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Abstract

Video Scene Graph Generation (VidSGG) aims to represent
dynamic visual content by detecting objects and modeling
their temporal interactions as structured graphs. Prior stud-
ies typically target either coarse-grained box-level or fine-
grained panoptic pixel-level VidSGG, often requiring task-
specific architectures and multi-stage training pipelines. In
this paper, we present UNO (UNified Object-centric VidSGG),
a single-stage, unified framework that jointly addresses both
tasks within an end-to-end architecture. UNO is designed
to minimize task-specific modifications and maximize pa-
rameter sharing, enabling generalization across different
levels of visual granularity. The core of UNO is an extended
slot attention mechanism that decomposes visual features
into object and relation slots. To ensure robust temporal
modeling, we introduce object temporal consistency learn-
ing, which enforces consistent object representations across
frames without relying on explicit tracking modules. Addi-
tionally, a dynamic triplet prediction module links relation
slots to corresponding object pairs, capturing evolving in-
teractions over time. We evaluate UNO on standard box-level
and pixel-level VidSGG benchmarks. Results demonstrate
that UNO not only achieves competitive performance across
both tasks but also offers improved efficiency through a uni-
fied, object-centric design.

1. Introduction

Video Scene Graph Generation (VidSGG) aims to extract
structured, dynamic representations from videos by mod-
eling objects as nodes and their pairwise interactions as
edges in spatio-temporal graphs. These structured repre-
sentations offer both interpretability and compositionality,
making VidSGG a critical component in various downstream
tasks such as video understanding [19, 43, 51, 60], video
reasoning [38, 65] and robotic reasoning [57].
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Figure 1. UNO. We introduce UNO, a unified framework for box-
level VidSGG (DSGG) and pixel-level VidSGG (PVSG) settings.

Current VidSGG research primarily follows two direc-
tions, distinguished by the level of visual granularity: box-
level VidSGG (also referred to as Dynamic Scene Graph Gen-
eration or DSGG) [19, 27, 34, 47, 49], and panoptic pixel-
level VidSGG (also known as Panoptic Video Scene Graph
Generation or PVSG) [52, 59, 60]. The former focuses on
coarse-grained object representations using bounding boxes
and typically models relationships at the frame level. The
latter provides fine-grained, pixel-level representations using
panoptic segmentation masks, where object trajectories are
treated as graph nodes and interactions—including object-
object and object-background—are captured throughout the
video. Importantly, PVSG emphasizes the temporal consis-
tency of object identities across frames.

In scenarios requiring multi-level scene understanding,
a unified VidSGG model capable of handling both tasks
is highly desirable. Such a model could flexibly adapt to
diverse visual representations and support a wider range
of applications without task-specific architectural redesign.
However, achieving this unification is non-trivial due to the
differing structural assumptions, temporal modeling require-
ments, and visual encoding strategies inherent to each task.
Prior attempts have relied on multi-stage pipelines involv-
ing either box-level or pixel-level representation, followed
by a tracking module [27, 36, 50, 60, 62], which introduce
significant computational overhead and often result in sub-
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Table 1. Comparison of different models on VidSGG tasks.

Methods One-stage Granularity-level Temporal-level

Box Pixel Frame Tracklet

STTran [8] ICCV’21 ✗ ✓ ✗ ✓ ✗
APT [27] CVPR’22 ✗ ✓ ✗ ✓ ✗
TEMPURA [34] CVPR’23 ✗ ✓ ✗ ✓ ✗
PVSG [60] CVPR’23 ✗ ✗ ✓ ✓ ✓
OED [49] CVPR’24 ✓ ✓ ✗ ✓ ✗
MCL [36] AAAI’25 ✗ ✗ ✓ ✓ ✓
DIFFVSGG [3] CVPR’25 ✗ ✓ ✗ ✓ ✗
VISA [28] CVPR’25 ✗ ✓ ✗ ✓ ✗

UNO (Ours) ✓ ✓ ✓ ✓ ✓

optimal performance due to decoupled learning and limited
parameter sharing. On the other hand, designing a unified,
end-to-end solution encounters the core challenge of learn-
ing a semantically consistent spatio-temporal representation
that generalizes across varying levels of granularity while
remaining aligned with the underlying video dynamics.

Beyond spatial granularity, VidSGG approaches also dif-
fer in their temporal-level representations, which can be
broadly categorized into frame-level [8, 27, 34, 49] and
tracklet-level [36, 60] methods. Frame-level methods con-
struct scene graphs independently at each frame, aligning
naturally with box-level VidSGG, but often fall short in
modeling long-term interactions and maintaining temporal
consistency. In contrast, tracklet-level methods are more
accurate because they link object instances across frames
to capture temporal dynamics explicitly, a strategy more
common in pixel-level VidSGG. This lack of temporal gener-
ality hinders their ability to capture coherent and continuous
scene dynamics—especially in applications requiring both
fine-grained relationship modeling and long-range temporal
reasoning. A detailed comparison of UNO with prior works
is presented in Tab. 1.

