho$ -BALD	1798 $\mu\pi$ -BALD	1799 Causal-EPIG- τ
1800	(6.5 \pm 0.7)	(3.6 \pm 0.1)	(9.6 \pm 0.4)	(9.6 \pm 0.4)	(4.4 \pm 0.1)
1801 Time (s)	$\times 10^{-5}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-1}$

G THEORETICAL ANALYSIS DETAILS

G.1 FRAMEWORK MAPPING TO TAL

Our theoretical analysis leverages the framework of TAL (Hübotter et al., 2024), which requires mapping our CATE estimation problem to their single-task GP setting. The full mapping is as follows:

- Augmented Space $\tilde{\mathcal{X}}$ and Kernel \tilde{k} : We model the potential outcome surfaces $f_t(\mathbf{x})$ as a single GP $f(\tilde{\mathbf{x}})$ over an augmented space $\tilde{\mathcal{X}} = \mathcal{X} \times \{0, 1\}$, where $\tilde{\mathbf{x}} = (\mathbf{x}, t)$. The augmented kernel \tilde{k} is a sum of separable kernels (a standard Linear Mode coregionalization (LMC) construction) (Alaa & Van Der Schaar, 2017):

$$\tilde{k}((\mathbf{x}, t), (\mathbf{x}', t')) \coloneqq \sum_{q=1}^Q (B_q)_{t, t'} \cdot k_q(\mathbf{x}, \mathbf{x}'), \quad (41)$$

where B_q are 2×2 coregionalization matrices and k_q are base kernels. We also set $Q = 2$ in our paper as that in CMGP.

- Augmented Target Space $\tilde{\mathcal{X}}_{\text{tar}}$: The set of paired potential outcomes for the target population \mathbf{X}_{tar} , defined as $\tilde{\mathcal{X}}_{\text{tar}} = \{(\mathbf{x}^*, t) \mid \mathbf{x}^* \in \mathcal{X}_{\text{tar}}, t \in \{0, 1\}\}$.
- Augmented Pool Space $\tilde{\mathcal{D}}_P$: This corresponds to the factual observations available in our pool \mathcal{D}_P , defined as $\tilde{\mathcal{D}}_P = \{(\mathbf{x}, t) \mid (\mathbf{x}, t) \in \mathcal{D}_P\}$. We use this augmented notation for consistency with the target-space construction.

Our convergence analysis focuses on the global, joint PO-based strategy, denoted Causal-EPIG- μ -G (discussed in App. F.2), as it is a direct instantiation of the Global Information Theoretic Learning (ITL) strategy, defined in Hübotter et al. (2024, Eq. 2). We adapt the proof structure from Hübotter et al. (2024, Thm. 3.3), which demonstrates convergence for this Global ITL strategy. This proof relies on the utility function being submodular, which we state in our main paper as Ass. 2. We now provide the justification for this assumption.

Justification 1 *The validity of Ass. 2 depends on the relationship between the augmented target space $\tilde{\mathcal{X}}_{\text{tar}}$ and the augmented pool space $\tilde{\mathcal{D}}_P$:*

- *Case 1: "Regular Setup" (No Distribution Shift over Covariates).* In this standard setup, the target population \mathbf{X}_{tar} and the pool \mathcal{D}_P are defined over the same set of underlying covariates. As every factual observation (\mathbf{x}_i, t_i) in $\mathcal{S} = \tilde{\mathcal{D}}_P$ corresponds to a target individual \mathbf{x}_i in \mathcal{X}_{tar} (for which both outcomes $(\mathbf{x}_i, 0)$ and $(\mathbf{x}_i, 1)$ are in $\mathcal{A} = \tilde{\mathcal{X}}_{\text{tar}}$), we have the relationship $\mathcal{S} \subset \mathcal{A}$. Under this condition ($\mathcal{S} \subseteq \mathcal{A}$), Hübotter et al. (2024, Lemma C.9) prove that the Global ITL objective is submodular. Thus, Ass. 2 is guaranteed to hold.

1836 • *Case 2: "Distribution Shift." In this setting, the target population \mathbf{X}_{tar} and the pool \mathcal{D}_P are defined*
 1837 *over different sets of covariates. Therefore, an observation (\mathbf{x}, t) in $\mathcal{S} = \tilde{\mathcal{D}}_P$ does not necessarily*
 1838 *correspond to a target \mathbf{x}^* in \mathbf{X}_{tar} . In this general case, $\mathcal{S} \notin \mathcal{A}$. This is the general transductive*
 1839 *setting where submodularity is not guaranteed, as "synergistic" effects can occur (Hübotter et al.,*
 1840 *2024, Example C.8). In this case, our Thm. 1 relies on an unproven assumption, mirroring the*
 1841 *theoretical gap in the TAL framework itself.*

1842 The theoretical implications of using the structured LMC kernel are discussed in Sec. G.4.

1845 G.2 APPROXIMATE MARKOV BOUNDARY

1846 **Intuition 1** *In our active CATE estimation problem, even if we acquire all the factual outcomes in the*
 1847 *pool $\tilde{\mathcal{D}}_P$, the uncertainty over a target point $\tilde{\mathbf{x}}^* \in \tilde{\mathbf{X}}_{\text{tar}}$ may not be zero. This remaining uncertainty*
 1848 *is the irreducible uncertainty $\eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*)$. The AMB is the smallest subset of the pool $\tilde{\mathcal{D}}_P$ that is "good*
 1849 *enough" to achieve this minimal uncertainty, up to an error ϵ .*

1851 **Definition 2 (Approximate Markov Boundary (AMB))** *For any $\epsilon > 0$, $n_T \geq 0$, and target point*
 1852 *$\tilde{\mathbf{x}}^* \in \tilde{\mathbf{X}}_{\text{tar}}$, we define $\mathbf{B}_{n_T, \epsilon}(\tilde{\mathbf{x}}^*)$ as the smallest (multi-)set of $\tilde{\mathcal{D}}_P$, satisfying:*

$$1854 \quad \text{Var}\left[f(\tilde{\mathbf{x}}^*) \mid \mathcal{D}_T, \mathbf{y}_{\mathbf{B}_{n_T, \epsilon}(\tilde{\mathbf{x}}^*)}\right] \leq \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + \epsilon. \quad (42)$$

1856 where $n_T = |\mathcal{D}_T|$ is the number of observations in \mathcal{D}_T . We refer to $\mathbf{B}_{n_T, \epsilon}(\tilde{\mathbf{x}}^*)$ as the ϵ -approximate
 1857 Markov boundary of $\tilde{\mathbf{x}}^*$ in $\tilde{\mathcal{D}}_P$.

1859 The existence and finite size of this set are guaranteed, as shown in Lemma C.16 of (Hübotter et al.,
 1860 2024). We restate the consequence here:

1862 **Lemma 2 (AMB Existence, adapted from (Hübotter et al., 2024))** *Let $\epsilon > 0$ and define r as the*
 1863 *smallest integer satisfying*

$$1864 \quad \frac{\gamma_r}{r} \leq \frac{\epsilon \lambda_{\min}(\mathbf{K}_{\tilde{\mathcal{D}}_P \tilde{\mathcal{D}}_P})}{2|\tilde{\mathcal{D}}_P| \sigma_I^2 \tilde{\sigma}_I^2}, \quad (43)$$

1866 where $\gamma_r \stackrel{\text{def}}{=} \max_{\tilde{\mathbf{X}} \subseteq \tilde{\mathcal{D}}_P, |\tilde{\mathbf{X}}| \leq r} I(f_{\tilde{\mathcal{D}}_P}; \mathbf{y}_{\tilde{\mathbf{X}}})$, and $\sigma_I^2, \tilde{\sigma}_I^2$ are variance constants. For any $n_T \geq 0$ and
 1867 $\tilde{\mathbf{x}}^* \in \tilde{\mathbf{X}}_{\text{tar}}$, there exists an ϵ -approximate Markov boundary $\mathbf{B}_{n_T, \epsilon}(\tilde{\mathbf{x}}^*)$ for $\tilde{\mathbf{x}}^*$ within $\tilde{\mathcal{D}}_P$, with a size
 1868 bounded by r .

