
Robust Feature Learning for Multi-Index Models in
High Dimensions

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recently, there have been numerous studies on feature learning with neural net-1

works, specifically on learning single- and multi-index models where the target is a2

function of a low-dimensional projection of the input. Prior works have shown that3

in high dimensions, the majority of the compute and data resources are spent on4

recovering the low-dimensional projection; once this subspace is recovered, the5

remainder of the target can be learned independently of the ambient dimension.6

However, implications of feature learning in adversarial settings remain unexplored.7

In this work, we take the first steps towards understanding adversarially robust8

feature learning with neural networks. Specifically, we prove that the hidden di-9

rections of a multi-index model offer a Bayes optimal low-dimensional projection10

for robustness against ℓ2-bounded adversarial perturbations under the squared loss,11

assuming that the multi-index coordinates are statistically independent from the rest12

of the coordinates. Therefore, robust learning can be achieved by first performing13

standard feature learning, then robustly tuning a linear readout layer on top of the14

standard representations. In particular, we show that adversarially robust learning15

is just as easy as standard learning. Specifically, the additional number of samples16

needed to robustly learn multi-index models when compared to standard learning17

does not depend on dimensionality.18

1 Introduction19

A crucial capability of neural networks is their ability to hierarchically learn useful features, and20

to avoid the curse of dimensionality by adapting to potential low-dimensional structures in data21

through empirical risk minimization (ERM) [Bac17, SH20]. Recently, a theoretical line of work has22

demonstrated that gradient-based training, which is not a priori guaranteed to implement ERM due to23

non-convexity, also demonstrates similar behavior and efficiently learns functions of low-dimensional24

projections [WLLM19, DLS22, BBSS22, BEG+22, BES+22, MHPG+23] or functions with certain25

hierarchical properties [AAM22, ABAM23, DKL+23]. These theoretical insights provided a useful26

avenue for explaining standard feature learning mechanisms in neural networks.27

On the other hand, it has been empirically observed that deep neural networks trained with respect28

to standard losses are susceptible to adversarial attacks; small perturbations in the input may not be29

detectable by humans, yet they can significantly alter the prediction performed by the model [SZS+14].30

To overcome this issue, a popular approach is to instead minimize the adversarially robust empirical31

risk [MMS+18]. However, unlike its standard counterpart, achieving successful generalization of32

deep neural networks on robust test risk has been particularly challenging, and even the standard33

performance of the model can degrade once adversarial training is performed [TSE+18]. Therefore,34

one may wonder if robust neural networks are still adaptive to certain problem structures that improve35

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

standard generalization. By focusing on hidden low-dimensionality as a well-known example of such36

structure, we aim at answering the following fundamental question:37

Can neural networks maintain their statistical adaptivity to low dimensions38

when trained to be robust against adversarial perturbations?39

We answer this question positively by providing the following contributions.40

• When considering ℓ2-constrained perturbations, Bayes optimal predictors can be constructed by41

projecting the input data onto the low-dimensional subspace defined by the target function. In this42

sense, the optimal low-dimensional projection remains unchanged compared to standard learning.43

• Consequently, provided that they have access to an oracle that is able to recover the low-44

dimensional target subspace, neural networks can achieve a sample complexity that is inde-45

pendent of the ambient dimension when robustly learning multi-index models. This is achieved46

by minimizing the empirical adversarial risk with respect to the second layer.47

• An oracle for recovering the low-dimensional target subspace can be constructed by training48

the first layer of a two-layer neural network with a standard loss function, as demonstrated by49

many prior works. By combining our results with two particular choices of oracle implemen-50

tation [DLS22, LOSW24], we provide end-to-end guarantees for robustly learning multi-index51

models with gradient-based algorithms.52

1.1 Related Works53

Feature Learning for Single/Multi-Index Models. Many recent works have focused on proving54

benefits of feature learning, allowing the neural network weights to travel far from initialization,55

as opposed to the fixed kernel regime of freezing weights around initialization [JGH18, COB19].56

When using online SGD on the squared loss, [BAGJ21] showed that the complexity of learning57

single-index models with known link function depends on a quantity called information exponent.58

Gradient-based learning of single-index models has been studied in [BES+22, MHPG+23, BBSS22]59

among others. [DLS22] considered multi-index polynomials where the equivalent of information60

exponent is at most 2. The counterpart of information exponent for multi-index models, the leap61

exponent, was introduced in [ABAM23]. Considering SGD on the squared loss as an example of62

a Correlational Statistical Query (CSQ) algorithm, [DNGL23] provided CSQ-optimal algorithms63

for learning single-index models. Further improvements to the isotropic sample complexity were64

achieved by either considering structured anisotropic Gaussian data [BES+23, MHPG+23], or the65

sparsity of the hidden direction [VE24].66

More recently, it was observed that gradient-based learning can go beyond CSQ algorithms by reusing67

batches [DTA+24, LOSW24, ADK+24], or by changing the loss function [JMS24]. In such cases,68

the algorithm becomes an instance of a Statiscal Query (SQ) learner, and the sample complexity is69

characterized by the generative exponent of the link function [DPVLB24].70

While the above works exist in a narrow-width setting where the interaction between neurons is71

ignored, another line of research focused on the mean-field or wide limits of two-layer neural net-72

works [CB18, RVE18, MMN18] for providing learnability guarantees [WLLM19, CB20, AAM22,73

Tel23, MZD+23, CG24]. In particular, the mean-field Langevin algorithm provides global conver-74

gence guarantees for two-layer NNs [Chi22, NWS22], leading to sample complexity linear in an effec-75

tive dimension for multi-index models [SWON23, NOSW24] and multi-index models [MHWE24].76

Adversarially Robust Learning. The existence of small worst-case or adversarial perturba-77

tions that can significantly change the prediction of deep neural networks was first demonstrated78

in [SZS+14], Among many defences proposed, one effective approach is adversarial training intro-79

duced by [MMS+18], which is based on solving a min-max problem to perform robust optimization.80

However, adversarial training tends to decrease the standard performance [TSE+18]. Therefore, the81

following works studied the hardness of robust learning and established a statistical separation in a82

simple mixture of Gaussians setting [SST+18], or computational separation by proving statistical83

query lower bounds [BLPR19]. Further studies focused on exact characterizations of the robust and84

standard error, as well as the fundamental and the algorithmic tradeoffs between robustness and85

accuracy in the context of linear regression [JSH20], mixture of Gaussians classification [JS22], and86

in the random features model [HJ24]. Closer to our work, [JM24] show that this tradeoff is mitigated87

when the data enjoy a low-dimensional structure. However, the focus there is on binary classification88

2

and generalized linear models, where the features live on a low-dimensional manifold. Here, we89

consider a multi-index model wherein the response depends on a low-dimensional projection of90

features. In addition, in [JM24] it is assumed that the manifold structure is known and the focus is on91

population adversarial risk (assuming infinite samples with fixed dimension), while here we consider92

algorithms for representation learning, and derive rates of convergence for adversarial risk.93

In this work, we provide an alternative narrative compared to the line of work above, by showing94

that in a high-dimensional regression setting, learning multi-index models that are robust against ℓ295

perturbations can be as easy as standard learning. We achieve this result by focusing on the feature96

learning capability of neural networks, i.e. their ability to capture low-dimensional projections.97

Notation. For Euclidean vectors, ⟨·, ·⟩ and ∥·∥ denote the Euclidean inner product and norm respec-98

tively. For tensors, ∥·∥F and ∥·∥ denote the Frobenius and operator norms respectively. We use Sk−199

for the unit sphere in Rk, and τk denotes the uniform probability measure on Sk−1.100

2 Problem Setup: Statistical Model and Adversarial Robustness101

Statistical Model. Consider a regression setting where the input x ∈ Rd and the target y ∈ R are102

generated from a distribution (x, y) ∼ P . For a prediction function f : Rd → R, its population103

adversarial risk, where we assume the adversary can perform a worst-case perturbation on the input104

with a budget of ε measured in ℓ2-norm, before passing it to the model, is defined as105

AR(f) := E
[
max
∥δ∥≤ε

(f(x+ δ)− y)2
]
, (2.1)

where the expectation is over all random variables inside the brackets. Given a (non-parametric)106

family of prediction functions F , our goal is to learn a predictor that achieves the optimal adversarial107

risk given by108

AR∗ := min
f∈F

AR(f), (2.2)

We focus on learners of the form of two-layer neural networks with width N , given as109

f(x;a,W , b) = a⊤σ(Wx+ b), (2.3)

where a ∈ RN is the second layer weights and W ∈ RN×d and b ∈ RN are the first layer weights110

and biases. To avoid overloading the notation we use AR(f(·;a,W , b)) = AR(a,W , b). Given111

access to n i.i.d. samples {x(i), y(i)}ni=1 from P , the goal is to learn the network parameters a,W ,112

and b in such a way that the quantity AR(a,W , b) is close to the optimal adversarial risk AR∗.113

A long line of recent works has shown that neural networks are particularly efficient in regression114

tasks when the target is a function of a low-dimensional projection of the input, see e.g. [Bac17]. We115

also make the same assumption that the data follows a multi-index model,116

E[y |x] = g(⟨u1,x⟩, . . . , ⟨uk,x⟩), (2.4)

for all x ∈ Rd, where g : Rk → R is the link function, and we assume u1, . . . ,uk are orthonormal117

without loss of generality. Let U ∈ Rk×d be an orthonormal matrix whose rows are given by (ui);118

we use the shorthand notation g(⟨u1,x⟩, . . . , ⟨uk,x⟩) := g(Ux). In particular, the above means119

that y is independent from the rest of the coordinates when conditioned on Ux. In this paper, we120

consider the setting where k ≪ d, and in particular k = O(1).121

3 Optimal Representations for Robust Learning122

In this section, we demonstrate that under ℓ2-constrained perturbations, the optimal low-dimensional123

representations for robust learning coincides with those in standard setting, both of which are given by124

the target directions U . Crucially, our result relies on the following assumption on input distribution.125

Assumption 1. Suppose Ũ ∈ R(d−k)×d is any orthonormal matrix whose rows complete the rows of126

U into a basis of Rd. Then, Ux and Ũx are statistically independent.127

Introducing the notation x∥ := Ux and x⊥ := Ũx for any x ∈ Rd, the above assumption states that128

the distribution of the input x is such that x∥, the coordinates that enter the statistical model, are129

3

independent from x⊥, the coordinates that do not. For example, Assumption 1 holds when x is a130

Gaussian random vector with isotropic covariance, or more generally x = U⊤Uz1 + Ũ
⊤
Ũz2 for131

independent vectors z1, z2 ∈ Rd. We present a central result below along with its proof.132

Theorem 1. Suppose Assumption 1 holds and (2.2) admists a minimizer. Then, there exists a function133

f∗ : Rd → R of the form f∗(x) = h(Ux) for some h : Rk → R such that134

AR(f∗) ≤ AR∗, (3.1)

with equality when f∗ ∈ F . Further, h is represented as h(z) = E[f(x) |Ux = z] for some f ∈ F .135

Remark. To understand the significance of the above result, define the function classH = {z 7→
E[f(x) |Ux = z] for f ∈ F}, and observe that the last statement of the theorem reads

min
h∈H

AR(h(U ·)) ≤ AR∗.

Thus, to achieve the optimal adversarial risk AR∗, one only needs to (i) learn the target directions U ,136

and (ii) approximate real-valued functions in a k-dimensional subspace rather than d. In the context137

of NNs, the first layer W recovers U , and the remaining parameters a and b are used to approximate138

the optimal h. While this recipe is general, we provide specific implications in the next section.139

Proof. We will show that for every f ∈ F , h(z) = E[f(x) |Ux = z] gives AR(h(U ·)) ≤ AR(f).140

Then, choosing f to be some minimizer of AR yields the desired result.141

Define the residuals ry(x∥, δ∥) := y − h(x∥ + δ∥), and rf (x, δ) := f(x+ δ)− h(x∥ + δ∥). Then,142

by a decomposition of the squared loss and the tower property of conditional expectation,143

AR(f) = E
[
E
[
max
∥δ∥≤ε

ry(x∥, δ∥)
2 + rf (x, δ)

2 − 2ry(x∥, δ∥)rf (x, δ)
∣∣∣x∥, y

]]
≥ E

[
max
∥δ∥≤ε

ry(x∥, δ∥)
2 + E

[
rf (x, δ)

2
∣∣x∥, y

]
− 2ry(x∥, δ∥)E

[
rf (x, δ)

∣∣x∥, y
]]

≥ E
[

max
{∥δ∥≤ε,δ⊥=0}

ry(x∥, δ∥)
2 + E

[
rf (x, δ)

2
∣∣x∥, y

]
− 2ry(x∥, δ∥)E

[
rf (x, δ)

∣∣x∥, y
]]
.

Since y|x∥ is independent from x⊥, for any fixed δ, we have E
[
rf (x, δ) |x∥, y

]
= E

[
rf (x, δ) |x∥

]
.144

Thus, using the notation f(x) = f(x∥,x⊥), provided that δ⊥ = 0, Assumption 1 yields145

h(z + δ∥) = E
[
f(x) |x∥ = z + δ∥

]
= E

[
f(z + δ∥,x⊥ + δ⊥)

]
= E

[
f(x+ δ) |x∥ = z

]
,

for all z ∈ Rk. Plugging in z = x∥ gives E
[
rf (x, δ) |x∥

]
= 0. Therefore,146

AR(f) ≥ E
[

max
{∥δ∥≤ε,δ⊥=0}

ry(x∥, δ∥)
2 + E

[
rf (x, δ)

2 |x∥, y
]]

≥ E
[

max
{∥δ∥≤ε,δ⊥=0}

(y − h(U(x+ δ)))2
]
= AR(h(U ·)),

where we dropped the constraint δ⊥ = 0 as it does not contribute, which concludes the proof.147

Before moving to the next section, we provide the following remark on proper scaling of ε.148

Since E[∥x∥] grows with
√
d, it may seem natural to scale the adversary budget ε with dimension149

as well. However, we provide a simple argument on the contrary. Consider the single-index case150

y = g(⟨u,x⟩), and let h be the optimal function constructed in Theorem 1, providing the prediction151

function x 7→ h(⟨u,x⟩). One can then observe that even a constant order ε is sufficient to incur a152

large change in the input of h, e.g., choosing δ = εu perturbs the input of the predictor by ε. Thus,153

this justifies the regime where ε is of constant order compared to the input dimension, which is the154

focus in the rest of the paper.155

4 Learning Procedure and Guarantees156

As outlined in the previous section, to robustly learn the target model, standard representations U157

suffice. In this section, we consider concrete examples of how a standard feature learning oracle158

4

combined with an adversarially robust second layer training leads to robust learning. We assume159

access to either of the following feature learning oracles to recover U . We will provide instances of160

practical implementations of these oracles using standard gradient-based algorithms in Section 4.1.161

Definition 2 (DFL). An α-Deterministic Feature Learner (DFL) is an oracle that for every ζ > 0,
given nDFL(ζ) samples from P , returns a weight matrix W = (w1, . . . ,wN)⊤ ∈ RN×d such that
for all u ∈ span(u1, . . . ,uk) with ∥u∥ = 1, we have

|{i : ⟨wi,u⟩ ≥ 1− ζ}|
N

≥ αζ(k−1)/2.

