
Robust Feature Learning for Multi-Index Models in
High Dimensions

Alireza Mousavi-Hosseini1 Adel Javanmard2 Murat A. Erdogdu1

1University of Toronto and Vector Institute
2University of Southern California

{mousavi,erdogdu}@cs.toronto.edu, ajavanma@usc.edu

Abstract

Recently, there have been numerous studies on feature learning with neural net-
works, specifically on learning single- and multi-index models where the target is a
function of a low-dimensional projection of the input. Prior works have shown that
in high dimensions, the majority of the compute and data resources are spent on
recovering the low-dimensional projection; once this subspace is recovered, the
remainder of the target can be learned independently of the ambient dimension.
However, implications of feature learning in adversarial settings remain unexplored.
In this work, we take the first steps towards understanding adversarially robust
feature learning with neural networks. Specifically, we prove that the hidden di-
rections of a multi-index model offer a Bayes optimal low-dimensional projection
for robustness against ℓ2-bounded adversarial perturbations under the squared loss,
assuming that the multi-index coordinates are statistically independent from the rest
of the coordinates. Therefore, robust learning can be achieved by first performing
standard feature learning, then robustly tuning a linear readout layer on top of the
standard representations. In particular, we show that adversarially robust learning
is just as easy as standard learning. Specifically, the additional number of samples
needed to robustly learn multi-index models when compared to standard learning
does not depend on dimensionality.

1 Introduction

A crucial capability of neural networks is their ability to hierarchically learn useful features, and
to avoid the curse of dimensionality by adapting to potential low-dimensional structures in data
through empirical risk minimization (ERM) [Bac17, SH20]. Recently, a theoretical line of work has
demonstrated that gradient-based training, which is not a priori guaranteed to implement ERM due to
non-convexity, also demonstrates similar behavior and efficiently learns functions of low-dimensional
projections [WLLM19, DLS22, BBSS22, BEG+22, BES+22, MHPG+23] or functions with certain
hierarchical properties [AAM22, ABAM23, DKL+23]. These theoretical insights provided a useful
avenue for explaining standard feature learning mechanisms in neural networks.

On the other hand, it has been empirically observed that deep neural networks trained with respect
to standard losses are susceptible to adversarial attacks; small perturbations in the input may not be
detectable by humans, yet they can significantly alter the prediction performed by the model [SZS+14].
To overcome this issue, a popular approach is to instead minimize the adversarially robust empirical
risk [MMS+18]. However, unlike its standard counterpart, achieving successful generalization of
deep neural networks on robust test risk has been particularly challenging, and even the standard
performance of the model can degrade once adversarial training is performed [TSE+18]. Therefore,
one may wonder if robust neural networks are still adaptive to certain problem structures that improve

Mathematics of Modern Machine Learning Workshop at NeurIPS 2024.

standard generalization. By focusing on hidden low-dimensionality as a well-known example of such
structure, we aim at answering the following fundamental question:

Can neural networks maintain their statistical adaptivity to low dimensions
when trained to be robust against adversarial perturbations?

We answer this question positively by providing the following contributions.

• When considering ℓ2-constrained perturbations, Bayes optimal predictors can be constructed by
projecting the input data onto the low-dimensional subspace defined by the target function. In this
sense, the optimal low-dimensional projection remains unchanged compared to standard learning.

• Consequently, provided that they have access to an oracle that is able to recover the low-
dimensional target subspace, neural networks can achieve a sample complexity that is inde-
pendent of the ambient dimension when robustly learning multi-index models. This is achieved
by minimizing the empirical adversarial risk with respect to the second layer.

• An oracle for recovering the low-dimensional target subspace can be constructed by training
the first layer of a two-layer neural network with a standard loss function, as demonstrated by
many prior works. By combining our results with two particular choices of oracle implemen-
tation [DLS22, LOSW24], we provide end-to-end guarantees for robustly learning multi-index
models with gradient-based algorithms.

1.1 Related Works

Feature Learning for Single/Multi-Index Models. Many recent works have focused on proving
benefits of feature learning, allowing the neural network weights to travel far from initialization,
as opposed to the fixed kernel regime of freezing weights around initialization [JGH18, COB19].
When using online SGD on the squared loss, [BAGJ21] showed that the complexity of learning
single-index models with known link function depends on a quantity called information exponent.
Gradient-based learning of single-index models has been studied in [BES+22, MHPG+23, BBSS22]
among others. [DLS22] considered multi-index polynomials where the equivalent of information
exponent is at most 2. The counterpart of information exponent for multi-index models, the leap
exponent, was introduced in [ABAM23]. Considering SGD on the squared loss as an example of
a Correlational Statistical Query (CSQ) algorithm, [DNGL23] provided CSQ-optimal algorithms
for learning single-index models. Further improvements to the isotropic sample complexity were
achieved by either considering structured anisotropic Gaussian data [BES+23, MHPG+23], or the
sparsity of the hidden direction [VE24].

More recently, it was observed that gradient-based learning can go beyond CSQ algorithms by reusing
batches [DTA+24, LOSW24, ADK+24], or by changing the loss function [JMS24]. In such cases,
the algorithm becomes an instance of a Statiscal Query (SQ) learner, and the sample complexity is
characterized by the generative exponent of the link function [DPVLB24].

While the above works exist in a narrow-width setting where the interaction between neurons is
ignored, another line of research focused on the mean-field or wide limits of two-layer neural net-
works [CB18, RVE18, MMN18] for providing learnability guarantees [WLLM19, CB20, AAM22,
Tel23, MZD+23, CG24]. In particular, the mean-field Langevin algorithm provides global conver-
gence guarantees for two-layer NNs [Chi22, NWS22], leading to sample complexity linear in an effec-
tive dimension for multi-index models [SWON23, NOSW24] and multi-index models [MHWE24].

Adversarially Robust Learning. The existence of small worst-case or adversarial perturba-
tions that can significantly change the prediction of deep neural networks was first demonstrated
in [SZS+14], Among many defences proposed, one effective approach is adversarial training intro-
duced by [MMS+18], which is based on solving a min-max problem to perform robust optimization.
However, adversarial training tends to decrease the standard performance [TSE+18]. Therefore, the
following works studied the hardness of robust learning and established a statistical separation in a
simple mixture of Gaussians setting [SST+18], or computational separation by proving statistical
query lower bounds [BLPR19]. Further studies focused on exact characterizations of the robust and
standard error, as well as the fundamental and the algorithmic tradeoffs between robustness and
accuracy in the context of linear regression [JSH20], mixture of Gaussians classification [JS22], and
in the random features model [HJ24]. Closer to our work, [JM24] show that this tradeoff is mitigated
when the data enjoy a low-dimensional structure. However, the focus there is on binary classification

2

and generalized linear models, where the features live on a low-dimensional manifold. Here, we
consider a multi-index model wherein the response depends on a low-dimensional projection of
features. In addition, in [JM24] it is assumed that the manifold structure is known and the focus is on
population adversarial risk (assuming infinite samples with fixed dimension), while here we consider
algorithms for representation learning, and derive rates of convergence for adversarial risk.

In this work, we provide an alternative narrative compared to the line of work above, by showing
that in a high-dimensional regression setting, learning multi-index models that are robust against ℓ2
perturbations can be as easy as standard learning. We achieve this result by focusing on the feature
learning capability of neural networks, i.e. their ability to capture low-dimensional projections.

Notation. For Euclidean vectors, ⟨·, ·⟩ and ∥·∥ denote the Euclidean inner product and norm respec-
tively. For tensors, ∥·∥F and ∥·∥ denote the Frobenius and operator norms respectively. We use Sk−1

for the unit sphere in Rk, and τk denotes the uniform probability measure on Sk−1.

2 Problem Setup: Feature Learning and Adversarial Robustness

Statistical Model. Consider a regression setting where the input x ∈ Rd and the target y ∈ R are
generated from a distribution (x, y) ∼ P . For a prediction function f : Rd → R, its population
adversarial risk, where we assume the adversary can perform a worst-case perturbation on the input
with a budget of ε measured in ℓ2-norm, before passing it to the model, is defined as

AR(f) := E
[
max
∥δ∥≤ε

(f(x+ δ)− y)2
]
, (2.1)

where the expectation is over all random variables inside the brackets. Given a (non-parametric)
family of prediction functions F , our goal is to learn a predictor that achieves the optimal adversarial
risk given by

AR∗ := min
f∈F

AR(f), (2.2)

We focus on learners of the form of two-layer neural networks with width N , given as

f(x;a,W , b) = a⊤σ(Wx+ b), (2.3)

where a ∈ RN is the second layer weights and W ∈ RN×d and b ∈ RN are the first layer weights
and biases. To avoid overloading the notation we use AR(f(·;a,W , b)) = AR(a,W , b). Given
access to n i.i.d. samples {x(i), y(i)}ni=1 from P , the goal is to learn the network parameters a,W ,
and b in such a way that the quantity AR(a,W , b) is close to the optimal adversarial risk AR∗.

A long line of recent works has shown that neural networks are particularly efficient in regression
tasks when the target is a function of a low-dimensional projection of the input, see e.g. [Bac17]. We
also make the same assumption that the data follows a multi-index model,

E[y |x] = g(⟨u1,x⟩, . . . , ⟨uk,x⟩), (2.4)

for all x ∈ Rd, where g : Rk → R is the link function, and we assume u1, . . . ,uk are orthonormal
without loss of generality. Let U ∈ Rk×d be an orthonormal matrix whose rows are given by (ui);
we use the shorthand notation g(⟨u1,x⟩, . . . , ⟨uk,x⟩) := g(Ux). In this paper, we consider the
setting where k ≪ d, and in particular k = O(1).

3 Optimal Representations for Robust Learning

In this section, we demonstrate that under ℓ2-constrained perturbations, the optimal low-dimensional
representations for robust learning coincides with those in standard setting, both of which are given by
the target directions U . Crucially, our result relies on the following assumption on input distribution.

Assumption 1. Suppose Ũ ∈ R(d−k)×d is any orthonormal matrix whose rows complete the rows of
U into a basis of Rd. Then, y and Ux are jointly independent from Ũx.

The above assumption is quite general. For example, with the notation x∥ := Ux and x⊥ := Ũx, it

holds when y = g(x∥) + ς where ς is independent zero-mean noise, and x = U⊤Uz1 + Ũ
⊤
Ũz2

for independent vectors z1, z2 ∈ Rd. We present a central result below along with its proof.

3

Theorem 1. Suppose Assumption 1 holds and (2.2) admits a minimizer. Then, there exists a function
f∗ : Rd → R of the form f∗(x) = h(Ux) for some h : Rk → R such that

AR(f∗) ≤ AR∗, (3.1)

with equality when f∗ ∈ F . Further, h is represented as h(z) = E[f(x) |Ux = z] for some f ∈ F .

Remark. To understand the significance of the above result, define the function classH = {z 7→
E[f(x) |Ux = z] for f ∈ F}, and observe that the last statement of the theorem reads

min
h∈H

AR(h(U ·)) ≤ AR∗.

Thus, to achieve the optimal adversarial risk AR∗, one only needs to (i) learn the target directions U ,
and (ii) approximate real-valued functions in a k-dimensional subspace rather than d. For two-layer
NNs, the first layer W recovers U , and the remaining parameters a and b are used to approximate
the optimal h. While this recipe is general, we provide specific implications in the next section.

Proof. We will show that for every f ∈ F , h(z) = E[f(x) |Ux = z] gives AR(h(U ·)) ≤ AR(f).
Then, choosing f to be some minimizer of AR yields the desired result.

Define the residuals ry(x∥, δ∥) := y − h(x∥ + δ∥), and rf (x, δ) := f(x+ δ)− h(x∥ + δ∥). Then,
by a decomposition of the squared loss and the tower property of conditional expectation,

AR(f) = E
[
E
[
max
∥δ∥≤ε

ry(x∥, δ∥)
2 + rf (x, δ)

2 − 2ry(x∥, δ∥)rf (x, δ)
∣∣∣x∥, y

]]
≥ E

[
max
∥δ∥≤ε

ry(x∥, δ∥)
2 + E

[
rf (x, δ)

2
∣∣x∥, y

]
− 2ry(x∥, δ∥)E

[
rf (x, δ)

∣∣x∥, y
]]

≥ E
[

max
{∥δ∥≤ε,δ⊥=0}

ry(x∥, δ∥)
2 + E

[
rf (x, δ)

2
∣∣x∥, y

]
− 2ry(x∥, δ∥)E

[
rf (x, δ)

∣∣x∥, y
]]
.

Since y|x∥ is independent from x⊥, for any fixed δ, we have E
[
rf (x, δ) |x∥, y

]
= E

[
rf (x, δ) |x∥

]
.

Thus, using the notation f(x) = f(x∥,x⊥), provided that δ⊥ = 0, Assumption 1 yields

h(z + δ∥) = E
[
f(x) |x∥ = z + δ∥

]
= E

[
f(z + δ∥,x⊥ + δ⊥)

]
= E

[
f(x+ δ) |x∥ = z

]
,

for all z ∈ Rk. Plugging in z = x∥ gives E
[
rf (x, δ) |x∥

]
= 0. Therefore,

AR(f) ≥ E
[

max
{∥δ∥≤ε,δ⊥=0}

ry(x∥, δ∥)
2 + E

[
rf (x, δ)

2 |x∥, y
]]

≥ E
[

max
{∥δ∥≤ε,δ⊥=0}

(y − h(U(x+ δ)))2
]
= AR(h(U ·)),

where we dropped the constraint δ⊥ = 0 as it does not contribute, which concludes the proof.

A discussion on robust/non-robust feature decomposition. Many prior works in classification
assume that features can be divided into robust and non-robust groups (see e.g. [TSE+18, IST+19,
KLR21, LL24].) Unlike previous studies, we do not rely on this robust/non-robust decomposition.
Instead, the k relevant features for predicting y can be either robust or non-robust. The robust training
of the second layer ensures the model utilizes the robust subset of these k features, if such a subset
exists, while the first layer performs dimensionality reduction. Crucially, applying robust training
to all layers in high-dimensional settings can fail to achieve dimensionality reduction, which may
deteriorate the generalization performance in the setting we consider, as illustrated in Figure 1.

Before moving to the next section, we provide the following remark on proper scaling of ε.Since
E[∥x∥] grows with

√
d, it may seem natural to scale the adversary budget ε with dimension as

well. However, we provide a simple argument on the contrary. Consider the single-index case
y = g(⟨u,x⟩), and let h be the optimal function constructed in Theorem 1, providing the prediction
function x 7→ h(⟨u,x⟩). One can then observe that even a constant order ε is sufficient to incur a
large change in the input of h, e.g., choosing δ = εu perturbs the input of the predictor by ε. Thus,
this justifies the regime where ε is of constant order compared to the input dimension, which is the
focus in the rest of the paper.

4

4 Learning Procedure and Guarantees

As outlined in the previous section, to robustly learn the target model, standard representations U
suffice. In this section, we consider concrete examples of how a standard feature learning oracle
combined with an adversarially robust second layer training leads to robust learning. We assume
access to the following feature learning oracle to recover U . We will provide instances of practical
implementations of this oracle using standard gradient-based algorithms in Section 4.1.

Definition 2 (DFL). An α-Deterministic Feature Learner (DFL) is an oracle that for every ζ > 0,
given nDFL(ζ) samples from P , returns a weight matrix W = (w1, . . . ,wN)⊤ ∈ RN×d with
unit-norm rows, such that for all u ∈ span(u1, . . . ,uk) with ∥u∥ = 1, we have

|{i : ⟨wi,u⟩ ≥ 1− ζ}|
N

≥ αζ(k−1)/2.