To address this challenge, we propose UNO, a unified,
object-centric, single-stage VidSGG framework that effec-
tively supports both box-level and pixel-level tasks. Fig. 1
illustrates the overall concept of UNO. Our central hypothesis
is that despite their differences, DSGG and PVSG share a
common semantic context in object-centric representation
which making it well-suited for such modeling. At the heart
of UNO is an extended slot attention mechanism [31] that
decomposes visual feature maps into compact object and
relation slots. These slots serve as modular building blocks
and form a shared latent representation space across both
tasks. To ensure temporal consistency, we introduce object
temporal consistency learning, which enforces the alignment
of object slots across frames without the need for explicit
tracking. Furthermore, we propose a dynamic triplet pre-
diction module that efficiently associates relation slots with
subject–object pairs while reducing redundancy in the pre-
dicted triplets.

We validate UNO on two standard benchmarks: Action
Genome [19] for DSGG task and PVSG [60] for PVSG task.
Experimental results show that UNO consistently outperforms

state-of-the-art (SOTA) methods in both accuracy and com-
putational efficiency. While UNO builds on prior concepts
such as slot attention and temporal contrastive consistency,
our key contribution lies in recontextualizing and integrat-
ing them into a unified, one-stage framework specifically
designed for VidSGG. To the best of our knowledge, UNO is
among the first approaches to jointly address both box-level
and pixel-level VidSGG within an object-centric paradigm.

2. Related Works

Video Scene Graph Generation (VidSGG). VidSGG is
an extension of Scene Graph Generation [2] that analyses
videos to identify objects and their relationships, represent-
ing this information as a structured graph to support high-
level video understanding tasks [38, 41, 43, 51, 57, 65].
Researchers have explored how VidSGG can be leveraged
on different granularities of video content, from coarse
bounding boxes [8, 9, 19, 29, 47] to fine-grained panop-
tic masks [52, 59, 60], to represent dynamic interactions
among objects with varying levels of precision. In fact, the
literature has largely diverged into two directions:

Dynamic Scene Graph Generation–DSGG [8, 9, 19, 29,
47] adopts the box-level approach to VidSGG that involves
detection and tracking of object instances, capturing both
spatial and temporal relationships to form graphs. In partic-
ular, Action Genome [19] supports DSGG with bounding
boxes, relationship labels, and actions of human-object in-
teractions. Various strategies have been proposed to predict
objects and classify their pair-wise relationships [8, 9, 29].
Recently, OED [49] reformulates DSGG as a set prediction
problem on object boxes, and leverages pair-wise features
to represent each subject-object pair within the scene graph.
We refer to this as box-level VidSGG.

Video Panoptic Scene Graph Generation–PVSG [52,
59, 60] requires nodes in scene graphs to be grounded by
precise, pixel-level segmentation masks to facilitate fine-
grained scene understanding. In the PVSG benchmark [60],
frames in a video are assigned with panoptic masks that pro-
vide pixel-level detail of object and background boundaries,
where methods [52, 60] have had to capture both evolving
object-background interactions and object-object interac-
tions to create a cohesive, dynamic scene graph representa-
tion. We refer to this as pixel-level VidSGG.

Interestingly, VidSGG strategies are often multi-stage
pipelines [8, 9, 29, 47, 52, 59], while OED [49] recently pio-
neered a one-stage VidSGG approach for DSGG, eliminating
the need for external tracking or multi-stage optimization.
Although OED could not be directly adopted into PVSG, it
highlights an important design consideration for stable learn-
ing and efficient end-to-end VidSGG modeling. Building
on this insight, our research introduces a novel one-stage
framework that unifies dynamic scene graph generation for
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both DSGG and PVSG in videos, setting it apart from prior
approaches.

Object-centric Representation Learning. Object-centric
representation learning has been adopted to focus on enti-
ties [23, 35, 38, 44, 58] that are directly meaningful for study
predictions. It is employed to uncover modular structures
and independent mechanisms, such as objects and their rela-
tionships, from multi-object visual inputs [21, 40, 63]. Con-
ventional models rely on object-/region-specific priors to fa-
cilitate reasoning and comprehension [35, 44, 58, 64]. Mean-
while, recent works have leveraged slot attention [23, 31, 40]
to facilitate object-centric representations from raw scene
features or for embodied and robotic features [7, 15]. In
particular, slot attention has used GRU [6] and competitive
attention mechanisms to bind to modular structures in the
input [21, 31], potentially maintaining them through time
for video understanding [40]. However, only a few studies
have been done to consider an object-centric perspective for
VidSGG besides straightforward visual detection, despite
how it can consistently disentangle object semantics from
general scene details. In this work, our research aims to
extend their utility to capture objects’ modular structures
and relationships for a unified VidSGG.