An α-DFL oracle returns weights such that roughly an α-proportion of them align with (and suffi-162

ciently cover) the target subspace. By a packing argument, we can show that the best achievable ratio163

is α = c(k) for some constant c(k) > 0 depending only on k, which is why we use the normalizing164

factor ζ(k−1)/2 above. We show in Section 4.1 that the definition above with a constant order α is165

attainable by standard gradient-based algorithms. That said, in the multi-index setting, it is possible166

to improve our learning guarantees by considering the following stochastic oracle.167

Definition 3 (SFL). An (α,β)-Stochastic Feature Learner (SFL) is an oracle that for every ζ > 0,168

given nSFL(ζ) samples from P , returns a random weight matrix W = (w1, . . . ,wN)⊤ ∈ RN×d,169

such that there exists S ⊆ [N] with |S|/N ≥ α satisfying
∥∥∥wi −U⊤Uwi

∥∥∥2 ≤ ζ for i ∈ S . Further,170 (
Uwi

∥Uwi∥
)
i∈S

i.i.d.∼ µ, and dµ
dτk
≥ β, where µ is some measure and τk is uniform, both supported on Sk−1.171

The above oracle essentially defines a random features model in the smaller target subspace, where a172

subset of the weights are sampled independently from a distribution that supports all target directions.173

We note that an (α,β)-SFL oracle can be used to directly implement an α-DFL oracle; by a standard174

union bound argument, one can show N = Θ̃(1/(αβζ(k−1)/2)) guarantees the output of (α,β)-SFL175

satisfies Definition 2 with high probability. Therefore, while its definition is slightly more involved,176

(α,β)-SFL is a more specialized oracle compared to α -DFL.177

Once the first layer representation is provided by above oracles, we can fix the biases at some random178

initialization, and train the second layer weights a by minimizing the empirical adversarial risk179

ÂR(a,W , b) =
1

n

n∑
i=1

max
∥δ(i)∥≤ε

(f(x(i) + δ(i);a,W , b)− y)2. (4.1)

We formalize the training procedure with two-layer neural networks in Algorithm 1. We highlight

Algorithm 1 Adversarially robust learning with two-layer NNs.

Input: ζ, ra, rb, {x(i), y(i)}nFL(ζ)+n
i=1 , FL ∈ {α -DFL, (α,β)-SFL}.

1: Phase 1: Feature Learning
2: W = FL

(
ζ, {x(i), y(i)}n+nFL(ζ)

i=n+1

)
.

3: Phase 2: Robust Function Approximation
4: bj

iid∼ Unif(−rb, rb) for 1 ≤ j ≤ N .
5: â = argmin∥a∥≤ ra√

N
ÂR(a,W , b).

6: return (a,W , b)

180
that keeping biases at random initialization while only training the second layer a performs non-181

linear function approximation, and has been used in many prior works on feature learning [DLS22,182

MHWSE23, OSSW24]. Further, while a 7→ ÂR(a,W , b) is a convex function for fixed W and183

b since it is a maximum over convex functions, exact training of a in practice may not be entirely184

straightforward since the inner maximization is not concave and does not admit a closed-form185

solution. In practice, some form of gradient descent ascent algorithm is typically used when training186

a [MMS+18]. In this work, we do not consider the computational aspect of solving this min-max187

problem, and leave that analysis as future work.188

We will make the following standard tail assumptions on the data distribution.189

5

Assumption 2. Suppose x has zero mean and O(1) subGaussian norm. Furthermore, for all q ≥ 1,190

it holds that E[|y|q]1/q ≤ O(qp/2) for some constant p ≥ 1.191

Note that the condition on y above is mild; for example, it holds for a noisy multi-index model192

y = g(Ux) + ς , where ς has O(1) subGaussian norm and g grows at most polynomially, i.e.,193

|g(·)| ≲ 1 + | · |p. Similarly, we also keep the function class F quite general and provide our first set194

of results for a class of pseudo-Lipschitz functions which is introduced below.195

Assumption 3. We assume F is a class of functions that are pseudo-Lipschitz along the target
coordinates. Specifically, using the notation f(x) = f(x∥,x⊥) and defining ε1 := 1 ∨ ε, we have

|f(z1,x⊥)− f(z2,x⊥)| ≤ L(x⊥)
(
ε1−p1 ∥z1∥p−1

+ ε1−p1 ∥z2∥p−1
+ 1
)
∥z1 − z2∥

for all f ∈ F , all z1, z2 ∈ Rk, and some constants L and p ≥ 1 such that E[L(x⊥)] ≤ L.196

Remark. The prefactor ε1−p1 is justified intuitively since the optimal function of the form h(z) =197

E[f(x) |Ux = z] should satisfy E
[
max∥δ∥≤ε(y − h(U(x+ δ)))2

]
= AR∗, which is bounded,198

and does not grow with ε beyond a certain point. This implies that h must be sufficiently smooth199

while its input is perturbed, and in particular, its (local) Lipschitz constant should remain bounded200

while ε grows, hence the introduction of the prefactor.201

In Appendix B.1 we focus on a subclass of predictors that are polynomials of a fixed degree p to202

achieve finer results. The following theorem presents the first result of this section, which holds under203

access to the α -DFL oracle.204

Theorem 4. Suppose Assumptions 1,2,3 hold and the ReLU activation is used. For a tolerance ϵ > 0205

define ϵ̃ := ϵ ∧ (ϵ2/AR∗), and for the adversary budget ε recall ε1 := 1 ∨ ε. Consider Algorithm 1206

with FL = α -DFL oracle, ra = Õ
(
(ε1/
√
ϵ̃)k+1+1/k/α

)
and rb = Õ

(
ε1(ε1/

√
ϵ̃)1+1/k

)
. Then, if207

the number of second phase samples nFA, the number of neurons N , and α -DFL error ζ satisfy208

nFA ≥ Ω̃

(
ε41
α4ϵ2

(
ε1√
ϵ̃

)O(k)
)
, N ≥ Ω̃

(
1

αζ(k−1)/2

(
ε1√
ϵ̃

)O(k)
)
, ζ ≤ Õ

((
ε1√
ϵ̃

)O(k)
)
,

we have AR(â,W , b) ≤ AR∗ + ϵ with probability at least 1 − n−cFA where c > 0 is an absolute209

constant. The total sample complexity of Algorithm 1 is given by ntotal = nFA + nDFL(ζ).210

The above theorem states that once the feature learning oracle has recovered the target subspace, the211

number of samples and neurons needed for robust learning is independent of the ambient dimension212

d. Thus, in a high-dimensional setting, statistical complexity is dominated by the feature learning213

oracle, implying that adversarially robust learning is statistically as easy as standard learning.214

Arguing about computational complexity is more involved. While the number of neurons required
is independent of d, in its naive implementation, Phase 2 of Algorithm 1 needs to solve inner
maximization problems over Rd, which may be costly. However, once U ∈ Rk×d is estimated in
Phase 1, we can reduce the input dimension of the network from d to k by projection onto U , i.e.

N∑
j=1

ajσ(⟨wj ,x⟩+ bj) ≈
N∑
j=1

ajσ(⟨Uwj ,Ux⟩+ bj).

With this modification, we only need to consider worst-case perturbations over Rk, thus the computa-215

tional complexity of Phase 2 will also be independent of the ambient dimension d.216

It is possible to remove the dependence on ζ in the number of neurons by instead assuming access to217

a (α,β)-SFL oracle, as outlined below.218

Theorem 5. Consider the same setting as Theorem 4, except that we use the (α,β)-SFL oracle in219

Algorithm 1 with ra = Õ
(
(ε1/
√
ϵ̃)k+1+1/k/(αβ)

)
. Then, the sufficient number of second phase220

samples nFA, neurons N , and oracle error ζ, are given as221

nFA ≥ Ω̃

(
ε41

α4β4ϵ2

(
ε1√
ϵ̃

)O(k)
)
, N ≥ Ω̃

(
ε41
αβ2

(
ε1√
ϵ̃

)O(k)
)
, ζ ≤ Õ

(
β2

(
ε1√
ϵ̃

)O(k)
)
.

The total sample complexity for this oracle reads ntotal = nFA + nSFL(ζ).222

6

We restate Theorems 4 and 5 in Appendix B.2 with explicit exponents. As mentioned earlier, under a223

Gaussian data assumption, there exist α -DFL, and more generally (α,β)-SFL oracles which only224

use standard gradient-based learning, such that nDFL(ζ) typically scales with some polynomial of225

d, where the exponent depends on properties of the activation such as the information or generative226

exponent. In the following, we will provide specific examples of prior work implementing either of227

the oracles, along with their corresponding sample complexities.228

4.1 Oracle Implementations of the Feature Learner229

The task of recovering the target directions U is classical in statistics, and is known as sufficient230

dimension reduction [LD89, Li91], with many dedicated algorithms, see e.g. [KKSK11, DH18,231

CM20, YXKH23] to name a few. Here, we focus on algorithms based on neural networks and232

iterative gradient-based optimization.233

While we will consider the case where x is an isotropic Gaussian random vector, recovering the hidden234

direction has also been considered for non-isotropic Gaussians [BES+23, MHWSE23] where the235

additional structure in the inputs can provide further statistical benefits, or non-Gaussian spherically236

symmetric distributions [ZPVB23]. Our results readily extend to these settings as well.237

First, we present the case of single-index polynomials.238

Proposition 6 ([LOSW24]). Suppose x ∼ N (0, Id), k = 1, and g is a polynomial of degree p where239

p is constant. Then, there exists an iterative first-order algorithm on two-layer neural networks240

(Algorithm 2) that implements an (α,β)-SFL oracle and an α -DFL oracle, where β = 1 and241

α = Θ̃(1). Furthermore, we have nSFL(ζ) = nDFL(ζ) = Õ(d/ζ2).242

When considering Gaussian single-index models beyond polynomials, we must introduce the concepts243

of information and generative exponent to characterize the sample complexity of recovering the target244

direction. Let γ = N (0, 1) for conciseness. For any g : R → R in L2(γ), let g =
∑
j≥0 αjHej245

denote its Hermite expansion, where Hej is the normalized Hermite polynomial of degree j. The246

information exponent of g is defined as s(g) := min{j > 0 : αj ̸= 0}. The generative exponent on247

the other hand, is defined as the minimum information exponent attainable by any transformation248

of g, i.e. s∗(g) := minT s(T (g)), where the minimum is over all T ∈ L2(g#γ). As a result,249

s∗(g) ≤ s(g), and in particular, s∗ = 1 for all polynomials.250

There exists an algorithm based on estimating partial traces that implements a 1-DFL (or a 1,1-SFL)251

oracle with nDFL(ζ) = O(ds
∗/2 + d/ζ2) [DPVLB24]. While it may be possible to achieve a similar252

sample complexity when training neural networks with a ReLU activation, the state of the art results253

for ReLU neural networks so far are only able to control the sample complexity with the information254

exponent s, e.g. [BBSS22] provides a gradient-based algorithm for optimizing a variant of a two-layer255

ReLU neural network that implements 1-DFL with nDFL = O(ds poly(ζ−1)).256

Recovering U with k > 1 is more challenging, and the general picture is that the directions257

in U are recovered hierarhically based on each direction’s corresponding complexity, such as258

in [ABAM23]. For simplicity, we look at a case that is sufficiently simple for all directions to be259

learned simultaneously, while emphasizing that in principle any guarantee for learning the subspace260

U can be turned into an implementation of the oracles introduced in the section above.261

Proposition 7 ([DLS22]). Suppose x ∼ N (0, Id), g is a polynomial of degree p, and p and k ≥ 1262

are constant. Further assume σmax(∇2g)
σmin(∇2g) ≥ κ for some κ > 0, where σmin, σmax denote the263

minimum and maximum singular values respectively. Then, there exists a first-order algorithm264

on two-layer ReLU neural networks (Algorithm 3) that implements an (α,β)-SFL and an α -DFL265

oracle, where β ≥ cκ for some constant cκ > 0 depending only κ, and α = 1. Further, we have266

nSFL(ζ) = nDFL(ζ) = Õ(d2 + d/ζ2).267

5 Conclusion268

In this paper, we initiated a theoretical study of the role of feature learning in adversarial robustness269

of neural networks. Under ℓ2-constrained perturbations, we proved that projecting onto the latent270

subspace of a multi-index model is sufficient for achieving Bayes optimal adversarial risk with respect271

to the squared loss, provided that the index directions are statistically independent from the rest272

7

0 1500 3000 4500

Iterations

0.24

0.32

0.40

0.48

R
ob

u
st

T
es

t
R

is
k

Teacher: ReLU (Known Direction)

Full AD training

W fixed at target u

W init from u

0 1500 3000 4500

Iterations

0.32

0.36

0.40

0.44

Teacher: Tanh (Known Direction)

0 1500 3000 4500

Iterations

0.85

0.90

0.95

1.00

1.05

Teacher: He2 (Known Direction)

0 1500 3000 4500

Iterations

0.3

0.4

0.5

R
ob

u
st

T
es

t
R

is
k

Teacher: ReLU (Unknown Direction)

Full AD training

W fixed at SD training

W init from SD training

0 1500 3000 4500

Iterations

0.30

0.35

0.40

0.45

Teacher: Tanh (Unknown Direction)

0 2000 4000 6000

Iterations

0.92

0.96

1.00

1.04

Teacher: He2 (Unknown Direction)

Figure 1: The adversarial test error of a two-layer ReLU network as a function of number of
adversarial training iterations to learn a single-index model, where each iteration is performed on a
batch of independent 300 samples, except 500 samples for He2 with unknown direction to reduce
variance. Full AD training performs adversarial training on all layers from random initialization.
SD training is standard training, which provides a better initialization for W before performing
adversarial training. We use ε = 1 for all experiments. Experiments are averaged over 3 runs. See
Appendix E for details.

of the directions in the input space. Remarkably, this subspace can be estimated through standard273

feature learning with neural networks, thus turning a high-dimensional robust learning problem into a274

low-dimensional one. As a result, under the assumption of having access to a feature learner oracle275

which returns an estimate of this subspace, which can be implemented e.g. by training the first-layer276

of a two-layer neural network, we proved that robust learning of multi-index models is possible with277

number of (additional) samples and neurons independent from ambient dimension.278

We conclude by mentioning several open questions that arise from this work.279

• Stronger notions of adversarial attacks such as ℓ∞ norm constraints have been widely considered280

in empirical works. It remains open to understand optimal low-dimensional representations under281

such perturbations.282

• While our work demonstrates that standard training is sufficient for the first layer, it is unclear283

what kind of representation is learned when all layers are trained adversarially. In particular,284

Figure 1 suggests that adversarial training of the first layer may be suboptimal in this setting, even285

with infinitely many samples.286

• Since our main motivation was to show independence from input dimension, the dependence287

of our bounds on the final robust test risk suboptimality ϵ are potentially improvable by a more288

careful analysis. It is an interesting direction to obtain a sharper dependency and investigate the289

optimality of such dependence on ϵ.290

References291

[AAM22] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase292

property: a necessary and nearly sufficient condition for sgd learning of sparse func-293

tions on two-layer neural networks. In Conference on Learning Theory, 2022.294

8

[ABAM23] Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on295

neural networks: leap complexity and saddle-to-saddle dynamics. arXiv preprint296

arXiv:2302.11055, 2023.297

[ADK+24] Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan.298

Repetita iuvant: Data repetition allows sgd to learn high-dimensional multi-index299

functions. arXiv preprint arXiv:2405.15459, 2024.300

[Bac17] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The301

Journal of Machine Learning Research, 18(1):629–681, 2017.302

[BAGJ21] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient303

descent on non-convex losses from high-dimensional inference. J. Mach. Learn. Res.,304

22:106–1, 2021.305

[BBSS22] Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index306

models with shallow neural networks. In Advances in Neural Information Processing307