An α-DFL oracle returns weights such that roughly an α-proportion of them align with (and suffi-
ciently cover) the target subspace. By a packing argument, we can show that the best achievable ratio
is α = c(k) for some constant c(k) > 0 depending only on k, which is why we use the normalizing
factor ζ(k−1)/2 above. We show in Section 4.1 that the definition above with a constant order α is
attainable by standard gradient-based algorithms. That said, in the multi-index setting, it is possible
to improve our learning guarantees by considering the following stochastic oracle.

Definition 3 (SFL). An (α,β)-Stochastic Feature Learner (SFL) is an oracle that for every ζ > 0,
given nSFL(ζ) samples fromP , returns a random weight matrix W = (w1, . . . ,wN)⊤ ∈ RN×d with

unit-norm rows, such that there exists S ⊆ [N] with |S|/N ≥ α satisfying
∥∥∥wi −U⊤Uwi

∥∥∥2 ≤ ζ
for i ∈ S . Further,

(
Uwi

∥Uwi∥
)
i∈S

i.i.d.∼ µ, and dµ
dτk
≥ β, where µ is some measure and τk is uniform, both

supported on Sk−1.

The above oracle essentially defines a random features model in the smaller target subspace, where a
subset of the weights are sampled independently from a distribution that supports all target directions.
We note that an (α,β)-SFL oracle can be used to directly implement an α-DFL oracle; by a standard
union bound argument, one can show N = Θ̃(1/(αβζ(k−1)/2)) guarantees the output of (α,β)-SFL
satisfies Definition 2 with high probability. Therefore, while its definition is slightly more involved,
(α,β)-SFL is a more specialized oracle compared to α -DFL.

Once the first layer representation is provided by above oracles, we can fix the biases at some random
initialization, and train the second layer weights a by minimizing the empirical adversarial risk

ÂR(a,W , b) =
1

n

n∑
i=1

max
∥δ(i)∥≤ε

(f(x(i) + δ(i);a,W , b)− y(i))2. (4.1)

We formalize the training procedure with two-layer neural networks in Algorithm 1. We highlight

Algorithm 1 Adversarially robust learning with two-layer NNs.

Input: ζ, ra, rb, {x(i), y(i)}nFL(ζ)+n
i=1 , FL ∈ {α -DFL, (α,β)-SFL}.

1: Phase 1: Feature Learning
2: W = FL

(
ζ, {x(i), y(i)}n+nFL(ζ)

i=n+1

)
.

3: Phase 2: Robust Function Approximation
4: bj

iid∼ Unif(−rb, rb) for 1 ≤ j ≤ N .
5: â = argmin∥a∥≤ ra√

N
ÂR(a,W , b).

6: return (a,W , b)

that keeping biases at random initialization while only training the second layer a performs non-
linear function approximation, and has been used in many prior works on feature learning [DLS22,
MHWSE23, OSSW24]. Further, while a 7→ ÂR(a,W , b) is a convex function for fixed W and
b since it is a maximum over convex functions, exact training of a in practice may not be entirely

5

straightforward since the inner maximization is not concave and does not admit a closed-form
solution. In practice, some form of gradient descent ascent algorithm is typically used when training
a [MMS+18]. In this work, we do not consider the computational aspect of solving this min-max
problem, and leave that analysis as future work.

We will make the following standard tail assumptions on the data distribution.

Assumption 2. Suppose x has zero mean and O(1) subGaussian norm. Furthermore, for all q ≥ 1,
it holds that E[|y|q]1/q ≤ O(qp/2) for some constant p ≥ 1.

Note that the condition on y above is mild; for example, it holds for a noisy multi-index model
y = g(Ux) + ς , where ς has O(1) subGaussian norm and g grows at most polynomially, i.e.,
|g(·)| ≲ 1 + | · |p. Similarly, we also keep the function class F quite general and provide our first set
of results for a class of pseudo-Lipschitz functions which is introduced below.

Assumption 3. We assume F is a class of functions that are pseudo-Lipschitz along the target
coordinates. Specifically, using the notation f(x) = f(x∥,x⊥) and defining ε1 := 1 ∨ ε, we have

|f(z1,x⊥)− f(z2,x⊥)| ≤ L(x⊥)
(
ε1−p1 ∥z1∥p−1

+ ε1−p1 ∥z2∥p−1
+ 1
)
∥z1 − z2∥

for all f ∈ F , all z1, z2 ∈ Rk, and some constants L and p ≥ 1 such that E[L(x⊥)] ≤ L.

Remark. The prefactor ε1−p1 is justified intuitively since the optimal function of the form h(z) =
E[f(x) |Ux = z] should satisfy E

[
max∥δ∥≤ε(y − h(U(x+ δ)))2

]
= AR∗, which is bounded,

and does not grow with ε beyond a certain point. This implies that h must be sufficiently smooth
while its input is perturbed, and in particular, its (local) Lipschitz constant should remain bounded
while ε grows, hence the introduction of the prefactor.

In Appendix B.1 we focus on a subclass of predictors that are polynomials of a fixed degree p to
achieve finer results. The following theorem presents the first result of this section, which holds under
access to the α -DFL oracle.

Theorem 4. Suppose Assumptions 1,2,3 hold and the ReLU activation is used. For a tolerance ϵ > 0
define ϵ̃ := ϵ ∧ (ϵ2/AR∗), and for the adversary budget ε recall ε1 := 1 ∨ ε. Consider Algorithm 1
with FL = α -DFL oracle, ra = Õ

(
(ε1/
√
ϵ̃)k+1+1/k/α

)
and rb = Õ

(
ε1(ε1/

√
ϵ̃)1+1/k

)
. Then, if

the number of second phase samples nFA, the number of neurons N , and α -DFL error ζ satisfy

nFA ≥ Ω̃

(
ε41
α4ϵ2

(
ε1√
ϵ̃

)O(k)
)
, N ≥ Ω̃

(
1

αζ(k−1)/2

(
ε1√
ϵ̃

)O(k)
)
, ζ ≤ Õ

((
ϵ̃
√
ε1

)O(k)
)
,

we have AR(â,W , b) ≤ AR∗ + ϵ with probability at least 1 − n−cFA where c > 0 is an absolute
constant. The total sample complexity of Algorithm 1 is given by ntotal = nFA + nDFL(ζ).

The above theorem states that once the feature learning oracle has recovered the target subspace, the
number of samples and neurons needed for robust learning is independent of the ambient dimension
d. Thus, in a high-dimensional setting, statistical complexity is dominated by the feature learning
oracle, implying that adversarially robust learning is statistically as easy as standard learning.

Arguing about computational complexity is more involved. While the number of neurons required
is independent of d, in its naive implementation, Phase 2 of Algorithm 1 needs to solve inner
maximization problems over Rd, which may be costly. However, once U ∈ Rk×d is estimated in
Phase 1, we can reduce the input dimension of the network from d to k by projection onto U , i.e.

N∑
j=1

ajσ(⟨wj ,x⟩+ bj) ≈
N∑
j=1

ajσ(⟨Uwj ,Ux⟩+ bj).

With this modification, we only need to consider worst-case perturbations over Rk, thus the computa-
tional complexity of Phase 2 will also be independent of the ambient dimension d.

It is possible to remove the dependence on ζ in the number of neurons by instead assuming access to
an (α,β)-SFL oracle, as outlined below.

6

Theorem 5. Consider the same setting as Theorem 4, except that we use the (α,β)-SFL oracle in
Algorithm 1 with ra = Õ

(
(ε1/
√
ϵ̃)k+1+1/k/(αβ)

)
. Then, the sufficient number of second phase

samples nFA, neurons N , and oracle error ζ, are given as

nFA ≥ Ω̃

(
ε41

α4β4ϵ2

(
ε1√
ϵ̃

)O(k)
)
, N ≥ Ω̃

(
1

αβ2

(
ε1√
ϵ̃

)O(k)
)
, ζ ≤ Õ

(
β2

(
ϵ̃
√
ε1

)O(k)
)
.

The total sample complexity for this oracle reads ntotal = nFA + nSFL(ζ).

We restate Theorems 4 and 5 in Appendix B.2 with explicit exponents. As mentioned earlier, under a
Gaussian data assumption, there exist α -DFL, and more generally (α,β)-SFL oracles which only
use standard gradient-based learning, such that nDFL(ζ) typically scales with some polynomial of
d, where the exponent depends on properties of the activation such as the information or generative
exponent. In the following, we will provide specific examples of prior work implementing either of
the oracles, along with their corresponding sample complexities.

4.1 Oracle Implementations of the Feature Learner

The task of recovering the target directions U is classical in statistics, and is known as sufficient
dimension reduction [LD89, Li91], with many dedicated algorithms, see e.g. [KKSK11, DH18,
CM20, YXKH23] to name a few. Here, we focus on algorithms based on neural networks and
iterative gradient-based optimization.

While we will consider the case where x is an isotropic Gaussian random vector, recovering the hidden
direction has also been considered for non-isotropic Gaussians [BES+23, MHWSE23] where the
additional structure in the inputs can provide further statistical benefits, or non-Gaussian spherically
symmetric distributions [ZPVB23]. Our results readily extend to these settings as well.

First, we present the case of single-index polynomials.
Proposition 6 ([LOSW24]). Suppose x ∼ N (0, Id), k = 1, and g is a polynomial of degree p where
p is constant. Then, there exists an iterative first-order algorithm on two-layer neural networks
(Algorithm 2) that implements an (α,β)-SFL oracle and an α -DFL oracle, where β = 1 and
α = Θ̃(1). Furthermore, we have nSFL(ζ) = nDFL(ζ) = Õ(d/ζ2).

When considering Gaussian single-index models beyond polynomials, we must introduce the concepts
of information and generative exponent to characterize the sample complexity of recovering the target
direction. Let γ = N (0, 1) for conciseness. For any g : R → R in L2(γ), let g =

∑
j≥0 αjHej

denote its Hermite expansion, where Hej is the normalized Hermite polynomial of degree j. The
information exponent of g is defined as s(g) := min{j > 0 : αj ̸= 0}. The generative exponent on
the other hand, is defined as the minimum information exponent attainable by any transformation
of g, i.e. s∗(g) := minT s(T (g)), where the minimum is over all T ∈ L2(g#γ). As a result,
s∗(g) ≤ s(g), and in particular, s∗ = 1 for all polynomials.

There exists an algorithm based on estimating partial traces that implements a 1-DFL (or a 1,1-SFL)
oracle with nDFL(ζ) = O(ds

∗/2 + d/ζ2) [DPVLB24]. While it may be possible to achieve a similar
sample complexity when training neural networks with a ReLU activation, the state of the art results
for ReLU neural networks so far are only able to control the sample complexity with the information
exponent s, e.g. [BBSS22] provides a gradient-based algorithm for optimizing a variant of a two-layer
ReLU neural network that implements 1-DFL with nDFL = O(ds poly(ζ−1)).

Recovering U with k > 1 is more challenging, and the general picture is that the directions
in U are recovered hierarhically based on each direction’s corresponding complexity, such as
in [ABAM23]. For simplicity, we look at a case that is sufficiently simple for all directions to be
learned simultaneously, while emphasizing that in principle any guarantee for learning the subspace
U can be turned into an implementation of the oracles introduced in the section above.
Proposition 7 ([DLS22]). Suppose x ∼ N (0, Id), g is a polynomial of degree p, and p and k ≥ 1

are constant. Further assume σmax(∇2g)
σmin(∇2g) ≥ κ for some κ > 0, where σmin, σmax denote the

minimum and maximum singular values respectively. Then, there exists a first-order algorithm
on two-layer ReLU neural networks (Algorithm 3) that implements an (α,β)-SFL and an α -DFL
oracle, where β ≥ cκ for some constant cκ > 0 depending only κ, and α = 1. Further, we have
nSFL(ζ) = nDFL(ζ) = Õ(d2 + d/ζ2).

7

0 1500 3000 4500

Iterations

0.24

0.32

0.40

0.48

R
ob

u
st

T
es

t
R

is
k

Teacher: ReLU (Known Direction)

Full AD training

W fixed at target u

W init from u

0 1500 3000 4500

Iterations

0.32

0.36

0.40

0.44

Teacher: Tanh (Known Direction)

0 1500 3000 4500

Iterations

0.85

0.90

0.95

1.00

1.05

Teacher: He2 (Known Direction)

0 1500 3000 4500

Iterations

0.3

0.4

0.5

R
ob

u
st

T
es

t
R

is
k

Teacher: ReLU (Unknown Direction)

Full AD training

W fixed at SD training

W init from SD training

0 1500 3000 4500

Iterations

0.30

0.35

0.40

0.45

Teacher: Tanh (Unknown Direction)

0 2000 4000 6000

Iterations

0.92

0.96

1.00

1.04

Teacher: He2 (Unknown Direction)

Figure 1: The adversarial test error of a two-layer ReLU network as a function of number of
adversarial training iterations to learn a single-index model, where each iteration is performed on a
batch of independent 300 samples, except 500 samples for He2 with unknown direction to reduce
variance. Full AD training performs adversarial training on all layers from random initialization.
SD training is standard training, which provides a better initialization for W before performing
adversarial training. We use ε = 1 for all experiments. Experiments are averaged over 3 runs. See
Appendix E for details.

5 Conclusion

In this paper, we initiated a theoretical study of the role of feature learning in adversarial robustness
of neural networks. Under ℓ2-constrained perturbations, we proved that projecting onto the latent
subspace of a multi-index model is sufficient for achieving Bayes optimal adversarial risk with respect
to the squared loss, provided that the index directions are statistically independent from the rest
of the directions in the input space. Remarkably, this subspace can be estimated through standard
feature learning with neural networks, thus turning a high-dimensional robust learning problem into a
low-dimensional one. As a result, under the assumption of having access to a feature learning oracle
which returns an estimate of this subspace, which can be implemented e.g. by training the first-layer
of a two-layer neural network, we proved that robust learning of multi-index models is possible with
number of (additional) samples and neurons independent from ambient dimension.

We conclude by mentioning several open questions that arise from this work.

• Stronger notions of adversarial attacks such as ℓ∞-norm constraints have been widely considered
in empirical works. It remains open to understand optimal low-dimensional representations under
such perturbations.

• While our work demonstrates that standard training is sufficient for the first layer, it is unclear
what kind of representation is learned when all layers are trained adversarially. In particular,
Figure 1 suggests that adversarial training of the first layer may be suboptimal in this setting, even
with infinitely training many samples.

• Since our main motivation was to show independence from input dimension, the dependence
of our bounds on the final robust test risk suboptimality ϵ are potentially improvable by a more
careful analysis. It is an interesting direction to obtain a sharper dependency and investigate the
optimality of such dependence on ϵ.

8

References
[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase

property: a necessary and nearly sufficient condition for sgd learning of sparse func-
tions on two-layer neural networks. In Conference on Learning Theory, 2022.

[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on
neural networks: leap complexity and saddle-to-saddle dynamics. arXiv preprint
arXiv:2302.11055, 2023.

[ADK+24] Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan.
Repetita iuvant: Data repetition allows sgd to learn high-dimensional multi-index
functions. arXiv preprint arXiv:2405.15459, 2024.

[Bac17] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The
Journal of Machine Learning Research, 18(1):629–681, 2017.

[BAGJ21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient
descent on non-convex losses from high-dimensional inference. J. Mach. Learn. Res.,
22:106–1, 2021.

[BBSS22] Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index
models with shallow neural networks. In Advances in Neural Information Processing
Systems, 2022.

[BEG+22] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and
Cyril Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the
Computational Limit. arXiv preprint arXiv:2207.08799, 2022.

[BES+22] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg
Yang. High-dimensional Asymptotics of Feature Learning: How One Gradient Step
Improves the Representation. arXiv preprint arXiv:2205.01445, 2022.