3. Methodology
3.1. Preliminary and Motivation
In this subsection, we first introduce the definition and no-
tation for existing VidSGG tasks, covering both DSGG and
PVSG. We then explain how these tasks can be unified
through our proposed one-stage framework, UNO.

Current VidSGG tasks. Given a video V = ⟨I1, . . . , IT ⟩
of T frames, where each frame It ∈ RHin×Win×3,
VidSGG aims to produce a sequence of scene graphs G =
⟨G1, . . . , GT ⟩, where each Gt represents the scene graph
for frame It. Each Gt consists of triplets and is defined as
Gt = {subject, relation, object}. The goal is to model the
conditional probability P(G | V). To simplify, existing
methods [27] reformulate this as predicting detected objects
and their pairwise relations.

P(G | V) = P(B,O,R | V). (1)

Here, B = ⟨B1, . . . ,BT ⟩ is the set of bounding boxes for
entire video V , where Bt = {B1, . . . , BMt} is the set of
bounding boxes of Mt objects in the t-frame. Similarly,
O = ⟨O1, . . . ,OT ⟩ is the set of object labels for entire
video V , where Ot = {O1, . . . , OMt

} is the set of object
labels for the t-frame. R = ⟨R1, . . . ,RT ⟩ is the set of
relation for entire video V , where Rt = {R1, . . . , RL} is
the set of relations for the t-frame. This approach is termed
as coarse-grained box-level VidSGG task (DSGG [19]), and
the conditional probability is factorized as follows:

P (G | V) = P (GDSGG | V)

= P (B | V)P (O | B,V)P (R | O,B,V) .
(2)

A prior study [60] extended this formulation to handle the
fine-grained pixel-level VidSGG by replacing the bounding
boxes B with mask tubes M, which represent each object
in the entire video. This leads to the formulation: P(G |
V) = P(M,O,R | V). We refer to this as the fine-grained
pixel-level VidSGG task (PVSG [60]), and the conditional
probability is factorized as follows.

P (G | V) = P (GPVSG | V)

= P (M | V)P (O | M,V)P (R | O,M,V) .
(3)

where M = ⟨m1,m2, . . . ,mMobj+Mbg
⟩ refers to the list of

non-overlapping binary mask tubes of each object, where
Mobj and Mbg is the number of objects and background
appear in the video. For object i, the mask tube mi ∈
{0, 1}T×Hin×Win collects all tracked masks in each frame.

Unifying VidSGG tasks. Given the current formulations of
DSGG in Eq.2 and PVSG in Eq.3, the primary distinction
lies in their temporal granularity. DSGG operates at the
frame level, where Ot denotes the set of objects detected
within each individual frame, and thus does not enforce tem-
poral consistency across frames. In contrast, PVSG lever-
ages mask tubes, which inherently depend on maintaining
object consistency throughout the video. A naı̈ve approach
to unifying VidSGG would result in a multi-stage pipeline of
suboptimal performance and computational cost due to dif-
ferent modeling strategies in each task and stage. To address
this challenge, in this work, we consider two VidSGG tasks
through a unified perspective and propose a framework to di-
rectly model P (G | V) such that G = {GDSGG or GPVSG}
in an end-to-end training and inference manner. The pri-
mary challenge of our research lies in maintaining unified,
spatio-temporal representations that align with video dynam-
ics across both tasks, which we propose to address through
an object-centric design, equipped with an object temporal
consistency learning mechanism, ensuring a consistent and
structured representation of objects and their relationships
throughout the video sequence.

Design Principles. UNO follows three key principles. First, it
is a one-stage unified framework that minimizes task-specific
modifications and multi-stage processing while maximizing
parameter sharing through object-centric representation. Sec-
ond, it establishes a strong baseline for diverse VidSGG tasks
by reducing computational cost compared to multi-stage
methods without sacrificing performance. Finally, instead of
fusing bounding boxes and masks at the output level, UNO
employs a unified object-centric representation using Slot
Attention, where object and relation slots serve as shared
latent features and feed into task-specific heads for bounding
box or panoptic mask prediction.
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Figure 2. UNO Framework. Our architecture is powered with slot attention to efficiently decompose visual features into object and relation
slots. The slots are also enabled with object temporal consistency learning to encourage their tracking through time. Finally, a dynamic
triplet prediction module is integrated to align relation slots with their corresponding object slots, thereby obtaining the triplets of interest.