Systems, 2022.308

[BEG+22] Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and309

Cyril Zhang. Hidden Progress in Deep Learning: SGD Learns Parities Near the310

Computational Limit. arXiv preprint arXiv:2207.08799, 2022.311

[BES+22] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg312

Yang. High-dimensional Asymptotics of Feature Learning: How One Gradient Step313

Improves the Representation. arXiv preprint arXiv:2205.01445, 2022.314

[BES+23] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning315

in the presence of low-dimensional structure: a spiked random matrix perspective.316

Advances in Neural Information Processing Systems, 36, 2023.317

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin318

bounds for neural networks. Advances in neural information processing systems, 30,319

2017.320

[BLPR19] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples321

from computational constraints. In International Conference on Machine Learning,322

pages 831–840. PMLR, 2019.323

[CB18] Lenaic Chizat and Francis Bach. On the Global Convergence of Gradient Descent324

for Over-parameterized Models using Optimal Transport. In Advances in Neural325

Information Processing Systems, 2018.326

[CB20] Lénaïc Chizat and Francis Bach. Implicit Bias of Gradient Descent for Wide Two-layer327

Neural Networks Trained with the Logistic Loss. In Conference on Learning Theory,328

2020.329

[CG24] Ziang Chen and Rong Ge. Mean-field analysis for learning subspace-sparse polynomi-330

als with gaussian input. arXiv preprint arXiv:2402.08948, 2024.331

[Chi22] Lénaïc Chizat. Convergence rates of gradient methods for convex optimization in the332

space of measures. Open Journal of Mathematical Optimization, 3:1–19, 2022.333

[CM20] Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In334

Conference on Learning Theory, 2020.335

[COB19] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable336

Programming. In Advances in Neural Information Processing Systems, 2019.337

[DH18] Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In338

Conference On Learning Theory, pages 1887–1930. PMLR, 2018.339

[DKL+23] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan.340

Learning two-layer neural networks, one (giant) step at a time. arXiv preprint341

arXiv:2305.18270, 2023.342

9

[DLS22] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural Networks can Learn343

Representations with Gradient Descent. In Conference on Learning Theory, 2022.344

[DNGL23] Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee. Smoothing the landscape345

boosts the signal for sgd: Optimal sample complexity for learning single index models.346

Advances in Neural Information Processing Systems, 36, 2023.347

[DPVLB24] Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. The com-348

putational complexity of learning gaussian single-index models. arXiv preprint349

arXiv:2403.05529, 2024.350

[DTA+24] Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborová, and351

Florent Krzakala. The benefits of reusing batches for gradient descent in two-layer352

networks: Breaking the curse of information and leap exponents. arXiv preprint353

arXiv:2402.03220, 2024.354

[HJ24] Hamed Hassani and Adel Javanmard. The curse of overparametrization in adversarial355

training: Precise analysis of robust generalization for random features regression. The356

Annals of Statistics, 52(2):441–465, 2024.357

[JGH18] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Conver-358

gence and Generalization in Neural Networks. In Advances in Neural Information359

Processing Systems, 2018.360

[JM24] Adel Javanmard and Mohammad Mehrabi. Adversarial robustness for latent models:361

Revisiting the robust-standard accuracies tradeoff. Operations Research, 72(3):1016–362

1030, 2024.363

[JMS24] Nirmit Joshi, Theodor Misiakiewicz, and Nathan Srebro. On the complexity of learning364

sparse functions with statistical and gradient queries. arXiv preprint arXiv:2407.05622,365

2024.366

[JS22] Adel Javanmard and Mahdi Soltanolkotabi. Precise statistical analysis of classification367

accuracies for adversarial training. The Annals of Statistics, 50(4):2127–2156, 2022.368

[JSH20] Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in369

adversarial training for linear regression. In Conference on Learning Theory, pages370

2034–2078. PMLR, 2020.371

[KKSK11] Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning372

of generalized linear and single index models with isotonic regression. Advances in373

Neural Information Processing Systems, 24, 2011.374

[LD89] Ker-Chau Li and Naihua Duan. Regression Analysis Under Link Violation. The375

Annals of Statistics, 1989.376

[Li91] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the377

American Statistical Association, 1991.378

[LOSW24] Jason D. Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns379

low-dimensional polynomials with sgd near the information-theoretic limit. arXiv380

preprint arXiv:2406.01581, 2024.381

[MHPG+23] Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and382

Murat A Erdogdu. Neural networks efficiently learn low-dimensional representations383

with SGD. In The Eleventh International Conference on Learning Representations,384

2023.385

[MHWE24] Alireza Mousavi-Hosseini, Denny Wu, and Murat A Erdogdu. Learning multi-index386

models with neural networks via mean-field langevin dynamics. arXiv preprint387

arXiv:2408.07254, 2024.388

[MHWSE23] Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-389

based feature learning under structured data. Advances in Neural Information Process-390

ing Systems, 36, 2023.391

10

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the392

landscape of two-layer neural networks. Proceedings of the National Academy of393

Sciences, 115(33):E7665–E7671, 2018.394

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and395

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In396

International Conference on Learning Representations, 2018.397

[MZD+23] Arvind Mahankali, Haochen Zhang, Kefan Dong, Margalit Glasgow, and Tengyu Ma.398

Beyond ntk with vanilla gradient descent: A mean-field analysis of neural networks399

with polynomial width, samples, and time. Advances in Neural Information Processing400

Systems, 36, 2023.401

[NOSW24] Atsushi Nitanda, Kazusato Oko, Taiji Suzuki, and Denny Wu. Improved statistical402

and computational complexity of the mean-field langevin dynamics under structured403

data. In The Twelfth International Conference on Learning Representations, 2024.404

[NWS22] Atsushi Nitanda, Denny Wu, and Taiji Suzuki. Convex analysis of the mean field405

langevin dynamics. In International Conference on Artificial Intelligence and Statistics,406

pages 9741–9757. PMLR, 2022.407

[OSSW24] Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Learning sum of diverse408

features: computational hardness and efficient gradient-based training for ridge combi-409

nations. In Conference on Learning Theory. PMLR, 2024.410

[Pis81] Gilles Pisier. Remarques sur un résultat non publié de b. maurey. Séminaire d’Analyse411

fonctionnelle (dit" Maurey-Schwartz"), pages 1–12, 1981.412

[RVE18] Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as Interacting Particle413

Systems: Asymptotic convexity of the Loss Landscape and Universal Scaling of the414

Approximation Error. arXiv preprint arXiv:1805.00915, 2018.415

[SH20] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with416

ReLU activation function. The Annals of Statistics, 48(4):1875 – 1897, 2020.417

[SST+18] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander418

Madry. Adversarially robust generalization requires more data. Advances in neural419

information processing systems, 31, 2018.420

[SWON23] Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda. Feature learning via421

mean-field langevin dynamics: classifying sparse parities and beyond. In Thirty-422

seventh Conference on Neural Information Processing Systems, 2023.423

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,424

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In The425

International Conference on Learning Representations, 2014.426

[Tel23] Matus Telgarsky. Feature selection and low test error in shallow low-rotation relu427

networks. In The Eleventh International Conference on Learning Representations,428

2023.429

[TSE+18] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and430

Aleksander Madry. Robustness may be at odds with accuracy. arXiv preprint431

arXiv:1805.12152, 2018.432

[VE24] Nuri Mert Vural and Murat A. Erdogdu. Pruning is optimal for learning sparse features433

in high-dimensions. arXiv preprint arXiv:2406.08658, 2024.434

[WLLM19] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: General-435

ization and optimization of neural nets vs their induced kernel. Advances in Neural436

Information Processing Systems, 32, 2019.437

[WMHC24] Guillaume Wang, Alireza Mousavi-Hosseini, and Lénaïc Chizat. Mean-field langevin438

dynamics for signed measures via a bilevel approach. arXiv preprint arXiv:2406.17054,439

2024.440

11

[XLS+24] Jiancong Xiao, Qi Long, Weijie Su, et al. Bridging the gap: Rademacher complexity441

in robust and standard generalization. In The Thirty Seventh Annual Conference on442

Learning Theory, pages 5074–5075. PMLR, 2024.443

[YXKH23] Gan Yuan, Mingyue Xu, Samory Kpotufe, and Daniel Hsu. Efficient estimation444

of the central mean subspace via smoothed gradient outer products. arXiv preprint445

arXiv:2312.15469, 2023.446

[Zha02] Tong Zhang. Covering number bounds of certain regularized linear function classes.447

Journal of Machine Learning Research, 2(Mar):527–550, 2002.448

[ZPVB23] Aaron Zweig, Loucas Pillaud-Vivien, and Joan Bruna. On single-index models beyond449

gaussian data. Advances in Neural Information Processing Systems, 36, 2023.450

12

A Gradient-Based Neural Feature Learning Algorithms451

In this section, we will provide examples of implementations of the feature learner oracles introduced
in Section 4 using gradient-based training of two-layer neural networks. First, we look at the algorithm
provided by [OSSW24] for the case where g is a polynomial of degree p. Consider the following
two-layer neural network with zero bias

f(x;a,W) =

N∑
j=1

ajσj(⟨wj ,x⟩).

Note that we allow the activation to vary based on neuron. Specifically, we let σj =
∑q
l=1 βj,lHel,452

where Hej is the jth normalized Hermite polynomial, βj,l
i.i.d.∼ Unif({±rl}) for appropriately chosen453

rl, and q ≥ Cp, see [OSSW24, Lemma 3] for details. Now, we consider the following algorithm.454

Algorithm 2 Gradient-Based Feature Learner for Single-Index Polynomials [OSSW24, Algorithm 1,
Phase I].

Input: T , step size (ηt)T−1
t=0 , momentum parameters (ζtj), ra.

1: w0
j

i.i.d.∼ Unif(Sd−1), aj
i.i.d.∼ Unif({±ra/N}), ∀j ∈ [N].

2: (x(0), y(0)) ∼ P
3: for t = 0, . . . , T − 1 do
4: if t > 0 and t is even then
5: Draw (x(t/2), y(t/2)) ∼ P
6: wt

j ← wt
j − ζtj(wt

j −wt−2
j), ∀ j ∈ [N]

7: wt
j ←

wt
j

∥wt
j∥
∀ j ∈ [N]

8: end if
9: wt+1

j ← wt
j − ηt∇Swj

(f(x(⌊t/2⌋);a,W t)− y(⌊t/2⌋))2
10: end for
11: return (wT

0 , . . . ,w
T
N)⊤

Note that ∇Sf(w) = (I − ww⊤)∇f(w) denotes the spherical gradient. Essentially, the above455

algorithm takes two gradient steps on each new sample, and in the even iterations performs a certain456

interpolation. Proper choice of hyperparameters in the above algorithm leads to Proposition 6.457

Next, we consider the algorithm of [DLS22] for the case where g is a multi-index polynomial.

Algorithm 3 Gradient-Based Feature Learner for Multi-Index Polynomials [DLS22, Algorithm 1,
Adapted]

Input: {x(i), y(i)}nFL
i=1 , ra

1: aj
i.i.d.∼ Unif({±ra}),w0

j
i.i.d.∼ Unif(Sd−1),aN−j = −aj ,wN−j = w0

j , ∀ j ∈ [N/2].
2: α← 1

nFL

∑nFL

i=1 y
(i), β ← 1

nFL

∑nFL

i=1 y
(i)x(i)

3: y(i) ← y(i) − α−
〈
β,x(i)

〉
, ∀ i ∈ [nFL].

4: W ← −∇W
1
n

∑nFL

i=1 (f(x
(i);a,W 0)− y)2

5: wi ← wi

∥wi∥ , ∀ i ∈ [N]

6: return (w0, . . . ,wN)⊤

458

After performing a preprocessing on data, the above essentially performs one gradient descent step
with weight decay, when the regularizer of the weight decay is the inverse of step size, thus cancelling
out initialization and leaving only gradient as the estimate. [DLS22] prove that, with a sample
complexity of nDFL = Õ(d2 + d/ζ2), the output of Algorithm 3 satisfies〈

wi,
U⊤HUw0

i∥∥∥U⊤HUw0
i

∥∥∥
〉
≥ 1− ζ, ∀i ∈ [N],

13

witi high probability, where H = E
[
∇2g(Ux)

]
. Thus, for a full-rank H , the output of Algorithm 3459

satisfies the definition of a (1,β)SFL oracle for a constant β > 0 depending only on the conditioning460

of H and the number of indices k.461

B Additional Details of Section 4462

Throughout the appendix, we will assume the activation satisfies σ(0) = 0 for simplicity of presenta-463

tion, without loss of generality. We will also assume that464

|σ(z1)− σ(z2)| ≤ Lσ(|z1|q−1
+ |z2|q−1

+ 1)|z1 − z2|, (B.1)
for all z1, z2 ∈ R and some absolute constant Lσ. In the case of ReLU, we have q = 1 and Lσ = 1.465

For polynomial activations, q is the same as the degree of the polynomial. For a set of parameters ψ466

(e.g. ψ = q, k), we will use Cψ to denote a generic constant whose value depends only on ψ and may467

change from line to line.468

B.1 Competing against the Optimal Polynomial Predictor469

In this section, we restrict F to only polynomials, which allows us to derive more refined bounds on470

the number of samples and neurons. Speicifcally, we make the following assumption.471

Assumption 4. Suppose F is the class of d-variate polynomials of degree p for some constant p > 0.472

Further, σ is either the ReLU activation or a polynomial of degree q ≥ p.473

While the ReLU activation is sufficient for approximation purposes, we also consider polynomial474

activations in Assumption 4 since recent works have been able to achieve sharper guarantees of475

recovering the target directions under such activations. We provide a more detailed discussion in476

Section 4.1. Note that a priori we do not require a growth constraint on the coefficients of the477

polynomials in F . The optimal function h in Theorem 1 automatically chooses a polynomial with478

suitably bounded coefficients in order to avoid incurring a large robust risk.479

The following result establishes the sample and computational complexity for competing against480

polynomial predictors when having access to the α -DFL oracle.481

Theorem 8. Suppose Assumptions 1,2,4 hold. For a tolerance ϵ > 0 define ϵ̃ := ϵ ∧ (ϵ2/AR∗), and482

for the adversary budget ε recall ε1 := 1 ∨ ε. Consider Algorithm 1 with α -DFL oracle, ra = Õ(1),483

rb = Õ(ε1). Then, if the number of second phase samples nFA, neurons N , and α -DFL error ζ484

satisfy485

nFA ≥ Ω̃

(
ε
4(q+1)
1

α4ϵ2

)
, N ≥ Ω̃

(
εq+1
1

αζ
k−1
2

√
ϵ̃

)
, ζ ≤ Õ

(
ϵ̃

ε
2(q+1)
1

)
,

we have AR(â,W , b) ≤ AR∗ + ϵ with probability at least 1 − n−c where c > 0 is an absolute486

constant. The total sample complexity of Algorithm 1 is given by ntotal = nFA + nDFL(ζ).487

Consequently, when restricting F to the class of fixed degree polynomials, there is no curse of488

dimensionality for sample complexity, even in the latent dimension k. This is consistent with the489

setting in standard learning, see e.g. [CM20]. Further, similar to the general case above, it is possible490

to remove the ζ dependence from N when having access to an SFL oracle, thus also achieving491

computational complexity as a fixed polynomial independent of the latent dimension.492

Theorem 9. In the setting of Theorem 8, consider using Algorithm 1 with an (α,β)-SFL oracle.493

Then, the sufficient number of second phase samples and neurons are given as494

nFA ≥ Ω̃

(
ε
4(q+1)
1

α4β4ϵ2

)
, N ≥ Ω̃

(
ε
2(q+1)
1

αβ2ϵ̃

)
, ζ ≤ Õ

(
β2ϵ̃

ε
2(q+1)
1

)
The total sample complexity is given by ntotal = nFA + nSFL(ζ) for ζ as in Theorem 8.495