[BES+23] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning
in the presence of low-dimensional structure: a spiked random matrix perspective.
Advances in Neural Information Processing Systems, 36, 2023.

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. Advances in neural information processing systems, 30,
2017.

[BLPR19] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples
from computational constraints. In International Conference on Machine Learning,
pages 831–840. PMLR, 2019.

[CB18] Lenaic Chizat and Francis Bach. On the Global Convergence of Gradient Descent
for Over-parameterized Models using Optimal Transport. In Advances in Neural
Information Processing Systems, 2018.

[CB20] Lénaïc Chizat and Francis Bach. Implicit Bias of Gradient Descent for Wide Two-layer
Neural Networks Trained with the Logistic Loss. In Conference on Learning Theory,
2020.

[CG24] Ziang Chen and Rong Ge. Mean-field analysis for learning subspace-sparse polynomi-
als with gaussian input. arXiv preprint arXiv:2402.08948, 2024.

[Chi22] Lénaïc Chizat. Convergence rates of gradient methods for convex optimization in the
space of measures. Open Journal of Mathematical Optimization, 3:1–19, 2022.

[CM20] Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In
Conference on Learning Theory, 2020.

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable
Programming. In Advances in Neural Information Processing Systems, 2019.

9

[DH18] Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In
Conference On Learning Theory, pages 1887–1930. PMLR, 2018.

[DKL+23] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan.
Learning two-layer neural networks, one (giant) step at a time. arXiv preprint
arXiv:2305.18270, 2023.

[DLS22] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural Networks can Learn
Representations with Gradient Descent. In Conference on Learning Theory, 2022.

[DNGL23] Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee. Smoothing the landscape
boosts the signal for sgd: Optimal sample complexity for learning single index models.
Advances in Neural Information Processing Systems, 36, 2023.

[DPVLB24] Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. The com-
putational complexity of learning gaussian single-index models. arXiv preprint
arXiv:2403.05529, 2024.

[DTA+24] Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and
Florent Krzakala. The benefits of reusing batches for gradient descent in two-layer
networks: Breaking the curse of information and leap exponents. arXiv preprint
arXiv:2402.03220, 2024.

[HJ24] Hamed Hassani and Adel Javanmard. The curse of overparametrization in adversarial
training: Precise analysis of robust generalization for random features regression. The
Annals of Statistics, 52(2):441–465, 2024.

[IST+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial examples are not bugs, they are features. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[JGH18] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Conver-
gence and Generalization in Neural Networks. In Advances in Neural Information
Processing Systems, 2018.

[JM24] Adel Javanmard and Mohammad Mehrabi. Adversarial robustness for latent models:
Revisiting the robust-standard accuracies tradeoff. Operations Research, 72(3):1016–
1030, 2024.

[JMS24] Nirmit Joshi, Theodor Misiakiewicz, and Nathan Srebro. On the complexity of learning
sparse functions with statistical and gradient queries. arXiv preprint arXiv:2407.05622,
2024.

[JS22] Adel Javanmard and Mahdi Soltanolkotabi. Precise statistical analysis of classification
accuracies for adversarial training. The Annals of Statistics, 50(4):2127–2156, 2022.

[JSH20] Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in
adversarial training for linear regression. In Conference on Learning Theory, pages
2034–2078. PMLR, 2020.

[KKSK11] Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning
of generalized linear and single index models with isotonic regression. Advances in
Neural Information Processing Systems, 24, 2011.

[KLR21] Junho Kim, Byung-Kwan Lee, and Yong Man Ro. Distilling robust and non-robust
features in adversarial examples by information bottleneck. Advances in Neural
Information Processing Systems, 34, 2021.

[LD89] Ker-Chau Li and Naihua Duan. Regression Analysis Under Link Violation. The
Annals of Statistics, 1989.

[Li91] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 1991.

10

[LL24] Binghui Li and Yuanzhi Li. Adversarial Training Can Provably Improve Robustness:
Theoretical Analysis of Feature Learning Process Under Structured Data. arXiv
preprint arXiv:2410.08503, 2024.

[LOSW24] Jason D. Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns
low-dimensional polynomials with sgd near the information-theoretic limit. arXiv
preprint arXiv:2406.01581, 2024.

[MHPG+23] Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and
Murat A Erdogdu. Neural networks efficiently learn low-dimensional representations
with SGD. In The Eleventh International Conference on Learning Representations,
2023.

[MHWE24] Alireza Mousavi-Hosseini, Denny Wu, and Murat A Erdogdu. Learning multi-index
models with neural networks via mean-field langevin dynamics. arXiv preprint
arXiv:2408.07254, 2024.

[MHWSE23] Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-
based feature learning under structured data. Advances in Neural Information Process-
ing Systems, 36, 2023.

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 115(33):E7665–E7671, 2018.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

[MZD+23] Arvind Mahankali, Haochen Zhang, Kefan Dong, Margalit Glasgow, and Tengyu Ma.
Beyond ntk with vanilla gradient descent: A mean-field analysis of neural networks
with polynomial width, samples, and time. Advances in Neural Information Processing
Systems, 36, 2023.

[NOSW24] Atsushi Nitanda, Kazusato Oko, Taiji Suzuki, and Denny Wu. Improved statistical
and computational complexity of the mean-field langevin dynamics under structured
data. In The Twelfth International Conference on Learning Representations, 2024.

[NWS22] Atsushi Nitanda, Denny Wu, and Taiji Suzuki. Convex analysis of the mean field
langevin dynamics. In International Conference on Artificial Intelligence and Statistics,
pages 9741–9757. PMLR, 2022.

[OSSW24] Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Learning sum of diverse
features: computational hardness and efficient gradient-based training for ridge combi-
nations. In Conference on Learning Theory. PMLR, 2024.

[Pis81] Gilles Pisier. Remarques sur un résultat non publié de b. maurey. Séminaire d’Analyse
fonctionnelle (dit" Maurey-Schwartz"), pages 1–12, 1981.

[RVE18] Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as Interacting Particle
Systems: Asymptotic convexity of the Loss Landscape and Universal Scaling of the
Approximation Error. arXiv preprint arXiv:1805.00915, 2018.

[SH20] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with
ReLU activation function. The Annals of Statistics, 48(4):1875 – 1897, 2020.

[SST+18] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. Adversarially robust generalization requires more data. Advances in neural
information processing systems, 31, 2018.

[SWON23] Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda. Feature learning via
mean-field langevin dynamics: classifying sparse parities and beyond. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

11

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In The
International Conference on Learning Representations, 2014.

[Tel23] Matus Telgarsky. Feature selection and low test error in shallow low-rotation relu
networks. In The Eleventh International Conference on Learning Representations,
2023.

[TSE+18] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness may be at odds with accuracy. arXiv preprint
arXiv:1805.12152, 2018.

[VE24] Nuri Mert Vural and Murat A. Erdogdu. Pruning is optimal for learning sparse features
in high-dimensions. arXiv preprint arXiv:2406.08658, 2024.

[WLLM19] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: General-
ization and optimization of neural nets vs their induced kernel. Advances in Neural
Information Processing Systems, 32, 2019.

[WMHC24] Guillaume Wang, Alireza Mousavi-Hosseini, and Lénaïc Chizat. Mean-field langevin
dynamics for signed measures via a bilevel approach. arXiv preprint arXiv:2406.17054,
2024.

[XLS+24] Jiancong Xiao, Qi Long, Weijie Su, et al. Bridging the gap: Rademacher complexity
in robust and standard generalization. In The Thirty Seventh Annual Conference on
Learning Theory, pages 5074–5075. PMLR, 2024.

[YXKH23] Gan Yuan, Mingyue Xu, Samory Kpotufe, and Daniel Hsu. Efficient estimation
of the central mean subspace via smoothed gradient outer products. arXiv preprint
arXiv:2312.15469, 2023.

[Zha02] Tong Zhang. Covering number bounds of certain regularized linear function classes.
Journal of Machine Learning Research, 2(Mar):527–550, 2002.

[ZPVB23] Aaron Zweig, Loucas Pillaud-Vivien, and Joan Bruna. On single-index models beyond
gaussian data. Advances in Neural Information Processing Systems, 36, 2023.

12

A Gradient-Based Neural Feature Learning Algorithms

In this section, we will provide examples of implementations of the feature learner oracles introduced
in Section 4 using gradient-based training of two-layer neural networks. First, we look at the algorithm
provided by [OSSW24] for the case where g is a polynomial of degree p. Consider the following
two-layer neural network with zero bias

f(x;a,W) =

N∑
j=1

ajσj(⟨wj ,x⟩).

Note that we allow the activation to vary based on neuron. Specifically, we let σj =
∑q
l=1 βj,lHel,

where Hej is the jth normalized Hermite polynomial, βj,l
i.i.d.∼ Unif({±rl}) for appropriately chosen

rl, and q ≥ Cp, see [OSSW24, Lemma 3] for details. Now, we consider the following algorithm.

Algorithm 2 Gradient-Based Feature Learner for Single-Index Polynomials [OSSW24, Algorithm 1,
Phase I].

Input: T , step size (ηt)T−1
t=0 , momentum parameters (ζtj), ra.

1: w0
j

i.i.d.∼ Unif(Sd−1), aj
i.i.d.∼ Unif({±ra/N}), ∀j ∈ [N].

2: (x(0), y(0)) ∼ P
3: for t = 0, . . . , T − 1 do
4: if t > 0 and t is even then
5: Draw (x(t/2), y(t/2)) ∼ P
6: wt

j ← wt
j − ζtj(wt

j −wt−2
j), ∀ j ∈ [N]

7: wt
j ←

wt
j

∥wt
j∥
∀ j ∈ [N]

8: end if
9: wt+1

j ← wt
j − ηt∇Swj

(f(x(⌊t/2⌋);a,W t)− y(⌊t/2⌋))2
10: end for
11: return (wT

0 , . . . ,w
T
N)⊤

Note that∇Sf(w) = (I−ww⊤)∇f(w) denotes the spherical gradient. Essentially, Algorithm 2
takes two gradient steps on each new sample, and in the even iterations performs a certain interpolation.
Proper choice of hyperparameters in the above algorithm leads to Proposition 6.

Next, we consider the algorithm of [DLS22] for the case where g is a multi-index polynomial.

Algorithm 3 Gradient-Based Feature Learner for Multi-Index Polynomials [DLS22, Algorithm 1,
Adapted]

Input: {x(i), y(i)}nFL
i=1 , ra

1: aj
i.i.d.∼ Unif({±ra}),w0

j
i.i.d.∼ Unif(Sd−1),aN−j = −aj ,wN−j = w0

j , ∀ j ∈ [N/2].
2: α← 1

nFL

∑nFL

i=1 y
(i), β ← 1

nFL

∑nFL

i=1 y
(i)x(i)

3: y(i) ← y(i) − α−
〈
β,x(i)

〉
, ∀ i ∈ [nFL].

4: W ← −∇W
1
n

∑nFL

i=1 (f(x
(i);a,W 0)− y)2

5: wi ← wi

∥wi∥ , ∀ i ∈ [N]

6: return (w0, . . . ,wN)⊤

After performing a preprocessing on data, Algorithm 3 essentially performs one gradient descent
step with weight decay, when the regularizer of the weight decay is the inverse of step size, thus
cancelling out initialization and leaving only gradient as the estimate. [DLS22] prove that, with a
sample complexity of nFL = Õ(d2 + d/ζ2), the output of Algorithm 3 satisfies〈

wi,
U⊤HUw0

i∥∥∥U⊤HUw0
i

∥∥∥
〉
≥ 1− ζ, ∀i ∈ [N],

13

witi high probability, where H = E
[
∇2g(Ux)

]
. Thus, for a full-rank H , the output of Algorithm 3

satisfies the definition of a (1,β)SFL oracle for a constant β > 0 depending only on the conditioning
of H and the number of indices k.

B Additional Details of Section 4

Throughout the appendix, we will assume the activation satisfies σ(0) = 0 for simplicity of presenta-
tion, without loss of generality. We will also assume that

|σ(z1)− σ(z2)| ≤ Lσ(|z1|q̄−1
+ |z2|q̄−1

+ 1)|z1 − z2|, (B.1)
for all z1, z2 ∈ R and some absolute constant Lσ. In the case of ReLU, we have q̄ = 1 and Lσ = 1.
For polynomial activations, q̄ is the same as the degree of the polynomial. For a set of parameters ψ
(e.g. ψ = q, k), we will use Cψ to denote a generic constant whose value depends only on ψ and may
change from line to line.

B.1 Competing against the Optimal Polynomial Predictor

In this section, we restrict F to only polynomials, which allows us to derive more refined bounds on
the number of samples and neurons. Speicifcally, we make the following assumption.
Assumption 4. Suppose F is the class of d-variate polynomials of degree p for some constant
p > 0. Further, σ is either a polynomial of degree q ≥ p, or the ReLU activation for which we define
q = (p− 1) ∨ 1.

While the ReLU activation is sufficient for approximation purposes, we also consider polynomial
activations in Assumption 4 since recent works have been able to achieve sharper guarantees of
recovering the target directions under such activations. We provide a more detailed discussion in
Section 4.1. Note that a priori we do not require a growth constraint on the coefficients of the
polynomials in F . The optimal function h in Theorem 1 automatically chooses a polynomial with
suitably bounded coefficients in order to avoid incurring a large robust risk.

The following result establishes the sample and computational complexity for competing against
polynomial predictors when having access to the α -DFL oracle.
Theorem 8. Suppose Assumptions 1,2,4 hold. For a tolerance ϵ > 0 define ϵ̃ := ϵ ∧ (ϵ2/AR∗), and
for the adversary budget ε recall ε1 := 1 ∨ ε. Consider Algorithm 1 with α -DFL oracle, ra = Õ(1),
rb = Õ(ε1). Then, if the number of second phase samples nFA, neurons N , and α -DFL error ζ
satisfy

nFA ≥ Ω̃

(
ε
4(q+1)
1

α4ϵ2

)
, N ≥ Ω̃

(
εq+1
1

αζ
k−1
2

√
ϵ̃

)
, ζ ≤ Õ

(
ϵ̃

ε
2(q+1)
1

)
,

we have AR(â,W , b) ≤ AR∗ + ϵ with probability at least 1 − n−c where c > 0 is an absolute
constant. The total sample complexity of Algorithm 1 is given by ntotal = nFA + nDFL(ζ).

Consequently, when restricting F to the class of fixed degree polynomials, there is no curse of
dimensionality for sample complexity, even in the latent dimension k. This is consistent with the
setting in standard learning, see e.g. [CM20]. Further, similar to the general case above, it is possible
to remove the ζ dependence from N when having access to an SFL oracle, thus also achieving
computational complexity as a fixed polynomial independent of the latent dimension.
Theorem 9. In the setting of Theorem 8, consider using Algorithm 1 with an (α,β)-SFL oracle.
Then, the sufficient number of second phase samples and neurons are given as

nFA ≥ Ω̃

(
ε
4(q+1)
1

α4β4ϵ2

)
, N ≥ Ω̃

(
ε
2(q+1)
1

αβ2ϵ̃

)
, ζ ≤ Õ

(
β2ϵ̃

ε
2(q+1)
1

)
The total sample complexity is given by ntotal = nFA + nSFL(ζ) for ζ as in Theorem 8.

Remark. We note that the guarantees provided in Theorem 9 are generally better than those in
Theorem 8 for large k; yet, they are strictly worse for k = 1. That said, both Theorems 9 and
8 respectively achieve better sample complexity guarantees compared to their counterparts in the
previous section, namely Theorems 4 and 5, simply by restricting the function class F to polynomials.