1871 G.3 PROOF OF THM. 1

1873 To prove Thm. 1, we adapt the analytical framework of Hübotter et al. (2024, Thm. 3.3). This proof
 1874 is simpler than that of ActiveCQ (Gao & Sejdinovic, 2025) as we are bounding the variance of a
 1875 point prediction $f(\tilde{\mathbf{x}}^*)$ rather than an integral $v_{\tilde{\mathbf{x}}}$.

1876 The proof proceeds in three main steps:

- 1878 1. We leverage the AMB (Def. 2) to relate the current variance $\text{Var}[f(\tilde{\mathbf{x}}^*)|\mathcal{D}_T]$ to the information
 1879 gain of the AMB set \mathbf{B} .
- 1880 2. We bound this AMB information gain by the Global ITL maximal marginal gain Γ_{n_T} (defined in
 1881 Step 2).
- 1882 3. We select a decaying approximation error ϵ and use the convergence rate of Γ_{n_T} (which relies on
 1883 Ass. 2) to derive the final rate.

1885 **Step 1: Bound Variance by AMB Information Gain.** From Lemma C.17 in (Hübotter et al., 2024),
 1886 we can bound the current variance of the estimator for any $\tilde{\mathbf{x}}^* \in \tilde{\mathbf{X}}_{\text{tar}}$ as:

$$1888 \quad \text{Var}[f(\tilde{\mathbf{x}}^*)|\mathcal{D}_T] \leq C_0 \cdot I(f(\tilde{\mathbf{x}}^*); \mathbf{y}_{\mathbf{B}_{n_T, \epsilon}(\tilde{\mathbf{x}}^*)}|\mathcal{D}_T) + \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + \epsilon. \quad (44)$$

1889 where C_0 is a constant related to the max variance (e.g., $2\sigma_I^2$).

1890 **Step 2: Bound Point Gain by Global ITL Marginal Gain.** Next, we bound the mutual information
 1891 term from Step 1, $I(f(\tilde{\mathbf{x}}^*); \mathbf{y}_B | \mathcal{D}_T)$, where $\mathbf{B} \triangleq \mathbf{B}_{n_T, \epsilon}(\tilde{\mathbf{x}}^*)$ and $b_\epsilon \triangleq |\mathbf{B}|$. The derivation proceeds
 1892 by first relating the information gain about a single target point $f(\tilde{\mathbf{x}}^*)$ to the joint information gain
 1893 about all target points $f_{\tilde{\mathbf{X}}_{\text{tar}}}$, which is the utility function $\psi_{\tilde{\mathbf{X}}_{\text{tar}}}(\cdot)$ for our Causal-EPIG- μ -G strategy.
 1894

$$I(f(\tilde{\mathbf{x}}^*); \mathbf{y}_B | \mathcal{D}_T) \leq I(f_{\tilde{\mathbf{X}}_{\text{tar}}}; \mathbf{y}_B | \mathcal{D}_T) \quad (45)$$

$$\stackrel{\text{def}}{=} \psi_{\tilde{\mathbf{X}}_{\text{tar}}}(\mathbf{B} | \mathcal{D}_T) \quad (46)$$

1895 where Eq. 45 holds because the information about a single component $f(\tilde{\mathbf{x}}^*)$ cannot exceed the
 1896 information about the entire vector $f_{\tilde{\mathbf{X}}_{\text{tar}}}$ it belongs to. Next, we bound the utility of the set \mathbf{B} using
 1897 Ass. 2. Submodularity implies that the gain from a set is no more than the sum of the marginal gains
 1898 of its individual elements (evaluated without conditioning on each other):
 1899

$$\psi_{\tilde{\mathbf{X}}_{\text{tar}}}(\mathbf{B} | \mathcal{D}_T) \leq \sum_{\tilde{\mathbf{x}}_i \in \mathbf{B}} \psi_{\tilde{\mathbf{X}}_{\text{tar}}}(\{\tilde{\mathbf{x}}_i\} | \mathcal{D}_T) \quad (47)$$

$$= \sum_{\tilde{\mathbf{x}}_i \in \mathbf{B}} I(f_{\tilde{\mathbf{X}}_{\text{tar}}}; \mathbf{y}_{\tilde{\mathbf{x}}_i} | \mathcal{D}_T) \quad (48)$$

1900 We now define the maximal marginal gain for the Global ITL strategy at step $n_T + 1$ (i.e., given \mathcal{D}_T
 1901 which has n_T points) as:
 1902

$$\Gamma_{n_T+1} \stackrel{\text{def}}{=} \max_{\tilde{\mathbf{x}} \in \tilde{\mathcal{D}}_P} I(f_{\tilde{\mathbf{X}}_{\text{tar}}}; \mathbf{y}_{\tilde{\mathbf{x}}} | \mathcal{D}_T). \quad (49)$$

1903 By definition, the gain of any individual point $\tilde{\mathbf{x}}_i$ in the sum Eq. 48 is bounded by this maximum:
 1904

$$\sum_{\tilde{\mathbf{x}}_i \in \mathbf{B}} I(f_{\tilde{\mathbf{X}}_{\text{tar}}}; \mathbf{y}_{\tilde{\mathbf{x}}_i} | \mathcal{D}_T) \leq \sum_{i=1}^{b_\epsilon} \Gamma_{n_T+1} \quad (50)$$

$$\leq b_\epsilon \cdot \Gamma_{n_T} \quad (51)$$

1905 where Eq. 51 follows if we assume the maximal marginal gain Γ_k is non-increasing, which is a direct
 1906 consequence of Assumption 2 (Hübotter et al., 2024, Thm. D.1).
 1907

1908 Combining Step 1 and Step 2 (Eq. Eq. 45 through Eq. 51), we have the intermediate bound:
 1909

$$\text{Var}[f(\tilde{\mathbf{x}}^*) | \mathcal{D}_T] \leq C_0 b_\epsilon \Gamma_{n_T} + \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + \epsilon. \quad (52)$$

1910 **Step 3: Substitute Decaying Bounds.** Now, we select a specific value for ϵ that decays with n_T .
 1911 Let $\epsilon = c \frac{\gamma_{\sqrt{n_T}}}{\sqrt{n_T}}$, for a constant c . Here, $\gamma_k \triangleq \max_{|\tilde{\mathbf{X}}| \leq k} I(f_{\tilde{\mathbf{X}}}; \mathbf{y}_{\tilde{\mathbf{X}}})$ is the pool's global information
 1912 capacity, as defined in Hübotter et al. (2024, Lem. C.16) (which corresponds to γ_r in our Lem. 2).
 1913 From Lemma 2 (which is based on Hübotter et al. (2024, Eq. 18)), this choice of ϵ ensures an AMB
 1914 exists with a size b_ϵ bounded by r . By setting $k = r = \sqrt{n_T}$, the condition $\gamma_k/k \leq \epsilon \cdot K$ (where K
 1915 is a constant) is satisfied, thus $b_\epsilon \leq \sqrt{n_T}$. Substituting $b_\epsilon \leq \sqrt{n_T}$ and the expression for ϵ into our
 1916 intermediate bound, we get:
 1917

$$\text{Var}[f(\tilde{\mathbf{x}}^*) | \mathcal{D}_T] \leq (C_0) \sqrt{n_T} \Gamma_{n_T} + \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + c \frac{\gamma_{\sqrt{n_T}}}{\sqrt{n_T}}. \quad (53)$$

1918 The term Γ_{n_T} itself must decay. We use the bound for the Global ITL strategy from Hübotter et al.
 1919 (2024, Thm. C.12). Under Ass. 2 (which implies $\alpha_n \leq 1$), this theorem provides the bound:
 1920

$$\Gamma_{n_T} \leq \frac{\gamma_{n_T}(\tilde{\mathbf{X}}_{\text{tar}}; \tilde{\mathcal{D}}_P)}{n_T} \quad (54)$$