Remark. We note that the guarantees provided in Theorem 9 are generally better than those in496

Theorem 8 for large k; yet, they are strictly worse for k = 1. That said, both Theorems 9 and497

8 respectively achieve better sample complexity guarantees compared to their counterparts in the498

previous section, namely Theorems 4 and 5, simply by restricting the function class F to polynomials.499

500

14

B.2 Complete Versions of Theorems in Section 4501

We first restate Theorem 4 with explicit exponents.502

Theorem 10. Suppose Assumptions 1,2, and 3 hold. For any ϵ > 0, define ϵ̃ := ϵ ∧ (ϵ2/AR∗), and503

recall ε1 := 1∨ε. Consider Algorithm 1 with the α -DFL oracle, ra = Õ
(
(ε1/
√
ϵ̃)k+1+1/k/α

)
, and504

rb = Õ
(
ε1(ε1/

√
ϵ̃)1+1/k

)
. Then, if the number of second phase samples nFA, number of neurons N ,505

and α -DFL error ζ satisfy506

nFA ≥ Ω̃
(ε41
α4ϵ2

(ε21
ϵ̃

)2k+4+4/k
)
, N ≥ Ω̃

(1

αζ(k−1)/2

(ε1√
ϵ̃

)k+3+2/k
)
, ζ ≤ Õ

((ϵ̃
ε21

)k+2+1/k
)
,

we have AR(â,W , b) ≤ AR∗ + ϵ with probability at least 1 − n−cFA where c > 0 is an absolute507

constant. The total sample complexity of Algorithm 1 is given by ntotal = nFA + nDFL(ζ).508

Similarly, we can restate Theorem 5 with explicit exponents.509

Theorem 11. Consider the same setting as Theorem 10, except that we use the (α,β)-SFL oracle510

in Algorithm 1 with ra = Õ
(
(ε1/
√
ϵ̃)k+1+1/k/(αβ)

)
. Then, if the number of second phase samples511

nFA, number of neurons N , and α -DFL error ζ satisfy512

n ≥ Ω̃
(ε41
α4β4ϵ2

(ε21
ϵ̃

)2k+4+4/k
)
, N ≥ Ω̃

(1

αβ2

(ε21
ϵ̃

)k+3+2/k
)
, ζ ≤ Õ

(
β2
(ϵ̃
ε21

)k+2+1/k
)
.

while the oracle error tolerance ζ stays the same. The total sample complexity in this case is given by513

ntotal = n+ nSFL(ζ).514

The proof of both theorems follows from combining the results of the following sections. Since both515

proofs are similar, we only present the proof of Theorem 10. The proof of Theorems 8 and 9 can be516

obtained in a similar manner.517

Proof. [Proof of Theorem 10] The proof is based on decomposing the suboptimality into generaliza-
tion and approximation terms, namely

AR(â,W , b)−AR∗ = AR(â,W , b)−AR(a∗,W , b) + AR(a∗,W , b)−AR∗,

where a∗ := min∥a∥≤ra/
√
N AR(a,W , b), thus we can see the first term above as generalization518

error, and the second term as approximation error.519

From Proposition 20, we have AR(â,W , b) − AR(a∗,W , b) ≤ ϵ/2 as soon as n ≥ Ω̃(r4a(ε
4
1 +520

r4b/ϵ
2)) (recall that q = 1 here, since we are considering the ReLU activation). For the approximation521

error, we can use Proposition 34, which guarantees there exists a∗ with ∥a∗∥ ≤ ra/
√
N such that522

AR(a∗,W , b)−AR∗ ≤ ϵ/2 with ra ≤ Õ((ε1/
√
ϵ̃)k+1+1/k/α), as soon as523

ζ ≤ Õ
((ϵ̃
ε21

)k+2+1/k
)
, and N ≥ Ω̃

(1

ζ(k−1)/2α

(ε1√
ϵ̃

)k+3+2/k
)
,

provided that we choose rb = Θ̃(ε1(ε1/
√
ϵ̃)1+1/k). Plugging the value of ra and rb in the bound for524

n completes the proof.525

C Generalization Analysis526

We will first focus on proving a generalization bound for bounded and Lipschitz losses, and then527

extend the results to cover the squared loss.528

C.1 Generalization Bounds for Bounded Lipschitz Losses529

Let us focus on a general Cℓ Lipschitz loss ℓ(f(·;a,W , b)− y) for now. Later, we will argue how
to extend the results of this section to the squared error loss. Our uniform convergence argument
depends on the covering number of the family of adversarial loss functions. Let Θ ⊆ RN be the set
of second layer weights, to be determined later. This family is given by

L(W , b) = {(x, y) 7→ max
∥δ∥≤ε

ℓ(f(x+ δ;a,W , b)− y) : a ∈ Θ}.

15

For brevity, we will also use L to denote L(W , b), but we highlight that W and b are fixed at this
stage. We define the following metric over this family

∀l̃, l̃′ ∈ L(W , b), dL(l̃, l̃
′)2 :=

1

n

n∑
i=1

(ℓ̃(x(i), y(i))− ℓ̃′(x(i), y(i)))2.

We say S ⊆ L is an ϵ-cover of L if for every l̃ ∈ L, there exists l̃′ ∈ S such that dL(l̃, l̃′) ≤ ϵ.530

The ϵ-covering number of L is the least cardinality among all ϵ-covers of L, which we denote531

by C(L, dL, ϵ). Note that since L is paramterized by a, constructing such a covering reduces to532

constructing a finite set over Θ.533

Therefore, we define the following metric over Θ,

∀a,a′ ∈ Θ, dΘ(a,a
′)2 :=

1

n

n∑
i=1

max
∥δ(i)∥≤ϵ

(
f(x(i)+δ(i);a,W , b)−f(x(i)+δ(i);a′,W , b)

)2
.

We can similarly define the ϵ-covering number of Θ with respect to the metric dΘ as C(Θ, dΘ, ϵ).534

The following lemma relates the covering numbers of L and Θ.535

Lemma 12. We have C(L, dL, ϵ) ≤ C(Θ, dΘ, ϵ/Cℓ) for all ϵ > 0.536

Proof. We will use the following fact in the proof. For any F1, F2 : S → R, we have537 ∣∣∣∣max
δ1∈S

F1(δ1)−max
δ2∈S

F2(δ2)

∣∣∣∣ ≤ max
δ∈S
|F1(δ)− F2(δ)|. (C.1)

This is true because

max
δ1∈S

F1(δ1)−max
δ2∈S

F (δ2) ≤ max
δ1∈S

{
F (δ1)− F ′(δ1)

}
,

and the other direction holds by symmetry. This trick is used to relate the adversarial loss to its538

non-adversarial counterpart, e.g. in [XLS+24, Lemma 5].539

Now, we will show that an ϵ/Cℓ cover for Θ implies an ϵ cover for L. We will supress dependence
on the fixed W and b in the notation. Let SΘ be an ϵ/Cℓ cover of Θ with respect to the dΘ metric.
Then, we define S via

S = {(x, y) 7→ max
∥δ∥≤ε

ℓ(f(x+ δ;a)− y) : a ∈ SΘ}.

To show S is an ϵ cover of L, consider an arbitrary ℓ̃(x, y) = max∥δ∥≤ε ℓ(f(x+δ;a)−y). Suppose540

a′ is the closest element to a in SΘ, and let ℓ̃′(x, y) = max∥δ∥≤ε ℓ(f(x+ δ;a′)− y). Then,541

dL(ℓ̃, ℓ̃
′)2 =

1

n

n∑
i=1

(
max

∥δ(i)
1 ∥≤ε

ℓ(f(x+ δ
(i)
1 ;a)− y(i))− max

∥δ(i)
2 ∥≤ε

ℓ(f(x+ δ
(i)
2 ;a′)− y(i))

)2
≤ 1

n

n∑
i=1

max
∥δ(i)∥≤ε

(
ℓ(f(x+ δ(i);a)− y(i))− ℓ(f(x+ δ(i);a′)− y(i))

)2
≤ C2

ℓ

n

n∑
i=1

max
∥δ(i)∥≤ε

(
f(x+ δ(i);a)− f(x+ δ(i);a′)

)2
≤ C2

ℓ dΘ(a,a
′)2 ≤ ϵ2,

where we used (C.1) for the first inequality.542

To construct an ϵ-cover of Θ, we depend on the Maurey sparsification lemma [Pis81], which has been543

used in the literature for providing covering numbers for linear classes [Zha02] and neural networks544

via matrix covering, see e.g. [BFT17].545

Lemma 13 (Maurey Sparsification Lemma, [Zha02, Lemma 1]). LetH be a Hilbert space with norm
∥·∥, let u ∈ H be represented by u =

∑m
j=1 αjvj , where αj ≥ 0 and ∥vj∥ ≤ b for all j ∈ [m], and

α =
∑m
j=1 αj ≤ 1. Then, for every k ≥ 1, there exist non-negative integers k1, . . . , km, such that∥∥∥u− 1

k

m∑
j=1

kjvj

∥∥∥ ≤ αb2 − ∥u∥2

k
.

16

Then, we have the following upper bound on the the covering number of Θ.546

Lemma 14. Suppose σ is either ReLU or a polynomial of degree q ≥ 1, Θ = {∥a∥1 ≤ ra}, and
additionally ∥wi∥ ≤ rw and |bi| ≤ rb for all 1 ≤ i ≤ N . Then we have

log C(Θ, dΘ, ϵ) ≤
CqL

2
σr

2
a logN

{
T

(q)
W ,X + r2qw ε

2q + r2qb + T
(2)
W ,X + r2wε

2 + r2b

}
ϵ2

,

where T (q)
W ,X := max1≤j≤N

1
n

∑n
i=1⟨wj ,xi⟩2q .547

Proof. Given some positive integer k > 0, let SΘ be given by the following

SΘ =
{ra
k
(k1 − k′1, k2 − k′2, . . . , kN − k′N)⊤ : ∀i, ki, k′i ≥ 0,

N∑
i=1

ki +

N∑
i=1

k′i = k
}
.

Let X,∆ ∈ Rn×d be the matrices with (xi) and (δi) as rows respectively. Let A = σ((X +

∆)W⊤ + 1nb
⊤) ∈ Rn×m. Then,

1

n

n∑
i=1

(
f(x(i)+δ(i);a,W , b)−f(x(i)+δ(i);a′,W , b)

)2
=

1

n
∥A(a− a′)∥2 =

1

n

∥∥∥∥∥
n∑
i=1

Ai(a− a′)

∥∥∥∥∥
2

,

where Ai = σ((X +∆)wi + 1nbi) is the ith column of A. We are going to choose a′ from SΘ. To
that end, define

Ãi = sign(ai)Ai, k̃i =

{
ki, sign(ai) ≥ 0

k′i, sign(ai) < 0
.

Further, we will choose k′i = 0 if sign(ai) ≥ 0 and ki = 0 otherwise. Therefore, we have∑N
i=1 k̃i = k. By Mauery’s sparsification lemma [XLS+24, Lemma 13], there exist k̃i ≥ 0 with∑n
i=1 k̃i = k such that ∥∥∥∥∥

N∑
i=1

|ai|Ãi −
ra
k

N∑
i=1

k̃iÃi

∥∥∥∥∥
2

≤ r2ab
2

k
,

where ∥Ai∥ ≤ b for all i. Consequently, given a, we have constructed a′ ∈ SΘ such that

1

n

∥∥∥∥∥
n∑
i=1

Ai(a− a′)

∥∥∥∥∥
2

≤ r2ab
2

nk
.

Next, we provide a bound on b. By the assumptions on σ, we have548

∥Ai∥2 ≲CqL
2
σ

(
∥Xwi∥2q2q + ∥∆wi∥2q2q + nb2qi + ∥Xwi∥2 + ∥∆∥2 + nb2i

)
≲nCqL

2
σ

(
T

(q)
W ,X + r2qw ε

2q + r2qb + T
(2)
W ,X + r2wε

2 + r2b

)
.

Consequently, we can choose

k =

CqL

2
σr

2
a

(
T

(q)
W ,X + r2qw ε

2q + r2qb + T
(2)
W ,X + r2wε

2 + r2b

)
ϵ2

.
Finally, we need to count |SΘ|. Note that

|SΘ| =
(
2N + k − 1

k

)
≤
(
e(2N + k − 1)

k

)k
≤ (3eN)k,

which concludes the proof.549

We can now turn the above covering number into Rademacher complexity via a chaining argument,550

as follows.551

17

Lemma 15. Let R(L(W , b)) denote the Rademacher complexity of the class of adversarial loss
functions L(W , b), defined via

R(L(W , b)) := E

[
sup
a∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ξi max
∥δ(i)∥≤ε

ℓ(f(x(i) + δ(i);a,W , b), y(i))

∣∣∣∣∣
]
,

where ξi are i.i.d. Rademacher random variables. For simplicity, assume Cℓ, ra ≳ 1. Then we have

R(L(W , b)) ≲
CℓCqLσra log n logN

(
E
[√

T
(q)
W ,X

]
+ rqwε

q + rqb + E
[√

T
(2)
W ,X

]
+ rwε+ rb

)
√
n

.

Proof. Let Rn(L(W , b)) denote the empirical Rademacher complexity by

Rn(L(W , b)) := Eξ

[
sup
a∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ξi max
∥δ(i)∥≤ε

ℓ(f(x(i) + δ(i);a,W , b), y(i))

∣∣∣∣∣
]
,

where the expectation is only taken w.r.t. the randomness of ξ and is conditional on the training set.
For simplicity, define

B := CqLσ

(√
T

(q)
W ,X + rqwε

q + rqb +

√
T

(2)
W ,X + rwε

2 + rb

)
.

Then, by a standard chaining argument, we have for all α > 0,552

Rn(L(W , b)) ≲ α+

∫ ∞

ϵ=α

√
log C(L, dL, ϵ)

n
dϵ

≲ α+
CℓraB logN√

n
log
(1
α

)
.

By choosing α = 1/
√
n, we obtain

Rn(L(W , b)) ≲
CℓraB log n logN√

n
.

Taking expectations with respect to the input distribution completes the proof.553

Note that it remains to provide an upper bound for T (q)
W ,x introduced in Lemma 14. This is achieved554

by the following lemma.555

Lemma 16. Suppose ∥wi∥ ≤ rw. Then, for all q > 0 and N > e, we have

E

[
max

1≤j≤N

1

n

n∑
i=1

〈
wj ,x

(i)
〉2q]

≤ Cqr2qw (logN)q,

where Cq is a constant depending only on q.556

Proof. For conciseness, let Zj := 1
n

∑n
i=1

〈
wj ,x

(i)
〉2q

. By non-negativity of Zj and Jensen’s
inequality, for all t ≥ 1 we have,

E
[
max

1≤j≤N
Zj

]
= E

[
max

1≤j≤N
Ztj

]1/t
≤
(N∑
j=1

E
[
Ztj
])1/t

≤ N1/t
(

max
1≤j≤N

E
[
Ztj
])1/t

.