14

B.2 Complete Versions of Theorems in Section 4

We first restate Theorem 4 with explicit exponents.
Theorem 10. Suppose Assumptions 1,2, and 3 hold. For any ϵ > 0, define ϵ̃ := ϵ ∧ (ϵ2/AR∗), and
recall ε1 := 1∨ε. Consider Algorithm 1 with the α -DFL oracle, ra = Õ

(
(ε1/
√
ϵ̃)k+1+1/k/α

)
, and

rb = Õ
(
ε1(ε1/

√
ϵ̃)1+1/k

)
. Then, if the number of second phase samples nFA, number of neurons N ,

and α -DFL error ζ satisfy

nFA ≥ Ω̃
(ε41
α4ϵ2

(ε21
ϵ̃

)2k+4+4/k
)
, N ≥ Ω̃

(1

αζ(k−1)/2

(ε1√
ϵ̃

)k+3+2/k
)
, ζ ≤ Õ

((ϵ̃
ε21

)k+2+1/k
)
,

we have AR(â,W , b) ≤ AR∗ + ϵ with probability at least 1 − n−cFA where c > 0 is an absolute
constant. The total sample complexity of Algorithm 1 is given by ntotal = nFA + nDFL(ζ).

Similarly, we can restate Theorem 5 with explicit exponents.
Theorem 11. Consider the same setting as Theorem 10, except that we use the (α,β)-SFL oracle
in Algorithm 1 with ra = Õ

(
(ε1/
√
ϵ̃)k+1+1/k/(αβ)

)
. Then, if the number of second phase samples

nFA, number of neurons N , and α -DFL error ζ satisfy

nFA ≥ Ω̃
(ε41
α4β4ϵ2

(ε21
ϵ̃

)2k+4+4/k
)
, N ≥ Ω̃

(1

αβ2

(ε21
ϵ̃

)k+3+2/k
)
, ζ ≤ Õ

(
β2
(ϵ̃
ε21

)k+2+1/k
)
.

The total sample complexity in this case is given by ntotal = nFA + nSFL(ζ).

The proof of both theorems follows from combining the results of the following sections. Since both
proofs are similar, we only present the proof of Theorem 10. The proof of Theorems 8 and 9 can be
obtained in a similar manner.

Proof. [Proof of Theorem 10] The proof is based on decomposing the suboptimality into generaliza-
tion and approximation terms, namely

AR(â,W , b)−AR∗ = AR(â,W , b)−AR(a∗,W , b) + AR(a∗,W , b)−AR∗,

where a∗ := min∥a∥≤ra/
√
N AR(a,W , b), thus we can see the first term above as generalization

error, and the second term as approximation error.

From Proposition 20, we have AR(â,W , b) − AR(a∗,W , b) ≤ ϵ/2 as soon as n ≥ Ω̃(r4a(ε
4
1 +

r4b)/ϵ
2) (recall that q = 1 here, since we are considering the ReLU activation). For the approximation

error, we can use Proposition 34, which guarantees there exists a∗ with ∥a∗∥ ≤ ra/
√
N such that

AR(a∗,W , b)−AR∗ ≤ ϵ/2 with ra ≤ Õ((ε1/
√
ϵ̃)k+1+1/k/α), as soon as

ζ ≤ Õ
((ϵ̃
ε21

)k+2+1/k
)
, and N ≥ Ω̃

(1

ζ(k−1)/2α

(ε1√
ϵ̃

)k+3+2/k
)
,

provided that we choose rb = Θ̃(ε1(ε1/
√
ϵ̃)1+1/k). Plugging the value of ra and rb in the bound for

n completes the proof.

C Generalization Analysis

We will first focus on proving a generalization bound for bounded and Lipschitz losses, and then
extend the results to cover the squared loss. In this section, we will typically use n to refer to nFA,
the number of Phase 2 samples.

C.1 Generalization Bounds for Bounded Lipschitz Losses

Let us focus on a general Cℓ Lipschitz loss ℓ(f(·;a,W , b)− y) for now. Later, we will argue how
to extend the results of this section to the squared error loss. Our uniform convergence argument
depends on the covering number of the family of adversarial loss functions. Let Θ ⊆ RN be the set
of second layer weights, to be determined later. This family is given by

L(W , b) = {(x, y) 7→ max
∥δ∥≤ε

ℓ(f(x+ δ;a,W , b)− y) : a ∈ Θ}.

15

For brevity, we will also use L to denote L(W , b), but we highlight that W and b are fixed at this
stage. We define the following metric over this family

∀l̃, l̃′ ∈ L(W , b), dL(l̃, l̃
′)2 :=

1

n

n∑
i=1

(ℓ̃(x(i), y(i))− ℓ̃′(x(i), y(i)))2.

We say S ⊆ L is an ϵ-cover of L if for every l̃ ∈ L, there exists l̃′ ∈ S such that dL(l̃, l̃′) ≤ ϵ.
The ϵ-covering number of L is the least cardinality among all ϵ-covers of L, which we denote
by C(L, dL, ϵ). Note that since L is paramterized by a, constructing such a covering reduces to
constructing a finite set over Θ.

Therefore, we define the following metric over Θ,

∀a,a′ ∈ Θ, dΘ(a,a
′)2 :=

1

n

n∑
i=1

max
∥δ(i)∥≤ϵ

(
f(x(i)+δ(i);a,W , b)−f(x(i)+δ(i);a′,W , b)

)2
.

We can similarly define the ϵ-covering number of Θ with respect to the metric dΘ as C(Θ, dΘ, ϵ).
The following lemma relates the covering numbers of L and Θ.
Lemma 12. We have C(L, dL, ϵ) ≤ C(Θ, dΘ, ϵ/Cℓ) for all ϵ > 0.

Proof. We will use the following fact in the proof. For any F1, F2 : S → R, we have∣∣∣∣max
δ1∈S

F1(δ1)−max
δ2∈S

F2(δ2)

∣∣∣∣ ≤ max
δ∈S
|F1(δ)− F2(δ)|. (C.1)

This is true because
max
δ1∈S

F1(δ1)−max
δ2∈S

F2(δ2) ≤ max
δ1∈S

{
F1(δ1)− F2(δ1)

}
,

and the other direction holds by symmetry. This trick is used to relate the adversarial loss to its
non-adversarial counterpart, e.g. in [XLS+24, Lemma 5].

Now, we will show that an ϵ/Cℓ cover for Θ implies an ϵ cover for L. We will supress dependence
on the fixed W and b in the notation. Let SΘ be an ϵ/Cℓ cover of Θ with respect to the dΘ metric.
Then, we define S via

S = {(x, y) 7→ max
∥δ∥≤ε

ℓ(f(x+ δ;a)− y) : a ∈ SΘ}.

To show S is an ϵ cover of L, consider an arbitrary ℓ̃(x, y) = max∥δ∥≤ε ℓ(f(x+δ;a)−y). Suppose
a′ is the closest element to a in SΘ, and let ℓ̃′(x, y) = max∥δ∥≤ε ℓ(f(x+ δ;a′)− y). Then,

dL(ℓ̃, ℓ̃
′)2 =

1

n

n∑
i=1

(
max

∥δ(i)
1 ∥≤ε

ℓ(f(x+ δ
(i)
1 ;a)− y(i))− max

∥δ(i)
2 ∥≤ε

ℓ(f(x+ δ
(i)
2 ;a′)− y(i))

)2
≤ 1

n

n∑
i=1

max
∥δ(i)∥≤ε

(
ℓ(f(x+ δ(i);a)− y(i))− ℓ(f(x+ δ(i);a′)− y(i))

)2
≤ C2

ℓ

n

n∑
i=1

max
∥δ(i)∥≤ε

(
f(x+ δ(i);a)− f(x+ δ(i);a′)

)2
≤ C2

ℓ dΘ(a,a
′)2 ≤ ϵ2,

where we used (C.1) for the first inequality.

To construct an ϵ-cover of Θ, we depend on the Maurey sparsification lemma [Pis81], which has been
used in the literature for providing covering numbers for linear classes [Zha02] and neural networks
via matrix covering, see e.g. [BFT17].
Lemma 13 (Maurey Sparsification Lemma, [Zha02, Lemma 1]). LetH be a Hilbert space with norm
∥·∥, let u ∈ H be represented by u =

∑m
j=1 αjvj , where αj ≥ 0 and ∥vj∥ ≤ b for all j ∈ [m], and

α =
∑m
j=1 αj ≤ 1. Then, for every k ≥ 1, there exist non-negative integers k1, . . . , km, such that∑m

j=1 kj ≤ k and ∥∥∥u− 1

k

m∑
j=1

kjvj

∥∥∥ ≤ αb2 − ∥u∥2

k
.

16

Then, we have the following upper bound on the the covering number of Θ.
Lemma 14. Suppose σ satisfies (B.1), Θ = {∥a∥1 ≤ ra}, and additionally ∥wi∥ ≤ rw and |bi| ≤ rb
for all 1 ≤ i ≤ N . Then we have

log C(Θ, dΘ, ϵ) ≤
Cq̄L

2
σr

2
a logN

{
T

(q̄)
W ,X + r2q̄w ε

2q̄ + r2q̄b + T
(2)
W ,X + r2wε

2 + r2b

}
ϵ2

,

where T (q̄)
W ,X := max1≤j≤N

1
n

∑n
i=1⟨wj ,xi⟩2q̄ .

Proof. Given some positive integer k > 0, let SΘ be given by the following

SΘ =
{ra
k
(k1 − k′1, k2 − k′2, . . . , kN − k′N)⊤ : ∀i, ki, k′i ≥ 0,

N∑
i=1

ki +

N∑
i=1

k′i = k
}
.

Let X,∆ ∈ Rn×d be the matrices with (xi) and (δi) as rows respectively. Let A = σ((X +

∆)W⊤ + 1nb
⊤) ∈ Rn×N . Then,

1

n

n∑
i=1

(
f(x(i)+δ(i);a,W , b)−f(x(i)+δ(i);a′,W , b)

)2
=

1

n
∥A(a− a′)∥2 =

1

n

∥∥∥∥∥
N∑
i=1

Ai(ai − a′i)

∥∥∥∥∥
2

,

where Ai = σ((X +∆)wi + 1nbi) is the ith column of A. We are going to choose a′ from SΘ. To
that end, define

Ãi = sign(ai)Ai.

By Mauery’s sparsification lemma [XLS+24, Lemma 13], there exist k̃i ≥ 0 with
∑n
i=1 k̃i = k such

that ∥∥∥∥∥
N∑
i=1

|ai|Ãi −
ra
k

N∑
i=1

k̃iÃi

∥∥∥∥∥
2

≤ r2ab
2

k
,

where ∥Ai∥ ≤ b for all i. We will then choose

ki =

{
k̃i, sign(ai) ≥ 0,

0, sign(ai) < 0
, k′i =

{
0, sign(ai) ≥ 0,

k̃i, sign(ai) < 0
.

Therefore, we have
∑N
i=1 k̃i = k. Finally, with the constructed (ki) and (k′i), let

a′ =
ra
k
(k1 − k′1, . . . , kN − k′N)⊤,

and also note that
∑N
i=1|ai|Ãi =

∑N
i=1 aiAi. Consequently, given a, we have constructed a′ ∈ SΘ

such that
1

n

∥∥∥∥∥
N∑
i=1

Ai(ai − a′i)

∥∥∥∥∥
2

≤ r2ab
2

nk
.

Next, we provide a bound on b. By the assumptions on σ, we have

∥Ai∥2 ≲Cq̄L
2
σ

(
∥Xwi∥2q̄2q̄ + ∥∆wi∥2q̄2q̄ + nb2q̄i + ∥Xwi∥2 + ∥∆∥2 + nb2i

)
≲nCq̄L

2
σ

(
T

(q̄)
W ,X + r2q̄w ε

2q̄ + r2q̄b + T
(2)
W ,X + r2wε

2 + r2b

)
.

Consequently, we can choose

k =


Cq̄L

2
σr

2
a

(
T

(q̄)
W ,X + r2q̄w ε

2q̄ + r2q̄b + T
(2)
W ,X + r2wε

2 + r2b

)
ϵ2

.
Finally, we need to count |SΘ|. Note that

|SΘ| =
(
2N + k − 1

k

)
≤
(
e(2N + k − 1)

k

)k
≤ (3eN)k,

which concludes the proof.

We can now turn the above covering number into Rademacher complexity via a chaining argument,
as follows.

17

Lemma 15. Let R(L(W , b)) denote the Rademacher complexity of the class of adversarial loss
functions L(W , b), defined via

R(L(W , b)) := E

[
sup
a∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ξi max
∥δ(i)∥≤ε

ℓ(f(x(i) + δ(i);a,W , b), y(i))

∣∣∣∣∣
]
,

where ξi are i.i.d. Rademacher random variables and Θ = {a : ∥a∥1 ≤ ra}. For simplicity, assume
Cℓ, ra ≳ 1. Then we have

R(L(W , b)) ≲
CℓCq̄Lσra log n logN

(
E
[√

T
(q̄)
W ,X

]
+ rq̄wε

q̄ + rq̄b + E
[√

T
(2)
W ,X

]
+ rwε+ rb

)
√
n

.

Proof. Let Rn(L(W , b)) denote the empirical Rademacher complexity by

Rn(L(W , b)) := Eξ

[
sup
a∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ξi max
∥δ(i)∥≤ε

ℓ(f(x(i) + δ(i);a,W , b), y(i))

∣∣∣∣∣
]
,

where the expectation is only taken w.r.t. the randomness of ξ and is conditional on the training set.
For simplicity, define

B := Cq̄Lσ

(√
T

(q̄)
W ,X + rq̄wε

q̄ + rq̄b +

√
T

(2)
W ,X + rwε

2 + rb

)
.

Then, by a standard chaining argument, we have for all α > 0,

Rn(L(W , b)) ≲ α+

∫ ∞

ϵ=α

√
log C(L, dL, ϵ)

n
dϵ

≲ α+
CℓraB logN√

n
log
(1
α

)
.

By choosing α = 1/
√
n, we obtain

Rn(L(W , b)) ≲
CℓraB log n logN√

n
.

Taking expectations with respect to the input distribution completes the proof.

Note that it remains to provide an upper bound for T (q̄)
W ,x introduced in Lemma 14. This is achieved

by the following lemma.
Lemma 16. Suppose ∥wi∥ ≤ rw. Then, for all q̄ > 0 and N > e, we have

E

[
max

1≤j≤N

1

n

n∑
i=1

〈
wj ,x

(i)
〉2q̄]

≤ Cq̄r2q̄w (logN)q̄,

where Cq̄ is a constant depending only on q̄.

Proof. For conciseness, let Zj := 1
n

∑n
i=1

〈
wj ,x

(i)
〉2q̄

. By non-negativity of Zj and Jensen’s
inequality, for all t ≥ 1 we have

E
[
max

1≤j≤N
Zj

]
≤ E

[
max

1≤j≤N
Ztj

]1/t
≤
(N∑
j=1

E
[
Ztj
])1/t

≤ N1/t
(

max
1≤j≤N

E
[
Ztj
])1/t

.

Further, by Jensens’s inequality

E
[
Ztj
]
= E

(1

n

n∑
i=1

〈
wj ,x

(i)
〉2q̄)t

≤ E

[
1

n

n∑
i=1

〈
wj ,x

(i)
〉2q̄t]

≤ (Crw)
2q̄t(2q̄t)q̄t,

18

where C > 0 is a absolute constant, and we used the moment bound of subGaussian random variables
along with the fact that ⟨wj ,x⟩ is a centered subGaussian random variable with subGaussian norm
O(rw). As a result,

E
[
max

1≤j≤N
Zj

]
≤ Cq̄r2q̄w N1/ttq̄ ≲ Cq̄r

2q̄
w (logN)q̄,

where the last inequality follows by choosing t = logN .