1921 where $\gamma_{n_T}(\tilde{\mathbf{X}}_{\text{tar}}; \tilde{\mathcal{D}}_P)$ is precisely the global information capacity γ_{n_T} as defined in our Definition 1.
 1922 Substituting this bound for Γ_{n_T} into Eq. 53 resolves the term:
 1923

$$(C_0) \sqrt{n_T} \Gamma_{n_T} \leq (C_0) \sqrt{n_T} \left(\frac{\gamma_{n_T}}{n_T} \right) = C_0 \frac{\gamma_{n_T}}{\sqrt{n_T}}. \quad (55)$$

1924 Combining all the pieces, the total variance is bounded by:
 1925

$$\begin{aligned} \text{Var}[f(\tilde{\mathbf{x}}^*) | \mathcal{D}_T] &\leq C_0 \frac{\gamma_{n_T}}{\sqrt{n_T}} + \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + c \frac{\gamma_{\sqrt{n_T}}}{\sqrt{n_T}} \\ &\leq \eta_{\mathcal{D}_P}^2(\tilde{\mathbf{x}}^*) + C \frac{\gamma_{n_T}}{\sqrt{n_T}}, \end{aligned} \quad (56)$$

1944 where the final step combines all constants into a single C and leverages the structural properties of
 1945 the two capacity terms. Specifically, the term $C_0 \frac{\gamma_{n_T}}{\sqrt{n_T}}$ captures the uncertainty reduction related to
 1946 the transductive objective (\mathcal{A} -to- \mathcal{S} capacity), while $c \frac{\gamma_{\sqrt{n_T}}}{\sqrt{n_T}}$ bounds the error introduced by the AMB
 1947 approximation (related to the pool capacity). Since both terms decay at the same asymptotic rate
 1948 $\frac{1}{\sqrt{n_T}}$, the final bound is simplified to the form determined by the transductive term γ_{n_T} . In the main
 1949 paper, we use n_B for the total number of acquired samples, which corresponds to n_T here. This
 1950 completes the proof sketch for Thm. 1.

1952 G.4 IMPLICATIONS OF THE LMC KERNEL STRUCTURE

1954 The convergence rate in Thm. 1 is determined by the global information capacity γ_{n_B} . This quantity
 1955 is defined by the joint mutual information $I(f_{\tilde{\mathcal{X}}_{\text{tar}}}; y_{\tilde{\mathcal{X}}})$, which is governed by our augmented kernel \tilde{k} .
 1956 Our augmented kernel, $\tilde{k}((\mathbf{x}, t), (\mathbf{x}', t')) = \sum_{q=1}^Q (B_q)_{t, t'} \cdot k_q(\mathbf{x}, \mathbf{x}')$, explicitly models the correlation
 1957 between the potential outcome surfaces f_0 and f_1 via the off-diagonal elements of the task-correlation
 1958 matrices B_q . This has a direct and crucial consequence on the information capacity γ_{n_B} . The
 1959 information capacity γ_{n_B} is known to be sublinear, and its magnitude depends on the effective
 1960 dimensionality of the function space. Let $\mathbf{K}_{\tilde{\mathcal{D}}_P}$ be the kernel matrix for the entire augmented pool
 1961 $\tilde{\mathcal{D}}_P$. This matrix inherits a sum-of-Kronecker-products structure from \tilde{k} :

$$1963 \quad \mathbf{K}_{\tilde{\mathcal{D}}_P} = \sum_{q=1}^Q \mathbf{K}_{\mathcal{X}, q} \otimes B_q \quad (57)$$

1966 where $\mathbf{K}_{\mathcal{X}, q}$ is the kernel matrix on the covariate space \mathcal{X} for the q -th base kernel. The eigenvalues
 1967 $\lambda(\mathbf{K}_{\tilde{\mathcal{D}}_P})$ are thus a combination of the eigenvalues of the base kernels and the coregionalization
 1968 matrices. This structure has a direct, quantifiable impact on the convergence rate:

- 1970 • Independent Model (Non-Causal-Aware): If we model f_0 and f_1 independently, this is equivalent
 1971 to setting all A_q to be diagonal matrices. The information capacity $\gamma_{n_B}^{\text{indep}}$ reflects the complexity of
 1972 learning two independent functions.
- 1973 • LMC Model (Causally-Aware): If f_0 and f_1 are correlated (i.e., A_q are not diagonal), the off-
 1974 diagonal elements $(A_q)_{0,1}$ are non-zero. This correlation "compresses" the spectrum of $\mathbf{K}_{\tilde{\mathcal{D}}_P}$ and
 1975 reduces the effective dimensionality of the problem. For instance, a strong positive correlation
 1976 implies that f_0 and f_1 share a large component, reducing the "new" information needed to learn
 1977 both. In Consequence: This reduction in effective dimensionality leads to a smaller information
 1978 capacity, $\gamma_{n_B}^{\text{LMC}} < \gamma_{n_B}^{\text{indep}}$. Therefore, our causally-aware LMC model achieves a provably faster
 1979 convergence rate (a smaller $C(\gamma_{n_B}/\sqrt{n_B})$ term) than a non-causal-aware approach that models
 1980 the potential outcomes independently. This provides a formal theoretical justification for our
 1981 causally-aligned, multitask approach.

1982 G.5 CONNECTIONS TO OTHER CAUSAL STRATEGIES

1984 **1. Connection to Mean-Marginal (MM-ITL) Strategies.** The analysis in Sec. G.1-G.3 provides a
 1985 convergence guarantee for the global, joint PO-based strategy (Causal-EPIG- μ -G). This strategy is
 1986 theoretically robust as it aligns with the joint Global ITL objective. However, as discussed in App. F.2,
 1987 this global strategy can be computationally expensive. A common, more scalable alternative is the
 1988 mean-marginal (MM-ITL) strategy, which Causal-EPIG- μ -S instantiates. This strategy approximates
 1989 the joint gain as a sum of marginal gains. While we do not provide a convergence proof for this
 1990 approximate strategy, Hübötter et al. (2024, Thm. D.1) analyze it. We note that their analysis also
 1991 relies on a non-trivial assumption of non-increasing marginal gains ($\Gamma_k \geq \Gamma_{k+1}$), which, much like
 1992 our Ass. 2, is not guaranteed to hold in the general $\mathcal{A} \neq \mathcal{S}$ transductive setting.

1993 **2. The Non-Intuitive (μ vs. τ) Relationship.** The relationship between the PO-based objective
 1994 (Causal-EPIG- μ) and the CATE-based objective (Causal-EPIG- τ) is not straightforward. This
 1995 relationship can be formally understood using the Data Processing Inequality. Let (f_0, f_1) be the
 1996 joint potential outcomes for a target x^* , and $\tau = f_1 - f_0$ be the CATE. The CATE is a function (a
 1997 simple subtraction) of the joint potential outcomes. This creates an information-processing Markov

1998 chain $y_{\bar{x}} \rightarrow (f_0, f_1) \rightarrow \tau$. The Data Processing Inequality states that information cannot be created
 1999 by post-processing. Therefore, for any query $y_{\bar{x}}$:

$$I(y_{\bar{x}}; (f_0, f_1)) \geq I(y_{\bar{x}}; \tau) \quad (58)$$

2000 This inequality provides the formal basis for the "comprehensiveness-focus" trade-off:

- 2001 • The μ -strategy (LHS) always optimizes an information quantity that is greater than or equal to the
 τ -strategy (RHS).
- 2002 • This is "non-intuitive" because a query $y_{\bar{x}}$ might be highly informative about the prognostic part of
 τ (e.g., f_0) but provide little information about the difference (τ).
- 2003 • The μ -strategy would (correctly) assign high value to this query, as it reduces uncertainty about the
 τ full causal mechanism. The τ -strategy would (also correctly for its objective) assign low value,
 τ focusing only on the estimand of interest.

2004 This confirms that neither strategy is universally superior; the choice is context-dependent, as
 2005 concluded in the main paper.