Further, by Jensens’s inequality557

E
[
Ztj
]
= E

(1

n

n∑
i=1

〈
wj ,x

(i)
〉2q)t

≤ E

[
1

n

n∑
i=1

〈
wj ,x

(i)
〉2qt]

≤ (Crw)
2qt(2qt)qt,

18

where C > 0 is a absolute constant, and we used the moment bound of subGaussian random variables558

along with the fact that ⟨wj ,x⟩ is a centered subGaussian random variable with subGaussian norm559

O(rw). As a result,560

E
[
max

1≤j≤N
Zj

]
≤ Cqr2qw N1/ttq ≲ Cqr

2q
w (logN)q,

where the last inequality follows by choosing t = logN .561

As a consequence, if the loss is also bounded, we get the following high-probability concentration562

bound.563

Corollary 17. Suppose |ℓ̃| ≤ Bℓ for all ℓ̃ ∈ L(W , b). Then, with probability at least 1− δ we have564 ∣∣∣∣∣ sup
ℓ̃∈L(W ,b)

E
[
ℓ̃(x, y)

]
− 1

n

n∑
i=1

ℓ̃
(
x(i), y(i)

)∣∣∣∣∣ ≲CℓraR log n logN +Bℓ
√
log(1/δ)√

n
,

where
R := CqLσ(r

q
w(log

q/2N + εq) + rqb + rw(log
1/2N + ε) + rb).

C.2 Applying the Generalization Bound to Squared Loss565

To apply the generalization argument above to the squared loss, we bound it with a threshold τ , and
define the loss family

Lτ (W , b) := {(x, y) 7→
{
max
∥δ∥≤ε

(f(x+ δ;a,W , b)− y)2 ∧ τ : a ∈ Θ
}
.

We similarly define ARτ and ÂRτ . Recall that our goal is to show

AR(â,W , b) ≤ ÂR(â,W , b) + ϵ1(n,N, d).

We readily have ÂRτ (â,W , b) ≤ ÂR(â,W , b). Further, Corollary 17 yields∣∣∣ARτ (â,W , b)− ÂRτ (â,W , b)
∣∣∣ ≲ √τraR log n logN√

n
+ τ

√
log(1/δ)

n
,

with probability at least 1− δ. Thus, the remaining step is to bound AR(â,W , b) and ÂR(â,W , b)566

with their clipped versions. To do so, we first provide the following tail probability estimate.567

Lemma 18. Suppose (zj)
N
j=1 are non-negative random variables with subGaussian norm r. Then,

for any q > 0 and τ ≥ Cqrq where Cq is a constant depending only on q, we have

P

 1

N

N∑
j=1

zqj ≥ τ

 ≤ exp

(
−cτ

2/q

r2

)
,

where c > 0 is an absolute constant.568

Proof. For any t ≥ 1, we have the following Markov bound,

P

 1

N

N∑
j=1

zqj ≥ τ

 = P

(1

N

N∑
j=1

zqj

)t
≥ τ q

 ≤ E
[(

1
N

∑N
j=1 z

q
j

)t]
τ t

≤
E
[

1
N

∑N
j=1 z

qt
j

]
τ t

,

where the last inequality follows from Jensen’s inequality. Further, by subGaussianity of zj , we have
E
[
zqtj
]
≤ (Cr2qt)qt/2, where C > 0 is an absolute constant. As a result,

P

 1

N

N∑
j=1

zqj ≥ τ

 ≤ (Cr2qt)qt/2

τ t
.

19

The above bound is minimized at t = τ2/q

Cr2qe . Note that t ≥ 1 requires τ ≥ Cqr
q. Plugging this

choice of t in the above bound yields

P

 1

N

N∑
j=1

zqj ≥ τ

 ≤ exp

(
− τ2/q

2Cr2e

)
,

which completes the proof.569

Lemma 19. Suppose Assumption 2 holds, in particular |g(z)| ≤ Lg(1+∥z∥p) for some constant Lg .
Let Θ = {a : ∥a∥ ≤ ra/

√
N}, ∥wi∥ ≤ rw, and |bi| ≤ rb for all i ∈ [N]. Assume σ satisfes (B.1).

Define ε1 := 1 ∨ ε, and let

κ := Cqr
2
aL

2
σ(r

2q
w ε

2q
1 + r2qb + r2wε

2
1 + r2b) + C,

where Cq is a constant depending only on q and C is an absolute constant. Then, for all

τ ≥ Ck
{
κ ∨ L2

σr
2q
w logq

n

δ
∨ L2

g log
p n

δ

}
,

where Ck is a sufficiently large constant, we have570 ∣∣∣AR(a,W , b)− ÂR(a,W , b)
∣∣∣ ≤∣∣∣ARτ (a,W , b)− ÂRτ (a,W , b)

∣∣∣
+ Cκ

(
exp

(
− Ω

(τ1/q

L
2/q
σ r2w

))
+ exp(−Ω(τ1/p))

)
,

with probability at least 1− δ uniformly over all a ∈ Θ.571

Proof. Since W and b are fixed, we use the shorthand notation f(x;a) = f(x;a,W , b).572

In the first section of the proof, we will upper and lower bound AR(a,W , b) with ARτ (a,W , b).
Note that the lower bound is trivial as ARτ (a,W , b) ≤ AR(a,W , b), thus we move on to the upper
bound. Let

ℓ̃(x, y) = max
∥δ∥≤ε

(f(x+ δ;a)− y)2.

Then,573

AR(a,W , b) = E
[
ℓ̃(x, y)I

[
ℓ̃(x, y) ≤ τ

]]
+ E

[
ℓ̃(x, y)I

[
ℓ̃(x, y) > τ

]]
≤ ARτ (a,W , b) + E

[
ℓ̃(x, y)2

]1/2
P
(
ℓ̃(x, y) ≥ τ

)1/2
.

Further, we have the following upper bound for the adversarial loss,574

ℓ̃(x, y) = max
∥δ∥≤ε

(f(x+ δ;a)− y)2

≲ max
∥δ∥≤ε

f(x+ δ;a)2 + y2

≲ max
∥δ∥≤ε

∥a∥2∥σ(W (x+ δ) + b)∥2 + y2

≲ r2aCqL
2
σ

 1

N

N∑
j=1

⟨wj ,x⟩2q + r2qw ε
2q + r2qb +

1

N

N∑
j=1

⟨wj ,x⟩2 + r2wε
2 + r2b

+ y2

Moreover, by Jensen’s inequality,575

E

 1

N

N∑
j=1

⟨wj ,x⟩2q
2
 ≤ E

 1

N

N∑
j=1

⟨wj ,x⟩4q

≤ (Crw)
4q(4q)2q ≤ Cqr4qw

20

for all q > 0, where C is an absolute constant and we used the subGaussianity of ⟨wj ,x⟩ to bound
its moment. As a result,

E
[
ℓ̃(x, y)2

]1/2
≲ r2aCqL

2
σ(r

2q
w (1 + ε2q) + r2qb + r2w(1 + ε2) + r2b) + E

[
y4
]1/2

.

By assumption 2, we have E
[
y4
]1/2 ≤ C for some absolute constant C.576

To estimate the tail probability of ℓ̃(x, y). Using the assumption on τ and the upper bound on ℓ̃(x, y)577

developed above, using a union bound we have578

P
(
ℓ̃(x, y) ≥ τ

)
≤ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2q +
L2
σ

N

N∑
j=1

⟨wj ,x⟩2 + y2 ≥ τ

2

≤ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2q ≥
τ

6

+ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2 ≥
τ

6

+ P
(
y2 ≥ τ

6

)

≤ 2 exp

(
−cτ1/q

L
2/q
σ r2w

)
+ P

(
y2 ≥ τ

)
,

where we used Lemma 18, the fact that |⟨wj ,x⟩| is subGaussian with norm O(rw), and that q ≥ 1.
Furthermore, using the moment estimate on y in Assumption 2 along with the technique developed in
Lemma 18, we have

P
(
y2 ≥ τ

6

)
≤ exp

(
−cτ1/p

L
2/p
g

)
,

for τ ≥ C, where C, c > 0 are absolute constants.579

As a result, we obtain

AR(a,W , b)−ARτ (a,W , b) ≲ κ

(
exp

(
− cτ1/q

L
2/q
σ r2w

)
+ exp(−cτ1/p)

)
,

for all a ∈ Θ.580

In the next part of the proof, we will show that with probability at least 1−δ, we have ÂR(a,W , b) =581

ÂRτ (a,W , b) uniformly over all a. Note that this is equivalent to asking ℓ̃(x(i), y(i)) ≤ τ for all582

1 ≤ i ≤ n. For any fixed i, using the upper bound on ℓ̃(x(i), y(i)), we have583

P
(
ℓ̃(x(i), y(i)) ≥ τ

)
≤ P

L2
σ

N

N∑
j=1

⟨wj ,x⟩2q +
L2
σ

N

N∑
j=1

⟨wj ,x⟩2 + y2 ≥ τ

2

≲ exp

(
−cτ1/q

L
2/q
σ r2w

)
+ exp

(
−ckτ1/p

L
2/p
g

)
.

Consequently, by a union bound we have

P
(

max
1≤i≤n

ℓ̃(x(i), y(i)) ≥ τ
)
≤ n

(
exp

(
−cτ1/q

L
2/q
σ r2w

)
+ exp

(
−ckτ1/p

L
2/p
g

))
.

Choosing

τ ≥ Ck
{
L2
σr

2q
w logq

n

δ
∨ L2

g log
p n

δ

}
with a sufficiently large constant Ck ensures the above probability is at most δ, finishing the proof.584

585

We are now ready to present the main result of this section.586

21

Proposition 20. Suppose Assumption 2 holds and σ satisfies (B.1), Θ = {a : ∥a∥ ≤ ra/
√
N},

∥wi∥ ≤ 1, and |bi| ≤ rb for all 1 ≤ i ≤ N . Let

κ := Cqr
2
aL

2
σ(1 + ε2q + r2qb) + Cp,kL

2
g,

where Cq and Cp are constants depending only on q and p respectively. Then we have

AR(â,W , b)−min
a∈Θ

AR(a,W , b) ≤ Õ
(

κ√
n

)
,

with probability at least 1−O(n−c) for some constant c > 0.587

Proof. We can summarize the generalization bound of Corollary 17 as

ARτ (â,W , b)− ÂRτ (â,W , b) ≲

√
τκ
n

+ τ

√
log(1/δ)

n
,

where
κ := Cqr

2
aL

2
σ(1 + ε2q + r2qb) + Cp,kL

2
g,

is obtained from Lemma 19 by letting rw = 1. Further, we use the fact that ÂRτ (â,W , b) ≤
AR(â,W , b), and

AR(â,W , b)−ARτ (â,W , b) ≲ κe−Ω(τ/κ)

from Lemma 19 to arrive that

AR(â,W , b)− ÂR(â,W , b) ≤ Õ

(√
τκ
n

+ τ

√
log(1/δ)

n
+ κe

−Ω
(

τ1/q

L
2/q
σ

)
+ κe

−Ω
(

τ1/p

L
2/p
g

))
.

Note that κ ≥ L2
σ ∨ L2

g . Choosing τ = Cκ logp∨q(κn/δ) with a sufficiently large absolute constant
C > 0 satisfies the assumption of Lemma 19, and further letting δ = n−c for some constant c > 0,
we obtain

AR(â,W , b)− ÂR(â,W , b) ≤ Õ
(

κ√
n

)
,

which holds with probability at least 1− n−c over the randomness of the training set.588

Recall a∗ = argmina∈Θ AR(a,W , b). Similarly, Lemma 19 guarantees

ÂR(a∗,W , b)−AR(a∗,W , b) ≤ Õ
(

κ√
n

)
,

on the same event as above. Finally, we have ÂR(â,W , b) ≤ ÂR(a∗,W , b) by definition of â,589

which concludes the proof of the proposition.590

D Approximation Analysis591

Let ΠUw = U⊤Uw
∥Uw∥ denote the projection of w ∈ Sd−1 onto span(u1, . . . ,uk)∩Sd−1 (if ∥Uw∥ =592

0 we can simply let ΠUw = u1). Suppose ⟨w,u⟩ ≥ 1 − ζ for some ζ ∈ (0, 1) and u ∈593

span(u1, . . . ,uk) with ∥u∥ = 1. Then, we have the following properties for this projection:594

• ⟨ΠUw,u⟩ ≥ 1− ζ,595

• ∥w −ΠUw∥ ≤
√
2ζ.596

Let h : Rk → R be the function constructed in the proof of Theorem 1. Then,

AR∗ = E
[
max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]
.

22

Let us denote f(x) = f(x;a∗,W , b) for consciences. Then,597

AR(a∗,W , b)−AR∗ = E
[
max
∥δ∥≤ε

(f(x+ δ)− y)2 − max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]

≤ E
[
max
∥δ∥≤ε

{
(f(x+ δ)− y)2 − (h(U(x+ δ))− y)2

}]

= E

max
∥δ∥≤ε

(f(x+ δ)− h(U(x+ δ))(f(x+ δ) + h(U(x+ δ))− 2y︸ ︷︷ ︸
=:Z

)

Let ΠUW = (ΠUw1, . . . ,ΠUwN)⊤. Then, we have the decompositions

f(x+ δ;a∗,W , b) = f(x+ δ;a∗,W , b)− f(x+ δ;a∗,ΠUW , b) + f(x+ δ;a∗,ΠUW , b),

and598

Z =f(x+ δ;a∗,W , b)− f(x+ δ;a∗,ΠUW , b) + f(x+ δ;a∗,ΠUW , b)− h(U(x+ δ))

+ 2h(U(x+ δ))− 2y.

Plugging this decomposition into the above and using the Cauchy-Schwartz inequality yields599

AR(a∗,W , b)−AR∗ ≤ (
√
E1 +

√
E2)2 +

√
E3(E1 + E2), (D.1)

where600

E1 := E
[
max
∥δ∥≤ε

(f(x+ δ; ΠUW , b)− h(U(x+ δ)))2
]
, (D.2)

E2 := E
[
max
∥δ∥≤ε

(f(x+ δ; ΠUW , b)− f(x+ δ;a∗,W , b))2
]
, (D.3)

E3 := 4E
[
max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]
= 4AR∗. (D.4)

Under Definition 3, we have a set of good neurons S to work with. To continue, we introduce a601

similar subset of good neurons under Definition 2.602

Definition 21. Suppose the weights W = (w1, . . . ,wN)⊤ are obtained from the α -DFL oracle of
Definition 2. Fix a maximal 2

√
2ζ-packing of Sk−1 with respect to the Euclidean norm, denoted by

(v̄i)
M
i=1. Define vj :=

Uwj

∥Uwj∥ for all j ∈ [N], and

Si := {j ∈ [N] : ∥vj − v̄i∥ ≤
√

2ζ},

for all i ∈ [M]. Note that (Si) are mutually exclusive. Define S :=
⋃M
i=1 Si. Note that there603

are constants ck, Ck > 0 such that ck(1/ζ)(k−1)/2 ≤ M ≤ Ck(1/ζ)
(k−1)/2. Therefore, using604

Definition 2, we have |S|/N ≥ Ω(α).605

Note that when considering the (α,β)-SFL oracle, we leave S unchanged from Definition 3. In either606

case, for every j /∈ S, we will choose a∗j = 0. Then, we then have the following upper bound on E2.607

Lemma 22. Suppose a∗j = 0 for j /∈ S and ∥a∗∥ ≤ r̃a/
√
|S|. Then,

E
[
max
∥δ∥≤ε

(f(x+ δ;a∗,ΠUW , b)− f(x+ δ;a∗,W , b))2
]
≲ L2

σCq r̃
2
a(1+r

2(q−1)
b +ε2(q−1))(1+ε2)ζ,

where Cq is a constant only depending on q.608

Proof. To be concise, we define x̃δ := x + δ and hide dependence on a∗ and b in the following609

notation. By pseudo-Lipschitzness of σ and the Cauchy-Schwartz inequality,610

f(x̃δ; ΠUW)− f(x̃δ;W) =
∑
j∈S

a∗j (σ(⟨ΠUwj , x̃δ⟩+ bj)− σ(⟨wj , x̃δ⟩+ bj))

≤ Lσ
∑
j∈S

∣∣a∗j ∣∣(|⟨ΠUwj , x̃δ⟩+ bj |q−1
+ |⟨wj , x̃δ⟩+ bj |q−1

+ 1)|⟨ΠUwj −wj , x̃δ⟩|.