As a consequence, if the loss is also bounded, we get the following high-probability concentration
bound.

Corollary 17. Suppose |ℓ̃| ≤ Bℓ for all ℓ̃ ∈ L(W , b). Then, with probability at least 1− δ we have∣∣∣∣∣ sup
ℓ̃∈L(W ,b)

E
[
ℓ̃(x, y)

]
− 1

n

n∑
i=1

ℓ̃
(
x(i), y(i)

)∣∣∣∣∣ ≲CℓraR log n logN +Bℓ
√
log(1/δ)√

n
,

where
R := Cq̄Lσ(r

q̄
w(log

q/2N + εq̄) + rq̄b + rw(log
1/2N + ε) + rb).

C.2 Applying the Generalization Bound to Squared Loss

To apply the generalization argument above to the squared loss, we bound it with a threshold τ , and
define the loss family

Lτ (W , b) := {(x, y) 7→
{
max
∥δ∥≤ε

(f(x+ δ;a,W , b)− y)2 ∧ τ : a ∈ Θ
}
.

We similarly define ARτ and ÂRτ . Recall that our goal is to show

AR(â,W , b) ≤ ÂR(â,W , b) + ϵ1(n,N, d).

We readily have ÂRτ (â,W , b) ≤ ÂR(â,W , b). Further, Corollary 17 yields∣∣∣ARτ (â,W , b)− ÂRτ (â,W , b)
∣∣∣ ≲ √τraR log n logN√

n
+ τ

√
log(1/δ)

n
,

with probability at least 1− δ. Thus, the remaining step is to bound AR(â,W , b) and ÂR(â,W , b)
with their clipped versions. To do so, we first provide the following tail probability estimate.

Lemma 18. Suppose (zj)
N
j=1 are non-negative random variables with subGaussian norm r. Then,

for any q̄ > 0 and τ ≥ Cq̄rq̄ where Cq̄ is a constant depending only on q̄, we have

P

 1

N

N∑
j=1

zq̄j ≥ τ

 ≤ exp

(
−cτ

2/q̄

r2

)
,

where c > 0 is an absolute constant.

Proof. For any t ≥ 1, we have the following Markov bound,

P

 1

N

N∑
j=1

zq̄j ≥ τ

 = P

(1

N

N∑
j=1

zq̄j

)t
≥ τ t

 ≤ E
[(

1
N

∑N
j=1 z

q̄
j

)t]
τ t

≤
E
[

1
N

∑N
j=1 z

q̄t
j

]
τ t

,

where the last inequality follows from Jensen’s inequality. Further, by subGaussianity of zj , we have
E
[
zq̄tj
]
≤ (Cr2q̄t)q̄t/2, where C > 0 is an absolute constant. As a result,

P

 1

N

N∑
j=1

zq̄j ≥ τ

 ≤ (Cr2q̄t)q̄t/2

τ t
.

19

The above bound is minimized at t = τ2/q̄

Cr2q̄e . Note that t ≥ 1 requires τ ≥ Cq̄r
q̄. Plugging this

choice of t in the above bound yields

P

 1

N

N∑
j=1

zq̄j ≥ τ

 ≤ exp

(
− τ2/q̄

2Cr2e

)
,

which completes the proof.

Lemma 19. Suppose Assumption 2 holds. Let Θ = {a : ∥a∥ ≤ ra/
√
N}, ∥wi∥ ≤ rw, and |bi| ≤ rb

for all i ∈ [N]. Assume σ satisfes (B.1). Define ε1 := 1 ∨ ε, and let

κ := Cq̄r
2
aL

2
σ(r

2q̄
w ε

2q̄
1 + r2q̄b + r2wε

2
1 + r2b) + Cp,

where Cq̄ and Cp are constants depending only on q̄ and p respectively. Then, for all

τ ≥ C
{
κ ∨ L2

σr
2q̄
w logq̄

n

δ
∨ logp

n

δ

}
,

we have∣∣∣AR(a,W , b)− ÂR(a,W , b)
∣∣∣ ≤∣∣∣ARτ (a,W , b)− ÂRτ (a,W , b)

∣∣∣
+ Cκ

(
exp

(
− Ω

(τ1/q̄

L
2/q̄
σ r2w

))
+ exp(−Ω(τ1/p))

)
,

with probability at least 1− δ uniformly over all a ∈ Θ.

Proof. Since W and b are fixed, we use the shorthand notation f(x;a) = f(x;a,W , b).

In the first section of the proof, we will upper and lower bound AR(a,W , b) with ARτ (a,W , b).
Note that the lower bound is trivial as ARτ (a,W , b) ≤ AR(a,W , b), thus we move on to the upper
bound. Let

ℓ̃(x, y) = max
∥δ∥≤ε

(f(x+ δ;a)− y)2.

Then,

AR(a,W , b) = E
[
ℓ̃(x, y)I

[
ℓ̃(x, y) ≤ τ

]]
+ E

[
ℓ̃(x, y)I

[
ℓ̃(x, y) > τ

]]
≤ ARτ (a,W , b) + E

[
ℓ̃(x, y)2

]1/2
P
(
ℓ̃(x, y) ≥ τ

)1/2
.

Further, we have the following upper bound for the adversarial loss,

ℓ̃(x, y) = max
∥δ∥≤ε

(f(x+ δ;a)− y)2

≲ max
∥δ∥≤ε

f(x+ δ;a)2 + y2

≲ max
∥δ∥≤ε

∥a∥2∥σ(W (x+ δ) + b)∥2 + y2

≲ r2aCq̄L
2
σ

 1

N

N∑
j=1

⟨wj ,x⟩2q̄ + r2q̄w ε
2q̄ + r2q̄b +

1

N

N∑
j=1

⟨wj ,x⟩2 + r2wε
2 + r2b

+ y2

Moreover, by Jensen’s inequality,

E


 1

N

N∑
j=1

⟨wj ,x⟩2q̄
2
 ≤ E

 1

N

N∑
j=1

⟨wj ,x⟩4q̄


≤ (Crw)
4q̄(4q̄)2q̄ ≤ Cq̄r4q̄w

20

for all q̄ > 0, where C is an absolute constant and we used the subGaussianity of ⟨wj ,x⟩ to bound
its moment. As a result,

E
[
ℓ̃(x, y)2

]1/2
≲ r2aCq̄L

2
σ(r

2q̄
w (1 + ε2q̄) + r2q̄b + r2w(1 + ε2) + r2b) + E

[
y4
]1/2

.

By assumption 2, we have E
[
y4
]1/2 ≤ Cp.

To estimate the tail probability of ℓ̃(x, y). Using the assumption on τ and the upper bound on ℓ̃(x, y)
developed above, via a union bound we have

P
(
ℓ̃(x, y) ≥ τ

)
≤ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2q̄ +
L2
σ

N

N∑
j=1

⟨wj ,x⟩2 + y2 ≥ τ

2


≤ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2q̄ ≥
τ

6

+ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2 ≥
τ

6

+ P
(
y2 ≥ τ

6

)

≤ 2 exp

(
−cτ1/q̄

L
2/q̄
σ r2w

)
+ P

(
y2 ≥ τ

)
,

where we used Lemma 18, the fact that |⟨wj ,x⟩| is subGaussian with norm O(rw), and that q̄ ≥ 1.
Furthermore, using the moment estimate on y in Assumption 2 along with the technique developed in
Lemma 18, we have

P
(
y2 ≥ τ

6

)
≤ exp

(
−cτ1/p

)
,

for τ ≥ Cp, where c > 0 is an absolute constant.

As a result, we obtain

AR(a,W , b)−ARτ (a,W , b) ≲ κ

(
exp

(
− cτ1/q̄

L
2/q̄
σ r2w

)
+ exp(−cτ1/p)

)
,

for all a ∈ Θ.

In the next part of the proof, we will show that with probability at least 1−δ, we have ÂR(a,W , b) =

ÂRτ (a,W , b) uniformly over all a. Note that this is equivalent to asking ℓ̃(x(i), y(i)) ≤ τ for all
1 ≤ i ≤ n. For any fixed i, using the upper bound on ℓ̃(x(i), y(i)), we have

P
(
ℓ̃(x(i), y(i)) ≥ τ

)
≤ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2q̄ +
L2
σ

N

N∑
j=1

⟨wj ,x⟩2 + y2 ≥ τ

2


≲ exp

(
−cτ1/q̄

L
2/q̄
σ r2w

)
+ exp

(
−cτ1/p

)
.

Consequently, by a union bound we have

P
(

max
1≤i≤n

ℓ̃(x(i), y(i)) ≥ τ
)
≤ n

(
exp

(
−cτ1/q̄

L
2/q̄
σ r2w

)
+ exp

(
−cτ1/p

))
.

Choosing

τ ≥ C
{
L2
σr

2q̄
w logq̄

n

δ
∨ logp

n

δ

}
with a sufficiently large constant C ensures the above probability is at most δ, finishing the proof.

We are now ready to present the main result of this section.

21

Proposition 20. Suppose Assumption 2 holds and σ satisfies (B.1), Θ = {a : ∥a∥ ≤ ra/
√
N},

∥wi∥ ≤ 1, and |bi| ≤ rb for all 1 ≤ i ≤ N . Let

κ := Cq̄r
2
aL

2
σ(1 + ε2q̄ + r2q̄b) + Cp,

where Cq̄ and Cp are constants depending only on q̄ and p respectively. Then we have

AR(â,W , b)−min
a∈Θ

AR(a,W , b) ≤ Õ
(

κ√
n

)
,

with probability at least 1−O(n−c) for some constant c > 0.

Proof. We can summarize the generalization bound of Corollary 17 as∣∣∣ARτ (â,W , b)− ÂRτ (â,W , b)
∣∣∣ ≲√τκ

n
+ τ

√
log(1/δ)

n
,

where
κ := Cq̄r

2
aL

2
σ(1 + ε2q̄ + r2q̄b) + Cp,

is obtained from Lemma 19 by letting rw = 1. Thanks to Lemma 19, we arrive at

AR(â,W , b)− ÂR(â,W , b) ≤ Õ

(√
τκ
n

+ τ

√
log(1/δ)

n
+ κe

−Ω
(

τ1/q̄

L
2/q̄
σ

)
+ κe−Ω

(
τ1/p
))
.

Note that κ ≳ L2
σ. Choosing τ = Cκ logp∨q̄(κn/δ) with a sufficiently large absolute constant

C > 0 satisfies the assumption of Lemma 19. By letting δ = n−c for some constant c > 0, we obtain

AR(â,W , b)− ÂR(â,W , b) ≤ Õ
(

κ√
n

)
,

which holds with probability at least 1− n−c over the randomness of the training set.

Recall a∗ = argmina∈Θ AR(a,W , b). Similarly, Lemma 19 guarantees

ÂR(a∗,W , b)−AR(a∗,W , b) ≤ Õ
(

κ√
n

)
,

on the same event as above. Finally, we have ÂR(â,W , b) ≤ ÂR(a∗,W , b) by definition of â,
which concludes the proof of the proposition.

D Approximation Analysis

Let ΠUw = U⊤Uw
∥Uw∥ denote the projection of w ∈ Sd−1 onto span(u1, . . . ,uk)∩Sd−1 (if ∥Uw∥ =

0 we can simply let ΠUw = u1). Suppose ⟨w,u⟩ ≥ 1 − ζ for some ζ ∈ (0, 1) and u ∈
span(u1, . . . ,uk) with ∥u∥ = 1. Then, we have the following properties for this projection:

• ⟨ΠUw,u⟩ ≥ 1− ζ,
• ∥w −ΠUw∥ ≤

√
2ζ.

Let h : Rk → R be the function constructed in the proof of Theorem 1. Then,

AR∗ = E
[
max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]
.

Let us denote f(x) = f(x;a∗,W , b) for conciseness. Then,

AR(a∗,W , b)−AR∗ = E
[
max
∥δ∥≤ε

(f(x+ δ)− y)2 − max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]

≤ E
[
max
∥δ∥≤ε

{
(f(x+ δ)− y)2 − (h(U(x+ δ))− y)2

}]

= E

max
∥δ∥≤ε

(f(x+ δ)− h(U(x+ δ))(f(x+ δ) + h(U(x+ δ))− 2y︸ ︷︷ ︸
=:Z

)




22

Let ΠUW = (ΠUw1, . . . ,ΠUwN)⊤. Then, we have the decompositions

f(x+ δ;a∗,W , b) = f(x+ δ;a∗,W , b)− f(x+ δ;a∗,ΠUW , b) + f(x+ δ;a∗,ΠUW , b),

and

Z =f(x+ δ;a∗,W , b)− f(x+ δ;a∗,ΠUW , b) + f(x+ δ;a∗,ΠUW , b)− h(U(x+ δ))

+ 2h(U(x+ δ))− 2y.

Plugging this decomposition into the above and using the Cauchy-Schwartz inequality yields

AR(a∗,W , b)−AR∗ ≤ (
√
E1 +

√
E2)2 +

√
E3(E1 + E2), (D.1)

where

E1 := E
[
max
∥δ∥≤ε

(f(x+ δ;a∗,ΠUW , b)− h(U(x+ δ)))2
]
, (D.2)

E2 := E
[
max
∥δ∥≤ε

(f(x+ δ;a∗,ΠUW , b)− f(x+ δ;a∗,W , b))2
]
, (D.3)

E3 := 4E
[
max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]
= 4AR∗. (D.4)

Under Definition 3, we have a set of good neurons S to work with. To continue, we introduce a
similar subset of good neurons under Definition 2.

Definition 21. Suppose the weights W = (w1, . . . ,wN)⊤ are obtained from the α -DFL oracle of
Definition 2. Fix a maximal 2

√
2ζ-packing of Sk−1 with respect to the Euclidean norm, denoted by

(v̄i)
M
i=1. Define vj :=

Uwj

∥Uwj∥ for all j ∈ [N], and

Si := {j ∈ [N] : ∥vj − v̄i∥ ≤
√

2ζ},

for all i ∈ [M]. Note that (Si) are mutually exclusive. Define S :=
⋃M
i=1 Si. By upper and

lower bounds on the surface area of the spherical cap (see e.g. [WMHC24, Lemma F.11]), there
are constants ck, Ck > 0 such that ck(1/ζ)(k−1)/2 ≤ M ≤ Ck(1/ζ)

(k−1)/2. Therefore, using
Definition 2, we have |S|/N ≥ Ω(α).

Note that when considering the (α,β)-SFL oracle, we leave S unchanged from Definition 3. In either
case, for every j /∈ S, we will choose a∗j = 0. Then, we then have the following upper bound on E2.

Lemma 22. Suppose a∗j = 0 for j /∈ S and ∥a∗∥ ≤ r̃a/
√
|S|. Then,

E
[
max
∥δ∥≤ε

(f(x+ δ;a∗,ΠUW , b)− f(x+ δ;a∗,W , b))2
]
≲ L2

σCq̄ r̃
2
a(1+r

2(q̄−1)
b +ε2(q̄−1))(1+ε2)ζ,

where Cq̄ is a constant only depending on q̄.

Proof. To be concise, we define x̃δ := x + δ and hide dependence on a∗ and b in the following
notation. By pseudo-Lipschitzness of σ,

f(x̃δ; ΠUW)− f(x̃δ;W) =
∑
j∈S

a∗j (σ(⟨ΠUwj , x̃δ⟩+ bj)− σ(⟨wj , x̃δ⟩+ bj))

≤ Lσ
∑
j∈S

∣∣a∗j ∣∣(|⟨ΠUwj , x̃δ⟩+ bj |q̄−1
+ |⟨wj , x̃δ⟩+ bj |q̄−1

+ 1)|⟨ΠUwj −wj , x̃δ⟩|.