2006 G.6 PROOF OF PROP. 1

2007 **Proof 1** Let \mathcal{F}_s denote the information available after s acquisition steps. Our objective, as defined
 2008 in Prop. 1, is to choose $(\mathbf{x}, t) \in D_P$ to minimize the expected model-based PEHE, $\mathbb{E}_{s+1}[\epsilon_{\text{PEHE}}^{\mathcal{M}}(\hat{\tau}_{s+1})]$.
 2009 We use $\mathbb{E}_{s+1}[\cdot]$ to denote the pre-posterior expectation $\mathbb{E}_{y \sim p(y|\mathbf{x}, t, \mathcal{F}_s)}[\cdot]$.

$$\arg \min_{(\mathbf{x}, t) \in D_P} \mathbb{E}_{s+1}[\epsilon_{\text{PEHE}}^{\mathcal{M}}(\hat{\tau}_{s+1})] \quad (59)$$

2010 The model-based error $\epsilon_{\text{PEHE}}^{\mathcal{M}}$ measures the squared error against the oracle posterior mean $\hat{\tau}_{\Omega}(\mathbf{x})$
 2011 (i.e., the posterior mean given all data, $\mathbb{E}[\tau(\mathbf{x}) | D_P]$).

$$\begin{aligned} \mathbb{E}_{s+1}[\epsilon_{\text{PEHE}}^{\mathcal{M}}(\hat{\tau}_{s+1})] &= \mathbb{E}_{s+1}\left[\mathbb{E}_{p_{\text{tar}}(\mathbf{x})}\left[(\hat{\tau}_{s+1}(\mathbf{x}) - \hat{\tau}_{\Omega}(\mathbf{x}))^2\right]\right] \\ &= \mathbb{E}_{p_{\text{tar}}(\mathbf{x})}\left[\mathbb{E}_{s+1}\left[(\hat{\tau}_{s+1}(\mathbf{x}) - \hat{\tau}_{\Omega}(\mathbf{x}))^2\right]\right] \end{aligned} \quad (\text{via Fubini's theorem}) \quad (60)$$

2012 The inner term $\mathbb{E}_{s+1}[(\hat{\tau}_{s+1} - \hat{\tau}_{\Omega})^2]$ is the expected squared error of the (Bayesian) oracle estimator.
 2013 This can be decomposed using the law of total variance. This objective simplifies to minimizing the
 2014 posterior variance of the oracle estimator $\hat{\tau}_{\Omega}(\mathbf{x})$:

$$\mathbb{E}_{s+1}[(\hat{\tau}_{s+1}(\mathbf{x}) - \hat{\tau}_{\Omega}(\mathbf{x}))^2] = \mathbb{E}_{s+1}[\text{Var}_{s+1}[\hat{\tau}_{\Omega}(\mathbf{x})]] \quad (61)$$

2015 We then apply variance decomposition to the term $\text{Var}_{s+1}[\hat{\tau}_{\Omega}(\mathbf{x})]$:

$$\text{Var}_{s+1}[\hat{\tau}_{\Omega}(\mathbf{x})] = \text{Var}_{s+1}[\tau(\mathbf{x})] - \text{Var}_{\Omega}[\tau(\mathbf{x})] \quad (62)$$

2016 Here, $\text{Var}_{\Omega}[\tau(\mathbf{x})]$ is the (constant) oracle variance after seeing all data. Substituting this back, our
 2017 objective (Eq. 59) becomes:

$$\arg \min_{(\mathbf{x}, t) \in D_P} \mathbb{E}_{p_{\text{tar}}(\mathbf{x})}\left[\mathbb{E}_{s+1}[\text{Var}_{s+1}[\tau(\mathbf{x})] - \text{Var}_{\Omega}[\tau(\mathbf{x})]]\right] \quad (63)$$

2018 Since $\text{Var}_{\Omega}[\tau(\mathbf{x})]$ is a constant term that does not depend on the choice of (\mathbf{x}, t) , it can be dropped
 2019 from the minimization:

$$\arg \min_{(\mathbf{x}, t) \in D_P} \mathbb{E}_{p_{\text{tar}}(\mathbf{x})}\left[\mathbb{E}_{s+1}[\text{Var}_{s+1}[\tau(\mathbf{x})]]\right] \quad (64)$$

2020 For a GP, the posterior variance $\text{Var}_{s+1}[\cdot]$ is a deterministic function of the query point (\mathbf{x}, t) and
 2021 the existing data D_T . It does not depend on the (random) future outcome y . Therefore, $\text{Var}_{s+1}[\tau(\mathbf{x})]$
 2022 is a constant with respect to the expectation \mathbb{E}_{s+1} (which is \mathbb{E}_y). Applying this to Eq. 64, the inner
 2023 expectation $\mathbb{E}_{s+1}[\text{Var}_{s+1}[\tau(\mathbf{x})]]$ simplifies to just $\text{Var}_{s+1}[\tau(\mathbf{x})]$. The objective thus simplifies to:

$$\arg \min_{(\mathbf{x}, t) \in D_P} \mathbb{E}_{p_{\text{tar}}(\mathbf{x})}\left[\text{Var}_{s+1}[\tau(\mathbf{x})]\right] \quad (65)$$

2024 Finally, we expand the variance term using its definition $\tau(\mathbf{x}) = f(\mathbf{x}, 1) - f(\mathbf{x}, 0)$.

2052
2053

G.6.1 CONNECTION TO THE CAUSAL-EPIG FRAMEWORK

2054
2055
2056
2057
2058

Prop. 1 shows that under the GP and model-based error assumptions, the optimization target simplifies to minimizing the integrated posterior CATE variance. The Causal-EPIG framework aligns with the objective from Prop. 1 by providing two principled strategies that correctly account for the joint posterior structure. Both strategies maximize a proxy objective based on mutual information, which is equivalent to maximizing the expected reduction in posterior entropy.

2059
2060

Causal-EPIG- μ (Comprehensive Strategy) This strategy maximizes the joint information gain:

2061
2062

$$\arg \max \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; (f(\mathbf{x}^*, 0), f(\mathbf{x}^*, 1)))]. \quad (66)$$

2063
2064
2065
2066

This is equivalent to maximizing the expected reduction in the joint entropy $H(f(\mathbf{x}^*, 0), f(\mathbf{x}^*, 1))$. For Gaussian processes, $H \propto \log(\det(\Sigma))$. Since $\det(\Sigma)$ depends on the covariance term, this objective directly targets the full joint uncertainty. It aligns with Prop. 1 by addressing the underlying components from which $\text{Var}[\tau]$ is constructed.

2067
2068
2069

Causal-EPIG- τ (Focused Strategy) This strategy maximizes the information gain of the estimand itself:

2070
2071

$$\arg \max \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; \tau(\mathbf{x}^*))]. \quad (67)$$

2072
2073
2074
2075
2076
2077

This is equivalent to minimizing the expected posterior CATE entropy, $\arg \min \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\mathbb{E}_y [\text{H}_{s+1}(\tau(\mathbf{x}^*))]]$. For Gaussian posteriors, $H(\tau) \propto \log(\text{Var}[\tau])$. Under the GP assumption, Var_{s+1} is deterministic w.r.t. y , so $\mathbb{E}_y [\log(\text{Var}_{s+1})] = \log(\text{Var}_{s+1})$. The objective for Causal-EPIG- τ therefore simplifies to:

$$\arg \min_{(\mathbf{x}, t) \in \mathcal{D}_P} \mathbb{E}_{p_{\text{tar}}(\mathbf{x})} [\log(\text{Var}_{s+1}[\tau(\mathbf{x})])]. \quad (68)$$

2078
2079
2080
2081
2082
2083
2084

This is a principled proxy for the objective from Prop. 1, which targets the variance Var_{s+1} itself, not its logarithm. While not mathematically equivalent (by Jensen's inequality), it is a closely related information-theoretic criterion that minimizes a measure of posterior uncertainty. This strategy aligns with Prop. 1 by targeting the final quantity of interest. Both Causal-EPIG strategies are principled and aligned with the true CATE optimization objective derived from Prop. 1. They provide a trade-off between targeting the full causal mechanism (Causal-EPIG- μ) and directly targeting the final estimand (Causal-EPIG- τ).