3.2. UNO Architecture
An overview of UNO is in Fig. 2. First, we utilize a frozen
pre-trained visual encoder to extract feature maps from the
last layer of each video frame. Next, we apply Slot Atten-
tion [31] to decompose these feature maps into modular slots,
effectively capturing both object and relation representations.
These slots serve as shared latent features and are passed
through a task-specific prediction head–either for bounding
boxes or for panoptic masks. To ensure spatio-temporal con-
sistency, we introduce object temporal consistency learning,
reinforcing stable slot features across the video. Finally, we
propose a dynamic triplet prediction mechanism that asso-
ciates relation slots with their corresponding object pairs.
Integrated into our end-to-end framework, this mechanism
minimizes redundancy in triplet prediction while enhancing
model efficiency.

3.2.1. Visual Encoding
First, we employ a frozen, pre-trained vision model as the
Visual Encoder, where the last-layer feature map encodes
rich object cues [1, 10, 37, 45, 48], providing a spatial prior
for learning object positions at varying granularities. Given
a frame It, we extract its feature map ft ∈ RHenc×Wenc×Denc ,
where Henc and Wenc denote the spatial dimensions, and
Denc represents the feature channel size.

Although pre-trained feature maps capture rich object
information, they often entangle semantics, grouping similar
objects [10, 48]. To address this, a decomposition module
is essential for disentangling these features into distinct se-
mantics, enabling precise object and relation predictions for
triplet construction.

3.2.2. Object Decomposition
We employ Slot Attention [31], inspired by recent advances
in object discovery [23, 24, 63], as a clustering mechanism
to group semantically meaningful patches from ft into prede-
fined slots, where each slot corresponds to a distinct object

region. Unlike previous studies [23, 39] that sample from
a prior distribution, we initialize N object slots (denoted
as s) as learnable tokens. We then decompose the feature
map ft of t-th frame into N frame-wise object slot features
st = {s1t , . . . , sNt }, st ∈ RN×Dslot. This design encour-
ages each slot to capture modular semantics [20, 56], en-
abling object-consistent decompositions through its unique
competition mechanism that supports maintaining coherent
slot representation across frames.

Formally, following the standard slot attention proce-
dure [31], we employ three linear transformation heads to
map the object slots s into Query q ∈ RN×Denc , while
frame-wise feature maps ft into Key k ∈ RHencWenc×Denc ,
and Value v ∈ RHencWenc×Denc . We iteratively calculate
attention score and update slot representations via Gated
Recurrent Unit (GRU) [5]. Mathematically, we formulate
each iteration as:

ãi,j =
eai,j∑N
l=1 e

al,j
, where a =

1√
D

qk⊤.

wi,j =
ãi,j∑HencWenc

l=1 ãi,l

,

st = GRU(inputs = wv, states = st)

(4)

Here, the attention weights ã are normalized with softmax
along the slot dimension, and the weighted mean coefficient
w aggregates the Value v to update the slots. This mech-
anism encourages competition among slots, ensuring each
slot captures distinct object features. We use the object slots
st at the final iteration as the distilled object tokens from the
feature maps ft.

Object Prediction. Since each object slot captures multi-
level granularity information, using a lightweight predic-
tion head is sufficient for object class, bounding box, and
mask prediction. Thus, we employ three lightweight pre-
diction heads, each consisting of a feed-forward network
(FFN) with two linear layers–a functional layer followed by
a task-specific layer for each output. The classification head
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outputs object classes Ôt = FFNcls(st), while the box head
predicts object coordinates B̂t = FFNbox(st). For mask
prediction, a lightweight decoder with four transpose con-
volutions [32] upsamples the feature map ft to the original
frame size, resulting in f ′t = Dec(ft). The panoptic mask is
then obtained by applying a matrix multiplication between
the object slots st and the upsampled feature map f ′t in the
mask head, resulting in a binary mask of each object slot
m̂t = FFNmask(st · f ′t).
Object Temporal Consistency Learning. Maintaining con-
sistent spatio-temporal representations for object slots is
crucial for tracking coherent object features over time. Slot
Attention provides a strong basis for object-centric video
understanding. However, prior studies have noted that slot-
based representations struggle to maintain temporal consis-
tency across consecutive frames in a video [61]. To address
this limitation, and inspired by prior works [14, 25], we in-
corporate object temporal consistency learning using a con-
trastive loss. Specifically, slots matching the same ground
truth index across frames are treated as positive samples,
while all others are negatives. Formally, given the i-th object
slot sit at frame t, we define sit−1 as the positive target and
sjt−1 as negatives (j ̸= i). The right side of Fig. 2 illustrates
the concept of object temporal consistency learning. The
corresponding loss function is formulated as:

Lconsistency = −
∑
sit−1

log
e(s

i
t·s

i
t−1)

e(s
i
t·s

i
t−1) +

∑
s
j
t−1

e(s
i
t·s

j
t−1)

. (5)

This loss encourages positive slots to stay close while
pushing negative slots apart. By focusing only on matched
slots, our method mitigates suboptimal updates from noisy,
unmatched slots, ensuring that identical object slots remain
aligned across frames. This alignment enables slots to refine
each other’s features, enhancing spatio-temporal consistency.