23

Let
Aj := |⟨ΠUwj , x̃δ⟩+ bj |q−1

+ |⟨wj , x̃δ⟩+ bj |q−1
+ 1,

and
Bj := |⟨ΠUwj −wj , x̃δ⟩|.

Then,611

E2 ≤ L2
σ E

max
∥δ∥≤ε

(∑
j∈S

∣∣a∗j ∣∣AjBj)2
 ≤ L2

σ r̃
2
a

|S|
E

max
∥δ∥≤ε

∑
j∈S
A2
jB2j

≤ L2

σ r̃
2
a

|S|
∑
j∈S

E
[
max
∥δ∥≤ε

A2
jB2j

]

≤ L2
σ r̃

2
a

|S|
∑
j∈S

E
[
max
∥δ∥≤ε

A4
j

]1/2
E
[
max
∥δ∥≤ε

B4j
]1/2

.

Additionally, we have

max
∥δ∥≤ε

Aj ≤ Cq
(
|⟨ΠUwj ,x⟩|q−1

+ |⟨wj ,x⟩|q−1
+ εq−1 + rq−1

b + 1
)
,

and
max
∥δ∥≤ε

Bj ≤ ε∥ΠUwj −wj∥+ |⟨ΠUwj −wj ,x⟩|.

Further, by Assumption 2, for all v ∈ Rd, ⟨v,x⟩ is a centered subGaussian random variable with612

subGaussian norm O(∥v∥), therefore E[|⟨v,x⟩|q] ≤ Cq∥v∥q for all q > 0. In summary,613

E
[
max
∥δ∥≤ε

A4
j

]1/2
≤ Cq(1 + r

2(q−1)
b + ε

2(q−1)
1), and E

[
max
∥δ∥≤ε

B4j
]1/2

≲ (1 + ε2)ζ,

where we used the fact that ∥ΠUwj −wj∥2 ≤ 2ζ for all j ∈ S. This completes the proof.614

While the term E1 defined in (D.2) is an expectation over the entire distribution of x, most approxi-615

mation bounds support only a compact subset of Rd. The following lemma shows that approximation616

on compact sets is sufficient to bound E1.617

Lemma 23. Suppose a∗j = 0 for j /∈ S and ∥a∗∥ ≤ r̃a/
√
|S|. Further, suppose rz ≥ 1 ∨ 2ε. Let

ϵapprox := sup
∥Ux∥≤rz

|f(x;a∗,ΠUW , b)− h(U(x+ δ))|.

Assume h satisfies |h(z)| ≤ Lh(1 + ∥z∥p) for all z ∈ Rk and some constant p ≥ 0. Then,

E1 ≤ ϵ2approx +
(
L2
σCq r̃

2
a(1 + ε2q + r2qb) + L2

hCp,k(1 + ε2p)
)
e−Ω(r2z).

Proof. For brevity, define

∆δ :=
(
f(x̃δ;a

∗,ΠUW , b)− h(U(x+ δ))
)2

where x̃δ := x+ δ. Then,618

E
[
max
∥δ∥≤ε

∆δ

]
≤ E

[
max
∥δ∥≤ε

∆δI[∥Ux̃δ∥ ≤ rz]
]
+ E

[
max
∥δ∥≤ε

∆δI[∥Ux̃δ∥ > rz]

]
≤ ϵ2approx + E

[
max
∥δ∥≤ε

∆2
δ

]1/2
E
[
max
∥δ∥≤ε

I[∥Ux̃δ∥ > rz]

]1/2
≤ ϵ2approx + E

[
max
∥δ∥≤ε

∆2
δ

]1/2
P(∥Ux∥ > rz − ε)1/2

≤ ϵ2approx + E
[
max
∥δ∥≤ε

∆2
δ

]1/2
P
(
∥Ux∥ > rz

2

)1/2
.

24

Furthermore, we have

E
[
max
∥δ∥≤ε

∆2
δ

]
≲ E

[
max
∥δ∥≤ε

f(x̃δ;a
∗,ΠUW , b)4

]
+ E

[
max
∥δ∥≤ε

h(U(x+ δ))4
]
.

Recall the notation vj :=
Uwj

∥Uwj∥ and z := Ux. Then, by Cauchy-Schwartz and Jensen inequalities,619

E
[
max
∥δ∥≤ε

f(x̃δ;a
∗,ΠUW , b)4

]
≤ E

[
max
∥δ∥≤ε

∥a∥4∥σ(ΠUW (x+ δ) + b)∥4
]

≤ r̃4a
|S|

E

max
∥δ∥≤ε

(∑
j∈S

σ(⟨vj , z +Uδ⟩+ bj)
4
)

≤ r̃4aL
4
σCq
|S|

E

∑
j∈S
⟨vj , z⟩4q + ε4q + r4qb

≤ CqL4

σ r̃
4
a(1 + ε4q + r4qb).

Similarly we can prove

E
[
max
∥δ∥

h(U(x+ δ))4
]
≤ Cp,kL4

h(1 + ε4p).

In summary,

E
[
max
∥δ∥≤ε

∆2
δ

]1/2
≲ CqL

2
σ r̃

2
a(1 + ε2q + r2qb) + Cp,kL

2
h(1 + ε2p).

Finally, the probability bound
P
(
∥Ux∥ ≥ rz

4

)
≤ e−Ω(r2z)

follows from subGaussianity of x and the fact that k = O(1).620

D.1 Approximating Univariate Functions621

In this section, we recall prior results on approximating univariate functions with random biases in622

the infinite-width regime under ReLU and polynomial activations.623

Lemma 24 ([MHPG+23, Lemma 21, Adapted]). Let σ be the ReLU activation and b ∼
Unif(−rb, rb). Let h̃ : R → R be a smooth function such that h̃(z) = h(z) for all |z| ≤ rb/2,
and h̃(−rb) = h̃′(−rb) = 0. Then, for all |z| ≤ rb/2 we have

Eb
[
2rbh̃

′′(−b)σ(z + b)
]
= h(z).

Proof. The proof follows from integration by parts, namely624

Eb
[
2rbh̃

′′(−b)σ(z + b)
]
=

∫ rb

−z
h̃′′(−b)(z + b)db

= −h̃′(−rb)(z + rb) +

∫ z

−rb
h̃′(u)du

= −h̃′(−rb)(z + rb) + h̃(z)− h̃(−rb) = h(z).

625

Furthermore, we have the following result for infinite-width approximation with polynomial activa-626

tions.627

Lemma 25 ([OSSW24, Lemma 30, Adapted]). Let σ be a polynomial of degree q and suppose
b ∼ Unif(−rb, rb) and h is a polynomial of degree p such that q ≥ p, and in particular satisfies
|h(z)| ≤ Lh(1 + |z|p). Suppose rb ≥ q. Then, there exists a function f : [−rb, rb]→ R such that

Eb[2rbf(b)σ(z + b)] = h(z), ∀z ∈ R.
Furthermore, we have |f(z)| ≤ Cσ,h for all z, where Cσ,h only depends on the activation and Lh.628

25

Proof. In order for σ to approximate arbitrary polynomials of degree at most q, it is sufficient to show
that σ can approximate at least one polynomial per degree, ranging from degree 0 to q. Defining
the corresponding polynomial with degree i as gi(z), then h will be in the span of {gi}qi=0. More
specifically, suppose h(z) =

∑p
j=0 αjz

j , and gi(z) =
∑i
j=0 γi,jz

j . Then there exist {βi}qi=0 such
that

p∑
i=1

βigi(z) =

p∑
j=0

p∑
i=j

γi,jβiz
j =

p∑
j=0

αjz
j .

Indeed, we can let βi = 0 for all i > p. Additionally, note that γi,i ̸= 0 for all i ≤ q by definition.
Therefore, the solution to the above equation is given iteratively by βp = αp/γp,p and

βp−j =
αp−j −

∑j−1
i=0 γp−i,p−jβp−i
γp−j,p−j

,

for 1 ≤ j ≤ p. Importantly, |βi| for all i can be bounded polynomially by {αj}j , {γi,j}i,j and629

{γ−1
i,i }i. Further, |αi| can be bounded polynomially by Lh for all i. Thus, it remains to construct630

{gi}.631

Following [OSSW24], we define

gq(z) =

∫ 0

−q
σ(z + b)db.

It is straightforward to verify that gq has degree (exactly) q. We then iteratively define

gq−i(z) = gq−(i−1)(z + 1)− gq−(i−1)(z), ∀1 ≤ i ≤ q.

Using the definition above and by induction, one can verify gi has degree exactly i. Furthermore,
expanding the definition above yields

gq−i(z) =

i∑
j=0

ci,jgq(z + j) =

i∑
j=0

ci,j

∫ 0

−q
σ(z + b+ j)db,

where ci,j = (−1)i−j
(
i
j

)
, i.e. the coefficients that satisfy (z − 1)i =

∑i
j=0 ci,jz

j . In particular, we
can write

gq−i(z) =

i∑
j=0

ci,j

∫ j

−q+j
σ(z + b)db = Eb

2rb i∑
j=0

I[−q + j ≤ b ≤ j]σ(z + b)

.
Therefore, we can define

f(b) :=

q∑
i=0

βq−i

i∑
j=0

ci,jI[−q + j ≤ b ≤ j],

which completes the proof.632

D.2 Approximating Multivariate Polynomials633

We adapt the approximation result of this section from [DLS22], modifying the proof to be consistent634

with our assumption on the first layer weights.635

First, we remark that for any fixed v ∈ Sk−1 and any degree 0 ≤ s ≤ p, we can approximate the
function z 7→ ⟨v, z⟩s with random biases as established by Lemma 24 for the ReLU activation and
Lemma 25 for the polynomial activation. Therefore, our main effor will be spent in approximating a
polynomial h(z) using monomials ⟨v, z⟩s. Note that we can represent h by

h(z) =

p∑
s=0

T (s)[z⊗s],

26

where T (s) is a symmetric tensor of order s, and we use the notation

T (s)[z⊗s] = vec(T (s))⊤vec(z⊗s) =

k∑
i1,...,is=1

T
(s)
i1,...,is

zi1 . . . zis .

The approximation result relies on the following fact.636

Lemma 26. Let v ∼ τk. Then, the matrix Ev∼τk
[
vec(v⊗s)vec(v⊗s)⊤

]
is invertible.637

Proof. Let T be an arbitrary symmetric tensor of order s with ∥T ∥F = 1. We need to find a constant
cs,k > 0 such that

vec(T)⊤ Ev∼τk
[
vec(v⊗s)vec(v⊗s)

]
vec(T) ≥ cs,k.

Note that

vec(T)⊤ Ev∼τk
[
vec(v⊗s)vec(v⊗s)

]
vec(T) = Ev∼τk

[
T [v⊗s]2

]
= Ew∼N (0,Ik)

[
T [w⊗s]2

∥w∥2s

]
.

Furthermore, [DLS22, Lemma 23] implies that

Ew∼N (0,Ik)

[
T [w⊗s]2

]
≥ c′s,k,

for some constant c′s,k > 0. Therefore, for any r > 0, we have

Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ > r]

]
+ Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ ≤ r]

]
≥ c′s,k.

Note that the first term on the LHS above can become arbitrarily small by choosing r sufficiently
large (depending on s and k). Thus for sufficiently large r we have

Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ ≤ r]

]
≥
c′s,k
2
.

Finally, we have

Ew∼N (0,Ik)

[
T [w⊗s]2

∥w∥2s

]
≥ 1

r2s
Ew∼N (0,Ik)

[
T [w⊗s]2I[∥w∥ ≤ r]

]
≥

c′s,k
2r2s

.

Therefore, taking cs,k =
c′s,k
2r2s completes the proof.638

The following lemma establishes how we can use monomials of the form (v⊤z)s to approximate639

each term appearing in h(z).640

Lemma 27 ([DLS22, Corollary 4, Adapted]). There exists f : Sk−1 → R such that for all z ∈ Rk
and non-negative integers s ≥ 0,∫

Sk−1

f(v)⟨v, z⟩sdτk(v) = T (s)[z⊗s].

Further, |f(v)| ≤ Ck,s
∥∥∥T (s)

∥∥∥
F

for all v ∈ Sk−1.641

Proof. Note that by definition, ⟨v, z⟩s = vec(v⊗s)⊤vec(z⊗s). Therefore,∫
f(v)⟨v, z⟩sdτk(v) =

(∫
f(v)vec(v⊗s)dτk(v)

)⊤

vec(z⊗s).

We need to match the first vector on the RHS above equal to vec(T⊗s), thus our choice of f is

f(v) = vec(v⊗s)⊤ Ev∼τk
[
vec(v⊗s)vec(v⊗s)⊤

]−1
vec(T (s)).

The proof is them completed via the lower bound of Lemma 26 which gaurantees the existence of642

some constant cs,k > 0 such that λmin

(
Ev∼τk

[
vec(v⊗s)vec(v⊗s)⊤

])
≥ cs,k.643

The above result along with the univariate approximations proved earlier immediately yields the644

following corollary.645

27

Corollary 28. Suppose h is a polynomial of degree p denoted by h(z) =
∑p
s=0 T

(s)[z⊗s]. Further
assume the activation σ is either ReLU or a polynomial of degree q ≥ p. Then, there exists
ĥ : Sk−1 × [−rb, rb]→ R such that for every ∥z∥ ≤ rb

2 , we have∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db = h(z).

Furthermore,
∣∣∣ĥ(v, b)∣∣∣ ≤ Ck,qmaxs≤p

∥∥∥T (s)
∥∥∥
F

.646

Proof. Let

ĥ(v, b) =

k∑
s=0

f1,s(v)f2,s(b),

for (f1,s) and (f2,s) which we now determine. We choose f2,s according to Lemma 24 for the ReLU
activation and Lemma 25 for the polynomial activation, then∫ rb

b=−rb
f2,s(b)σ(⟨v, z⟩+ b)db = ⟨v, z⟩s,

for all ∥z∥ ≤ rb/2, and |f2,s(b)| ≤ Cs,q for all b. Then, we choose f1,s according to Lemma 27,
which yields∫

Sk−1×[−rb,rb]
f1,s(v)f2,s(b)σ(⟨v, z⟩+ b)dτk(v)db =

∫
f1,s(v)⟨v, z⟩sdτk(v) = T (s)[z⊗s],

for all ∥z∥ ≤ rb/2. Additionally |f1,s(v)| ≤ Cs,k
∥∥∥T (s)

∥∥∥
F

, which completes the proof.647

As a last step in this section, we verify that one can indeed control maxs≤p

∥∥∥T (s)
∥∥∥
F

with an absolute648

constant when h is the minimizer of the adversarial risk.649

Lemma 29. Suppose F is the class of degree p polynomials on Rd. Let H = {z 7→
E[f(x) |Ux = z] : f ∈ F}, and define

h = argmin
h′∈H

E
[
max
∥δ∥≤ε

(h′(U(x+ δ))− y)2
]
.