2085
2086

G.7 EFFICIENCY COMPARISONS BETWEEN CAUSAL-EPIG AND CAUSAL-BALD

2087
2088
2089
2090

Proposition 2 Assume that, for any target covariate \mathbf{x}^* , both the potential outcomes $(y^*(0), y^*(1))$ and the CATE $\tau(\mathbf{x}^*)$ are deterministic functions of the model parameters (or corresponding parameter subsets). Then the parameter-oriented information utilities upper-bound their prediction-oriented counterparts:

2091
2092
2093

$$(a) \text{ Causal-BALD} - \mu(\mathbf{x}, t) \geq \text{Causal-EPIG} - \mu(\mathbf{x}, t), \quad (69)$$

$$(b) \text{ Causal-EIG}(\mathbf{x}, t) \geq \text{Causal-EPIG} - \tau(\mathbf{x}, t). \quad (70)$$

2094
2095
2096
2097

Both inequalities follow from the Data Processing Inequality (DPI). Equality holds iff the prediction quantity $(y^*(0), y^*(1))$ or $\tau(\mathbf{x}^*)$ is a sufficient statistic for the corresponding parameter; otherwise the inequalities are strict.

2098
2099

Proof 2 Let the updated training dataset be $D'_T = D_T \cup \{(\mathbf{x}, t)\}$. The four utility function can be written as

2100
2101
2102
2103
2104
2105

$$\begin{aligned} \text{Causal-BALD} - \mu(\mathbf{x}, t) &:= \text{I}(y; \theta \mid D'_T), \\ \text{Causal-EPIG} - \mu(\mathbf{x}, t) &:= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; (y^*(0), y^*(1)) \mid \mathbf{x}^*, D'_T)], \\ \text{Causal-EIG}(\mathbf{x}, t) &:= \text{I}(y; \theta_\tau \mid D'_T), \\ \text{Causal-EPIG} - \tau(\mathbf{x}, t) &:= \mathbb{E}_{p_{\text{tar}}(\mathbf{x}^*)} [\text{I}(y; \tau(\mathbf{x}^*) \mid \mathbf{x}^*, D'_T)]. \end{aligned}$$

2106 (a) **Proof of** Causal-BALD $- \mu \geq$ Causal-EPIG $- \mu$. Since $(y^*(0), y^*(1))$ is a deterministic function
 2107 of θ , conditioning on $\{\mathbf{x}^*, D'_T\}$ yields the Markov chain $y \rightarrow \theta \rightarrow (y^*(0), y^*(1))$. By the data
 2108 processing inequality, we have

$$2109 \quad I(y; \theta | \mathbf{x}^*, D'_T) \geq I(y; (y^*(0), y^*(1)) | \mathbf{x}^*, D'_T). \quad (71)$$

2110 The left-hand side is independent of \mathbf{x}^* :

$$2111 \quad I(y; \theta | \mathbf{x}^*, D'_T) = I(y; \theta | D'_T) = \text{Causal-BALD} - \mu(\mathbf{x}, t). \quad (72)$$

2112 Taking expectation over $\mathbf{x}^* \sim p_{\text{tar}}$ gives

$$2113 \quad \text{Causal-BALD} - \mu(\mathbf{x}, t) \geq \text{Causal-EPIG} - \mu(\mathbf{x}, t). \quad (73)$$

2114 (b) **Proof of** Causal-EIG \geq Causal-EPIG $- \tau$.

2115 Since $\tau(\mathbf{x}^*)$ is a deterministic function of θ_τ , conditioning on $\{\mathbf{x}^*, D'_T\}$ gives the Markov chain
 2116 $y \rightarrow \theta_\tau \rightarrow \tau(\mathbf{x}^*)$. By the data processing inequality, we have

$$2117 \quad I(y; \theta_\tau | \mathbf{x}^*, D'_T) \geq I(y; \tau(\mathbf{x}^*) | \mathbf{x}^*, D'_T). \quad (74)$$

2118 Again, the LHS does not depend on \mathbf{x}^* :

$$2119 \quad I(y; \theta_\tau | \mathbf{x}^*, D'_T) = I(y; \theta_\tau | D'_T) = \text{Causal-EIG}(\mathbf{x}, t). \quad (75)$$

2120 Taking expectation over $\mathbf{x}^* \sim p_{\text{tar}}$ yields

$$2121 \quad \text{Causal-EIG}(\mathbf{x}, t) \geq \text{Causal-EPIG} - \tau(\mathbf{x}, t). \quad (76)$$

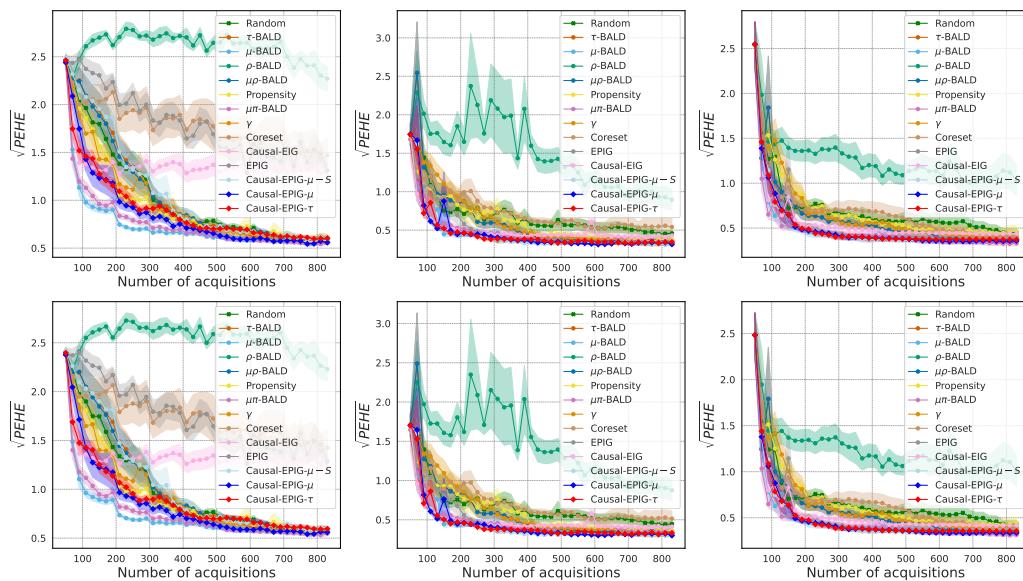
2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160 H FURTHER EXPERIMENTAL RESULTS

2165 In this section, we provide a comprehensive set of supplementary experimental results to complement
 2166 our main findings. First, we present additional performance curves and detailed metrics for our
 2167 primary experiments on the synthetic (Hahn, Causal-BALD) and semi-synthetic (IHDP, ACTG-175)
 2168 benchmarks. Second, we conduct a series of ablation studies to analyze the robustness of our Causal-
 2169 EPIG framework. These studies, conducted primarily on the Hahn simulation dataset, evaluate the
 2170 impact of varying initial random starts, acquisition batch sizes, and the size of the unlabeled pool.

2171
 2172
 2173
 2174
 2175
2176 Analysis of CausalBALD Dataset. The results on the CausalBALD synthetic dataset, presented in
 2177 Fig. 12 (regular setup) and Fig. 13 (shift setup), demonstrate the effectiveness of the Causal-EPIG
 2178 framework, which shows the top-tier performance compared with all baseline methods.

2184 H.1 CAUSALBLAD DATASET



2210
 2211 Figure 12: Performance comparison on the CausalBALD synthetic dataset with the regular setup.
 2212 Each plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the number of acquired samples. Rows
 2213 distinguish between the training performance (top) and the testing performance (bottom). Columns
 correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.