3.2.3. Relation Decomposition
Existing VidSGG approaches [49] predict relations sequen-
tially after object prediction, leading to high computational
complexity and potential inaccuracy if objects are missed. In
contrast, UNO predicts objects and relations simultaneously,
enabling a parallelized execution that significantly reduces
complexity. Using Eq. 4, we apply an enhanced slot attention
mechanism to decompose the feature map ft into relation
slots, where each slot captures potential interaction regions.
This mechanism enables relation slots to capture the entire
spatial context of a frame, rather than being restricted to
object pair intersections. This broader coverage significantly
enhances relation prediction performance and supports our
dynamic triplet mechanism (see Sec. 3.2.4). Specifically, we
initialize K relation slots (denoted as z) as learnable tokens.
Then, for the t-th frame, we obtain frame-wise relation slot
features zt = {z1t , . . . , zKt }, where zt ∈ RK×Dslot. Each
frame-wise relation slot zt is then passed through a classi-
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Figure 3. Dynamic triplet prediction module that predicts subject
and object references to object slots from relation slots.

fication FFN head to predict relations: R̂t = FFNrel(zt).
Consequently, both relation slots zt together with its relation
class R̂t and object slots st are jointly extracted from ft at
time step t.

3.2.4. Dynamic Triplet Prediction
Existing methods either learn an adjacency matrix [52] to
identify subject-object pairs or directly predict pairwise
subject-object embeddings [49], followed by sequential re-
lation prediction. In contrast, our approach introduces a dy-
namic triplet prediction mechanism that directly associates
N objects with K relations, eliminating the need to construct
an N ×N object pair matrix. In theory, K can be as large as
N2, since each object may interact with every other object.
However, in practice, K ≪ N due to the inherent sparsity of
real-world interactions—only a small subset of object pairs
exhibit meaningful relationships. This reduces redundancy
and duplication in triplet prediction while maintaining high
performance. Fig. 3 illustrates the proposed module.

Pairwise Index Matching. Each relation is defined as an
interaction between two objects, with one as the subject
and the other as the object. Thus, each relation slot inher-
ently encodes information about the subject-object pair. We
reformulate the problem as mapping relation slots to spe-
cialized representations that store the corresponding pair of
object slots, enabling direct matching without constructing
an N × N matrix. Formally, given K relation slots at the
t-frame, zt = ⟨z1t , . . . , zKt ⟩, for each zjt , we use two FFNs
to generate subject-object pair of reference embeddings: ps

j

and po
j .

ps
j = FFNs(z

j
t), po

j = FFNo(z
j
t) (6)

Next, we find the indices of the subject and object that
correspond to the object slots by matching the reference em-
beddings with the object slots st using a similarity function.
Specifically, we aim to identify the most relevant subject
sit ∈ st and object si

′

t ∈ st given a specific subject ref-
erence embedding ps

j and object reference embedding po
j ,

respectively. This process is formulated as follows.
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îsj = argmax
i≤N

sim(ps
j , s

i
t), î

o
j = argmax

i′≤N

sim(po
j , s

i′
t ) (7)

Here, sim(u, v) =
u · v

||u|| · |v||
is the similarity function. The

predicted indices îsj and îoj correspond to the subject and
object pair of the relation slot zjt . This dynamic matching
process effectively links relation slots with their most rele-
vant pair of object slots, forming coherent triplets without
relying on predefined adjacency matrices. This adaptive strat-
egy enhances generalization across diverse object relations
in videos. The final triplet prediction of t-th frame is the set

of K triplets, {⟨sî
s
j

t , zit, s
îoj
t ⟩}Ki=1, which can be replaced with

corresponding bounding box and mask depends on the task.

Triplet Duplication Reduction. Unlike prior work [49],
which predicts triplets as a set and often results in duplicate
detections, our method leverages slot attention with a built-
in competitive mechanism to mitigate redundancy. This
design ensures distinct object slots and relation slots focus
on appropriate regions, producing unique object and relation
predictions for triplets without requiring post-processing
steps like Non-Max Suppression (NMS) [18].

3.3. Training Objectives
During training, we first perform Hungarian matching [12]
between the predicted and ground-truth object boxes/masks
to assign object slots, followed by supervision for detection
and classification. The loss function for the DSGG task is
defined as:

LDSGG =λobj clsLobj cls(Ôt,Ot) + λboxLbox(B̂t,Bt)

+ λGIoULGIoU(B̂t,Bt),
(8)

where Lobj cls is the Cross Entropy (CE) loss, Lbox is the ℓ1
loss, and LGIoU is the GIoU loss [42].