Let
Aj := |⟨ΠUwj , x̃δ⟩+ bj |q̄−1

+ |⟨wj , x̃δ⟩+ bj |q̄−1
+ 1,

and
Bj := |⟨ΠUwj −wj , x̃δ⟩|.

23

Then by the Cauchy-Schwartz inequality,

E2 ≤ L2
σ E

max
∥δ∥≤ε

(∑
j∈S

∣∣a∗j ∣∣AjBj)2
 ≤ L2

σ r̃
2
a

|S|
E

max
∥δ∥≤ε

∑
j∈S
A2
jB2j


≤ L2

σ r̃
2
a

|S|
∑
j∈S

E
[
max
∥δ∥≤ε

A2
jB2j

]

≤ L2
σ r̃

2
a

|S|
∑
j∈S

E
[
max
∥δ∥≤ε

A4
j

]1/2
E
[
max
∥δ∥≤ε

B4j
]1/2

.

Additionally, we have

max
∥δ∥≤ε

Aj ≤ Cq̄
(
|⟨ΠUwj ,x⟩|q̄−1

+ |⟨wj ,x⟩|q̄−1
+ εq̄−1 + rq̄−1

b + 1
)
,

and
max
∥δ∥≤ε

Bj ≤ ε∥ΠUwj −wj∥+ |⟨ΠUwj −wj ,x⟩|.

Further, by Assumption 2, for all v ∈ Rd, ⟨v,x⟩ is a centered subGaussian random variable with
subGaussian norm O(∥v∥), therefore E

[
|⟨v,x⟩|q̄

]
≤ Cq̄∥v∥q̄ for all q̄ > 0. In summary,

E
[
max
∥δ∥≤ε

A4
j

]1/2
≤ Cq̄(1 + r

2(q̄−1)
b + ε

2(q̄−1)
1), and E

[
max
∥δ∥≤ε

B4j
]1/2

≲ (1 + ε2)ζ,

where we used the fact that ∥ΠUwj −wj∥2 ≤ 2ζ for all j ∈ S. This completes the proof.

While the term E1 defined in (D.2) is an expectation over the entire distribution of x, most approxi-
mation bounds support only a compact subset of Rd. The following lemma shows that approximation
on compact sets is sufficient to bound E1.

Lemma 23. Suppose a∗j = 0 for j /∈ S and ∥a∗∥ ≤ r̃a/
√
|S|. Further, suppose rz ≥ 1 ∨ 2ε. Let

ϵapprox := sup
∥Ux∥≤rz

|f(x;a∗,ΠUW , b)− h(Ux)|.

Assume h satisfies |h(z)| ≤ Lh(1 + ∥z∥p) for all z ∈ Rk and some constant p ≥ 0. Then,

E1 ≤ ϵ2approx +
(
L2
σCq̄ r̃

2
a(1 + ε2q̄ + r2q̄b) + L2

hCp,k(1 + ε2p)
)
e−Ω(r2z).

Proof. For brevity, define

∆δ :=
(
f(x̃δ;a

∗,ΠUW , b)− h(U(x+ δ))
)2

where x̃δ := x+ δ. Then,

E
[
max
∥δ∥≤ε

∆δ

]
≤ E

[
max
∥δ∥≤ε

∆δI[∥Ux̃δ∥ ≤ rz]
]
+ E

[
max
∥δ∥≤ε

∆δI[∥Ux̃δ∥ > rz]

]
≤ ϵ2approx + E

[
max
∥δ∥≤ε

∆2
δ

]1/2
E
[
max
∥δ∥≤ε

I[∥Ux̃δ∥ > rz]

]1/2
≤ ϵ2approx + E

[
max
∥δ∥≤ε

∆2
δ

]1/2
P(∥Ux∥ > rz − ε)1/2

≤ ϵ2approx + E
[
max
∥δ∥≤ε

∆2
δ

]1/2
P
(
∥Ux∥ > rz

2

)1/2
.

Furthermore, we have

E
[
max
∥δ∥≤ε

∆2
δ

]
≲ E

[
max
∥δ∥≤ε

f(x̃δ;a
∗,ΠUW , b)4

]
+ E

[
max
∥δ∥≤ε

h(U(x+ δ))4
]
.

24

Recall the notation vj :=
Uwj

∥Uwj∥ and z := Ux. Then, by Cauchy-Schwartz and Jensen inequalities,

E
[
max
∥δ∥≤ε

f(x̃δ;a
∗,ΠUW , b)4

]
≤ E

[
max
∥δ∥≤ε

∥a∗∥4∥σ(ΠUW (x+ δ) + b)∥4
]

≤ r̃4a
|S|

E

max
∥δ∥≤ε

(∑
j∈S

σ(⟨vj , z +Uδ⟩+ bj)
4
)

≤ r̃4aL
4
σCq̄
|S|

E

∑
j∈S
⟨vj , z⟩4q̄ + ε4q̄ + r4q̄b


≤ Cq̄L4

σ r̃
4
a(1 + ε4q̄ + r4q̄b).

Similarly we can prove

E
[
max
∥δ∥

h(U(x+ δ))4
]
≤ Cp,kL4

h(1 + ε4p).

In summary,

E
[
max
∥δ∥≤ε

∆2
δ

]1/2
≲ Cq̄L

2
σ r̃

2
a(1 + ε2q̄ + r2q̄b) + Cp,kL

2
h(1 + ε2p).

Finally, the probability bound
P
(
∥Ux∥ ≥ rz

2

)
≤ e−Ω(r2z)

follows from subGaussianity of x and the fact that k = O(1).

D.1 Approximating Univariate Functions

In this section, we recall prior results on approximating univariate functions with random biases in
the infinite-width regime under ReLU and polynomial activations.
Lemma 24 ([DLS22, Lemma 9, Adapted]). Let σ be the ReLU activation, a ∼ Unif({−1,+1}),
and b ∼ Unif(−rb, rb). Then, there exists f : {−1,+1} × [−rb, rb]→ R, such that for all |z| ≤ rb
we have

Ea,b[2rbf(b)σ(az + b)] = h(z).

Additionally, if h is a polynomial of degree s, we have supa,b|f(a, b)| ≤ r
(s−2)∨0
b .

Proof. From integration by parts, namely

Ea,b[2rb(1− a)h′′(b)σ(az + b)] =

∫ rb

z

h′′(b)(−z + b)db

= h′(rb)(−z + rb)−
∫ rb

z

h′(b)db

= h′(rb)(−z + rb) + h(z)− h(rb).

Therefore, it remains to approximate the constant and linear parts. It is straightforward to verify that

Ea,b
[
6b

r2b
· σ(az + b)

]
= 1, Ea,b[2aσ(az + b)] = z.

Thus, we let

f(a, b) = (1− a)h′′(b) + ah′(rb)

rb
− 3b(h′(rb)rb − h(rb))

r3b
,

which completes the proof.

Furthermore, we have the following result for infinite-width approximation with polynomial activa-
tions.

25

Lemma 25 ([OSSW24, Lemma 30, Adapted]). Let σ be a polynomial of degree q and suppose
b ∼ Unif(−rb, rb) and h is a polynomial of degree p such that q ≥ p, and in particular satisfies
|h(z)| ≤ Lh(1 + |z|p). Suppose rb ≥ q. Then, there exists a function f : [−rb, rb]→ R such that

Eb[2rbf(b)σ(z + b)] = h(z), ∀z ∈ R.

Furthermore, we have |f(z)| ≤ Cσ,h for all z, where Cσ,h only depends on the activation and Lh.

Proof. In order for σ to approximate arbitrary polynomials of degree at most q, it is sufficient to show
that σ can approximate at least one polynomial per degree, ranging from degree 0 to q. Defining
the corresponding polynomial with degree i as gi(z), then h will be in the span of {gi}qi=0. More
specifically, suppose h(z) =

∑p
j=0 αjz

j , and gi(z) =
∑i
j=0 γi,jz

j . Then there exist {βi}qi=0 such
that

p∑
i=0

βigi(z) =

p∑
j=0

p∑
i=j

γi,jβiz
j =

p∑
j=0

αjz
j .

Indeed, we can let βi = 0 for all i > p. Additionally, note that γi,i ̸= 0 for all i ≤ q by definition.
Therefore, the solution to the above equation is given iteratively by βp = αp/γp,p and

βp−j =
αp−j −

∑j−1
i=0 γp−i,p−jβp−i
γp−j,p−j

,

for 1 ≤ j ≤ p. Importantly, |βi| for all i can be bounded polynomially by {αj}j , {γi,j}i,j and
{γ−1
i,i }i. Further, |αi| can be bounded polynomially by Lh for all i. Thus, it remains to construct

{gi}.
Following [OSSW24], we define

gq(z) =

∫ 0

−q
σ(z + b)db.

It is straightforward to verify that gq has degree (exactly) q. We then iteratively define

gq−i(z) = gq−(i−1)(z + 1)− gq−(i−1)(z), ∀ 1 ≤ i ≤ q.

Using the definition above and by induction, one can verify gi has degree exactly i. Furthermore,
expanding the definition above yields

gq−i(z) =

i∑
j=0

ci,jgq(z + j) =

i∑
j=0

ci,j

∫ 0

−q
σ(z + b+ j)db,

where ci,j = (−1)i−j
(
i
j

)
, i.e. the coefficients that satisfy (z − 1)i =

∑i
j=0 ci,jz

j . In particular, we
can write

gq−i(z) =

i∑
j=0

ci,j

∫ j

−q+j
σ(z + b)db = Eb

2rb i∑
j=0

I[−q + j ≤ b ≤ j]σ(z + b)

.
Therefore, we can define

f(b) :=

q∑
i=0

βq−i

i∑
j=0

ci,jI[−q + j ≤ b ≤ j],

which completes the proof.

D.2 Approximating Multivariate Polynomials

We adapt the approximation result of this section from [DLS22], modifying the proof to be consistent
with our assumption on the first layer weights.

First, we remark that for any fixed v ∈ Sk−1 and any degree 0 ≤ s ≤ p, we can approximate the
function z 7→ ⟨v, z⟩s with random biases as established by Lemma 24 for the ReLU activation and

26

Lemma 25 for the polynomial activation. Therefore, our main effort will be spent in approximating a
polynomial h(z) using monomials ⟨v, z⟩s. Note that we can represent h by

h(z) =

p∑
s=0

T (s)[z⊗s],

where T (s) is a symmetric tensor of order s, and we use the notation

T (s)[z⊗s] = vec(T (s))⊤vec(z⊗s) =

k∑
i1,...,is=1

T
(s)
i1,...,is

zi1 . . . zis .

The approximation result relies on the following fact.
Lemma 26. Let v ∼ τk. Then, the matrix Ev∼τk

[
vec(v⊗s)vec(v⊗s)⊤

]
is invertible.

Proof. Let T be an arbitrary symmetric tensor of order s with ∥T ∥F = 1. We need to find a constant
cs,k > 0 such that

vec(T)⊤ Ev∼τk
[
vec(v⊗s)vec(v⊗s)

]
vec(T) ≥ cs,k.

Note that

vec(T)⊤ Ev∼τk
[
vec(v⊗s)vec(v⊗s)

]
vec(T) = Ev∼τk

[
T [v⊗s]2

]
= Ew∼N (0,Ik)

[
T [w⊗s]2

∥w∥2s

]
.

Furthermore, [DLS22, Lemma 23] implies that
Ew∼N (0,Ik)

[
T [w⊗s]2

]
≥ c′s,k,

for some constant c′s,k > 0. Therefore, for any r > 0, we have

Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ > r]

]
+ Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ ≤ r]

]
≥ c′s,k.

Note that the first term on the LHS above can become arbitrarily small by choosing r sufficiently
large (depending on s and k). Thus for sufficiently large r we have

Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ ≤ r]

]
≥
c′s,k
2
.

Finally, we have

Ew∼N (0,Ik)

[
T [w⊗s]2

∥w∥2s

]
≥ 1

r2s
Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ ≤ r]

]
≥

c′s,k
2r2s

.

Therefore, taking cs,k =
c′s,k
2r2s completes the proof.

The following lemma establishes how we can use monomials of the form (v⊤z)s to approximate
each term appearing in h(z).
Lemma 27 ([DLS22, Corollary 4, Adapted]). There exists f : Sk−1 → R such that for all z ∈ Rk
and non-negative integers s ≥ 0,∫

Sk−1

f(v)⟨v, z⟩sdτk(v) = T (s)[z⊗s].

Further, |f(v)| ≤ Ck,s
∥∥∥T (s)

∥∥∥
F

for all v ∈ Sk−1.

Proof. Note that by definition, ⟨v, z⟩s = vec(v⊗s)⊤vec(z⊗s). Therefore,∫
f(v)⟨v, z⟩sdτk(v) =

(∫
f(v)vec(v⊗s)dτk(v)

)⊤

vec(z⊗s).

We need to match the first vector on the RHS above with vec(T⊗s), thus our choice of f is

f(v) = vec(v⊗s)⊤ Ev∼τk
[
vec(v⊗s)vec(v⊗s)⊤

]−1
vec(T (s)).

The proof is then completed via the lower bound of Lemma 26 which gaurantees the existence of
some constant cs,k > 0 such that λmin

(
Ev∼τk

[
vec(v⊗s)vec(v⊗s)⊤

])
≥ cs,k.

The above result along with the univariate approximations proved earlier immediately yields the
following corollary.

27

Corollary 28. Suppose h is a polynomial of degree p denoted by h(z) =
∑p
s=0 T

(s)[z⊗s]. Further
assume the activation σ is either ReLU or a polynomial of degree q ≥ p. Then, there exists
ĥ : Sk−1 × [−rb, rb]→ R such that for every ∥z∥ ≤ rb, we have∫

Sk−1×[−rb,rb]
ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db = h(z).

Furthermore,
∣∣∣ĥ(v, b)∣∣∣ ≤ Ck,qmaxs≤p

∥∥∥T (s)
∥∥∥
F

for the polynomial activation and
∣∣∣ĥ(v, b)∣∣∣ ≤

Ckr
(p−2)∨0
b

∥∥∥T (s)
∥∥∥
F

for the ReLU activation.

Proof. First, we consider the case where we use polynomial activations. Let

ĥ(v, b) =

p∑
s=0

f1,s(v)f2,s(b),

for (f1,s) and (f2,s) which we now determine. We choose f2,s according to and Lemma 25, then∫ rb

b=−rb
f2,s(b)σ(⟨v, z⟩+ b)db = ⟨v, z⟩s,

for all ∥z∥ ≤ rb/2, and |f2,s(b)| ≤ Cs,q for all b. Then, we choose f1,s according to Lemma 27,
which yields∫

Sk−1×[−rb,rb]
f1,s(v)f2,s(b)σ(⟨v, z⟩+ b)dτk(v)db =

∫
f1,s(v)⟨v, z⟩sdτk(v) = T (s)[z⊗s],

for all ∥z∥ ≤ rb/2. Additionally |f1,s(v)| ≤ Cs,k

∥∥∥T (s)
∥∥∥
F

, which completes the proof of the
polynomial activation case.

Now, consider the case where we use the ReLU activation. Let

ĥ(v, b) =

p∑
s=0

gs(v, b).

where
gs(v, b) =

1

2
f1,s(v)f̃2,s(1, b) +

1

2
f1,s(−v)f̃2,s(−1, b)

with f1,s given above and f̃2,s introduced below. Since v and−v have the same distribution, we have∫
gs(v, b)σ(⟨v, z⟩)dbdτk(v) =

∫
1

2

(
f1,s(v)f̃2,s(1, b) + f1,s(−v)f̃2,s(−1, b)

)
σ(⟨v, z⟩dbdτk(v)

=

∫
Sd−1

f1,s(v)
1

2

{∫ rb

b=−rb
f̃2,s(1, b)σ(⟨v, z⟩+ b) + f̃2,s(−1, b)σ(−⟨v, z⟩+ b)db

}
dτk(v)

=

∫
f1,s(v)⟨v, z⟩sdτk(v) = T (s)[z⊗s].