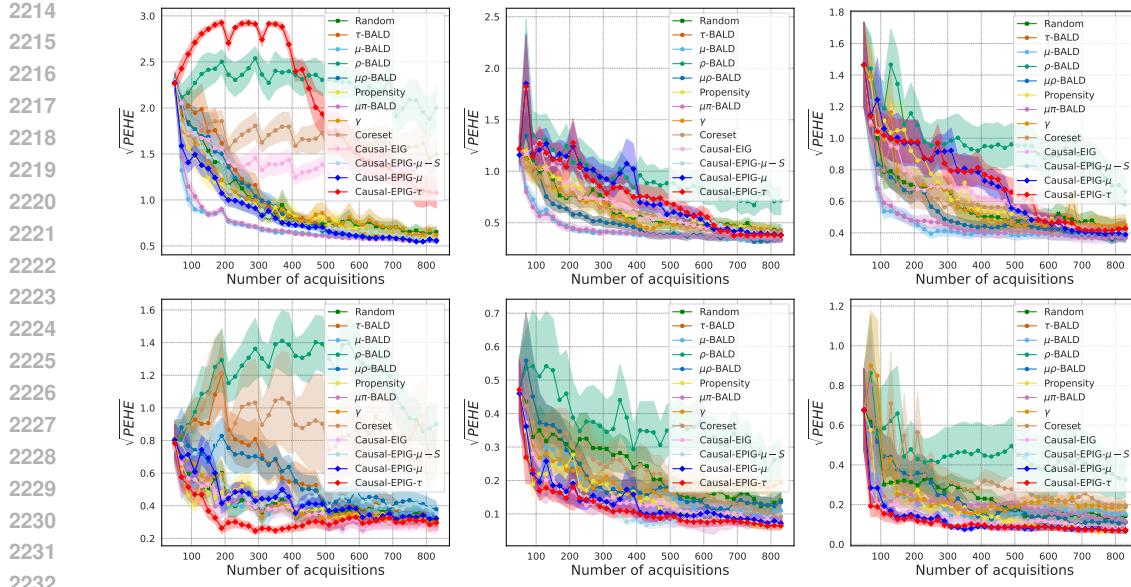


Figure 13: Performance comparison on the CausalBALD synthetic dataset with the target distribution shift setup. Each plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the number of acquired samples. Rows distinguish between the training performance (top) and the testing performance (bottom). Columns correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.

H.2 HAHN DATASET

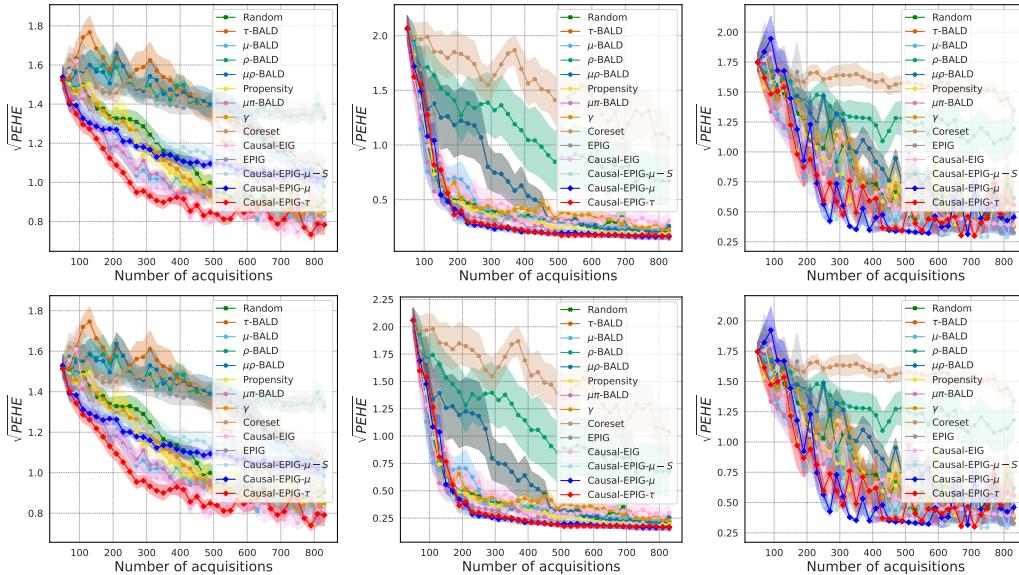
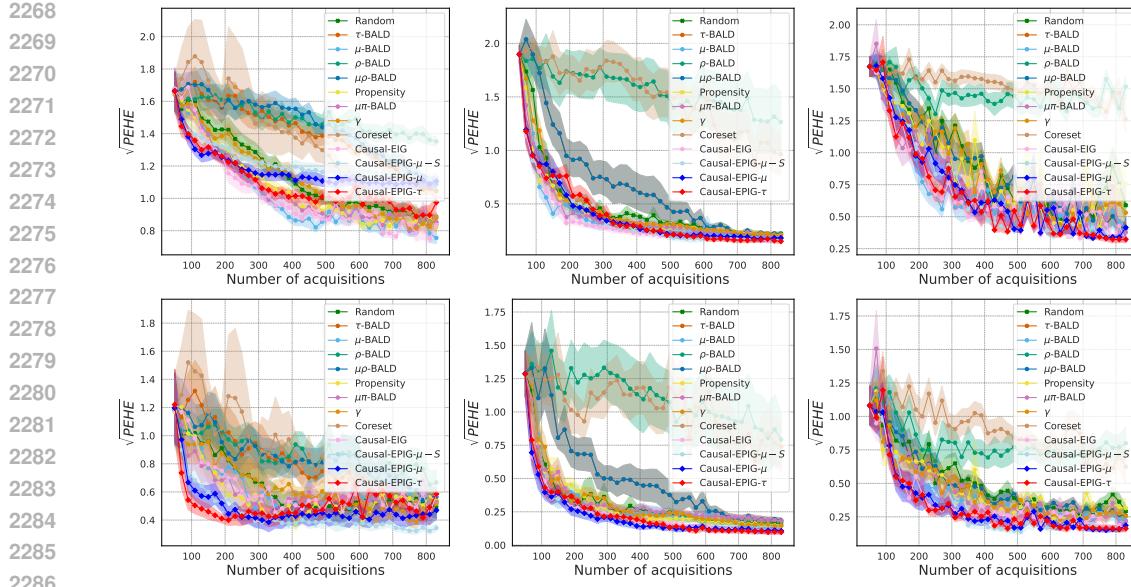
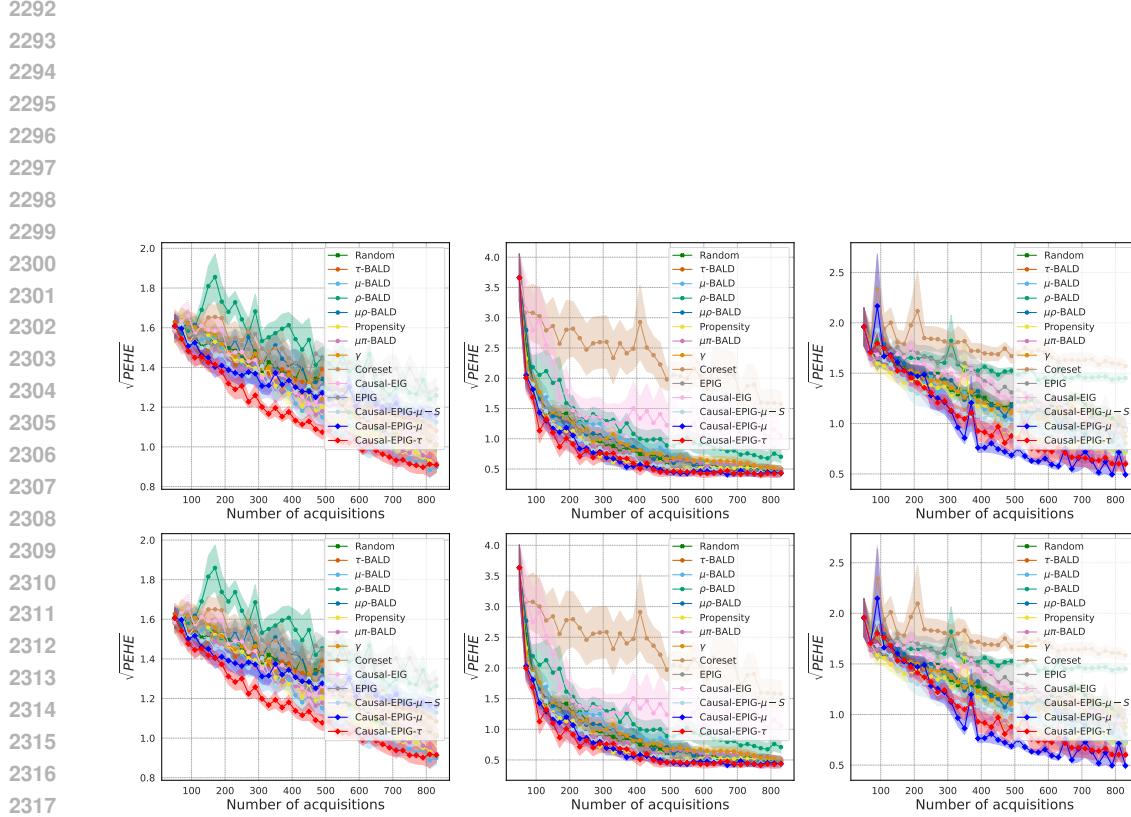