For the PVSG task, the loss is defined as:

LPVSG =λobj clsLobj cls(Ôt,Ot) + λmaskLmask(m̂t,mt)

+ λdiceLdice(m̂t,mt),
(9)

where Lmask is the CE loss, and Ldice is the Dice loss [46, 54].
Finally, we re-apply Hungarian matching between the

predicted and ground-truth relations to align relation slots
while supervising both relation classification and index pre-
diction. The matching between the indices of the predicted
subjects/objects and their ground-truth indices is formulated
as a classification problem, where indices are converted to
one-hot vectors. The relation loss is formulated as follows:

LRel =λrel clsLrel cls(R̂t,Rt) + λsidxLsidx(̂i
s, is)

+ λoidxLoidx(̂i
o, io),

(10)

where Lrel cls, Lsidx, and Loidx are all CE losses.

4. Experiment Results
4.1. Experimental Settings

Datasets & Evaluation Metrics. We conduct experiments
on the Action Genome [19] for the DSGG task and the
PVSG [60] for the PVSG task. We evaluate the DSGG task
following the setting from [49] and the PVSG task following
the setting from [60]. We train and evaluate the model strictly
separately for each benchmark/task, without any data mixing
or augmentation strategies.

Implementation Details. We adopt both Vision Transformer
(ViT) and Convolutional Neural Networks (CNNs) as the
backbone for the Visual Encoder to perform frame-wise
feature extraction. More specifically, for ViT, we use ViT-
S/14, ViT-B/14, ViT-L/14 [11] with pre-trained weights from
DINO [37]; for CNNs, we use ResNet-50 [16] pre-trained
weights from MoCo [17]. The number of slots are empiri-
cally chosen and can be observed that the optimal number
of slots is influenced by both the number of object classes in
the dataset and the objects present in the video. Therefore,
for DSGG, we set N = 40 object slots and K = 24 relation
slots; for PVSG, we use N = 96 object slots and K = 40
relation slots.

4.2. Comparison with State of the Arts

Results on Box-Level VidSGG (DSGG). Tab. 2 compares
UNO against SOTA methods on the Action Genome dataset.
UNO not only surpasses the second-best one-stage OED by
a clear margin but also outperforms multi-stage methods
with tracking mechanisms such as APT, TR2, TPT, and
TEMPURA. The results on the SGDET task highlight UNO’s
strong VidSGG capabilities in DSGG. Our approach simul-
taneously localizes objects and predicts relations, achieving
45.2% R@20 (↑4.3% over the second best) under With Con-
straint and 49.7% R@20 (↑5.7%) under No Constraint. Sim-
ilarly, in the PredCLS task, where oracle object tracks from
ground truth are provided, UNO surpasses all other methods
across various metrics, reaching 80.3% R@20 under With
Constraint and 98.1% R@20 under No Constraint. Despite
multi-stage methods benefiting from oracle tracks and di-
rectly aggregating accurate spatio-temporal context, UNO still
outperforms them. However, our results indicate room for
improvement in object localization.

Results on Pixel-Level VidSGG (PVSG). The PVSG
dataset presents highly dynamic videos and frequent sub-
stantial changes in camera angles. Tab. 3 demonstrates that
both the Image Panoptic Segmentation + Tracking [4, 55]
(IPS+T) model and Video Panoptic Segmentation [4, 26]
(VPS) baselines fall short compared to our end-to-end UNO.
It is essential to focus on R/mR@20, as it serves as a primary
performance metric [60]. Notably, our model substantially
outperforms both IPS+T and VPS at R/mR@20 across mask
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Table 2. Performance comparison with SOTA DSGG methods on Action Genome dataset. The best results are in bold.
With Constraint No Constraint

Method Backbone SGDET PredCLS SGDET PredCLS

R@10↑ R@20↑ R@50↑ R@10↑ R@20↑ R@50↑ R@10↑ R@20↑ R@50↑ R@10↑ R@20↑ R@50↑
Multi-stage Method
STTran [8] ICCV’21 ResNet-101 25.2 34.1 37.0 68.6 71.8 71.8 24.6 36.2 48.8 77.9 94.2 99.1
APT [27] CVPR’22 ResNet-101 26.3 36.1 38.3 69.4 73.8 73.8 25.7 37.9 50.1 78.5 95.1 99.2
STTran-TPI [53] ACM MM’22 ResNet-101 26.2 34.6 37.4 69.7 72.6 72.6 - - - - - -
TR2 [50] ICRA’23 ResNet-101 26.8 35.5 38.3 70.9 73.8 73.8 27.8 39.2 50.0 83.1 96.6 99.9
VsCGG [33] ACM MM’23 ResNet-101 27.4 35.8 38.2 70.1 73.4 73.5 29.3 40.2 48.9 78.8 94.9 99.2
TEMPURA [34] CVPR’23 ResNet-101 28.1 33.4 34.9 68.8 71.5 71.5 29.8 38.1 46.4 80.4 94.2 99.4
DSG-DETR [13] WACV’23 ResNet-101 30.3 34.8 36.1 - - - 32.1 40.9 48.3 - - -
TPT [62] TMM’23 ResNet-101 - - - - - - 32.0 39.6 51.5 85.6 97.4 99.9
TD2-Net [30] AAAI’24 ResNet-101 28.7 - 37.1 70.1 - 73.1 30.5 - 49.3 81.7 - 99.8
One-stage Method
OED [49] CVPR’24 ResNet-50 33.5 40.9 48.9 73.0 76.1 76.1 35.3 44.0 51.8 83.3 95.3 99.2