As a result, it suffices to choose f̃2,s according to Lemma 24, which completes the proof of the
corollary.

As a last step in this section, we verify that one can indeed control maxs≤p

∥∥∥T (s)
∥∥∥
F

with an absolute
constant when h is the minimizer of the adversarial risk.
Lemma 29. Suppose F is the class of degree p polynomials on Rd. Let H = {z 7→
E[f(x) |Ux = z] : f ∈ F}, and define

h = argmin
h′∈H

E
[
max
∥δ∥≤ε

(h′(U(x+ δ))− y)2
]
.

28

Denote the decomposition of h by h(z) =
∑p
s=0 T

(s)[z⊗s]. Then,
∥∥∥T (s)

∥∥∥
F
≤ Ck,y, where Ck,y is

a constant depending only on k and the target second moment E
[
y2
]

(thus an absolute constant in
our setting). As a consequence, we have |h(z)| ≤ Lh(1 + ∥z∥p) for all z ∈ Rk, where Lh > 0 is an
absolute constant.

Proof. By comparing with the zero function, we have

E
[
(h(Ux)− y)2

]
≤ E

[
max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]
≤ E

[
y2
]
.

Furthermore, by the Cauchy-Schwartz inequality,

E
[
(h(Ux)− y)2

]
≥ E

[
h(Ux)2

]
+ E

[
y2
]
− 2E

[
h(Ux)2

]1/2 E[y2]1/2.
Combining the two inequalities above, we obtain E

[
h(Ux)2

]
≤ 4E

[
y2
]
. Let z := Ux, and let µz

be the marginal distribution of z. Then

E
[
h(z)2

]
=

∫
h(z)2

dµz

dN (0, CkIk)
(z)dN (0, CkIk)(z).

Further, by subGaussianity of x and subsequent subGaussianity of z, we have dµz

dN (0,Ck)
(z) ≤ C ′

k <

∞ for all z, when Ck, C ′
k are sufficiently large constants depending only on k. Therefore,

Ez∼N (0,CkIk)

[
h(z)2

]
≤ 4C ′

k E
[
y2
]
.

The proof is completed by using the Hermite decomposition of h.

D.3 Approximating Multivariate Pseudo-Lipschitz Functions

We now turn to the more general problem of approximating pseudo-Lipschitz functions. Specifically,
when F satisfies Assumption 3, functions of the form h(z) = E[f(x) |Ux = z] will be L-pseudo-
Lipschitz. The following lemma investigates approximating such functions with infinite-width
two-layer neural networks.
Lemma 30. Suppose h : Rk → R is L-Lipschitz on ∥z∥ ≤ rz and σ is the ReLU activation. Then,
for every ∆ ≥ Ck, there exists ĥ : Sk−1 × [−rb, rb]→ R such that∣∣∣∣∣h(z)−

∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db

∣∣∣∣∣ ≤ CkLrz
{(∆

Lrz

) −2
k+1

log
∆

Lrz
+
(∆
rz

) 2k
k+1
(rz
rb

)k}
,

for all ∥z∥ ≤ rz . Furthermore, we have
∣∣∣ĥ(v, b)∣∣∣ ≤ CkL(∆/Lrz)2k/(k+1)/rz for all v and b, and∫

Sk−1×[−rb,rb]
ĥ(v, b)2dτk(v)db ≤

Ck∆
2

r3z
.

Proof. Let z̃ := (z⊤, rz)
⊤ ∈ Rk+1. By [Bac17, Proposition 6], we know that for all ∆ ≥ Ck, there

exists p : Sk → R, such that ∥p∥L2(τk+1)
≤ ∆ and∣∣∣∣h(z)− ∫

Sk
p(ṽ)σ

(⟨ṽ, z̃⟩
rz

)
dτk+1(ṽ)

∣∣∣∣ ≤ CkLrz(∆

Lrz

) −2
k+1

log
∆

Lrz
,

for all ∥z∥ ≤ rz . Furthermore, the proof of [MHWE24, Proposition 19] demonstrated that

|p(ṽ)| ≤ CkLrz
(∆

Lrz

) 2k
k+1

, ∀ ṽ ∈ Sk.

Let ṽ = (ṽ⊤
1:k, ṽk+1)

⊤ be the decomposition of ṽ into its first k and last coordinate. Then, we will use
the fact that for ṽ ∼ Unif(Sk) when conditioned on ṽk+1, by symmetry v1:k

∥v1:k∥ is uniformly distributed

on Sk−1. In other words, let v ∼ Unif(Sk−1) and b̃ ∼ ρk+1 independently, where we choose ρk+1

29

such that b̃√
1+b̃2

has the same marginal distribution as ṽk+1. Since the marginal distribution of

ṽk+1 is given by dP(ṽk+1) ∝ (1 − ṽ2k+1)
(k−2)/2dṽk+1, we have ρk+1(b̃) = Zk(1 + b̃2)−(k+1)/2,

where Zk is the normalizing constant. Then, ṽ = T(v, b̃) is distributed uniformly on Sk, where
T : Sk−1 × R→ Sk is given by T(v, b̃) = 1√

1+b̃2

(
v⊤, b̃

)
. As a result,∫

p(ṽ)σ
(⟨ṽ, z̃⟩

rz

)
dτk+1(ṽ) =

∫
p(T(v, b̃))σ

(⟨v, z⟩+ b̃rz

rz
√

1 + b̃2

)
dτk(v)dρk+1(b̃)

= Zk

∫
Sk−1×R

p(T(v, b̃))

rz
√
1 + b̃2

· 1

(1 + b̃2)(k+1)/2
σ(⟨v, z⟩+ b̃rz)dτk(v)db̃

= Zk

∫
Sk−1×R

rkzp(T(v, b/rz))

(r2z + b2)(k+2)/2
σ(⟨v, z⟩+ b)dτk(v)db.

Therefore, our choice of ĥ will be

ĥ(v, b) = Zk
rkzp(T(v, b/rz))

(r2z + b2)(k+2)/2
.

Next, we bound the following error term due to cutoff of bias,

E := Zk

∣∣∣∣∣
∫
Sk−1×(R\[−rb,rb])

rkzp(T(v, b/rz))

(r2z + b2)(k+2)/2
σ(⟨v, z⟩+ b)dτk(v)db

∣∣∣∣∣.
We have

E ≲ CkLrz
(∆

Lrz

) 2k
k+1

∫
|b|>rb

rkz (rz + |b|)
(r2z + b2)(k+2)/2

db

≲ CkLrz
(∆

Lrz

) 2k
k+1

∫
|b|>rb

rkz
(r2z + b2)(k+1)/2

db

≲ Ck∆
2k

k+1

∫
|b|>rb

rkz
bk+1

db

≲ CkLrz
(∆
rz

) 2k
k+1
(rz
rb

)k
.

Finally, we prove the guarantees provided for ĥ. The uniform bound on
∣∣∣ĥ(v, b)∣∣∣ follows directly by

plugging in the uniform bound on p. For the L2 bound on ĥ, we have∫
Sk−1×[−rb,rb]

ĥ(v, b)2dτk(v)db ≤
∫
Sk−1×R

ĥ(v, b)2dτk(v)db

=

∫
Z2
kr

2k
z p(T(v, b/rz))

2

(r2z + b2)k+2
dτk(v)db

=

∫
Z2
kp(T(v, b̃))

2

r3z(1 + b̃2)k+2
dτk(v)db̃

=
Zk
r3z

∫
p(T(v, b̃))2

(1 + b̃2)(k+3)/2
dτk(v)dρk+1(b̃)

=
Zk
r3z

∫
(1− ṽ2k+1)

(k+3)/2p(ṽ)2dτk+1(ṽ)

≤
Zk∥p∥2L2(τk+1)

r3z
≤ Zk∆

2

r3z
,

completing the proof.

30

D.4 Discretizing Infinite-Width Approximations

In this section, we provide finite-width guarantees corresponding to the infinite-width approximations
proved earlier. Define the following integral operator

T ĥ(z) =
∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db. (D.5)

The type of discretization error depends on whether we are using the α -DFL or the (α,β)-SFL
oracle. We first cover the case of α -DFL oracles.
Proposition 31 (Approximation by Riemann Sum). Suppose σ satisfies (B.1). Let (w1, . . . ,wN) be
the first layer weights obtained from the α -DFL oracle (Definition 2), and define vi =

Uwi

∥Uwi∥ for

i ∈ [N]. Suppose (bj)j∈[N]
i.i.d.∼ Unif(−rb, rb), and let ∥ĥ∥∞ := supv,b

∣∣∣ĥ(v, b)∣∣∣. Then, there exists

a∗ such that a∗j = 0 for j /∈ S and
∣∣a∗j ∣∣ ≤ Ck∥ĥ∥∞rb log(αN/(ζδ))/(αN) for j ∈ S (where S is

given by Definition 21), and∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣ ≤ Cq̄∥ĥ∥∞Lσrq̄b
(
rz
√
ζ +

rb log(N/δ)

ζ(k−1)/2αN

)
, (D.6)

for all z ∈ Rk where ∥z∥ ≤ rz ≤ rb, with probability at least 1− δ over the randomness of biases.

Proof. The proof is a multivariate version of the argument given in [OSSW24, Lemma 29]. Let
{v̄i}Mi=1 be the maximal 2

√
2ζ-packing of Sk−1 from Definition 21, which is also a 2

√
2ζ-covering

of Sk−1. Recall from Definition 21 that M ≤ Ck(1ζ)
(k−1)/2.

For every i ∈ [M], define
Si := {j ∈ [N], ∥vj − v̄i∥ ≤

√
2ζ}.

Note that by definition of packing and Definition 2, each vj can only belong to exactly one of Si
when j ∈ S, meaning that (Si) are disjoint and

⋃
i∈[M] Si = S. In particular, |Si|/N ≥ ζ(k−1)/2α,

and |Si|/N ≤ 1/M ≤ ζ(k−1)/2/ck.

We want each group of biases (bj)j∈Si to cover the interval [−rb, rb]. We divide this interval into 2A

subintervals of the form [−rb(1+ l
A), rb(1+

l+1
A)) for 0 ≤ l ≤ 2A−1. When bj

i.i.d.∼ Unif(−rb, rb),
by a union bound, the probability that there exists some subinterval and some Si such that the
subinterval contains no element of {bj : j ∈ Si} is at most 2A

∑M
i=1(1 −

1
2A)

|Si|. Thus, taking
A ≤ ⌊ |Si|

2 log(|Si|M/δ)⌋ for all i ∈ [M] guarantees that all subintervals have at least one bias from every
Si inside them with probability at least 1− δ.

Next, we define Π1 : Sk−1 → Sk−1 as the projection onto the packing, i.e. Π1(v) =
argmin{v̄i:i∈[M]}∥v − v̄i∥. Further, we define Π2 : [M] × [−rb, rb] → [−rb, rb] by Π2(i, b) =

argmin{bj :j∈Si}|b− bj |. Tie braking can be performed by choosing any of the answers. By defini-
tion, we have ∥v −Π1(v)∥ ≤ 2

√
2ζ, and additionally |b−Π2(i, b)| ≤ rb/A for all i ∈ [M] on the

event described above.

We are now ready to construct a∗. Specifically, let

a∗j =

{∫
ĥ(v, b)I[i = Π1(v), bj = Π2(i, b)]dτk(v)db if j ∈ Si for some i,

0 if j /∈ S.

Note that by definition,
M∑
i=1

∑
j∈Si

I[i = Π1(v), bj = Π2(i, b)] = 1,

For conciseness, we define E(v, i, j) = I[i = Π1(v), bj = Π2(i, b)]. When j ∈ Si, on the event
E(v, i, j) we have

∥v − vj∥ ≤ ∥v − v̄i∥+ ∥v̄i − vj∥ ≤ 3
√
2ζ.

31

Moreover, since Pv∼τk [∥v − v̄i∥ ≤ 2
√
2ζ] ≤ Ckζ(k−1)/2, for j ∈ S we have∣∣a∗j ∣∣ ≤ Ck∥ĥ∥∞ζ(k−1)/2rb
A

≤ Ck∥ĥ∥∞rb log(N/δ)
αN

.

As a result,∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)−
∫
ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∑
i=1

∑
j∈Si

∫
ĥ(v, b)E(v, i, j)(σ(⟨vj , z⟩+ bj)− σ(⟨v, z⟩+ b))dτk(v)db

∣∣∣∣∣∣
≲ Cq̄∥ĥ∥∞Lσrq̄b (rz

√
ζ +

rb
A
),

for all ∥z∥ ≤ rz , where we used the fact that σ(z) is O(Lσrq̄−1
b) Lipschitz when restricted to

|z| ≤ rb. This concludes the proof.

Next, we provide a discretization guarantee when using (α,β)-SFL oracles.
Proposition 32. Consider the same setting as Proposition 31, except the first-layer weights
(w1, . . . ,wN) are obtained from the (α,β)-SFL oracle (Definition 3). Then, there exists a∗ such
that a∗i = 0 for i /∈ S and |a∗i | ≤ ∥ĥ∥∞rb/(βαN) for i ∈ S, and∣∣∣∣∣∣

∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣ ≤ Cq̄Lσ∥ĥ∥∞rq̄+1
b

β

√
log(αN/δ)

αN
,

for all z ∈ Rk with ∥z∥ ≤ rb, with probability at least 1− δ over the randomness of (vi, bi)i∈[N].

Moreover, suppose Ev,b∼τk⊗Unif(−rb,rb)

[
ĥ(v, b)2

]
≤M2(ĥ)

2. Then, assuming dµ
dτk
≤ β′, we have

∥a∗∥2 ≲
r2bβ

′M2(ĥ)
2

αβ2N
, provided that, N ≳

∥ĥ∥4∞ log(1/δ)

αβ′2M2(ĥ)4
,

which also holds with probability at least 1− δ.

Proof. By definition,

T ĥ(z) =
∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db

=

∫
Sk−1×[−rb,rb]

ĥ(v, b)
dτk
dµ

(v)σ(⟨v, z⟩+ b)dµ(v)db

= Ev,b∼µ⊗Unif(−rb,rb)

[
2rbĥ(v, b)

dτk
dµ

(v)σ(⟨v, z⟩+ b)

]
.

Consider (vi, bi)i∈S
i.i.d.∼ µ⊗ Unif(−rb, rb) from Definition 3. Let

a∗i =

{
2rbĥ(vi,bi)

|S|
dτk
dµ (vi) if i ∈ S,

0 if i /∈ S.

Consequently

|a∗i | ≤
2rb∥ĥ∥∞
β|S|

,

for all i ∈ S. Given z, define the random variable

T̂ ĥ(z) =
∑
i∈S

a∗i σ(⟨vi, z⟩+ bi).

32

Our next step is to bound the difference between T̂ ĥ(z) and T ĥ(z) uniformly over all ∥z∥ ≤ rb.