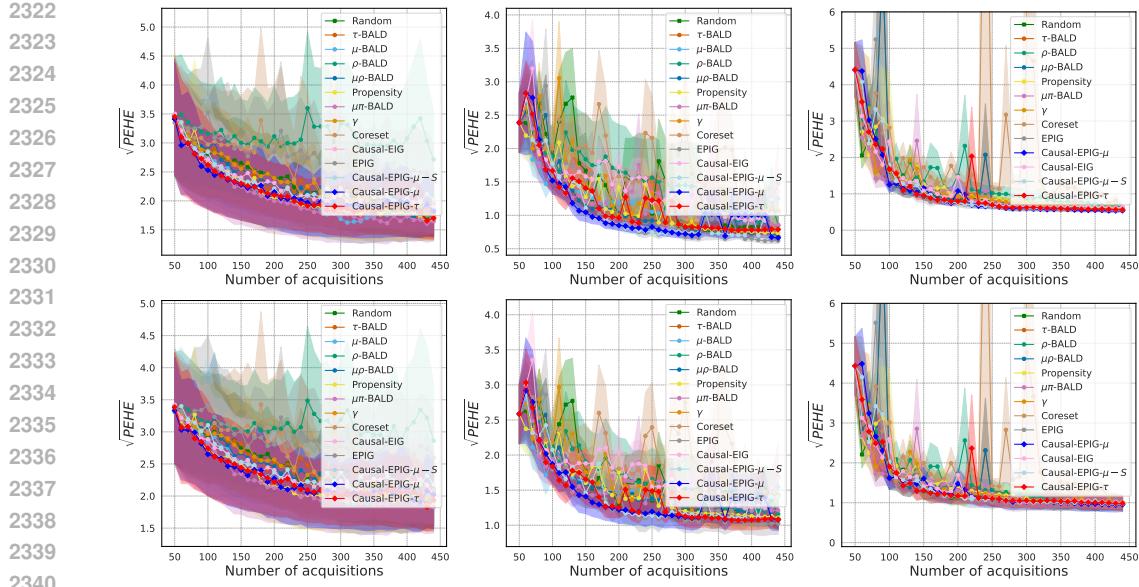
Figure 14: Performance comparison on the Hahn (linear function) synthetic dataset with the regular setup. Each plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the number of acquired samples. Rows distinguish between the training performance (top) and the testing performance (bottom). Columns correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.



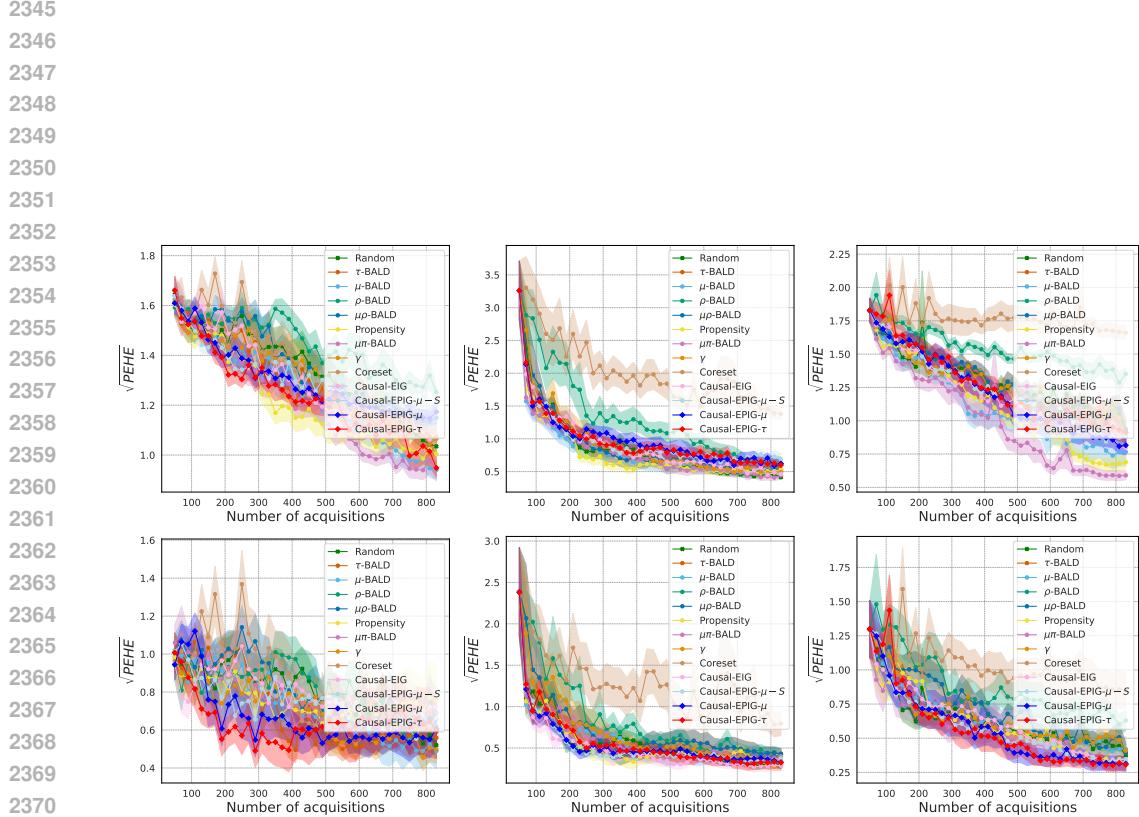
2287 Figure 15: Performance comparison on the Hahn (linear function) synthetic dataset with the target
 2288 distribution shift setup. Each plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the number
 2289 of acquired samples. Rows distinguish between the training performance (top) and the testing
 2290 performance (bottom). Columns correspond to the three different underlying CATE estimators: BCF,
 2291 CMGP, and NSGP.



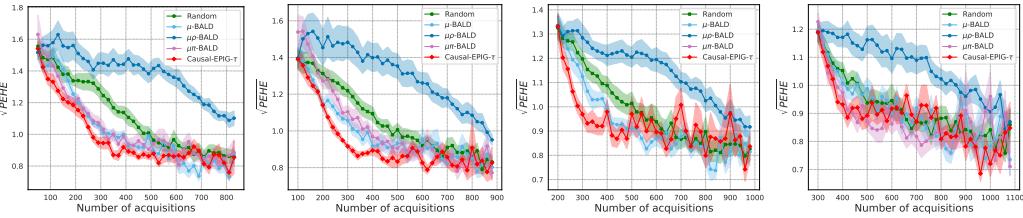
2319 Figure 16: Performance comparison on the Hahn (nonlinear function) synthetic dataset with regular.
 2320 Each plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the number of acquired samples. Rows
 2321 distinguish between the training performance (top) and the testing performance (bottom). Columns
 correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.



2341 Figure 18: Performance comparison on the IHDP semi-synthetic dataset with the regular setup. Each
 2342 plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the number of acquired samples. Rows
 2343 distinguish between the training performance (top) and the testing performance (bottom). Columns
 2344 correspond to the three different underlying CATE estimators: BCF, CMGP, and NSGP.