ResNet-50 35.4 42.2 49.5 73.7 76.9 78.1 36.6 46.1 53.9 84.7 96.1 99.9
ViT-S/14 36.7 43.1 50.2 74.2 78.5 79.6 37.5 47.5 54.5 85.9 96.6 100.0
ViT-B/14 38.2 44.7 51.9 75.6 79.4 80.4 39.9 48.2 56.3 87.4 97.2 100.0UNO (Ours)

ViT-L/14 39.3 45.2 53.8 76.8 80.3 82.5 40.8 49.7 57.1 88.3 98.1 100.0

Table 3. Performance comparison with SOTA PVSG methods on PVSG dataset. The best results are in bold. Next, ♢ and ♡ stands for the
relation predictor [60]: 1D Convolution and Transformer Encoder, respectively.

Method Backbone
vIOU Threshold = 0.5 vIOU Threshold = 0.1

R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑ R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑

Multi-stage Method
Image Panoptic Segmentation + Tracking [4, 55]

♢PVSG [60] ResNet-50 3.88 5.24 6.71 2.55 3.29 5.36 10.06 14.99 18.13 8.98 12.21 15.47
♡PVSG [60] ResNet-50 3.88 5.66 6.18 2.81 4.12 4.44 9.01 14.88 17.51 6.69 11.28 13.20
♡MCL [36] ResNet-50 3.98 5.97 7.44 2.98 4.20 5.15 10.59 16.98 22.33 9.56 12.39 17.47
♢MCL [36] ResNet-50 4.51 6.08 7.76 3.56 4.38 5.86 11.43 17.30 22.85 9.57 13.13 17.48

Video Panoptic Segmentation [4, 26]
♢PVSG [60] ResNet-50 0.42 0.63 0.63 0.25 0.67 0.67 8.07 11.01 12.89 7.84 9.78 10.77
♡PVSG [60] ResNet-50 0.42 0.73 1.05 0.61 0.76 0.92 6.50 9.64 12.26 5.75 8.25 9.51
♡MCL [36] ResNet-50 0.63 1.05 1.05 0.83 0.76 0.76 6.71 10.27 13.42 6.94 8.68 12.09
♢MCL [36] ResNet-50 0.84 1.26 1.26 0.98 1.22 1.22 8.18 12.90 14.22 8.00 11.47 13.59
One-stage Method

ResNet-50 6.23 7.37 8.65 5.60 6.84 8.21 13.83 19.27 24.63 11.65 15.94 19.99
UNO (Ours) ViT-S/14 7.45 8.46 9.69 6.83 7.50 9.26 14.11 20.71 25.11 12.40 16.82 20.78

ViT-B/14 8.71 9.19 10.46 7.56 8.99 9.83 15.76 21.87 26.58 13.12 17.25 21.81
ViT-L/14 9.44 10.83 11.59 8.25 9.72 10.86 17.54 23.82 27.32 14.81 18.31 22.14

Table 4. Multi-task training ablation on PVSG dataset.

Training setting AP50↑ PQ↑ R@20↑

With bounding box only 28.5 - -
With mask only - 47.4 8.03
With both bounding box & mask 30.6 48.9 9.44

overlaps of 0.5 and 0.1. For instance, UNO holds the current
peak for R@20 at 9.44% in the vIOU threshold of 0.5, indi-
cating that, on average, 01 in every 13 ground-truth triplets
is successfully recalled, compared to IPS+T’s best perfor-
mance of 01 in roughly every 25 triplets (R@20 of 4.51%).
However, lowering the threshold to a more lenient 0.1 raises
UNO’s score to approximately 17.54%, allowing the model
to recall 02 out of every 13 triplets. This suggests that while
the model shows higher efficacy than others for recogniz-
ing key video content, there remains considerable room for
improvement.

Table 5. Temporal consistency learning ablation.