Denote the decomposition of h by h(z) =
∑p
s=0 T

(s)[z⊗s]. Then,
∥∥∥T (s)

∥∥∥
F
≤ Ck,y, where Ck,y is650

a constant depending only on k and the target second moment E
[
y2
]

(thus an absolute constant in651

our setting). As a consequence, we have |h(z)| ≤ Lh(1 + ∥z∥p) for all z ∈ Rk, where Lh > 0 is an652

absolute constant.653

Proof. By comparing with the zero function, we have

E
[
(h(Ux)− y)2

]
≤ E

[
max
∥δ∥≤ε

(h(U(x+ δ))− y)2
]
≤ E

[
y2
]1/2

.

Furthermore, by the Cauchy-Schwartz inequality,

E
[
(h(Ux)− y)2

]
≥ E

[
h(Ux)2

]
+ E

[
y2
]
− 2E

[
h(Ux)2

]1/2 E[y2]1/2.
Combining the two inequalities above, we obtain E

[
h(Ux)2

]
≤ 4E

[
y2
]
. Let z := Ux, and let µz

be the marginal distribution of z. Then

E
[
h(z)2

]
=

∫
h(z)2

dµz

dN (0, CkIk)
(z)dN (0, CkIk)(z).

Further, by subGaussianity of x and subsequent subGaussianity of z, we have dµz

dN (0,Ck)
(z) ≤ C ′

k <

∞ for all z, when Ck, C ′
k are sufficiently large constants depending only on k. Therefore,

Ez∼N (0,CkIk)

[
h(z)2

]
≤ 4C ′

k E
[
y2
]
.

The proof is completed by using the Hermite decomposition of h.654

28

D.3 Approximating Multivariate Pseudo-Lipschitz Functions655

We now turn to the more general problem of approximating pseudo-Lipschitz functions. Specifically,656

when F satisfies Assumption 3, functions of the form h(z) = E[f(x) |Ux = z] will be L-pseudo-657

Lipschitz. The following lemma investigates approximating such functions with infinite-width658

two-layer neural networks.659

Lemma 30. Suppose h : Rk → R is L-Lipschitz on ∥z∥ ≤ rz and σ is the ReLU activation. Then,
for every ∆ ≥ Ck, there exists ĥ : Sk−1 × [−rb, rb]→ R such that∣∣∣∣∣h(z)−

∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db

∣∣∣∣∣ ≤ CkLrz
{(∆

Lrz

) −2
k+1

log
∆

Lrz
+
(∆
rz

) 2k
k+1
(rz
rb

)k}
,

for all ∥z∥ ≤ rz . Furthermore, we have
∣∣∣ĥ(v, b)∣∣∣ ≤ CkL(∆/Lrz)2k/(k+1)/rz for all v and b, and∫

Sk−1×[−rb,rb]
ĥ(v, b)2dτk(v)db ≤

Ck∆
2

r3z
.

Proof. Let z̃ := (z⊤, rz)
⊤ ∈ Rk+1. By [Bac17, Proposition 6], we know that for all ∆ ≥ Ck, there

exists p : Sk → R, such that ∥p∥L2(τk+1)
≤ ∆ and∣∣∣∣h(z)− ∫

Sk
p(ṽ)σ

(⟨ṽ, z̃⟩
rz

)
dτk+1(ṽ)

∣∣∣∣ ≤ CkLrz(∆

Lrz

) −2
k+1

log
∆

Lrz
,

for all ∥z∥ ≤ rz . Furthermore, the proof of [MHWE24, Proposition 19] demonstrated that

|p(ṽ)| ≤ CkLrz
(∆

Lrz

) 2k
k+1

, ∀ ṽ ∈ Sk.

Let ṽ = (ṽ⊤
1:k, ṽk+1)

⊤ be the decomposition of ṽ into its first k and last coordinate. Then, we will use660

the fact that for ṽ ∼ Unif(Sk) when conditioned on ṽk+1, by symmetry v1:k

∥v1:k∥ is uniformly distributed661

on Sk−1. In other words, let v ∼ Unif(Sk−1) and b̃ ∼ ρk+1 independently, where we choose ρk+1662

such that b̃√
1+b̃2

has the same marginal distribution as ṽk+1. Since the marginal distribution of663

ṽk+1 is given by dP(ṽk+1) ∝ (1 − ṽ2k+1)
(k−2)/2dṽk+1, we have ρk+1(b̃) = Zk(1 + b̃2)−(k+1)/2,664

where Zk is the normalizing constant. Then, ṽ = T(v, b̃) is distributed uniformly on Sk, where665

T : Sk−1 × R→ Sk is given by T(v, b̃) = 1√
1+b̃2

(
v⊤, b̃

)
. As a result,666

∫
p(ṽ)σ

(⟨ṽ, z̃⟩
rz

)
dτk+1(ṽ) =

∫
p(T(v, b̃))σ

(⟨v, z⟩+ b̃rz

rz
√

1 + b̃2

)
dτk(v)dρk+1(b̃)

= Zk

∫
Sk−1×R

p(T(v, b̃))

rz
√
1 + b̃2

· 1

(1 + b̃2)(k+1)/2
σ(⟨v, z⟩+ b̃rz)dτk(v)db̃

= Zk

∫
Sk−1×R

rkzp(T(v, b/rz))

(r2z + b2)(k+2)/2
σ(⟨v, z⟩+ b)dτk(v)db.

Therefore, our choice of ĥ will be

ĥ(v, b) = Zk
rkzp(T(v, b/rz))

(r2z + b2)(k+2)/2
.

Next, we bound the following error term due to cutoff of bias,

E :=

∣∣∣∣∣
∫
Sk−1×(R\[−rb,rb])

rkzp(T(v, b/rz))

(r2z + b2)(k+2)/2
σ(⟨v, z⟩+ b)dτk(v)db

∣∣∣∣∣.
29

We have667

E ≲ CkLrz
(∆

Lrz

) 2k
k+1

∫
|b|>rb

rkz (rz + b)

(r2z + b2)(k+2)/2
db

≲ CkLrz
(∆

Lrz

) 2k
k+1

∫
|b|>rb

rkz
(r2z + b2)(k+1)/2

db

≲ Ck∆
2k

k+1

∫
|b|>rb

rkz
bk+1

db

≲ CkLrz
(∆
rz

) 2k
k+1
(rz
rb

)k
.

Finally, we prove the guarantees provided for ĥ. The uniform bound on
∣∣∣ĥ(v, b)∣∣∣ follows directly by668

plugging in the uniform bound on p. For the L2 bound on ĥ, we have669 ∫
Sk−1×[−rb,rb]

ĥ(v, b)2dτk(v)db ≤
∫
Sk−1×R

ĥ(v, b)2dτk(v)db

=

∫
Z2
kr

2k
z p(T(v, b/rz))

2

(r2z + b2)k+2
dτk(v)db

=

∫
Z2
kp(T(v, b̃))

2

r3z(1 + b̃2)k+2
dτk(v)db̃

=
Zk
r3z

∫
p(T(v, b̃))2

(1 + b̃2)(k+3)/2
dτk(v)dρk+1(b̃)

=
Zk
r3z

∫
(1− ṽ2k+1)

(k+3)/2p(ṽ)2dτk+1(ṽ)

≤
Zk∥p∥2L2(τk+1)

r3z
≤ Zk∆

2

r3z
,

completing the proof.670

D.4 Discretizing Infinite-Width Approximations671

In this section, we provide finite-width guarantees corresponding to the infinite-width approximations672

proved earlier. Define the following integral operator673

T ĥ(z) =
∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db. (D.5)

The type of discretization error depends on whether we are using the α -DFL or the (α,β)-SFL674

oracle. We first cover the case of α -DFL oracles.675

Proposition 31 (Approximation by Riemann Sum). Suppose σ satisfies (B.1). Let (w1, . . . ,wN) be676

the first layer weights obtained from the α -DFL oracle (Definition 2), and define vi =
Uwi

∥Uwi∥ for677

i ∈ [N]. Suppose (bj)j∈[N]
i.i.d.∼ Unif(−rb, rb), and let ∥ĥ∥∞ := supv,b

∣∣∣ĥ(v, b)∣∣∣. Then, there exists678

a∗ such that a∗j = 0 for j /∈ S and
∣∣a∗j ∣∣ ≤ Ck∥ĥ∥∞rb log(αN/(ζδ))/(αN) for j ∈ S (where S is679

given by Definition 21), and680 ∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣ ≤ Cq∥ĥ∥∞Lσrq−1
z rb

(
rz
√
ζ +

rb log(N/δ)

ζ(k−1)/2αN

)
, (D.6)

for all z ∈ Rk where ∥z∥ ≤ rz , with probability at least 1− δ over the randomness of biases.681

Proof. The proof is a multivariate version of the argument given in [OSSW24, Lemma 29]. Let682

{v̄i}Mi=1 be the maximal 2
√
2ζ-packing of Sk−1 from Definition 21, which is also a 2

√
2ζ-covering683

30

of Sk−1. Using a lower bound on the surface area of the spherical cap (see e.g. [WMHC24, Lemma684

F.11]), the maximal packing number is bounded by M ≤ Ck(1ζ)
(k−1)/2.685

For every i ∈ [M], define
Si := {j ∈ [N], ∥vj − v̄i∥ ≤

√
2ζ}.

Note that by definition of packing and Definition 2, each vj can only belong to exactly one of Si686

when j ∈ S, meaning that (Si) are disjoint and
⋃
i∈[M] Si = S. In particular, |Si|/N ≥ ζ(k−1)/2α,687

and |Si|/N ≤ 1/M ≤ ckζ(k−1)/2.688

We want each group of biases (bj)j∈Si
to cover the interval [−rb, rb]. We divide this interval into 2A689

subintervals of the form [−rb(1+ l
A), rb(1+

l+1
A)) for 0 ≤ l ≤ 2A−1. When bj

i.i.d.∼ Unif(−rb, rb),690

by a union bound, the probability that there exists some subinterval and some Si such that the691

subinterval contains no element of {bj : j ∈ Si} is at most 2AM(1 − 1
2A)

|Si|. Thus, taking692

A ≤ ⌊ |Si|
2 log(|Si|M/δ)⌋ for all i ∈ [M] guarantees that all subintervals have at least one bias from every693

Si inside them with probability at least 1− δ.694

Next, we define Π1 : Sk−1 → Sk−1 as the projection onto the packing, i.e. Π1(v) =695

argmin{v̄i:i∈[M]}∥v − v̄i∥. Further, we define Π2 : [M] × [−rb, rb] → [−rb, rb] by Π2(i, b) =696

argmin{bj :j∈Si}|b− bj |. Tie braking can be performed by choosing any of the answers. By defini-697

tion, we then have ∥v −Π1(v)∥ ≤ 2
√
2ζ, and |b−Π2(i, b)| ≤ rb/A for all i ∈ [M].698

We are now ready to construct a∗. Specifically, let

a∗j =

{∫
ĥ(v, b)I[i = Π1(v), bj = Π2(i, b)]dτk(v)db if j ∈ Si for some i,

0 if j /∈ S.

Note that by definition,
M∑
i=1

∑
j∈Si

I[i = Π1(v), bj = Π2(i, b)] = 1,

For conciseness, we define E(v, i, j) = I[i = Π1(v), bj = Π2(i, b)]. When j ∈ Si, on the event
E(v, i, j) we have

∥v − vj∥ ≤ ∥v − v̄i∥+ ∥v̄i − vj∥ ≤ 3
√
2ζ.

Moreover, since Pv∼τk [∥v − v̄i∥ ≤ 2
√
2ζ] ≤ Ckζ(k−1)/2, for j ∈ S we have∣∣a∗j ∣∣ ≤ Ck∥ĥ∥∞ζ(k−1)/2rb
A

≤ Ck∥ĥ∥∞rb log(N/δ)
αN

.

As a result,699 ∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)−
∫
ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∑
i=1

∑
j∈Si

∫
ĥ(v, b)E(v, i, j)(σ(⟨vj , z⟩+ bj)− σ(⟨v, z⟩+ b))dτk(v)db

∣∣∣∣∣∣
≲ Cq∥ĥ∥∞Lσrq−1

z rb(rz
√
ζ +

rb
A
),

for all ∥z∥ ≤ rz , where we used the fact that σ(z) is O(Lσrq−1
z) Lipschitz when restricted to700

|z| ≤ rz . This concludes the proof.701

Next, we provide a discretization guarantee when using (α,β)-SFL oracles.702

Proposition 32. Consider the same setting as Proposition 31, except the first-layer weights
(w1, . . . ,wN) are obtained from the (α,β)-SFL oracle (Definition 3). Then, there exists a∗ such
that a∗i = 0 for i /∈ S and |a∗i | ≤ ∥ĥ∥∞rb/(βαN) for i ∈ S, and∣∣∣∣∣∣

∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣ ≤ CqLσ∥ĥ∥∞rq+1
b

β

√
log(αN/δ)

αN
,

31

for all z ∈ Rk with ∥z∥ ≤ rb/2, with probability at least 1− δ over the randomness of (vi, bi)i∈[N].703

Moreover, suppose Ev,b∼τk⊗Unif(−rb,rb)

[
ĥ(v, b)2

]
≤M2(ĥ)

2. Then, assuming dµ
dτk
≤ β′, we have704

∥a∗∥2 ≲
r2bβ

′M2(ĥ)
2

αβ2N
, provided that, N ≳

∥ĥ∥4∞ log(1/δ)

αM2(ĥ)4
,

which also holds with probability at least 1− δ.705

Proof. By definition,706

T ĥ(z) =
∫
Sk−1×[−rb,rb]

ĥ(v, b)σ(⟨v, z⟩+ b)dτk(v)db

=

∫
Sk−1×[−rb,rb]

ĥ(v, b)
dτk
dµ

(v)σ(⟨v, z⟩+ b)dµ(v)db

= Ev,b∼µ⊗Unif(−rb,rb)

[
2rbĥ(v, b)

dτk
dµ

(v)σ(⟨v, z⟩+ b)

]
.

Consider (vi, bi)i∈S
i.i.d.∼ µ⊗ Unif(−rb, rb) from Definition 3. Let

a∗i =

{
2rbĥ(vi,bi)

|S|
dτk
dµ (vi) if i ∈ S,

0 if i /∈ S.
Consequently

|a∗i | ≤
2rb∥ĥ∥∞
β|S|

,

for all i ∈ S. Given z, define the random variable

T̂ ĥ(z) =
∑
i∈S

a∗i σ(⟨vi, z⟩+ bi).

Our next step is to bound the difference between T̂ ĥ(z) and T ĥ(z) uniformly over all ∥z∥ ≤ rz .707

Let (ẑj)Mj=1 be a ∆-covering of {z : ∥z∥ ≤ rz}, therefore M ≤ (3rz/∆)k. Note that for any fixed

z with ∥z∥ ≤ rz , we have
∣∣∣T̂ ĥ(z)∣∣∣ ≲ ∥ĥ∥∞Lσrbrq−1

z (rz + rb)/β. Thus, by Hoeffding’s lemma,

∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≲ ∥ĥ∥∞Lσrbrq−1
z (rz + rb)

β

√
log(1/δ)

|S|
,

with probability at least 1− δ for a fixed z. By a union bound,

max
j∈[M]

∣∣∣T̂ ĥ(ẑj)− T ĥ(ẑj)∣∣∣ ≲ ∥ĥ∥∞Lσrbrq−1
z (rz + rb)

β

√
log(M/δ)

|S|
,

with probability at least 1− δ. For any z with ∥z∥ ≤ rz , let ẑ denote the projection of z onto the708

covering (ẑj)
M
j=1. Then,709

sup
∥z∥≤rb/2

∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≤ max
j∈[M]

∣∣∣T̂ ĥ(ẑj)− T ĥ(ẑj)∣∣∣+ ∣∣∣T ĥ(ẑ)− T ĥ(z)∣∣∣+ ∣∣∣T̂ ĥ(ẑ)− T ĥ(z)∣∣∣
≲
∥ĥ∥∞Lσrbrq−1

z (rz + rb)

β

√
log(M/δ)

|S|
+
∥ĥ∥∞Lσrbrq−1

z ∆

β
.