Let (ẑj)Mj=1 be a ∆-covering of {z : ∥z∥ ≤ rb}, therefore M ≤ (3rb/∆)k. Note that for any fixed

z with ∥z∥ ≤ rb, we have
∣∣∣T̂ ĥ(z)∣∣∣ ≲ ∥ĥ∥∞Lσrq̄+1

b /β. Thus, by Hoeffding’s lemma,

∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≲ ∥ĥ∥∞Lσrq̄+1
b

β

√
log(1/δ)

|S|
,

with probability at least 1− δ for a fixed z. By a union bound,

max
j∈[M]

∣∣∣T̂ ĥ(ẑj)− T ĥ(ẑj)∣∣∣ ≲ ∥ĥ∥∞Lσrq̄+1
b

β

√
log(M/δ)

|S|
,

with probability at least 1− δ. For any z with ∥z∥ ≤ rb, let ẑ denote the projection of z onto the
covering (ẑj)

M
j=1. Then,

sup
∥z∥≤rb/2

∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≤ max
j∈[M]

∣∣∣T̂ ĥ(ẑj)− T ĥ(ẑj)∣∣∣+ ∣∣∣T ĥ(ẑ)− T ĥ(z)∣∣∣+ ∣∣∣T̂ ĥ(ẑ)− T ĥ(z)∣∣∣
≲
∥ĥ∥∞Lσrq̄+1

b

β

√
log(M/δ)

|S|
+
∥ĥ∥∞Lσrq̄b∆

β
.

≲
∥ĥ∥∞Lσrq̄+1

b

β

√
log(rb/(∆δ))

|S|
+
∥ĥ∥∞Lσrq̄b∆

β
.

Choosing ∆ = rb/
√
|S| implies

sup
∥z∥≤rb/2

∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≲ ∥ĥ∥∞Lσrq̄+1
b

β

√
log(|S|/δ)
|S|

with probability at least 1− δ over the randomness of (vi, bi)i∈[N].

The last step is to bound ∥a∗∥2. Note that,

∥a∗∥2 ≤ 4r2b
β2|S|

∑
i∈S

ĥ(vi, bi)
2

|S|
.

Further, by the Hoeffding inequality,∑
i∈S

ĥ(vi, bi)
2

|S|
− Ev,b∼µ⊗Unif(−rb,rb)

[
ĥ(v, b)2

]
≲ ∥ĥ∥2∞

√
log(1/δ)

|S|

with probability at least 1− δ. Moreover,

Ev,b∼µ⊗Unif(−rb,rb)

[
ĥ(v, b)2

]
= Ev,b∼τk⊗Unif(−rb,rb)

[
ĥ(v, b)2

dµ

dτk
(v)

]
≤ β′M2(ĥ)

2.

Thus, when |S| ≥ ∥ĥ∥4
∞ log(1/δ)

β′2M2(ĥ)4
, we have ∥a∗∥2 ≲ r2bβ

′M2(ĥ)
2/(β2|S|) with probability at least

1− δ, which completes the proof.

D.5 Combining All Steps

We can finally bound our original objective of this section, i.e. AR(a∗,W , b)−AR∗. Let us begin
with the case where F is the class of polynomials of degree p.

Proposition 33. Suppose F and σ satisfy Assumption 4 and (bi)i∈[N]
i.i.d.∼ Unif(−rb, rb). Recall

that ε1 := 1 ∨ ε, and ϵ̃ := ϵ ∧ ϵ2

AR∗ for any ϵ ∈ (0, 1). Using the simplification k, q, p, Lσ ≲ 1 and
recalling ε1 := 1 ∨ ε, there exists a choice of rb = Θ̃(ε1) such that:

33

• If W = (w1, . . . ,wN)⊤ are given by the α -DFL oracle, there exists a∗ such that |a∗i | ≤
Õ(ε1/(αN)) for all i ∈ [N], and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as

ζ ≤ Õ
(ϵ̃

ε
2(q+1)
1

)
and N ≥ Ω̃

(εq+1
1

αζ(k−1)/2
√
ϵ̃

)
.

• If W = (w1, . . . ,wN)⊤ are given by the (α,β)-SFL oracle, there exists a∗ such that |a∗i | ≤
Õ(ε1/(βαN)) for all i ∈ [N], and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as

ζ ≤ Õ
(β2ϵ̃

ε
2(q+1)
1

)
and N ≥ Ω̃

(ε2(q+1)
1

αβ2ϵ̃

)
.

Both cases above hold with probability at least 1− n−c for some absolute constant c > 0 over the
choice of random biases (bi)i∈[N] (and random weights (wi) in the case of SFL).

Proof. Recall from (D.1) that

AR(a∗,W , b)−AR∗ ≲ E1 + E2 +
√
E3(E1 + E2).

By definition, E3 ≲ AR∗. By Lemma 22, we have

E2 ≲ L2
σ r̃

2
a(1 + r

2(q̄−1)
b + ε2(q̄−1))(1 + ε2)ζ.

Further, thanks to Lemma 29 we have |h(z)| ≲ 1 + ∥z∥p. Therefore, by Lemma 23 with rz = rb,
we have

E1 ≲ ϵ2approx +
(
L2
σ r̃

2
a(1 + ε2q̄ + r2q̄b) + 1 + ε2p

)
e−Ω(r2b).

Let us now consider the case of α -DFL. Define p̄ = (p− 2) ∨ 0 if the ReLU activation is used and
p̄ = 0 if the polynomial activation is used. Notice that by the definition in Assumption 4, we have
q̄ + p̄ = q. By Proposition 31, we know there exists a∗ with |a∗i | ≤ Õ(r

1+p̄
b /(αN)) (we used the

fact that maxs≤p

∥∥∥T (s)
∥∥∥
F
≲ 1 from Lemma 29) such that

ϵapprox ≤ Õ
(
rq+1
b

(√
ζ +

1

ζ(k−1)/2αN

))
,

provided that rb ≳ ε1 where we recall ε1 = 1 ∨ ε, and the above statement holds with probability
at least 1 − δ for any polynomially decaying δ, e.g. δ = n−c for some absolute constant c > 0.
Therefore, we have r̃a ≤ Õ(r1+p̄b). Further, it suffices to choose rb large enough such that rb ≳

ε1 ∨
√
log(NL2

σ r̃
2
ar

2q̄
b + ε2p1) = Θ̃(ε1) to have

E1 ≤ Õ
(
r
2(q+1)
b

(
ζ +

1

ζk−1α2N2

))
.

Plugging in the values of r̃a and rb, we obtain,

E2 ≤ Õ(ε2(q+1)
1 ζ), and E1 ≤ Õ

(
ε
2(q+1)
1 ζ +

ε
2(q+1)
1

ζk−1α2N2

)
.

Hence, choosing

ζ ≤ Õ
(ϵ̃

ε
2(q+1)
1

)
, and N ≥ Ω̃

(εq+1
1

αζ(k−1)/2
√
ϵ̃

)
which concludes the proof of the α -DFL case.

In the case of (α,β)-SFL, we instead invoke Proposition 32, thus obtain |a∗i | ≲ r1+p̄b /(βαN), and

ϵapprox ≤ Õ
(Lσrq+1

b

β
√
αN

)
,

34

which holds with probability at least 1 − δ for any polynomially decaying δ such as δ = n−c for
some absolute constant c > 0. Consequently, with the same choice of rb = Θ̃(ε1) as before, we have

E2 ≤ Õ
(ε2(q+1)

1 ζ

β2

)
, and E1 ≤ Õ

(ε2(q+1)
1

β2αN

)
,

which completes the proof.

We can also combine approximation bounds for the more general class of pseudo-Lipschitz F .

Proposition 34. Suppose F and σ satisfy Assumption 3 and (bi)i∈[N]
i.i.d.∼ Unif(−rb, rb). Recall

that ε1 := 1 ∨ ε, and ϵ̃ := ϵ ∧ ϵ2

AR∗ for any ϵ ∈ (0, 1). Using the simplification k, p, L ≲ 1, there
exists a choice of rb = Θ̃

(
ε1(ε1/

√
ϵ̃)1+1/k

)
such that:

• If W = (w1, . . . ,wN)⊤ is given by the α -DFL oracle, there exists a∗ such that |a∗i | ≤
Õ((ε1/

√
ϵ̃)k+1+1/k/(αN)) for all i ∈ [N], and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as

ζ ≤ Õ
((ϵ̃
ε21

)k+2+1/k
)
, and N ≥ Ω̃

(1

ζ(k−1)/2α

(ε1√
ϵ̃

)k+3+2/k
)
.

• If W = (w1, . . . ,wN)⊤ is given by the (α,β)-SFL oracle, there exists a∗ such that
|a∗i | ≤ Õ

(
(ε1/
√
ϵ̃)k+1+1/k/(αβN)

)
, and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as

ζ ≤ Õ
(
β2
(ϵ̃
ε21

)k+2+1/k
)
, and N ≥ Ω̃

(1

αβ2

(ε21
ϵ̃

)k+3+2/k
)
.

Both cases above hold with probability at least 1− n−c for some absolute constant c > 0 over the
choice of random biases (bi)i∈[N] (and random weights (wi) in the case of SFL).

Proof. Our starting point is once again the decomposition

AR(a∗,W , b)−AR∗ ≤ E1 + E2 +
√
E3(E1 + E2).

Given Assumption 3, it is straightforward to verify that |h(z1)− h(z2)| ≲ (ε1−p1 ∥z1∥p−1
+

ε1−p1 ∥z2∥p−1
+ 1)∥z1 − z2∥ for z1, z2 ∈ Rk. As a consequence, we have |h(z)| ≲ 1 + ∥z∥p

for all z ∈ Rk. Therefore, by Lemma 23 with a choice of rz = Θ̃(ε1), we have E1 ≲ ϵ2approx. In the
rest of the proof we will fix rz = Θ̃(ε1).

We begin by considering the case of α -DFL. Unlike the proof of Proposition 33 where T ĥ = h, in
this case we have an additional error due to T ĥ only approximating h. From Lemma 30, we have

∥ĥ∥∞ ≤ Õ
(1

ε1

(∆
ε1

)2k/(k+1)
)
.

Thus,

ϵapprox ≤ sup
∥z∥≤rz

∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣+
∣∣∣T ĥ(z)− h(z)∣∣∣

≤ Õ
(rb
ε1

(∆
ε1

) 2k
k+1
(
ε1
√
ζ +

rb
ζ(k−1)/2αN

))
+ Õ

(
ε1
(∆
ε1

)− 2
k+1 + ε1

(∆
ε1

) 2k
k+1
(ε1
rb

)k)
,

where we bounded the first term via Proposition 31 with q̄ = 1, and the second term via Lemma 30.
Additionally, we have ∣∣a∗j ∣∣ ≤ rb

ε1αN

(∆
ε1

) 2k
k+1 ,

for all j ∈ [N]. To obtain AR(a∗,W , b) ≤ AR∗ + ϵ, we must choose ∆ = Θ̃(ε1(ε1/
√
ϵ̃)(k+1)/2).

Next, we choose rb = Θ̃(ε1(ε1/
√
ϵ̃)(k+1)/k). This combination ensures

∣∣∣T ĥ(z)− h(z)∣∣∣ ≲ √ϵ̃. To

make sure
∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≲ √ϵ̃, we should let

ζ ≤ Õ
((ϵ̃
ε21

)k+2+1/k
)
, and N = Θ̃

(1

ζ(k−1)/2α

(ε1√
ϵ̃

)k+3+2/k
)
.

35

The above guarantees that ϵapprox ≲
√
ϵ̃ and consequently E1 +

√
E3E1 ≲ ϵ. Note that the above

choices imply
∣∣a∗j ∣∣ ≤ r̃a/|S| for all i ∈ S with r̃a = Õ((ε1/

√
ϵ̃)k+1+1/k). From Lemma 22 with

q̄ = 1, we have E2 ≲ r̃2aε
2
1ζ. Therefore, if we let

ζ = Θ̃
((ϵ̃
ε21

)k+2+1/k
)
,

we have E2 ≲ ϵ̃ and consequently E2 +
√
E3E1 ≲ ϵ. This concludes the proof of the α -DFL case.

Next, we consider the case of (α,β)-SFL. Note that the error
∣∣∣T ĥ(z)− h(z)∣∣∣ remains unchanged.

However, this time we invoke Proposition 32 for controlling
∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣. Therefore,

ϵapprox ≤ sup
∥z∥≤rz

∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣+
∣∣∣T ĥ(z)− h(z)∣∣∣

≤ Õ
(r2b
βε1

(∆
ε1

) 2k
k+1

√
1

αN

)
+ Õ

(
ε1
(∆
ε1

)− 2
k+1 + ε1

(∆
ε1

) 2k
k+1
(ε1
rb

)k)
.

Since the second term is unchanged, we have the same choices of ∆ = Θ̃
(
ε1(ε1/

√
ϵ̃)(k+1)/2

)
and

rb = Θ̃
(
ε1(ε1/

√
ϵ̃)1+1/k

)
as in the α -DFL case. However, for the finite-width discretization, we

should choose

N = Θ̃
(1

αβ2

(ε21
ϵ̃

)k+3+2/k
)
. (D.7)

Moreover, Proposition 32 implies
∣∣a∗j ∣∣ ≤ r̃a/|S| with r̃a = Õ

(
(ε1/
√
ϵ̃)k+1+1/k/β

)
. As a result, to

get E2 ≲ r̃2aε
2
1ζ ≤ ϵ̃ from Lemma 22 with q = 1, we let

ζ = Θ̃
(
β2
(ϵ̃
ε21

)k+2+1/k
)
,

completing the proof.

E Numerical Experiments

We perform the following small-scale experiment to support intuitions from our theory. We consider
a single-index setting, where the teacher non-linearity is given by either ReLU, tanh, or He2(z) =

(z2−1)/
√
2 which is the normalized second Hermite polynomial. The student network has N = 100

neurons, and the input is sampled from x ∼ N (0, Id) with d = 100. We implement adversarial
training in the following manner. At each iteration, we sample a new batch of i.i.d. training examples.
We estimate the adversarial perturbations on this batch by performing 5 steps of signed projected
gradient ascent, with a stepsize of 0.1. We then perform a gradient descent step on the perturbed
batch. To estimate the robust test risk, we fix a test set of 10, 000 i.i.d. samples, and use 20 iterations
to estimate the adversarial perturbation. Because of the online nature of the algorithm, the total
number of samples used is the batch size times the number of iterations taken.

The first row of Figure 1 compares the performance of three different approaches. Full AD training
refers to adversarially training all layers from random initialization, where first layer weights are
initialized uniformly on the sphere Sd−1, second layer weights are initialized i.i.d. from N (0, 1/N2),
and biases are initialized i.i.d. from N (0, 1). In the two other approaches, we initialize all first layer
weights to the target direction u. In one approach we fix this direction and do not train it, while in the
other approach we allow the training of first layer weights from this initialization. As can be seen
from Figure 1, there is a considerable improvement in initializing from u, which is consistent with
out theory that this direction provides a Bayes optimal projection for robust learning.

In the typical setting where we do not have knowledge of u, we consider the following alternative. We
first perfrom standard training on the network, i.e. assume ε = 0 (denoted in Figure 1 by SD training).
We can then either fix the first layer weights to these directions, or further train them adversarially

36

from this initialization. Note that for a fair comparison with the full AD method, we provide the
same random bias and second layer weight initializations across all methods at the beginning of
the adversarial training stage. Even though this approach is not perfect at estimating the unkown
direction, it still provides a considerable benefit over adversarial training of all layer from random
initialization, as demonstrated in the second row of Figure 1.

37

	Introduction
	Related Works

	Problem Setup: Feature Learning and Adversarial Robustness
	Optimal Representations for Robust Learning
	Learning Procedure and Guarantees
	Oracle Implementations of the Feature Learner

	Conclusion
	Gradient-Based Neural Feature Learning Algorithms
	Additional Details of Section 4
	Competing against the Optimal Polynomial Predictor
	Complete Versions of Theorems in Section 4

	Generalization Analysis
	Generalization Bounds for Bounded Lipschitz Losses
	Applying the Generalization Bound to Squared Loss

	Approximation Analysis
	Approximating Univariate Functions
	Approximating Multivariate Polynomials
	Approximating Multivariate Pseudo-Lipschitz Functions
	Discretizing Infinite-Width Approximations
	Combining All Steps

	Numerical Experiments