Method DSGG task PVSG task

R@10↑ R@20↑ R@50↑ R@20↑ R@50↑ R@100↑

w/o Lconsistency 38.1 41.3 49.4 7.16 9.23 12.17
w/ Lconsistency 39.3 45.2 53.8 9.44 10.83 11.59

4.3. Ablation Studies

Effect of Multi-Task Learning. Tab. 4 highlights the im-
pact of multi-task learning and cross-task synergy on PVSG,
which provides both box-level and pixel-level VidSGG
ground truths. AP50 denotes Average Precision@0.5, while
PQ is the Panoptic Quality [22]. Using UNO, we observe that
training with both bounding boxes and masks improves all
metrics, with AP50 increasing from 28.5 to 29.6, PQ from
47.4 to 48.3, and R@20 from 8.03 to 9.44. These results
suggest that box-level and pixel-level VidSGG data comple-
ment each other, enabling richer representations that enhance
individual task performances.
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Frame 16 Frame 98 Frame 129 Frame 138

Figure 4. Spatio-temporal consistency of an object slot over time.
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Figure 5. Visualization results of relation slots on Action Genome.
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Figure 6. Visualization results on DSGG task. we illustrate a case
of a “Person” sitting on the “Floor” while holding a “Picture”, with
a “Towel” wrapped around his back.

Multi-Object Spatio-Temporal Consistency. By enabling
UNO with slot attention to capture modular object features
from frozen visual representations, we detect a form of tem-
poral consistency, where object slots retain stable represen-
tations as a video sequence evolves, which can be observed
from Tab. 5 across both tasks even without Lconsistency. By
explicitly incorporating Lconsistency that aims to align slots
through time, we observe a significant improvement. It is
also supported from the results of PVSG in Tab. 3, where vol-
ume IOU is involved to consider mask consistency through
time. Such finding results in what we term Multi-Object
Spatio-Temporal Consistency, where spatial features (slots
binding to visual features) and temporal features (object tran-
sitions over time) are cohesively integrated for improved
accuracy via UNO, with one such case illustrated in Fig. 4.

4.4. Qualitative Results

DSGG. Fig. 4 illustrates a long time step (frame 16 to frame
138) of a test video sequence in Action Genome. It reveals
that our method is able to distinguish object instances with
semantic structure at the mask level through object slots,
even without such labels in Action Genome. This indicates

Dog-4 playing with

Dog-4 biting Toy-7

Dog-9 Toy-7biting

Dog-4 Floor-1walking

Dog-9 Floor-1walking Dog-9 Sofa-10standing on

Dog-9

Figure 7. Visualization results of UNO on PVSG. UNO is qualita-
tively shown to address a complex task with a video of two dogs
(i.e. “Dog-4” and “Dog-9”) playing around in a living room with
a toy (i.e. “Toy-7”) on the floor (i.e. “Floor-1”) and the sofa (i.e.
“Sofa-10”), cluttered in the background are miscellaneous objects
(i.e. “Shelf-3”, “Shelf-8”).

that UNO is able to maintain a coherent spatio-temporal rep-
resentation. Fig. 5 visualize relation slots of a test video
sequence in Action Genome. It demonstrates the ability of
UNO to capture meaningful relational semantics via slot at-
tention, which are interestingly shown as highlighted areas
between actors and objects, indicating that UNO can interpret
structural semantics that correspond with relations in a spa-
tial manner. Another example is shown in Fig. 6, where UNO
can capture the person, objects, and their interactions.

PVSG. Fig. 7 visualizes the result of UNO on PVSG. On the
top part, UNO demonstrates the extraction of semantic masks
from an example video, and in the bottom part, it showcases
the consistent prediction of object-relation semantics across
time. This emphasizes UNO’s ability to handle dynamic inter-
actions and complex environments.

5. Conclusion
We propose UNO, a unified framework that effectively ad-
dresses both coarse-grained and fine-grained tasks. By incor-
porating an enhanced slot attention mechanism and object
temporal consistency learning, UNO learns robust, modu-
lar representations that adapt dynamically to box-level and
pixel-level visual granularity. Additionally, we integrate
a dynamic triplet prediction module to establish precise,
relation-specific associations between objects, improving
efficiency while reducing redundancy. Our empirical re-
sults on Action Genome and PVSG convey that UNO offers
an effective, streamlined solution for VidSGG, advancing
the state-of-the-art in unified, object-centric spatio-temporal
representation learning for VidSGG.

Limitations. UNOmay face challenges in handling object dis-
appearances or reappearances. It also operates with a fixed
number of slots that limit its adaptability to complex dynam-
ics, such as crowded environments, fast-motion scenarios, or
when numerous small objects quickly maneuver.

Broader Impacts. UNO introduces a new paradigm for uni-
fied VidSGG, providing a computationally efficient and flex-
ible framework that facilitates easy development and serves
as a structured representation generation to enhance a wide
range of video understanding and reasoning tasks.
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