≲
∥ĥ∥∞Lσrbrq−1

z (rz + rb)

β

√
log(rb/(∆δ))

|S|
+
∥ĥ∥∞Lσrbrq−1

z ∆

β
.

Choosing ∆ = rb/
√
|S| implies

sup
∥z∥≤rb/2

∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≲ Ck∥ĥ∥∞Lσrbrq−1
z (rz + rb)

β

√
log(|S|/δ)
|S|

32

with probability at least 1− δ over the randomness of (vi, bi)i∈[N].710

The last step is to bound ∥a∗∥2. Note that,

∥a∗∥2 ≤ 4r2b
β2|S|

∑
i∈S

ĥ(vi, bi)
2

|S|
.

Further, by the Hoeffding inequality,

∑
i∈S

ĥ(vi, bi)
2

|S|
− Ev,b∼µ⊗Unif(−rb,rb)

[
ĥ(v, b)2

]
≲ ∥ĥ∥2∞

√
log(1/δ)

|S|

with probability at least 1− δ. Further,711

Ev,b∼µ⊗Unif(−rb,rb)

[
ĥ(v, b)2

]
= Ev,b∼τk⊗Unif(−rb,rb)

[
ĥ(v, b)2

dµ

dτk
(v)

]
≤ β′M2(ĥ)

2.

Thus, when |S| ≥ ∥ĥ∥4
∞ log(1/δ)

M2(ĥ)4
, we have ∥a∗∥2 ≲ r2bβ

′M2(ĥ)
2/(β2|S|) with probability at least712

1− δ, which completes the proof.713

D.5 Combining All Steps714

We can finally bound our original objective of this section, i.e. AR(a∗,W , b)−AR∗. Let us begin715

with the case where F is the class of polynomials of degree p.716

Proposition 33. Suppose F and σ satisfy Assumption 4 and (bi)i∈[N]
i.i.d.∼ Unif(−rb, rb). Recall717

that ε1 := 1 ∨ ε, and ϵ̃ := ϵ ∧ ϵ2

AR∗ for any ϵ ∈ (0, 1). Using the simplification k, q, p, Lσ ≲ 1 and718

recalling ε1 := 1 ∨ ε, there exists a choice of rb = Θ̃(ε1) such that:719

• If W = (w1, . . . ,wN)⊤ are given by the α -DFL oracle, there exists a∗ such that |a∗i | ≤720

Õ(ε1/(αN)) for all i ∈ [N], and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as721

ζ ≤ Õ
(ϵ̃

ε
2(q+1)
1

)
and N ≥ Ω̃

(εq+1
1

αζ(k−1)/2
√
ϵ̃

)
.

• If W = (w1, . . . ,wN)⊤ are given by the (α,β)-SFL oracle, there exists a∗ such that |a∗i | ≤722

Õ(ε1/(βαN)) for all i ∈ [N], and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as723

ζ ≤ Õ
(β2ϵ̃

ε
2(q+1)
1

)
and N ≥ Ω̃

(ε2(q+1)
1

αβ2ϵ̃

)
.

Both cases above hold with probability at least 1− n−c for some absolute constant c > 0 over the724

choice of random biases (bi)i∈[N] (and random weights (wi) in the case of SFL).725

Proof. Recall from (D.1) that

AR(a∗,W , b)−AR∗ ≲ E1 + E2 +
√
E3(E1 + E2).

By definition, E3 ≲ AR∗. By Lemma 22, we have

E2 ≲ L2
σ r̃

2
a(1 + r

2(q−1)
b + ε2(q−1))(1 + ε2)ζ.

Further, thanks to Lemma 29, by choosing rz = rb/2, we have |h(z)| ≲ 1 + ∥z∥p. Therefore, by
Lemma 23,

E1 ≲ ϵ2approx +
(
L2
σ r̃

2
a(1 + ε2q + r2qb) + 1 + ε2p

)
e−Ω(r2b).

33

Let us now consider the case of α -DFL. By Proposition 31, we know there exists a∗ with |a∗i | ≤
Õ(rb/(αN)) (we used the fact that maxs≤p

∥∥∥T (s)
∥∥∥
F
≲ 1 from Lemma 29) such that

ϵapprox ≤ Õ
(
rq+1
b

(√
ζ +

rb
ζ(k−1)/2αN

))
,

provided that rb ≳ ε1 where we recall ε1 = 1 ∨ ε, and the above statements with probability
at least 1 − δ for any polynomially decaying δ, e.g. δ = n−c for some absolute constant c > 0.
Therefore, we have r̃a ≤ Õ(rb). Further, it suffices to choose rb large enough such that rb ≳

ε1 ∨
√
log(NL2

σ r̃
2
ar

2q
b + ε2p1) = Θ̃(ε1) to have

E1 ≤ Õ
(
r
2(q+1)
b

(
ζ +

1

ζk−1α2N2

))
.

Plugging in the values of r̃a and rb, we obtain,726

E2 ≤ Õ(ε2(q+1)
1 ζ), and E1 ≤ Õ

(
ε
2(q+1)
1 ζ +

ε
2(q+1)
1

ζk−1α2N2

)
.

Hence, choosing727

ζ ≤ Õ
(ϵ̃

ε
2(q+1)
1

)
, and, N ≥ Ω̃

(εq+1
1

αζ(k−1)/2
√
ϵ̃

)
which concludes the proof of the α -DFL case.728

In the case of (α,β)-SFL, we instead invoke Proposition 32, thus obtain |a∗i | ≲ rb/(βαN), and

ϵapprox ≤ Õ
(Lσrq+1

b

β
√
αN

)
,

which holds with probability at least 1 − δ for any polynomially decaying δ such as δ = n−c for729

some absolute constant c > 0. Consequently, with the same choice of rb = Θ̃(ε1) as before, we have730

E2 ≤ Õ
(ε2(q+1)

1 ζ

β2

)
and E1 ≤ Õ

(ε2(q+1)
1

β2αN

)
,

which completes the proof.731

We can also combine approximation bounds for the more general class of pseudo-Lipschitz F .732

Proposition 34. Suppose F and σ satisfy Assumption 3 and (bi)i∈[N]
i.i.d.∼ Unif(−rb, rb). Recall733

that ε1 := 1 ∨ ε, and ϵ̃ := ϵ ∧ ϵ2

AR∗ for any ϵ ∈ (0, 1). Using the simplification k, p, L ≲ 1, there734

exists a choice of rb = Θ̃
(
ε1(ε1/

√
ϵ̃)1+1/k

)
such that:735

• If W = (w1, . . . ,wN)⊤ is given by the α -DFL oracle, there exists a∗ such that |a∗i | ≤736

Õ((ε1/
√
ϵ̃)k+1+1/k/(αN)) for all i ∈ [N], and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as737

ζ ≤ Õ
((ϵ̃
ε21

)k+2+1/k
)
, and N ≥ Ω̃

(1

ζ(k−1)/2α

(ε1√
ϵ̃

)k+3+2/k
)
.

• If W = (w1, . . . ,wN)⊤ is given by the (α,β)-SFL oracle, there exists a∗ such that738

|a∗i | ≤ Õ
(
(ε1/
√
ϵ̃)k+1+1/k/(αβN)

)
, and AR(a∗,W , b)−AR∗ ≤ ϵ as soon as739

ζ ≤ Õ
(
β2
(ϵ̃
ε21

)k+2+1/k
)
, and N ≥ Ω̃

(1

αβ2

(ε21
ϵ̃

)k+3+2/k
)
.

Both cases above hold with probability at least 1− n−c for some absolute constant c > 0 over the740

choice of random biases (bi)i∈[N] (and random weights (wi) in the case of SFL).741

34

Proof. Our starting point is once again the decomposition

AR(a∗,W , b)−AR∗ ≤ E1 + E2 +
√
E3(E1 + E2).

Given Assumption 3, it is straightforward to verify that |h(z1)− h(z2)| ≲ (ε1−p1 ∥z1∥p−1
+742

ε1−p1 ∥z2∥p−1
+ 1)∥z1 − z2∥ for z1, z2 ∈ Rk. As a consequence, we have |h|(z) ≲ 1 + ∥z∥p743

for all z ∈ Rk. Therefore, by Lemma 23 with a choice of rz = Θ̃(ε1), we have E1 ≲ ϵ2approx. In the744

rest of the proof we will fix rz = Θ̃(ε1).745

We begin with considering the case of α -DFL. Unlike the proof of Proposition 33 where T ĥ = h, in746

this case we have an additional error due to T ĥ only approximating h. From Lemma 30, we have747

∥ĥ∥∞ ≤ Õ
(1

ε1

(∆
ε1

)2k/(k+1)
)
.

Thus,748

ϵapprox ≤ sup
∥z∥≤rz

∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣+
∣∣∣T ĥ(z)− h(z)∣∣∣

≤ Õ
(rb
ε1

(∆
ε1

) 2k
k+1
(√

ζ +
rb

ζ(k−1)/2αN

))
+ Õ

(
ε1
(∆
ε1

)− 2
k+1 + ε1

(∆
ε1

) 2k
k+1
(ε1
rb

)k)
,

where we bounded the first term via Proposition 31 with q = 1, and the second term via Lemma 30.
Additionally, we have ∣∣a∗j ∣∣ ≤ rb

ε1αN

(∆
ε1

) 2k
k+1 ,

for all j ∈ [N]. To obtain AR(a∗,W , b) ≤ AR∗ + ϵ, we must choose ∆ = Θ̃(ε1(ε1/
√
ϵ̃)(k+1)/2).749

Next, we choose rb = Θ̃(ε1(ε1/
√
ϵ̃)(k+1)/k). This combination ensures

∣∣∣T ĥ(z)− h(z)∣∣∣ ≲ √ϵ̃. To750

make sure
∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣ ≲ √ϵ̃, we should let751

ζ ≤ Õ
(
ϵ̃
(ϵ̃
ε21

)k+1+1/k
)
, and N = Θ̃

(1

ζ(k−1)/2α

(ε1√
ϵ̃

)k+3+2/k
)
.

The above guarantee that ϵapprox ≲
√
ϵ̃ and consequently E1 +

√
E3E1 ≲ ϵ. Note that the above

choices imply
∣∣a∗j ∣∣ ≤ r̃a/|S| for all i ∈ S with r̃a = Õ((ε1/

√
ϵ̃)k+1+1/k). From Lemma 22 with

q = 1, we have E2 ≲ r̃2aε
2
1ζ. Therefore, if we let

ζ = Θ̃
((ϵ̃
ε21

)k+2+1/k
)
,

we have E2 ≲ ϵ̃ and consequently E2 +
√
E3E1 ≲ ϵ. This concludes the proof of the α -DFL case.752

Next, we consider the case of (α,β)-SFL. Note that the error
∣∣∣T ĥ(z)− h(z)∣∣∣ remains unchanged.753

However, this time we invoke Proposition 32 for controlling
∣∣∣T̂ ĥ(z)− T ĥ(z)∣∣∣. Therefore,754

ϵapprox ≤ sup
∥z∥≤rz

∣∣∣∣∣∣
∑
j∈S

a∗jσ(⟨vj , z⟩+ bj)− T ĥ(z)

∣∣∣∣∣∣+
∣∣∣T ĥ(z)− h(z)∣∣∣

≤ Õ
(r2b
βε1

(∆
ε1

) 2k
k+1

√
1

αN

)
+ Õ

(
ε1
(∆
ε1

)− 2
k+1 + ε1

(∆
ε1

) 2k
k+1
(ε1
rb

)k)
.

Since the second term is unchanged, we have the same choices of ∆ = Θ̃
(
ε1(ε1/

√
ϵ̃)(k+1)/2

)
and755

rb = Θ̃
(
ε1(ε1/

√
ϵ̃)1+1/k

)
as in the α -DFL case. However, for the finite-width discretization, we756

should choose757

N = Θ̃
(1

αβ2

(ε21
ϵ̃

)k+3+2/k
)
. (D.7)

35

Moreover, Proposition 32 implies
∣∣a∗j ∣∣ ≤ r̃a/|S| with r̃a = Õ

(
(ε1/
√
ϵ̃)k+1+1/k/β

)
. As a result, to

get E2 ≲ r̃2aε
2
1ζ ≤ ϵ̃ from Lemma 22 with q = 1, we let

ζ = Θ̃
(
β2
(ϵ̃
ε21

)k/2+2+1/(2k)
)
,

completing the proof.758

759

E Numerical Experiments760

We perform the following small-scale experiment to support intuitions from our theory. We consider761

a single-index setting, where the teacher non-linearity is given by either ReLU, tanh, or He2(z) =762

(z2−1)/
√
2 which is the normalized second Hermite polynomial. The student network has N = 100763

neurons, and the input is sampled from x ∼ N (0, Id) with d = 100. We implement adversarial764

training in the following manner. At each iteration, we sample a new batch of i.i.d. training examples.765

We estimate the adversarial perturbations on this batch by performing 5 steps of signed projected766

gradient ascent, with a stepsize of 0.1. We then perform a gradient descent step on the perturbed767

batch. To estimate the robust test risk, we fix a test set of 10, 000 i.i.d. samples, and use 20 iterations768

to estimate the adversarial perturbation. Because of the online nature of the algorithm, the total769

number of samples used is the batch size times the number of iterations taken.770

The first row of Figure 1 compares the performance of three different approaches. Full AD training771

refers to adversarially training all layers from random initialization, where first layer weights are772

initialized uniformly on the sphere Sd−1, second layer weights are initialized i.i.d. from N (0, 1/N2),773

and biases are initialized i.i.d. from N (0, 1). In the two other approaches, we initialize all first layer774

weights to the target direction u. In one approach we fix this direction and do not train it, while in the775

other approach we allow the training of first layer weights from this initialization. As can be seen776

from Figure 1, there is a considerable improvement in initializing from u, which is consistent with777

out theory that this direction provides a Bayes optimal projection for robust learning.778

In the typical setting where we do not have knowledge of u, we consider the following alternative. We779

first perfrom standard training on the network, i.e. assume ε = 0 (denoted in Figure 1 by SD training).780

We can then either fix the first layer weights to these directions, or further train them adversarially781

from this initialization. Note that for a fair comparison with the full AD method, we provide the782

same random bias and second layer weight initializations across all methods at the beginning of783

the adversarial training stage. Even though this approach is not perfect at estimating the unkown784

direction, it still provides a considerable benefit over adversarial training of all layer from random785

initialization, as demonstrated in the second row of Figure 1.786

36

	Introduction
	Related Works

	Problem Setup: Statistical Model and Adversarial Robustness
	Optimal Representations for Robust Learning
	Learning Procedure and Guarantees
	Oracle Implementations of the Feature Learner

	Conclusion
	Gradient-Based Neural Feature Learning Algorithms
	Additional Details of Section 4
	Competing against the Optimal Polynomial Predictor
	Complete Versions of Theorems in Section 4

	Generalization Analysis
	Generalization Bounds for Bounded Lipschitz Losses
	Applying the Generalization Bound to Squared Loss

	Approximation Analysis
	Approximating Univariate Functions
	Approximating Multivariate Polynomials
	Approximating Multivariate Pseudo-Lipschitz Functions
	Discretizing Infinite-Width Approximations
	Combining All Steps

	Numerical Experiments