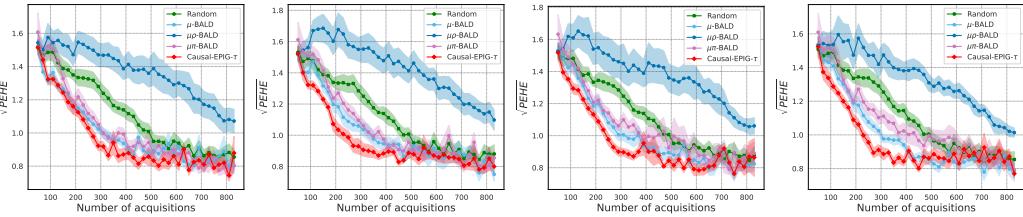


2372 Figure 17: Performance comparison on the Hahn (nonlinear function) synthetic dataset with the
 2373 target distribution shift setup. Each plot shows the $\sqrt{\text{PEHE}}$ (lower is better) as a function of the
 2374 number of acquired samples. Rows distinguish between the training performance (top) and the testing
 2375 performance (bottom). Columns correspond to the three different underlying CATE estimators: BCF,
 CMGP, and NSGP.

2430 **H.5 ABLATION STUDIES**
24312432 **H.5.1 DIFFERENT STARTING POINTS**
2433

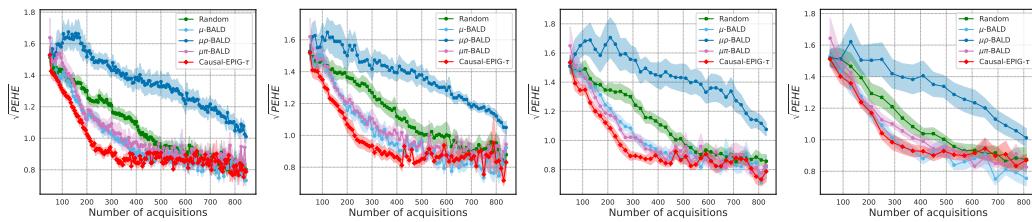
2435 **Figure 21: Ablation study on the impact of the **warm-start size**.** Performance ($\sqrt{\text{PEHE}}$) is evaluated
2436 on the Hahn (linear) dataset using the BCF base estimator. Each panel shows the result for a different
2437 number of initial random samples used for the warm-start. From left to right: 50, 100, 200, and 300
2438 initial samples.
2439

2440 **Ablation Study: Sensitivity to Warm-Start Size.** To assess the robustness of our method to the
2441 size of the initial random batch, we conduct an ablation study on the warm-start phase. We vary the
2442 number of initial samples from 50 to 300 on the Hahn (linear) dataset with the BCF estimator, with
2443 results shown in Fig. 21. The key finding is that the superior performance of **Causal-EPIG** is robust
2444 to the choice of the warm-start size. Across all four settings, our method consistently outperforms the
2445 included baselines, establishing a clear performance advantage early in the acquisition process and
2446 maintaining it. While a larger warm-start set leads to a better initial model and lower starting PEHE
2447 for all methods, the relative performance ranking remains unchanged. This demonstrates that the
2448 effectiveness of our acquisition strategy is not highly sensitive to this hyperparameter, highlighting its
2449 practical stability.
2450

2451 **H.5.2 DIFFERENT POOL SIZES**
2452

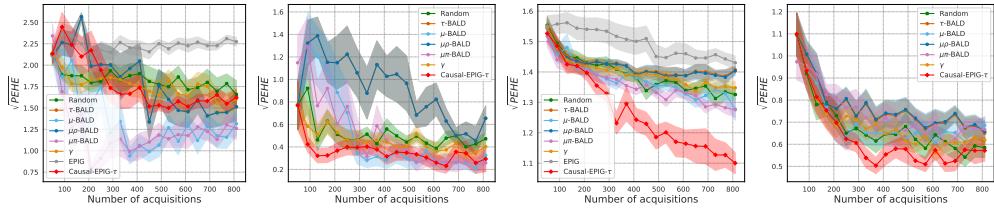
2453 **Figure 22: Ablation study on the impact of the **unlabeled pool size**.** Performance ($\sqrt{\text{PEHE}}$) is evaluated
2454 on the Hahn (linear) dataset using the BCF base estimator. Each panel shows the result for a different initial size of the unlabeled pool D_P . From left to right: $|D_P| = 1000, 1500, 2000$, and
2455 2500 .
2456

2457 **Ablation Study: Sensitivity to Pool Size.** We investigate the sensitivity of our method to the size
2458 of the unlabeled pool from which candidates are selected. In Fig. 22, we vary the initial pool size
2459 $|D_P|$ from 1000 to 2500, while keeping the dataset and base model fixed. The results clearly show
2460 that the performance advantage of **Causal-EPIG** is robust across different pool sizes. In all four
2461 configurations, our method consistently and significantly outperforms the baselines. We observe
2462 that a larger pool provides a modest performance benefit to all active methods, including our own,
2463 as it increases the diversity of candidates available for selection. Crucially, however, the relative
2464 performance ordering remains stable, and the superiority of **Causal-EPIG** holds regardless of the
2465 pool size. This study demonstrates that our target-aware selection strategy is a fundamental advantage,
2466 not an artifact of a specific data environment.
2467

2484
2485 H.5.3 DIFFERENT STEP SIZES
2486
2487
2488
2489
2490
2491
2492
2493

2494 Figure 23: Ablation study on the **acquisition batch size** (n_b). Performance ($\sqrt{\text{PEHE}}$)
2495 is evaluated on the Hahn (linear) dataset using the BCF base estimator. Each panel shows the result
2496 for a different number of samples acquired per round. From left to right: $n_b = 5, 10, 20$, and 40 .

2497
2498 **Ablation Study: Sensitivity to Batch Size.** Finally, we analyze the effect of the acquisition
2499 batch size, n_b , a key hyperparameter in the active learning loop. Fig. 23 shows the performance
2500 as we vary the number of samples acquired per round from 5 to 40. The primary finding is that
2501 **Causal-EPIG** consistently outperforms all baselines across every batch size tested, demonstrating
2502 its robust superiority regardless of this hyperparameter choice. We also observe a trend common in
2503 active learning: smaller, more frequent acquisition batches (e.g., $n_b = 5$) tend to yield slightly better
2504 final performance for all active methods. This is because more frequent model updates allow for
2505 more responsive and adaptive sample selection. Nevertheless, the relative performance advantage of
2506 **Causal-EPIG** is maintained across all settings, confirming the robustness of our approach.

2507
2508 H.5.4 DUE ESTIMATOR
2509
2510
2511
2512
2513
2514
2515
2516

2517 Figure 24: Performance comparison using the **Deep Variational GP estimator** from the original
2518 CausalBALD study (Jesson et al., 2021). Each panel shows the $\sqrt{\text{PEHE}}$ on a different dataset. From
2519 left to right: CausalBALD, CausalBALD with distribution shift, Hahn (linear), Hahn (linear) with
2520 distribution shift.

2521
2522 **Analysis with the DeepGP Base Estimator.** To ensure a direct and fair comparison with the
2523 original CausalBALD study, we conduct a final experiment using the specific Deep Variational GP
2524 estimator proposed in their work. The results across our four benchmark datasets (in the standard
2525 setting) are shown in Fig. 24. The findings are remarkably consistent with our main results. **Causal-
2526 EPIG** demonstrates robustly superior performance across the diverse set of datasets. It achieves the
2527 fastest error reduction on the CausalBALD and IHDP benchmarks and shows a clear advantage on the
2528 Hahn (linear) dataset. While the Hahn (non-linear) setting proves challenging for all methods when
2529 paired with this estimator, **Causal-EPIG** remains a top-tier performer. This provides compelling
2530 evidence that the effectiveness of **Causal-EPIG** is not tied to a specific model architecture (such as
2531 the standard GPs or BCF used in our main experiments). Its principled, target-aware design provides
2532 significant performance gains across a variety of Bayesian CATE estimators, confirming its flexibility
2533 and general applicability.

2534
2535
2536
2537